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Abstract

Transformers have achieved great success in recent years. Interestingly, transform-
ers have shown particularly strong in-context learning capability – even without
fine-tuning, they are still able to solve unseen tasks well purely based on task-
specific prompts. In this paper, we study the capability of one-layer transformers
in learning one of the most classical nonparametric estimators, the one-nearest
neighbor prediction rule. Under a theoretical framework where the prompt contains
a sequence of labeled training data and unlabeled test data, we show that, although
the loss function is nonconvex when trained with gradient descent, a single soft-
max attention layer can successfully learn to behave like a one-nearest neighbor
classifier. Our result gives a concrete example of how transformers can be trained
to implement nonparametric machine learning algorithms, and sheds light on the
role of softmax attention in transformer models.

1 Introduction

Transformers have emerged as one of the most powerful machine learning models since its intro-
duction in Vaswani et al. [2017], achieving remarkable success in various tasks, including natural
language processing [Devlin et al., 2018, Achiam et al., 2023, Touvron et al., 2023], computer vision
[Dosovitskiy et al., 2020, He et al., 2022, Saharia et al., 2022], reinforcement learning [Chen et al.,
2021, Janner et al., 2021, Parisotto et al., 2020], and so on. One intriguing aspect of transformers
is their exceptional In-Context Learning (ICL) capability [Garg et al., 2022, Min et al., 2022, Wei
et al., 2023, Von Oswald et al., 2023, Xie et al., 2021, Akyürek et al., 2022]. It has been observed
that transformers can effectively solve unseen tasks solely relying on task-specific prompts, without
the need for fine-tuning. However, the underlying mechanisms and reasons behind the exceptional
in-context learning capability of transformers remain largely unexplored, leaving a significant gap
in our understanding of how and why transformers can be pretrained to exhibit such remarkable
performance.

Several recent studies have attempted to understand in-context learning (ICL) through the lens of
learning specific function classes. Notably, Garg et al. [2022] proposed a well-defined approach: the
training data includes a demonstration prompt, consisting of a sequence of labeled data and a new
unlabeled query. The in-context learning performance of a transformer is then evaluated based on
its ability to successfully execute a machine-learning algorithm to predict the query data label using
the prompt demonstration (i.e., the context). Based on such definition, several works such as Zhang
et al. [2023], Huang et al. [2023], Chen et al. [2024] investigated ICL the optimization dynamics
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of transformers under in-context learning from a theoretical lens, but their studies are limited to
linear regression prediction rules, which is a significant simplification of the transformer in-context
learning task. Another line of work including Bai et al. [2024], Akyürek et al. [2022] investigated
the expressiveness of transformers in context, but no optimization result is guaranteed. Whether
transformers can handle more complicated ICL tasks under regular gradient-based training is still, in
general, unknown.

In this paper, we examine the ability of single-layer transformers to learn the one-nearest neighbor
prediction rule. Our major contributions are as follows:

• We establish convergence guarantees as well as prediction accuracy guarantees of a single-layer
transformer in learning from examples of one-nearest neighbor classification. Utilizing the softmax
attention layer, we demonstrate that the training loss can be minimized to zero despite the highly
non-convex loss function landscapes. We further justify our results with numerical simulations.

• Based on the optimization results, we further establish a behavior guarantee for the trained trans-
former, demonstrating its ability to act like a 1-NN predictor under data distribution shift. Our
result thus serves as a concrete example of how transformers can learn nonparametric methods,
surpassing the scope of previous literature focusing on linear regression.

• In our technical analysis, we make the key observation that although the transformer loss is highly
nonconvex when learning from one-nearest neighbor, its optimization process can be controlled
by a two-dimensional dynamic system when choosing a proper initialization. By analyzing the
behavior of such a system, we establish the convergence result despite the curse of nonconvexity.

To summarize, our result gives a concrete example of how transformers can be trained to implement
nonparametric machine learning algorithms and sheds light on the role of softmax attention in
transformer models. To our knowledge, this is the first paper that establishes a provable result in both
optimization and consecutive behavior under distribution shift for a softmax attention layer beyond
the scope of linear prediction tasks.

2 Preliminaries

In this section, we introduce the in-context learning data distribution based on the one-nearest
neighbor data distribution and the setting of one-layer softmax attention transformers. Then, we
discuss the training dynamics of transformers based on gradient descent.

2.1 In-Context Learning Framework: One-Nearest Neighbor

In an In-Context Learning (ICL) instance, the model is given a prompt {(xi,yi)}i↑[N ] → Pprompt and
a query input xN+1 → Pquery from some data distributions Pprompt and Pquery, where {xi}i↑[N ] are
the input vectors, {yi}i↑[N ] ↑ R are the corresponding labels (e.g. real-valued for regression, or
{+1,↓1}-valued for binary classification), and xN+1 is the query on which the model is required to
make a prediction. Given a prompt {(xi,yi)}i↑[N ], the prediction task is to predict an ground truth
model f(xN+1; {(xi,yi)}i↑[N ]) that maps the query token xN+1 to a real number.

In this work, we consider using transformers as the model to perform in-context learning. For a prompt
{(xi,yi)}i↑[N ] of length N and a query token xN+1, we consider use the following embedding:

H = [h1,h2, . . . ,hN+1] =




x1 x2 . . . xN xN+1

y1 y2 . . . yN 0
0 0 . . . 0 1



 ↔ R(d+2)↓(N+1)
. (2.1)

We use the notation of hj = [xj ,yj , 0] for j ↗ N , and hN+1 = [xN+1, 0, 1]. Here, {xi}i↑[N ]

represents the input vectors, each associated with a corresponding label {yi}i↑[N ], where yi ↔ R
is the label. Throughout this paper, the sequence {(xi,yi)}i↑[N ] are referred to as the context or
prompt exchangeably. The (d+ 2)-th row serves as the indicator for the training token, which equals
to 0 value for i ↔ [N ] and 1 for i = N + 1, analogous to a positional embedding vector. Such an
indicator allows the model to distinguish the query token from the context. Similar models have been
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Figure 1: Illustration of data distribution in Assumption 1 on S2 and the corresponding ground-truth division
of S2 generated by one-nearest neighbor. (1) In the left panel, the red and blue points correspond to the xi

with yi = 1 and →1 for i ↑ [N ], respectively, with N = 500. (2) In the right panel, the color of every point
on the sphere is the same as its closest neighbor in {xi}i↑[N ]. The sphere is thus split into divisions by the
one-nearest-neighbor decision rule.

studied in a line of recent works [Zhang et al., 2023, Huang et al., 2023, Chen et al., 2024, Bai et al.,
2024, Akyürek et al., 2022] studying in-context learning of linear regression tasks.

Throughout this work, we focus on the case where the ground-truth prediction f(xN+1; {xi,yi}i↑[N ])
of the training data is constructed based on a One-Nearest Neighbor (1NN) data distribution, defined
by the following definition.
Definition 1 (One-Nearest Neighbor Predictor). Given a prompt {(xi,yi)}i↑[N ] and a query xN+1,
we define the one-nearest neighbor predictor by

yi→ :=
N∑

i=1

1(i = argmin
j↑[N ]

↘xN+1 ↓ xj↘2)yi.

We also define i
→ = argmini↑[N ] ↘xN+1 ↓ xi↘2.

Without loss of generality, we assume that argminj↑[N ] ↘xN+1 ↓ xj↘2 is unique. Such assumption
holds almost surely whenever {xi}i↑[N ] is sampled from a continuous distribution. Notably, for a
fixed prompt {(xi,yi)}i↑[N ] and query xN+1, Definition 1 is identical to the nonparametric one-
nearest neighbor estimator [Peterson, 2009, Beyer et al., 1999], in which the algorithm outputs the
label corresponding to the vector closest to the input, with the prompt {(xi,yi)}i↑[N ] as the training
data in 1-NN.

Next, we discuss the distribution of the training dataset {(xi,yi)} ≃ {xN+1}. Throughout the
training process, we focus on the case in which {xi}i↑[N+1] are independently sampled from a
uniform distribution on a d ↓ 1-dimensional sphere Sd↔1, {yi}i↑[N ] is a zero-mean binary noise
taken value in {+1,↓1}, with {xi}i↑[N+1] and {yi}i↑[N ] being independent. Our data distribution
assumption can be summarized formally by the following assumption:
Assumption 1 (Training Distribution). For an embedding H defined by Eq. (2.1), we focus on
the following underlying training distribution: (i) The sequence {xi}i↑[N+1] are sampled inde-
pendently from a uniform distribution on a d ↓ 1 dimensional sphere Sd↔1

↑ Rd. (ii) The labels
{yi}i↑[N ] satisfies E[yiyj |x1:N ] = 0 and E[y2

i |x1:N ] = 1 for all i ⇐= j, i, j ↔ [N ]. (iii) We have
P(y1:N |x1:N ) = P(y1:N |↓ x1:N ).

Note that the case when {yi}i↑[N ] and {xi}i↑[N ] being independent when {xi}i↑[N ], with {xi}i↑[N ]

are uniformly sampled from the sphere and {yi}i↑[N ] are randomly sampled from {±1} is an example
of Assumption 1. We remark that by considering the training data distribution in Assumption 1,
we aim to study the capability of transformers in learning one-nearest neighbor prediction rules
starting from the cleanest possible setting. Despite the seemingly simple problem setting, we would
like to point out that this data distribution is still challenging to study, especially because of the
assumption that the second order moment of {yi}i↑[N ] and {xi}i↑[N+1] are uncorrelated. Due to
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Figure 2: Heatmap and landscape of loss function of single layer transformer when learning from one-nearest
neighbor. The loss is defined in Eq. (2.5), generated by sampling 100 training sequences according to Assumption
1, with d = N = 4. We parametrize W as diag{ω1, . . . , ω1, 0, ω2}.

such uncorrelation, the classifier given by one-nearest neighbor models are rather complicated. For
example, Fig. 1 illustrates the randomly generated context data and the corresponding one-nearest
neighbor prediction regions with d = 3 and N = 500, which clearly demonstrate the complexity of
the training task. This further leads to a highly nonconvex and irregular objective function landscape,
illustrated by Fig. 2.

2.2 One-Layer Softmax Attention Transformers

We consider a simplified version of the one-layer transformer architecture [Vaswani et al., 2017] that
processes any input sequence H defined by Eq. (2.1) and outputs a scalar value:

HW = H · softmax(H↗
W

↗
KWQH), (2.2)

where softmax(A) applies softmax operator on each column of the matrix A, i.e. [softmax(A)]ij =
exp(Aij)/

∑
i exp(Aij). Our model is slightly different from the standard self-attention transformers,

as we consider a frozen value matrix. However, we also claim that such practice is common in deep
learning theory Fang et al. [2020], Lu et al. [2020], Mei et al. [2018]. We also merge the query and
key matrices into one matrix denoted as W, which is often taken in recent theoretical frameworks
[Zhang et al., 2023, Huang et al., 2023, Jelassi et al., 2022, Tian et al., 2023]. The output of the model
is defined by the (d+ 1)-th element of the last column of HW, with a closed form:

ŷW(xN+1; {xi,yi}i↑[N ]) := [HW](d+1,N+1) =

∑N
j=1 yj exp(h↗

j WhN+1)
∑N+1

j=1 exp(h↗
j WhN+1)

. (2.3)

which is the weighted mean of y1, . . . ,yN . Here and after, we may occasionally suppress dependence
on {xi,yi}i↑[N ] and write ŷW

(
xN+1; {xi,yi}i↑[N ]

)
as ŷW(xN+1). Since the prediction takes

only one entry of the token matrix output by the attention layer, actually only parts of W affect the
prediction. To see this, we denote

W =




W11 W12 W13

W21 W22 W23

W31 W32 W33



 , (2.4)

with W11 ↔ Rd↓d
,W21 ↔ R1↓d

,W31 ↔ R1↓d
,W12 ↔ Rd↓1

,W13 ↔ R1↓d, W22,W23,W32

and W33 ↔ R. Then by Eq. 2.3, it is easy to see that Wi2 does not affect ŷW for i ↔ [3], which means
we can simply take all these entries as zero in the following sections. Notably, for a fixed prompt-query
pair {(xi,yi)}i↑[N ] and {xN+1}, such an architecture allows an arbitrarily close approximation
to the 1-NN model: consider Wk

11 = ω
k
1 Id with ω

k
1 goes to positive infinity, Wk

33 = ω
k
2 such that

ω
k
2 ↓ ω

k
1 converges to infinity, with the rest of Wk

ij bounded, then ŷWk(xN+1)) converges to yi→ as
k goes to infinity.
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2.3 Training Dynamics

To train the transformer model over the 1-NN task, we consider the Mean-Square Error (MSE) loss
function. Specifically, the loss function is defined by

L(W) =
1

2
E{xi,yi}i↑[N],xN+1

[(
ŷW(xN+1)↓ yi→

)2]
. (2.5)

Above, the expectation is taken with respect to the sampled prompt {(xi,yi)}i↑[N ] and the query
xN+1. Notably, when the underlying distribution for the prompt and query are defined by Assumption
1, this loss function is nonconvex with respect to W. Such nonconvexity makes the optimization hard
to solve without further conditions such as PL condition or KL condition [Bierstone and Milman,
1988, Karimi et al., 2020]. We leave the proof of nonconvexity in Appendix E.

We shall consider the behavior of gradient descent on the single-layer attention architecture w.r.t. the
loss function in Eq. (2.5). The parameters are updated as follows:

W
k+1

↓W
k =

1

ε
⇒WL(Wk). (2.6)

We shall consider the following initialization for the gradient descent:
Assumption 2 (Initialization). Let ϑ > 0 be a parameter. We assume the following initialization:

W
0 =


0(d+1)↓(d+1) 0d+1

0d+1 ↓ϑ


,

Here the parameter ϑ is similar to masking, which is widely applied in self-attention training process,
and prevents the model from focusing on the zero-label for the query xN+1, e.g. Vaswani et al. [2017],
Baade et al. [2022], Chang et al. [2022]. The reason we take the zero initialization for non-diagonal
entries will be made clear when we describe the proof in Section 4. However, from a higher view, it is
because we want to keep the model focusing on the inner product between different xi, which largely
reduces the complexity of the dynamic system under gradient descent and makes it tractable. We
leave the question of convergence under alternative random initialization schemes for future work.

3 Main Results
In this section, we summarize the convergence of training loss and testing error respectively. In
Section 3.1, we discuss the convergence of training loss under gradient descent. Specifically, we prove
that with a proper initialization constant ϑ, gradient descent is able to minimize the loss function
L(W) despite the nonconvexity. In Section 3.2, we further discuss the testing error of the trained
transformer under distribution shift. Specifically, we consider a distribution Ptest for the prompt
{(xi,yi)}i↑[N ] ≃ {xN+1}, which is different from the training data distribution Pprompt ⇑ Pquery, and
discuss the difference between the trained transformer and 1-NN predictor under such distribution
shift.

3.1 Convergence of Gradient Descent
First, we prove that under suitable initialization parameter ϑ, the loss function will converge to zero
under gradient descent.
Theorem 1 (Convergence of Gradient Descent). Consider performing gradient descent of the
softmax-attention transformer model ŷW(xN+1). Suppose the initialization satisfies Assumption
2 with ϑ > 2(max{log(Nd),↓ log

(
1↓ (N

⇓
d)

1
d

)
, Cd

(
1↓ 1

2N

)
}), where Cd = poly(d), and the

number of context N ⇔ O
(⇓

d log d
)
, then L(Wk) converges to 0.

We leave the detailed proof in Appendix C. Theorem 1 shows that for the 1-NN data distribution,
with a large enough initialization constant ϑ, the training loss of the transformer converges to zero
under gradient descent. Here ϑ plays a role similar to the masking techniques in the self-attention
training training process, in which ϑ is often set as infinity or an extremely large number. Such a
technique has been widely accepted and shown to greatly accelerate the training process Vaswani
et al. [2017], Devlin et al. [2018], Dosovitskiy et al. [2020]. We also compare our results to existing
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works. Zhang et al. [2023] studied linear prediction tasks under gradient flow, however, their analysis
is limited to linear attention layers. Huang et al. [2023] was the first to study softmax attention
optimization under gradient descent, but their prediction is limited to linear prediction tasks under
a finite orthogonal dictionary. Chen et al. [2024] established optimization convergence results for
one-layer multi-head attention transformers under gradient flow. On the contrary, our work studies
gradient descent convergence for transformer under a nonparametric estimator, setting it apart from
all previous studies.

3.2 Results for New Task under Distribution shift
In this section, we discuss the behavior of trained transformers under distribution shifts, i.e., how
the model extrapolate beyond the training distribution. Following the definition in Garg et al.
[2022], let us assume in the training process, the prompts {(xi,yi)}i↑][N ] → Ptrain

prompt, and the query
xN+1 → Ptrain

query. During inference, the prompts and queries are sampled from a new distribution
Ptest. We study the behavior of the trained transformers under possible prompt and query shift, i.e.
Ptest

⇐= Ptrain
prompt ⇑ Ptrain

query. Our studies show that, under some mild conditions, the behavior of the
trained model is still similar to a 1-NN predictor even under a distribution shift. Before formally
stating our result, let us introduce the following assumption on the testing distribution:

Assumption 3 (Testing Distribution). We make the following assumption on Ptest:

(i) There exists a R ⇔ 0 such that |yi| ↗ R holds for all yi sampled from Ptest.

(ii) For all {(xi,yi)}i↑[N ] ≃ {xN+1} → Ptest, we have xi ↔ Sd↔1 for all i ↔ [N + 1].

Note that Assumption 3 only requires the label yi is bounded and xi is supported on a sphere. We
also remind the reader that we do not assume independence between different xi or {xi}i↑[N+1] and
{yi}i↑[N+1]. Now we are ready to summarize our result in the following theorem.

Theorem 2 (Resemblance to 1-NN predictor under Distribution Shift). Suppose Assumption 1 and 3
hold for Ptrain

prompt ⇑ Ptrain
query and Ptest. If we define

Aω := {↘xj ↓ xN+1↘
2
2 ⇔ ↘xi→ ↓ xN+1↘

2
2 + ϖ for all j ⇐= i

→ such that yj ⇐= yi→},

then, after K-iterations of gradient descent, we have

E{(xi,yi)}i↑[N],xN+1

[(
ŷWK (xN+1)↓ yi→

)2]
↗ O

(
inf
ω


R

2
N

2
K

↔poly(N,d)ω +R
2Ptest(Ac

ω)
)

,

here the expectation is taken w.r.t {(xi,yi)}i↑[N ] ≃ {xN+1} → Ptest. Recall that yi→ is the 1-NN
predictor of xN+1, which we defined in Definition 1.

We leave the detailed proof in Appendix D. Let us discuss the implication of Theorem 2. The event
Aω describes the situation when the query xN+1 is located at an "inner point" away from its decision
boundary, in which its distance to the nearest neighbor xi→ is strictly larger than all other points. Such
a quantity is similar to the margin condition in classification theory in deep learning Bartlett et al.
[2017] and k-NN literature Chaudhuri and Dasgupta [2014], where the optimal choice probability is
strictly larger than all suboptimal choices. Specifically, if Ptest(Aω→) = 1 for some ϖ

→
> 0, i.e., the

query xN+1 is strictly bounded away from the decision boundary almost surely, then the L2 distance
between ŷWk and the 1-NN predictor will converge in a O(R2

K
↔poly(N,d)ω→) even under a shifted

distribution. We also introduce the following corollary, in which we show that when yi only takes
value in a finite integer set, resembling a classification task, the trained transformer behaves like a
1-NN predictor under an additional rounding operation.

Corollary 1 (Classfication of Trained Transformer). Suppose yi ↔ [M ] for some integer M ⇔ 0
under Ptest, then we have

Ptest
(
Round

(
ŷWk(xN+1)

)
⇐= yi→

)
↗ O

(
inf
ω


M

2
N

2
K

↔poly(N,d)ω +M
2Ptest(Ac

ω)
)

.

Here we define
Round(t) := 1[t]< 1

2
↖t↙+ 1[t]↘ 1

2
∝t′,
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i.e. the mapping from t ↔ R to its closest integer, and Aω is defined as in Theorem 2. Moreover, if
there exists ϖ→ > 0 such that Ptest(Aω→) = 0, then we have

Ptest(Round
(
ŷWk(xN+1)

)
⇐= yi→

)
= 0

whenever K ⇔ O
( log(MN)
poly(N,d)ω→

)
.

We leave the detailed proof in Appendix D. Corollary 1 provides a convergence rate for the clas-
sification difference between 1-NN and the pretrained transformer. Notably, when xN+1 is well
separated from the decision boundary in the testing distribution Ptest, the trained transformer will
behave exactly the same as the 1-NN classifier in O

( log(MN)
poly(N,d)ω→

)
gradient steps for the pretrained

transformer. Theorem 2 and Corollary 1 show that the trained transformer under gradient descent
is robust to both query and prompt distribution shift in the test distribution Ptest, in the sense that
it will maintain its resemblance to a 1-NN predictor in both prediction and classification task, thus
extended the results in Zhang et al. [2023], Huang et al. [2023], Chen et al. [2024] to a nonparametric
estimator.

4 Sketch of Proof

In this section, we sketch the proof of Theorem 1 and highlight the techniques we used. The full
proof is left to Appendix C.

Equivalence to a Two-Dimensional Dynamic System. Recall that {xi}i↑[N+1] and the first and
second moment of {yi}i↑[N ] are uncorrelated. Utilizing this uncorrelation between {xi}i↑[N+1] and
{yi}i↑[N ], we can eliminate the reliance of the gradient on {yi}i↑[N ] since we are considering a
population loss. Moreover, utilizing the structure of the initialization, we can prove by induction that
all Wij will remain zero except for W11 and W33. This shows that with a suitable initialization, the
transformer model will only focus on the relationship between different tokens xi throughout the
whole training process. Our findings can be summarized by the following lemma.

Lemma 1 (Closed-Form Gradient). With the initialization in Assumption 2, the gradient of L(Wk)
with respect to W11 can be written in the following form for all k ⇔ 0:

⇒W11L(W
k) = E

 N∑

i=1

g
k
i (x

↗
i xN+1) · xix

↗
N+1 + g

k
i→(x

↗
i→xN+1) · xi→x

↗
N+1


(4.1)

where {g
k
i (x)}i↑[N ] ≃ {g

k
i→(x)} : R ∞ R is a set of functions. Here the expectation is taken with

respect to {xi}i↑[N+1], with xi→ = argminx↑{xi}i↑[N]
↘x↓ xN+1↘2 sampled i.i.d. from a uniform

distribution on Sd↔1. Moreover, we have ⇒WijL(W
k) = 0 for all (i, j) ↔ [3]∈ [3] and all k ⇔ 0

except for W11 and W33.

Lemma 1 shows that we only need to consider W11 and W33 in our update since all other entries
will remain zero during the whole learning process. Note that in Eq. (4.1), all nonlinearity comes
from the inner product between x

↗
i xN+1 and x

↗
i→xN+1. Recall that {xi}i↑[N+1] are i.i.d. sampled

from a uniform distribution supported on a d↓ 1-dimensional sphere Sd↔1, therefore, the distribution
of {xi}i↑[N+1] is rotational invariance, which means


i↑[N+1] Pxi =


i↑[N+1] PUxi for all

orthogonal matrix U ↔ Rd↓d. Since the rotation of {xi}i↑[N+1] does not change the inner products
{x

↗
i xi}i↑[N ] and x

↗
i→xN+1, from the structure of ⇒W11L(W

k) illustrated by Eq. (4.1), we shall
always have U⇒W11L(W

k)U↗ = ⇒W11L(W
k), which shows ⇒W11L(W

k) = ckId for some
constant ck by simple algebra. We summarize our result in the following lemma.

Lemma 2 (Two-Dimensional System). With the initialization in Assumption 2, there exists two sets
of real numbers {ωk1}k↘0 and {ω

k
2}k↘0, such that Wk has the following form:

W
k = diag{ωk1 , . . . , ω

k
1  

d times

, 0,↓ω
k
2}.
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With Lemma 2, we reduce the dimension of the original dynamic system in Eq. (2.6) from (d+ 2)2

to 2. We now only need to focus on the evolution of ωk1 and ω
k
2 for all k ⇔ 0.

Convergence of the Dynamic System. Lemma 2 helps us largely reduce the dimension of the
training dynamics. However, this does not make our question a trivial one, as the loss function is still
highly nonconvex even when we only need to consider a two-dimensional subspace of R(d+2)↓(d+2).
To see this, we introduce the following lemma:
Lemma 3 (Nonconvexity of Transformer Optimization). When W lie in a two-dimensional subspace
of R(d+2)↓(d+2) defined by W = diag{ω1, . . . , ω1  

d times

, 0,↓ω2}, the original loss function defined in

Eq. (2.5) is equivalent to the following:

L(ω1, ω2) := E
 ∑N

j=1 exp(ω1∋xj ,xN+1△)yj
∑N

i=1 exp(ω1∋xi,xN+1△) + exp(ω1 ↓ ω2)
↓ yi→

2
. (4.2)

Such loss function is still nonconvex.
We leave the detailed proof in Appendix E. Nonconexity shown by Lemma 3 implies attaining the
global minimum could be hard. Previous works such as Zhang et al. [2023] utilize conditions such as
Polyak-Lojasiewicz inequality to analyze such systems, however, those conditions are not applicable
in our setting, and a more delicate analysis for the evolution of ωk1 and ω

k
2 is needed. We characterize

their behavior by the following lemma.
Lemma 4. For ωk1 ⇔ 0, there exists constants c1, c2, c3, c4 > 0, such that

d

ε
(ωk+1

1 ↓ ω
k
1 ) ⇔ c1 · exp(↓6ωk1 )↓ c2 · exp(2ω

k
1 ↓ ω

k
2 ),

and
d

ε
(ωk+1

1 ↓ ω
k
1 ) ↗ c3 · exp

(
poly(N, d) · ωk1

)
↓ c4 · exp

(
2(ωk1 ↓ ω

k
2 )
)

Lemma 4 shows that there exits a constant cb ↔ (0, 1), such that ωk1 will keep increasing with a scale
of !(ε log k) until ωk1 ↗ cbω

k
2 . With this ratio, we obtain the following lemma for the increment of

ω
k
2 .

Lemma 5. For ωk1 ⇔ 0, there exits constant c≃1, c≃2, such that

c
≃
1 · exp(↓poly(N, d) · ωk2 ) ↗

1

ε
(ωk+1

2 ↓ ω
k
2 ) ↗ c

≃
2 · exp(↓poly(N, d) · ωk2 ).

Lemma 5 shows that ωk2 will monotonically increase with a scale of !(ε exp(ωk2 )), which implies
ω
k
2 = !(log k). Combining Lemma 4 and 5, we show that both ω

k
1 and ω

k
2 converge to infinity, with

ω
k
1 maintaining a slower speed, as its decreases when getting closer to ω

k
2 from the below. Recall that

the loss function is equivalent to Eq. (4.2) under the initialization specified in Assumption 2, which
shows that L(ωk1 , ωk2 ) will converge to zero as long as ωk1 and ω

k
2 ↓ ω

k
1 both converges to infinity. We

thus conclude our proof of L(Wk) eventually converges to it global minimum.

5 Numerical Results

In previous sections, we have shown that with the initialization specified in Assumption 2, a single
softmax attention layer transformer is able to learn the 1-NN predictor under gradient descent and
remain robust under distribution shift. We now conduct experiments in a less restrictive setting
and show that even without specific initialization and full-batch gradient descent, simple stochastic
gradient descent updates with random parameter initialization for the parameters are still sufficient
for the model to learn the 1-NN predictor. First, we investigate the convergence of single-head
single-layer transformers [Vaswani et al., 2017] trained on 1-NN tasks. The training data are sampled
from Ptrain

prompt and Ptrain
query, defined in Assumption 1. We choose context length N ↔ {16, 32, 64} and

input dimension d ↔ {8, 16}. The model is trained on a dataset with a size of 10000, and an epoch

8



Figure 3: Prediction error for single softmax attention layer as a function of gradient iteration number. (1) The
left panel shows the convergence of loss function during the training process. (2) The right pannel shows the
MSE between the trained model and a 1-NN predictor on a well-separated testing dataset under distribution shift,
as we discuss in Section 5. Curves and error bars in both panels are computed as twice the standard deviation
based on 10 independent trials.

number of 2000. To ensure our training convergence result holds beyond the gradient descent scheme,
we choose SGD as our optimizer, with a batch size of 128 and a learning rate of 0.1. We use the
random Gaussian as our initialization. Our results for the training loss convergence are summarized
in the left panel of Fig. 3. The results show that the model converges to 1-NN predictor on the training
data even under SGD and random initialization. Moreover, as the dimension d and the length of
contexts N becomes larger, the convergence speed becomes slower.

To verify our results on the distribution shift, we generate testing data sampled from a distribution
difference from the training data, and report the mean square error between the model prediction
and the 1-NN predictor. Furthermore, the testing data satisfies P(A→

ω) = 1, with ϖ
→ specified as 0.1.

Recall that we defined Aω in Theorem 2 as the event where xN+1 is separated from the decision
boundary with a distance of at least ϖ. We leave the details of our data-generating process in Appendix
B. We test the trained transformer model on this dataset once every epoch throughout the training
process. Our results are summarized in the right panel of Fig. 3. The results show that the testing
error decreases much faster than the training loss, due to the boundary separation condition, which
the uniformly-sampled training data do not enjoy. Our result also coincides with our theoretical result
in Theorem 2, showing that the trained transformers are robust under distribution shift, and benefits
greatly from staying away from the decision boundary.

6 Conclusion

We investigate the ability of single-layer transformers to learn the one-nearest neighbor prediction
rule, a classic nonparametric estimator. Under a theoretical framework where the prompt contains
a sequence of labeled training data and unlabeled test data, we demonstrate that, despite the non-
convexity of the loss function during gradient descent training, a single softmax attention layer can
successfully emulate a one-nearest neighbor predictor. We further show that the trained transformer is
robust to the distribution shift of the testing data. As far as we know, this paper is the first to establish
training convergence and behavior under distribution shifts for softmax attention transformers beyond
the domain of linear predictors.
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A Related Works

In-Context Learning. In-context learning refers to transformers’ ability to solve unseen tasks
without fine-tuning. Min et al. [2022] studied which aspects of the demonstrations contribute to
end-task performance. Further, Garg et al. [2022] empirically investigated the ability of transformer
architectures to learn a variety of function classes in context. From a theoretical perspective, Bai et al.
[2024], Abernethy et al. [2024], Akyürek et al. [2022] studied the expressiveness of transformers to
approximate statistical algorithms. Li et al. [2023a] studied the generation ability of transformers in
ICL tasks. Jeon et al. [2024] studies the information-theoretical lower bound of in-context learning.
However, none of these works studied the optimization process when training a transformer in context.

Optimization of Transformers. There are various works that studied optimization for transformers.
Among all these studies, Huang et al. [2023], Zhang et al. [2023], Chen et al. [2024] studied the
optimization dynamics of transformers of learning linear prediction tasks in context. Specifically,
Zhang et al., 2023 studied the gradient flow dynamics of linear self-attention model and obtained
convergence results utilizing PL condition. Huang et al. [2023] studied linear prediction tasks with a
softmax-attention layer trained with gradient descent, with a finite support prompt/query distribution.
Chen et al. [2024] studied the gradient flow dynamics in training multi-head softmax attention on
linear prediction tasks. Ahn et al. [2024], Giannou et al. [2024] studied transformers’ ability to learn
optimization methods. Prior works also studied transformer optimization beyond in-context learning
tasks. Tian et al. [2023] studied a single-layer transformer with one self-attention layer plus one
decoder layer, and proved that the attention layer acts as a scanning algorithm. Li et al. [2023b]
studied the optimization of transformers in learning semantic structures. Jelassi et al. [2022] studies
the spatial localization property of vision transformer in optimization.

Notations. We write [N ] = {1, . . . , N}. For two vector x1 = (x1
1, . . . , x

1
d) and x

2 = (x2
1, . . . , x

2
d),

we write their inner product
∑d

i=1 x
1
ix

2
i as x1↗

x
2. We use 0n and 0m↓n to denote the zero vector

and zero matrix of size n and m ∈ n, respectively. We write {x ↔ Rd : ↘x↘2 = 1} as Sd↔1.
For two series {ak}k↘0 and {bk}k↘0, we write ak = !(bk) if there exists 0 < C1, C2 such that
C1 · bk ↗ ak ↗ C2 · bk. We write ak = O(bk) if there exists C > 0 such that ak ↗ C · bk. We
use ak = poly(bk) if there exits an n-degree polynomial Pn(x) such that ak = O(Pn(bk)). For
(ak)k↑[N ], we define its permutation (a(k))k↑[N ] such that a(1) ⇔ a(2) ⇔ . . . ⇔ a(n). We use Id to
denote the d-dimensional identity matrix and sometimes we also use I when the dimension is clear
from the context. Unless otherwise defined, we use lower case letters for scalars and vectors and use
upper case letters for matrices. For a matrix A we denote its entry in the i-th row and j-th column by
[A]ij .

B Data-Generating Process in Experiment

In our experiment, we generate the testing dataset with context length N and dimension d with
separation parameter ϖ→ such that ↘xj ↓ xN+1↘

2
2 ⇔ ↘xi→ ↓ xN+1↘

2
2 + ϖ for all j ↔ [N ], j ⇐= i

→ by
the following procedure:

(i) We sample xi from the uniform distribution on Sd↔1 and yi → N (0, 1) for all i ↔ [N ];
(ii) We random sample i

→
↔ [N ] by uniform distribution and set xN+1 = xi→ with the 1-NN

label being yi→ ;
(iii) If ↘xj ↓ xN+1↘

2
2 ↗ ϖ, set xj = ↓xj .

C Proof for Theorem 1

In this section, we elaborate on the proof of Theorem 1. Our proof can be broken down into the
following steps:

(i) With induction, we prove that the evolution dynamics of Wk under gradient descent can be
captured by a two-parameter dynamic system, parametrized by ω

k
1 and ω

k
2 ;
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(ii) By estimating the update dynamics for ωk1 and ω
k
2 , we prove that with a proper initialization

parameter ϑ, We will have ω
k
1 , ω

k
2 = !(log k), with ω

k
1 ↗ c · ω

k
2 for a constant c ↔ (0, 1).

(iii) With the non-asymptotic behavior of ω1 and ω2 determined, we further control the loss
function L(Wk) and establish a convergence for the loss function.

In the following sections, we will discuss how we prove those three items in Section C.1, C.2 and
C.3, respectively.

C.1 Dynamic of Gradient Descent

In this section, we prove that we can characterize the evolution of W under gradient descent with a
two-parameter dynamic system. We proceed by mathematical induction:

(1) We prove that when W
k is a diagonal matrix with [Wk][d]↓[d] = ckId for some constant

ck, we can have the following break downs of our proof:

1

ε
(Wk+1

↓W
k) = diag{”ω

0
1 , . . . ,”ω

0
1  

d times

, 0,↓”ω
0
2}, (C.1)

where ”ω
0
1 and ”ω

0
2 are two positive constants.

(2) By W
k being a diagonal matrix with [Wk][d]↓[d] = ckId, combined with Eq. (C.1), we

prove that Wk+1 is a diagonal matrix and [Wk+1][d]↓[d] = ck+1Id. .

Now since (1) is naturally satisfied by the initialization in Assumption 2 for k = 0, we can conclude
the proof by simply proving (1) for k ⇔ 1.

Proof for Step (1) of Induction. Recall that our loss function can be written as

L(W) =
1

2
E{xi,yi}i↑[N];xN+1

[(
ŷW(xN+1)↓ f(xN+1; {xi,yi}i↑[N ])

)2]

=
1

2
E{xi,yi}i↑[N];xN+1

∑N
j=1 exp

(
x
↗
j W11xN+1 + y

†
jW

‡
jxN+1 + xj▽W13 + y

†
jW

†
j

)
yj

∑N+1
j=1 exp

(
x
↗
j W11xN+1 + y

†
jW

‡
jxN+1 + xj▽W13 + y

†
jW

†
j

) ↓ yi→

2

where

W =




W11 W12 W13

W21 W22 W23

W31 W32 W33



 ,

with W11 ↔ Rd↓d
,W21 ↔ R1↓d

,W31 ↔ R1↓d
,W12 ↔ Rd↓1

,W13 ↔ R1↓d, W22,W23,W32

and W33 ↔ R, and we make the additional definition of y†
j = yj , W†

j = W23, W‡
j = W21 for

j ↔ [N ] and y
†
N+1 = 1, W†

N+1 = W33, W‡
N+1 = W31. Throughout the rest of this paper, we will

also adopt the notation of

qj(x,W) :=
exp

(
x
↗
j W11xN+1 + y

†
jW

‡
jxN+1 + xj▽W13 + y

†
jW

†
j

)

∑
i exp

(
x
↗
i W11xN+1 + y

†
iW

‡
jxN+1 + xi▽W13 + y

†
jW

†
j

) (C.2)

when there is no ambiguity, where q : W ∈ {xi}i↑[N+1] ∈ {yi}i↑[N ]. As we have discussed in
Section 2.2, W→2 does not affect the outcome of the transformer, therefore the second column
will remain 0 throughout the training procedure. Now we will calculate the gradient ⇒WijL(W

0)

respectively. Note that for f jε (x) = exp(gj
ε(x)), we have

⇒ε

∑
j f

j
ε (x) · yj

∑
j f

j
ε (x)

↓ yi→

2

= 2

∑
j f

j
ε (x) · yj

∑
j f

j
ε (x)

↓ yi→


·

∑
j f

j
ε (x)yj⇒εg

j
ε∑

j f
j
ε (x)

↓

∑
j f

j
ε (x)⇒g

j
ε(x)∑N+1

j=1 f
j
ε (x)

·

∑
j f

j
ε (x)yj

∑
j f

j
ε (x)


,
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therefore, with some algebra, we have the following closed-form formula for ⇒WijL(W) respec-
tively,

⇒W11L(W) = E
N+1∑

j=1

qj(x,W)(xjx
↗
N+1)yj ↓

N+1∑

j=1

qj(x,W)(xjx
↗
N+1)

N+1∑

j=1

qj(x,W)yj



·

N+1∑

j=1

qj(x,W)(yj ↓ yi→)


, (C.3)

⇒W21L(W) = E
 N∑

j=1

qj(x,W)(yjx
↗
N+1)(yj)↓

 N∑

j=1

qj(x,W)(yjx
↗
N+1)

N+1∑

j=1

qj(x,W)(yj)


·

N+1∑

j=1

qj(x,W)(yj ↓ yi→)


, (C.4)

⇒W13L(W) = E
N+1∑

j=1

qj(x,W)(yj)xj ↓
N+1∑

j=1

qj(x,W)(xj)
N+1∑

j=1

qj(x,W)(yj)


·

N+1∑

j=1

qj(x,W)(yj ↓ yi→)


, (C.5)

⇒W23L(W) = E
 N∑

j=1

qj(x,W)(yj)yj ↓
 N∑

j=1

qj(x,W)yj

N+1∑

j=1

qj(x,W)(yj)


·

N+1∑

j=1

qj(x,W)(yj ↓ yi→)


,

(C.6)

⇒W31L(W) = E


↓
N+1∑

j=1

qj(x,W)(yj)

· qN+1(W)x↗

N+1


·

N+1∑

j=1

qj(x,W)(yj ↓ yi→)


,

(C.7)

and

⇒W33L(W) = E


↓

N+1∑

j=1

qj(x,W)yj


qN+1(W) ·

N+1∑

j=1

qj(x,W)(yj ↓ yi→)


. (C.8)

By the induction assumption, we have

qj(x,W
k) =

1j ⇐=N+1 exp(ωk1 ∋xj ,xN+1△) + 1j=N+1 exp(ωk1↘xN+1↘
2
2 ↓ ω

k
2 )∑N

i=1 exp(ω
k
1 ∋xi,xN+1△) + exp(ωk1↘xN+1↘

2
2 ↓ ωk2 )

=
1j ⇐=N+1 exp(ωk1 ∋xj ,xN+1△) + 1j=N+1 exp(ωk1 ↓ ω

k
2 )∑N

i=1 exp(ω
k
1 ∋xi,xN+1△) + exp(ωk1 ↓ ωk2 )

(C.9)

where the first equality comes from ↘xN+1↘2 = 1. Therefore, under our induction qj is only
a function of {xi}i↑[N+1] and W

k, independent to {yi}i↑[N ]. Now, with the closed form of
⇒WijL(W), we can make the following calculation. First, we calculate ⇒W11L(W

k):

⇒W11L(W
k) = E

N+1∑

j=1

qj(x,W
k)(xjx

↗
N+1)(yj ↓ yi→)↓

N+1∑

j=1

qj(x,W
k)(xjx

↗
N+1)

N+1∑

j=1

qj(x,W
k)(yj ↓ yi→)



·

N+1∑

j=1

qj(x,W
k)(yj ↓ yi→)


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= E
N+1∑

j=1

qj(x,W
k)(xjx

↗
N+1)(yj ↓ y

→
i )

N+1∑

j=1

qj(x,W
k)(yj ↓ y

→
i )



  
(1)

↓ E
N+1∑

j=1

qj(x,W
k)xjx

↗
N+1

N+1∑

j=1

qj(x,W
k)(yj ↓ y

→
i )

2

  
(2)

,

since q(x,Wk) is only a function of x by our induction assumption, we have

(1) =E
N+1∑

j=1

qj(x,W
k)(xjx

↗
N+1)yj

N+1∑

j=1

qj(x,W
k)yj



  
(i)

↓ E
N+1∑

j=1

qj(x,W
k)(xjx

↗
N+1)yj


yi→



  
(ii)

↓E
N+1∑

j=1

qj(x,W
k)(xjx

↗
N+1)yi→

N+1∑

j=1

qj(x,W
k)yj



  
(iii)

+ E
N+1∑

j=1

qj(x,W
k)(xjx

↗
N+1)(yi→)

2



  
(iv)

,

here

(i) = E
N+1∑

j=1

qj(x,W
k)(xjx

↗
N+1)


yj

N+1∑

j↓=1

qj(x,W
k)yj↓



= E
 N∑

j=1

qj(x,W
k)2(xjx

↗
N+1)


,

(ii) = ↓E
N+1∑

j=1

qj(x,W
k)(xjx

↗
N+1)E


yjyi→

x1:N+1



= ↓E
 N∑

j=1

qj(x,W
k)(xjx

↗
N+1)

N+1∑

j↓=1

1j↓=argmaxi↑[N]⇒xN+1,xi⇑ E[yj↓yj |x1:N+1]



= ↓E

qi→(x,W

k)xi→x
↗
N+1


,

(iii) = ↓E
 N+1∑

j,j↓=1

qj(x,W
k)qj↓(x,W

k)(xjx
↗
N+1)yi→yj↓



= ↓E
N+1∑

j=1

qj(x,W
k)qi→(x,W

k)(xjx
↗
N+1)



(iv) = E
N+1∑

j=1

qj(x,W
k)(xjx

↗
N+1)


,
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also for (2), we have

(2) = ↓E
N+1∑

j=1

qj(x,W
k)xjx

↗
N+1


E
N+1∑

j=1

qj(x,W
k)(yj ↓ yi→)

2x1:N+1



= ↓E
N+1∑

j=1

qj(x,W
k)xjx

↗
N+1

 N+1∑

j,j↓=1

qj(x,W
k)qj↓(x,W

k)E


yjyj↓ ↓ (yj + yj↓)yi→ + y
2
i→
x1:N+1



= ↓E
N+1∑

j=1

qj(x,W
k)xjx

↗
N+1


1 +

N∑

j=1

q
2
j (x,W

k)↓
N+1∑

j,j↓=1

qj(x,W
k)qj↓(x,W

k)E

(yj + yj↓)yi→

x1:N+1



= ↓E
N+1∑

j=1

qj(x,W
k)xjx

↗
N+1


1 +

N∑

j=1

q
2
j (x,W

k)↓ 2qi→(x,W
k)



(1)+(2) gives us

⇒W11L(W
k) = E

 N∑

j=1

q
2
j (x,W

k)(xjx
↗
N+1)


↓ E


qi→(x,W

k)(xi→x
↗
N+1)


+ E


qi→(x,W

k)

N+1∑

j=1

qj(x,W
k)(xjx

↗
N+1)



↓ E
 N∑

j=1

q
2
j (x,W

k)

N+1∑

j=1

qj(x,W
k)(xjx

↗
N+1)


. (C.10)

For ⇒W21L(Wk), we have

⇒W21L(Wk) = E
 N∑

j=1

qj(x,Wk)(yjx
↗
N+1)(yj)↓

 N∑

j=1

qj(x,Wk)(yjx
↗
N+1)

N+1∑

j=1

qj(x,Wk)yj



·

N+1∑

j=1

qj(x,Wk)(yj ↓ yi→)


,

note that it is the expectation of multiplication of three linear functions of yi, therefore ⇒W21L(Wk)
equals to 0 by symmetry. For ⇒W31L(Wk), we have

⇒W31L(Wk) = E


↓
N+1∑

j=1

qj(x,Wk)(yj)

· qN+1(x,Wk)x

↗
N+1


·

N+1∑

j=1

qj(Wk)(yj ↓ yi→)



= 0,

here the second equality comes from qj(x,Wk) being an even function of x and x has a symmetric
distribution. For ⇒W13L(Wk), we have

⇒W13L(Wk) = E
N+1∑

j=1

qj(W
KQ)(yj)xj ↓

N+1∑

j=1

qj(W
KQ)(xj)

N+1∑

j=1

qj(W
KQ)(yj)



·

N+1∑

j=1

qj(W
KQ)(yj ↓ yi→)



= 0

here the second equality comes from qj(x,Wk) is a function of ↘x↘
2 and x has a symmetric

distribution. For ⇒W23L(Wk), we have

⇒W23L(Wk) =

 N∑

j=1

qj(W
KQ)(yj)yj ↓

 N∑

j=1

qj(W
KQ)yj

N+1∑

j=1

qj(W
KQ)(yj)


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·

N+1∑

j=1

qj(W
KQ)(yj ↓ ybi→)



= 0,

due to its symmetry in y. For ⇒W33L(Wk), we have the following calculation:

⇒W33L(Wk) = E


↓

N+1∑

j=1

qj(x,Wk)yj


qN+1(x,Wk) ·

N+1∑

j=1

qj(x,Wk)(yj ↓ yi→)



= E

qN+1(x,Wk)


yi→

N+1∑

j=1

qj(x,Wk)yj


↓

N+1∑

j=1

qj(x,Wk)yj

2

= E

qN+1(x,Wk)


qi→(x,Wk)↓

N∑

j=1

q
2
j (x,Wk)


(C.11)

With all previous calculations, we know that ⇒WijL(W
k) equals 0 except for ⇒W11L(W

k) and
⇒W33L(W

k) with our induction assumption.

Now we only need to prove that ⇒W11L(W) is a diagonal matrix. Recall that {xi}i↑[N+1] is
identically uniformly distributed on Sd↔1, thus it naturally satisfies the following Assumption:
Assumption 4 (Rotational Invariance). We say the distribution of x is rotationally invariance, if
x → Px, and for every U ↔ O(d), where O is the group of orthogonal matrices, we have Px = U#Px.

A straightforward lemma under Assumption 4 is the following.
Lemma 6. Suppose {xi}i↑[N+1] are sampled i.i.d. from Px and Assumption 4 holds, then we have
N+1

i=1 Pxi =
N+1

i=1 PUxi for all U ↔ O(d).

Proof. Since xi→ are sampled i.i.d. from Px, we have

N+1

i=1

Pxi =
N+1

i=1

PUxi .

Lemma 7. When xi → Px, Px satisfies Assumption 4, and W
k is a diagonal matrix with

[Wk][d]↓[d] = ckId, we have E[⇒W11L(W
k)] = ak · Id.

Proof. Note that by the induction assumption, we have

qj(x,W
k) =

1j ⇐=N+1 exp(ωk1 ∋xj ,xN+1△) + 1j=N+1 exp(ωk1 ↓ ω
k
2 )∑N

i=1 exp(ω
k
1 ∋xi,xN+1△) + exp(ωk1 ↓ ωk2 )

,

therefore, qj(x,Wk) = qj(Ux,W
k) for all U ↔ O(d). By Eq. (C.10), there exits a set of functions

{g
k
i (x)}i↑[N ] ≃ {g

k
i→(x)} : R ∞ R

such that

⇒Wk
11
L(W) =

N∑

i=1

g
k
i (x

↗
i xN+1) · xix

↗
N+1 + g

k
i→(x

↗
i→xN+1) · xi→x

↗
N+1,

here the expectation is taken with respect to {xi}i↑[N+1]. By Lemma 6, we have Pxi ⇑ Pxj =
PUxi ⇑ PUxj for any orthogonal matrix U ↔ O(d), therefore

E[gki (x↗
i xN+1) · xixN+1] = E[gki ((Uxi)

↗(UxN+1)) · (Uxi)(UxN+1)
↗]

= UE[gki (x↗
i xN+1) · xix

↗
N+1]U

↗
,
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here the first inequality comes from Pxi⇑Pxj = PUxi⇑PUxj . Such identity holds for all orthogonal
matrix U , therefore E[gki (x↗

i xN+1) · xixN+1] must be a multiplication of the identity matrix Id.
Now, note that for all orthogonal matrix U ,

xi→ = argmin
xi↑{xj}j↑[N]

↘xi ↓ xN+1↘2,

Uxi→ = U argmin
xi↑{xj}j↑[N]

↘Uxi ↓ UxN+1↘2,

therefore
P(x↗

i→xN+1|x1:(N+1)) = P(Uxi→x
↗
N+1U

↗
|Ux1:N+1).

Since P(x1:N+1) = P(Ux1:N+1), we have P(x↗
i→xN+1) = P(Uxi→x

↗
N+1U

↗), therefore

E[gki→(x↗
i→xN+1) · xi→x

↗
N+1] = E[gki→((Uxi→)

↗(UxN+1)) · (Uxi→)(UxN+1)
↗]

= UE[gki→(x↗
i→xN+1) · xi→x

↗
N+1]U

↗
.

Again, since U is an arbitrary orthogonal matrix, we conclude that E[gki→(x↗
i→xN+1) · xi→x

↗
N+1] is

a multiplication of the identity matrix. Summing everything together, we conclude the proof that
⇒Wk

11
L(Wk) is a multiplication of an identity matrix.

With Lemma 7, Eq. (2.6), and the previous calculations, we conclude our induction.

C.2 Evolution of ω1 and ω2

In this section, we characterize the training dynamics of ω1 and ω2 under gradient descent. Our results
can be broken down into the following steps:

(1) We prove that when ω
0
1 and ω

0
2 are initialized as in Assumption 2 , with ϑ, N , d satisfy the

condition in Theorem 1, we have ω
1
1 ↓ ω

0
1 ⇔ 0.

(2) We provide an upper bound and lower bound for ωk+1
1 ↓ ω

k
1 and ω

k+1
2 ↓ ω

k
2 .

(3) We prove that there exits constant c1 ↔ (0, 1) such that ωk1 ↔ (0, c1ωk2 ).

(4) We prove that ωk+1
2 ↓ ω

k
2 = !(ε · exp(↓poly(N, d) · ωk2 )), we thus conclude that ωk2 =

!(ε · log(poly(N, d)) · log(k)).

Combining (3) and (4), we conclude this section by proving that ωk1 , ωk2 and ω
k
2 ↓ ω

k
1 are both of scale

!(log k).

Step (1): Initial incrementation of ω01 . First, we prove that ω11 ↓ ω
0
1 ⇔ 0. Note that by Lemma 7

and Eq. (C.10), we have

d

ε
(ω01 ↓ ω

1
1) = ⇒W11L(W

0)

= E
 N∑

j=1

q
2
j (x,W

0)(x↗
j xN+1)


↓ E


qi→(x,W

0)(x↗
i→xN+1)



+ E

qi→(x,W

0)

N+1∑

j=1

qj(x,W
0)(x↗

j xN+1)



↓ E
 N∑

j=1

q
2
j (x,W

0)

N+1∑

j=1

qj(x,W
0)(x↗

j xN+1)



↗ ↓
1

N + 1
E[xi→x

↗
N+1] +

1

(N + 1)3
E[xx↗], (ω02 ⇔ 0)
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To prove that ω01 ↓ ω
1
1 < 0, we only need

↓
1

N + 1
E[xi→x

↗
N+1] +

1

(N + 1)3
E[xx↗] ↗ 0.

However, by Lemma 18, this can be guaranteed by N ⇔ O(
⇓
d log d).

Step (2): Scale of ωk+1
1 ↓ ω

k
1 and ω

k+1
2 ↓ ω

k
2 Note that in every gradient update with stepsize ε, we

have

d

ε
(ωk+1

1 ↓ ω
k
1 ) = E


qi→(x,W)(x↗

i→xN+1)


↓ E

 N∑

j=1

q
2
j (x,W)(x↗

j xN+1)



↓ E


qi→(x,W)↓
N∑

j=1

q
2
j (x,W)

N+1∑

j=1

qj(x,W)(x↗
j xN+1)



(C.12)

= E


qi→(x,W)↓
N∑

j=1

q
2
j (x,W)


x
↗
i→xN+1 ↓

N+1∑

j=1

qj(x,W)(x↗
j xN+1)



+ E
 N∑

j=1

q
2
j (x,W)


x
↗
i→xN+1 ↓ x

↗
j xN+1


(C.13)

we also have the following estimation for the update of ω3:

1

ε
(ωk+1

2 ↓ ω
k
2 ) = E[qN+1(x,W

k)

qi→(x,W

k)↓
N∑

j=1

q
2
j (x,W

k)

]

⇔ E
[
qN+1(x,W

k) ·

qi→(x,W

k)↓ qi→(x,W
k) ·

N∑

j=1

qj(x,W
k)
]

= E[qi→(x,W
k) · q2

N+1(x,W
k)], (C.14)

which shows that in each iteration, ω3 will at least increment by a scale of ε · E[qi→(x,Wk) ·
q
2
N+1(x,W

k)]. Combining Eq. (C.12), (C.11), we have the following estimation:

Lemma 8. We have

1

ε
·

d(ωk+1

1 ↓ ω
k
1 ) + 2(ωk+1

2 ↓ ω
k
2 )} ⇔


1↓

1

2N


Cd exp(↓6ωk1 )

for all k ⇔ 0.

Proof. First, note that we have the following relations:

1

ε
·

d(ωk+1

1 ↓ ω
k
1 ) + 2(ωk+1

2 ↓ ω
k
2 )


= E

qi→(x,W)(x↗

i→xN+1)


↓ E

 N∑

j=1

q
2
j (x,W)(x↗

j xN+1)



+ E[qN+1(x,W
k)

qi→(x,W

k)↓
N∑

j=1

q
2
j (x,W

k)

]

↓ E


qi→(x,W)↓
N∑

j=1

q
2
j (x,W)

 N∑

j=1

qj(x,W)(x↗
j xN+1)



20



= E


qi→(x,W)↓
N∑

j=1

q
2
j (x,W)


(x↗

i→xN+1 + 1)↓
N∑

j=1

qj(x,W)(x↗
j xN+1)



+ E
 N∑

j=1

q
2
j (x,W)


x
↗
i→xN+1 ↓ x

↗
j xN+1



⇔ E


qi→(x,W)↓
N∑

j=1

q
2
j (x,W)


· qN+1(x,W)(x↗

i→xN+1 + 1)



+ E
 N∑

j=1

q
2
j (x,W)


x
↗
i→xN+1 ↓ x

↗
j xN+1


, (C.15)

here the inequality comes from x
↗
i→xN+1 ⇔ x

↗
j xN+1 for all j ↔ [N ] . Moreover, note that when

ω1 ⇔ 0, we have

1 =
N∑

j=1

qj(x,W) + qN+1(x,W) ↗ Nqi→(x,W) + qN+1(x,W),

which is equivalent to qi→(x,W) ⇔ 1↔qN+1(x,W)
N . Since

qi→(x,W)

qN+1(x,W)
= exp

(
ω1(x

↗
i→xN+1 ↓ 1) + ω3

)
,

we have

qi→(x,W) ⇔
1

N + exp(ω1(1↓ x
↗
i→xN+1)↓ ω3)

. (C.16)

Therefore we have

E
 N∑

j=1

q
2
j (x,W)


x
↗
i→xN+1 ↓ x

↗
j xN+1



=E

q
2
i→(x,W

k)
N∑

j=1

q
2
j (x,W

k)

q
2
i→(x,W

k)
·

x
↗
i→xN+1 ↓ x

↗
j xN+1



⇔E


1

N + exp(ω1(1↓ x
↗
i→xN+1)↓ ω3)

2 N∑

j=1

exp


2ωk1


x
↗
j xN+1 ↓ x

↗
i→xN+1

 
x
↗
i→xN+1 ↓ x

↗
j xN+1



⇔
exp(↓4ωk1 )

(N + exp(ωk1 ↓ ωk2 ))
2
E
 N∑

j=1


x
↗
i→xN+1 ↓ x

↗
j xN+1


|x

↗
i→xN+1 ⇔ 0


P(x↗

i→xN+1 ⇔ 0)

⇔


1↓

1

2N


Cd exp(↓4ωk1 )

(N + exp(ωk1 ↓ ωk2 ))
2

⇔


1↓

1

2N


Cd exp(↓6ωk1 ) (C.17)

here Cd is a constant that only pertains to d. The first inequality comes from Eq. (C.16), and the third
inequality comes from Lemma 17. Finally, note that

E


qi→(x,W)↓
N∑

j=1

q
2
j (x,W)


· qN+1(x,W)(x↗

i→xN+1 + 1)


⇔ 0,

and we conclude the proof.

Next, we provide the following upper bound for the increment of ωk1 and ω
k
2 whenever ωk1 ⇔ 0.
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Lemma 9. When ω
k
1 ⇔ 0 and N ⇔ O(

⇓
d log d) as in Theorem 1, we have the following inequalities:

1

ε
(ωk+1

1 ↓ ω
k
1 ) ↗

2N

d
exp(↓

4

(N + 1)2
ω
k
1 )↓

an,d

dN3e
exp(2(ωk1 ↓ ω

k
2 )),

where an,d =
(
2N

⇓
d)↔

2
d↔3 , and

1

ε
(ωk+1

2 ↓ ω
k
2 ) ↗ exp(2ωk1 ↓ ω

k
2 ).

Proof. We first prove the first inequality. Recall that

d

ε
(ωk+1

1 ↓ ω
k
1 ) = E


qi→(x,W)↓

N∑

j=1

q
2
j (x,W)


x
↗
i→xN+1 ↓

N+1∑

j=1

qj(x,W)(x↗
j xN+1)



+ E
 N∑

j=1

q
2
j (x,W)


x
↗
i→xN+1 ↓ x

↗
j xN+1


,

when ω
k
1 ⇔ 0, we have qi→(x,W)↓

∑N
j=1 q

2
j (x,W) ⇔ 0, therefore

d

ε
(ωk+1

1 ↓ ω
k
1 ) ↗ E

 N∑

j=1

q
2
j (x,W)


x
↗
i→xN+1 ↓ x

↗
j xN+1



  
(i)

↓E


qi→(x,W
k)↓

N∑

j=1

q
2
j (x,W

k)

qN+1(x,W

k)(1↓ x
↗
i→xN+1)



  
(iii)

+ E


qi→(x,W)↓
N∑

j=1

q
2
j (x,W)

 N∑

j=1

qj(x,W)(x↗
i→xN+1 ↓ x

↗
j xN+1)



  
(ii)

We have the following bound for (iii) when ω
k
1 ⇔ 0:

↓(iii) ⇔
1

e

1
(
2N

⇓
d)

2
d↔3

· E


qi→(x,W
k)↓

N∑

j=1

q
2
j (x,W

k)


qN+1(x,W

k)

x
↗
i→xN+1 ⇔ 1↓ an,d



⇔
1

e

1
(
2N

⇓
d)

2
d↔3

· E
[
qi→(x,W

k)q2
N+1(x,W

k)
]

⇔
1

e

1
(
2N

⇓
d)

2
d↔3

·
1

N
· E[

(
1↓ qN+1(x,W

k)
)
q
2
N+1(x,W

k)]

⇔
1

N3

1

e

1
(
2N

⇓
d)

2
d↔3

exp(2(ωk1 ↓ ω
k
2 ))

where the first inequality comes from Lemma 19. Now we aim to bound (i) and (ii) separately. First,
we have

(i) = E

q
2
i→(x,W

k)
N∑

j=1

q
2
j (x,W

k)

q
2
i→(x,W

k)


x
↗
i→xN+1 ↓ x

↗
j xN+1



= E
 N∑

j=1

exp
(
↓ 2ωk1


x
↗
i→xN+1 ↓ x

↗
j xN+1

)
x
↗
i→xN+1 ↓ x

↗
j xN+1


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↗ N exp
(
↓ 2ωk1E[x↗

i→xN+1 ↓ x
↗
j xN+1]

)
E[x↗

i→xN+1 ↓ x
↗
j xN+1]

= N exp(↓2ωk1E[x↗
i→xN+1])E[x↗

i→xN+1]

↗ N exp


↓

4

(N + 1)2
ω
k
1


(C.18)

here the first inequality comes from Jensen’s inequality and the convexity of x exp(↓x) between
[0, 2], and the second one comes from E[x↗

i→xN+1] ⇔
2

(N+1)2 , which is guaranteed by the condition
of N in Theorem 1 and Lemma 18. Thus we conclude the proof for the first inequality. For (ii),
denote the second largest order statistics in {x

↗
i xN+1}i↑[N ] by x

↗
(2)xN+1, we have the following

inequalities:

(ii) ↗ E


qi→(x,W)↓ q
2
i→(x,W)

 N∑

j=1

qj(x,W)(x↗
i→xN+1 ↓ x

↗
j xN+1)



= E
(
1↓ qi→(x,W

k)
) N∑

j=1

qj(x,Wk)

qi→(x,Wk)
(x↗

i→xN+1 ↓ x
↗
j xN+1)



↗ E

min{1, ϱk}

N∑

j=1

exp
(
↓ ω

k
1


x
↗
i→xN+1 ↓ x

↗
j xN+1

)
x
↗
i→xN+1 ↓ x

↗
j xN+1



↗ N exp
(
E[↓ω

k
1


x
↗
i→xN+1 ↓ x

↗
j xN+1


]
)
E[x↗

i→xN+1 ↓ x
↗
j xN+1]

↗ N exp(↓ω
k
1/2)

where we define a random variable ϱk by

ϱk = (N ↓ 1) exp
(
ω
k
1 · {x

↗
(2)xN+1 ↓ x

↗
i→xN+1}

)
+ exp(ωk1 · {1↓ x

↗
i→xN+1}↓ ω

k
2 ),

the second inequality comes from

1↓ qi→(x,W
k) ↗ 1↓

exp(ωk1 · x
↗
i→xN+1)

exp(ωk1 ↓ ωk2 ) + (N ↓ 1) exp(ωk1 · x↗
(2)xN+1) + exp(ωk1 · x↗

i→xN+1)

↗ (N ↓ 1) exp
(
ω
k
1 · {x

↗
(2)xN+1 ↓ x

↗
i→xN+1}

)
+ exp(ωk1 · {1↓ x

↗
i→xN+1}↓ ω

k
2 )

and the third inequality comes from Jensen’s inequality. Combining We now aim to prove the second
inequality. Recall that by Eq. (C.11), we have

1

ε
(ωk+1

2 ↓ ω
k
2 ) = E[qN+1(x,W

k)

qi→(x,W

k)↓
N∑

j=1

q
2
j (x,W

k)

],

therefore we have
1

ε
(ωk+1

2 ↓ ω
k
2 ) ↗ E[qN+1(x,W

k)

qi→(x,W

k)↓ q
2
i→(x,W

k)

]

↗ E

min{1, ϱk}

qN+1(x,Wk)

qi→(x,Wk)



↗ E


1

1 + exp
(
(x↗

i→xN+1 ↓ 1)ωk1 + ωk2

)


↗ E[exp
(
(1↓ x

↗
i→xN+1)ω

k
1 ↓ ω

k
2

)
]

↗ exp(2ωk1 ↓ ω
k
2 ).

Thus we conclude the proof of both inequalities.

The next lemma is a direct combination of Lemma 8 and Lemma 9.
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Lemma 10. When ω
k
1 ⇔ 0, we have

d

ε
(ωk+1

1 ↓ ω
k
1 ) ⇔


1↓

1

2N


Cd exp(↓6ωk1 )↓ 2 exp(2ωk1 ↓ 2ωk2 )

The next lemma provides a lower bound for the update of ω3. Notably, when ω
k
1 is close to ω

k
2 , ωk2

increases in a larger scale.

Lemma 11. When ω
k
1 ⇔ 0, we have the following inequality holds:

1

ε
(ωk+1

2 ↓ ω
k
2 ) ⇔

1

(N + 1)3e
exp

(
2an,d · ω

k
1 ↓ 2ωk2

)
,

where an,d is a constant only pertains to n and d that is defined in Lemma 9

Proof. With Eq. (C.11), we have

1

ε
(ωk+1

2 ↓ ω
k
2 ) ⇔ E[qi→(x,W

k) · q2
N+1(x,W

k)]

= E

q
3
i→(x,W

k)


q
2
N+1(x,W

k)

q
2
i→(x,W

k)



= E

q
3
i→(x,W

k) exp
(
2ωk1 (1↓ x

↗
i→xN+1)↓ 2ωk2

)

⇔
1

e
E

q
3
i→(x,W

k) exp
(
2an,d · ω

k
1 ↓ 2ωk2

)
|x

↗
i→xN+1 ⇔ an,d



⇔
1

(N + 1)3e
exp

(
2an,d · ω

k
1 ↓ 2ωk2

)

where the first inequality comes from Eq. (C.14), second inequality comes from Lemma 19, the third
inequality comes from ω

k
1 ⇔ 0.

Step (3): Upper Bound for ω
k
1/ω

k
2 . Now, combining Lemma 9 and 11, we immediately get the

following result:

Lemma 12. If ϑ = ω
0
2 ⇔ 3 log( an,d

2N4d ) = O
(
max{log(Nd),↓ log

(
1 ↓ (N

⇓
d)

1
d

)
}
)
, and ω

k
1 ⇔ 0

for all k ⇔ 0, then we will have ω
k
1 ↗

7
15ω

k
2 .

Proof. By Lemma 9, we know that whenever ωk1 ⇔ 0, we have

1

ε
(ωk+1

1 ↓ ω
k
1 ) ↗

2N

d
exp(↓ω

k
1/2)↓

an,d

dN3e
exp(2(ωk1 ↓ ω

k
2 )),

therefore, if
2N

d
exp(↓ω

k
1/2) <

an,d

dN3e
exp(2(ωk1 ↓ ω

k
2 )),

which is equivalent to
2.5ωk1 > log(

an,d

2N4d
) + ω

k
2 ,

we will have ω
k+1
1 ↓ ω

k
1 < 0. By Lemma 11, we have ω

k
2 ⇔ ω

0
2 ⇔ 3 log( an,d

2N4d ). Therefore ω
k+1
1 will

not increase as long as
15

7
ω
k
1 ⇔ ω

k
2 ,

finally, recall that

an.d = 1↓
1

(
2Nkd)

2
d↔3

,

and our result follows.
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Step (4): Scale of ωk1 and ω
k
2 . Finally, we conclude the convergence of gradient descent with the

following two Lemma:

Lemma 13. With ϑ and N satisfying the condition in Theorem 1, we have

ω
k
1 , ω

k
2 = !(ε · poly(N, d) · log k),

with ω
k
1 ↗

1
2ω

k
2 holds for all k ⇔ 0.

Proof. We first establish a convergence rate for ω2. Note that by Lemma 9, Lemma 11 and Lemma
12, we have

ω
k+1
2 ↓ ω

k
2 ↗ ε · exp(↓

1

15
ω
k
2 ),

and
ω
k+1
2 ↓ ω

k
2 ⇔ ε ·

1

(N + 13e)
exp(↓2ωk2 )

holds for all k ⇔ 0. Therefore, we have ωk2 = !(ε · poly(N, d) · log k) for all k ⇔ 0. Now we turn to
ω
k
1 . By Lemma 11, when

8ωk1 ↗ ω
k
2 ↓ log


Cd

(
1↓ 1

2N

)

4


,

we have
ω
k+1
1 ↓ ω

k
1 ⇔

ε

d


1↓

1

2N


Cd exp(↓6ωk1 ) ⇔ 0.

Since ω
0
2 = ϑ ⇔ 2 log


Cd

(
1↔ 1

2N

)

4


, ωk2 monotonically increasing, and ω

1
1 ⇔ 0, by induction, we

have ω
k
1 ⇔ 0 for all k, and ω

k
1 ⇔ O(poly(N, d) log k) until ωk1 ⇔

ϑk2
8 . Meanwhile, Lemma 12 shows

that
ω
k+1
1 ↓ ω

k
1 ↗

2N

d
exp(↓ω

k
1/2)

for all k ⇔ 0, which implies ωk1 = O(poly(N, d) log k). Therefore, ωk1 = !(poly(N, d) log k). The
results of ωk1 ↗

1
2ω

k
2 follows by Lemma 12 and ω

k
1 ⇔ 0.

C.3 Convergece of Loss Function L(W)

We also have the following bound for the loss function.

Lemma 14. When W defined in Eq. (2.4) satisfies W11 = ω1Id, W33 = ↓ω2, with ω1 ⇔ 0, and the
rest of items are all zero matrices, we have

E
N+1∑

j=1

q(x,W)yj ↓ yi→

2
↗ O


N

3
k
2
d

ω1


+ exp(2ω1 ↓ ω3)

Proof. We have

E
N+1∑

j=1

q(x,W)yj ↓ yi→

2
= 1 + E

 N∑

j=1

q
2
j (x,W)


↓ 2E

[
qi→(x,W)

]

= E[1↓ qi→(x,W)] + E
 N∑

j=1

q
2
j (x,W)↓ qi→(x,W)


,

note that

E
 N∑

j=1

q
2
j (x,W)↓ qi→(x,W)


↗ E[

N∑

j=1

qi→(x,W)qj(x,W)↓ qi→(x,W)]

↗ E
[
↓ qN+1(W,x)qi→(x,W)

]
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↗ 0,

Therefore E
∑N+1

j=1 q(x,W)yj ↓ yi→

2
↗ E[1↓ qi→(x,W)]. However, we have

E
[
1↓ qi→(x,W)

]
↗ E

[ ∑

j ⇐=i→,j↑[N+1]

qj(x,W)
]

= E

qi→(x,W)

∑

j ⇐=i→,j↑[N+1]

qj(x,W)

qi→(x,W)



↗ (N ↓ 1)E

exp

(
ω1 ·


x
↗
j xN+1 ↓ x

↗
i→xN+1

)
+ E[exp(ω1(1↓ x

↗
i→xN+1)↓ ω3)],

(qi→ ↗ 1)

↗ (N ↓ 1)E

exp

(
ω1 ·


x
↗
j xN+1 ↓ x

↗
i→xN+1

)
+ exp(2ω1 ↓ ω3),

By Lemma 20, we have

E
N+1∑

j=1

q(x,W)yj ↓ yi→

2
↗ O


N

3
k
2
d

ω1


+ exp(2ω1 ↓ ω3),

and we conclude the proof.

Now, combine Lemma 15 with our dynamic bounds for ωk1 and ω
k
2 developed in Section C.2, we have

the following convergence result for the loss function.

Lemma 15. When W
K defined in Eq. (2.4) is updated by gradient descent in Eq. (2.6), we have

E
N+1∑

j=1

q(x,W)yj ↓ yi→

2
↗ O


poly(N, d)

logK


.

Proof. By Lemma 15, we have

E
N+1∑

j=1

q(x,Wk)yj ↓ yi→

2
↗ O


N

3
k
2
d

ωk1


+ exp(2ωk1 ↓ ω

k
3 ).

By Lemma 13, we have ω
k
1 ↗

7
15ω

k
2 , with ω

k
1 = !(poly(N, d) log k). Thus we have

E
N+1∑

j=1

q(x,Wk)yj ↓ yi→

2
↗ O


N

3
k
2
d

ωk1


+ exp(↓

1

15
ω
k
3 )

=
poly(N, d)

log k
+

1

k1/15

=
poly(N, d)

log k
.

D Proof for Theorem 2 and Corollary 1

In this section, we discuss the behavior of the pretrained transformer in tasks under distribution shift,
and provide proof for Theorem 2 and Corollary 1 in Section 3.2.
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D.1 Proof for Theorem 2

In this section, we provide a proof for Theorem 2. The result comes from the following observation.
First, we condition our analysis on the Aω , i.e. assuming that there exists a constant ϖ such that

↘xj ↓ xN+1↘
2
2 ⇔ ϖ + ↘xi→ ↓ xN+1↘

2
2, ̸j ⇐= i

→
, (D.1)

Then we have

|ŷ(Wk)↓ yi→ | = R


N∑

j=1

qj(x,W
K)yj ↓ yi→



=


∑

j↑[N ],yj ⇐=yi→

qj(x,W
K)(yj ↓ yi→)

+R|qN+1(x,W
K)|

= 2R
∑

j↑[N ],yj ⇐=yi→

qj(x,W
K) +R · qN+1(x,W

K)

↗ 2R
∑

j↑[N ],yj ⇐=yi→

qj(x,WK)

qi→(x,WK)
+R ·

qN+1(x,WK)

qi→(x,WK)

= 2R
∑

j↑[N ],yj ⇐=yi→

exp
(
ω
K
1


x
↗
j xN+1 ↓ x

↗
i→xN+1

)
+R · exp

(
ω
K
1 (1↓ x

↗
i→xN+1)↓ ω

K
3 )

)

↗ 2R ·N exp(↓ω
K
1 · ϖ) +R · exp


↓

1

15
ω
k
3



= 2RN exp
(
↓ poly(N, d) · ϖ logK

)

= O


RNK

↔poly(N,d)ω


(D.2)

uniformly for all {(xi,yi)}i↑[N ] and xN+1 on Aω . Here the second inequality comes from Theorem
1, in which we show that ωK1 ↗

7
15ω

K
2 . Recall that we defined qj(x,Wk) in Eq. (C.2) as the weight

for the j-th label in {yj}j↑[N+1]. Next, we have

EPtest
[(
ŷ(Wk)↓ yi→

)2]
= EPtest

[(
ŷ(Wk)↓ yi→

)2
1Aω

]
+ EPtest

[(
ŷ(Wk)↓ yi→

)2
1Ac

ω

]

↗ O


R

2
N

2
K

↔poly(N,d)ω


+ 4R2

· Ptest(Ac
ω), (D.3)

where the inequality comes from Eq. (D.2). Here the expectation is taken over the testing distribution
Ptest. By taking inferior on the inequality above for all ϖ > 0, we conclude our proof for Theorem 2.

D.2 Proof for Corollary 1

In this section, we provide the proof for Corollary 1. The first statement of Corollary 1 comes from
Markov’s inequality:

Ptest(Round
(
ŷW(xN+1)

)
⇐= yi→

)
= Ptest


|ŷW(xN+1)↓ yi→ | ⇔

1

2



↗ 4 · E[|ŷW(xN+1)↓ yi→ |
2]

↗ O
(
MN · inf

ω↘0


K

↔poly(N,d)ω + Ptest(Ac
ω)
)

,

where the last inequality comes from Theorem 2. Next, we prove the second statement. Suppose
Ptest(Aω→) = 1 for some ϖ

→
> 0. Then similar to the argument in Eq. (D.2), we have

|ŷ(Wk)↓ yi→ | ↗ O


MNK

↔poly(N,d)ω→

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holds for all {(xi,yi)} ≃ {xN+1} → Ptest almost surely. Note that

Round
(
ŷW(xN+1)

)
= yi→

holds whenever
|ŷ(Wk)↓ yi→ | <

1

2
,

therefore, it suffices to have 1
2 ↗ O

(
MNK

↔poly(N,d)ω→
)
, which is equivalent to

K = O


log(MN)

poly(N, d)ϖ→


.

E Nonconvexity of Loss Function

In this section, we show that the loss function is defined by Eq. (2.5). We prove by a special subspace
of W ↔ R(d+2)↓(d+2) defined by two scalars ω1, ω2,

W = diag{ω1, . . . , ω1  
d times

, 0, ω2}. (E.1)

By showing L(W) is nonconvex under such parametrization, we conclude our proof.
Lemma 16 (Nonconvexity of Transformer Optimization). When W is a two-dimensional subspace
of R(d+2)↓(d+2) defined by Eq.(E.1), the original loss function defined in Eq. (2.5) degenerates to
the following:

L(ω1, ω2) := E
 ∑N

j=1 exp(ω1∋xj ,xN+1△)yj
∑N

i=1 exp(ω1∋xi,xN+1△) + exp(ω1 ↓ ω2)
↓ yi→

2
,

where we use yN+1 = 0. Such loss function is still, in general, nonconvex.

Proof. The degeneracy of the original Eq. (2.5) to L(ω1, ω2) can be shown by basic algebra. We only
need to show the nonconvexity of L(ω1, ω2) in our proof. Note that by Assumption 1, the gradient of
L(ω1, ω2) is defined by

ςϑ2L(0, ω2) = ςϑ2E
 ∑N

j=1 yj

N + exp(↓ω2)
↓ yi→

2

= ςϑ2E

1↓ 2

∑N
j=1 yjyi→

N + exp(↓ω2)
+

(
∑N

j=1 yj)2

(N + exp(↓ω2))2



= ςϑ2


N

(
N + exp(↓ω2)

)2 ↓
2

N + exp(↓ω2)



=
↓ exp(↓2ω2)(

N + exp(↓ω2)
)3 , (E.2)

where the third equation comes from

E
 N∑

j=1

yjyi→


= E


E
 N∑

j=1

yjyi→

{xi}i↑[N ]



= E
 N∑

j=1

1j=i→ E

yjyi→

{xi}i↑[N ]



= E
 N∑

j=1

1j=i→ E

y
2
i→

{xi}i↑[N ]



= 1
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and E[(
∑N

j=1 yi)2] = E[
∑N

j=1 y
2
i ] = N . Eq. (E.2) shows that when limϑ2⇓+⇔ ςϑ2L(0, ω2) = 0

and limϑ2⇓↔⇔ ςϑ2L(0, ω2) = 0. If L(ω1, ω2) is convex, then ςϑ2L(0, ω2) is monotonically increasing,
which means ςϑ2L(0, ω2) = 0 for all ω2. However, this is clearly a contradiction.

F Auxiliary Lemma

Lemma 17 (Distribution of Sphere Inner Product). With the assumption of xi sampled from a uniform
distribution on the sphere, Let φ be the cosine of the angle between an arbitrary d -dimensional
vector and a vector chosen uniformly at random from the unit sphere. Then the probability density
function of random variable φ ↔ [↓1, 1] is fϖ (t) =

2!( d
2 )↖

ϱ!( d↔1
2 )

· (1↓ t
2)

d↔3
2 .

Proof. For convenience, we assume that xN+1 = e1. Note that this does not change the distribution
of xN+1 · xi due to rotation invariance. Let Xi → N(0, 1), define

Y1 = X1, . . . Yd↔1 = Xd↔1, Yd =
Xd∑d
i=1 X

2
i

Note that Y is distributed the same way as xi. Calculating the Jacobian:

J =





1 0 · · · 0 0

0 1
...

...
...

. . . 0 0
0 · · · 0 1 0

↓
X1Xd

[
∑d

i=1 X2
i ]

3/2 · · · ↓
X1Xd↔1

[
∑N

i=1 X2
i ]

3/2

∑d
i=1 X2

i

[
∑d

i=1 X2
i ]

3/2





Since J is of the form:
J =


I 0
a b



the determinant is easily evaluated:

|J | =

∑d
i=1 X

2
i∑d

i=1 X
2
i

3/2

Now to solve for the distribution of YN .

fϖ (y) =

∫ ⇔

↔⇔
· · ·

∫ ⇔

↔⇔

1

|J |
fx(x)dx

where

fx(x) =
d∏

I=1

1
⇓
2↼

e
↔ x2

i
2 =

1

(2↼)d/2
e
↔ 1

2

∑d
i=1 x2

i
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Writing the distribution in terms of t :

fϖ (t) =

∫ ⇔

↔⇔
· · ·

∫ ⇔

↔⇔

∑d↔1
i=1 y

2
i +

Y 2
d

1↔t2
∑d↔1

i=1 y
2
i

3/2

∑N↔1
i=1 y2i

1

(2↼)d/2
e
↔ 1

2
1

1↔t2

∑d↔1
i=1 y2

i dy1 · · · dyd↔1

fϖ (t) =

∫ ⇔

↔⇔
· · ·

∫ ⇔

↔⇔

1

(1↓ t2)3/2

√√√√
d↔1∑

i=1

y2i

1

(2↼)d/2
e
↔ 1

2
1

1↔t2

∑d↔1
i=1 y2

i dy1 · · · dyd↔1

fϖ (t) =
1

(1↓ t2)3/2
1

(2↼)N/2

∫ ⇔

↔⇔
· · ·

∫ ⇔

↔⇔

√√√√
d↔1∑

i=1

y2i e
↔ 1

2
1

1↓ t2

d↔1∑

i=1

y2i dy1 · · · dyd↔1

Now we can make a substitution to remove yd from inside the integral. Let un =
(
1↓ t

2
)↔1/2

yn,
we have

fϖ (t) =
1

(1↓ t2)3/2
1

(2↼)d/2
(
1↓ t

2
)d/2

∫ ⇔

↔⇔
· · ·

∫ ⇔

↔⇔

√√√√
d↔1∑

i=1

u2
i e

↔ 1
2

d↔1∑

i=1

u2
i du1 · · · dud↔1,

and

fϖ (t) =
(
1↓ t

2
)(d↔3)/2

(2↼)↔d/2

∫ ⇔

↔⇔
· · ·

∫ ⇔

↔⇔

√√√√
d↔1∑

i=1

u2
i e

↔ 1
2

∑d↔1
i=1 u2

i du1 · · · dud↔1

The integral can be seen to be a constant so:

fϖ (t) = kd

(
1↓ t

2
) d↔3

2

or for notational convenience:
fϖ (t) = kd

(
1↓ t

2
) d↔3

2

Since fϖ (y) is a PDF and is defined for 0 ↗ t ↗ 1 :
∫ 1

0
kd

(
1↓ t

2
) d↔3

2
dt = 1,where kd =

1
∫ 1
0 (1↓ y2)

d↔3
2 dy

.

Furthermore, for d > 1, we have kd =
2!( d

2 )↖
ϱ!( d↔1

2 )
.

Lemma 18. With N = O
(
log d ·

⇓
d
)
, we have E[x↗

i→xN+1] ⇔
2

(N+1)2 .

Proof. Note that we have

E[x↗
i→xN+1] ⇔ P

(
max
i↑[N ]

x
↗
i xN+1 ⇔ ↽

)
· ↽+


1↓ P

(
max
i↑[N ]

x
↗
i xN+1 ⇔ ↽

)
· (↓1).

To ensure that E[x↗
i→xN+1] ⇔

2
(N+1)2 , we only need

↽P
(
max
i↑[N ]

x
↗
i xN+1 ⇔ ↽

)
↓


1↓ P

(
max
i↑[N ]

x
↗
i xN+1 ⇔ ↽

)
⇔

2

(N + 1)2
,

which is equivalent to

P
(
max
i↑[N ]

x
↗
i xN+1 ⇔ ↽

)
⇔

1

1 + ↽


1 +

2

(N + 1)2


.
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By Lemma 17, we have

P
(
max
i↑[N ]

x
↗
i xN+1 ⇔ ↽

)
= 1↓


kd

∫ ς

↔1
(1↓ t

2)
d↔3
2 dt

N

.

Therefore, we only need

1↓


kd

∫ ς

↔1
(1↓ t

2)
d↔3
2 dt

N

= P
(
max
i↑[N ]

x
↗
i xN+1 ⇔ ↽

)
⇔


1 +

2

(N + 1)2


·

1

1 + ↽
,

which suffices by

N ⇔

log


1↓ (1 + 2

(N+1)2 ) ·
1

1+ς



log(1↓ kd

∫ 1
ς (1↓ t2)

d↔3
2 dt)

.

Note that ∫ 1

ς
(1↓ t

2)
d↔3
2 dt ⇔

∫ 1

ς
(1↓ t)d↔3dt =

1

d↓ 2
(1↓ ↽)d↔2

,

therefore we only need

N ⇔

log( ς
1+ς ↓

ς
(1+ς)(N+1)2 )

kd
d↔2 (1↓ ↽)d↔2

.

Now, let ↽ = 1
d↔2 , since kd =

!( d
2 )

!( d↔1
2 )

= O(
⇓
d), we only need N ⇔ O( d

e
↖
d
log(d ↓ 2)) =

O(
⇓
d log d).

Lemma 19 (Concentration upper bound for x
↗
i→xN+1). When x

↗
i→xN+1 is defined by

maxi↑[N ]{x
↗
i xN+1}, where xi are independently sampled from a uniform sphere distribution,

we have
P

x
↗
i→xN+1 ↗ 1↓

1
(
2Nkd)

2
d↔3


⇔

1

e
.

Proof. By Lemma 17,

P

x
↗
i→xN+1 ↗ ↽


=


1↓ kd

∫ 1

ς
(1↓ t

2)
d↔3
2 dt

N

.

Note that ∫ 1

ς
(1↓ t

2)
d↔3
2 dt ↗ (1↓ ↽)(1↓ ↽

2)
d↔3
2 ,

since (1↓ 1
N )N is monotonically increasing, we only need kd(1↓ ↽)(1↓ ↽)

d↔3
2 ↗

1
N . Setting

↽ = 1↓
1

(
2Nkd)

2
d↔3

↗


1↓

1
(
Nkd)

2
d↔3

1/2

suffices.

Lemma 20. Suppose {xi}i↑[N+1] are i.i.d. samples from a uniform distribution on a sphere
in Rd, with x

↗
i→xN+1 and x

↗
(2)xN+1 being the largest and second largest order statistics among

{x
↗
i xN+1}i↑[N ], respectively. Then we have

E

exp

(
ω
(
x
↗
(2)xN+1 ↓ x

↗
i→xN+1

))
↗ O


N

2
k
2
d

ω



Moreover, we have

E

exp

(
ω
(
x
↗
(2)xN+1 ↓ x

↗
i→xN+1

))
= !


1

ω


,

where !(·) hides constant depends on N and d.
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Proof. We denote x
↗
i xN+1 by Yi, x↗

i→xN+1 by Yi→ and x
↗
(2)xN+1 by Y(2). By Lemma 17, we have

the density function of Yi being fd(t) = kd · (1↓ t
2)

d↔3
2 , where kd =

2!( d
2 )↖

ϱ!( d↔1
2 )

. Then by the joint
distribution of order statistics [David and Nagaraja, 2004], the joint density function of Yi→ and Y(2)

is
fYi→ ,Y2(t)(y1, y2) = N(N ↓ 1) · fd(y2)fd(y1) · F

N↔2
d (y2)

for ↓1 ↗ y2 ↗ y1 ↗ 1. Therefore, we have

E

exp

(
ω
(
x
↗
(2)xN+1 ↓ x

↗
i→xN+1

))
↗ N(N ↓ 1)k2d

∫ 1

↔1

∫ y1

↔1
(1↓ y

2
2)

d↔3
2 (1↓ y

2
1)

d↔3
2 exp

(
ω(y2 ↓ y1)

)
dy2dy1

↗
N(N ↓ 1)

2
k
2
d

∫ 1

↔1

∫ y1

↔1
(2↓ y

2
1 ↓ y

2
2) exp

(
ω(y2 ↓ y1)

)
dy2dy1

↗ N(N ↓ 1)k2d

∫ 1

↔1

∫ 0

↔1↔y1

exp(ωy2)dy2dy1

↗ N
2
k
2
d2

∫ 0

↔2
exp(ωy2)dy2

= O


N

2
k
2
d

ω


,

Thus we obtain the upper bound. Next, we establish a lower bound.

E

exp

(
ω
(
x
↗
(2)xN+1 ↓ x

↗
i→xN+1

))
⇔

N(N ↓ 1)

2N
k
2
d

∫ 1

0
(1↓ y

2
1)

d↔3

∫ y1

0
exp

(
ω(y2 ↓ y1)

)
dy2dy1

=
N(N ↓ 1)

2Nω
k
2
d

∫ 1

0
(1↓ y

2
1)

d↔3
(
1↓ exp(↓ωy1)

)
dy1

⇔
N(N ↓ 1)

e52Nω
k
2
d

∫ 2/
↖
d

1/
↖
d
(1↓ exp(↓ω/

⇓

d))dy1

⇔
N(N ↓ 1)

e52N
⇓
dω

k
2
d(1↓ exp(↓ω/

⇓

d))
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main claims are made clear in the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Our paper is limited to the theoretical analysis of single-layer transformers
under 1-NN contexts.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All assumptions and proofs are included in the main paper and the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All technical details are provided in the paper and the appendix
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We only use simulated data, and provided enough technical details for the data
and code we used in the main paper and appendix.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer:[Yes]

Justification: We specify all hyperparameters and optimizers in the main paper and appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We include error bar obtained from 10 independent trials

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All experiments are conducted on a CPU cluster
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work conforms with the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
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Justification: Our work discusses the theoretical performance of a well-known architecture,
thus the social impacts are insignificant.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work does not poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: Our paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not introduce any new asset.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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