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ABSTRACT
The increasing reliance of drivers on navigation applications has
made transportation networksmore susceptible to data-manipulation
attacks by malicious actors. Adversaries may exploit vulnerabilities
in the data collection or processing of navigation services to inject
false information, and to thus interfere with the drivers’ route se-
lection. Such attacks can signi!cantly increase tra"c congestions,
resulting in substantial waste of time and resources, and may even
disrupt essential services that rely on road networks. To assess
the threat posed by such attacks, we introduce a computational
framework to !nd worst-case data-injection attacks against trans-
portation networks. First, we devise an adversarial model with a
threat actor who can manipulate drivers by increasing the travel
times that they perceive on certain roads. Then, we employ hierar-
chical multi-agent reinforcement learning to !nd an approximate
optimal adversarial strategy for data manipulation. We demonstrate
the applicability of our approach through simulating attacks on the
Sioux Falls, ND network topology.
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1 INTRODUCTION
In today’s digitally interconnected world, drivers rely on navigation
applications and online information more than before. Furthermore,
the availability of social media has accelerated the spread of misin-
formation. A malicious actor could manipulate the drivers directly
by sending malicious information through SMS messaging [22],
manipulating tra"c signals [2, 4, 7, 8, 17], or physically changing
the road signs [3] to interfere with drivers’ route selection. With
the availability of social media, the drivers can further spread this
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misinformation to their peers to snowball the e#ect of manipula-
tion. Alternatively, the adversary can inject false information into
the navigation application. For example, one can place phones in
a cart and pull them on the street, tampering with the navigation
application to result in marking the road with heavy tra"c and
rerouting the drivers [18].

Manipulating transit networks can lead to increased tra"c con-
gestion leading to devastating consequences. Modern societies heav-
ily rely on road networks for accessing essential services such as
education, healthcare, and emergency services. Moreover, road
networks contribute to economic growth by enabling logistic move-
ments of materials, goods, and products. Disruption of transporta-
tion networks can therefore lead to food insecurity, job losses, or
even political disarray, such as the Fort Lee scandal [24].

E#orts have been made to measure the impact of false infor-
mation injection on dynamic navigation applications [10], tra"c
congestion [22], and navigation applications [16]. However, !nding
an optimal attack is in general computationally challenging [22],
complicating vulnerability analysis.

The injection of false data into navigation applications is a com-
plex task that involves several actions and decisions over time,
given the dynamic nature of tra"c patterns. The use of Reinforce-
ment Learning (RL) approaches provides an e#ective and versatile
solution to tackle such sequential decision-making challenges.

When faced with decision-making problems of any size, Rein-
forcement Learning (RL) can be a powerful tool [14, 19]. However,
the larger the problem, the more computation power is needed to
train an RL model. For example, when dealing with a persistent ad-
versary injecting false information into a city-wide transportation
network of a major city, manipulating thousands of network links
and millions of vehicles would make training of out-of-the-box RL
strategies impractical. In such cases, a multi-agent and hierarchical
RL framework becomes necessary. This framework should have
local adversarial RL agents assigned to a subsection of the trans-
portation network, observing their local information, and making
local decisions. Additionally, these agents should cooperate to !nd
the optimal sequence of false information to be injected. The agents
should be coordinated with a global agent that assigns signi!cance
to each locality.
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1.1 Contributions
Our goal is to examine the possible e#ects of false information
injection on navigation apps. To achieve this, we created an adver-
sarial threat model that outlines the relationships between vehicles,
the navigation app, and a false information actor. Using a Markov
Decision Process (MDP), we constructed this model to optimize the
total travel time for all vehicles to arrive at their destinations.

We introduce a Hierarchical Multi-Agent (Deep) Reinforcement
Learning (HMARL) system that consists of two levels. At the lower
level, local agents observe the information of their immediate sur-
roundings and collaborate to !nd the best local strategy to inject
false information. The agents are constrained by an attack budget.
At the higher level, a global agent coordinates the activities of the
lower-level agents.

Finally, we evaluated our approach by comparing it with baseline
RL algorithms and non-optimal heuristic approaches through an
ablation study in Sioux Falls, ND.

1.2 Organization
The article is divided into several sections. In Section 2, we conduct
a literature review on false information injection in navigation apps
and scalable reinforcement learning techniques. In Section 3, we
describe the interactions of the the adversarial threat actor and the
transportation network. In Section 4, we provide the background in-
formation necessary to comprehend our approach. In Section 5, we
explain our HMARL approach. In Section 6, we assess the HMARL
approach on a benchmark transportation network, Sioux Falls, ND.
Finally, in Section 7, we provide a higher-level analysis of the ap-
proach and suggest future directions.

2 RELATEDWORK
The literature review discusses false information injection in navi-
gation apps and hierarchical reinforcement learning.

2.1 Attacks on Navigation Applications
Several studies have been conducted to assess the e#ects of manip-
ulating drivers to disrupt the normal functioning of transportation
systems. These attacks can be carried out through various means,
such as physically tampering with tra"c signals. Researchers [2, 4,
7, 8, 17] have all explored these approaches. For example, Laszka
et al. [6, 7] demonstrated that vehicles may be susceptible to altered
and tampered tra"c signs that can mislead them into taking the
wrong path.

In a recent study, Waniek et al. [22] surveyed approximately
3,300 participants to investigate the e#ects of direct manipulation
of drivers through SMS noti!cations and invalid road signs. The
results showed that fake tra"c signals and SMS noti!cations can
signi!cantly alter predetermined travel routes. As a result, there
can be up to 5,000 additional vehicles on major road networks
in Chicago.

Through an experiment conducted by Simon Weckert [18], it
was found that navigation apps can be misled by false informa-
tion. Weckert pulled a wagon with 99 smartphones while using
Google Maps, which resulted in the app marking the street as heav-
ily congested and suggesting alternative routes to drivers. This

highlights the potential vulnerability of navigation apps to false
information injection.

Recent research has revealed that data manipulation can impact
transportation networks and users. However, it has been di"cult
to determine the full extent of this impact due to computational
constraints. To address this issue, a state-of-the-art hierarchical re-
inforcement learning algorithm is being developed, which promises
to o#er a feasible solution.

2.2 Hierarchical RL Approaches
Hierarchical Reinforcement Learning (HRL) has gained signi!cant
attention due to its applications and development. These methods
have proven to be successful in tasks that require coordination
between multiple agents, such as Unnamed Aerial Vehicles (UAVs)
and autonomous vehicles, to complete objectives e"ciently.

For instance, Yang et al. [26] devised a general framework for
combining compound and basic tasks in robotics, such as navi-
gation and motor functions, respectively. However, they limited
the application to single-agent RL at both levels. Similarly, Chen
et al. used attention networks to incorporate environmental data
with steering functions of autonomous vehicles in a hierarchical RL
manner so that the vehicle can safely and smoothly change lanes.

In the UAV applications, Zhang et al. [27] demonstrated the
success of hierarchical RL in the coordination of wireless commu-
nication and data collection of UAVs.

Although our problem is in a di#erent domain, the fundamental
ideas of these works are applicable to us since we are dealing with
cooperation and coordination between adversarial agents in !nd-
ing an optimal manipulation strategy in navigation applications.
The study results indicate that the use of Reinforcement Learn-
ing approaches accurately modeled the e#ects of false information
injection on navigation apps.

3 SYSTEM MODEL
In this section, we devise and formalize our threat model with
respect to a transportation network environment where the adver-
sarial agent injects false tra"c information with a restricted budget
with the aim of increasing the total travel time of vehicles traveling
in this network.

3.1 Environment
The tra"c model is de!ned by a road network 𝐿 = (𝑀 , 𝑁), where 𝑀
is a set of nodes representing road intersections, and 𝑁 is a set of
directed edges representing road segments between the intersec-
tions. Each edge 𝑂 → 𝑁 is associated with a tuple 𝑂 = ↑𝑃𝐿 ,𝑄𝐿 , 𝑅𝐿 , 𝑆𝐿 ↓,
where 𝑃𝐿 is the free $ow time of the edge, 𝑅𝐿 is the capacity of the
edge, and 𝑄𝐿 and 𝑆𝐿 are the parameters for the edge to calculate
actual edge travel time𝑇𝐿 (𝑈𝐿 ) given the congestion of the network,
where 𝑈𝐿 is the number of vehicles currently traveling along the
edge [20]. Speci!cally, we use the following function for𝑇𝐿 (𝑈𝐿 ):

𝑇𝐿 (𝑈𝐿 ) = 𝑃𝐿 ↔
(
1 + 𝑄𝐿

(
𝑈𝐿
𝑅𝐿

)𝑀𝐿 )
(1)

The set of vehicle trips are given with 𝑉, where each trip 𝑊 → 𝑉 is a
tuple ↑𝑋𝑁 ,𝑌𝑁 , 𝑍𝑁 ↓, with 𝑋𝑁 → 𝑀 and 𝑌𝑁 → 𝑀 the origin and destination



of the trip, respectively, and 𝑍𝑁 the number of vehicles traveling
between the origin-destination pair ↑𝑋𝑁 ,𝑌𝑁 ↓.

3.2 State Transition
For each vehicle trip 𝑊 → 𝑉 at each time step 𝑃 → N, vehicle location
𝑎𝑂𝑁 → 𝑀 ↗ (𝑁 ↔ N) represents the location of vehicle 𝑊 at the end
of time step 𝑃 , where the location is either a node in 𝑀 or a tuple
consisting of an edge in 𝑁 and a number in N, which represents the
number of timesteps left to traverse the edge.

Each vehicle trip begins at its origin; hence 𝑎0𝑁 = 𝑋𝑁 . At each
timestep 𝑃 → N, for each vehicle trip 𝑊 that 𝑎𝑂↘1𝑁 → 𝑀 \ {𝑌𝑁 }, i.e., the
vehicle trip is at a node but has not reached its destination yet, let
≃𝑂↘1
𝑁 = (𝑎𝑂↘1𝑁 , 𝑂1, 𝑏1, 𝑂2, 𝑏2, . . . , 𝑂𝑃 ,𝑌𝑁 ) be a shortest path from 𝑎𝑂↘1𝑁

to 𝑌𝑁 considering congested travel times𝜴𝑂 as edge weights. Then
𝑎𝑂𝑁 = ↑𝑂1, ⇐𝑐𝑂↘1

𝐿 ⇒↓, where the travel time of edge 𝑂 is

𝑐𝑂
𝐿 =𝑇𝐿

#$$
%

∑
{𝑁 →𝑄 | 𝑅𝑀↘1𝑁 =↑𝐿,·↓}

𝑍𝑁
'((
)
. (2)

Thus, for a trip 𝑊 with 𝑎𝑂↘1𝑁 = ↑𝑂,𝑈↓, i.e., the vehicle is traveling
along an edge, if 𝑈 = 1, that is, the vehicle is one time step from
reaching the next intersection, 𝑎𝑂𝑁 = 𝑏1. Otherwise, 𝑎𝑂𝑁 = ↑𝑂,𝑈 ↘ 1↓.

3.3 Attacker Model
At the high level, our attack model involves adversarial perturba-
tions to observed (rather than actual) travel times along edges 𝑂 ,
subject to a perturbation budget constraint 𝑑 → R. Let 𝑒𝑂𝐿 → R de-
note the adversarial perturbation to the observed travel time over
the edge 𝑂 . The budget constraint is then modeled as ⇑𝜶𝑂 ⇑1 ⇓ 𝑑,
where 𝜶𝑂 combines all perturbations over individual edges into a
vector. The observed travel time over an edge 𝑂 is then

𝑐̂𝑂
𝐿 = 𝑐𝑂

𝐿 + 𝑒𝑂𝐿 . (3)

It is this observed travel time that is then used by the vehicles to
calculate their shortest paths from their current positions in the
tra"c network to their respective destinations. Since we aim to
develop a defense that is robust to informational assumptions about
the adversary, we assume that the attacker completely observes
the environment at each time step 𝑃 , including the structure of the
transit network𝐿 , all of the trips 𝑉, and the current state of each
trip 𝑎𝑁 .

The attacker’s goal is to maximize the total vehicle travel times,
which we formalize as the following optimization problem:

max
{𝜴1,𝜴2,...}: ⇔𝑂 ( | |𝜴𝑀 | |1=𝑆)

↖∑
𝑂=0

𝑓𝑂 ·
∑

{𝑁 →𝑄 | 𝑅𝑀𝑁ω𝑇𝑁 }
𝑍𝑁 , (4)

where 𝑓 → (0, 1) is a temporal discount factor.

4 BACKGROUND
In this section, we de!ne the terminology and background to help
better understand the solution approach.

4.1 Deep Reinforcement Learning
Let the tuple ↑𝑔,𝑕,𝑉,𝑖 ↓ de!ne a Markov Decision Process (MDP)
where 𝑔 denotes the state space,𝑕 denotes the action space,𝑉(𝑍𝑂 ,𝑒𝑂 )
↙∝ 𝑊𝑂 → R is the rewarding rule for transitioning from state 𝑍𝑂 → 𝑔

by taking action 𝑒𝑂 → 𝑕 at timestep 𝑃 , and 𝑖 (𝑍𝑂 ,𝑒𝑂 , 𝑍𝑂+1) ↙∝ [0, 1]
is the probability that taking action 𝑒𝑂 in state 𝑍𝑂 will lead to state
𝑍𝑂+1 → 𝑔 at the next timestep.

A Deep Reinforcement Learning (DRL) algorithm !nds an approx-
imately optimal action strategy 𝑗 (𝑍𝑂 ) ↙∝ 𝑒𝑂 for a MDP such that it
maximizes the discounted reward E

[∑↖
𝑈=0 𝑓

𝑂 · 𝑊𝑂+𝑈
,, 𝑗 ] .

An Action-Value RLmethod learns the expected discounted value
of taking an action in a state by training an approximated parame-
terized function 𝑘𝑉 such that

𝑘𝑉 (𝑍𝑂 ,𝑒𝑂 ) = E
[
𝑊𝑂 + 𝑓 max

𝑊′
𝑘𝑉 (𝑍𝑂+1,𝑒′)

]
. (5)

Hence, making the approximately optimal action strategy 𝑗 (𝑍𝑂 ) =
argmax𝑊′ 𝑘𝑉 (𝑍𝑂 ,𝑒′). The training of 𝑘𝑉 is based on !tting sam-
ples of experiences that minimize the squared Bellman loss to the
Temporal Di!erence target

𝑙𝑉 = E𝐿∞𝑋

(
𝑘𝑉 (𝑍𝑂 ,𝑒𝑂 ) ↘ (𝑊𝑂 + 𝑓 max

𝑊′
𝑘𝑉 (𝑍𝑂+1,𝑒′))

)2
(6)

Each experience 𝑂 = ↑𝑍𝑂 , 𝑊𝑂 ,𝑒𝑂 , 𝑍𝑂+1↓ → 𝑁 is a tuple of the state
𝑍𝑂 that the agent was in at time 𝑃 , the action it took 𝑒𝑂 , the state it
arrived at at the next timestep 𝑍𝑂+1, and the reward that it received
as the result of the state transition.

With a discrete action space, one can enumerate all possible ac-
tions in the action-value function for calculating the policy (argmax
𝑘𝑉 ) and the target value (max𝑘𝑉 ) in a process called Deep-𝑘-
Learning (D𝑘L) [12]. However, with continuous action spaces, one
needs to !nd the best action and value with a gradient search on
the 𝑘 function. This led to the emergence of actor-critic methods
such as Deep Deterministic Policy Gradients (DDPG) [9]. In DDPG, a
separate parameterized action function 𝑚𝑉

′ (𝑍𝑂 ) ↙∝ 𝑒𝑂 is used that is
updated based on moving the parameters in the direction of increas-
ing the𝑘 function by gradient ascent. Speci!cally, the performance
of policy (𝑛 ) that needs to be maximized can be expressed as:

𝑛𝑉
′
= E𝐿∞𝑋


𝑘𝑉 (𝑍𝑂 , 𝑚𝑉 ′ (𝑍𝑂 ))


(7)

leading to 𝑗 (𝑍𝑂 ) = 𝑚𝑉
′ (𝑍𝑂 ) = argmax𝑊′ 𝑘 (𝑍𝑂 ,𝑒′).

4.2 Multi-Agent Deep Reinforcement Learning
While both D𝑘L andDDPG perform quite well for large state spaces,
they lack scalability to large action spaces where the action gradient
when updating the policy diminishes, making the policy function
impossible to train. Another approach to scalability is to split the
environment into 𝑜 disjoint components and assign one DRL agent
to !nd an approximate optimal policy for the particular component,
given the observation from the component, while the agents receive
separate rewards.

One such Multi-Agent Reinforcement Learning algorithm is the
Multi-Agent Deep Deterministic Policy Gradient MADDPG [11] that
follows a centralized training decentralized execution model where
the training of the component’s𝑘 function requires access to global
state information while execution of the policy function 𝑚 is done by
only relying on local observations pertaining to the component. In
MADDPG, each agent 𝑝 has a𝑘𝑉𝑂 (𝜷𝜶 ,𝑋𝑂𝑌 ,𝑒𝑂1,𝑒𝑂2, · · · ,𝑒𝑂𝑃 )⇔𝑃→𝑍 where
𝜷 that is a joint representation of the state of the system, 𝑋𝑂𝑌 is the
observation of agent 𝑝 from its component, and𝑒𝑂𝑃 is the action taken



by each agent 𝑞 . 𝑘𝑉𝑂 predicts the estimated discounted rewards
for agent 𝑝 and can be updated by reducing the Bellman loss to
the temporal di#erence target. The policy of agent 𝑝 is a function
approximator 𝑚 parameterized by𝑟 ′𝑌 that can be trained by assuming
a similar performance function 𝑛𝑉

′
𝑂 to DDPG (Equation 7):

𝑛𝑉
′
𝑂 = E𝐿∞𝑋


𝑘𝑉𝑂


𝜷𝜶 ,𝑋𝑂𝑌 ,𝑒

𝑂
1,𝑒

𝑂
2, · · · ,𝑒𝑂𝑃 , 𝑚

𝑉 ′
𝑂 (𝑋𝑂𝑌 )


⇔𝑃ω𝑌 (8)

5 HIERARCHICAL MULTI-AGENT
REINFORCEMENT LEARNING

At each timestep of the game, the adversary needs to !nd the approx-
imately optimal perturbations to all the edges in a city network 𝐿 .

The action space for the low-level agent is |𝑁 |-dimensional. Given
a moderate-sized city such as Anaheim, CA or Chicago, IL, that has
914 and 2950 road links, respectively [20], it is infeasible for a Single-
Agent RL algorithm to learn the optimal budget allocation strategy.

This requires that the transit network be broken down into com-
ponents. Then, an RL agent will be responsible for the edges in the
component, observing the information pertaining to the component
and only !nding the optimal perturbations for that component.

Approaches such as MADDPG will fail in this scenario as the
agents will compete over the budget, making the MDP di"cult
to learn. This makes the need to devise a two-level hierarchical
multi-agent reinforcement learning algorithm where the purpose
of the high-level agent is to allocate the budget to the components,
eliminating the competition over budget, and the purpose of the
low-level agent, which itself is comprised of component agents, is to
further allocate the perturbation budget between the edges in their
component constrained to the allocated budget to the component
by the high-level agent.

5.1 K-Means Node Clustering
First, these components can be formed by applying a K-Means clus-
tering algorithm, assuming the distance between two nodes is the
shortest path distance given edge weights𝑐𝐿 = 𝑃𝐿 . Then, each edge
𝑂 = 𝑠𝑏 is assigned to the component of its source node 𝑠. Algo-
rithm 1 shows a pseudocode for the 𝑜-means clustering algorithm.
Figure 2 shows the decomposition of the Sioux Falls, ND transporta-
tion network with K-Means clustering into four components.

Algorithm 1 𝑜-Means Graph Clustering

Require: A road network graph 𝐿 = (𝑀 , 𝑁)
Calculate all-pairs shortest path distance 𝑌𝑎,𝑏 : ⇔𝑎,𝑏→𝑐 .
Select |𝑜 | initial nodes as component centers arbitrarily and call
them 𝑅𝑃 → 𝑜 .
for n_iterations do

𝑅𝑎 ∈ argmin𝑏 𝑌𝑎,𝑏 : ⇔𝑏→𝑑 .
𝑅𝑃 ∈ argmin𝑒𝑃′ argmax𝑎 𝑌𝑎,𝑒𝑃′ such that 𝑅𝑎 = 𝑅𝑃

end for
𝑅𝐿 = ↑𝑠𝑏↓ ∈ 𝑅𝑎⇔𝑂 → 𝑁

return 𝑅𝐿 for all 𝑂 → 𝑁 the centroid node for all edges.

5.2 High and Low Level DRL Agents
We assume that the adversarial agent has access to all features of
the transportation network𝐿 and all rider information 𝑎𝑂𝑁 at all time

steps. Thus, it can summarize the information into features that can
be used to train the high and low-level agents. Figure 1 summarizes
our HMARL architecture.

5.2.1 Low-Level Multi-Agent MADDPG. When graph 𝐿 is bro-
ken down into |𝑜 | components, the agent supervising compo-
nent 𝑞 = 𝐿 (𝑀𝑃 , 𝑁𝑃 ) ∋ 𝐿 (𝑀 , 𝑁) observes a feature vector of 𝜸̂𝑂𝑃 =
↑↑𝑍𝐿 ,𝑈𝐿 , 𝑍𝐿 ,𝑡𝐿 , 𝑍𝐿 ↓ : ⇔𝐿→𝑋𝑃 ↓, where 𝑍𝐿 =

∑{𝑍𝑁 |𝑎𝑂𝑁 → 𝑀 △ 𝑂 → ≃𝑂
𝑁 :

⇔𝑁 →𝑄} is the number of vehicles that are currently at a node with
an unperturbed shortest path to the destination passing through 𝑂 ,
𝑍𝐿 =

∑{𝑍𝑁 |𝑎𝑂𝑁 → 𝑀 △ 𝑂 = ≃𝑂
𝑁 (𝑂1) : ⇔𝑁 →𝑄} is the number of such vehi-

cles that will immediately take 𝑂 ,𝑡𝐿 =
∑{𝑍𝑁 · 𝑈 |𝑎𝑂𝑁 = ↑𝑂′,𝑈↓ △ 𝑂′ =

𝑂 : ⇔𝑁 →𝑄} is the sum of required timesteps for vehicles traveling
𝑂 to arrive at its endpoint, and 𝑍𝐿 =

∑{𝑍𝑁 |𝑂 → ≃𝑂↘1
𝑁 : ⇔𝑁 →𝑄} is

the number of all vehicles taking 𝑂 as their shortest path at some
timestep assuming the perceived travel times to remain unchanged.
The agent then outputs a vector of perturbations 𝜶𝑂𝑃 = ↑𝑒𝑂𝐿 |𝑂 → 𝑁𝑃 ↓
to perturb all the components’ edges. This agent would receive a
reward 𝑊𝑂𝑃 =

∑{𝑍𝑁 |𝑎𝑂𝑁 → 𝐿 (𝑀𝑃𝑁𝑃 ) : ⇔𝑁 →𝑄} as the number of vehicles
in its component.

As the low-level agents participate in a cooperative setting with
our hierarchical approach, they do not need to see other agents’ ac-
tions to train their critics. The𝑘 function for each agent can be con-
structed with 𝑘𝑃 (𝜸̂𝑂𝑃 , 𝜹

𝑂
𝑃 , 𝜶

𝑂
𝑃 ) with a Multi-Layer Perceptron (MLP)

such that its output is activated with a Recti"ed Linear Unit (ReLU)
as the reward for each component is non-negative, i.e., the num-
ber of vehicles in the component. The agent’s action function
𝑚𝑃 (𝜸̂𝑂𝑃 , 𝜹

𝑂
𝑃 ) ↙∝ 𝜶𝑂𝑃 can be constructed using an MLP. As the output

of the actor function of 𝑞-th low-level agent needs to sum to 𝑄𝑃 to
satisfy the budget and allocation constraint, it needs a normalizing
function that can be either a Softmax function or 1-norm normalizer.
The !nal perturbations can then be drawn by multiplying budget of
the component to its action output 𝜶 = ↑𝜶1↔𝑄1, 𝜶2↔𝑄2, · · · 𝜶𝜷 ↔𝑄𝑃 ↓.
The training of 𝑚𝑃 and𝑘𝑃 functions can be performed according to
the MADDPG algorithm (Section 4.2).

5.2.2 High-Level DDPG Agent. The high-level agent𝑢 observes an
aggregated observation of the components at time 𝑃 , speci!cally the
number of vehicles in the component and number of vehicles that
are making a decision in that component 𝜸𝑂𝑓 = ↑↑∑𝑋𝑃

𝐿 𝑈𝐿 ,
∑𝑋𝑃
𝐿 𝑍𝐿 ↓ :

⇔𝑃→𝑍 ↓, and outputs 𝜹 → [0,𝑑] |𝑍 | such that ⇑𝜹𝑂 ⇑1 = 𝑑 the portion
of the budget allocated to each component. The high-level agent
is rewarded by the total number of the vehicles in the network
𝑊𝑂𝑓 =

∑
{𝑁 →𝑄 |𝑅𝑀𝑁ω𝑇𝑁 } 𝑍𝑁 .

Similar to the low-level agent actors, the output of the high-
level actor is normalized with either Softmax or 1-norm and then
multiplied by the total budget 𝑑 to allocate each budget to the com-
ponent. The training of the high level 𝑚𝑓 and𝑘𝑓 can be performed
according to the DDPG algorithm (Section 4.1).

6 EXPERIMENTS
We simulated the framework using benchmark data from [20] and
evaluated the e#ectiveness of HMARL for !nding an optimal strat-
egy for false information injection on the Sioux Falls, ND testbed.
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Figure 1: Hierarchical Multi-Agent Deep Reinforcement Learning Architecture. 𝑚𝑓 and 𝑘𝑓 are the high-level agent’s actor and
critic function approximators, respectively. 𝑚𝑃 and 𝑘𝑃 are the actor and critic function approximators of low-level agent 𝑞 ,
respectively. 𝜶 = ↑𝜶1 ↔𝑄1, 𝜶2 ↔𝑄2, · · · 𝜶𝜷 ↔𝑄𝑃 ↓ is the perturbations of all edges of the transit graph𝐿 where 𝑒𝑃 is the perturbations
of edges in component 𝑞 . 𝜸𝜷 and 𝑄𝑃 are the observation of the 𝑞-th agent from its component and the proportion of budget
allocated to it, respectively. The Normalize layer can be constructed using the So!max function or the 1-norm normalization of
ReLU-activated actor outputs.
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Figure 2: Decomposition of Sioux Falls, ND transportation network into four components, where one low-level agent is
responsible for adding perturbation to edges in each component, and one high-level agent is responsible for allocating budget 𝑑
to each low-level agent. Edge width represents the density of vehicles moving over the edge without any attacker perturbation
added.

6.1 Experimental Setup
Tomake the environment non-deterministic, we randomly increased
or decreased 𝑊𝑔 by 5% at each training episode’s beginning.We simu-
late the environment by following a vehicle-based simulation based
on the state transition rules of Section 3.2.

6.1.1 Hardware and So!ware Stack. The experiments, including
the neural network operations, are done on an Apple MacBook Pro

2021 with an M1 Pro SoC with eight processing cores and 16GB of
RAM. None of the experiments, including the neural operations,
have been done on the Metal Performance Shaders. The simulation
of the environment has been implemented using Python. For neural
network operations, we used PyTorch [15]. We used NumPy [5] as
our scienti!c computing library. The source code is available at [1].



6.1.2 Seeds and Hyperparameters. To make sure that the results
presented in this article are reproducible, we initialized the random
seeds of Numpy, PyTorch, and Python to zero. The hyperparameters
used for the simulation and the training of high and low-level agents
are presented in Table 1 and the neural network architectures are
presented in Table 2.

6.2 Heuristics
We used a Greedy heuristic as our baseline strategy. In the greedy
approach, the adversarial agent counts the number of vehicles 𝑍𝐿
passing through each edge 𝑂 as their unperturbed shortest path to
their destination. Then its applied perturbation will be

𝜶 =
↑𝑍𝐿 : ⇔𝑂 → 𝑁↓∑

𝐿→𝑋 𝑍𝐿
↔ 𝑑.

When running the ablation study (see Figure 3) and testing the
high-level and low-level agents separately, we replaced the high-
level with a proportional allocation, meaning that each component
agent gets a proportion of the budget relative to the number of
vehicles making a decision in that component. Further, the low-
level agent can be replaced with a local greedy that perturbs the
edges in its component relative to the number of vehicles passing
through the edges:

𝑒𝑃 =
↑𝑍𝐿 : ⇔𝑂 → 𝑁𝑃 ↓∑

𝐿→𝑋 𝑍𝐿
↔ 𝑄𝑃 .

6.3 Numerical Results
After the initialization of the environment, as the HMARL is o#-
policy, it can draw experiences of states, actions, next states, and
rewards from the environment by taking either random actions or
by taking Ornstein-Uhlenbeck [25] noise added to actions outputted
by the low-level agent. Using these experiences, all actors and critics
can be updated simultaneously. Algorithm 2 shows the training
work$ow of the HMARL.

When agents are trained simultaneously, the low-level agent
should have lower learning rates as it needs the high-level agent to
learn its behavior but should account for more steps in the future
with a higher discount factor 𝑓 .

Figure 3 shows the result of the training with an ablation study
on the Sioux Falls, ND transportation network [20]. This network
has 24 nodes and 76 edge links. We ran HMARL with di#erent
attack budgets. As expected, the HMARL performs better by 10-
50% depending on the budget, making it a viable solution to the
scalability of Deep Reinforcement Algorithms.

7 DISCUSSION
First, we conducted a hyperparameter optimization with a simple
grid search and reported only the hyperparameters that work best.
Further evaluation of hyperparameters with more sophisticated
search mechanisms, such as Bayesian Search [23], is required.

Based on the experiments conducted, it is important to note that
the shortest path routing approach for tra"c does not always result
in an optimal network $ow solution due to network congestion. It is
possible for a non-optimal attack to actually reduce the total travel
time of the vehicles by decreasing congestion on regular congested

Table 1: List of Hyperparameters

Hyperparameter Value
Environment

Training Horizon 400
Evaluation Horizon 50
|𝑜 | Number of Components 4
Total Training Steps 200,000
Randomizing Factor of Number of Vehicles 0.05

Common
𝑤𝑓 , 𝑤𝑃 target network transfer rate 0.001
Training Batch Size 64
Experience Replay Bu#er Size 50,000

Stand Alone High Level
𝑚𝑃 Learning Rate 0.00005
𝑘𝑃 Learning Rate 0.01
𝑓𝑓 0.99
𝑤𝑓 0.001
Noise Decay Steps 10,000

Stand Alone Low Level
𝑚𝑃 Learning Rate 0.00005
𝑘𝑃 Learning Rate 0.01
𝑓𝑃 0.99
Noise Decay Steps 30,000

Hierarchical
Low-Level

𝑚𝑃 Learning Rate 0.00005
𝑘𝑃 Learning Rate 0.01
𝑓𝑃 0.9
Noise Decay Steps 10,000

High-Level
𝑚𝑓 Learning Rate 0.00001
𝑘𝑓 Learning Rate 0.001
𝑓𝑓 0.99
𝑤𝑓 0.001
Noise Decay Steps 30,000

Standalone DDPG
𝑚 Learning Rate 0.00001
𝑘 Learning Rate 0.001
𝑓 0.99
Noise Decay Steps 30,000

paths. For example, see Figure 3a with no attack (“No Attack”) and
Greedy (“Greedy Heuristic”, “Decomposed Heuristic”) strategies.

Further, the starting nodes for the k-means clustering can impact
the training process and need to be thoroughly examined. There
should be a correlation between certain metrics, such as the maxi-
mum diameter of components, the number of nodes in components,
the balance of nodes and edges between the components of the
outputted clusters, and the performance of HMARL, which has
not yet been analyzed. Additionally, other graph decomposition
methods have not been evaluated. It is worth considering a di#er-
ent decomposition algorithm that tends to produce more balanced
components, as this may lead to a more stable training process and
better performance of the HMARL.
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Figure 3: Ablation study of HMARL on the Sioux Falls network. “No A"ack” pertains to no attack on the network. “Greedy
Heuristic” is a network greedy (see Section 6.2) attack. “DDPG” applies the general-purpose DDPG algorithm network-wide.
In the remaining columns, the network is divided into four components. In “Decomposed Heuristic,” the low-level actors are
low-level greedy agents, with the high-level being a proportional allocation to the number of vehicles in each component. In
“Ablation | Low Level,” the high-level agent is the proportional allocation heuristic, while its low-level is the MADDPG approach.
In “Ablation | High Level,” the low-level is the greedy heuristic, while the high-level is a DDPG allocator RL agent. “HMARL” is
our HMARL approach. Here, the low-level MADDPG and high-level DDPG components have been trained simultaneously.

Table 2: Neural Network Architecture

Hyperparameter Value
High-Level
Actor 𝑚𝑓

Number of hidden layers 2
Sizes of layers [256, 128]
Activation function ReLU
Optimizer Adam

Critic 𝑘𝑓
Number of hidden layers 2
Sizes of hidden layers [128, 128]
Activation function ReLU
Optimizer Adam

Low-Level
Actor 𝑚𝑃

Number of hidden layers 2
Sizes of hidden layers [512, 512]
Activation function [ReLU, ReLU, Sigmoid]
Optimizer Adam

Critic 𝑘𝑃
Number of hidden layers 2
Sizes of hidden layers [128, 128]
Activation function ReLU
Optimizer Adam

There is a trade-o# between the number of components, the
performance of high-level, low-level, and the hierarchical approach.
With too many components (|𝑜 | ∝ |𝑀 |), or with too few com-
ponents (|𝑜 | ∝ 1), the hierarchical approach will be equivalent

Algorithm 2 Hierarchical Multi-Agent Reinforcement Learning

Require: A road network graph 𝐿 = (𝑀 , 𝑁); Set of Riders 𝑉;
Initialize environment 𝑂𝑈𝑏
Initialize Replay Bu#er 𝑁.
Run K-Means Clustering to acquire components
𝑍 ∈ 𝑂𝑈𝑏 .𝑊𝑂𝑍𝑂𝑃 ()
for step ▽ total steps do

𝜹 ∈ 𝑚𝑓 (𝑍)
𝜶 ∈ ̸𝑚𝑃 (𝑄, 𝑍) + N
Normalize 𝜶
𝑍′, 𝑊 ∈ 𝑂𝑈𝑏 .𝑍𝑃𝑂𝑆 (𝜶)
𝑁 ∈ 𝑁 ↗ ↑𝑍, 𝑍′, 𝜶, 𝑊 ↓
𝑍 ∈ 𝑍′

if 𝑂𝑈𝑏 .𝑌𝑋𝑈𝑂 () then
𝑍 ∈ 𝑂𝑈𝑏 .𝑊𝑂𝑍𝑂𝑃 ()

end if
Sample 𝑁 ∞ 𝑁
Update 𝑘𝑓 , 𝑚𝑓 , 𝑘𝑃 , 𝑚𝑃⇔𝑃→𝑍 with 𝑁

end for

to a single-agent RL. The best number of components should be
extracted experimentally.

When analyzing heuristics and HMARL, it is essential to con-
sider the sparsity of vehicles. The rider data in Sioux Falls is dense,
with 100-500 vehicles traveling between each pair of nodes. On the
contrary, the rider data in Eastern Massachusetts is sparse, with no
vehicles present for over 75% of pairs of nodes.

Currently, the feature extractor of the state representation is a
Multi-Layer Perceptron. As the state is inherently a graph, Graph
Convolutional Networks [13] or GraphAttentionNetworks [21] can
be incorporated to improve the accuracy of the 𝑘 and 𝑚 functions.



7.1 Conclusion
Our research focused on the impact of adversarial in$uence on
transportation networks. We investigated how drivers could be
manipulated by injecting false information into navigation apps
through a computational approach. We developed an adversarial
model that included a threat actor capable of manipulating drivers
by increasing their perceived travel times, leading them to take
suboptimal and longer routes. To accomplish this, we created a
computational framework based on Hierarchical Multi-Agent Deep
Reinforcement Learning (HMARL) to determine an optimal strat-
egy for data manipulation. Our simulation of the Sioux Falls, ND
transportation network showed that the adversary could increase
the total travel time of all drivers by 50%.

7.2 Future Direction
To e#ectively combat data attacks, it is crucial to have a robust
defense mechanism. One of the most signi!cant hurdles is precisely
identifying data manipulation attacks. Our research has yielded
positive outcomes, and we aim to tackle the problem of detecting
such false-data injection attacks by utilizing sophisticated machine-
learning methods and competitive multi-agent reinforcement learn-
ing algorithms.
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