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ABSTRACT

Distributionally robust optimization (DRO) is a powerful technique to train robust
machine learning models that perform well under distribution shifts. Compared
with empirical risk minimization (ERM), DRO optimizes the expected loss under
the worst-case distribution in an uncertainty set of distributions. This paper revis-
its the important problem of DRO with non-convex smooth loss functions. For this
problem, Jin et al. (2021) showed that its dual problem is generalized (Lo, L1)-
smooth condition and gradient noise satisfies the affine variance condition, de-
signed an algorithm of mini-batch normalized gradient descent with momentum,
and proved its convergence and complexity. In this paper, we show that the dual
problem and the gradient noise satisfy simpler yet more precise partially gener-
alized smoothness condition and partially affine variance condition by studying
the optimization variable and dual variable separately, which further yields much
simpler convergence analysis. We develop a double stochastic gradient descent
with clipping (D-SGD-C) algorithm that converges to an e-stationary point with
O(e~*) gradient complexity, which matches with results in Jin et al. (2021). Our
proof is much simpler, thanks to the more precise characterization of partially
generalized smoothness and partially affine variance noise. We further design
a variance-reduced method that achieves a lower gradient complexity of O(e~9).
Our theoretical results and insights are further verified numerically on a number of
tasks, and our algorithms outperform the existing DRO method (Jin et al., 2021).

1 INTRODUCTION

Empirical risk minimization (ERM) minimizes the expected loss under the empirical distribution
Py of the training dataset with the goal of achieving a good performance on a test dataset. Though
this approach yields good performance in most cases, it often times fails due to a mismatch be-
tween training and test data distributions, e.g., domain difference from training to testing in domain
adaptation problems (Blitzer et al., 2006; Daume III & Marcu, 2006), imbalanced classes in the
training dataset (Sagawa et al., 2019) where performance of underrepresented minority groups is
important due to fairness considerations (Hashimoto et al., 2018; Grother et al., 2011); and potential
adversarial attacks to the deployed model (Goodfellow et al., 2014; Sinha et al., 2017; Madry et al.,
2017). For models trained using ERM, such distribution shifts will lead to significant performance
degradation on test datasets.

To deal with the above challenge of potential distribution shift, distributionally robust optimization
(DRO) was developed and has been widely studied in recent years (Ben-Tal et al., 2013; Shapiro,
2017; Rahimian & Mehrotra, 2019). Instead of merely optimizing the expectation of the loss func-
tion under a fixed distribution, DRO optimizes the performance over a set of probability distri-
butions, aiming at good model performance under potential distribution shifts. Specifically, DRO
assumes the test distribution lies in an uncertainty set centered in the empirical distribution P of the
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training dataset. Typically, the uncertainty set U (P,) is defined as follows:
U(Py) ={Q : D(Q||Fv) < p}, )]

where D measures the distance between @) and P, e.g., Kullback-Leibler (KL) divergence, X2
divergence or Wasserstein distance, and p is the radius of this uncertainty set. Then the goal of
DRO is to optimize the expectation of the loss function under the worst-case distribution within the
uncertainty set /(Pp) (Rahimian & Mehrotra, 2019; Shapiro, 2017):

inf sup Eg.g [¢(z,9)], 2
* Qeu(py)

where z is the trainable model parameter, ¢(x, S) is the loss function for the model with parameter
2 and sample S. The formulation in equation 2 requires the optimized distribution ) strictly to be
inside the uncertainty set U/ (), which is relatively hard to solve. In practice, it is usually preferred
to use a soft penalty term, resulting in the following penalized DRO problem (Levy et al., 2020; Jin
etal., 2021; Qi et al., 2021; Sinha et al., 2017):

inf ¥(2) := s Es~q [((z, 5)] = AD(@IIFy) 3)

This removes the hard constraint on () and controls the distance between the optimized distribution
@ and training distribution Py by a regularizer. The hyperparameter \ is pre-selected and fixed
during the training.

The DRO problems with different types of uncertainty sets, i.e., D’s, are fundamentally different.
In this paper, we focus on a general class of distance: 1-divergence distance, which includes e.g.,
x2-divergence and Cressie-Read family divergence (Cressie & Read, 1984; Van Erven & Harremos,
2014). The 1-divergence is widely studied in the DRO literature (Namkoong & Duchi, 2016):

dqQ
D(Q||Po) = /d’ <dP0> Py, “4)

where 1) is a non-negative convex function such that 1)(1) = 0 and v(¢) = +o0 for any ¢ < 0.

The penalized formulation of DRO shown in equation 3 is a minimax optimization problem and is
usually hard to solve. For 1/-divergence defined DRO problems, a popular approach is to investigate
its dual formulation. By strong duality (Levy et al., 2020; Shapiro, 2017), the solution of equation 3
is equivalent to the solution of the following dual problem:

inf ¥(z) = iIlfR[‘,(.’L‘,T]) = AEs.p,¢" < )

x,me

E(mas)_n
AT

where 7 € R is a dual variable, ¢* is the conjugate function of ¢ and is defined as ¥*(¢) =
Supgcrita — ¥ (a)}. In this paper, we study this dual formulation, which has the following three
advantages compared with the previous penalized form shown in equation 3: (i) the objective is
optimized under the known training distribution Fj; (ii) it is easy to get an unbiased estimate of the
gradient of the objective to z since we do not need to take the supremum for (); and (iii) it converts
a minimax problem to a minimization problem, which is easier to solve.

In this paper, we focus on the DRO problem in equation 3 and equation 5 with non-convex L-smooth
loss function ¢ (see Definition 2). We consider the large-scale setting, where the training dataset
consists of a large number of N samples. We aim to characterize the fundamental structure of this
problem and develop efficient first-order algorithms with comprehensive convergence analysis.

The same problem was studied in Jin et al. (2021). It was shown that the dual objective in equation 5
is not L-smooth if the loss function ¢ is not bounded. They further show that the corresponding

dual ﬁ(a:, 7) satisfies the generalized smoothness condition (see Definition 3), where the Lipschitz

constant grows linearly with the gradient norm HVInﬁH Similarly, in the stochastic setting, they
prove the variance of gradient estimate grows linearly with the gradient norm square HVW,LA', 2,
i.e., affine variance noise (see discussion under Lemma 3). To solve this problem, a normalized
momentum method was used and shown to converge with O(e~*) gradient complexity. Note that
algorithms and analyses for generalized smooth optimization problems, e.g., Adagrad and Adam
(Li et al., 2023; Wang et al., 2023; Zhang et al., 2024b), can also be used to solve this problem.
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However, solving the problem in equation 5 as a generalized (L, L1)-smooth optimization problem
typically requires more involved convergence analysis.

In this paper, we answer the following question: Are generalized (L, L )-smoothness and affine
variance noise an overkill to characterize the dual £(z,7) in equation 5?

1.1 OUR CONTRIBUTIONS
Our main contributions are summarized as follows.

* We prove that the dual objective of DRO problems in equation 5 is partially generalized
smooth (see Lemma 1), and the noise satisfies a partially affine variance noise condition
in the stochastic setting (see Lemma 3). The above two conditions provide a much more
precise and fundamental characterization of the dual in equation 5 than the generalized
smoothness and affine variance noise derived in Jin et al. (2021). Such precise character-
ization yields much simpler convergence analysis. Our proposed more precise conditions
circumvent the unbounded Lipschitz constant and unbounded noise variance challenges in
the generalized (Lo, L1 )-smoothness problems with affine variance noises. Our conditions
first show the dual problem is standard L-smooth in the dual variable ) and the noise of
gradient on 7) has bounded variance. Then under our partially generalized smoothness and
partially affine variance noise condition, the Lipschitz constant and noise variance on the
model parameter = are also bounded, making the objective easy to solve.

* We show that in the deterministic setting, an algorithm as simple as gradient descent can
solve the problem with iteration complexity of O(e~2); and in the stochastic setting, an
algorithm as simple as double stochastic gradient descent with clipping (D-SGD-C) can
solve the problem with gradient complexity of O(e~*). We further design a double spider
with clipping (D-Spider-C) algorithm and show its convergence with an improved O(e~3)
gradient complexity. Thanks to our more precise characterizations of partially generalized
smooth and partially affine variance noise, our analyses are much simpler than those in Jin
et al. (2021) and those for Spider algorithms (Chen et al., 2023; Reisizadeh et al., 2023),
which are developed merely for general generalized smooth problems with affine variance
noise and are not tailored specially for DRO problems.

* Our methods converge with computational complexities independent of the number of
training samples IV, and thus are applicable to large-scale training datasets.

* Numerical results are conducted to verify our theoretical results. We observe that our pro-
posed algorithms outperform the existing DRO method (Jin et al., 2021).

1.2 RELATED WORKS

DRO. Scalability: Many existing approaches are not scalable when the training dataset is large. The
method (Namkoong & Duchi, 2016) is not feasible for large-scale problems, which parameterizes
the unknown distribution by a vector of dimension N and models the DRO problem as a minimax
optimization problem. Following this method, many minimax methods such as Rafique et al. (2022);
Lin et al. (2020); Xu et al. (2023) can be used to address the DRO problem. However, a compu-
tational complexity that is linear (or even worse) in the size of the training set is not preferable for
large-scale problems. In this paper, our stochastic algorithms have a per-iteration complexity that is
independent of the training dataset.

Convex loss functions: Some existing methods (Duchi & Namkoong, 2018; Levy et al., 2020; Wang
et al., 2021; 2024; Hashimoto et al., 2018) require the loss function to be convex, which, however,
fail to capture a wide range of machine learning problems where the loss function is non-convex,
e.g., neural networks. In this paper, we focus on the general non-convex smooth loss function.

Bounded loss functions: For the non-convex DRO problem, existing studies, e.g., Qi et al. (2021;
2022); Zhang et al. (2024a); Soma & Yoshida (2020) require the loss function ¢ to be bounded (or
even more restricted assumptions). In this paper, we focus on non-convex smooth loss functions,
which may potentially be unbounded.

Non-convex smooth loss functions: Jin et al. (2021) is the first study for non-convex DRO problems
with general 1)-divergence defined uncertainty sets in large-scale settings. By combining all trainable
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parameters together z = (x, \), the authors prove that the dual objective shown in equation 5 is
generalized (Lg, L1)-smooth in z. Then a normalized-momentum method is designed and an e-
stationary point is guaranteed with a computational complexity of O(e~*). In this paper, we share
the same setting with Jin et al. (2021) and we provide a simpler yet more precise characterization of
the dual problem: partially generalized smoothness and partially affine variance noise. We show that
a simple SGD type algorithm finds an e-stationary point with a complexity of O(e~*). Moreover,
we design a Spider algorithm, reducing the complexity to O(e=3).

Generalized (Lo, L1)-smoothness. As Jin et al. (2021) pointed out, the non-convex DRO problem
can be solved as a generalized (Lg, L )-smooth optimization problem, which, however, introduces
unnecessary complications to theoretical analysis for the DRO problem in this paper. Nevertheless,
we briefly review algorithms and analyses for generalized smooth optimization problems in the
literature below. The generalized (Lo, L1)-smoothness problem is first introduced in Zhang et al.
(2019), where a clipping method is investigated. However, for the stochastic setting, the gradient
estimation error is required to be bounded almost surely. In this paper, our method works for noise
with partially affine variance (shown in Lemma 3), which is a much weaker condition and more
precise characterization for this DRO problem. Modern methods such as normalized-momentum
(Jin et al., 2021), Adagrad (Wang et al., 2023), and Adam (Li et al., 2023; Zhang et al., 2024b)
are studied for generalized (Lo, L1)-smoothness problem, and they can also be used to solve the
DRO problem in this paper. In our paper, we show that for the DRO problem, simple SGD can
get the same stationary point with the same gradient complexity. To reduce the complexity, Spider
(Fang et al., 2018) is studied for the generalized (Lg, L1)-smoothness problem (Chen et al., 2023;
Reisizadeh et al., 2023). In this paper, based on our precise characterizations of partially generalized
smoothness and partially affine variance noise, our proof is much simpler than Chen et al. (2023).
Moreover, we show the gradient converges in expectation, which is stronger than the convergence
with high probability in Reisizadeh et al. (2023).

2 PRELIMINARIES

Denote by s a sample in S and let P, be the empirical distribution of the NV training samples {s; } ¥ ;.
In the large-scale setting studied in this paper, we assume the number of training samples N is
extremely large. We use || - || to denote the Euclidean norm and (-, -) to denote the standard dot
product. Define a function (a)+ = max(a,0). For a set C, 1 is an indicator function such that
lo(a) = 0ifa € C and 1¢(a) = +oo otherwise. Let = € R? be the trainable parameters where
d is the dimension. The loss function is defined as £ : R¢ x S — R. For a differentiable function
[+ R? — R, z is an e-stationary point if |V, f(z)|| < €, where V, f(x) is the gradient of f to
2. For a random vector X, denote by E the expectation and V the sum of its element-vise variance,
where V(X) := E[|| X — E[X]]||?]. We further provide some definitions.

Definition 1 (Lipschitz continuous). A function f : R* — R is called G-Lipschitz continuous if for
any v,y € R |f(x) — f(y)| < G|z — y||, where G > 0 is some finite constant.

Definition 2 (Standard L-smooth). A differentiable function f : R* — R is L-smooth if for any
z,y € RL |V f(x) — Vaf(y)| < Ll|z — yl|, where L > 0 is some finite constant.

These two definitions cover a wide range of problems in optimization studies. Recently, a gener-
alized (Lo, L1 )-smoothness condition is proposed (Zhang et al., 2019; Chen et al., 2023; Li et al.,
2023), which is strictly weaker than the standard L-smoothness condition.

Definition 3 (Generalized (Lo, L1)-smooth). A differentiable function f : R? — R is generalized
(Lo, L1)-smooth if for any x,y € R?, we have that |V . f () —V . f ()| < (Lo+L1 ||V f(2)]])]|z—
y|l, where Lo, L1 > 0 are some finite constants.

Note that there are two version of the (Lg, L1)-smoothness, one requires that the inequality only
applies to ||z — y|| < %0 (Zhang et al., 2019) and one does not require that (Chen et al., 2023). In
DRO setting, it can be proved that for the dual objective Jin et al. (2021), the inequality holds for
any x,y € R? thus in this paper we follow the second definition.

In this paper, we focus on a non-convex and smooth loss function /.

Assumption 1. For any sample s € S, the loss function {(x,s) is G-Lipschitz continuous and
L-smooth in .
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We further make the following assumption on the /-divergence.
Assumption 2. The conjugate function y* of ¢ is M-smooth.

Assumption 2 can be satisfied by a wide range of i)-divergences (see Table 1).

Divergence P(t) (1)
X 3t =17 1+ It +2)7
KL-regularized CVaR 1 1y + tlog(t) —t + 1, € (0,1) min(e’, a1+t +log(a))) — 1
K
Cressie-Read %7 keR : <((k -+ 1) - 1>

Table 1: Commonly used divergences with L-smooth conjugates.

The goal of this paper is to find an e-stationary point of the penalized DRO problem in equation 3,
which is a minimax optimization problem and is usually hard to solve. For /-divergence defined
DRO problems, a popular approach is to investigate its dual formulation. By strong duality (Levy
et al., 2020; Shapiro, 2017), we have that

A

Under Assumptions 1 and 2, it can be shown that ¥(z) is differentiable (Jin et al., 2021). Define
L(z,n) = L(z,Gn). Then ||V, ,L(x,n)|| < e/V/2 implies that |V¥(x)|| < e (Jin et al., 2021).
Thus, it is equivalent to find an e-stationary point of £(z, 7).

. / _
V(r) = %felﬂf%ﬁ(%ﬁ) = AEsp, )" (W> + 1. (6)

3 MAIN RESULTS

3.1 PARTIALLY GENERALIZED SMOOTHNESS

Let z = (z,n). Approach in Jin et al. (2021) directly optimizes over z, where it was shown that £(z)
is generalized (Lo, L1)-smooth in z with Ly = L + 2G?\~1M and L; = L/G. In the following,
we provide a more precise characterization of £ by separately studying x and 7.

Lemma 1 (Partially generalized (Lg, L1, L2)-smoothness). Under Assumptions 1 and 2, L(x,n) is

L07 L1 -partially smooth in x and LQ-SW[OOZI’Z in n such that for an Z, I/ € R% and n, 7]/ € Rwe
have that

IVeL(x,m) — Vi L(z',n)|| < (Lo + L1|VyL(z,n)]) [l — 2], )
term ()
Vo L(z,n) = VyLl@,n')| < Laln — '), (®)
where Lo = G + @,Ll = éandLg = @

The proof is available in Appendix A.1. Observe that £(x,n) is smooth in 7 for any x. Thus,
optimizing over 7 should not be as hard as solving a generalized smooth problem. Moreover, in
equation 7, the Lipschitz constant in x (term (a)) is linear in the gradient to 7: V, L(x,n), but does
not depend on the gradient to x: V,£(x,n). Compared with the generalized (L, L1 )-smoothness
used in Jin et al. (2021), Lemma 1 provides a more precise characterization of £. Intuitively, due
to the smoothness in 7, one can expect a quick find of a point with a bounded gradient to 7. Con-
sequently, the Lipschitz constant in x will also become bounded, which circumvents the unbounded
Lipschitz constant challenges in generalized (Lo, L1 )-smoothness problems and makes the objective
easier to optimize.

Remark 1. This partially generalized (Lo, L1, Lo)-smoothness condition is weaker than the stan-
dard L-smoothness condition but stronger than the generalized (L, L1)-smoothness condition.

3.2 DETERMINISTIC SETTING

To warm up, we first consider the deterministic setting. We first propose a double gradient descent
(D-GD) algorithm, which updates = and 7 alternatively (see Algorithm 1). This is in contrast to
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the approach in Jin et al. (2021) where x and 7 are optimized jointly. The key idea is to leverage
the standard L-smoothness property in 7 to bound V, L(x,n), to reduce equation 7 to a smooth
condition, and then to bound V,L(x,n).

Algorithm 1 D-GD
Input: initialization xg, 19, step sizes oy, B¢, number of iterations T’
I: t+0
2: whilet <T —1 do
30 Meyr M — Vi L(2g, M)
4 w1 2 — BV L(Th,Mit1)
5
6

t+—t+1
: end while

3.2.1 DOUBLE GRADIENT DESCENT (D-GD)

In this section, we choose constant step sizes «y, B; in Algorithm 1. In the following theorem, we
show that D-GD converges to an e-stationary point with an iteration complexity of O(e~2).
Theorem 1. Let H = 2Ly (L(x0,n0) — infy , L(x,7)) and L' = Ly + LiVH. Set oy = L%, By

LT > 8max(Lo, L') [:(x"’"")_iegfzv" L@@m) For Algorithm 1, we then have that

i
{EITl IV L(ze, nesr) || < V2.

The proof is available in Appendix A.2. One key step in the proof is the following descent lemma:
Lemma 2 (Descent lemma). For the partially generalized (Lo, L1, La)-smooth function L(x,n)
defined in Lemma 1, we have that for any z,x’ € R% and n € R,

Lo + L1V L(x,n)

5 |||:E—:1:/||2. )

E(I/vn) < ﬁ(xvn) + <vl’£($7n)7x/ - $> +

The proof can be found in Appendix A.3. In the proof, by setting o, = L%, and using the standard

Ls-smoothness in 7, at each step ¢ we can show that £(x, ni41) < L(x, n:). Moreover, since L is
Ls-smooth in 7, we have that for any z, ),

|V,,E(av,17)|2 < 2L, ([,(x,n) — infﬁ(m,n’)) < 2L, (E(m,n) — inf E(:z:’,ﬂ)) , (10)
n' ' n'
which indicates that a bounded function value implies a bounded gradient of 7.

We then prove this by mathematical induction. It can be easily shown using equation 10 thatatt = 0,
|V, L(2e,me)| < VH and |V, L (x4, 1¢41)] < VH. By Lemma 1, it can be shown that the Lipschitz
constant to z at (2,7,41) is upper bounded by L' = Lo + L;v/H. By setting 3; = % we can
show L(x¢41,m41) < L(x4,m111). Thus at ¢ + 1 we also have that |V, £(24+1,7¢+1)| < VH and
|V L(Te41,Me+2)| < VH. This further implies that the Lipschitz constant to x at (z;41, 742) is
upper bounded by L’. Therefore, by induction, along the training trajectory, the objective function
L(x,n) is La-smooth in 7 and L’-smooth in x. We then convert the DRO problem to a standard
L-smooth optimization problem, which is much easier to address.

3.2.2 DOUBLE GRADIENT DESCENT WITH CLIPPING (D-GD-C)

Algorithm 1 with fixed stepsizes is straightforward and convenient to be employed in practice. How-
ever, Theorem 1 indicates that the computational complexity is linear in L’. In this section, we study
Algorithm 1 with an adaptive step size for the update of =, which we refer to as Double Gradient
Descent with Clipping (D-GD-C). In the following theorem, we provide the convergence guarantee:

Theorem 2. Ser « = B = T >

: 1 1
min (m’ 2L1|Vn£(mt,7h+1)|)’
ﬁ(m"’"")“ifm £(@:m) max(8La, 16Lg) for Algorithm 1. For € < %(1) we then have that

€
in ||V < V2.
T IV mL(@e, mra)|| < V2e
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The detailed proof is available in Appendix A.4. Due to the adaptive design of 3, the step size is
small when the gradient to 7 is large. Thus the function value is decreasing and we can prove that
for some t < T, (VypL(2e,m¢))? + Bel| VaL(e, 1) | < O(e?).

If using the analysis for generalized (Lo, L1)-smooth optimization, e.g., in Jin et al. (2021), it
can be shown that o}||V,L£(2)[|> < O(e?), where o is an adaptive step size and is a function
of [|[V.L(2)||. Thus, o}||V.L(2)||? is a function of ||V,£(z)|| and it will need non-trivial ef-
forts to show that ||V, L(z)|| i i i Ly, Lo)-
smoothness characterization, since «; is a constant and L is La-smooth in 7, it can be shown that
[V L(xt, net1)] 18 bounded We then obtain a lower bound on f;: from |V, L(x¢, ni4+1)| < EL , it

follows that 3; = Lo which is a constant. Thus, one can easily prove ||V, L(z, n:4+1)]| is bounded
if B¢||V2L(x¢,me41)||? is bounded. This implies an e-stationary point.

3.3 STOCHASTIC SETTING

In the deterministic setting, the per-iteration gradient complexity is N, and therefore, the approach
may not be scalable when NNV is large. In this section, we develop stochastic gradient algorithms
that have per-iteration gradient complexity independent of the training dataset size /N. For the
loss function, we follow the most relaxed bounded variance assumption in the 1)-divergence DRO
literature (Jin et al., 2021):

Assumption 3 (Bounded variance). For any x € R% and S ~ P, the variance of the loss function
is bounded:

Es~p[(U(z, ) — U())?] < o, (1)
where o is a constant and {(z) = Eg.p, [¢(x, S)].

We note that stronger assumptions of bounded loss function, i.e., ¢(z, s) is bounded for any z, s
are used in v-divergence DRO literature (Qi et al., 2022; Levy et al., 2020; Zhang et al., 2024a).
However, their approaches cannot be easily extended to unbounded loss functions.
We then provide the following lemma to characterize the variance of the stochastic gradient of
L(x,n) to x and 7. Define L(z, 7, S) = A\p* (w) + Gn.
Lemma 3 (Partially affine variance noise). Under Assumptions 1, 2 and 3, for any x € R? and
n € R, we have that
Vsmr [VaL(z,n,8)] < Do + Dy (VyL(z,1))?, (12)
Vsnry [VoL(z,n,5)] < D2 (13)
where Dy = 8G? 4+ 10G2M?* X202, D1 = 8 and Dy = G*> M2\~ %52

The proof is available in Appendix A.5. Note that Lemma 3 provides a much more precise charac-
terization of the stochastic gradient variance than the affine variance condition in equation 14 (Jin
etal., 2021) :

Vsnpy [V2L(2,8)] < Dg + Di||V-L(2)|*, (14)
where D{), D} are some positive constants. The affine variance condition in Jin et al. (2021) is
challenging to analyze since L is (Lo, L1)-smooth in z and ||V, £(z)]| is non-trivial to bound. In
contrast, our Lemma 3 indicates that the stochastic gradient to 1 has a bounded variance, and the
variance of the stochastic gradient to x is linear only in (V,,£)?. Since the dual objective is standard
Lo-smooth in 7 and the gradient noise has a bounded variance, we can easily bound (V,,£)? and
show the variance of the stochastic gradient to 7 is also bounded.

3.3.1 DOUBLE STOCHASTIC GRADIENT DESCENT WITH CLIPPING (D-SGD-C)

In this section, we develop a D-SGD-C algorithm that updates x and 7 alternatively (Algorithm 2).
In the stochastic setting, we use a mini-batch of samples to estimate the gradient, and N7, Ny are

the batch sizes. For a mini-batch of samples B = {£( )}Z 1> denote by

|B| i
Lo, B Zu@l (w ((”” €)= G”) +Gn>
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an estimate of £(x,7), where |B] is the batch size.

Algorithm 2 D-SGD-C
Input: initialization (zo,70), step sizes au,[3;, number of interactions 7, batch sizes
Nla N2

1: £+ 0

2: whilet <T —1 do

3:  Draw N i.i.d. samples B; from P, and compute g, < V,, L(z¢, ¢, B1)

4 M1 M — uGe

5:  Draw Ny i.i.d. samples B, from Py and compute vy < V L(x¢, Ns11, B2)
6:  Tyq1 Ty — By

7 t+t+1

8: end while

The following theorem establishes the convergence and complexity of Algorithm 2.

), T, N1, Ny = O(e~2) for Algorithm 2. We then

_ 1 a1
Theorem 3. Set o = szaBt = mln(QLO, Tolor

have that

ItgiTr‘l E[[VanL(ze, nes1)l] < 6e.

Exact expressions of T, N1, Ny and the proof are available in Appendix A.6. In Algorithm 2, we
choose adaptive f; < 7 in order to bound the additional term of |V, £(xt, ne+1) |2 — Te41 )
term in Lemma 1 introduced by partially generalized smoothness. The rest terms in the decent
lemma are the same as standard L-smooth problems; thus, we can find some ¢ < T such that

2
E[Bt]|v¢]|?] < O(€?). By the definition of f3;, it can be shown that S ||v¢]|? > EHLLSH — 57, forany t.
Thus we can find some ¢ < T such that E[||v||]] < O(e).

Using this fact, we now show that E[||lvy — V.L(z¢,me+1)|]] < O(e). Based on Lemma 3
and No = O(e?), we have that V[v,] < O (€ + 2(VyL(x,m41))?). Moreover,
Ellv — Valloo )] < VElor = VoLnms) Pl = y/Vud, implying that Efju, —
Ve l(ze,ne41)l]] < Ole + €]VyL(xt,me4+1)|). In Lemma 1, we show the dual objective is Lo-
smooth in 7; thus, it is less challenging to bound |V, L(z¢,7:41)|. We then can find some ¢t < T'
such that E[|| Vo L(zs, mi41)]]] < EllJve — Vo L(ze, neg1)]]] + E[||oe]]] < O(e) and can complete
the proof. We also provide Algorithm 4, which uses momentum method and does not require mini-
batches (See Appendix A.11).

3.3.2 DOUBLE SPIDER WITH CLIPPING (D-SPIDER-C)

Theorem 3 indicates a computational complexity of O(e~*) is required by D-SGD-C to find an
e-stationary point of ¥(z). This complexity can be further improved by our following variance-
reduced method (Algorithm 3), which we call Double Spider with Clipping (D-Spider-C). In this
method, we first compute our estimate of the gradient to 7 (x) with a large batch of samples with
size of N1 (N3). We then update our estimate with a small batch of samples with a size of Na (IVy).
For every g iteration, we refresh our estimate with a large batch of samples with size of N; (V3).

To analyze Algorithm 3, we further develop the following property of gradients V,£L(x, 7, s) and
Vo L(x,n,s).

Lemma 4. Forany z,2’ € R%, n,n € Rand s € S, V, L(x,n,s) is Lo-continuous in x:

Vo L(z,n,s) = VyL(a',n,5)] < La|lz — 2’| (15)
and NV L(x,n, 8) is La-continuous in 1):

IV L(z,n,5) = Val(z,n',s)|| < Laln — |- (16)

The proof is available in Appendix A.7. Lemma 4 theoretically characterize how the update on z
(or n) changes the gradient to 7 (or ). We then provide the theorectical result.



Published as a conference paper at ICLR 2025

Algorithm 3 D-Spider-C

Input: initialization (xg,70), step sizes ax, B¢, epoch size g, number of iterations 7', batch sizes
N1, Na, N3, Ny

1: whilet <T —1 do

2 if £ mod g == 0 then

3: Draw N; ii.d. samples B, from Py and compute g; <— V,, L(x¢, n:, B1)

4.  else

5 Draw N, iid. samples By from P, and compute g; < V,L(z¢,n,B2) —

Vo L(@i—1,m—1,B2) + gr—1

6: endif

To M1 < N — Gy

8: if t mod ¢ == 0 then

o: Draw N3 i.i.d. samples B3 from Py and compute v; < V. L(xt,Nt+1, B3)

10:  else

11: Draw N, iid. samples By from Py and compute v; <« V,L(zt,N41,B4) —

Vo L(xi—1,1m, Ba) + ve—1
12:  endif
13: gy 2 — Bevg
14: t+—t+1
15: end while

Theorem 4. Set o = 57—, 3, = min(57-, Zotom) To N1, N3 = O(e?) and Na, Ny = O(q) for
Algorithm 3. We have that for some constant ¢4 > 0

min B[V L(ze, ner1)ll] < cae.

The full version and its proof are available in Appendix A.8. From the result we can show that the

total gradient complexity is O (% + e’zq). By choosing ¢ = O(e~!), we can reduce the total

gradient complexity from O(e~%) to O(e~3). Compared with Algorithm 2, the biggest difference
is how we design our estimators g; and v;. Rather than using unbiased gradient estimators, Algo-
rithm 3 introduces momentum in the updates of g; and v, which, however, leads to biased gradient
estimates. The key challenge in our proof is to bound such bias (see the following lemma).

Lemma 5. Using the same parameters as in Theorem 4, for any to < T such that to mod q = 0, we
have that

to+q—1 q q2€2 q to+q—1
_ 2] < £ 1F 41 2
t_zt E [(gt Vn['(xt»ﬂt)) ] = o (Nl + No + N, t_zt (gt) ) ) (17)
=to =to

tot+q—1 q q2€2 q q q2€2 to+q—1
E - x 2 < N7 BEvE e ~r 2 .
> Ellvr = Vallee, i) 1_0<N3 Nt (NS N +N2N4) > <gt>>

t=to t=to
(18)

The full version and its proof can be found in Appendix A.9. The key idea is as follows. From the
update of g, if ¢ mod ¢ # 0, we can show that

E(g: — Vo L(we,m))?] =E(V L (2o, 06, B2) = Vi L(2e-1, -1, Ba) + Vi L(x1-1,0e-1)

= Vo L(x,1:))?] + El(gr—1 — Vi L(i-1,m0-1))%]- (19)
The first term in RHS of equation 19 corresponds to the variance of an unbiased estimate
of VyuL(xe—1,m—1) — VyL(x¢,n:) using No samples. This term can be further bounded by
E[(V,L(z,ne, B2) — VyL(x1—1,mt—1, B2))?], which is small due to our designed step sizes and
Lemma 4. This bounds the first term in RHS of equation 19. Then, applying equation 19 recursively,
we get the bound in equation 17. This method applies to v; too.
From the descent lemma and Lemma 2, similar to the previous proof in Theorem 3, we can show that
ZtT:_Ol E[ov(g¢)% + B¢]|v¢|?] is bounded by the mean square errors of g; and v; plus some constants.
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Using Lemma 5 where the mean square errors are upper bounded by a function of ZtT:_Ol |g¢|? and
ap = ﬁ, we can show that ZtT;()l E[(g:)? + B¢||v¢||?] is bounded by some constants. We then can
show that for some ¢ < T', E[(g;)?] is bounded. Moreover, with E[(g;)?] bounded, we can further
show the mean square errors of g; and v, are bounded. We then obtain an e-stationary point.

4 NUMERICAL RESULTS

In this section, we conduct numerical studies on a set of regression tasks (Chen et al., 2023) on the
life expectancy data !. This dataset consists of N = 2413 samples, where we select the first 2000
samples for training and the rest samples for testing. After removing redundant features, for the i-th
sample in our dataset, we have input z; € R3* and output y; € R. The non-convex original loss
function is set as £(z, (z;, y;)) = 3 (yi — 2] ©)?+0.1 Z?; In(1+|z;|), where z = (z1, x2, ..., T34)
is the trainable parameter. For the DRO model, A is set to 0.01, and the initial value 7 is set to 0.1.

6.0
200 —— GD —— SGD
175 —— Normalized GD 5.5 Normalized-SPIDER
150 —— Clipped GD —— Normalized-SGDm
125 —=— D-GD =208 —=— D-SPIDER-C
X -GD- X
5 100 D-GD-C E
75
50 4.0
25
0 S 35
0 10 20 30 40 50 0.0 0.5 1.0 15 2.0 2.5
Iteration t Computation Complexity le5
Figure 1: Deterministic setting. Figure 2: Stochastic setting.

In Figure 1, we provide the training curves with fine-tuned learning rate for the original GD, Nor-
malized GD (Chen et al., 2023), Clipped GD (Zhang et al., 2019) and our proposed D-GD, D-GD-C
methods. The x-axis stands for the training iteration, and the y-axis stands for the DRO objective
¥ (x). From the results of GD and D-GD in Figure 1, we can show that updating x and 7 alterna-
tively has the same empirical performance compared with training them together. Our D-GD-C also
has similar performance compared with other methods.

In Figure 2, we provide the training curves with fine-tuned learning rate for SGD, Normalized-
SPIDER (Chen et al., 2023), Normalized-SGD with momentum (Jin et al., 2021) and our proposed
D-SGD-C and D-SPIDER-C methods. Our D-SPIDER-C has similar performance compared with
Normalized-SPIDER and both our two algorithms outperform the SGD and Normalized-SGD with
momentum methods. The details can be found in Appendix A.10.

5 CONCLUSION

In this paper, we revisit the DRO problem with non-convex smooth loss functions. Instead of solving
this problem as a generalized (Lo, L1)-smoothness problem, we first show that this DRO problem
satisfies a simpler yet more precise partially generalized smoothness condition and partially general-
ized affine noise condition. Under these conditions, our theoretical analyses are much simpler than
existing studies. Our results provide new insights into the fundamental structure of DRO problems
with non-convex loss functions, which could be useful for DRO problems beyond the one studied in
this paper.

"https://www.kaggle.com/datasets/kumarajarshi/life-expectancy-who?resource=download

10
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A APPENDIX

A.1 PROOF OF LEMMA 1

Proof. Based on the formulation in equation 6 and the fact that £(z, 1) = L(z, Gn), we first have

that
Vet = [Bn @) () vis)
6 - Gap, [y (5741 ] | 0)

We first prove that the function V£(z,n) is La-smooth in 7. For any € R? and 7,7’ € R, we
have that

Vo L(x,n) = VoL(z, 1)l

G ‘EPO [(w*)’ (W) -y (Wﬂ ‘

wy £z, S) —Gn oy (A2, S) —Gn/
<p, ||y (252G - ey (12220
2
M
=l 1)
where the inequality is due to the M-smoothness of the conjugate function. We further show
the partially generalized smoothness in z. For any z,2/ € R? and € R, we first have
() (W) > 0. This is due to the fact that (1)*)" is monotonically increasing and

0 < limg—, o0 (¥*) (a) < 1, where the details can be found in Proposition B.2 in Jin et al. (2021).
It then follows that

Hvxﬁ(ﬁ?,ﬂ) \Y ['( 1

_en [(1/)*),( Lsi Gn> Vi, S) — (1) <<SA)—G’7> Vf(x’75)”
<’1EPO [(WY( z’si Gn) Vi, 8) = (") <W> W“”SN
o (23 2) (25 ]

<Lllo - /|, |(5°) (W)] n GMan |

L G
§6(|V,7£(1“777)| + G|z — 2| + GMXHx -

<(Lo + La|VpL(z, )]z — ', (22)
where the second inequality is because that £(z, s) is L-smooth and G-continuous in z for any
s € S, and the conjugate function ¥* is M-smooth, the third inequality is due to the fact that

() (W) > 0, and the fourth inequality is because that GE p, {(w*)’ (w)} =
—V,L(x,n) + G < |V,L(x,n)| + G. This completes the proof.

A.2 PROOF OF THEOREM 1

Proof. Let H = 2Ly(L(wo,m0) — inf,, £(z,m)) and L' = Lo + L;v/H. In the following, we

show that under our selected step sizes, |V, £(z¢,7:41)| is upper bounded by vH for all ¢ > 0 by
induction.

Base Case: for t = 0, since L£(z,n) is La-smooth in 7, from the descent lemma for standard
L-smooth function we can show that

L
L(zo,m) < L(20;10) — (VnL(20,M0), 20 VyL(T0,M0)) + ?Q(aovn[l(xo,no))? (23)

14
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Since ag = L%, it follows that

1
E(Vnﬁ(ﬂfo,ﬂo))Q < L(xog,mo) — L(20,Mm)- (24)

By Lemma 3.5 in Li et al. (2024), it can be shown that

(9 Lo, ) < 282 (Eanm) i £leon) ) < 20 (Lloosm) ~ inf £Govn)) . @5)
According to equation 24 and equation 25, we can show that L(zg,m) < L(zo,70) and
|V7]£(£L‘0,’I’]1)| S \/H
Inductive Step: Assume |V, L(z¢, pe11)] < V/H holds for 0 < ¢ < ¢’ In the following, we show
that |V, L (24, n141)| < VH holds for t = ¢ + 1.

Due to the Lo-smoothness of £(x, ) inn and oy = L%, it can be shown that

L
L(we, 1) < L(@e,me) — VoL@, me), eV L(xe, me)) + f(atvnﬁ(ﬁft,m))g (26)
and
1
2Ly
hold for all ¢ > 0. Based on Lemma 2, we have that

L(Tt41,M+1) SL(@, et1) — (Ve £(@, Met1)s Bt Ve L(@t, Mi11))

N 0 1| 7]2(15 77t+1)|“6tvzﬁ(l‘t,nt+1)“2

<L(zt,Ne41) — (Ve L@, Me11), BtV L(@e,Me41))

Lo+ LiVH
+ %H@Vmﬁ(%tmtﬂ)w

holds for all 0 < ¢ < ¢'. By setting 3; = m = %, it can further imply that
1

57 (Ve L(@e, i) ||? < L(zsmig1) — L(Teg1,Me41) (28)

holds for all 0 < ¢ < ¢'. By taking the sum of equation 27 from ¢ = 0 to ¢’ + 1 and equation 28 from
t = 0 to t/, we can show that

(VoL(ze,me))? < Lz, me) — L(e, Mes1) 27)

t' 1 t’

1 1
0= Z E(vﬂﬁ(‘rt’nf))Q + Z YTl ||Vz£($tﬂ]t+1)||2 < L(xo,m0) — L(Tr41, M 42)-
t=0

t=0

By Lemma 3.5 in Li et al. (2024), it follows that
(Vo L(@pi1,mi12))* <2Ly (ﬁ(ft'ﬂ» Ne-+2) —inf L(zy 41, 77))

<2L, (L(xo,m) - infﬁ(x,n)> =H,
,m

which completes the inductive step. Since both the base case and the inductive step are proven, by
the principle of mathematical induction, |V,,£(x¢,n;11)| < v'H holds for any ¢ > 0. This further
implies that equation 28 holds for any £ > 0. Then, we take the sum of equation 27 and equation 28
from ¢ = 0 to 1" — 1, and show that

T-1

Z (VoL@ ne))? + [IVaL(me, nes) ) <max(2La,2L")(L(z0,m0) — L(z7, 7))

t=0

<max(2Ls,2L’) <E(:v0, no) — inf L(x, 77)) . (29
x’n
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Thus for T > 8 max (L, L") E(g‘O’”O)*i:;fz,n L(z,m) , we can find some ¢ such that

1
(VoLe,m))® + IVal(@e,men) | < 7€ (30)
Thus we have ||V, L(x¢,mi41)]| < § and [V L(x4,1;)| < §. Moreover, we can show that

VoL@, neg1)| <|IVoL(xe, ne)| + VL@, 1) — Vi £(xe, )|

<1+ Looy)|VyL(ze,me)| <€, 3D
where the second inequality is due to the standard Ly-smoothness on 7). This completes the proof.
O

A.3 PROOF OF LEMMA 2
Proof. From Taylor’s Theorem, we have that
1
La'n) = Llan) = [ (VoLlo+ 00’ ~2),n).o” — )b, (2)
0

It follows that
[:(37/,77) - E(x,ﬁ) - <VT£('%.777)?$, - .Z')

:/0 (Vo L(x+0(z' —x),n) — Vi L(z,n), 2" — x)dd

1
< / (Lo + Li|VyLla,m))) Ol — |28
0

<L0 + L1V, L(z,n)

< 5 ' — ], (33)
where the first inequality is due to the partially generalized smoothness condition and this completes
the proof. U

A.4 PROOF OF THEOREM 2

Proof. Since L(xz,n) is Ly-smooth in 7), we have that

L
Lz, 1) < L(ze,me) — (Vo L(ze, ne), s Vi L(ze,me)) + ;(atvnﬁ(xtynt))%
For oy = L% we have that

@
Et(vnﬁ(l’tﬂ?t))Q < L(we,me) — L(@e, Met1)- (34)
For the update of x, by Lemma 2 we have that
L(zt1,Me+1) <L Mev1) — (Va£(@e, Neg1)s Be Ve L(24, Me41))

Lo + L1|V, L(xy,
1 Lot Ll ”2(t"“1)'llﬁtvzﬁ(xt,mﬂ)llz. (35)

_ : 1 1 1 . .
For 3; = min (m, 2L1\Vnﬁ(fct,m+1)|) < ToF L L@l from equation 35, it follows that
%vaﬁ(fﬂtﬂltH)HQ < L(@e, M) — L(Te41,Me41)- (36)
By taking the sum of equation 34 and equation 36 from ¢t = 0 to 7' — 1, we then have that
=10 3
> (;mc(zt,m)f + ;nvzmt,ml)n?) <L(wo,m0) = L(zr, 1)
t=0

<L(zo.mo) —inf L(z,m).  (37)
x,mn
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For T > L(wo’no)fi:;f”””’ £(zm) max (8L, 16Lg), we can find some ¢ < T such that
2
u(Tallate))? + L) P < G min (7). (38)
’ ¢ ’ — 4 Ly’ 2L
For this ¢, we have that

at(vnﬁ(xta TIt))Q S Ea

which leads to [V, L(x¢,7;)| < § and
IV L@, mev1)| <IVoL(ze,ne)| + Vo L(e, ner1) — Vo L(e, )]
<(14 Loay) |V Lz, me)| < e. (39
Moreover, since |V, L(z¢,ni41)| < € < é—‘;, we have that 8; = min (ﬁ7 m) =

i. It follows that

o IV mn) I < 5 (40)
T Tt = D
2L, e T
which implies that ||V, L(x¢,7:41)|| < §. This completes the proof. O

A.5 PROOF OF LEMMA 3

Proof. We first consider the variance of the gradient to 7. We first have that
VSNPO [VUE(JE’, , S)]
=Es~pr[(VyL(z,n,8) = VyL(z,n))]

1
=5Es1 50np0 [(VoL(z,m, 1) = VyL(z,n, S2))7]

:%G%Shsgwpo [((w*)’ (W) - @Y <W> ) 21

<G?M2\ " Vg.p,[l(z,9)]
<G*M*\7%6% = D, (1)

where the first inequality is due to the M -smoothness in 77, S1, So are independent random variables
with the same distribution Py and the last inequality is due to Assumption 3. We then provide the
proof for the variance of the gradient to . Similarly, we have that

VSNPO [vzﬁ(‘r7 7, S)}
1
:iESthNPg [Hvx['(w7 m, Sl) - VGUL(I7 m, SQ)HQ]

<Es, 5,~Py 3

B s, [(w*)’ (S0 ey (M=) ) ||V£(I752>||2]

(o (“2=))

<8(G? + |V, L(x,n)|* + D2) + 2G*M>*\?¢?
<8G? + 10G*M3\"20% + 8|V, L(z,n) %, (42)
where the second inequality is due to the G-continuous property of ¢, M-smoothness of ¢* and

2
. . . . . * £(x,S1)—Gn
Assumption 3. The third inequality is due to the fact that Eg, . p, [((w ) (%)) ] =

'w*)' (M)‘G") (Ve 51) - W(x,san

<4G®Es, .p, +2G2 M2\ 202

2
(Esl~p0 [(1/}*)’ (W)D +Vs,~p, {(w*)’ (w)} This completes the proof. [
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A.6 FULL VERSION OF THEOREM 3 AND ITS PROOF

_ 1 _ s 1 € _ 1 _
Theorem 5. Let a = —2L2,6t = min (TLo’iLo\\qu\I) and v = LI, Set
. 5L —5inf,,, L(z,
ting T > max(8La,4Lg) (2o,110) e;n m £ 77)’ Ny > max (206#, %), Ny >
4
10DoLy 5D¢ 12D1Ls Do+4€2D; 2 8vLg . 11
max( j7s bl m = and ¢ < == min 8L il ) We have that

rtgijr} E[[VanL(ze, nes1)|l] < 6e.

Proof. Since L(x,n) is Ly-smooth in 7), we have that

L
L, mesr) L zem) = (Vo Ll ), oage) + 25 (enge)?

SL(x4,10) = (Vo L@, ), uge) + @ La((Vo L, m0))? + (90 — VoL, me))?)-
Taking the expectation on both sides of the above inequality, we can further show that
E[L(z¢, M41)] SE[L(xe,m0)] — Elawe (Vi L(@,m0))%]
+ Elaf L (VL (@, m))* + (90 = Vo Lwem))°)], (43)

since g¢ is an unbiased estimate of V, L(x,7;). According to Lemma 2, for any v > 0, we have
that

Lo + Ly |V L(2, Me41)
2

L(zt1,Me1) <L Mev1) — (Ve £(Te, Qeg1), Broe) + |||/Btvt||2

SL(xt, Meg1) — (Vo L£(@g, Deg1)s Peve)
N Lo + L1 |V, L(x¢, )| + L1La|awge

: oo

B
<L(wg,Meg1) — Et(HthQ IV L@, meg)1* = llve = VaLl(@e, mera)l?)
Lo+ (Ly + Ly Loo)| Vo L(2, )| + Ly Lo |ge — Vi L(x, m¢)] 2
+ B) Hﬂtth
B L
<L(x,Ne41) — %H%HZ + §t||vt — Vo L(xe, me)|* + 70@2“%“2
4
+ (L1 + L1 Lac)*(V Lz, i) + %HWH4
2 s, Bt 4
+y(L1Laay)*(ge — Vi L(we,me))” + ﬁHth ) (44)

where the second inequality is due to the Lo-smoothness in 7, and the last inequality is due to that
2ab < a® + b? for any a,b € R. Taking the expectation on both sides of equation 44 and adding
with equation 43, it follows that

2
K {@ ~ Laa? (L + LaLaon)?) (Vo Lon ) + (ﬁt _ Lofh ) ||vt||2]

2 2
<E[L(z4,m) — L(@e41,Me+1)] + E[(0f Lo + (L1 Loc)*) (g — Vi L(e,m1))?]
4
‘E [@fnvt - Vzﬁ(l‘unm)llz] ‘E [S;HWH . 45)

i -1 — min [ =L €
According to o = 57—, B¢ = min <2 o Tollorll ) and Lemma 3, we can further show that

1 9L?
B |1 222 (9w + 2]

1 'yL%> Doy

4L, 4 ) Ny

<E[L(z¢,nt) — L(@e41,me41)] + ( N,
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1 Do + D1 (VyL(x4,m141))° et
—F . 4
+ 1L ~ + 81 (46)
Moreover, we have that
E[(VyL(x,me41))?] S2E[(VL(xe,me))?] + 2B[(V L, nes1) — Vi Llze, me))?)
<2E[(VpL(2s,n:))?] + 2L507E[(g1)?]
<2+ 4L30))E[(V L (w1, m0))?] + 4L507E](9: — VL2, nr))?)
D
<BE[(VoLem))*) + - @7)
Lety = m and Ny > %. By equation 46 and equation 47, we then have that
E | o1 (Valleem)” + 2 el
8L ’
D2 DO D1 D2 64
<E - — . 4
> [‘C(It»nt) ‘C(xt+1777t+1)] + 2L2N1 + 4LQN2 + 4L0N2 ‘]\]1 8’YL3 ( 8)
Taking the sum of equation 48 from ¢ = 0 to 7" — 1, we have that
L 2 L (Tt + 2 P
1 D2 DQ Dl D2 64
<—E — — . 4
SEEE(wom0) = Ll@r, )l + 5 + e Y I 8yLA “49)

Let T > max(8L2,4L0)5E(x°’”°)75inf“”"£(m’"), Ny > max(zoe% %), Ny >

» " Loe2

8yL .
max ( 10PoL2 5Do 12D1L> ) apd ¢2 < 2120 mip ( L L) Then equation 49 can be further
Lo 5 8Ly’ 4Lg

Losz ) €2
bounded as follows:
T—1
1 1 Bt . 1 1
— E|l— L 240 2l < ) € 50
7 3 & g (oo + o] < min (7 g7 ) (50)

Thus we can find some ¢ < T such that E [ ~(Vy ﬁ(wt,nt))ﬂ < % and E [%HWHQ} < i€

Based on equation 47, we then have that (E[V,L(z¢,7:51)])? < E[(V,,L(2e,mi41))?] < 42
Moreover, we have that

¢ e vell® [l ellotll e
— >E 21 =F | — mi Y > E - 51
LO = [ﬁtHth } |:LO min ( 262 9 P >:| el |: L() :| 2LO7 ( )

where the second inequality is due to the fact that min ( 5 ) >a— % holds for any @ > 0. As a

result, we have that E[||v,||] < 3e. For Ny > W, we have that

. {Do + D1(Vnﬁ($t»77t+1))2}

< 2

(Elllos = VaL(@e, ne1)I)* < Elllor— Vo Lo mes1) [ N,

It can be further shown that E[||V,L(x¢, mi41)|] < Elllve]]]] + Elllve — Vo L(ze, mg1)l]] < 4de
and E[||V, o L(xt, e1)|]] < E[|VoL(ze, ne+1)]] + E[| Vo L(ze, me41)||] < 6e. This completes the
proof. O

A.7 PROOF OF LEMMA 4

Proof. Forany z,2' € R%,n € Rand s € S, we have that
‘vn[,($, 7, S) - VU‘C(xla m, 5)‘

(25 o (125:)
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G*M
<

|z — 2], (52)

where the inequality is due to that ¢)* is M-smooth and ¢(z, s) is G-continuous in x. Similarly, for
any z € R% 1,1 € Rand s € S, we have that

Hvac['(xv n, S) - vw['(xv 77/7 S)H

wry (M) e - @y () Ve

Y (aml - Gn) _ (M’S){ Gn')

In—1n'l, (53)

<G

2

where the first inequality is because that £(z, s) is G-continuous in x and the last one is due to the
M -smoothness of ¢*. O

A.8 FULL VERSION AND ITS PROOF OF THEOREM 4

2 2
Let eo = max(32Lo,8Lo).r = (4 222 + BB + 5L ) o) = maxe(dh; + H1.1).
2
es =1+ g5% + L°D1+L°;;2L°L2D2 + ;5552 + ﬁ'gé’% + apapz and es = 4 + /@ + /o
For Ni > S N > max (2022152 20qcy Ly, Lq) Ny >
max (20050@2’ 3co(D20L+;161231D2)) N, > max (Lquf , LEECO , and €2 <
. L3Ny L : .
min ( 5672000 Bl 1), we have the following theorem:
1
Theorem 6. Let o« = i, B¢ = min (ﬁ, m) for Algorithm 3.  Setting T >
Sco(ﬁ(aco,no);infm,,, 5(1777))’ we have that
min B{|[Va,nL(ze, ner1)ll] < cae.
Proof. Similar to equation 43, for the update of 7, we have that
L
BLC 1)) <E | Clan ) (VLo m).ug) + 5 (00’
o] + Bl - Vo] + 2B
<E[L(x¢,ne)] — 5 Ela(g9:)7] + 5 [t (ge — Vi L(@e,me))7] + 5 [ (g¢)7]-
(54)
Similar to equation 44, for the update of  and any v > 0, we have that
L(wip1,me41) <L(w,Me41) — (VaL(@t, e41), Bevr)
Lo+ L1V, L(xy, LiL
4 2o + 11|V, ($t277t)\ + Ly La|oy gy 11 BeveI?
<L _b 24 |IVLL 2 vy — VoL 2
<L(xt,Me41) 5 (el + Ve L@, neg1) |7 — llve L(xe,ne41) %)
Lo + Li|VyL(xe,m) — gi| + (L1 + Ly Loy | g4 9
+ 9 | Brvel
B B L
<L(wg,Mey1) — 5t||vt||2 + *t||vt — Vo Lz, mr1)|? + ?OﬂfHUtHQ
Bt
+ (L1 + L1Laay)?(ge)* + 16t [|ve||*
Bt
+ 7L |ge — Vo Lz, m)? + ﬁllvtll“- (55)
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Combine equation 54 and equation 55 and it follows that

1 Lya? Lof3?
E [( « 2t — (L1 +L1L2at)2> (9:)* + <2t - Oft> ||Ut||2]

27t g
Bl a
<E[L(zt,m:) — L(Tt41,M041) + Q”Utn

B

a
+ EH'Ut — Vo L(xe,ner)||* + ?t(gt — Vo L(we,m))* + VLY (gt — Vo L(we,me))].

i -1 — min [ =L €
Setting @ = 77— and £; = min (2L0, LOH'Ut”)’ we have that

Bi
4

3 9512
El(— — 2
G~ or JoelP

64

)(ge)* +

1
——E[[Jv; — Vo L(e,me11)|%]

<E[L(w¢,ne) — L(Te41,M41)] + 8yLd + 4L,
1
* <8L + ’YL%> E[(g: — Vnﬁ(xtvm))ﬂ' 0
2

Let vy = ﬁ and take the sum of equation 55 from¢ = 0 to 7" — 1. According to Lemma 5, we
then have that

T o El(90?) + B

=016,
T4 T
SE[['(JUOWO) - E(-%'T,?]T)] + T;
0
+LT_1E Dy | 4D1Ds n g€’ 1 8L3Dy  32L2D,  64qe*L3L3
4Lo =[N3 N3N1 = Ny L3 N LE Ny L}
T—
+ L3R KA‘Dl D1 33¢eLi  q | ¢Di | 4q262L?> ( t)z]
4Ly = N3 8N3 N, L2 8Ny = 2NoN3 ' NoN,L?
T—1
1 Ly Do 2qL% 5 q )
8Ly = 50 BN A : 57

t=0

_ _ 8L?D, | 32L2Dy, | 16L%L, _ 1 Ly
Let ¢ = max(32L2,8Lg),c1 = (4 + i + NiL? + 5Dy and c; = max ( gz- + 55, 1).

For N; > max(200D1L2 38°(D°+4D1D2)), N, > max(M m), e <

LO ) 2L0 €2 LO ’ LO

. L§Ny L 20D, Lo 12qL%coca 6Dscocs
i (M’ ioe 1)» N2 = max { ===2,20qc2 Lo, —1z 4 and Ny > >392 we

then have that

_ B
IR | o 0 + Sl
€2T DQ —|—4D1D2

<E —
<E[L(xo,m0) — L(z7,nT)] + 6o + ALoNs

Lop ( 4, SEAD: | 32L3D, 16L§L2)
NiLo L2 NL? | 5DyL3
1 L1 D2T 1 L1 2 QQL%
— 4 — s er
+(8L2+5O> N +<8L2+5O)6 NyL2
5¢2T
<E[L(zo,m0) — L(z7,77)] + bco (58)

For T = nq > 600(5(7@07’70);;“fm L@m) e can find some £, mod g = 0 such that

to+q—1IE 1 ( /)2 n By o ,”2 < qe? 59)
tz, - 320, 4 " =5,
=to
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Moreover we can find some ¢ € [to,tp + ¢ — 1) such that
2

2 B 2 €
Bl + L o] < = (60)

Based on equation 60 and ¢y = max(32Ls, 8 L), we have that E[(g;)?] < €2. Based on equation 67
and equation 68, we can further show that

to+q—1 2
2L5 272
Bl(g, ~ VLl )] <2 + PO pa+ ot (o]

NL2 N

€2 62 €2 €

< — < ——. 61
~ bcg + 6¢co + 160Ls — 60Lo D

Thus we have that

) 1
BV or )] < Blle — Vollaren)] + Lol + Lailall < (§ +/ g ) e

Moreover, we can show that

€ € lvel® ol ellvel[] €

— >R =FE|—min(—-, "2 )| >E — 62
To = [Be|ve]|7] {Lo mm< 22 7 ¢ )] [ Lo } 5Ly (62)
2,&) >a—fholdsforanya>0 Asa

result, we have that E[||v;||] < 3e. Based on equation 71 and equation 72, we can further show that

Elllos = VaL(@e, mes1)|1?]

where the second inequality is due to the fact that min (

<E Do + 4D (gs,)? + 2D1 L3503, (91,)° n AD1 (g1, — VL(2iy,m,))?
- N3 NS
to+g—1 27192
LiLs Ly
+ Z E <2+8 L2 Oét/ l(gt' 1) L2D2> N Lgatz(gfl)2:|
t/=to+1 4
9¢2 Ot L?
TN, > E 16@(9:&/—1) +16 (V Ly —1,m-1) — gt'—l)Q]
4yttt L
Do, (4Di+2Di3a}, LY 13 32EL3 t"i‘ 11@[(9,)2]
= N3 N3 NiL§ T 8NuLE T NI ) Ao
=to

dget | 8gLAD, | (4Dy | 32eL3\ eL
+ a + 1€ i 2+<1 1> Z E[(VoL(ze,me) — gir)?]

Ny Ny N3 N4Lj bl

< 2 + D1L0 33L% L2 + 4LQ 2 8LOL2D2 2 + 4D1L0 32L% 62
€ - €
Ly 5LoLy  40Lg 5L2 5Lo 5Lo 5LoLo ) 1514

<1+ Ly LoDy +Lo+2LoLyDy  33L2 LoDy L2 ) )

0Ly Ly T 5oLy T 1512 ' 2LoL2

<cse?. (63)
Thus we have that
E[[VoL(@e, mt)l]] < E[|lve — VaL(@e, nea)[| + [loe]l] < (3 + Ves)e.

It then follows that E[|| V4, L(z¢, net1) ||] < E[|VyL(ze, ne41)|]FE[| Ve L(xt, 7e41)]]] < cae. This
completes the proof. O
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A.9 FULL VERSION AND ITS PROOF OF LEMMA 5

Lemma 6. With the parameters selected in Theorem 4, for each ty < T that can be divided by q,
we have that

to+q—1 to+q—1 2 2
D 2qL 2qL
5 2 qLy o qLy 2
tito E[(g: — VpL(xe,me))7] < t:Eto <N1 + NQL(%E + Ny a(ge) ) (64)

and

Zigg_lE[Hvt — Vwﬁ(xt, 77t+1)||2]

Tt Dy 4DiDy  ge? 8L2D, 32I2Dy  64qeL3L3
<) E|+ 4

N TN, TN I2 N, L2 NoL}

t=to

totg—1 272 2272
4D, D, 33qe“ Ly q qD1 4q“e“ Ly 9
Ell —+— — . 65
* ;) K N, ey P vz Tavg T avgn, T Nomazg ) 9 (63)

Proof. If t mod g = 0, g; is an unbiased estimate of V, L(x¢,7;) and according to Lemma 3, we
have that

Dy

E[(g: — Vnﬁ(ztﬂ]t))Q] < —

N (66)

Otherwise, we have that

El(g: — VpL(xs,m1))’]
=E[(VyL(xe,me, Ba) = Vi L(@i—1,m-1,B2) + gr—1 — VL4, )]
=E[(VyL(wg,me, B2) — Vo L(wp—1, -1, B2) + Vy L(T4—1,76-1)

= VpL(xe,m))?] + El(g—1 — Vo L(@i—1,m-1))°]; (67)

where the last inequality is due to the fact that V,, £(z¢, ¢, B2) =V L(24—1,m4—1, B2) is an unbiased
estimate of V,, L(z¢,1m¢) — Vi L(x¢—1,m:—1). We now focus on the first term of equation 67, which
can be further bounded as follows:

E[(vn£($t7 Nt 82) - vﬁ‘c(xt—la -1, 82) + vn‘c(xt—lv nt—l) - vn‘c(xh nf))Q]

1
< BV L. 8) = VoLl mer. $))’

2
SEE[(Vnﬁ(xh Mt S) - v”]‘c(xt—h Nt S))2 + (vnﬁ(xt—la Tlts S) - Vnﬁ(xt—la M—1, S))2]

2
<E [NZL%m%l(gH)? n ﬁflvtlnﬂ

2L5 ,  2L3 , 2
<E |:N2L%6 +72at,1(gt,1) , (68)

where the first inequality is due to the fact that the square of expectation is not larger than the
expectation of square, the third inequality is due to the continuous properties shown in Lemma 4,

and the last inequality is due to the fact that 8; = min <ﬁ, m) Combining equation 66,
equation 67, and equation 68, for {y mod ¢ = 0, we have that

to+q—1 tot+q—1 Do 2qL2 q
E _ 2 < E It 2 2 4 2 . 6
t:ZtO (90 = VLo, m))") < ; KM A IR A ) (69)

We then focus on the estimate of the gradient to x. If ¢ mod ¢ = 0, we have that

]E[H'Ut - vxﬁ(xtvnt+1)”2]
Do + Dy(VpL(zt,me41))?
N3

o]

23



Published as a conference paper at ICLR 2025

<E Dy + 2Dy (VyL(x¢,m:))? 4+ 2D1 L3077 (g¢)*

< N,

<E [Do +4D1(g¢)? ]\4[- 2D L3a7 (g:)? N 4D1(g: — Yszﬁ(l“tv??t))Q} ’ (70)
3 3

where the second inequality is due to the Lo-smoothness on 7 and the update of 7. Otherwise, we
have that

E[[[vr = Vo L(@e, mes1)[1?)

=E[[|VoL(@t, Ne41, Ba) = Vo L(@i—1,mt, Ba) + vi—1 — Vo L(@e, 1))

=E[|VaL(@t, nis1, Ba) = VaL(mi1,me, Ba) + VaL(wi1,m) — Val(w, mi)]]
+E[vi—1 = VaL(@—1,m)|], (71)

since V,L(x¢, a1, B4) — VaL(xe—1,m,B4) is an unbiased estimate of V,L(x¢ mir1) —
Vi L(xi—1,m:). We now focus on the first term of equation 71, which can be further bounded
as follows:

E[|Vol (e, met1, Ba) — Vo L(i—1,me, Ba) + Vo L(i—1,m:) — Vo L£(@e, mes1) ]
1
<y Bl LG e, ) = Vel m )]

2
SiE[Hvx‘c(ztvntJrlv S) - vm['(l‘tvnh S)H2 + Hvx‘c(xtvnta S) - vm['(l'tflvnta S)||2]

<E 7E[(L2at (90 + (2LG + 2L |Vy L(w—1, 7, S)|2)6t2—1||vt—12)]:|

<E -]\2[4 <2+4L2 (VnL(xi—1,m))* + §2D2> N, = I202(gy) }
<E :]\2]452 (2 + SL*%(VT,E(%—LWA))Q + SL;/g% o (gi-1)* + 422 D2> + ]éL%a?(gt)Q]
<E :]\2]462 (2 + SIE?afl(gtl)Q + 4§§D2) + ]\zL%af(gt)ﬂ

+ %E [1622(%1)2 +16 Lz (Vo L(i—1,mi-1) — gt1)2:| , (72)

where the third inequality is due to Lemma 4 , the fourth inequality is due to 3; =

min (ﬁ, m and Lemma 3. Combine equation 70, equation 71 and equation 72, and for

to mod ¢ = 0, we have that

ZzoztgflE[Hvt — Vxﬁ(xtv 77t+1)||2]

tot+q—1
DO qe 8L D2
< E E 4
- {N3+N4(+ L3 )}

t=to

to+q—1 272
4D, D, 33qe” Ly q 9
E 1
> [( N, Tany P vz Tawg ) @)

t=to
to+q—1 2712
4D, 32q6 L
+ Z [( N3 N4L21) (9 — Vn['(xt’nt»ﬂ
t=to 0

to+q1 2
8L{D

ZE{ o (75
LO

to+q—1 2712
4D1 D1 33(]6 L1 q 2
2 E [( v, T vz Tang )@

t—to N3
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to+q—1
4D, = 32q€’L? Dy 2qL3 2 2qL3 o2
i et § E
+(N3+N4L§ 2 N1+N2L2 TN @ (90)”

t=to

< mfl]E [ﬁo + 4]]\? 1]5 2 4 % <4 + 8L§2D 2 3%322 643\6;22?3)}
= 3 3N, 4 0 1L 2Lg
fodat 4Dy | Dy | 33413 | g qD;  4q%eL? )
* tz; [( Ny 8Ny | NaIZ SNy 2NN N2N4Lg> (9] ] S
This completes the proof. O

A.10 DETAILS OF THE EXPERIMENT

A.10.1 LIFE EXPECTANCY DATA

This life expectancy data includes health factors from 193 countries (input features) and the life
expectancy (target) from the World Health Organization and United Nations websites. We follow the
same data pre-processing as in Chen et al. (2023) to fill the missing data with the medians, censorize
and standardize all the features 2, remove redundant features, and a standard Gaussian noise is added
to the target for model robustness. Each element of the initial parameter x( is generated by a standard
Gaussian distribution. In our deterministic setting, we compare the methods with fine-tuned learning
rates. The iteration number is set to 50. For existing methods, we follow the fine-tuned learning
rates in (Chen et al., 2023), where the step size 3, = 10~* for GD, 8, = 0.2 for normalized GD

and 5; = 0.3 min (10, m) For our D-GD method, we set o, = 3; = 10~ and for our

D-GD-C method, we set oy = 10~% and 8; = 0.35 min (ﬁ, m)

In our stochastic setting, we run the experiments for 5000 iterations. We generate the initial xg, 79
by running a normalized GD method with step size 3; = 0.2 for 30 iterations. For existing methods,
we follow the same setting in (Chen et al., 2023). We set the mini-batch size to 50. For SGD, the
step size is By = 2 X 10~%. For the normalized SGD with momentum method, the momentum
coefficient is set to 10~* and the step size is set to 8 X 10~3. For the normalized SPIDER method,
we have that step size 5, = 4 x 10 3 and epoch size ¢ = 20. For our D-SGD-C, we set oy =
8 x 107® and B; = 0.05 min(lo07 Tos H) For our D-SPIDER-C, we have that a; = 8 x 1072 and

B, =7.5%x 10" mln(257 s H)

A.10.2 CIFFAR-10 DATASET

In this part, we conduct experiments on the famous CIFAR-10 dataset (Alex, 2009), which includes
50000 training samples. We employ DRO model to construct a linear classifier. After extracting
features from a pre-trained ResNet-50 model (He et al., 2016), for the i-th sample in our dataset,
we have input z; € R2%4% and output y; € [10]. The non-convex original loss function is set

as (x, (zi,y:)) = ln(zjl-i1 exp(x] z; — x,, %)) + 0.001 Z;il 210 (1 + |a;.4]), where 2 €
R10%2049 ig the trainable parameter, and z; is the j-th row. For the DRO model, ) is set to 0.05, and

the initial value 7 is set to 0.1. Each element of the initial parameter x is generated by a standard
Gaussian distribution.

In Figure 3, we provide the training curves with fine-tuned learning rate for SGD, Normalized-
SPIDER (Chen et al., 2023), Normalized-SGD with momentum (Jin et al., 2021) and our proposed
D-SGD-C and D-SPIDER-C methods. The x-axis stands for the training iteration, and y-axis stands
for the DRO dual function value. For Figure 3 we can observe that the Normalized-SPIDER and
our D-SPIDER-C have similar performance and converge faster than other methods. Our D-SGD-C
has a similar performance compared with the Normalized-SGD with momentum method but our
D-SPIDER-C outperforms the Normalized-SGD with momentum method.

We set the mini-batch size to 200. For SGD, the step size is 8; = 1.5 x 10~3. For the normalized
SGD with momentum method, the momentum coefficient is set to 0.1 and the step size is set to

Zhttps://thecleverprogrammer.com/2021/01/06/life-expectancy-analysis-with-python/
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Loss Comparison Across Methods
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Figure 3: The numerical results for Cifar-10 dataset.

4 x 1073. For the normalized SPIDER method, we have that step size f; = 3.5 X 103 and
epoch size ¢ = 10 and large batch size 2 x 103. For our D-SGD-C, we set oy = 1 x 1073
and ; = min(3Z5, o). For our D-SPIDER-C, we have that a; = 1 x 107 and 3, =

10[[v |l
; 5 __1
T (20007 20||vt||)'

A.11 RESULTS FOR NORMALIZED MOMENTUM

Algorithm 4 D-SGD-M
Input: initialization x, 19, step sizes «, 3, 71, ro number of interactions 7’

It t+1

2: whilet < T do

3:  Draw one sample s from P, and compute g;—1 < V,L(T¢—1,7—1,S)

4 if t==1 then

5 Draw one sample s from Py and mg < V,L(z¢—1, -1, 5)
6: endif
7.
8

my <= r1my—1 + (1 —71)ge—1
M 4= M1 = sy
9:  Draw one sample s from Py and compute v;_1 < VL(z¢—1,Mt,5)
10:  if t==1 then
11: Draw one sample s from Py and wy + V. L(x¢—1, 74, S)
12:  end if
13: Wt < ToWi—1 + (1 — ’I‘Q)’Ut_l
14: Tt < Tp—1 _BH’quizH
15: t+—t+1
16: end while

In this section, we provide result for the normalized momentum method, which is shown in Algo-
rithm 4. The following proposition establishes the convergence and complexity of Algorithm 4.
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Proposition 1. Set 1 — 11,1 —ry < O(€?), B < O(e73),a = O(VD18) and T > O(e~*) for
Algorithm 4. We then have that
min E[[| Ve L(z4, ne1) ] < O(e).

t<T

Note that compared with the normalized momentum algorithm for generalized smooth objective (Jin
et al., 2021), Algorithm 4 does not require the full gradient information for initialization or the use
of mini-batches. This is because that due to our partially generalized smoothness, the expectations
of ||mo — L(xg,m0)|| and ||vg — L(xo,n1)|| are no longer unbounded thus the requirement on full
gradient is not needed. Moreover, the partially generalized smoothness allows the Lipschitz constant
on x bounded by a linear function of gradient on 7. Thus by setting o = O(v/D13) we can remove
the mini-batch required in Jin et al. (2021).
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