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Abstract

In this work, we study the sample com-
plexity problem of risk-sensitive Reinforce-
ment Learning (RL) with a generative model,
where we aim to maximize the Conditional
Value at Risk (CVaR) with risk tolerance
level τ at each step, named Iterated CVaR.
We develop nearly matching upper and lower
bounds on the sample complexity for this
problem. Specifically, we first prove that a
value iteration-based algorithm, ICVaR-VI,
achieves an ϵ-optimal policy with at most

Õ
(

SA
(1−γ)4τ2ϵ2

)
samples, where γ is the dis-

count factor, and S,A are the sizes of the
state and action spaces. Furthermore, if τ ≥
γ, then the sample complexity can be further

improved to Õ
(

SA
(1−γ)3ϵ2

)
. We further show a

minimax lower bound of Õ
(

(1−γτ)SA
(1−γ)4τϵ2

)
. For

a constant risk level 0 < τ ≤ 1, our upper and
lower bounds match with each other, demon-
strating the tightness and optimality of our
analyses. We also investigate a limiting case
with a small risk level τ , called Worst-Path
RL, where the objective is to maximize the
minimum possible cumulative reward. We
develop matching upper and lower bounds of

Õ
(
SA
pmin

)
, where pmin denotes the minimum

non-zero reaching probability of the transi-
tion kernel.

1 Introduction

Reinforcement learning (RL) (Sutton & Barto, 2018)
is a foundational framework for solving sequential
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decision-making problems, and it finds a wide range
of applications in e.g., large language models (Ouyang
et al., 2022), robotics (Kober et al., 2013), and finance
(Charpentier et al., 2021). Recently there has been
a surge of interest in understanding its fundamental
sample complexity, e.g., Bhandari et al. (2018); Srikant
& Ying (2019); Zou et al. (2019); Agarwal et al. (2021);
Bhandari & Russo (2024). However, the main focus
was on the risk-neural setting, where the objective is
to maximize the expected total rewards accumulated
over time. As RL is increasingly applied to real-world
sequential decision-making tasks, it often becomes es-
sential to account for risk rather than simply optimiz-
ing for the total reward. This is particularly impor-
tant when safety and worst-case avoidance considera-
tions exist, e.g., in finance and investment, healthcare,
autonomous systems, and process engineering. Nev-
ertheless, a fundamental understanding of the sample
complexity for risk-sensitive RL remains largely unex-
plored. In this paper, we focus on one of such problems
and aim to understand the fundamental sample com-
plexity for iterated CVaR RL with a generative model.

A widely used risk measure is called coherent risk
measure, which satisfies the following four proper-
ties: (i) monotonicity;(ii) translation invariance; (iii)
sub-additivity; and (iv) positive homogeneity (Artzner
et al., 1999). Conditional Value at Risk (CVaR) is
a popular coherent risk measure(Rockafellar et al.,
2000). There are two types of CVaR RL objectives,
Iterated (dynamic) CVaR RL (Hardy & Wirch, 2004)
and Static CVaR RL (Wang et al., 2023; Zhao et al.,
2023). Iterated CVaR is a special case of Markov co-
herent risk (Tamar et al., 2015) where the coherent
risk measure is CVaR. It has an iterative structure
and focuses on the worst portion of the reward at each
step. In Iterated CVaR RL problem, the agent aims
to maximize the average of the worst portion at every
step. Static CVaR RL (Wang et al., 2023; Zhao et al.,
2023)) on the other hand, aims to maximize the CVaR
of the total reward.

Static CVaR RL and Iterated CVaR RL are quite
different. In Static CVaR RL, the optimal policy is
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history-dependent and not stationary. In Bäuerle &
Ott (2011), it is shown that Static CVaR RL can be
optimally solved by resolving to standard, risk-neutral
RL in an augmented MDP. In Iterated CVaR RL, the
optimal policy is Markovian and stationary if the envi-
ronment is stationary. Broadly speaking, Static CVaR
RL is more concerned with the overall risk of the total
reward and may permit the agent to visit catastrophic
states as long as the risk of the cumulative reward
remains acceptable. In contrast, Iterated CVaR RL
assesses risk at each step, offering a more cautious ap-
proach by preventing the agent from entering catas-
trophic states at any point in the trajectory.

In this paper, we focus on Iterated CVaR RL, and
we aim to theoretically understand the sample com-
plexity with access to a generator (Kearns & Singh,
1998). With access to a generative model, one can
draw samples from the transition kernel of a Markov
decision process (MDP) conditioned on any arbitrary
state-action pair. We then take a model-based ap-
proach, where we first construct a maximum likelihood
estimate of the transition kernel and find the optimal
policy for the estimated MDP model. In risk-neural
RL, it was shown that such an approach achieves the
minimax optimal sample complexity (Gheshlaghi Azar
et al., 2013; Agarwal et al., 2020). In Iterated CVaR
RL, the goal is to find the policy that maximizes
the worst τ -portion of reward-to-go at each step.
Clearly, this ensures that policy avoids getting into
catastrophic states, prioritizing risk-sensitive behav-
ior. Since the objective focuses on ignoring certain
”good” states and prioritizing the worst-case scenar-
ios, we undoubtedly require more samples to learn a
safe policy. This naturally raises the question: how
many samples are needed to produce an optimal risk-
sensitive policy?

In this paper, we make the connection between Iter-
ated CVaR RL and distributionally robust RL (Iyen-
gar, 2005; Nilim & El Ghaoui, 2004) using the dual
form of CVaR. We then decompose the error us-
ing approaches in robust RL (Shi et al., 2023) and
develop novel analytical techniques to bound the
change in CVaR resulting from approximation er-
ror. We prove that a value iteration-based algorithm,
ICVaR-VI, achieves an ϵ-optimal policy with at most

Õ
(

SA
(1−γ)4τ2ϵ2

)
samples, where γ is the discount fac-

tor, τ is the risk tolerance, and S,A are the sizes
of the state and action spaces. Moreover, if τ ≥ γ,
we further derive an improved sample complexity of

Õ
(

SA
(1−γ)3ϵ2

)
, which actually matches with the min-

imax optimal sample complexity for risk-neural RL
(also see Table 1). We then develop a minimax lower
bound that for any τ and γ, there always exists an

MDP, for which at least Õ
(

(1−γτ)SA
(1−γ)4τϵ2

)
are needed.

Comparing our upper and lower bounds, they match
with each other in the order of sizes of state and action
spaces S,A and effective horizon (1 − γ)−1 when the
risk level is a constant in (0, 1].

Finally, we investigate a limiting case, named Worst-
Path RL (Du et al., 2022), where we consider a small
risk level τ smaller than the minimum non-zero reach-
ing probability of the transition kernel pmin. In this
case, the CVaR risk measure actually tries to find
the worst-case state. This problem cannot be directly
solved by taking the limit τ → 0, and the previous
lower and upper bounds will also go to infinity as they
depend on τ−1. To tackle this problem, we design a
new algorithm based on the reduced Bellman opera-
tor and develop matching upper and lower bounds of

Õ
(
SA
pmin

)
, where pmin denotes the minimum non-zero

reaching probability of the transition kernel.

2 Related Work

Static CVaR RL: There is a long line of works focus-
ing on static CVaR RL, which refers to the CVaR (i.e.
the worst τ portion) of the accumulated total reward.
Bastani et al. (2022) proved the first regret bound,
and Wang et al. (2023) improved the results to be
minimax optimal. Zhao et al. (2023) introduced func-
tion approximation to the MDP structure and studied
static CVaR in low-rank MDPs. Additionally, Ni et al.
(2024) developed the sample complexity of reward-free
exploration in static CVaR. However, static CVaR is
intrinsically different from the iterated CVaR RL stud-
ied in this paper. Iterated CVaR RL concerns the
worst τ -percent of the reward-to-go at each step. In-
tuitively, static CVaR takes more cumulative reward
into account and prefers actions that have better per-
formance in general, while iterated CVaR prevents the
agent from getting into catastrophic states (Du et al.,
2022). Therefore, the algorithm designs and analysis
techniques introduced above can not be applied to our
problem.

Iterated CVaR RL: Hardy & Wirch (2004) first in-
troduced the Iterated CVaR and showed that it is a
coherent risk measure. Osogami (2012), Chu & Zhang
(2014) and Bäuerle & Glauner (2022) studied the iter-
ated coherent risk measures (iterated CVaR included)
and proved the existence of a Markovian determinis-
tic optimal policy. Bäuerle & Glauner (2022) also es-
tablished a connection between iterated coherent risk
measures and distributional robust MDPs. Chen et al.
(2023) studied iterated CVaR with function approxi-
mation and human feedback.

For the more general iterated coherent risk measures
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Problem Lower bound Upper bound

Risk-neutral (Agarwal et al., 2020) Õ
(

SA
(1−γ)3ϵ2

)
Õ
(

SA
(1−γ)3ϵ2

)

Episodic, Iterated CVaR (Du et al., 2022) Õ
(

A

ϵ2τ(1−γ)−1−1

)
Õ
(

S2A

(1−γ)4τ(1−γ)−1+1ϵ2

)

Episodic, Iterated OCE (Xu et al., 2023) O
(

SA
(1−γ)3τϵ2

)
Õ




(
τ− 1

2
(1−γ)−1−1−(1−γ)−1(τ−1/2−1)

)2

S2A

(1−√
τ)4ϵ2




Infinite horizon, Iterated CVaR (This work) Õ
(

(1−γτ)SA
(1−γ)4τϵ2

) Õ
(

SA
(1−γ)4τ2ϵ2

)

Õ
(

SA
(1−γ)3ϵ2

)
if τ≥γ

Table 1: Comparison of lower and upper bound for RL with Iterative Risk Measures. Some of the results are
presented in terms of regret bound, and we converted them to sample complexity for the ease of comparison.

(Markov coherent risk), Tamar et al. (2015) derived
the policy gradient algorithm for both static and dy-
namic (iterated) coherent risk measures. Huang et al.
(2021) then proved that gradient dominant doesn’t
hold for iterated coherent risk measures and that sta-
tionary point is not guaranteed to be globally optimal.

To the best of our knowledge, Du et al. (2022) is the
most related work to ours, where the Iterated CVaR
objective in the episodic setting was studied. Their
sample complexity results are listed in Table 1. In
this paper, we obtain tighter upper and lower bounds,
which are polynomial in the effective horizon (1−γ)−1,
and have a better dependence on the number of states
S. Moreover, our bounds are minimax optimal for
almost all choices of risk level. Xu et al. (2023) stud-
ied the recursive optimized certainty equivalent (OCE)
problem in an episodic setting, where OCE is a more
generalized risk measure, including CVaR. For Iterated
CVaR RL, the upper and lower bounds in their paper
are listed in Table 1. Compared to their results, our
upper and lower bounds are much tighter (minimax
optimal for almost all choices of risk level) and have a
clear and easy-to-understand dependence on relevant
factors.

Sample Complexity of Distributionally Robust
RL with a Generative Model: The Iterative CVar
RL problem can be equivalently written as a distribu-
tionally robust RL problem with a certain uncertainty
set. The fundamental sample complexity for distribu-
tionally robust RL with a generative model has been
studied in the literature for uncertainty sets defined
by e.g., total variation (Shi et al., 2023; Panaganti &
Kalathil, 2022; Yang et al., 2022), χ2-divergence (Shi
et al., 2023; Panaganti & Kalathil, 2022; Yang et al.,
2022), Kullback-Leibler (KL) divergence (Shi & Chi,
2024).

3 Preliminaries and Problem
Formulation

Notations. We denote by ∆(S) the probability sim-
plex over a set S. In this work, we use the standard
O(·) notation to hide universal constant factors and
use Õ(·) to hide logarithmic factors.

Conditional Value-at-Risk (CVaR). We begin by
introducing two risk measures: value-at-risk (VaR)
and conditional value-at-risk (CVaR). Let Z be a ran-
dom variable with cumulative distribution function
FZ(z) = P (Z ≤ z). The Value-at-risk at risk level
τ ∈ (0, 1] is defined as

VaRτ (Z) = inf {z : FZ(z) ≥ τ} . (1)

The conditional value-at-risk at risk level τ ∈ (0, 1] is
defined as

CVaRτ (Z) = sup
s∈R

{
s− 1

τ
E
[
(s− Z)+

]}
, (2)

where (x)+ = max{x, 0} for some x ∈ R. If FZ(z) is
continuous at VaRτ (Z), then CVaR can also be equiv-
alently written as (Shapiro et al., 2021):

CVaRτ (Z) = E [Z|Z ≤ VaRτ (Z)] . (3)

From the above equation, CVaR can be viewed as the
average of the worst τ -fraction of Z. When τ = 1,
CVaRτ (Z) = E[Z], and when τ → 0, CVaRτ (Z) →
ess inf(Z).

When we need to specify the distribution of random
variable Z, we write CVaR(Z) as

CVaRτZ∼P (Z) = sup
s∈R

{
s− 1

τ
EZ∼P

[
(s− Z)+

]}
, (4)

where P is the distribution of Z.

CVaR can be equivalently written in the dual formu-
lation (Shapiro et al., 2021) using the risk envelope

UCVaRτ (P ) =

{
ξ : ξ ∈

[
0,

1

τ

]
, EP [ξ] = 1

}
, (5)
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and

CVaRτ (Z) = inf
ξ∈UCVaRτ (P )

EP [ξZ]. (6)

Standard Markov Decision Process. We denote
an infinite horizon discounted Markov decision process
(MDP) by a tuple M = (S,A, γ, P, r), where S and A
are finite state and action spaces, γ ∈ [0, 1) is the dis-
count factor, P : S×A → ∆(S) denotes the transition
kernel that maps a state-action pair to a probability
distribution over S, and r : S × A → [0, 1] is the de-
terministic reward function. Let S and A denote the
sizes of the state and action spaces, respectively. A
stationary policy is defined by π : S → ∆(A). The
value function of a policy π for state s is defined by

Eπ

[ ∞∑

t=0

γtr(st, at)|s0 = s

]
,∀s ∈ S, (7)

where st and at denote the state and action at step t.

Iterated CVaR Objective. The risk-neutral objec-
tive defined in (7) fails to consider the risks arising
from the stochastic nature of state transitions and the
agent’s policy decisions. Iterated coherent risk mea-
sures (Chu & Zhang, 2014) have been introduced to
model and evaluate these types of risks. For notational
convenience, let

r(s, π) :=
∑

a∈A
π(a|s)r(s, a), (8)

ρs,π(Z(s′)) :=
∑

a∈A
π(a|s)ρs,a(Z(s′)), (9)

where ρs,a is a one-step coherent risk measure indexed
by (s, a) ∈ S ×A and the distribution of s′ follows the
transition probability of P (·|s, a). The objective of the
risk-sensitive MDP is defined as follows:

max
π

V π(s0), (10)

where V π(s0) = r(s0, π) + γρs0,π(r(s1, π) +
γρs1,π(r(s2, π) + ...)). The trajectory {s0, s1, s2, ...} is
generated from the MDP M and policy π. The ob-
jective V π is defined in a nested pattern rather than
through a single static measure of the total discounted
reward.

In this paper, we focus on a specific risk measure, the
Conditional Value-at-Risk (CVaR), and refer to the
objective in (10) as the iterated CVaR objective. For
notational convenience, we denote

CVaRτs,π(Z(s′)) :=
∑

a∈A
π(a|s)CVaRτs′∼P (·|s,a)(Z(s′)).

(11)

The value function and Q-function are defined as fol-
lows:

V π(s0) = r(s0, π) + γCVaRτs0,π

(
r(s1, a1)

+ γCVaRτs1,π(r(s2, π) + ...)

)
, (12)

Qπ(s0, a0) = r(s0, a0) + γCVaRτs1∼P (·|s0,a0)(V
π(s1)).

(13)

The choice of the risk-sensitive objective function in
(12) guarantees the existence of an optimal policy and
the optimal policy is Markovian (Chu & Zhang, 2014).
In contrast, the static CVaR objective, which only ap-
plies the risk measure to the total discounted reward
once, does not have this property.

Optimal Risk-sensitive Policy and Bellman Op-
erator. As shown in Chu & Zhang (2014), there exists
a deterministic stationary optimal policy π∗ that max-
imizes the risk-sensitive value function simultaneously
for all states:

∀s ∈ S : V ∗(s) := V π∗
(s) = max

π
V π(s) (14)

∀(s, a) ∈ S×A : Q∗(s, a) := Qπ∗
(s, a) = max

π
Qπ(s, a).

(15)
The corresponding Bellman (optimality) equations are
as follows:

Qπ(s, a) = r(s, a) + γCVaRτ (V
π(s′)) , (16a)

Q∗(s, a) = r(s, a) + γCVaRτ (V
∗(s′)) , (16b)

where s′ ∼ P (·|s, a). The Bellman operator is denoted
by T τ : RSA → RSA and defined as follows:

∀(s, a) ∈ S ×A :T τ (Q)(s, a) := r(s, a) + γCVaRτV (s),

with V (s) := max
a

Q(s, a). (17)

Since Q∗(s, a) is the unique fixed point of T τ , we can
recover the optimal policy using a value iteration algo-
rithm (see Algorithm 1). This converges rapidly due
to the γ-contraction property of the T τ operator w.r.t.
the l∞ norm (Lemma 1).

Connection to Distributional Robust RL. Ap-
plying the dual form of CVaR, the Bellman equation
can be re-written as

Qπ(s, a) = r(s, a) + γ inf
ξ∈UCVaRτ (P )

EP [ξV π]. (18)

This has the same form as the Bellman equation
for distributional robust RL (Iyengar, 2005; Nilim &
El Ghaoui, 2004), and since EP [ξ] = 1: Pξ ∈ ∆(S) is
indeed a transition kernel. The uncertainty set of the
transition kernel can be defined as follows:

Uτ (Ps,a) =
{
P̄s,a ∈ ∆(S), 0 ≤ P̄s,a(s

′)
Ps,a(s′)

≤ 1

τ

}
, (19)
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and the uncertainty set satisfied the (s, a)-
rectangularity (Iyengar, 2005). We can define
the robust Bellman operator for CVaR as:

∀(s, a) ∈ S ×A :

T τ (Q)(s, a) := r(s, a) + γ inf
P̄∈Uτ (Ps,a)

P̄ V. (20)

Generative Model. Assume we have access to a
generative model or a simulator, which can provide
samples s′ ∼ P (·|s, a), for any (s, a). Suppose we call
our generative model N times for each state-action
pair. Let P̂ be the empirical model defined as follows

∀(s, a) ∈ S ×A, si,s,a
i.i.d∼ P (·|s, a), i = 1, 2, · · · , N.

The total sample size is then NSA.

Goal. Given the collected samples, the goal is to learn
the risk-sensitive optimal policy under risk level τ us-
ing as few samples as possible. Specifically, given a
target accuracy tolerance ϵ > 0, the goal is to find an
ϵ-optimal risk-sensitive policy π̂ s.t.

∀s ∈ S : V ∗(s)− V π̂(s) ≤ ϵ. (21)

4 Algorithm

In this section, we present a model-based approach,
which first constructs an empirical nominal transition
kernel based on the collected samples and then applies
a value iteration-based algorithm ICVaR-VI to com-
pute an optimal risk-sensitive policy in the approxi-
mated MDP.

Empirical Nominal Transition Kernel. The em-
pirical nominal transition kernel P̂ can be constructed
as follows: ∀(s, a) ∈ S ×A

P̂ (s′|s, a) := 1

N

N∑

i=1

1
{
si,s,a = s′

}
. (22)

We define M̂ to be the empirical MDP that is identical
to the original M, except that it uses P̂ instead of P
for the transition kernel. We use V̂ π and Q̂π to denote
the value and action value functions of a policy π in
M̂. And π̂∗, Q̂∗ and V̂ ∗ are the optimal policy and
value functions in M̂.

Equipped with P̂0, we can define the empirical Bellman
operator T τ as follows: ∀(s, a) ∈ S ×A,

T̂ τ (Q)(s, a) := r(s, a) + γCVaRτs′∼P (·|s,a)(V (s′)),
(23)

where V (s) = maxaQ(s, a).

ICVaR-VI: Iterated CVaR Value Iteration. To
find the fixed point of T τ , we introduce iterated CVaR

value iteration (ICVAR-VI)(Ruszczyński, 2010), which
is shown in Algorithm 1. The update rule can be writ-
ten as:

Q̂t(s, a) = T̂ τ (Q̂t−1)(s, a)

= r(s, a) + γCVaRτ (V̂t−1(s
′)), (24)

where V̂t−1 = maxa Q̂t−1(s, a) for all s ∈ S.

Algorithm 1 ICVaR-VI

Input: Empirical nominal transition kernel P̂ ; reward
function r; risk level τ ; number of iterations T .

1: Initialization: Q̂0(s, a) = 0, V̂0(s) = 0 for all
(s, a) ∈ S ×A.

2: for t = 1, 2, . . . , T do
3: for s ∈ S, a ∈ A do
4: Update Q̂t(s, a) according to (24);
5: end for
6: for s ∈ S do
7: Set V̂t(s) = maxa Q̂t(s, a);
8: end for
9: end for

10: Output: Q̂T , V̂T , and policy π̂(s) =

argmaxa Q̂T (s, a).

5 Theoretical Results

In this section, we present our main theoretical re-
sults. We start with the upper bound on the sample
complexity for Iterated CVaR RL.

Theorem 1 (Sample Complexity Upper Bound). For
any risk level τ ∈ (0, 1], the number of samples needed
by Algorithm ICVaR-VI to return an ϵ-optimal policy

with probability at least 1−δ is at most Õ
(

SA
τ2(1−γ)4ϵ2

)
.

In addition, when τ ≥ γ, the sample complexity can be

further improved to Õ
(

SA
(1−γ)3ϵ2

)
.

Remark 1. In Theorem 1, the dependencies on S and
A match with the result of Risk-neutral RL (Ghesh-
laghi Azar et al., 2013). Furthermore, our sample
complexity matches the dependency on τ and 1 − γ
with the result in Du et al. (2022)1, and our results
improve the dependency on S by a factor of S (Du
et al., 2022).

The sample complexity upper bound holds for any risk
level τ ∈ (0, 1]. In the special case when τ = 1, CVaR

1In the finite-horizon episodic setting, the horizon H
is analogous to (1 − γ)−1 in the infinite-horizon setting.
Du et al. (2022) focuses on the stationary finite-horizon
episodic setting, where the transition kernel at each time
step is the same, and therefore we incorporate an extra H
into the sample complexity for a fair comparison with our
results.
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reduces to expectation, and Iterated CVaR RL reduces
to risk-neutral RL. In this case, our sample complexity
bound is Õ

(
SA

(1−γ)3ϵ2
)
, which matches the result of the

state-of-the-art sample complexity bound for standard
risk-neutral RL (Agarwal et al., 2020; Gheshlaghi Azar
et al., 2013). Furthermore, for an arbitrary constant
risk level 0 < τ < γ, the sample complexity is in-
creased by a factor of (1 − γ)−1, which, later in our
lower bound analysis, is proved to be necessary.

In standard risk-neutral RL, the sample complexity of
(1 − γ)−3 can be obtained using Bernstein inequality
in combination with the Bellman property of a pol-
icy’s variance (Lemma 4 of Agarwal et al. (2020)),
which could improve the sample complexity by a fac-
tor of (1 − γ)−1 comparing to only using Hoeffding’s
inequality. However, using Bernstein inequality may
not always improve the sample complexity for Iterated
CVaR RL by a factor of (1 − γ)−1. In distributional
robust RL (which is similar to our case since the dual
form of Iterated CVaR can also be written as a distri-
butionally robust optimization form), there is an extra
term because the worst-case transition kernel is differ-
ent from the nominal one, and whether Bernstein is su-
perior to Hoeffding’s inequality depends on the specific
uncertainty set (Shi et al., 2023; Shi & Chi, 2024;Pana-
ganti & Kalathil, 2022). In our setting, when τ < γ,
applying Bernstein’s inequality to the uncertainty set
for CVaR leads to the same sample complexity bound
as Hoeffding’s inequality. This phenomenon also ap-
pears in existing sample complexity analyses for χ2

distributionally robust RL (Shi & Chi, 2024). Still,
for total-variation distance defined robust RL, Bern-
stein’s inequality can improve the upper bound when
τ ≥ γ, the total-variation distance of our uncertainty
set is upper bounded by 1−τ

τ , and Bernstein’s inequal-
ity can reduce the sample complexity by a factor of
(1− γ)−1.

The analysis of Iterated CVaR RL presents the fol-
lowing challenge: The objective is not the expected
cumulative reward but rather the Iterated CVaR risk
measure, which prevents us from decomposing the er-
ror as we do in risk-neutral cases. To address this chal-
lenge, we will establish a connection between Iterated
CVaR RL and distributionally robust RL. This con-
nection enables us to treat the risk-sensitive objective
as the expected cumulative reward under the worst-
case transition kernel. We then quantify the deviation
between the empirical model and the true underlying
model, using Hoeffding’s inequality to derive bounds
for τ < γ. When τ ≥ γ, we introduce an alterna-
tive analytical approach using Bernstein inequality to
further tighten the sample complexity bounds.

Below we present a proof sketch for Theorem 1 to high-
light our major technical contributions (also see Ap-

pendix B for a complete proof).

Proof sketch of Theorem 1. With the connection be-
tween Iterated CVaR and distributionally robust RL,
we can decompose the error in the following way. Let
π̂∗ denote the optimal risk-sensitive policy in the em-
pirical model M̂, and let π̂ represent the policy from
Algorithm 1. Additionally, V̂ represents the Iterated
CVaR value function in the empirical model.

The sub-optimality gap between π∗ and π̂ can be de-
composed as

V ∗ − V π̂
(i)

≤
(
V π∗ − V̂ π∗)

+
2γϵopt
1− γ

1+
(
V̂ π̂ − V π̂

)
,

(25)

where (i) holds by the optimality of π̂ in M̂ and γ-
contraction property of risk-sensitive Bellman opera-
tor (Lemma 1). 1 ∈ RS is the all 1 vector.

To bound ||V̂ π∗ −V π∗ ||∞ and ||V̂ π̂ −V π̂||∞, we intro-
duce a key inequality:

∣∣∣CVaRτ
s′∼P̂ (·|s,a)(V

π(s′))− CVaRτs′∼P (·|s,a)(V
π(s′))

∣∣∣

≤ 1

τ
sup
t∈R

∣∣∣∣∣
∑

s′

(
P̂s,a(s

′)− Ps,a(s
′)
)
∣∣∣∣∣ . (26)

Applying the concentration lemma for CVaR (Lemma
3), we get that

||V̂ π − V π||∞ ≤ c0

√
L

Nτ2(1− γ)4
. (27)

L stands for the log term of S, A, N and 1
δ . c0 is

a large enough constant. Finally, for a small enough
ϵopt, we obtain the sample complexity upper bound.

For the special case when τ ≥ γ, we first introduce
the total-variation distance bound for the CVaR un-
certainty set Uτ :

∀P̄s,a ∈ Uτ (Ps,a) : ∥P̄s,a − Ps,a∥1 ≤ 2
1− τ

τ
. (28)

This bound is useful when τ ≥ 1
2 . When the τ ≥ γ, the

dependence on (1− γ)−1 of the extra term induced by
worst-case transition mismatch (C2 in Shi et al. (2023))
is reduced when applying Berstein inequality:

∣∣∣VarP̄s,a
(V )−VarPs,a

(V )
∣∣∣ ≤ ∥P̄s,a − Ps,a∥1∥V ∥2∞

≤ 1− τ

τ

1

(1− γ)2
≤ 1

γ(1− γ)
, (29)

where VarPs,a(V ) is the variance of V respect to dis-
tribution Ps,a. In this case, we can reduce the order
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of (1− γ)−1, which leads to the following bound:

∥V̂ π − V π∥∞ ≤ c1

√
L

N(1− γ)3
, (30)

where c1 is some universal constant.

The analysis of the above two cases concludes the proof
of the sample complexity upper bound to get an ϵ-
optimal policy.

Additionally, in order to assess the tightness of Theo-
rem 1, we further develop a minimax lower bound as
follows, with the proof provided in Appendix C.2.

Theorem 2 (Sample Complexity Lower Bound). Fix
any τ ∈

(
0, 1
]
, γ ∈

(
1
2 , 1
)
, there exist an MDP s.t. for

any algorithm to obtain an ϵ-optimal policy, the sample

complexity is at least Õ
(

(1−γτ)SA
τ(1−γ)4ϵ2

)
. In addition, when

τ ≥ γ, the sample complexity of any algorithm is at

least Õ
(

SA
(1−γ)3ϵ2

)
.

Remark 2. Theorem 2 shows that when τ is small,
there exists an MDP for which the sample complexity
becomes unavoidably large. When the risk tolerance is
low—indicating that the agent is highly sensitive to ad-
verse states—more samples are needed for each state-
action pair to gather more accurate information about
the environment, allowing the agent to develop a safer
policy.

Lower Bound Analysis. In this following, we outline
the proof idea for the lower bound in Theorem 2, with
the full proof deferred to Appendix C.2. Our proof is
inspired by the lower bound construction in distribu-
tional robust RL (Shi et al., 2023). We first construct
two similar MDPs with close transition kernels that
are hard to distinguish. For each MDP, there is an
unknown optimal action. If an algorithm is capable
of achieving an ϵ-optimal policy in the Iterated CVaR
RL problem, it must also be able to identify the opti-
mal action and determine which MDP it is interacting
with, with high probability. The challenge then be-
comes determining how many samples are needed to
distinguish between two distributions. One notable
difference in our problem is that, in our case, the two
transition probabilities to the rewarding state are close
to 1 − τ , rather than 1 − γ as in standard and distri-
butional robust RL. Since CVaR computes the aver-
age over the worst τ -quantile of the reward-to-go, the
transition probability to lower reward states must be
smaller than τ for the worst-case transition kernel to
differ. As a result, the final lower bound has a higher
order in 1−γ compared with risk-neutral settings when
τ is relatively small.

Recall that the sufficient and necessary sample com-
plexity for learning a standard risk-neutral MDP is

Õ
(

SA
(1−γ)3ϵ2

)
(Gheshlaghi Azar et al., 2013; Agarwal

et al., 2020). Intuitively, the sample complexity for
CVaR should include an additional 1

τ factor compared
to the risk-neutral case, since CVaR only considers
the worst τ -portion of outcomes and takes an average.
Therefore, the number of samples needed should be

Õ
(

SA
τ(1−γ)3ϵ2

)
. This is true for static CVaR RL where

Wang et al. (2023) provided a regret lower bound has

an extra
√
τ−1 term comparing to risk-neutral regret

lower bound (
√
τ−1 in regret is equivalent to τ−1 in

PAC condition). But for Iterated CVaR RL, it is not
merely a matter of averaging the worst τ -protion of
trajectories. Du et al. (2022) in Section C.2 provides
a detailed discussion of the differences between static
and iterated CVaR in the episodic setting.

When τ ≥ γ, our sample complexity lower bound be-

comes Õ
(

SA
(1−γ)3ϵ2

)
which matches the minimax op-

timal sample complexity for the risk-neutral case, in
general, Iterated CVaR RL is harder to learn than
standard RL. However, when τ is large, then the prob-
lem becomes closer to a risk-neutral one.

Nearly Tight Sample Complexity. By combining
the upper bound from Theorem 1 with the minimax
lower bound from Theorem 2, we confirm that the sam-
ple complexity is nearly optimal:

• When τ ∈ (0, 1) is a constant independent of γ,
our sample complexity upper bound Õ

(
SA

(1−γ)4ϵ2
)

is tight and matches the minimax lower bound;

• When τ ≥ γ, our sample complexity upper bound

is Õ
(

SA
(1−γ)3ϵ2

)
, and it matches with the minimax

lower bound;

• When τ ≤ 1 − γ, our sample complexity
Õ
(

SA
τ2(1−γ)4ϵ2

)
has a gap of 1

τ ≥ 1
1−γ compared

to the minimax lower bound. This case of small
risk level τ will be further discussed in the next
section.

6 Worst-Path RL

In this section, we investigate the problem with a fixed
MDP and consider a limiting case where the risk level
is small. This problem is referred to as worst-path RL
(Du et al., 2022).

Specifically, consider an MDP, and denote by pmin

the minimum non-zero reaching probability from any
state-action pair: ∀(s, a) ∈ S × A, and ∀s′ ∈
supp(P (·|s, a)), P (s′|s, a) ≥ pmin. Consider small risk
level τ : τ ≤ pmin. Here we use supp(P ) to denote the
support of a distribution P .
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This case is not covered by results in Theorems 1 and 2.
Obviously, the sample complexity in Theorems 1 and 2
depends on 1

τ and goes to infinity as τ → 0. However,
as will be shown later, in the case with τ ≤ pmin,
a sample complexity of Õ( SApmin

) is minimax optimal,
and it does not depend on ϵ and 1− γ.

Taking the minimax lower bound result in Theorem 2
as an example to explain the difference. To prove the
minimax lower bound in Theorem 2, for any risk level
τ , we construct two MDPs with transition probabili-
ties to lower-reward states smaller than the risk level
τ . However, such hard examples do not satisfy the
problem setting in this section: τ ≤ pmin.

As we have mentioned earlier, as τ → 0, CVaRτ (Z) →
ess inf Z. In Du et al. (2022), regret bounds indepen-
dent of the number of episodes were developed, where
the bounds also depend on visitation probability to the
worst state. Given access to a generative model, the
problem is simpler since there is no need to explore.
Then the transition to the worst states is simply the
frequency of that state in the N samples generated.
When τ is smaller than all possible non-zero transi-
tion probability, CVaRτ simply reduces to finding the
worst state for the reward-to-go.

Bellman operator and Bellman equations. Since
τ ≤ pmin, the objective reduces to maximizing the
accumulative reward along the worst-case trajectory.
The Bellman equations can then be written as follows:

Qπ(s, a) = r(s, a) + γ min
s′∈supp(P (·|s,a))

(V π(s′)),

V π(s) = max
a∈A

Qπ(s, a), (31)

where mins′∈supp(P (·|s,a)) considers the worst-case of
all possible next states (with non-zero probability).
The algorithm for this problem is similar to Algorithm
1 with a slightly different Bellman operator:

∀(s, a) ∈ S ×A :

T̂ τ (Q)(s, a) := r(s, a) + γ min
s′:n(s′,s,a)>0

(V (s′)),

with V (s) := max
a

Q(s, a) (32)

where n(s′, s, a) denotes the number of samples with
next state s′ in the total N generated samples for state
action pair (s, a). With that in mind, we substitute
(32) to (23) in Algorithm 1, and we have the algorithm
for the worst-path RL problem in this section.

Sample Complexity Analysis. Below we provide
the sample complexity upper bound for the algorithm
discussed above for the worst-path RL problem.

Theorem 3 (Worst-Path RL Upper Bound). Con-
sider a risk level τ ≤ pmin. With probability at least

1 − δ, the number of samples needed to obtain an op-
timal policy is at most

O
(

SA

pmin

(
1 + log

(
SA

δ

)))
. (33)

Remark 3. For any τ < pmin, CVaR risk measure
reduces to the essential infimum, and therefore, the
bound does not depend on τ anymore. More impor-
tantly, the upper bound now depends on 1

pmin
, which is

strictly smaller than 1
τ2 .

The key idea in the proof is to analyze the sub-
optimality gap using the occurrence of the worst-case
state. If the worst-case state occurs with high prob-
ability, the Bellman operator behaves as it would un-
der the true underlying model. Otherwise, the sub-
optimality gap becomes non-vanishing. This also ex-
plains why the sample complexity does not depend on
ϵ and 1

1−γ here. This result aligns with our intuition:
if we expect a state with probability pmin to occur, we
need 1

pmin
samples for each state-action pair.

To validate the optimality of our sample complexity
upper bound, we also provide a minimax lower bound.

Theorem 4 (Worst-Path RL Lower Bound). For a
given risk level τ , there exists an MDP with Pmin ≥ τ
such that for any algorithm to obtain an optimal policy
at a risk level τ ≤ pmin, the sample complexity is at

least Õ
(
SA
pmin

)
.

The minimax lower bound matches with the upper
bound in Theorem 3.
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8 Conclusion

In this paper, we investigate Iterated CVaR RL prob-
lem in infinite horizon discounted MDP with access
to a generative model. We introduce the algorithm
ICVaR-VI and provide nearly matching sample com-
plexity upper and lower bounds. Later we study the
limit case with an arbitrarily small risk level τ , and
provide tight upper and lower bounds. There are sev-
eral interesting directions for future work, e.g., further
closing the gap between the upper and lower sample
complexity bounds and extending iterated CVaR to
other types of coherent risk measure or general Markov
coherent risk.
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A Notations and useful lemmas

In the appendices, with a slight abuse of notations, we use P ∈ RSA×S to denote the transition matrix of the
nominal transition kernel P , and let Ps,a denote its (s, a)-th row. Similarly, we could define the transition matrix

P̂ for the empirical nominal transition kernel P̂ . We further define the following matrix/vector notations for the
convenience of presentation. Let the state space S = {0, 1, 2, . . . , S−1} and action space A = {0, 1, 2, . . . , A−1}.
A deterministic policy π is a mapping from the state space to the action space, i.e., π(s) is an action in A.

• r ∈ RSA: vector form of the reward function r.

• Ππ ∈ {0, 1}S×SA: projection matrix associated with a deterministic policy π:

Ππ =




e⊤π(0) 0⊤ · · · 0⊤

0⊤ e⊤π(1) · · · 0⊤

...
...

. . .
...

0⊤ 0⊤ · · · e⊤π(S−1)




,

where e⊤π(0), e
⊤
π(1), . . . , e

⊤
π(S−1) ∈ RA are standard basis vectors and 0 ∈ RS is all zero vector.

• rπ ∈ RS : reward vector restricted to the actions chosen by the deterministic policy π, namely, rπ(s) =
r(s, π(s)) for all s ∈ S (or simply, rπ = Ππr).

• PV ∈ RSA×S , P̂V ∈ RSA×S : worst-case transition matrices for a vector V ∈ RS . We denote PVs,a (resp.

P̂Vs,a) as the (s, a)-th row. Specifically,

PVs,a = argmin
P̄s,a∈Uτ (Ps,a)

P̄s,aV, P̂Vs,a = argmin
P̄s,a∈Uτ (P̂s,a)

P̄s,aV.

Furthermore, we make use of the following short-hand notation:

Pπ,Vs,a := argmin
P̄s,a∈Uτ (Ps,a)

P̄s,aV
π, Pπ,V̂s,a := argmin

P̄s,a∈Uτ (Ps,a)

P̄s,aV̂
π,

P̂π,Vs,a := argmin
P̄s,a∈Uτ (P̂s,a)

P̄s,aV
π, P̂π,V̂s,a := argmin

P̄s,a∈Uτ (P̂s,a)

P̄s,aV̂
π.

The corresponding probability transition matrices are denoted by Pπ,V ∈ RSA×S , Pπ,V̂ ∈ RSA×S , P̂π,V ∈
RSA×S and P̂π,V̂ ∈ RSA×S , respectively.

• Pπ ∈ RS×S , P̂π ∈ RS×S , Pπ,V ∈ RS×S , Pπ,V̂ ∈ RS×S , P̂
π,V ∈ RS×S and P̂

π,V̂ ∈ RS×S : probability
transition matrices w.r.t. policy π over the states:

Pπ := ΠπP, P̂π := ΠπP̂ , Pπ,V := ΠπPπ,V , Pπ,V̂ := ΠπPπ,V̂ ,

P̂
π,V

:= ΠπP̂π,V , P̂
π,V̂

:= ΠπP̂π,V̂ .
(34)

• VarP̄ (V ) ∈ RSA: for any transition kernel P̄ ∈ RSA×S and any vector V ∈ RS , the (s, a)-th row of VarP (V )
is

VarP (s, a) = VarPs,a(V ), (35)

where VarPs,a(V ) := Ps,a(V
2)− (Ps,aV )2 .

Lemma 1. (Ruszczyński, 2010, Lemma 2). For any γ ∈ [0, 1), the robust Bellman operator T τ (·) is a γ-
contraction w.r.t. ∥ · ∥∞. Namely, for any Q1, Q2 ∈ RSA s.t. Q1(s, a), Q2(s, a) ∈ [0, 1

1−γ ] for all (s, a) ∈ S ×A,
one has

∥T τ (Q1)− T τ (Q2)∥∞ ≤ γ∥Q1 −Q2∥∞. (36)
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Lemma 2 (Shi et al., 2023, Lemma 5). Let Q̂0 = 0. The iterates {Q̂t}, {V̂t} of ICVaR-VI (Algorithm 1) obey

∀t ≥ 0 : ∥Q̂t − Q̂∗∥∞ ≤ γt

1− γ
∥Q̂t − Q̂∗∥∞ ≤ γt

1− γ
. (37)

Furthermore, the output policy π̂ obeys

∥V̂ ∗ − V̂ π̂∥∞ ≤ 2γϵopt
1− γ

, where ϵopt := ∥V̂ ∗ − V̂T−1∥∞. (38)

B Proof of Theorem 1: Sample Complexity Upper Bound

Step 1: Decomposing the error. The optimality gap can be decomposed as

V ∗ − V π̂ =
(
V π∗ − V̂ π∗)

+
(
V̂ π∗ − V̂ π̂∗)

+
(
V̂ π̂∗ − V̂ π̂

)
+
(
V̂ π̂ − V π̂

)

(i)

≤
(
V π∗ − V̂ π∗)

+
(
V̂ π̂∗ − V̂ π̂

)
+
(
V̂ π̂ − V π̂

)

(ii)

≤
(
V π∗ − V̂ π∗)

+
2γϵopt
1− γ

1+
(
V̂ π̂ − V π̂

)
, (39)

where (i) holds by the fact that π̂∗ is the optimal policy under transition kernel P̂ ; and (ii) follows from Lemma 2.

The first and third terms in the sub-optimality gap in (39) can be bounded in the same way as follows

where (i) holds by the fact that corresponds to the worst-case transition kernel in Uτ (Pπ) for V π. By decom-
posing the error in a symmetric way, we can similarly obtain that

V̂ π − V π ≤ γ(I − γP̂
π,V

)−1(P̂
π,V

V π − Pπ,V V π). (40)

Combining (??) and (40), we arrive at

Step 2: Controlling ||V̂ π − V π||∞ and ||V̂ π̂ − V π̂||∞ in (39).

Lemma 3. For any δ ∈ (0, 1), with probability at least 1− δ, one has that

∥∥∥P̂
π,V

V π − Pπ,V V π
∥∥∥
∞

≤ 2

τ

√
2 log(6SAN/δ)

N(1− γ)2
. (41)

Proof. Note that V π(s) ∈
[
0, 1

1−γ

]
for any s ∈ S. Therefore, sup

x∈R
is equivalent to sup

x∈[0, 1
1−γ ]

. We first show that

|(P̂π,Vs,a − Pπ,Vs,a )V π| =
∣∣∣∣ sup
x∈[0, 1

1−γ ]

{
x− 1

τ
Es′∼P̂s,a

[(x− V π(s′))+]

}
− sup
x∈[0, 1

1−γ ]

{
x− 1

τ
Es′∼Ps,a

[(x− V π(s′))+]

} ∣∣∣∣

≤ 1

τ
sup

x∈[0, 1
1−γ ]

∣∣∣Es′∼P̂s,a
[(x− V π(s′))+]− Es′∼Ps,a [(x− V π(s′))+]

∣∣∣

=
1

τ
sup

x∈[0, 1
1−γ ]

∣∣∣Es′∼P̂s,a

[
x−

]
− Es′∼Ps,a

[
x−

]∣∣∣

=
1

τ
sup

x∈[0, 1
1−γ ]

∣∣∣∣∣
∑

s′

(
P̂s,a(s

′)− Ps,a(s
′)
)
∣∣∣∣∣ . (42)

We define the function g as the difference in the expectation of V between the two transition kernel for a fix x
and (s, a),

gs,a(x, V ) :=

∣∣∣∣∣
∑

s′

(
P̂s,a(s

′)− Ps,a(s
′)
)
∣∣∣∣∣ . (43)
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Using Hoeffding’s inequality, one has that with probability at least 1− δ,

gs,a(x, V ) ≤
√

2 log(2/δ)

N(1− γ)2
. (44)

It can be easily shown that gs,a(s, V ) is 1-Lipschitz in x for any V such that ∥V ∥∞ ≤ 1
1−γ . To obtain the union

bound, we construct an ϵ1-net Nϵ1 over [0, 1
1−γ ], with size |Nϵ1 | ≤ 3

(1−γ)ϵ1 (Vershynin, 2018). By the union

bound, we have that with probability at least 1− δ,

sup
x∈R

∣∣∣∣∣
∑

s′

(
P̂s,a(s

′)− Ps,a(s
′)
)
∣∣∣∣∣
(i)

≤ ϵ1 + sup
x∈Nϵ1

∣∣∣∣∣
∑

s′

(
P̂s,a(s

′)− Ps,a(s
′)
)
∣∣∣∣∣

(ii)

≤
√

2 log(2SA|Nϵ1 |/δ)
N(1− γ)2

+ ϵ1

(iii)

≤ 2

√
2 log(6SAN/δ)

N(1− γ)2
, (45)

where (i) follows from that the optimal x falls into an ϵ1-ball centered around some point in Nϵ1 and gs,a(x, V )
is 1-Lipschitz in x; (ii) stems from applying the results in (44) and the union bound over S, A, and Nϵ1 ; and

(iii) follows if we let ϵ1 =
√

2 log(6SAN/δ)
N(1−γ)2 and then |Nϵ1 | ≤ 3

ϵ1(1−γ) ≤ 3N . Substituting (45) back into (42), we

have that with probability at least 1− δ,

∣∣∣(P̂π,Vs,a − Pπ,Vs,a )V π
∣∣∣ ≤ 2

τ

√
2 log(6SAN/δ)

N(1− γ)2
. (46)

From (46), it can be shown that with probability at least 1− δ,

∥∥∥P̂
π,V

V π − Pπ,V V π
∥∥∥
∞

≤ 2

τ

√
2 log(6SAN/δ)

N(1− γ)2
. (47)

This concludes the proof of Lemma 3.

Substituting (47) back into (??) we get that with probability at least 1− δ,

∥V̂ π − V π||∞
(i)

≤ γmax

{
2

τ
(I − γP̂

π,V̂
)−1

∥∥∥P̂
π,V

V π − Pπ,V V π
∥∥∥
∞

1,

2

τ
(I − γP̂

π,V
)−1

∥∥∥P̂
π,V

V π − Pπ,V V π
∥∥∥
∞

1

}

(ii)

≤ 2γ

τ(1− γ)

√
2 log(6SAN/δ)

N(1− γ)2
, (48)

where (i) holds by
(
I − γP̂

π,V
)−1

=
∑∞
t=0 γ

t(P̂
π,V

)t ≥ 0, (ii) follows from

(
I − γP̂

π,V
)−1

1 =
∞∑

t=0

γt(P̂
π,V

)t1 =
1

1− γ
1. (49)

Finally take ϵopt ≤
√

2 log(6SAN/δ)

τ(1−γ)
√
N

, and plug (48) back to (39). We then have that with probability at least 1− δ,

∥V ∗ − V π̂∥∞ ≤ ∥V π∗ − V̂ π∗∥∞ +
2γϵopt
1− γ

+ ∥V̂ π̂ − V π̂∥∞

≤ 6γ

τ(1− γ)

√
2 log(6SAN/δ)

N(1− γ)2

≤ 6

√
2 log(6SAN/δ)

N(1− γ)4τ2
.

(50)
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B.1 Tighter bound using Berstein inequality when τ ≥ γ

Note that the bound in (50) applied to any τ and γ. In this subsection, we consider the scenario where τ ≥ γ.
We show that a tighter bound can be achieved.

Then, for a fixed x that is independent with Ps,a, using Bernstein inequality, one has that with probability at
least 1− δ,

gs,a(x, V ) ≤

√
2 log(2δ )

N

√
VarPs,a

(min(V, x)) +
2 log

(
2
δ

)

3N(1− γ)

≤

√
2 log(2δ )

N

√
VarPs,a(V ) +

2 log
(
2
δ

)

3N(1− γ)
. (51)

To derive the union bound, we can similarly construct a ϵ1-net over [0, 1
1−γ ] with size |Nϵ1 | ≤ 3

ϵ1(1−γ) . By the

union bound and (51), it holds with probability at least 1− δ
SA for all x ∈ Nϵ1 ,

gs,a(x, V ) ≤

√
2 log(

2SA|Nϵ1
|

δ )

N

√
VarPs,a

(V ) +
2 log

(
2SA|Nϵ1 |

δ

)

3N(1− γ)
. (52)

From (42), we can show that with probability at least 1− δ
SA ,

∣∣∣(P̂π,Vs,a − Pπ,Vs,a )V π
∣∣∣ ≤ 1

τ
sup

x∈[0, 1
1−γ ]

∣∣∣∣∣
∑

s′

(
P̂s,a(s

′)− Ps,a(s
′)
)
∣∣∣∣∣

(i)

≤ 1

τ


ϵ1 +

√
2 log(

2SA|Nϵ1
|

δ )

N

√
VarPs,a

(V π) +
2 log

(
2SA|Nϵ1

|
δ

)

3N(1− γ)




(ii)
=

1

τ



√

2 log(
2SA|Nϵ1

|
δ )

N

√
VarPs,a

(V π) +
log
(

2SA|Nϵ1 |
δ

)

N(1− γ)




(iii)

≤ 1

τ


2

√
log( 18SANδ )

N

√
VarPs,a

(V π) +
log
(
18SAN

δ

)

N(1− γ)


 , (53)

where (i) follows from that the optimal x falls into an ϵ1-ball centered around some point in Nϵ1 and gs,a is

1-Lipschitz in x. (ii) stems from taking ϵ1 =
log(2SA|Nϵ1

|/δ)
3N(1−γ) ; and (iii) is shown by |Nϵ1 | ≤ 3

ϵ1(1−γ) ≤ 9N .

To bound the term on the right-hand side of (??), for any policy π, we show that

(
I − γP̂

π,V
)−1 (

P̂
π,V

V π − Pπ,V V π
)

(i)

≤
(
I − γP̂

π,V
)−1

(ii)

≤ log
(
18SAN

δ

)

Nτ(1− γ)

(
I − γP̂

π,V
)−1

1+
2

τ

√
log
(
18SAN

δ

)

N

(
I − γP̂

π,V
)−1√

Var
P̂

π,V (V π)

︸ ︷︷ ︸
=:C1

+
2

τ

√
log
(
18SAN

δ

)

N

(
I − γP̂

π,V
)−1

√∣∣∣VarP̂π (V π)−Var
P̂

π,V (V π)
∣∣∣

︸ ︷︷ ︸
=:C2

+
2

τ

√
log
(
18SAN

δ

)

N

(
I − γP̂

π,V
)−1 (√

VarPπ (V π)−
√

VarP̂π (V π)
)

︸ ︷︷ ︸
=:C3

, (54)
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where (i) holds by
(
I − γP̂

π,V
)−1

=
∑∞
t=0 γ

t(P̂
π,V

)t ≥ 0; and (ii) holds with high probability by the bound in

(53) and

√
VarPπ (V π) ≤

(√
VarPπ (V π)−

√
VarP̂π (V π)

)
+

√∣∣∣VarP̂π (V π)−Var
P̂

π,V (V π)
∣∣∣+
√
Var

P̂
π,V (V π). (55)

Lemma 4 (Agarwal et al. (2020), Lemma 4). For any policy π and transition kernel P ,

∥∥∥(I − γPπ)
−1
√

VarPπ (V π)
∥∥∥
∞

≤
√

2

(1− γ)3
. (56)

Applying Lemma 4, then C1 in (54) can be bounded as follows

C1 =
2

τ

√
log
(
18SAN

δ

)

N

(
I − γP̂

π,V
)−1√

Var
P̂

π,V (V π) ≤ 2

√
2 log

(
18SAN

δ

)

Nτ2(1− γ)3
1. (57)

Lemma 5. Consider a CVaR uncertainty set Uτ defined in (19), then it holds that

∀P̄s,a ∈ Uτ (Ps,a) : ∥Ps,a − P̄s,a∥1 ≤ 2(1− τ)

τ
. (58)

Then we have for all (s, a) ∈ S ×A, and P̄s,a ∈ Uτ (Ps,a):
∣∣∣VarP̄s,a

(V π)−VarPs,a
(V π)

∣∣∣ ≤ 3
∥∥P̄s,a − Ps,a

∥∥
1
∥V π∥2∞ ≤ 6

1− τ

τ

1

(1− γ)2

(i)

≤ 6

τ(1− γ)
, (59)

and (i) holds when τ ≥ γ. We then have that

C2 =
2

τ

√
log
(
18SAN

δ

)

N

(
I − γP̂

π,V
)−1

√∣∣∣VarP̂π (V π)−Var
P̂

π,V (V π)
∣∣∣

=
2

τ

√
log
(
18SAN

δ

)

N

(
I − γP̂

π,V
)−1√∣∣Ππ

(
VarP̂ (V

π)−VarP̂π,V (V π)
)∣∣

≤ 2

τ

√
log
(
18SAN

δ

)

N

(
I − γP̂

π,V
)−1√∥∥VarP̂ (V π)−VarP̂π,V (V π)

∥∥
∞1

(i)

≤ 2

τ

√
log
(
18SAN

δ

)

N

(
I − γP̂

π,V
)−1

√
6(1− τ)

τ(1− γ)2
1

(ii)
= 2

√
6(1− τ) log

(
18SAN

δ

)

Nτ3(1− γ)4
1, (60)

where (i) follows from (59); and (ii) follows from (49).

In the following, we then bound C3. The following lemma plays an important role.

Lemma 6 (Panaganti & Kalathil, 2022, Lemma 6). Consider any δ ∈ (0, 1). For any fixed policy π and fixed
value function vector V ∈ RS, one has that with probability at least 1− δ,

∣∣∣
√

VarP̂π (V )−
√

VarPπ (V )
∣∣∣ ≤

√
2∥V ∥2∞ log( 2SAδ )

N
1. (61)

Plugging (61) into (54), we can show that with high probability

C3 =
2

τ

√
log
(
18SAN

δ

)

N

(
I − γP̂

π,V
)−1 (√

VarPπ (V π)−
√
VarP̂π (V π)

)

≤ 4

1− γ

log
(
18SAN

δ

)
∥V π∥∞

Nτ
1 ≤ 4 log

(
18SAN

δ

)

Nτ(1− γ)2
1. (62)
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Finally, plugging the results of C1 in (57), C2 in (60) and C3 in (62) back into (54), we have

(
I − γP̂

π,V
)−1 (

P̂
π,V

V π − Pπ,V V π
)
≤ 2

√
2 log

(
18SAN

δ

)

Nτ2(1− γ)3
1+ 2

√
6(1− τ) log

(
18SAN

δ

)

Nτ3(1− γ)4
1

+
4 log

(
18SAN

δ

)

Nτ(1− γ)2
1+

log
(
18SAN

δ

)

Nτ(1− γ)2
1

=
5 log

(
18SAN

δ

)

Nτ(1− γ)2
1+

√
log
(
18SAN

δ

)

Nτ2(1− γ)3

(
2
√
2 + 2

√
6

1− τ

τ(1− γ)

)
1

(i)

≤ 10 log
(
18SAN

δ

)

N(1− γ)2
1+ 32

√
log
(
18SAN

δ

)

N(1− γ)3
1, (63)

where (i) holds when τ ≥ γ ≥ 1
2 .

Plugging (63) back into (??), we have that

∥∥∥V π − V̂ π
∥∥∥
∞

≤ 10 log
(
18SAN

δ

)

N(1− γ)2
+ 32

√
log
(
18SAN

δ

)

N(1− γ)3
. (64)

Summing up the results for π̂ and π∗ and plugging back to (39) complete the proof as follows: taking ϵopt ≤
log( 18SAN

δ )

γ(1−γ)N and N ≥ log( 18SAN
δ )

(1−γ)2 , with probability at least 1− δ,

∥∥∥V ∗ − V π̂
∥∥∥
∞

≤ 2γϵopt
1− γ

+
∥∥∥V̂ π̂ − V π̂

∥∥∥
∞

+
∥∥∥V π∗ − V̂ π∗

∥∥∥
∞

≤ 2γϵopt
1− γ

+
20 log

(
18SAN

δ

)

N(1− γ)2
+ 64

√
log
(
18SAN

δ

)

N(1− γ)3

≤ 22 log
(
18SAN

δ

)

N(1− γ)2
+ 64

√
log
(
18SAN

δ

)

N(1− γ)3

≤ 86

√
log
(
18SAN

δ

)

N(1− γ)3
, (65)

where the last inequality holds if N ≥ log( 18SAN
δ )

(1−γ)2 , with probability at least 1− δ.

C Proof of Theorem 2: Sample Complexity Lower Bound

C.1 Construction of hard problem instances

Construction of two hard MDPs. Suppose there are two standard MDPs defined as below:

Mϕ = {(S,A, Pϕ, r, γ)|ϕ = 0, 1}.

Here, γ is the discount factor, S = {0, 1, ..., S − 1} is the state space. Given any state s ∈ {2, 3, ..., S − 1}, the
coresponding action spaces are A = {0, 1, 2, ..., A− 1}. While for state s = 0 and s = 1, the action space is only
A′ = {0, 1}. For any ϕ ∈ {0, 1}, the transition kernel Pϕ of the constructed MDP Mϕ is defined as

Pϕ(s′|s, a) =





p1(s′ = 1) + (1− p)1(s′ = 0), if (s, a) = (0, ϕ)

q1(s′ = 1) + (1− q)1(s′ = 0), if (s, a) = (0, 1− ϕ)

1(s′ = 1), if s ≥ 1

, (66)

where p and q are set to satisfy
0 ≤ p ≤ 1 and 0 ≤ q = p−∆ (67)

for some p and ∆ > 0. The above transition kernel Pϕ implies that State 1 is an absorbing state.
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Then we define the reward function as:

r(s, a) =

{
1, if s = 1

0, otherwise.

Additionally, we choose the following initial state distribution:

φ(s) =

{
1, if s = 0

0, otherwise.

Uncertainty set of the transition kernel. Recall that the uncertainty set of CVaR is:

Uτ (Ps,a) =
{
P̄s,a ∈ ∆(S), 0 ≤ P̄s,a(s

′)
Ps,a(s′)

≤ 1

τ

}
. (68)

We define p and ∆:

p = (1− τ) + cτ(1− γ) and ∆ ≤ cτ(1− γ), (69)

where c ∈ (0, 1). Consequently, applying (67) directly leads to

p ≥ q ≥ 1− τ. (70)

For any (s, a) ∈ S ×A, we denote the smallest transition probability of moving to the next state s′ ∈ {0, 1} in
the uncertainty set as

Pϕ(1|s, a) := inf
Ps,a∈Uτ (Pϕ

s,a)
P (1|s, a) = 1−min

{
1

τ
Pϕs,a(0), 1

}
=

1

τ
max

{
Pϕs,a(1)− (1− τ), 0

}
, (71a)

Pϕ(0|s, a) := inf
Ps,a∈Uτ (Pϕ

s,a)
P (0|s, a) = min

{
1

τ
Pϕs,a(0), 1

}
, (71b)

where the last equation can be verified by the definition of Uτ (P ). We further define the following notation

p := Pϕ(1|0, ϕ) = 1

τ
max{p− (1− τ), 0}, q := Pϕ(1|0, 1− ϕ) =

1

τ
max{q − (1− τ), 0}, (72)

which follows from the fact that p ≥ q ≥ 1− τ in (70).

Robust value function and optimal robust policies. For any MDP Mϕ with the above uncertainty set,
we denote π∗

ϕ as the optimal policy, and the robust value function of any policy π as V π
ϕ . Then we introduce the

following lemma, which describes some important properties of the robust value function:

Lemma 7. For any ϕ = {0, 1} and any policy π, the value function satisfies

V π
ϕ (0) =

γzπϕ
(1− γ)(1− γ(1− zπϕ))

, (73)

where zπϕ is defined as

zπϕ = 1− 1

τ
(1− pπ(ϕ|0)− qπ(1− ϕ|0))

= pπ(ϕ|0) + qπ(1− ϕ|0). (74)

The optimal value function and the optimal policy satisfy

V ∗
ϕ (0) =

γp

(1− γ)(1− γ(1− p))
, (75a)

π∗
ϕ(ϕ|s) = 1, for s ∈ S. (75b)
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C.2 Establishing the minimax lower bound

Note that our goal is to quantify the sub-optimality gap between the policy estimator π̂ and the optimal policy
π∗ on the initial state distribution φ, which is

⟨φ, V ∗
ϕ − V π̂

ϕ ⟩ = V ∗
ϕ (0)− V π̂

ϕ (0).

Step 1: Equivalence to estimating ϕ. With ϵ ≤ c
16(1−γ) , let ∆ = 16(1− γ)2τϵ. Applying (73) and (75a) we

have that

V ∗
ϕ (0)− V π̂

ϕ (0) =
γp

(1− γ)(1− γ(1− p))
−

γzπ̂ϕ

(1− γ)(1− γ(1− zπ̂ϕ))

=
γ(p− zπ̂ϕ)

(1− γ(1− p))(1− γ(1− zπ̂ϕ))

=
γ(p− q)

(1− γ)2
(
1 +

γp

1−γ

)(
1 +

γzπ̂ϕ
1−γ

) (1− π̂(ϕ|0))

(i)
=

γ∆

τ(1− γ)2
(
1 +

γp

1−γ

)(
1 +

γzπ̂ϕ
1−γ

) (1− π̂(ϕ|0))

(ii)

≥ γ

(1− γ)2
1

(
1 +

γp

1−γ

)2
(
∆

τ

)
(1− π̂(ϕ|0))

(iii)
=

γ

τ(1− γ2)

1

(1 + cγ)2
∆(1− π̂(ϕ|0))

(iv)

≥ 2ϵ(1− π̂(ϕ|0)), (76)

where (i) holds by the definition of p and q; (ii) follows from zπ̂ϕ ≤ p; (iii) follows from the definition of p; (iv)

follows from γ ≥ 1
2 .

With this connection between the sub-optimality gap and the policy π̂(ϕ|0), if the policy π̂ is ϵ-optimal with a
high probability, i.e.,

P
(
⟨φ, V ∗

ϕ − V π̂
ϕ ⟩ ≤ ϵ

)
≥ 1− δ, (77)

then, we need π̂(ϕ|0) ≥ 1
2 with probabily at least 1− δ. With this in mind, we can construct an estimator ϕ̂ for

the better action ϕ

ϕ̂ = argmax
a∈{0,1}

π̂(a|0), (78)

which satisfies

P
(
ϕ̂ = ϕ

)
= P

(
π̂(ϕ|0) > 1

2

)
≥ 1− δ. (79)

The problem now becomes to produce a correct estimator ϕ̂ with high probability. Subsequently, the goal is to
demonstrate that (79) cannot hold without a sufficient number of samples.

Step 2: Probability of error in testing two hypotheses. Equipped with the aforementioned ground- work,
we can now delve into differentiating between the two hypotheses ϕ ∈ {0, 1}. To achieve this, we consider the
concept of minimax probability of error, defined as follows:

pe := inf
ψ

max{P0(Ψ ̸= 0), P1(Ψ ̸= 1)}. (80)

Here, the infimum is taken over all possible tests Ψ constructed from the samples generated from the nominal
transition kernel Pϕ.



Near-Optimal Sample Complexity for Iterated CVaR Reinforcement Learning with a Generative Model

Moving forward, let us denote µϕ (resp. µϕ(s)) as the distribution of a sample tuple (si, ai, s
′
i) under the nominal

transition kernel Pϕ associated with Mϕ and the samples are generated independently. Applying standard
results from Chagny (2016) and the additivity of the KL divergence, we obtain

pe ≥
1

4
exp (−NSA ·KL (µ0||µ1))

= exp
{
−N

(
KL(P 0(·|0, 0)||P 1(·|0, 0)) + KL(P 0(·|0, 1)||P 1(·|0, 1))

)}
, (81)

where the last inequality holds by observing that

KL(µ0||µ1) =
1

SA

∑

s′,a′,s′

KL
(
P 0(s′||s, a)||P 1(s′||s, a)

)

=
1

SA

∑

a∈{0,1}
KL
(
P 0(s′||0, a)||P 1(s′||0, a)

)
. (82)

Now our focus shifts to bound the KL divergence in (81). Applying Lemma 2.7 in Iyengar (2005) gives

KL
(
P 0(s′||0, 1)||P 1(s′||0, 1)

)
= Kl(p||q) ≤ (p− q)2

p(1− p)
=

∆2

p(1− p)

=
256(1− γ)4τ2ϵ2

p(1− p)

(i)

≤ 256(1− γ)4τ2ϵ2

γτ(1− γτ)

(ii)

≤ 512(1− γ)4τϵ2

1− γτ
, (83)

where (i) stems from 1− p = τ − cτ(1− γ) = τ(1− c(1− γ)) ≥ γτ , and p(1− p) ≥ min{τ(1− τ), γτ(1− γτ)} =
γτ(1 − γτ); and (ii) follows from γ ≥ 1

2 . Note that KL
(
P 0(s′||0, 0)||P 1(s′||0, 0)

)
can be bounded in the same

procedure. Substitute (83) back in to (81), if the sample size is selected as

N ≤ log
(

1
4δ

)
(1− γτ)

1024(1− γ)4τϵ2
, (84)

then one necessarily has

pe ≥
1

4
exp

{
−N · 1024(1− γ)4τϵ2

1− γτ

}
≥ δ. (85)

Step 3: putting the results together. Combined all the results above, suppose there is a policy π̂ such that

P0{⟨φ, V ∗
0 − V π̂

0 > ϵ⟩} < δ and P1{⟨φ, V ∗
1 − V π̂

1 > ϵ⟩} < δ. (86)

According to the discussion in Step 1, the estimated ϕ̂ must satisfy

P0(ϕ̂ ̸= 0) < δ and P1(ϕ̂ ̸= 1) < δ. (87)

However, this cannot be satisfied with the sample size being too small (84). Thus we have completed the proof
of the lower bound.

D Proof for Worst Path RL

D.1 Proof of Theorem 3

For any (s, a) ∈ S × A, n(s′, s, a) denotes the number of times when the next state is s′. Using Lemma F.4 in
Dann et al. (2017), we have that

P

(
n(s′, s, a) ≥ 1

2
NP (s′|s, a)− 2 log

(
SA

δ

)
, ∀(s, a) ∈ S ×A

)
≥ 1− δ. (88)
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When N ≥ 2
pmin

(
1 + 2 log

(
SA
δ

))
, for any (s, a) ∈ S ×A and s′ ∈ supp (P (·|s, a)), we can show that

P

(
n(s′, s, a) ≥ 1

2
NP (s′|s, a)− 2 log

(
SA

δ

))

≤ P

(
n(s′, s, a) ≥ P (s′|s, a)

pmin

(
1 + 2 log

(
SA

δ

))
− 2 log

(
SA

δ

))
(i)

≤ P (n(s′, s, a) ≥ 1) , (89)

where (i) is derived from P (s′|s, a) ≥ pmin for s′ ∈ supp (P (·|s, a)). Combining with (88), we have that

∀s′ ∈ supp (P (·|s, a)) , P (n(s′, s, a) ≥ 1) ≥ 1− δ. (90)

We decompose the sub-optimality gap in the same manner as in (39). We notice that with probability at least
1− δ, for all (s, a) ∈ S ×A,

(P̂π,Vs,a − Pπ,Vs,a )V π = min
s′∈supp(P̂ (·|s,a))

V π(s′)− min
s′∈supp(P (·|s,a))

V π(s′) = 0. (91)

Plugging (91) back into (??), we have
∥∥∥V̂ π − V π

∥∥∥
∞

= 0. (92)

Then the first and the third term in (39) then disappears, and we get that

∥V ∗ − V π̂∥∞ ≤ 2γϵopt
1− γ

. (93)

When N ≥ 2
pmin

(
1 + 2 log

(
SA
δ

))
, for any ϵ > 0, if we take ϵopt ≤ ϵ(1−γ)

2γ , then with probability at least 1− δ, we
have that

∥V ∗ − V π̂∥∞ ≤ ϵ, (94)

which concludes the proof.

D.2 Proof of Theorem 4

In the following, we establish a sample complexity lower bound for Worst Path RL. We first construct two hard
MDP instances similar to those in Section C.2. Suppose there are two standard MDPs defined below

Mϕ = {(S,A, Pϕ, r, γ)|ϕ = 0, 1}.
The transition kernel is defined as

Pϕ(s′|s, a) =





1(s′ = 1), if (s, a) = (0, ϕ)

(1− pmin)1(s
′ = 0) + pmin1(s

′ = 1), if (s, a) = (0, 1− ϕ)

1(s′ = 1), if s ≥ 1,

(95)

The reward function is defined as

r(s, a) =

{
1, if s = 1

0, otherwise.
(96)

The initial state distribution is also the same

φ(s) =

{
1, if s = 0

0, otherwise.
(97)

Since state s = 1 is an absorbing state and has reward 1, the value function at state 1 for any policy π is
V π(1) = 1

1−γ . At state s ∈ {2, 3, ..., S−1}, applying the Bellman operator we have V π(s) = γ
1−γ . At state s = 0,

we have that

V π
ϕ (0) =

γ

1− γ
π(ϕ|0), (98)

V ∗
ϕ (0)− V π

ϕ (0) =
γ

1− γ
(1− π(ϕ|0)) . (99)
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If we want a policy π to be ϵ-optimal with high probability:

P
{
⟨φ, V ∗

ϕ − V π
ϕ ⟩ ≤ ϵ

}
≥ 1− δ, (100)

then if ϵ ≤ γ
2(1−γ) , we necessarilly need π(ϕ|0) ≥ 1

2 with probability at least 1− δ. Following the same procedure

in the proof of the lower bound for Iterated CVaR RL, we constructed the estimator ϕ̂ for the better action (78)
that satisfies (79). We also notice that if n(0, 0, a) ≥ 1 in the N samples, we can definitely tell the other action
is superior. Otherwise, we cannot tell the difference between the two actions, and in this case, the probability of
a correct guess is 1

2 . With this in mind, we have

P
{
ϕ̂ = ϕ

}
= 1− (1− pmin)

N
+ (1− pmin)

N 1

2
. (101)

Inserting (101) into 79 we have that

1− δ ≤ P
{
ϕ̂ = ϕ

}
= 1− 1

2
(1− pmin)

N
, (102)

which further implies that

N ≥ log(1/2δ)

log(1/(1− pmin))
∼ Õ

(
1

pmin

)
. (103)

The overall sample complexity lower bound is then Õ
(
SA
pmin

)
.

E Proof of Lemmas

E.1 Proof of Lemma 5

For any P̄s,a ∈ Uτ (Ps,a) =
{
P̄s,a ∈ ∆(S), 0 ≤ P̄s,a(s

′)
Ps,a(s′)

≤ 1
τ

}
, the total-variation between P̄s,a and Ps,a is defined

as:

∥∥P̄s,a − Ps,a
∥∥
TV

= sup
S′⊂S

∣∣P̄s,a(S ′)− Ps,a(S ′)
∣∣ = 1

2

∥∥P̄s,a − Ps,a
∥∥
1
. (104)

Here S ′ is a subset of state space S and Ps,a(S ′) =
∑
s′∈S′ Ps,a(s

′), P̄s,a(S ′) =
∑
s′∈S′ P̄s,a(s

′).

By the definition of the uncertainty set (19), for any S ′ ∈ S, we have that

0 ≤ P̄s,a(S ′) ≤ 1

τ
Ps,a(S ′), (105)

0 ≤ 1− P̄s,a(S ′) ≤ 1

τ
(1− Ps,a(S ′)) . (106)

This further implies that

1− 1

τ
(1− Ps,a(S ′)) ≤ P̄s,a(S ′) ≤ 1

τ
Ps,a(S ′). (107)

For any S ′ ∈ S,
∣∣P̄s,a(S ′)− Ps,a(S ′)

∣∣ ≤ max

{(
1

τ
− 1

)
Ps,a(S ′),

(
1

τ
− 1

)
(1− Ps,a(S ′))

}

=

(
1

τ
− 1

)
max {Ps,a(S ′), 1− Ps,a(S ′)}

≤ 1

τ
− 1. (108)

Using the second definition of total variation, we obtain that

1

2

∥∥P̄s,a − Ps,a
∥∥
1
≤ 1

τ
− 1. (109)
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E.2 Proof of Lemma 7

For any Mϕ ∈ {0, 1}, we can easily find the value function at state s = 1 or any states s ∈ {2, 3, · · · , S − 1}

V π
ϕ (1)

(i)
= 1 + γV π

ϕ (1) =
1

1− γ
, (110a)

∀s ∈ {2, 3, · · · , S} : V π
ϕ (s)

(ii)
= 0 + γV π

ϕ (1) =
γ

1− γ
, (110b)

where (i) and (ii) are according to the fact that the transitions defined over states s ≥ 1 in (66) give only one
possible next state 1, and by the definition of the uncertainty set in (19), there exists only one transition kernel
within the uncertainty set, which is the kernel itself.

The value function at state s = 0 with policy π satisfies

V π
ϕ (0) = Ea∼π(·|0)[r(0, a)] + γ

∑

a∈A
π(a|0) inf

P̄∈Uτ (Pϕ
0,a)

P̄ V π
ϕ

= γ
∑

a∈A
π(a|0) inf

P̄∈Uτ (Pϕ
0,a)

P̄ V π
ϕ

= γ

(
π(ϕ|0) inf

P̄∈Uτ (Pϕ
0,ϕ)

P̄ V π
ϕ + (1− π(ϕ|0)) inf

P̄∈Uτ (Pϕ
0,1−ϕ)

P̄ V π
ϕ

)

(i)
= γ

(
π(ϕ|0)

(
V π
ϕ (1)p+ V π

ϕ (0)(1− p)
)
+ (1− π(ϕ|0)) (V π

ϕ (1)q + V π
ϕ (0)(1− q))

)

=
γzπϕ

1− γ(1− zπϕ)
V π
ϕ (1)

=
γzπϕ

(1− γ)(1− γ(1− zπϕ))
, (111)

where (i) follows from (71a), (71b) and (72). Note that V π
ϕ (0) is increasing in zπϕ and zπϕ is upper bounded by p

and reaches the upper bound when π(ϕ|0) = 1. Taking zπϕ = p in (111), we get the optimal value function

V ∗
ϕ (0) =

γp

(1− γ)(1− γ(1− p))
. (112)


