Towards Permissionless Consensus in the Standard Model
via Fine-Grained Complexity

Marshall Ball* Juan Garay' Peter Hallt Aggelos Kiayias®

Giorgos Panagiotakost

Abstract

We investigate the feasibility of permissionless consensus (aka Byzantine agreement) under
standard assumptions. A number of protocols have been proposed to achieve permissionless
consensus, most notably based on the Bitcoin protocol; however, to date no protocol is known
that can be provably instantiated outside of the random oracle model.

In this work, we take the first steps towards achieving permissionless consensus in the stan-
dard model. In particular, we demonstrate that worst-case conjectures in fine-grained complex-
ity, in particular the orthogonal vectors conjecture (implied by the Strong Exponential Time
Hypothesis), imply permissionless consensus in the random beacon model—a setting where a
fresh random value is delivered to all parties at regular intervals. This gives a remarkable
win-win result: either permissionless consensus exists relative to a random beacon, or there are
non-trivial worst-case algorithmic speed-ups for a host of natural algorithmic problems (including
SAT).

Our protocol achieves resilience against adversaries that control an inverse-polynomial frac-
tion of the honest computational power, i.e., adversarial power A = T'7¢ for some constant
€ > 0, where T' denotes the honest computational power. This relatively low threshold is a
byproduct of the slack in the fine-grained complexity conjectures.

One technical highlight is the construction of a Seeded Proof of Work: a Proof of Work
where many (correlated) challenges can be derived from a single short public seed, and yet still
no non-trivial amortization is possible.

*NYU. marshall.ball@cs.nyu.edu.

TTexas A&M University. garay@cse.tamu.edu.

INYU. pf2184@nyu. edu.

$University of Edinburgh and IOHK. aggelos.kiayias@ed.ac.uk.
TI0HK. pagio91i@gmail.com.

Contents

1

Introduction

1.1 Our Results s
1.2 Technical Overview

Proofs of Work without Random Oracles

2.1 Deriving Many Challenges from a Short Public Seed
2.2 Key Technique: A Robust Direct Sum Theorem for fOVF
2.3 Simulatable, Non-Interactive PoW (with Large Proving Times)

Consensus from PoW and a Beacon

3.1 Protocol Execution and Security Model
3.2 Weak Consensus o i i e
3.3 Graded Consensus
3.4 COnSensuS v vt e e

Consensus from NIZK-PoW and a Beacon with O()\?) Output

Conclusions and Directions for Future Work

14
16
16
18

20
20
21
27
30

31

32

1 Introduction

A consensus (aka Byzantine agreement) [43, 37| protocol enables the participants to agree on an
input value, even in the presence of a malicious adversary who has the ability to corrupt a number
of the parties. In a permissioned consensus protocol, as all classical protocols are, it is assumed that
the identities of the parties participating in the protocol are known in advance, and, moreover, that
participants have reliable, authenticated! channels to one another. In the permissionless setting,
on the other hand, participants only know an upper bound on the number of parties — none of
the other participants’ identities are known. Furthermore, the adversary is capable of injecting
and “spoofing” messages in the network, making the exact number of actual participants hard to
determine.

In the most basic formulation of the permissionless consensus problem, three properties are
sought: (i) Agreement — all honest parties agree on the same output value, (ii) Validity — if all
honest parties start with the same input value, the output is determined from this input, and (iii)
Termination — all honest parties produce an output in a finite number of steps. As we will see (cf.
Section 1.2), the level of adversity present in the permissionless setting makes it infeasible to solve
the Byzantine agreement problem in the permissionless setting even assuming (1) a synchronous
model of communication where the protocol proceeds in well defined message passing rounds, (2)
a public setup or a beacon that regularly emits random values made available to participants at
each round, (3) that the adversary does not control any of the protocol participants (i.e., no party
corruptions are allowed), and (4) an upper bound to the number of participants is known to all
parties.

Given the extent of this impossibility, it is worth asking whether the permissionless setting
is a feasible domain for Byzantine agreement. This question was answered in the affirmative by
Nakamoto with his Bitcoin blockchain proposal [41]. Indeed, the premise of Nakamoto’s workaround
is that it would be possible to reach agreement in the permissionless setting by utilizing “proofs of
work” (PoWs), i.e., requiring from the participants to solve a moderately hard problem in order
to transmit valid messages to each other. The potential of this approach can be seen immediately
in the context of the impossibility outlined below (Section 1.2), since the main argument relies on
the adversary’s ability to simulate parties “in his head” and a PoW would impose a computational
burden to do so. It thus follows that there is a potential for a Byzantine agreement protocol to
work in the permissionless setting by imposing a computational assumption on the adversary.

Discovering such an assumption has proven to be a remarkably elusive proposition. Based on
the beautiful observation suggested by Nakamoto’s work, a number of works, starting with [27],
have built on it and presented permissionless Byzantine agreement protocols. Despite the progress,
we still do not know how to achieve agreement outside the Random Oracle (RO) model [6]. Indeed,
in most cases, the protocols are directly analyzed in the RO model [27], or they are based on crypto-
graphic primitives that they themselves have no known instantiation outside the RO model [29, 30].
A main obstacle is the “moderate hardness” of the PoW concept that is much easier to argue in
an idealized model such as the RO’s, but much more difficult to capture in a standard model of
computation.

Motivated by this, we make a decisive step towards realizing permissionless Byzantine agreement
in the standard model. Our primary contributions are threefold:

1. A simple notion of a PoW scheme that suffices to construct permissionless consensus in the
random beacon model. This, for the first time, shows what flavor of PoWs suffices in the stan-
dard model of computation to achieve permissionless agreement assuming public random coins

! And in some cases, such as randomized protocols in the information-theoretic setting, also private.

are available to all participants and a suitable computational assumption. Our methodology
first uses our PoW notion to yield a weak agreement variant where agreement holds uncondi-
tionally, while validity is allowed to sometimes fail. We then use this weak variant as a building
block to obtain graded consensus by a suitable amplification technique, which easily yields full
consensus in the random beacon model.?

2. (Worst-case) Conjectures in fine-grained complexity, such as SETH [33, 10] or the Orthogonal
Vectors conjecture [26, 4|, suffice to realize this notion of PoW, thus yielding permissionless
consensus in the random beacon model from simple worst-case conjectures in complexity.

3. The consensus protocol mentioned above requires beacon outputs of length proportional to the
number of parties. We show that if, in addition to the fine-grained conjectures, one assumes
the Decisional Diffie Hellman assumption (DDH) is sub-exponentially secure (cf. [34]), there
is a permissionless consensus protocol that uses beacon outputs of length independent of the
number of parties. Critical to achieving this are (1) a novel notion of a Seeded PoW, where a
short public seed can be expanded into many PoW challenges (this transformation does not
require DDH), and (2) a fine-grained approach to zero-knowledge (building on an approach
by Ball et al. [5]). Both of these contributions may be of independent interest. A byproduct
of this transformation are the first PoWs with arbitrary polynomial gap that do not require a
random oracle (assuming the k-Orthogonal Vectors Conjecture and sub-exponential DDH).

PoWs inherently require a source of fresh randomness to be used safely and avoid precomputation
attacks. Famously, Bitcoin relies explicitly on a heuristic source of fresh randomness obtained from
the headline of The Times newspaper on a date near the deployment of the protocol [7], and
implicitly on the ability of the underlying hash function to form chains that are unpredictable:
indeed, guessing the hash value of any future chain allows a precomputation attack. Previous
works (e.g., [27, 2]) have non-trivially relied on the RO model to argue these properties. Our
result drops the RO modeling requirement for permissionless BA showing that, under suitable
computational assumptions, a randomness beacon is sufficient. Note that a randomness beacon is
no stronger assumption than the RO, as it is possible to realize the former from the latter (cf. [2]).
Furthermore, and perhaps more interestingly, it is also a setup assumption that, contrary to the
RO, can be realized directly on its own right?: for example, via the invocation of a suitable sunspot
setup [16] that allows for deterministic extraction.

1.1 Our Results

Model and Assumptions. Before summarizing our results, we begin by describing the model in
which we construct permissionless consensus and the assumptions from fine-grained complexity we
utilize.

The permissionless setting. While message passing is reliable in the permissionless setting, the
sources of messages and the number of parties participating in the protocol critically is not. The
adversary can inject messages to be delivered in any order, and the actual number of parties is chosen
adversarially only subject to a known upper bound on the number of parties. Time is divided into
rounds, with each active honest participant allowed a fixed number of computational steps per

2The reader may wonder why the PoW scheme presented in [5] doesn’t directly give a permissionless consensus
protocol. The reason is that in Nakamoto’s protocol the PoW proving time must follow a geometric distribution, and
it is not clear how to get this property from the scheme in [5] without an RO while retaining hardness. On the other
hand, our (classical) approach to consensus directly benefits from deterministic-time PoW provers, as all parties are
expected to produce a PoW by the end of the round deadline.

3In contrast to a RO, a beacon has a feasibly short description.

round. For convenience, we will use rounds of different length as suited for the underlying protocol
and its computational requirements. To ensure that the adversary cannot just flood the honest
parties’ incoming communication tape, an upper bound on the number of messages the adversary
may inject is also imposed. Furthermore, in each round the adversary is allowed to determine the
order with which messages are delivered to each honest party.

Random beacon model. All parties have access to a random value that is sampled from a uniform
distribution in each round. The adversary is allowed to access it first at the onset of the round —
and even influence the way messages are scheduled to be received by each honest party after seeing
it.

Congectures in fine-grained complexity. The Orthogonal Vectors Problem, or OV, is the following
simple combinatorial problem:

Problem ORTHOGONAL VECTORS (OV)}

Input: n vectors vy,...,v, € {0,1}¢

Decide: Does there exist 4, j such that (v;,v;) = 07

One can equivalently think of this problem as the following: Given n subsets from a universe of size
d, determine if there exists a pair of disjoint sets.

For ¢ > 1, the fastest existing algorithms for OV with dimension d = clogn run in time
n2-1/000gc) 1 17]. In particular, as d grows beyond logn, the time complexity approaches that of
the trivial O(n?d)-time algorithm. The failure to effectively bypass this n? barrier has led to the
conjecture that OV requires n2~°(1) time for d = w(logn):

Conjecture 1 (Orthogonal Vectors Conjecture (OVC) [45, 47]). For all € > 0, there exists ¢ > 1
such that OV requires n?~¢ time on instances with d = clogn.

We note this is a worst-case conjecture. In this work, we rely on slightly stronger variants of
this conjecture, that OV does not admit any non-uniform (and alternatively, probabilistic two-
sided constant-error) algorithm that runs in time n?~¢, for ¢ > 0. Violating this conjecture would
immediately yield a host of algorithmic improvements to many important problems, perhaps most
notably Satisfiability. In particular, the orthogonal vectors conjecture is in fact implied by the Strong
Exponential Time Hypothesis or SETH (similarly, its strengthenings are implied by corresponding
strengthenings of SETH [33, 10, 45]). The converse is not known to be true.

Conjecture 2 (Strong Exponential Time Hypothesis (SETH) [33, 10, 11]|). For all € > 0, there
exists k > 1 such that k-SAT requires 2(1=9" time.

The Orthogonal Vectors problem can in fact be generalized to the k-Orthogonal Vectors Problem,
which effectively asks: Given n subsets from a universe of size d, is there a way to choose k sets
such that their intersection is empty?

Problem %k-ORTHOGONAL VECTORS (k:OV)}

Input: n vectors v',...,v" € {0,1}¢

Decide: Does there exist i, ..., such that 27:1 vél e vé’“ =07

Note that 20V = OV. This problem is conjectured to require n¥=°) for d = w(logn):

Conjecture 3 (k-Orthogonal Vectors Conjecture (kOVC) [45, 47]). For all € > 0, there exists ¢ > 1
such that KOV requires n¥~¢ time.

This conjecture is also implied by the Strong Exponential Time Hypothesis (similarly, kKOVC’s
variants are implied by SETH’s variants).

Proofs of Work from Fine-Grained Complexity. A Proof of Work (PoW), introduced by
Dwork and Naor [23], enables a Prover party to convince, relative to a random challenge, a Verifier
party that a certain amount of computation was performed. In particular, no adversary that uses
significantly fewer steps than those used by the “honest” Prover algorithm can convince the Verifier
to accept. In addition, the Verifier must be much more efficient than the Prover.

It is also useful for PoWs to not be amortizable — that is, given many proofs, a malicious Prover
should not be able to convince the Verifier in time less than what it takes to separately prove each
instance.

Unlike many other cryptographic primitives, PoW schemes necessitate very fine-grained assump-
tions because the honest Prover running time should be as close to the bound on adversarial running
time as possible.

Protocol-friendly PoWs. Ball et al. [4, 5] showed how to construct PoW schemes, satisfying Dwork
and Naor’s definition, from worst-case assumptions about natural problems in fine-grained complex-
ity (such as OVC mentioned above), yielding an exciting win-win.* These schemes had the following
non-amortization guarantee: Given m challenges that require ¢ time individually, it is impossible
to produce proofs for all m challenges in time significantly less than m - ¢t. Or, in other words, the
naive strategy of solving each instance one-by-one is effectively optimal.

While this result is exciting, it unfortunately falls short of what one would ultimately desire from
a PoW scheme (and what we require in the present work to achieve consensus). Loosely speaking,
one should require non-amortization to hold even over partial solutions where the adversary can
decide what subset of the challenges to focus on. In particular, we introduce a new “protocol-
friendly” PoW promise: Given m challenges that require ¢ time individually, producing £ < m
accepting proofs requires time ¢ - ¢, for any (large enough) ¢. In other words, the naive strategy of
honestly producing proofs for any £ instances one-by-one is effectively optimal.

In this work we give a novel analysis to show that the PoW schemes of Ball et al. [4, 5], in fact
already achieve this notion.

(Protocol-Friendly) PoW Theorem (Informal). Assuming OVC (Conjecture 1 above), there
exists a Proof of Work scheme where the honest prover runs in time O(n?), the verifier runs in time
O(n), and for any m = poly(n) and ¢ = m!'=°M) and any € > 0, no adversary running in time
¢-n?"¢ that is given m random challenges can produce ¢ accepting proofs with probability 1/n0(1).

Assuming Conjecture 3, this can be extended to yield interactive proofs with provers running in
time O(n*) and verifiers running in time O(n), and guarantees against adversaries running in time
¢-nF~¢. Additionally, assuming an efficient Correlation-Intractable Hash [14, 12, 15] for Round-by-
Round Soundness [13| protocols yields a non-interactive PoW with the same characteristics as the
Fiat-Shamir transform.

Ball et al. constructed their schemes by (a) providing a worst-case to average-case reduction
from kOV to the problem of evaluating a particular family of polynomials: FOV¥.®> They then
demonstrated that (b) FOVF admits a direct sum theorem (which says solving m instances requires

‘Dwork and Naor themselves gave some candidates, for example assuming that existing attacks on the Ong-
Schnorr-Shamir signature scheme could not be improved.

5They additionally observed that this technique applies to a variety of problems in fine-grained complexity. Later,
others [32, 8, 31] extended this method to show that the problem of counting k-cliques is itself hard on average.

m times as much computation as a single instance), and (c) the problem admits a doubly-efficient®
proof system. Then, to produce a proof of work, the Prover simply evaluates FOV* on a random
challenge, and uses in proof system to convince the verifier that the evaluation is correct.

To strengthen their result, it suffices to simply improve upon (b): prove what we term a robust
direct sum theorem for the problem of evaluating FOV*: correctly evaluating any ¢ out of m random
instances requires ¢ times as much work as evaluating a single instance.

Robust Direct Sum Theorem (Informal). Assuming the kOV conjecture (Conjecture 3 above),
for any m = poly(n) and ¢ = m*=°W) and any € > 0, no algorithm running in time £ - n®~¢ that
is given m random independent inputs to FOVF can correctly evaluate ¢ of them with probability
1/n°,

We remark that this theorem holds not simply with respect to m random, independent instances,
but additionally with respect to a specific joint pseudorandom distribution that only has O(ml/ kn)
bits of entropy. (This “derandomized” robust direct sum theorem is the technical core of our next
result.)

Seeded proofs of work. 1t is often desirable to be able to generate a large number of PoW challenges
with very little communication. For example, in the context of this paper, we will use a random
beacon to generate many PoW challenges in each epoch. Intuitively, in a model without ROs,
instantiating such a beacon with long output is likely to incur significant efficiency overhead.

With this in mind, we introduce the notion of a Seeded PoW scheme, where a short public seed
can be expanded to any of m PoW challenges with the same (strengthened) promise as above, even
when the adversary is holding the seed. It is not clear how to generically compile a PoW scheme
into a Seeded PoW scheme, even using cryptographic assumptions, because of the public nature
of the seed (the distribution over challenges it specifies cannot be pseudorandom in a traditional
cryptographic sense).

Nonetheless, we show that Ball et al.’s PoW scheme can be adapted into a Seeded PoW scheme,
by demonstrating that the robust direct sum theorem holds relative to a particular “pseudorandom”
joint distribution over batches of m instances (as opposed to simply i.i.d. uniform batches) that
admits an invertible sampler.

(Protocol-Friendly) Seeded PoW Theorem (Informal). Assuming the kOV conjecture (Con-
jecture 3 above), there exists a Seeded PoW scheme where the honest prover runs in time O(n?), the
verifier runs in time O(n), and for any m = poly(n) a seed of length O(m**n) can be efficiently
expanded to m instances of size O(n) such that for any £ = m'=°Y) and any € > 0, no adversary

running in time £ - n?>~¢ that is given the seed can produce ¢ accepting proofs with probability better
than 1/n°W).

Zero-knowledge PoWs. A zero-knowledge PoW (zkPoW) [5] satisfies the properties of a PoW as well
as a zero-knowledge property. Classical zero-knowledge is trivial in this setting because Proofs of
Work can be generated in polynomial time. Instead, we use a more precise notion of zero-knowledge:
the simulator should run with time complexity proportional to that of the verifier — in our case
O(n'+?), for arbitrarily small constant § > 0.

This is an important property in the context of protocol-friendly PoWs as it allows simulation
of PoWs in the context of a reduction to an underlying hard computational problem provided the
complexity of the simulator is low. More concretely, this gives a generic way to get security for

SA proof system is said to be doubly-efficient if the prover runs in polynomial time and the verifier runs in quasi-
linear time. We require the stronger property that the prover runs in the same time as performing the computation
in the clear, up to subpolynomial factors.

our Seeded PoW scheme against an adversary who not only can try to amortize work across ¢ out
of m challenges, but additionally sees a number of (correlated) honest proofs as well. (In the case
of vanilla protocol-friendly PoWs where challenges are independent, this stronger security follows
simply from encoding the honest proofs as non-uniform advice.)

Assuming subexponential DDH, we present and realize a concretely efficient zkPoW construction
based on our seeded PoW primitive in a way that also satisfies a Proof of Knowledge property, i.e.,
it is possible to extract a witness from any convincing prover. The core of this protocol is a simple
Schnorr-based Fiat-Shamir-friendly compiler for making sumcheck-based proofs zero-knowledge. A
by-product of this theorem is the first non-interactive PoW with a superquadratic prover /verifier
gap without a random oracle, from natural assumptions.

(Protocol-Friendly) Seeded ZK-PoW Theorem (Informal). Assuming the kOV conjecture
(Conjecture 3) and subexponentially-secure DDH, for any 6 > 0 there exists an (extractable) Zero-
Knowledge Seeded PoW scheme (in the public uniformly random string [URS] model) where the
honest prover runs in time O(n*+0), the verifier runs in time O(n'*°), and for any m = poly(n),
a seed of length O(m'*n) can be efficiently expanded to m instances of size O(n) such that for any
¢ =m'°W and any € > 0, no adversary running in time £ -n*=¢ that is given the seed can produce
£ accepting proofs with probability 1/n0(1).

Honest proofs can be simulated in time O(n'*?), the knowledge extractor runs in time O(n'*9),

and the length of the URS is O(n'*?).

Permissionless Consensus. Next, armed with our protocol-friendly PoWs, we put them to use
in the context of consensus. Our construction follows the versatile weak-to-graded-to-full consensus
approach (cf. [36, 24]), and non-trivially adapts it to a setting where the adversary may temporarily
control a majority of the messages sent in the protocol. As the name implies, we first design
a protocol that achieves weak consensus, a Byzantine agreement variant where the Agreement
property is relaxed to allow some of the honest parties to fail returning 1.

Our first modification to avoid sybil attacks, is that every time a subprotocol is executed,
participants parse the random beacon output as a sequence of PoW instances, associate each instance
with an input message (multiple instances are associated with the same message), and then solve
a random instance corresponding to the message of their choice and share the related witness with
other participants to convey their support for this message.

A complication that arises at this stage is that the adversary can enforce a high level of disparity
in the views of honest parties by revealing different PoW witnesses it produced to different parties.
For this reason, an additional (short) round of communication is added to ensure that most of the
PoW instances exchanged become common in the views of all honest parties. This approach nearly
unifies the views, to a degree sufficient to enable (weak) agreement.

A second issue is that the security of the PoW schemes we construct fails with non-negligible
probability, while we strive to achieve consensus with only negligible error. The problem is that when
the PoW security fails, the adversary is overrepresented by computing more PoWs than expected,
and may control the majority of the messages created, thus making it impossible to achieve validity.
To circumvent this problem we (i) run the weak consensus subprotocol repeatedly to amplify security
and ensure that in the majority of the runs PoW security holds with overwhelming probability,
and then (ii) apply an adequate error-correcting technique to correct any errors introduced by the
temporary loss of honest majority. As we prove, weak consensus can be indeed “error-corrected”
and validity be ensured with overwhelming probability, an interesting result by itself; in the initial
conception of weak consensus temporary loss of honest majority was not a concern!

Next, we use the above protocol as a subprotocol to achieve graded consensus [24], a variant
where the output of each honest party is associated with a grade in {0, 1} that signals to an honest

party whether all honest parties have reached the same output or not. We show that weak consensus
implies graded consensus by a similar amplification and error-correcting technique. Finally, utilizing
the random beacon, we then turn graded consensus into a full-fledged consensus protocol. This
brings us to our main result stated informally as follows:

Permissionless Consensus Theorem (Informal). Assuming the KOV conjecture for k > 2
(Conjecture 3 above), permissionless consensus with negligible error is feasible in the random beacon
model provided that the ratio of the total number of computational steps performed by the honest
parties (as a function of n) over that of the adversary is n® for some € > 0, where n is the security
parameter.

While it is necessary to assume that the total number of computational steps of the honest par-
ties is greater than that of the adversary, as otherwise consensus is impossible, we note that under
stronger assumptions, e.g., the RO model, permissionless consensus can be achieved by only assum-
ing that the total honest computational power slightly exceeds that of the adversary. Interestingly,
the same assumption suffices in our case if the adversarial gap € in the worst-case conjecture we
employ tends to zero.

Further, note that, as described, the consensus protocol requires random beacon outputs of
length proportional to the number of honest parties (or their cumulative computational power),
something that may be prohibitively long in practice. We overcome this problem by incorporating
our Seeded NIZK-PoW: for the resulting consensus protocol, it suffices to have a O(n?)-long reference
string that will be interpreted as a ZK-PoW seed. The key difference in the reduction is that we
have to use the ZK simulator to ensure its complexity remains within bounds.

1.2 Technical Overview

First, we outline the impossibility result for Byzantine agreement in the permissionless setting with
a random beacon and also given an upper bound U on the number of parties, demonstrating that
computational assumptions are necessary (even in the random beacon model). For the sake of
contradiction, consider a protocol II capable of solving agreement. Suppose there are two sets of
parties Sp, S1, numbering n > 0 participants each with U > 2n, and each holding initial input
0,1, respectively. Define first an execution F where the adversary is not active and the parties in
So U S1 run protocol TI. Given that IT satisfies Agreement and Termination, all parties are capable
of producing the same output b € {0,1}. Next, consider two other executions E,, a € {0, 1}, where
S, consists of honest parties and the adversary spoofs and injects all messages that would have been
produced by the parties in S7_, if they were actual participants in the protocol — the adversary
is capable of simulating them “in his head” and communicating on their behalf since the network
model allows him to inject messages and spoof their source. By Validity it must be the case that
the honest parties in S, in execution E, terminate with output a, for both cases a € {0,1}. This
results in a contradiction, since all three executions we defined, F, Fy, and E7, are identical.
Observe that the argument would still hold if a public setup was available to the parties in the
form of a randomness beacon that is available in each round (but it would not hold in the case
of private setup: in this case the parties could acquire access to a public-key directory and hence
resolve any uncertainty of “permissionless” participation essentially transforming the setting into
the classical permissioned one where parties have authenticated channels to each other). Moreover,
it is also easy to verify that the impossibility result holds even if the adversary is computationally
bounded with a computation quota on par with n participants. We remark that the above reasoning
adapts a classic impossibility argument for honest-majority consensus (cf. [25]) to the permissionless
setting. Note that a related impossibility result in the permissionless setting was explored for the

problem of state machine replication in [42]| arguing that access to a “PoW oracle” is necessary for
that problem.

Given the impossibility above, the open question is thus whether permissionless consensus is
feasible once the computational power of the honest parties exceeds that of the adversary.

Protocol-Friendly PoWs. Recall from above that the PoW recipe due to Ball et al. [4, 5] works
by first defining a specific family of polynomials, FOV*. This family of polynomials corresponds
to an efficient arithmetization of the k-orthogonal vectors problem. Evaluating FOV* faster in the
worst-case immediately implies faster algorithms for kOV. Ball et al. then showed that FOV¥
admits (a) a (tight) doubly efficient proof system and (b) a direct sum theorem.

Part (a) says that there exists a k-round interactive proof system (Prover, Verifier) for the relation
(X,Y = FOV¥(X)) where Prover runs in time O(n*) and Verifier runs in time O(n). In the case of
k = 2, this proof system is non-interactive (although the verifier is randomized).”

Part (b), the direct sum theorem for FOV¥, says that evaluating FOV* correctly on m = poly(n)
uniformly random instances requires m - n* ¢ time, assuming kOVC.

The PoW scheme then amounts to simply treating the challenge, X, as a random input to F oV*,
evaluating the polynomial to get FOV* (X) = y, and generating a doubly efficient proof that the
polynomial was evaluated correctly. Thus, the security and efficiency of the PoW is an immediate
consequence of the soundness and efficiency (resp.) of the proof system. In particular for security,
any cheating Prover that can generate m proofs in time m -n*~¢ that convince the Verifier to accept
can be immediately used (by the soundness of the proof system) to violate the consequence of the
direct sum theorem, and hence kKOVC. Hence, to build a protocol-friendly PoW (with the guarantee
that solving f-out-of-m instances requires ¢ - n*~), it suffices to improve the direct sum theorem of
Ball et al.®

To build a seeded (protocol-friendly) PoW, we will show that the robust direct sum theorem holds,
not simply with respect to random independent instances, but to a particular joint pseudorandom
distribution. Because there is an efficient, invertible function that samples this distribution using
just O(ml/ kn) random bits, we can use the sampler to expand the random seed. Because the
sampler can be efficiently inverted, including the seed does not help the adversary.

Recall that the robust direct sum theorem for FOV* says that for any m = poly(n) and ¢ =
m*=°M and any € > 0, any adversary solving ¢ instances in time ¢ - n*~¢ succeeds with probability
at most n~°). The proof of this theorem relies on two key properties of FOV¥:

1. FOVF is a low-degree (degree kd = O(1)) multivariate polynomial. This means that the “truth
table” of this function corresponds to a Reed-Muller codeword, a locally list-decodable code;

2. FOV* is (worst-case) downward self-reducible: an instance X of size O(N) for N = m!/*n can
be reduced to solving a batch of m instances of size O(n) Thus, solving this batch in time
m - nF=¢ for € > 0 immediately yields an algorithm for the single instance that runs in time
N*=¢ for some € > 0.
Put together, this means that FOV* admits a downward random self-reduction with a list-decoding
guarantee.
The hard pseudorandom distribution, Dy, is obtained by simply evaluating the downward self-
reduction on a random instance of the appropriate size.
We now are ready to sketch the high-level proof of this theorem. We will sketch (and ultimately
prove) the case of hardness relative to the pseudorandom distribution Dp,. To obtain the robust

"More generally, a non-interactive proof system where the Prover runs in time O(nk) and Verifier runs in time
O(n*/?) is possible.

8We note that other methods are possible, however we believe our robust direct sum theorem to be interesting in
its own right.

10

direct sum theorem relative to uniform and independent instances, it suffices to run the downward
random self-reductions below with independent randomness (as opposed to correlated randomness).
At a very high level, our reduction works by (a) “derandomizing” the list-decoding-based reduc-
tion of [5] (based in turn on a reduction from [9] and its fine-grained adaptation in [4]) and (b)
taking various steps to make it robust to “partial solvers” while preserving pseudorandomness. Still
at a high level, our reduction works as follows:
1. Starting with a large (worst-case hard) instance X, split it into m smaller instances using the
problem’s downward self-reducibility. Note that these smaller instances will necessarily be in
the support of Dy,.

2. Then use another downward random self-reduction with a list-decoding guarantee to sample
random T instances for each smaller instance. (Each such reduction will make a few queries
to instances half the size of the instances generated in step 1.)

The reductions in this step have the guarantee that, provided a sufficient fraction of their
calls are answered correctly, they will generate a short list of advice strings: one of which
encodes the correct answer to the small instance. Determining the correct advice string is a
matter of correctly evaluating f on some point in the query space (which is half the size of the
starting instance).

Additionally, we will feed these downward-self-reductions correlated randomness, to ensure
that the joint distribution of their 7th queries is distributed according to Dp,. Furthermore, we
will ensure that the joint distributions of queries will be g-wise independent for some appro-
priately chosen ¢ (so we can apply concentration bounds).

3. Next, locally randomly permute each batch of the ¢th queries from the downward random
self-reductions, in a manner that does not alter the residual distribution (of the ith queries,
jointly). Then, feed the permuted queries to the partial-batch solver A.

Intuitively, if the queries were not permuted, A might ignore the first instance and the
corresponding downward random self-reduction would have no correctness guarantee.

4. After this step, we simply need to determine the correct advice string in each list. Once it is
found, we can correctly solve all m smaller instances and combine their solutions to solve the
large instance X.

Determining the correct advice string in any given list can be done by evaluating f cor-
rectly on any point in the query space (instances half the size of the smaller instances) that
disambiguates all the advice in the list. The reduction then randomly generates a sample from
something in the support of Dy, that has this property and recursively runs reduction from
step 2, until instances are sufficiently small to be solved via brute force.

(Simple) Zero-Knowledge Proofs for “Easy” Problems. The notion of zero-knowledge PoW
(ZK-PoW), introduced by Ball et al. [4], is a Proof of Work with a zero-knowledge property: tran-
scripts between an honest prover and verifier can be simulated in time proportional to the verifier’s.
Note that because the PoW prover runs in polynomial time, any PoW trivially satisfies the tradi-
tional notion of zero-knowledge.

More importantly, the ability to efficiently simulate honest proofs proves to be especially helpful
when using Seeded PoWs in protocols: because the challenges are correlated one cannot use non-
uniform advice to simulate honest proofs and while still guaranteeing security on the remaining
challenges. However, to use zero-knowledge PoWs in a protocol it is helpful to have stronger
properties: we require hardness/soundness to hold even when an adversary has access to simulated
proofs (and ideally a short, reusable CRS). To this end, we strengthen the notion of a zero-knowledge

11

PoW (ZK-PoW) to have the properties of robust zero-knowledge [21], with tight simulation and
extraction.’

We show how to tightly compile the PoW protocols above into ZK-PoWs. At the core of
these, we give a DDH-based compiler for rendering recursive sumcheck protocols zero-knowledge
by committing to the prover’s polynomials (with homomorphic statistically-binding commitments)
and performing a few consistency checks in each round. This technique, reminiscent of Schnorr’s
ID scheme, may be of independent interest due to its simplicity. To make the protocol extractable
(so the prover’s commitments can be opened), we simply enforce that polynomials are committed
to in binary with additional zero-knowledge proofs.

The results are robust (honest verifier) zero-knowledge proof systems, albeit interactive ones.

Next we turn to making these interactive ZK-PoWs non-interactive using the Fiat-Shamir trans-
formation. To avoid using random oracles or heuristic assumptions, we employ the techniques of
a recent line of works on collision-intractable hashing (CIH) [12, 34, 38, 18|. CIH have been con-
structed from a variety of assumptions and have been shown to provably instantiate Fiat-Shamir
variety of proof systems. Our ZK protocols remain “Fiat-Shamir friendly,” we can apply CIH to
collapse our protocols to non-interactive ones. Because we are already using DDH, we will use a CIH
which only relies on the sub-exponential hardness of the DDH assumption against polynomial-time
adversaries [34].

However, this construction requires a few properties of the underlying proof. The resulting
construction is only a CIH for the complexity class TC?, and so we will need to ensure that any bad
challenges can be found in TC. To do this, [34] relied on a lossy encryption scheme with low-depth
decryption, as well as a trapdoor protocol which can identify the bad challenges in low depth, as
well. They require that the underlying proof is witness hiding. Finally, they encrypt the statement
in the proof using the decryption scheme and use the trapdoor to hide the secret key to decrypt
this. Zero-knowledge comes from the lossy-ness of the encryption scheme, and soundness comes
from the witness hiding of the protocol and the trapdoor protocol.

We use this CIH, but due to the “easiness” of our problem, we use slightly different techniques
to employ it. Our trapdoor protocol will be a proof of knowledge for 2k — 3 DDH tuples. This will
ensure that the total round complexity of this is 4k — 5, the same as the underlying zk-PoW protocol
we construct described above. With these having the same round complexity, then, collapsing them
into a single OR-proof can then be done using techniques from [19]. Witness hiding will be inherited
from this, assuming that the underlying zk-PoW satisfies special soundness. Then, by showing that
our Extractor (and by extension, Verifier) runs in TC?, and the trapdoor protocol can recognize
bad challenges in TC?, we can correctly employ the CIH to collapse these 2k — 3 rounds to just a
single Prover-Verifier message. In order to get both of these in low depth, we will give powers of
exponents of our trapdoor, as in [34]. By encoding these properly, we can achieve all of this using
a common random string.

The end result is a robust (multitheorem) NIZK variant of the PoW schemes above.

Permissionless Consensus from PoWs + Beacon. Given protocol-friendly PoWs, a number
of challenges have still to be overcome in order to design a secure consensus protocol.

Message-encoding PoWs. First off, in order to use PoWs effectively in a permissionless setting,
parties must be able to encode information with it; a PoW that does not uniquely encode a message
is useless as the adversary can replay it and claim that it conveys a different message. This problem
is easily solved in the RO setting, since message-encoding PoWs (aka Signatures of Work [30])

9Looking ahead, the simulator will be used in the reduction from an attacker against the consensus protocol to
an attacker against POW hardness in order to simulate the work of honest parties. Thus, an efficient simulator is
important to prove our protocol secure.

12

of arbitrary message size can be constructed, by solving a PoW instance created by hashing the
target message together with a random nonce. However, this technique does not generalize in a
straightforward way to the standard model of computation.

Here we deal with the problem in a different way. First, we design a consensus protocol that
only requires parties to send messages from a constant-size space, namely, 0,1, and L. Second, we
assume that the PoW instances provided by the beacon correspond to some pre-defined message, i.e.,
instances are split into a constant number of equally sized subsets, Xo, X1, and X |, corresponding
to messages 0, 1, and L, respectively. Now, if a party wants to send message b at some round of the
protocol, it parses the output of the beacon at this round as a sequence of instances Xg, X1, X |,
picks at random a PoW instance from Xj, solves it, and communicates the computed witness to
all other participants of the protocol. Given a large enough number of instances, honest parties
mostly pick different instances to solve, and thus the total number of messages generated by them
is proportional to their computational power.

Consensus without a PKI. The next big obstacle we have to overcome, given our limited message-
encoding capability, is designing a consensus protocol where parties only send messages from a
constant-size space. Previous works in the permissionless setting follow one of the following two
approaches: (1) The blockchain approach [27], where chains of PoWs are used to reach consensus,
and a sufficiently strong moderate hardness guarantee (from the chain) is required in order to prove
security, as shown in [29], or (2) use the PoW primitive to first establish some form of a PKI, and
then run a “classical” permissioned consensus protocol [2]. In the latter case, parties must be able
to encode public keys in their PoWs, i.e., messages of security-parameter length, to obtain any
meaningful level of security.! Consequently, neither of the two approaches is a good fit given the
PoWs we can construct.

Our approach, instead, is based on the observation that the classical technique in the permis-
sioned setting of gradually building stronger forms of consensus — i.e., weak, graded and finally full
consensus (cf. [24] and follow-ups) — does not require the existence of authenticated channels or a
PKI. We can thus adapt the relevant protocols to work in the permissionless setting.

In more detail, weak and graded consensus protocols are basically 2-round protocols, where in
the first round parties send their message, 0,1 (or L in the case of graded consensus), while in the
second round the sent messages are gathered and tallied to determine what the protocol output
should be. Using these protocols in our setting in the form they have appeared in the literature,
however, only allows for tolerating up to 1/3 of the sent messages being created by the adversary.
This is due to the fact that in our setting only an upper bound on the number of parties is known,
and the algorithm has to conservatively estimate the total number of parties in order to produce
outputs that satisfy the required agreement and validity properties.

To achieve the optimal threshold between honest and corrupted parties, we adapt both protocols
to have an extra third round, where messages/PoWs received in the second round are re-broadcast
for one more round, but no new PoWs are produced in the second round by the honest parties.
This allows parties to build a more consistent view on the total number of messages sent in the
first round, and thus tolerate the optimal corruption threshold. Now, given graded consensus,
achieving full consensus is relatively straightforward in the presence of an unpredictable common
coin (cf. [44, 24, 35]), whose functionality in our setting can be emulated by the randomness beacon.

Non-negligible PoW security. The final obstacle we face is that while the PoWs we use are moderately
hard with high probability, we want to achieve consensus with overwhelming probability.

Furthermore, in this approach digital signatures are also used, and thus the existence of one-way functions must
be assumed, an assumption that as we show is not necessary.

13

First, note that the consensus protocol outlined above is secure at best with high probability,
since in case moderate hardness fails the adversary can break security by sending more messages than
the honest parties. To deal with this issue we showcase another (previously unnoticed) property of
the weak-graded-full consensus methodology, namely, that the outputs of the weak /graded consensus
sub-protocols can be error-corrected. That is, if we run the weak (resp., graded) consensus protocol
multiple times, and correctness holds in more than 2/3 of the runs, then a single output that satisfies
weak (resp., graded) consensus guarantees can be recovered.

It still remains to argue why we expect 2/3 of the runs to be correct with overwhelming prob-
ability. Our proof is based on sequential amplification: different invocations of the base protocols
are run sequentially one after the other, with independently sampled sets of PoW instances used in
each run. Thus, a sequential amplification argument can be made, ensuring that if PoW security
holds with probability greater than 2/3, a constant fraction of the protocol instances run will be
correct. However, unlike previous results (e.g., [20]), the runtime of the reduction involved in the
amplification theorem must be concretely efficient, as our target is breaking the fine-grained security
of the PoW primitive. We ensure that this is the case by simulating honestly produced PoWs using
PoW instances and the related witnesses provided to the reduction as advice.

PoWs from a beacon with short outputs. To reduce the probability that two honest parties choose
the same PoW to solve in the approach above, the number of PoW instances output by the beacon
should be proportional to the number of parties. Using NIZK-PoWs (refer to the “zero-knowledge
proofs for easy problems” subsection above) we manage to weaken our reliance on the randomness
beacon. Namely, we parse its output (O(n?) bits) as a NIZK-PoW seed. As before, parties again
have a number of PoW instances available proportional to their number, due to the expanding
nature of the seed. The protocol is built in exactly the same way as before, from weak, to graded,
to full consensus. A technical challenge arises here due to the fact that the PoW instances in a
given round are correlated, as they are generated from the same seed, and thus honest parties’ work
cannot be simulated by instances coming from the advice string. Luckily, the NIZK simulator can
be used to simulate honest work and avoid the problem.

After all these transformations, the consensus protocol we design is quite tight in terms of
security: it suffices that the total number of adversarial messages produced when PoW security holds
is less than the number of messages produced by honest parties. For the specific PoW construction
we employ in this paper, this condition is implied by assuming that the computational power of the
adversary is suitably restricted compared to that of honest parties.

2 Proofs of Work without Random Oracles

In this section, we outline our results concerning Proofs of Work. We propose subtle (yet important)
changes to prior definitions as well as novel functionalities. In particular, we outline the key tech-
nical contribution: an improved non-amortizability result for a problem in fine-grained complexity.
This section focuses exclusively on definitions and theorem statements. A reader looking for full
details can refer to the full version [3].

We begin with a new definition of a Proof of Work (PoW) that we believe to be closer to the
“correct” definition than that of |22, 5|. Nonetheless, our starting point is the definition from [22, 5|,
albeit with a slightly more stringent hardness condition. Ball et al. (following Dwork and Naor [22])
simply required that any prover attempting to solve m random challenges must work approximately
m times as hard relative to the work required for a single random challenge.

On the other hand, we will require that solving even ¢ < m random challenges requires approx-
imately ¢ times as much work (provided ¢ is larger than some threshold). Informally, this means

14

that allowing an adversary to choose a (large enough) subset of instances to concentrate on doesn’t
allow the adversary to correctly solve instances faster in amortization than an honest Prover.
This definition has a number of parameters:
1. ¢ — the amount of computational work required to solve a single instance. That is, ¢ should be
a function, and in this work, we consider ¢(n) = n* for some constant k.

2. v — a tightness parameter: if the honest party requires ¢ - t(n) work to solve ¢ instances, then
no adversary can solve ¢ instances with less than ¢ - v(t(n)) work.
In this work we consider v = 1=2() je., there does not exists a constant e > 0 such that
the adversary can solve ¢ instances in time ¢n'~¢. We will abuse notation and allow 7 to be a
class of functions (where the above guarantee should hold for any function in the class).

3. 7 — a threshold for when non-amortization holds: solving any ¢ out of m instances, where
m/¢ < T, requires roughly ¢ times as much work.
In this work, we will consider 7 = n°1). In particular, it should be the case that m/l < nf
for any constant € > 0 (and large enough n).

4. § — a bound on the adversary’s success probability.
In this work, we will consider § = n=°(1)_ In particular, it should be the case that §(n) > n
for any constant € (and large enough n).

—€

Definition 1 (Proof of Work). A (¢,7,7,d)-PoW consists of two algorithms (Solve, Verify). These
algorithms must satisfy the following properties:
— Efficiency:
e For any ¢ € {0,1}", Solve(¢) runs in time O(t(n)).
e For any c € {0,1}" and any 7, Verify(c,) runs in time O(n).
— Completeness: For any ¢ and any 7 < Solve(c),

Pr [Verify(e, w) = accept| = 1,

where the probability is taken over Verify’s randomness.
— Hardness: For any function ¢(n) such that m(n)/¢(n) < 7(n), and any algorithm Solve™ that
runs in time ¢(n) - v(¢(n)) when given m(n) challenges of size n as input, it holds that:

A Cim],|I| >ln)&Viel: | (c1,...,¢m) ¢ Unxm
Pr < o(n),
Verify(ci, 7;) = accept | (71,...,Tyy)) < Solvey, (c1,. .., Cmn))

where the probability is taken over random samples as well as Solve™’s and Verify’s randomness.

Remark 1. This definition can be generalized to (t,7, 7, 0)-Interactive Proofs of Work (iPoW) in the
usual sense: by allowing Solve, Verify to be interactive RAM machines. All efficiency, completeness,
and hardness properties remain.

Remark 2. We intend (n*,n°™M), #1=%1) n=0(0)_PoW (similarly, iPOW and later Seeded PoW) to
denote a PoW that is a (n*,7,,8)-PoW for any function 7,7, d satisfying the constraints alluded
to above. Namely,

v(n) € O(n*=¢) for some € > 0.
(E.g. v(n) = n*=01)
e 7(n) = O(n* for any € > 0.
(E.g. 7(n) = .01, so that £ = .01m.)

15

e 1/5(n) = O(n) for any € > 0.
(E.g. 6(n) = 1/log?(n).)
We will ultimately prove the following theorems:

Theorem 2. For k > 2, suppose kOV takes n*—°W) time to decide for all but finitely many Inputs
lengths for any d = w(logn). Then for any polynomial m(n), there is a (n?,n°),#1=21) p=o()).
PoW.

Theorem 3. For k > 2, suppose kOV takes n*=°M) time to decide for all but finitely many inputs
lengths for any d = w(logn). Then for any polynomial m(n), there is an (n¥F,n°e™) 1=921) p=o(l)).
iPoW.

2.1 Deriving Many Challenges from a Short Public Seed

We additionally augment the above definition with an additional functionality: a short public seed
can be expanded into many challenges that collectively remain hard to solve (even in amortization),
despite the fact that the expanded challenges are inherently correlated with one another.

Definition 4 (Seeded Proof of Work). A (s, m)-Seeded (t,~y,7,)-PoW consists of four algorithms
(Expand, Solve, Verify). These algorithms must satisfy the Efficiency and Completeness properties
of a Proof of Work (Definition 1), and additionally:

- Efficiency: For any o € {0,1}*" and i € [m(n)], Expand(o,i) runs in deterministic time
O(s(n)).

— Hardness: For any function ¢(n) such that m(n)/¢(n) < 7(n) any algorithm Solve™ that runs
in time ¢(n) - y(t(n)) when given m(n) challenges of size n as input,

o+ U
I Cml,|I| >4(n) &Viel:
Pr (ci < Expand(o,1))iemn) | < d(n),
Verify(c;, ;) = accept
(71, .., o)) < Solve; (o)

where the probability is taken over Uy, Solve™’s, and Verify’s randomness.
We provide constructions and analysis that yield the following theorems:

Theorem 5. For k > 2, suppose kOV takes n*=°1) time to decide for all but finitely many input
lengths for any d = w(logn). Then for any polynomial m(n), there is a (¥/m(n)n,m(n)n)-Seeded
(n2,n"(l),tl_ﬂ(l),n_o(l))—Po w.

Theorem 6. For k > 2, suppose kOV takes n*=°1) time to decide for all but finitely many inputs
lengths for any d = w(logn). Then for any polynomial m(n), there is a ({/m(n)n,m(n)n)-Seeded
(nF, ne@) #1=90) n—eM))_Interactive PoW (iPoW).

2.2 Key Technique: A Robust Direct Sum Theorem for fOV*

In this subsection, we present a key technical lemma. For details on the simple DDH-based compiler
for sumcheck please refer to the full version [3]. Before describing the key lemma — a robust direct
sum theorem — we begin by recalling its context in our PoW schemes.

The starting point of our work is the framework of Ball et al. [4, 5], who demonstrated that a
PoW can be constructed from worst-case assumptions in a few steps:

16

1. Prove a fine-grained worst-case to average-case reduction. In particular, Ball et al.
showed that (solving) KOV reduces to solving an arithmetization (low-degree extension) of KOV
on average (with respect to the uniform distribution). The latter arithmetic problem amounts
to simply evaluating a family of specific polynomials, FOV* = {f O)VLE F’g”d —]Fp}nll over a
finite field, F,, (p > n*):

fovet,... ot = Y] 1—1_[[]%].
Lelk

il,...,ikG[’n] jE[d]

Assuming kOV requires time n*°() in the worst case (kOVC), then fOVF¥ requires time
nk=°(1) on average (with respect to the uniform distribution).

2. Prove a Direct Sum Theorem for the average-case hard problem. This says (roughly)
that an algorithm that can correctly solve a batch of m instances of fOV¥ requires time
m - n*=°1) | assuming kOVC.

3. Construct a (tight) doubly efficient proof system for the average-case hard prob-
lem. Ball et al. showed that fOV¥ admits very efficient proof systems that enable a prover
running in time O(n*) to convince a verifier that fOV¥*(x) = y: adapting ideas from [46] they
gave a non-interactive protocol where the verifier runs in time O(nk/ 2), adapting the sumcheck
protocol [39] they gave a k-round interactive protocol where the verifier runs in time O(n)

Thus, the resulting PoWs are formed by simply asking the Prover to compute fOV*(z) = y
for a random challenge x and then prove the statement that “fOV¥ () = y” using the doubly
efficient proof system. Thus the security of the proof system follows immediately from the soundness
guarantees of the proof system and the Direct Sum Theorem (non-amortizing hardness).

Thus, in order to “upgrade” PoW security to the definition we use here, i.e., to hold against
dishonest provers that only choose a fraction of challenges, it suffices to strengthen the Direct Sum
Theorem (Item 2 above) to a Robust Direct Sum Theorem: solving a ¢ out of m uniformly random
independent instances requires time ¢ - pf—o() (for large enough ¢). To get a Seeded PoW we
show that this Robust Direct Sum Theorem can be derandomized: namely, that it holds relative
to a “pseudorandom” distribution over ¢ correlated instances that can be efficiently sampled from a
short seed.'? The sampler for the pseudorandom distribution is thus the Expand procedure for the
Seeded Proof of Work.

Although we state this theorem for the specific case of fOV¥, we note that our techniques can
be generalized to hold for any low-degree polynomial that is downward-self-reducible.

Before we state the derandomized Robust Direct Sum theorem, we must describe the pseu-
dorandom distribution. In particular, Dgf’"’d’p denotes the distribution generated by sampling U
uniformly at random and applying the downward-self-reduction. Namely, U is drawn uniformly
from (F;”Xd)k, viewed as k lists of rn d-dimensional vectors with each list partitioned into r blocks,
and the resulting output is simply all combinations formed by concatenating one block from each
list:

1d is a function n such that d = w(logn) (for hardness) and d = O(1) (for efficiency). Typically we fix the choice
of d = log® n for concreteness.

12Note that this distribution is not pseudorandom in the traditional cryptographic sense: it is easy to distinguish
from uniform (and moveover the adversary is given the seed describing a sample); it is only pseudorandom for the
purposes of proving a Threshold Direct Sum theorem for fOV*.

17

Ul,l Uk,l
(vt Uk’j'“)jew where S RPPIN IR VA iDL (1)
Ul,r Uk,r

We can now state our Robust Direct Sum theorems.

Theorem 7 (Robust Direct Sum Theorem for fOVk). Assuming the KOV conjecture, for any
m = poly(n) and ¢ = m =W and any € > 0, no algorithm running in time £ - n®~¢ that is given m
random independent inputs to FOVF can correctly evaluate £ of them with probability 1/n0(1).

Theorem 8 (Derandomized Robust Direct Sum Theorem for f oVv*). Assuming the KOV conjecture,
for any m = poly(n) and ¢ = m*=°W and any € > 0, no algorithm running in time £ - n*~¢ that
is given m FOV* instances drawn from D, inputs can correctly evaluate £ of them with probability
1/n°M,

Both of these Theorems follow from our key technical lemma: an efficient reduction that shows
how to use an algorithm that violates the (derandomized) Threshold Direct Sum Theorem for fOV*
in order to efficiently solve fOV¥ on any instance.

Lemma 9. Let m(n) be a polynomial and (n) a function such that £(n) < m(n), and p a prime
2 -

such that log(p) = n°M) and p > 6 (%Z#?) k2¥dloglog(n)log(n)m(n). Let dk = O(1), and let

{f :Fimd - F,} denote FOVF¥ in what follows.

1. Pseudorandom reduction. Let A be a randomized algorithm running in time ta(n) < £(n) -
n*=¢ that on input X1, ..., X,, drawn from Dy outputs Y1, ..., Ym such that with probability at
least 6(n), |{i € [m]: f(X;) = §;}] > €(n).1

Then, there is a randomized algorithm A" that on input X, of size 84,(n), computes f(X)

in time O (%) , with probability at least 2/3.

2. Uniformly random reduction. Similarly, let A be a randomized algorithm running in time
ta(n) < £(n) - nkF=¢ that on input X1, ..., X,, drawn independently and uniformly at random
from F’;”d oulputs Y1, . .., Ym such that with probability at least §(n), |{i € [m] : f(Xi) = v:}| >
l(n).

Then, there is a randomized algorithm A" that on input X, of size 04,(n), computes f(X)
k

in time O (W) , with probability at least 2/3.

2.3 Simulatable, Non-Interactive PoW (with Large Proving Times)

Finally, we turn to traditional (heavy) cryptographic tools (and a CRS) to simultaneously (a) make
honest proofs efficiently simulatable (i.e., robustly zero-knowledge) and (b) “collapse” Interactive
PoW (iPoW) to non-interactive PoW (i.e., Fiat-Shamir) achieving arbitrarily large polynomial
gaps between proving time and verification time (as opposed to just quadratic).

To this end, we introduce a new robust notion of zero-knowledge PoW. In contrast with the
definition presented by Ball et al. [5], this new definition retains soundness/hardness in the presence
of simulated proofs for correlated challenges (with a short CRS — independent of the number of
challenges).

131f it is not the case that t(n) >> m(n), imagine that A outputs (i, J;)ics for some S C [n].

18

Our definition is simply robust zero-knowledge [21] (generalized from NP relations to interactive
proofs) with an additional efficiency requirement applied to a (interactive) PoW. In this generaliza-
tion of robust zero-knowledge, the extractor (very efficiently) extracts a successful prover strategy
(not simply a witness for an NP relation). Moreover, we require that the new proof system should
roughly preserve the complexity of the original, and that the simulation should be tightly bounded
to an adversarial verifier. (Without the last requirement, zero-knowledge is trivial to achieve for
PoW systems where the prover itself runs in polynomial time.)

Definition 10. Given an interactive proof Il = (P, V), Il' = (¢,P",V',S" = (5'1,52),E')) is a robust

ZK argument for 11, if P', V'S’ E’ € PPT and q(-) is a polynomial such that the following conditions

hold:

- Efficiency Preserving. P’ runs in time O(Tp) where Tp is the runtime of P, and V', S’ E’ all
run in time O(Ty) where Ty is the runtime of V.

— Completeness. For all z € L of length A, all w such that Pr[(P(z,w),V(x)) = 1], and all
Q€ {0,139 V/(Q,2,P'(Q,w,z))] = 1.

— Multi-Theorem Zero-Knowledge. For all PPT adversaries A, we have that REAL(\) =~
SIM(A), where

REAL(A) = {Q « {0,1}7W; out «— APE)(Q); Output out},
SIM(A) = {(, th) < S,(17); out + A (251)(Q): Output out},

and S5(Q, z, w, tk) o S'9(Q, z, tk) if (z,w) such that Pr[(P(x,w),V(z)) = 1] > 2/3 and other-
wise outputs failure.
(We say IT' is robust honest verifier zero-knowledge if the above condition holds simply for
V%)
— Extractability. For all PPT A,

Pr (. ih) Sl(].A);PI'[<E,AS2(KL(Z)’“C)(Q’x)(Q’:L"tk;)’ Viz))=1]<2/3] < negl(A),

If I is non-interactive we say that it is a robust non-interactive zero-knowledge argument for II.

Definition 11. A protocol I is robust zero-knowledge (t,~,T,0)-(i)PoW (ZK-PoW) if it is a robust
ZK argument for a (t,~,,d)-iPoW.

We say such a protocol (with an additional Expand algorithm) is a seeded ZK-PoW if it is a
robust ZK argument for a seeded iPoW. Finally, we say such a protocol is a NIZK-PoW if it is
non-interactive.

We show that by additionally assuming subexponentially-secure DDH one can construct robust
seeded NIZK-PoW.

Definition 12. The DDH assumption states that there exists some G = {G, } ey @ group ensemble
with efficient representation, where each G is a cyclic group of prime order p(\) such that, for any
PPT A, we have

5
| PrlA(1%,9,9% ¢". ™) = 1:a,b < Zyn)]—
PrIA(1, g,9% 9%, 99) = 1: a,b,¢ & Zy]| < negl(n),

where ¢ is a generator for G).
The Sub-exponential DDH assumption instead assumes that the above is true for all non-uniform
A that run in time \O((oglog2)?)

19

Theorem 13. Let k € N, if DDH is hard for non-uniform AO(log? log A) distinguishers and kOV
takes n*—°W) time to decide for all but finitely many input lengths (when d = log®n), then there
exists a robust seeded (n*, no() 1-9(1) n_"(l))—NIZK—Po w.

3 Consensus from PoW and a Beacon

In this section we show how to achieve consensus in the permissionless setting given access to a
random beacon and assuming the existence of a hard PoW scheme. We start with some more
details on the setting in which we analyze security.

3.1 Protocol Execution and Security Model

We will analyze the Consensus protocol in a concrete complexity, synchronous, and permissionless
model, similarly to [29]. In more detail:

Security model. The set of n parties { Py, ..., P,} running the protocol is fixed, and both the parties
and the adversary are modeled as Interactive Word RAM machines. Throughout, we consider
algorithms in the Word RAM model of computation with O(log()))-bit words, where A is used to
denote the security parameter. The adversary is active/byzantine and can corrupt up to ¢ parties
(statically) in order to break security.

Communication model. The protocol advances in rounds and communication happens through a
diffusion functionality Fprr. Messages sent by honest parties through Fopr arrive to all other
parties at the beginning of the next round. On the other hand, the adversary at any point may
decide in which order messages arrive to different parties and can send messages to an adaptively
chosen subset of them. Communication is not authenticated, and thus parties cannot directly tell
which was the sender of a message.

Setup. Parties have access to a beacon functionality Fggacon, Which when queried at any round
outputs a uniformly random string from {0, 1}p°|y(>‘); all queries of some round get the same response.

Concrete computation model. Each party has a concrete upper bound of ¢ computational steps per
round (including corrupted parties), following the formulation of [29]. The adversary has an upper
bound € on the number of messages it can send per round (similarly to [2]).}4

Next, we recall the classical definition of Byzantine agreement (aka Consensus) [43, 37].

Definition 14. A protocol II implements byzantine agreement among n parties iff the following
two properties are satisfied in the presence of an adversary A who might corrupt some of them:

— Validity: If all honest parties have the same input b € {0,1}, then they all output b;
— Agreement: All honest parties output the same value b € {0,1}.

We will arrive at our final protocol through a series a transformations, starting with a protocol
providing weaker security guarantees, namely, Weak Consensus [36].

This choice is made in [2] to avoid deniable-of-service (DoS) attacks that may deplete the round-bounded com-
putational power of the honest parties. We remark that handling DoS attacks this way is not the only option. For
instance, one could block invalid PoW dissemination at the Fper level, but this is a strictly weaker option, as it actu-
ally allows verifying PoWs for free! On the other hand, one could opt for assuming even less about Fp;rr and instead
relying entirely on computational constraints/modeling to handle DoS. In such a setting it would be advantageous
to have a PoW where the time to verify a “proof” scales directly with the work invested in producing the “proof.”
We note that such PoW can be built from standard PoWs by simply generating parallel proofs for exponential tower
of security parameters (1,2, ...,2'°8*) and verifying them in ascending order, yielding relative-cost verification. We
believe our presentation in the simpler setting is more instructive.

20

3.2 Weak Consensus

Next, we show how to achieve Weak Consensus in our setting. First, we provide the relevant security
definition [36]; note the relaxation of the Agreement property with respect to the original definition
of Consensus.

Definition 15 (Weak Consensus). A protocol II implements Weak Consensus iff the following two
properties are satisfied:

— Weak Agreement: There exists y € {0, 1} such that all honest parties output y; € {y, L}.
— Validity: If all honest parties have the same input b € {0, 1}, they all output y; = b.

The main idea of our 3-round Weak Consensus protocol is as follows. We are going to interpret
the output of the beacon at the first round of the protocol as a sequence of PoW instances (z;);. The
parties will then send messages by solving PoW instances. Sending a witness of one the instances
in the first half of the sequence, will correspond to sending 0, while sending a witness of one of the
instances from the other half will correspond to sending 1. To avoid solving the same instances, and
thus being misrepresented, honest parties are going to pick at random and solve a PoW instance
encoding their message, which they will subsequently diffuse together with the respective witness
to all other parties.

Given that in our setting parties are not aware of their total number, and to ensure that their
views about this number is somewhat consistent, parties are going to resend valid PoWs for one
more round, and then estimate their total number based on the PoWs received. Note that while
only messages sent during the first round are counted as votes (0 or 1), the total number of votes
estimation (k) is based on the number of PoWs sent in the first and second rounds. This allows our
protocol to have maximal security (i.e., t < n/2, where ¢ is the number of corrupted parties) even
if the total number of votes is not known. Essentially, late votes do not help the adversary swing
the result in one direction or the other.

Finally, rounds in our protocol have different “duration parameters 7p,7,), in order to allow
parties to execute the relevant required operations: In the first round they are expected to solve a
PoW, while in the second and third rounds they should be able to verify all PoWs received. As we
explain later, these parameters should be carefully picked, as they also determine the available time
the adversary has to solve more PoWs than the parties it controls.

»15 (

—[Protocol WEAKCONSENSUS,, ., (P, bi)}

Initialization:
— Initialize sets P, P}, Plate to ().
Round 1 (round duration := ry):

— Let (;vi)ie[m] be the output of Fypacon at this round, parsed as a sequence of PoW instances. Let
Xo = (4)ie[m/2) denote the first half of the instances, and X the second half.

— Compute w; := PoW.Solve(z;), where x; < Xp,.

— Send (z,w;) to Forr and proceed to the next round.

Round 2 (round duration :=r,):

— Fetch messages from Fppp. For every message of the form (x,w), if € X, (for some b € {0,1}) and
PoW.Verify(x,w) = 1, add (x,w) to P?.
— Send P?, P! to For and proceed to the next round.

15We overload the term “round” here, and assume that in a round of duration x each party can take up to x - ¢
computational steps.

21

Round 3 (round duration := r,):
— Fetch messages from Fypp. For every message of the form (z,w), if x € X, (for some b € {0,1}),
(z,w) ¢ P? U P!, and Pow.Verify(z,w) = 1, add (z,w) to P,
= Let k; = [P)| + |P!| + [P*|.
0 if [P > ki /2;
— Poutputs y; :=q1 if [P} > k;/2;

1 otherwise.

Next, we analyze the protocol presented above. At this stage, we are going to assume a lower
and an upper bound on the number of messages produced by the honest parties and the adversary,
respectively; later on we will show how we can get rid of this assumption. Having these bounds in
place, the analysis of the protocol boils down to: (i) a simple counting argument about the PoWs
generated showing that both validity and the weak consensus property are satisfied, and (ii) that
honest parties have enough time to perform any operations required by the protocol.

Lemma 16. Protocol WEAKCONSENSUS,, ,, achieves Weak Agreement unconditionally, and Va-
Lidity assuming that the number of distinct PoW witnesses produced by the honest parties exceeds
that produced exclusively by A, for t, > 460202, t, = tgl/z , rpi=1tp/c and ry =1y, - 0/2, for some

o € (0,1), where t,,t, denote the proving and verification costs of the PoW primitive, respectively.

Proof. We start by arguing that honest parties have enough time to process and forward all valid
messages received in round 2.

Claim 1. FEach honest party has enough computational power to process all the PoWs received
during round 2 of the protocol.

Proof of claim. By assumption, each honest party is able to take ¢ computational steps per unit of
time, while the adversary takes t - c. Let 6 be an upper bound on the total messages sent in each
round.

We want to show that (i) honest parties have enough time to compute a PoW in round 1, and
(ii) honest parties are able to process all § messages they receive at the beginning of round 2. These
conditions are described by inequalities ¢, < r, - ¢ and 0t, <, - ¢, respectively. It holds that:

rpc > ctp/c = tp,

and))
t,oc ty2
TyC = rpco /2 = % =t20/2 > U2UU = 0t,.

Hence, the claim follows. -

Next, we show that the above claim about the network conditions is sufficient to prove that pro-
tocol WEAKCONSENSUS achieves Weak Agreement unconditionally. For the sake of contradiction,
assume that there exists two honest parties P;, P; such that P; outputs 0 while P; outputs 1. It
follows that:

B > (IP|+ | P + |B))/2 & |P)| > |P!| + | P,
and, symmetrically, that |P}| > [P]| + |P}ate|. Adding both inequalities, we have that

|Pi1+ P > | B+ [Pe| + | PP| + | P, (2)

22

On the other hand, by the guarantees provided by Fppp, it should hold that
[P < [P} + [P and |P}| < |P}| + [P,

since by the above claim any valid PoW witness seen by P; in the first round will be received by P;
in the second round. Adding the two inequalities, we get that

[P+ P < |BH A+ [P + [P + [P,

which contradicts inequality 2. Thus, Weak Agreement holds unconditionally.

Next, we turn our attention to Validity. Let b be the common input of all honest parties. Let
x denote the number of distinct PoW witnesses computed by the honest parties, and y the number
of any other PoW witnesses produced by the adversary. By our assumption, it holds that x > .
For any party P;, it should hold that k; < x + y, which implies by our assumption that x > k;/2.
Given that all honest PoWs are received in the second round, it follows that all parties are going to
output b. Thus, Validity follows. O

Security amplification. Protocol WEAKCONSENSUS achieves Validity as long as honest parties pro-
duce more PoWs than the adversary. Next, we showcase a protocol that ensures that this condition
holds with overwhelming probability given two assumptions: (i) That there exists a secure PoW
scheme (Definition 1), and (ii) that the number of parties the adversary can corrupt is sufficiently
bounded.

Assumption 1 (PoW). There exists a (A2, ~y(-), A°) A=2(1)-PoW.
Assumption 2 (Corruption bound). There exists o € (0, 1), such that:
1(3%)

22
Note, that Assumption 2 can be stated equivalently as a restriction on the total computational power
controlled by the adversary, i.e, t- ¢ steps per round, compared to that controlled by honest parties,
i.e., (n —t)c steps per round. Moreover, note that if the computational advantage of the adversary

over honest parties on computing PoWs approaches zero, i.e, v(A\?) ~ A2, then Assumption 2 is
equivalent to a necessary condition for consensus: 2t < n.

t<(n—t)-(1-o0)

For the rest of this section Assumptions 1 and 2 are assumed to hold, and whenever t,,t,,r,
and r, are mentioned it is assumed that they are set as in Lemma 16; the o parameter used in their
definitions is the one from Assumption 2.

The main idea behind the security amplification protocol is to run WEAKCONSENSUS multiple
times sequentially, and then try to error-correct the outputs. Our assumption about PoW hardness
holding with good probability, together with Weak Agreement holding unconditionally for the base
protocol, are going to be sufficient to ensure that we can error-correct the output in a consistent
manner with overwhelming probability in the security parameter.

—[Protocol AMPEDWEAKCONSENSUS,, . 1(F;, bi)}

Initialization:

— Initialize counters ¥, ¢} ¢+ to 0.
Rounds 1 to I:

— ¢:= WEAKCONSENSUS, . (P;,b;);
- tf=1t{+1.

Round [+ 1:

23

0 if t? > 21/3;
— Output y; :=q1 ift} > 21/3;
1 otherwise.

Lemma 17. Protocol AMPEDWEAKCONSENSUS,. ., achieves Weak Consensus with overwhelming
probability in X, for | =log?(\).

Proof. We start by proving some initial claims that are going to help with our analysis. First,
we show that in more than 5/6 of the WEAKCONSENSUS invocations, honest parties are going to
produce close to n — t distinct PoW witnesses.

Claim 2. Given any constant o € (0,1), for a large enough A, honest parties are going to pro-
duce more than (1 — o)(n —t) distinct PoWs in 5/6 of the WEAKCONSENSUS invocations with
overwhelming probability in .

Proof of claim. We start by analyzing the probability that honest parties produce enough distinct
PoW witnesses in a single instance of WEAKCONSENSUS. Let k :=n — t, be the number of honest
parties and m := 2r, be the number of different PoW instances considered by parties running
WEAKCONSENSUS. In the worst case, all parties will have the same input and will select which
instance to solve among r different ones. As shown earlier, all the honest parties have enough
computational steps available per round to finish computing a PoW witness.

Since each of the honest parties picks a PoW instance at random, some of them may end up
picking the same one. Making r large enough would in general minimize the number of collisions
among honest parties. However, in order to preserve the hardness of PoWs we are restricted in how
many PoW instances should be available to the adversary, compared to how many it solves. Given
that the number of instances solved by the adversary is going to be proportional to that solved by
honest parties, the condition we want to satisfy is that 7/k < 7()\) = A°(1).

We split our analysis into two cases. In the first one, assume that & = O(1) and set r = 7k?. In
the second one, we assume that k = w(1), and set r = ak, for some large enough a € N. Note that
in both cases it holds that r/k = O(1) = O(A/108(V)) ¢ \o(1),

In the first case, no collision will happen with probability at most

2
M < L =1 /7’
2r Tk2
as stated by our claim.

In the second case, we will analyze the number of collisions as a balls and bins process. Namely,
we are going to use the Poisson approximation [40], where the event of interest is analyzed in a
setting (the “Poisson" setting) where the load in each bin is assumed to be an independent Poisson
variable with mean k/r. Results obtained in this setting can then be translated back to the “exact"
setting, where the are dependencies between the loads of different bins, with some loss on probability.

The event E we care about upper-bounding is the number of full bins being greater than a target
value. This event depends entirely on the number of balls in each bin. Furthermore, as the number
of balls increases, Pr[E] increases. By [40], if Pr[E] = p in the Poisson setting, Pr[E] < 2p in the
exact setting.

We proceed to bound the probability of E occurring. Assume that we have ¢ i.i.d. discrete
Poisson random variables (X;);, each with parameter p = k/t, denoting the number of balls in the
i-th bin. We have that Pr[X; > 0] =1 — e™#. Let random variable ¥; be equal to 1 iff X; > 0, and

24

let Y = S"i_, Y;. Tt then holds that E[Y;] = 1 —e™* and E[Y] = t(1 — e */7). For r = ak, for some
constant a > 2, we have by the Chernoff bound that for any § € (0,1):

—k/ _o%ck(1—eT1/®) —O(k)
PrlY <(1-0)E[Y]]=Pr[Y <(1-0)t(l—e "] <e 3 =e .

Firstly, notice that since k € w(1), for any selection of a there exists a large enough A such that
the probability of our desired event becomes smaller than any constant, we choose in particular
1/14. By the Poisson approximation this implies that the event in the exact setting happens with
probability at most 1/7.

Secondly, a(1 — 6_1/“) tends to 1 as a goes to infinity. Thus, for any constant €, there exists a
large enough constant a, such that a(1 —e~'/¢) > 1 —e. This easily implies that for any o € (0,1),
there exists a,d such that (1 — §)t(1 — e */*) > (1 — 0)k. Hence, for any o € (0,1), there exists a
a € N, such that with probability at least 6/7 honest parties mine at least (1 — o)k different PoWs.

To finish proving our claim, let F; the probability of event E happening in the i-th invocation of
protocol WEAKCONSENSUS. Note that {E;};c[) is a sequence of independent events. By a standard
Chernoff bound argument we can show that with overwhelming probability in A, in less than 1/6 of
the WEAKCONSENSUS invocations honest parties will produce less than (1 — o)k PoWs. Thus, the
claim follows. -

Next, we show that in more than 5/6 of the WEAKCONSENSUS protocol invocations the adver-
sary is going to produce less than n — ¢ PoWs with overwhelming probability in A.

Claim 3. The number of PoW witnesses produced by A (different from those produced by the honest
parties) in more than 5/6 of the WEAKCONSENSUS invocations is at most t' := (1 — o /2)(n —t),
for any o € (0,1), with overwhelming probability in X.

Proof. In contradiction, assume that there exists and adversary A such that in 1/6 of the WEAKCONSENSUS
invocations produces more than ¢’ PoWs with non-negligible probability. We are going to use A
to construct another adversary that breaks the security of the PoW scheme. First, we argue that
if A produces more than ' PoWs in a WEAKCONSENSUS invocation with probability at most
€ := 1/6 — o, then it will produce more than ¢ PoWs in less than 1/6 of the invocations with
overwhelming probability.

Let 7 be the protocol’s execution tree when we fix A. The tree has nodes n; ;, where n; ; reflects
the execution state just before A receives the i-th beacon output. Index j runs over all possible coin-
flip histories up to that point. Wlog, assume that between receiving any two consecutive challenges
the adversary and the honest parties perform exactly [coins flips. Thus, for any level ¢ € [m], there
are at most 2" nodes, i.e., j € [2%].

Next, we argue that if for every subtree defined by n; ; (i € [m]), at most 2! paths are successful
for the adversary, in the sense that the adversary generates more than ¢’ PoWs, then the fraction
of paths with at least m/6 successes is negligible in A. W.l.o.g., assume that exactly 2! paths are
successful in any such subtree. Namely, we will show that in that case there are at most 2™ - negl(\)
paths with at least m/6 successes in 7.

Let a;. denote the number of paths ending at some node at level i 4+ 1 that have exactly ¢
successes. By our assumptions it holds that a9 = 2l(1 —), ai| = 2le for the first level, and

ap,c = CLn—l,c—12[6 + an—l,c2l(1 - E)
for any subsequent level, where a, _1 = annt+1 = 0. The equalities follow by the fact that, at every

node, 2'e of the paths are going to increase their successes by one, and the rest are going to retain

25

the same value of successes. It is easy to see that the solution of this recursion is

ane = 2™ <n> e(1—e) .
c

We are interested in bounding the sum ng /6 Gmi- Note that for any i, r; = apm, i/ 2ml s equal
to the probability of ¢ successes in m independent Bernoulli trials, where each trial succeeds with
probability e. Thus, we can use the Chernoff bound to upper-bound the probability that " /67
is less than m/6 by

e—((l—Ge)/(Ge))2em/3 < e—azm/108e <)\—Q(log(k)) < neg|(>\)’

where we have used the fact that m = log®()\). Hence, Zy;m/Q ami < 2™negl(\), as we have
claimed.

Therefore, since we have assumed that A4 produces more than ¢ PoWs in at least 1/6 of the
WEAKCONSENSUS invocations with non-negligible probability, by the analysis above it must be the
case that there exists an n;; where the adversary computes more than ¢ PoWs with probability
greater than e. We are going to use the state of node n;; to construct an adversary A’ that
contradicts our assumption about the PoW scheme being secure.

Let 2r be the size of the output of Fypacon. A’ works as follows: It takes as input a sequence
of 2r PoW instances (z;); and some non-uniform advice. We choose the advice to contain n — ¢
randomly sampled PoW instances (x},w}); together with their respective witnesses. A’ is going to
construct a “fake” beacon output for A. Given the input bits of honest parties at node n; ;, it is
going to replace randomly selected PoW instances from (7); with instances from (z7});. Specifically,
if an honest party has input 0 (resp. 1), then a randomly selected instance from the first half (resp.
second half) of (x;); is replaced. Note, that this process preserves the possibility that two honest
parties choose to solve the same PoW instance, thus perfectly mimicking the real world. We denote
by Z = (z;); the resulting sequence of instances.

Next, A’ is going to initialize A to the state described by n; j, and provide Z as the output of
the beacon. At the end of the first round, it is going to send A the witnesses (w}); that it got as
advice, simulating the behavior of the honest parties. Then, it is going to verify the messages A
sent in the first round, and forward any valid PoWs it produces. Finally, it is going to verify the
messages A sent in the second round. Finally, A’ outputs any PoW witnesses produced by A that
do not correspond to the pre-solved instances it has planted in Z.

We will first analyze the running time of A’. As before, let t, > 20/0, t, = t2 , r, :=t,/c and
Ty i=1p-0/2. A takes a total of (r, + r,)tc steps. In addition, A’ takes an additional 2t,60 steps in
order to verify messages sent by A in the first and second rounds. Hence, Steps 4, < (1, +1p)tc+2t,6.
Now, for A’ to be breaking PoW’s security it must be that Steps 4, < v(tp)t' = v(tp)(1—0/2)(n—1).
It holds that:
ty(14 0/2)tc

c
<t,(1+0/2)t +t2o
<tp,(1+0/2)t+0).

Steps 4 < (ry + 1rp)te + 2t,0 < + 2t,0

On the other hand, by our assumption about the number of corruptions, we have that:
(1—0)n—t)y\)/ N —o>t= E_U(n — YA/ N -0 >t

& (L+0/2)(t+ o)ty <v(N)(1 = 0/2)(n — 1)

= tp((1+0/2)t +0) <7(\)(1 = 0/2)(n).

26

Combing the two inequalities we get our desired relation about the running time of A’.

Next, we analyze the success probability of A’. First, notice that the execution in the eyes of
A is indistinguishable in the reduction and in the actual protocol, as honest parties are perfectly
simulated. Thus, by our assumption, A is going to produce ¢ PoWs different from the ones produced
by the honest parties with probability at least e. This further implies that probability €, A’ is going
to solve ¢’ instances from (z;); in a total of ¢’ - y(t,) steps. Since e € Q(1) > A7°) this is a
contradiction to our initial assumption about the hardness of PoW, and thus, in more than 5/6
of the WEAKCONSENSUS invocations, the adversary is going to produce at most ¢’ PoWs with
overwhelming probability in A. -

Combining the above two claims we easily get that in more than 2/3 of the WEAKCONSENSUS
invocations honest parties will produce more PoWs than the adversary with overwhelming proba-
bility. This fact will be sufficient to prove our lemma.

First, we argue that Validity holds. For the sake of contradiction, assume that all parties have the
same input b and there exists an honest party that outputs y; # b. Due to Validity being satisfied by
Protocol WEAKCONSENSUS when honest parties produce more PoWs than the adversary, it follows
that ti-’ must be greater than 2{/3. Thus, Validity follows.

Regarding Weak Agreement, for the sake of contradiction, assume that there exist honest parties
P;, P; that output y; = 0,y; = 1, respectively. Since y; = 0, it should hold that t? > 21/3. By Weak
Agreement of protocol WEAKCONSENSUS and the fact that in less than 1/3 of the WEAKCONSENSUS
invocations .4 may produce as many PoWs as the honest parties, it follows that t} < 21/3. This is
a contradiction and the lemma follows. 0

We have shown that we can amplify the security of Weak Consensus to be overwhelming in the
security parameter. Next, we turn our attention to realizing a primitive known as Graded Consensus
from Weak Consensus.

3.3 Graded Consensus
We start by providing the relevant security definition (cf. [24]).

Definition 18 (Graded Consensus). A protocol IT implements Graded Consensus iff the following
two properties are satisfied:

— Graded Agreement: If some honest party output y; € {0,1} and ¢g; = 1, then all honest
parties output y; = y; and g; € {0,1};
— Validity: If all honest parties have the same input z, they all output (y;,¢9;) = (z,1).

In our analysis, we will also make use of an additional weaker agreement property, that will hold
for our protocol when the security of the PoW collapses.

— Weak Graded Agreement: If some honest party output y; € {0,1} and g; = 1, then all
honest parties output y; € {y;, L} and g; € {0,1}.

We are going to follow a similar strategy as above for Graded Consensus, by first designing
a protocol which, given that inputs satisfy the Weak Consensus definition and assuming honestly
produced PoW witnesses exceed those produced by the adversary, achieves both Graded Agreement
and Validity, and then designing a second protocol that amplifies the security of the first one by
repeated execution.

Protocol GRADEDCONSENSUS takes 3 rounds. In the first round, each party sends a message
based on its input by solving a PoW instance, similarly to protocol WEAKCONSENSUS. Here,

27

unlike the Weak Consensus protocol, the message may be 0,1, or 1. Fortunately, we can extend the
idea for encoding messages from that protocol, by splitting the output of the beacon into 3 parts:
the first one corresponding to the 0 message, the second one to 1, and the third one to L. The
protocol then proceeds as protocol WEAKCONSENSUS, and establishes Graded Consensus by proper
counting of the received PoW witnesses. We also argue that in case the PoW security collapses,
the protocol satisfies the Weak Graded Agreement property—essentially the equivalent of the Weak
Agreement property for Graded Consensus. This property will be useful to guarantee the security
of the amplification protocol.

—[Protocol GRADEDCONSENSUS, ., (P, Zi)\

)

Initialization:
— Initialize sets P?, P}, P, Plate to ().
Round 1 (round duration := ry):

— Let (xi),;e[m] be the output of Fypacon in this round, parsed as a sequence of PoW instances. Let
Xo = (%i)iemmy3)y X1 = (Ti)ic{m/3+1,...2m/3} and X1 = (¥i)ic{2m/341,....m}, denote the PoW
instances corresponding to messages 0,1 and L, respectively.

— Compute w; := PoW.Solve(z;), where z; + X,.

— Send (z,w;) to Fore and proceed to the next round.

Round 2 (round duration := r,):

— Fetch messages from Fy,pp. For every message of the form (z,w), if © € X, (for some b € {0,1, L}),
and Pow.Verify(z,w) = 1, add (z,w) to P’.

— Send P2, P}, Pt to Fowr and proceed to the next round.

Round 3 (round duration := ry):

— Fetch messages from Fypp. For every message of the form (z,w), if x € X, (for some b € {0,1}),
(z,w) & PP U P} U P, and Pow.Verify(z,w) = 1, add (z,w) to P}ate,
= Let ki := [P| + P} + [P-| + [P

0, if |PO] + |P| > k; /2; '
if |[PY| + |P;| > kif {1,if|P§”|>ki/2;
and g; :=

— Output y; := ¢ 1, if |P} + | P > ki/2; i
0, otherwise.

1, otherwise.

Lemma 19. Assume that the inputs of honest parties (z;); satisfy the Weak Consensus properties
(cf. Definition 15). Then, protocol GRADEDCONSENSUS,, , achieves Weak Graded Agreement
(unconditionally) and Graded Agreement and Validity (Definition 18), provided that the number of
distinct PoW witnesses produced by the honest parties exceeds that produced exclusively by A.

Proof. As in the case of protocol WEAKCONSENSUS, it also holds here that honest parties have
sufficient time to process any valid messages they receive. This is sufficient to show that protocol
GRADEDCONSENSUS achieves Weak Graded Agreement unconditionally. For the sake of contradic-
tion, assume that there exists two honest parties P;, P; such that P; outputs (wlog) (0, 1) while P;
outputs (1,0). It follows that:

[Pl > (P + P! + [P + [P /2 < || > | P + | P| + | P
Similarly, we have that |P}| + |P| > |P?| + |Pt¢|. Adding both inequalities:
J J J J
|P}+ 1P| + [P > [P + [P + | PP| + | PD| + |). (3)
On the other hand, by the guarantees provided by Fprr, it should hold that
|P| < |PP| + [P and |P}| + |P;| < |P!| + [P + [P,

28

since any valid PoW witness seen by P; in the first round, will be received by P; in the second
round. Adding the two inequalities, we obviously get a contradiction to Inequality 3. Thus, Weak
Graded Agreement holds unconditionally.

Next, we focus on Graded Agreement. Let x denote the number of distinct PoW witnesses
computed by the honest parties, and y the number of any other PoW witnesses produced by the
adversary. By our assumption, it should hold that x > y. For any party P;, it should hold that
k; = x + y, which implies by our assumption that = > k;/2. For the sake of contradiction, assume
that there exists two honest parties P;, P; such that P; outputs (wlog) (0,1) while P; outputs y; # 0.
As before, we have that |P?| > |P!|+ |P:t| +|P}a¢|. By the weak agreement of the inputs of honest
parties, and the fact that honest parties solve in total more PoWs that the adversary, it easily follows
that there exists an honest party with input 0, and thus no honest party has input 1. Otherwise,

|P| <y <z <|P'|+]|P,
which is a contradiction. It thus follows that
1P| +|P5-| > 2 > kj/2,

and y; must be 0, which is a contradiction to our initial hypothesis.

Finally, we turn our attention to Validity. Let b be the common input of all honest parties.
Given that all honest PoWs are received in the round 2 of the protocol and that = > k;/2, for any
party F;, it follows that all parties will output b. Thus, Validity follows. O

Security amplification. We can use a similar strategy as in Weak Consensus in order to “error
correct” the output of the Graded Consensus protocol we constructed above. Before running Pro-
tocol GRADEDCONSENSUS, we have to run protocol AMPEDWEAKCONSENSUS to ensure that the
inputs of honest parties to the Graded Consensus protocol satisfy the Weak Consensus properties.
Next, we provide a detailed analysis of the security of the protocol.

—[Protocol AMPEDGRADEDCONSENSUS,., . 1(Pi, bi)}

Initialization:
0,1 40,0 41,1 41,0 41,0 41,0 4114 0

— Initialize counters t,>",t,>", ¢, ;7 t; 7, 7, t;

Round 1:

— 2z := AMPEDWEAKCONSENSUS,., . 1(F;, ;).
Rounds 2 to [+ 1:

— (¢, fi) := GRADEDCONSENSUS, . (P, 2;).
ci,fi

PR

— Increment ¢t
Round [+ 2:

1 if vt > 21/3;

— Output y; =<1 iftht ¢80 4t 4450 5 9 3;
bt yi v ' ‘ ' / 0 otherwise.

0 i)t a0 et 0 > 213,
and g; := {
1 otherwise.

Lemma 20. Protocol AMPEDGRADEDCONSENSUS,,, ;.1 achieves Graded Consensus with over-
whelming probability in X, for 1 = log?(\).

Proof. First, by Lemma 17, protocol AMPEDWEAKCONSENSUS achieves Weak Consensus with
overwhelming probability. This implies that the precondition about the input of protocol GRAD-
EDCONSENSUS will be satisfied. Second, in the same way as in Lemma 17, we can show that in

29

more than 2/3 of the GRADEDCONSENSUS invocations the honest parties will produce more PoWs
than the adversary with overwhelming probability. Hence, by Lemma 19, in more than 2/3 of these
invocations, protocol GRADEDCONSENSUS achieves Graded Consensus. This fact suffices to prove
the lemma.

We first argue that Validity holds. For the sake of contradiction, assume that all parties have the
same input b and there exists an honest party P; that outputs y; # b. By the previous observation
about protocol GRADEDCONSENSUS, it follows that t?’l must be greater than 2//3, which is a
contradiction. Thus, Validity follows.

Next, we argue why Graded Agreement holds. For the sake of contradiction, assume that there
exist honest parties P;, P; that output (y; =0,9; = 1), and y; = 1 or y; = L. Since y; = 0,¢9; = 1,
it should hold that t?’l > 21/3. By Weak Graded Agreement holding unconditionally, it follows that
t?’l + t?’o + th’l + th’O > 2[/3. On the other hand, since Graded Agreement holds in more than

21/3 of the GRADEDCONSENSUS invocations, it follows that tjl.’l + tjl»’o < 1/3. Thus, P; is going to
output either (0,0) or (0,1). This is a contradiction and the lemma follows. O

Having achieved Graded Consensus with overwhelming probability, we can now focus achieving
full-fledged Consensus.

3.4 Consensus

Full-fledged Consensus can be obtained from Graded Consensus using a (oblivious) common coin
(cf. |24]), which can be emulated by our beacon. In more detail, the protocol consists of running
log?()\) times the following sub-protocol: Parties first run protocol AMPEDGRADEDCONSENSUS. If
the output has grade 1, then they choose this to be their input for the next iteration; otherwise,
they choose the output of the common coin to be their input for the next iteration.

—[Protocol CONSENSUS, ., 1(P;, bi)]

Rounds 1 to I
= (bi, 9i) := AMPEDGRADEDCONSENSUS,, ., 1(F;, ;).
— Let b/, be the first bit of the output of Fygacon in this round.

— Output y; := if (g .)
b, otherwise.

Round [+ 1:

— Output y;.

The correctness of the protocol above is based on the following observations: (i) If all honest
parties have the same input at the beginning of an iteration, then due to Graded Validity they will
all have the same output; (ii) if no honest party gets an output with grade 1, then all honest parties
are going to agree on the value of the common coin; and (iii) if an honest party gets an output with
grade 1 at some iteration, then all parties are going to get the same output (possibly with grade 0),
and if the common coin has the same value they will reach Agreement. Since the output of the coin
is unpredictable before the Graded Consensus protocol ends, this event happens with probability at
least 1/2. Thus, after log®(\) rounds all parties will reach Agreement with overwhelming probability
in A

Theorem 21. Protocol CONSENSUS achieves Consensus with overwhelming probability in A, for
I =1log?(\).

30

Proof. We start by analyzing a single iteration of the protocol. First, note that if all honest parties
have the same input b, due to Lemma 20 and Graded Validity, they are all going to output (b, 1)
with overwhelming probability. Thus, at the end of this iteration they are all going to set y; := b.
Further, the protocol preserves Validity across iterations: once parties agree, this state persists.
Thus, Validity follows.

Next, we focus on Agreement. First, we show that the probability that all parties agree at the
end of an iteration is at least 1/2. We split the analysis into two cases based on the grades that
are output by AMPEDGRADEDCONSENSUS: (1) no party outputs g; = 1, and (2) at least one party
outputs g; = 1. In case (1), all parties set y; = b/, and thus they reach Agreement in this iteration.
In case (2), since at least one party has output b; € {0,1},9; = 1, by Graded Agreement it follows
that no party P; has output b; # b; and g; = 1. Thus, all parties with a different b; than b; are going
to output b. Given that the adversary learns b/, after the AMPEDGRADEDCONSENSUS invocation
finishes, its actions are independent from b’,. Since with probability at least 1/2, b, = b;, it follows
that with probability at least 1/2 all parties reach agreement in this iteration.

Next, we analyze Agreement in the full protocol. Since in each iteration there is probability at
least 1/2 of all parties agreeing, and the events of interest are independent, the probability that
parties have not agreed in at least one round is at most (1 —1/2)! = 2~ log®(A) = negl(\). Moreover,
in case they agree in one iteration, as argued earlier, Agreement persists. Thus, Agreement is
achieved with overwhelming probability. O

Combining the above theorem with the results of Section 2, we get the following corollary. We
remark that our result does not depend on the existence of one-way functions. As long as the
adversarial power is less than an inverse polynomial fraction of the total power, we can achieve
consensus in the permissionless setting.

Corollary 22. For k > 2, suppose kOV takes *=°) time to decide for all but finitely many inputs
lengths for any d = w(log \). Then, assuming that for some e > 0,

total honest power (n—1t)-c

> A€

total adversarial power t-c

and the existence of a randomness beacon, there exists a protocol that achieves Consensus in the
permissionless setting with overwhelming probability in A.

4 Consensus from NIZK-PoW and a Beacon with O(\?) Output

We have shown how to achieve consensus in the presence of a beacon whose output length is
proportional to the number of parties in Section 3. In this subsection, we show how to use the Seeded
NIZK-PoW construction developed in the previous sections, to relax the assumption regarding the
size of the output of the beacon. Namely, we show how to achieve Consensus with a beacon that
has an output whose size is independent of the number of parties, i.e., it produces O(A?) bits each
time. Note, that such a beacon is strictly weaker than a beacon that produces O(poly())) outputs
each round, as by the time poly(\) bits will be generated by the “short” output beacon some of
the generated randomness will be fairly old, essentially allowing the adversary to learn part of the
output a lot earlier than honest parties.

Our construction is quite similar to the one extensively presented earlier in Sections 3.2, 3.3,
and 3.4, hence here we only describe the necessary modifications to these protocols. Firstly, we are
going to interpret beacon outputs as consisting of a NIZK-PoW seed (implying the same number of
compressed instances as in the original protocols). Instead of parties selecting a random PoW from

31

the instance sequence to solve, in the modified protocols they are going to generate and solve the
related PoW instance implied by the seed. Finally, instead of PoW witnesses, parties are going to
generate NIZK-PoW proofs (and later verify them in the respective steps of the protocols).

The protocol described above is thus sufficient to prove Theorem 7?7 in Section 3. We only
provide a sketch of the proof as it mostly follows that presented in the previous sections.

Theorem 23. For k > 2, suppose kOV takes *=°W) time to decide for all but finitely many inputs
lengths for any d = w(log\), and that DDH is sub-exponentially hard. Then, assuming that for
some € > 0,

total honest power (n—t)-c

; = > A€
total adversarial power t-c

and the existence of a randomness beacon with output size O(N\?), there exists a protocol that achieves
Consensus in the permissionless setting with overwhelming probability in A.

(Proof sketch). The security analysis of the respective protocols is exactly the same, except of
the reduction presented in Lemma 17. Note, that we cannot simulate honest PoWs by witnesses
coming from the advice string, as PoW instances are all generated from the same seed and are
thus correlated. Instead, we have to resort to the Zero-Knowledge property of the NIZK-PoW and
simulate honest proofs. This does not change our main argument, as (i) the simulated proofs are
indistinguishable from honestly produced ones, and (ii) extractability still holds in the presence of
simulated proofs. The running time of the reduction is slightly increased, due to the need to run the
NIZK-PoW simulator and extractor. Note, that the running time of these algorithms is extremely
efficient compared to the computing NIZK-PoW, thus our result is essentially unaffected. O

5 Conclusions and Directions for Future Work

We have shown how to achieve permissionless consensus in the standard model assuming a compu-
tationally bounded adversary, the orthogonal vectors conjecture, and the existence of a randomness
beacon. A number of interesting questions are left open by our work.

The main question is whether we can further weaken or entirely eliminate our reliance on the
randomness beacon for permissionless consensus. Currently we need at least Q(log®(n)) queries
for amplifying security and the beacon samples a uniform distribution in each round. Interesting
directions for relaxation include allowing for biased distributions such as for example the “sunspot”
model [16], or allowing all common randomness to be determined ahead of time as in the uniform
string model. Eliminating the need for randomness may also be a possibility via some form of
permissionless coin flipping (currently known to exist in the RO model (cf. |2, 28]).

Outside of consensus numerous other questions remain. Can one construct a PoW scheme with
a super-quadratic prover/verifier gap from natural assumptions that don’t imply one-way functions?
Is there generic way to transform any PoW into a Seeded PoW? Note that our Seeded PoW gives
a means of expanding s bits into poly(s) bits which have some form of pseudoentropy without
using Nisan-Wigderson designs. Does this construction (tailored to hard problems with a particular
structure) have applications in derandomization?

As remarked above, our robust direct sum theorem can be extended to a wide class of problems.
Do problems outside of this class admit robust direct sum theorems? Perhaps more importantly, can
we show non-amortizability results for problems conjectured to be hard for sequential algorithms,
such as repeated squaring (outside of the generic group model and its cousins)?

Finally, we give a simple zero-knowledge compiler for a particular sumcheck-based doubly effi-
cient proof system that preserves the prover and verifier complexity and admits simulation propor-

32

tional to verifier complexity. Is it possible to construct such a generic tight zero-knowledge compiler
for any doubly-efficient interactive proof system?

References

1]

2]
13

4]

[5]
[6]

7]
18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

A. Abboud, R. R. Williams, and H. Yu. More applications of the polynomial method to algorithm
design. In P. Indyk, editor, Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 218-230. SIAM, 2015.

M. Andrychowicz and S. Dziembowski. Distributed cryptography based on the proofs of work. Cryp-
tology ePrint Archive, Report 2014/796, 2014. http://eprint.iacr.org/.

M. Ball, J. A. Garay, P. Hall, A. Kiayias, and G. Panagiotakos. Towards permissionless consensus in
the standard model via fine-grained complexity. TACR Cryptol. ePrint Arch., page 637, 2024.

M. Ball, A. Rosen, M. Sabin, and P. N. Vasudevan. Average-case fine-grained hardness. In H. Hatami,
P. McKenzie, and V. King, editors, Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 483-496. ACM,
2017.

M. Ball, A. Rosen, M. Sabin, and P. N. Vasudevan. Proofs of work from worst-case assumptions. In
CRYPTO (1), volume 10991 of Lecture Notes in Computer Science, pages 789-819. Springer, 2018.

M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient proto-
cols. In CCS 93, Proceedings of the 1st ACM Conference on Computer and Communications Security,
Fuairfax, Virginia, USA, November 3-5, 1993., pages 62-73, 1993.

Bitcoinwiki. Genesis block. https://en.bitcoin.it /wiki/Genesis block.

E. Boix-Adsera, M. S. Brennan, and G. Bresler. The average-case complexity of counting cliques in
erd@s-rényi hypergraphs. In D. Zuckerman, editor, 60th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 1256-1280.
IEEE Computer Society, 2019.

J. Cai, A. Pavan, and D. Sivakumar. On the hardness of permanent. In C. Meinel and S. Tison, editors,
STACS 99, 16th Annual Symposium on Theoretical Aspects of Computer Science, Trier, Germany,
March 4-6, 1999, Proceedings, volume 1563 of Lecture Notes in Computer Science, pages 90-99. Springer,
1999.

C. Calabro, R. Impagliazzo, and R. Paturi. The complexity of satisfiability of small depth circuits. In
J. Chen and F. V. Fomin, editors, Parameterized and Exact Computation, 4th International Workshop,
IWPEC 2009, Copenhagen, Denmark, September 10-11, 2009, Revised Selected Papers, volume 5917 of
Lecture Notes in Computer Science, pages 75-85. Springer, 2009.

C. Calabro, R. Impagliazzo, and R. Paturi. On the exact complexity of evaluating quantified k-cnf. In
V. Raman and S. Saurabh, editors, Parameterized and Exact Computation - 5th International Sympo-
sium, IPEC 2010, Chennai, India, December 13-15, 2010. Proceedings, volume 6478 of Lecture Notes
in Computer Science, pages 50-59. Springer, 2010.

R. Canetti, Y. Chen, J. Holmgren, A. Lombardi, G. Rothblum, R. Rothblum, and D. Wichs. Fiat-
shamir: from practice to theory. In STOC, pages 1082-1090, 2019.

R. Canetti, Y. Chen, J. Holmgren, A. Lombardi, G. N. Rothblum, and R. D. Rothblum. Fiat-shamir
from simpler assumptions. Cryptology ePrint Archive, Paper 2018,/1004, 2018. https://eprint.iacr.
org/2018/1004.

R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited. In STOC, pages
209-218, 1998.

R. Canetti, A. Lombardi, and D. Wichs. Fiat-shamir: From practice to theory, part ii (nizk and
correlation intractability from circular-secure the). In STOC, 2019.

33

http://eprint.iacr.org/
https://eprint.iacr.org/2018/1004
https://eprint.iacr.org/2018/1004

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]
[25]

[26]

[27]

28]

[29]

[30]

R. Canetti, R. Pass, and A. Shelat. Cryptography from sunspots: How to use an imperfect reference
string. In 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), October
20-23, 2007, Providence, RI, USA, Proceedings, pages 249-259. IEEE Computer Society, 2007.

T. M. Chan and R. Williams. Deterministic apsp, orthogonal vectors, and more: Quickly derandomizing
razborov-smolensky. In R. Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages
1246-1255. STAM, 2016.

A. R. Choudhuri, S. Garg, A. Jain, Z. Jin, and J. Zhang. Correlation intractability and snargs from
sub-exponential ddh. In Advances in Cryptology — CRYPTO 2023, 2023.

R. Cramer, I. Damgard, and B. Schoenmakers. Proofs of partial knowledge and simplified design of
witness hiding protocols. In Advances in Cryptology — CRYPTO 1994, pages 174-187, 1994.

I. Damgard and B. Pfitzmann. Sequential iteration of interactive arguments and an efficient zero-
knowledge argument for np. In Automata, Languages and Programming: 25th International Colloquium,
ICALP’98 Aalborg, Denmark, July 15-17, 1998 Proceedings 25, pages 772—783. Springer, 1998.

A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust non-interactive zero
knowledge. In Advances in Cryptology—CRYPTO 2001: 21st Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 19-23, 2001 Proceedings 21, pages 566—598. Springer,
2001.

C. Dwork and M. Naor. Pricing via processing or combatting junk mail. In E. F. Brickell, editor, Ad-
vances in Cryptology - CRYPTO 92, 12th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 16-20, 1992, Proceedings, volume 740 of Lecture Notes in Computer Science,
pages 139-147. Springer, 1992.

C. Dwork and M. Naor. Pricing via processing or combatting junk mail. In Proceedings of the 12th
Annual International Cryptology Conference on Advances in Cryptology, CRYPTO 92, pages 139-147,
London, UK, UK, 1993. Springer-Verlag.

P. Feldman and S. Micali. An optimal probabilistic protocol for synchronous byzantine agreement.
SIAM Journal on Computing, 26(4):873-933, 1997.

M. Fitzi. Generalized communication and security models in Byzantine agreement. PhD thesis, ETH
Zurich, 2002.

J. Gao, R. Impagliazzo, A. Kolokolova, and R. R. Williams. Completeness for first-order properties on
sparse structures with algorithmic applications. In P. N. Klein, editor, Proceedings of the Twenty-Fighth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta
Fira, January 16-19, pages 2162-2181. STAM, 2017.

J. A. Garay, A. Kiayias, and N. Leonardos. The Bitcoin Backbone Protocol: Analysis and Applications.
In Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II,
pages 281-310, 2015.

J. A. Garay, A. Kiayias, N. Leonardos, and G. Panagiotakos. Bootstrapping the blockchain — directly.
Cryptology ePrint Archive, Report 2016/991, 2016. http://eprint.iacr.org/2016/991.

J. A. Garay, A. Kiayias, and G. Panagiotakos. Blockchains from non-idealized hash functions. In R. Pass
and K. Pietrzak, editors, Theory of Cryptography, pages 291-321, Cham, 2020. Springer International
Publishing.

J. A. Garay, A. Kiayias, and G. Panagiotakos. Consensus from signatures of work. In S. Jarecki, editor,
Topics in Cryptology - CT-RSA 2020 - The Cryptographers’ Track at the RSA Conference 2020, San
Francisco, CA, USA, February 24-28, 2020, Proceedings, volume 12006 of Lecture Notes in Computer
Science, pages 319-344. Springer, 2020.

34

http://eprint.iacr.org/2016/991

[31]

[32]

[33]
[34]

[35]

[36]
37]

[38]

[39]

[40]

41]
[42]

[43]
[44]
[45]

|46]

147]

O. Goldreich. On counting t-cliques mod 2. Electron. Colloquium Comput. Complex., TR20-104,
2020.

O. Goldreich and G. N. Rothblum. Counting t-cliques: Worst-case to average-case reductions and
direct interactive proof systems. In M. Thorup, editor, 59th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 77-88. IEEE Computer
Society, 2018.

R. Impagliazzo and R. Paturi. On the complexity of k-sat. J. Comput. Syst. Sci., 62(2):367-375, 2001.

A. Jain and Z. Jin. Non-interactive zero knowledge from sub-exponential ddh. In EUROCRYPT 2021,
pages 3-32. Springer, 2021.

J. Katz and C.-Y. Koo. On expected constant-round protocols for byzantine agreement. Journal of
Computer and System Sciences, 75(2):91 — 112, 2009.

L. Lamport. The weak byzantine generals problem. J. ACM, 30(3):668-676, 1983.

L. Lamport, R. E. Shostak, and M. C. Pease. The byzantine generals problem. ACM Trans. Program.
Lang. Syst., 4(3):382-401, 1982.

A. Lombardi and V. Vaikuntanathan. Correlation-intractable hash functions via shift-hiding. In ITCS,
2022.

C. Lund, L. Fortnow, H. J. Karloff, and N. Nisan. Algebraic methods for interactive proof systems.
In 31st Annual Symposium on Foundations of Computer Science, St. Louis, Missouri, USA, October
22-24, 1990, Volume I, pages 2-10. IEEE Computer Society, 1990.

M. Mitzenmacher. The power of two choices in randomized load balancing. IEFE Transactions on
Parallel and Distributed Systems, 12(10):1094-1104, 2001.

S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. http://bitcoin.org/bitcoin.pdf, 2008.

R. Pass and E. Shi. Rethinking large-scale consensus. Cryptology ePrint Archive, Paper 2018/302,
2018. https://eprint.iacr.org/2018/302.

M. C. Pease, R. E. Shostak, and L. Lamport. Reaching agreement in the presence of faults. J. ACM,
27(2):228-234, 1980.

M. O. Rabin. Randomized Byzantine Generals. In FOCS, pages 403—409. IEEE Computer Society,
1983.

R. Williams. A new algorithm for optimal 2-constraint satisfaction and its implications. Theor. Comput.
Sci., 348(2-3):357-365, 2005.

R. R. Williams. Strong ETH breaks with merlin and arthur: Short non-interactive proofs of batch
evaluation. In R. Raz, editor, 31st Conference on Computational Complexity, CCC 2016, May 29 to
June 1, 2016, Tokyo, Japan, volume 50 of LIPIcs, pages 2:1-2:17. Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik, 2016.

V. V. Williams. On some fine-grained questions in algorithms and complexity. In Proceedings of the
international congress of mathematicians: Rio de janeiro 2018, pages 3447-3487. World Scientific, 2018.

35

https://eprint.iacr.org/2018/302

	Introduction
	Our Results
	Technical Overview

	Proofs of Work without Random Oracles
	Deriving Many Challenges from a Short Public Seed
	Key Technique: A Robust Direct Sum Theorem for fOVk
	Simulatable, Non-Interactive PoW (with Large Proving Times)

	Consensus from PoW and a Beacon
	Protocol Execution and Security Model
	Weak Consensus
	Graded Consensus
	Consensus

	Consensus from NIZK-PoW and a Beacon with O(2) Output
	Conclusions and Directions for Future Work

