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Abstract

We define family versions of the invariant of 4-manifolds with contact boundary due

to Kronheimer and Mrowka and use these to detect exotic diffeomorphisms of 4-

manifolds with boundary. Further, we show the existence of the first example of exotic

3-spheres in a smooth closed 4-manifold with diffeomorphic complements.

1 Introduction

Let W be a smooth compact 4-manifold with boundary. Denote by Homeo(W ) and

Diff(W ) the groups of homeomorphisms and diffeomorphisms of W , respectively;

and by Homeo(W , ∂) and Diff(W , ∂) the groups of homeomorphisms and diffeomor-

phisms fixing boundary pointwise, respectively. In this paper, we study a comparison

between the mapping class groups arising from these groups, through the maps

π0(Diff(W )) → π0(Homeo(W )), π0(Diff(W , ∂)) → π0(Homeo(W , ∂)) (1)
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induced from the natural inclusions. A non-zero element of the kernels of maps (1)

may be called an exotic diffeomorphism of W . Such a diffeomorphism is topologically

isotopic to the identity, but not smoothly so.

The first example of exotic diffeomorphisms in dimension 4 was given by Ruberman

[54]. This example was detected by an invariant for diffeomorphisms based on Yang–

Mills gauge theory for families. Later, based on Seiberg–Witten theory for families,

Baraglia and the second author [11], Kronheimer and Mrowka [37], and J. Lin [43]

gave other examples. However, all of these examples are given for closed 4-manifolds.

In this paper, we shall present exotic diffeomorphisms of 4-manifolds with non-trivial

(i.e. not S3) boundary. Some of our main results are formulated as an attempt at solving

the following conjecture that we propose:

Conjecture 1.1 Let Y be a closed, connected, oriented 3-manifold. Then there exists

a compact, oriented smooth 4-manifold W with ∂W = Y such that the natural map

π0(Diff(W , ∂)) → π0(Homeo(W , ∂))

is not injective, i.e. there exists an exotic diffeomorphism of W relative to the boundary.

More strongly,

π0(Diff(W )) → π0(Homeo(W ))

is not injective.

The problem of finding exotic smooth structures on W was considered in [61, Question

1.4] and [18, Question 1] and finding a non-trivial element in the kernel of the above

maps is related to finding a non-trivial loop in the space of smooth structures on W ,

so this conjecture can be seen as a family version of the work in [61, Question 1.4]

and [18, Question 1]. Three major difficulties in solving this conjecture are:

• What kind of gauge-theoretic invariants of diffeomorphisms in the case of a 4-

manifold with boundary should be considered? One possibility might be to use

families Floer theoretic relative invariants such as those in [56], but they are hard

to compute in general.

• For what concrete diffeomorphisms can the invariants be calculated?

• In the closed simply-connected case a homeomorphism acting trivially on homol-

ogy is topologically isotopic to the identity by work of Quinn [53] and Perron [51].

Is there an analog of this theorem for 4-manifolds with boundaries?

The last point was resolved by Orson and Powell [50] very recently, and one of our

main contributions in this paper is about the first two points where we define a numer-

ical and computable invariant for diffeomorphisms of 4-manifolds with boundary.

Remark 1.2 One may also conjecture that the maps in Conjecture 1.1 are non-

surjective. To our knowledge, there is no known counter example to this conjecture.

Positive evidence to the non-surjectivity of the maps is given in [34] where non-

surjectivity is shown for certain W , which is a partial generalization of results for

closed 4-manifolds in [10, 15, 21, 22, 33, 45] to 4-manifolds with boundary.
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Remark 1.3 For higher homotopy groups, it seems also natural to state conjectures

similar to Conjecture 1.1. Compared to the π0 case, there are few results on the non-

injectivity or the non-surjectivity on πi for i > 0, even for closed 4-manifolds. For

example, a non-injectivity result for S4 is proven by Watanabe in [57] and a non-

surjectivity result on K 3 is proven by Baraglia and the second author in [12]. Our

framework also yields invariants, say, πi (Diff(W , ∂)) → Z for i > 0, and it may be

possible to attack this problem using these invariants.

1.1 Families Kronheimer–Mrowka invariants

Our basic strategy is to make use of contact structures on 3-manifolds Y to study

diffeomorphisms of 4-manifolds bounded by Y . Let us first explain the main tool of this

paper, which is a family version of the invariant defined by Kronheimer and Mrowka in

[36] for 4-manifolds with contact boundary. This is a rather simple numerical invariant

compared to invariants using monopole Floer theory [38].

Let (W , s) be a compact Spinc 4-manifold with contact boundary (Y , ξ), here

the Spinc structure on Y induced by ξ agrees with the one induced by s. Define

Diff(W , [s], ∂) to be the group of diffeomorphisms that preserve the isomorphism

class [s] and ∂W pointwise. Define a subgroup Diff H (W , [s], ∂) of Diff(W , [s], ∂)

by collecting all diffeomorphisms in Diff(W , [s], ∂) that act trivially on the homology

of W . From these groups, we shall define homomorphisms

F K M(W , s, ξ, •) : π0(Diff(W , [s], ∂)) → Z2 (2)

and

F K M(W , s, ξ, •) : π0(Diff H (W , [s], ∂)) → Z, (3)

which we call the families Kronheimer–Mrowka invariants of diffeomorphisms. These

invariants are defined by considering a family of Seiberg–Witten equations over a

family of 4-manifolds with a cone-like almost Kähler end. This end is associated with

the contact structure ξ on Y .

The families Kronheimer–Mrowka invariant is defined similarly to the definition of

the families Seiberg–Witten invariant for families of closed 4-manifolds [40, 54], but

to derive an interesting consequence involving isotopy of absolute diffeomorphisms

(property (i) of Theorem 1.4) we need to consider a refined version of the above

invariant using information about the topology of the space of contact structures on

Y . Let �cont(Y ) denote the space of contact structures on Y . We shall define a map,

which is not a homomorphism in general,

F K M(W , s, ξ, •, •) : Diff(W , [s], ∂) × π1(�
cont(Y ), ξ) → Z2,

or equivalently

F K M(W , s, ξ, •) : Diff(W , [s], ∂) → (Z2)
π1(�

cont(Y ),ξ), (4)
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which is defined by considering families of 4-manifolds with contact boundary, rather

than fixing the contact structure on the boundary. The map (4) satisfies the property

that, if f ∈ Diff(W , [s], ∂) is isotopic to the identity in Diff(W ), then some component

of the value F K M(W , s, ξ, f ) ∈ (Z2)
π1(�

cont(Y ),ξ) is trivial. For some class of f and

element of π1(�
cont(Y ), ξ), we may also extract a Z-valued invariant rather than Z2.

Now we shall see some applications of these invariants.

1.2 Exotic diffeomorphisms

We give evidence for Conjecture 1.1 by showing that many 3-manifolds bound 4-

manifolds that admit exotic diffeomorphisms with several other interesting properties.

Let Y1, Y2 be two closed, oriented 3-manifolds. We say there is a ribbon homology

cobordism from Y1 to Y2 if there is an integer homology cobordism from Y1 to Y2 which

has a handle decomposition with only 1- and 2-handles. Note that ribbon homology

cobordism is not a symmetric relation.

Theorem 1.4 Given any closed, oriented 3-manifold Y with rational homology of

S3 or of S1 × S2, there exists a ribbon homology cobordism to a 3-manifold Y ′

such that Y ′ bounds a compact oriented smooth 4-manifold W for which there exists

a diffeomorphism f ∈ Diff(W , ∂) such that the (absolute) mapping class [ f ] ∈
π0(Diff(W )) generates an infinite subgroup of the kernel of

π0(Diff(W )) → π0(Homeo(W )).

Namely, { f n}n∈Z\{0} are exotic diffeomorphisms that are smoothly non-isotopic to

each other in Diff(W ). Moreover, in fact, { f n}n∈Z are topologically isotopic to the

identity in Homeo(W , ∂). (This follows from a result by Orson and Powell, Theorem

6.2.)

Remark 1.5 For a general oriented closed 3-manifold Y , we have a statement similar to

Theorem 1.4, under replacing π0(Diff(W )) → π0(Homeo(W )) with π0(Diff(W )) →
Aut(H2(W ; Z)).

Moreover, the diffeomorphism f in Theorem 1.4 yields exotic spheres in 4-

manifolds:

Theorem 1.6 In the setup of Theorem 1.4, there exists a homologically non-trivial

embedded 2-sphere S in W such that the spheres { f n(S)}n∈Z are mutually exotic in

the following sense: if n �= n′, then f n(S) and f n′
(S) are topologically isotopic in

Homeo(W , ∂), but not smoothly isotopic in Diff(W , ∂).

Remark 1.7 There is a great deal of work on exotic surfaces in 4-manifolds that makes

use of the diffeomorphism types of their complements, see [1, 5, 19, 20]. Recently,

Baraglia [9] gave exotic surfaces in closed 4-manifolds whose complements are dif-

feomorphic, based on a method closely related to our technique. Also, in [44], J. Lin

and the third author gave exotic surfaces in the punctured K 3 whose complements

are diffeomorphic using the 4-dimensional Dehn-twist and the families Bauer–Furuta

invariant.
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Remark 1.8 One motivation to consider 4-manifolds with boundary is to find simple

manifolds with exotic diffeomorphisms. At the moment the simplest example of a

closed 4-manifold that admits an exotic diffeomorphism has b2 = 25: concretely,

4CP2#21(−CP2) ∼= K 3#CP2#2(−CP2). On the other hand, when we consider

4-manifolds with boundary, one may get an exotic diffeomorphism of a compact 4-

manifold with b2 = 4, see Remark 6.5 for details.

An interesting point in Theorem 1.4 is that, despite that this theorem shall be shown

by the invariants involving contact structures explained in Subsection 1.1, the results

can be described without contact structures. Another interesting point is that the f n

are not mutually smoothly isotopic in the absolute diffeomorphism group Diff(W ).

Of course, this is stronger than the corresponding statement for Diff(W , ∂), and the

proof requires us to use the refined invariant (4), which is less straightforward than

the invariants (2) and (3). Not only the gauge-theoretic aspect, the proof of Theorem

1.4 uses some non-trivial techniques of Kirby calculus.

Remark 1.9 Under the setup of Theorem 1.4, the mapping class of f in Diff(W , ∂)

generates a direct summand isomorphic to Z in the abelianization of the kernel of

π0(Diff(W , ∂)) → π0(Homeo(W , ∂)),

see Remark 6.4. This comes from the fact that the map (3) is a homomorphism. In

an upcoming paper [29], under suitable conditions on Y , we also prove the exis-

tence of a Z∞-summand in the abelianization of the kernel of π0(Diff(W , ∂)) →
π0(Homeo(W , ∂)).

1.3 Exotic codimension-1 submanifolds in 4-manifolds

Now we will focus on exotic 3-manifolds in 4-manifolds.

Definition 1.10 We call two smoothly embedded 3-manifolds Y1 and Y2 in a smooth,

oriented 4-manifold X are exotic if

(i) there is a topological ambient isotopy Ht : X × [0, 1] → X such that H0 = I d

and H1(Y1) = Y2,

(ii) there is no such smooth isotopy,

(iii) complements of Y1 and Y2 are diffeomorphic.

Remark 1.11 If we ignore (i) in Definition 1.10, recently, Budney–Gabai [13] and

independently Watanabe [58] found examples of smoothly embedded 3-balls in S1 ×
D3 that are homotopic but not smoothly isotopic.

Remark 1.12 If we do not consider (iii), one can easily construct an example that

satisfies (i) and (ii) in Definition 1.10 as follows. Let W and W ′ be a pair of Mazur corks

[2, 25] that are homeomorphic but not diffeomorphic [4, 26]. Then their doubles D(W )

and D(W ′) are diffeomorphic to the standard S4 [48]. Thus we have two embedded

3-manifolds Y = ∂W and Y ′ = ∂W ′ that are not smoothly isotopic in S4, since if they

were smoothly isotopic. By the isotopy extension theorem, their complements would
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be diffeomorphic as well. Now notice that the two embedded 3-manifolds Y and Y ′

are topologically isotopic since there exists an orientation preserving homeomorphism

f : S4 → S4 such that f (Y ) = Y ′. Now Quinn’s result [52] says that f is topologically

isotopic to identity and thus the two embedded 3-manifolds Y and Y ′ are topologically

isotopic.

In this work, to the author’s best knowledge, we construct the first example of

exotic 3-spheres in a 4-manifold with diffeomorphic complements i.e, satisfying all

conditions (i)-(iii):

Theorem 1.13 Let X = 4CP2#21(−CP2) and S be the 3-sphere embedded in X

which gives a connected sum decomposition X = X1#X2, with b+
2 (X1) = b+

2 (X2) =
2. Then there exists infinitely many copies of S with diffeomorphic complements that

are topologically isotopic but not smoothly.

This theorem follows from a more general statement, Theorem 7.8.

Remark 1.14 It is not explicitly stated but known to the experts that techniques involv-

ing the complexity of h-cobordism defined Morgan–Szabó [46] can be used to show

the existence of exotic 3-spheres in 4-manifolds. However, to the authors’ knowledge,

the techniques can only produce a pair of such S3 and moreover, the complements of

such spheres may not be diffeomorphic.

Remark 1.15 In [9], Baraglia gave examples of exotic embedded surfaces � in some 4-

manifolds with diffeomorphic complements. It follows from his work that one may find

infinitely many exotic embedded S1×� whose complements are diffeomorphic to each

other. Baraglia’s argument is based on a family version of the adjunction inequality.

Our exotic embedded 3-manifolds have vanishing b1, and use some vanishing results

for family versions of connected sum formula for Seiberg–Witten invariants.

In Sect. 7, we generalize Theorem 1.13 to 3-manifolds other than S3, in particular,

we establish the following result.

Theorem 1.16 Let Y be one of the following 3-manifolds:

(i) a connected sum of elliptic 3-manifolds, or

(ii) a hyperbolic three-manifold labelled by

0, 2, 3, 8, 12, . . . , 16, 22, 25, 28, . . . , 33, 39, 40, 42, 44, 46, 49

in the Hodgson–Weeks census, [59].

Then there exists a smooth closed 4-manifold X and infinitely many embeddings

{in : Y → X}n∈Z that are exotic in the following sense: topologically isotopic (as

embeddings) but not smoothly isotopic (as submanifolds). Moreover, the complements

X\in(Y ) are diffeomorphic to each other.

Remark 1.17 In addition to the use of the families gauge theory, the proof of Theorem

1.16 uses two deep results in 3-manifold theory; the generalized Smale conjecture
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for hyperbolic 3-manifolds proven by Gabai [24] and the connectivity of the space of

positive scalar curvature metrics for 3-manifolds proven by Bamler and Kleiner [8].

These results are used to obtain the vanishing of certain parameterized moduli space

for the Seiberg–Witten equations. The list in (ii) comes from [42, Figure 1] due to

F. Lin and Lipnowski, which lists small hyperbolic 3-manifolds having no irreducible

Seiberg–Witten solution.

Remark 1.18 Recently in [6, 7], Auckly and Ruberman also detected higher-

dimensional families of exotic embeddings and diffeomorphisms by using families

Yang–Mills gauge theory. Also, they detected exotic embeddings of 3-manifolds into

S4.

Drouin also detected exotic lens spaces in some 4-manifolds by modifying the

argument by Auckly and Ruberman.

Organization: In Sect. 2, we review the Kronheimer–Mrowka invariant for 4-

manifolds with contact boundary, which has a sign ambiguity and show that certain

auxiliary data fixes the sign. In Sect. 3, we define the families Kronheimer–Mrowka

invariants (2) and (2) of 4-manifolds with contact boundary, and the refined fami-

lies Kronheimer–Mrowka invariant (4) as well. We also establish basic properties of

these invariants. In Sect. 4, we show several vanishing results for the families Seiberg–

Witten and Kronheimer–Mrokwa invariant which can be regarded as family versions

of the connected sum formula, Frøyshov’s vanishing result, and adjunction inequality.

In Sect. 5, we construct some diffeomorphisms of some 4-manifolds with boundary,

for which we shall show the families Kronheimer–Mrowka invariants are non-trivial.

In Sect. 6.2, we give the proof of one of our main theorems, Theorem 1.4. In Sect. 7,

we prove the results on exotic embeddings of 3-manifolds into 4-manifolds.

2 Signed Kronheimer–Mrowka invariants

We first review the Kronheimer–Mrowka invariant introduced in [36]. The Kronheimer–

Mrowka invariant

m(W , s, ξ) ∈ Z/{±1}

is an invariant of a 4-manifold W with a contact boundary (Y , ξ) equipped with a

4-dimensional Spinc structure s compatible with the ξ .

Usually, the notion of Spin/Spinc structure on an oriented manifold W of dimension

d is defined by fixing a metric on W and as a lift of the structure of the SO(d)-frame

bundle of W to a principal Spin(d)- or Spinc(d)-bundle. Here we note that one can

define those notions without using Riemannian metric, which shall be convenient

when we consider families of manifolds. Denote by GL+(d, R) the group of real

square matrices of size d of det > 0. A Spin structure on an oriented d-manifold

can be defined as a lift of the structure group of the frame bundle from GL+(d, R)

to the double cover G̃L
+
(d, R). Similarly, a Spinc structure is also defined using

(G̃L
+
(d, R) × S1)/ ± 1 instead of Spinc(d).
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In the case of the usual Seiberg–Witten invariant for a closed 4-manifold X , it is

enough to fix a homology orientation of X , i.e. an orientation of H1(X; R)⊕H+(X; R)

to fix a sign of the invariant. However, in Kronheimer–Mrowka’s setting, we cannot

use such data to give an orientation of the moduli space. In order to improve this, we

introduce a two element set

�(W , s, ξ)

depending on a tuple (W , s, ξ) whose element gives an orientation of the moduli space

in Kronheimer–Mrowka’s setting.

Let W be a connected compact oriented 4-manifold with connected contact bound-

ary (Y , ξ). Let s be a Spinc structure on W which is compatible with ξ . Pick a contact

1-form θ on Y and a complex structure J of ξ compatible with the orientation. There

is now an unique Riemannian metric g1 on Y such that θ satisfies |θ | = 1, dθ = 2 ∗ θ ,

and J is an isometry for g|ξ , where ∗ is the Hodge star operator with respect to g1.

This can be written explicitly by

g1 = θ ⊗ θ + 1

2
dθ(·, J ·)|ξ .

Define a symplectic form ω0 on R≥1 × Y by the formula ω0 = 1
2

d(s2θ), where s is

the coordinate of R≥1. We define a conical metric on R≥1 × Y by

g0 := ds2 + s2g1. (5)

On R≥1 × Y , we have a canonical Spinc structure s0, a canonical Spinc connection

A0, a canonical positive Spinor 
0. These are given as follows. The pair (g0, ω0)

determines a compatible almost complex structure J on R≥1 ×Y . The Spinc structure

on R≥1 × Y is given by:

s0 := (S+ = �
0,0
J ⊕ �

0,2
J , S− = �

0,1
J , ρ : �1 → Hom(S+, S−)),

where the Clifford multiplication ρ is given by

ρ =
√

2 Symbol(∂ + ∂
∗
).

(See Lemma 2.1 in [36].) The notation 
0 denotes

(1, 0) ∈ �
0,0

R≥1×Y
⊕ �

0,2

R≥1×Y
= 
(S+|R≥1×Y ).

Then the canonical Spinc connection A0 on s0 is uniquely defined by the equation

D+
A0


0 = 0 (6)

on R≥1 × Y . We write the conical part R≥1 × Y by C+.
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Let W + be a non-compact 4-manifold with a conical end

W + := W ∪Y (R≥1 × Y ).

Fix a smooth extension of (A0,
0) on W +. On W + define Sobolev spaces

CW+ = (A0,
0) + L2
k,A0

(i�1
W+ ⊕ S+

W+) and

VW+ = L2
k−1,A0

(i�+
W+ ⊕ S−

W+)

for k ≥ 4, where S+
W+ and S−

W+ are positive and negative spinor bundles and the

Sobolev spaces are given as completions with respect to the following inner products:

〈s1, s2〉L2
k,A0

:=
k∑

i=0

∫

W+
〈∇ i

A0
s1,∇ i

A0
s2〉 dvolW+ , (7)

where the connection ∇ i
A0

is induced from A0 and the Levi-Civita connection. The

gauge group is defined by

GW+ :=
{

u : W + → U (1)|1 − u ∈ L2
k+1

}
.

The action of GW+ on CW+ is given by

u · (A,
) := (A − u−1du, u
).

Set

BW+ := CW+/GW+

and call it the configuration space. Note that since (A0,
0) is irreducible in the end,

one can see every element in BW+ is irreducible.

We have the perturbed Seiberg–Witten map

F : CW+ → VW+

(A,
) �→
(

1

2
F+

At − ρ−1(

∗)0 − 1

2
F+

At
0

+ ρ−1(
0

∗
0)0 + η, D+

A 


)
.

(8)

Here η is a generic perturbation decaying Cr exponentially.

We have the infinitesimal action of gauge group at every point (A,
) ∈ CW+

δ(A,
) : L2
k+1,A0

(i�0
W+) → L2

k,A0
(i�1

W+ ⊕ S+)

and the linearization of the Seiberg–Witten map at (A,
) ∈ CW+

D(A,
)F : L2
k,A0

(i�1
W+ ⊕ S+

W+) → L2
k−1,A0

(i�+
W+ ⊕ S−

W+).

123



1854 N. Iida et al.

The sum

D(A,
)F + δ∗
(A,
) : L2

k,A0
(i�1

W+ ⊕ S+
W+) → L2

k−1,A0
(i�0

W+ ⊕ i�+
W+ ⊕ S−

W+)

(9)

is a linear Fredholm operator.

The moduli space is defined to be

M(W , s, ξ) := {(A,
) ∈ BW+ |F(A,
) = 0}.

It is proven in [36], the moduli space M(W , s, ξ) is compact. For a suitable class of

perturbations, it is proven in [36] that M(W , s, ξ) is a smooth manifold of dimension

d(W , s, ξ) = 〈e(S+,
0|∂W ), [W , ∂W ]〉,

where e(S+,
0|∂W ) ∈ H4(W , ∂W ) is the relative Euler class of S+ with respect to

the section 
0|∂W on the boundary.

In order to give orientations of moduli spaces, we need the following lemma:

Lemma 2.1 [36, Theorem 2.4] The line bundle

det(D(A,
)F + δ∗
(A,
)) → BW+

is trivial. ��

Here we give data to fix this sign. We first give a definition of an orientation set.

Definition 2.2 Define the two element set by

�(W , s, ξ) := {orientations of the determinant line bundle of (9) over BW+}.

Note that �(W , s, ξ) does not depend on the choices of elements in BW+ since BW+ is

connected. Once we fix an element in �(W , s, ξ), we have an induced orientation on

the moduli space M(W , s, ξ). We also give another description of �(W , s, ξ) using

almost complex 4-manifolds bounded by (Y , ξ). We use the following existence result

of almost complex 4-manifolds bounded by a given 3-manifold. The proof is written

in the proof of Proposition 28.1.2 of [38], for example.

Lemma 2.3 Let Y be a closed oriented 3-manifold and ξ be an oriented 2-plane field

on Y . Then there is an almost complex 4-manifold (W , J ) bounded by (Y , ξ), which

means ∂W = Y and J T Y ∩ T Y = ξ up to homotopy of 2-plane fields. ��

Using this lemma, we also define another two element set.

Definition 2.4 For a fixed almost complex 4-manifold (Z , J ) bounded by (−Y , ξ),

we define

�(W , s, ξ, Z , J )
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to be the two-element set of trivializations of the orientation line bundle for the lin-

earized equation with a slice on the closed Spinc 4-manifold (W ∪ Z , s ∪ sJ ), where

sJ is the Spinc structure determined by J .

By its definition, �(W , s, ξ, Z , J ) can be regarded as the set of homology orientations

of the closed 4-manifold W ∪ Z .

We see behavior of �(W , s, ξ, Z , J ) under the changes of (Z , J ). The excision

argument enables us to show the following:

Lemma 2.5 For any two choices of almost complex bounds (Z , J ) and (Z ′, J ′), one

has a canonical identification

�(W , s, ξ, Z , J ) ∼= �(W , s, ξ, Z ′, J ′).

Proof This follows from an excision argument. Take an almost complex 4-manifold

Z1 bounded by (Y , ξ). We apply Theorem A.1 by putting A1 = W , B1 = Z , A2 = Z1,

B2 = Z ′,

D1 = The linearization of the Seiberg–Witten map with slice on X1 = W ∪ Z , and

D2 = The linearization of the Seiberg–Witten map with slice on X2 = Z1 ∪ Z ′.

By Theorem A.1, we have an isomorphism

det D1 ⊗ det D2 → det D̃1 ⊗ det D̃2

up to homotopy. Since the Spinc structures on X2 and X̃2 are induced by almost

complex structures, det D2 and det D̃2 has a canonical trivialization. So, we obtain a

canonical isomorphism

det D1 → det D̃1.

This gives a correspondence between �(W , s, ξ, Z , J ) and �(W , s, ξ, Z ′, J ′). ��
For a Spinc 4-manifold with countact boundary (W , ξ), we introduced two orien-

tations sets

�(W , s, ξ, Z , J ) and �(W , s, ξ).

We can define a natural correspondence between these orientation sets. Take an almost

complex bound Z1 of (Y , ξ). We again apply Theorem A.1 by putting A1 = W ,

B1 = C+, A2 = Z1 and B2 = Z

D1 = The linearization of the Seiberg–Witten map with slice on X1 = W ∪ C+, and

D2 = The linearization of the Seiberg–Witten map with slice on X2 = Z1 ∪ Z .

By Theorem A.1, we have an isomorphism

det D1 ⊗ det D2 → det D̃1 ⊗ det D̃2.
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Since the Spinc structures on X2 and X̃2 are induced by almost complex structures,

det D2 and det D̃2 has a canonical trivialization. So, we obtain a canonical isomor-

phism

det D1 → det D̃1.

This gives a bijection

ψ : �(W , s, ξ, Z , J ) → �(W , s, ξ).

A similar proof enables us to show ψ does not depend on the choices of Z1.

Lemma 2.6 There is a canonical one-to-one correspondence

ψ : �(W , s, ξ, Z , J ) → �(W , s, ξ). (10)

We use this alternative description of the orientation set when we define signed families

Kronheimer–Mrowka invariants.

Remark 2.7 For a symplectic filling (W , ω), one can choose a canonical element in

�(W , sω, ξ) by choosing an orientation coming from a compatible almost complex

structure, where sω is the Spinc structure coming from ω.

Definition 2.8 For a fixed element in λ ∈ �(W , s, ξ), we define the signed

Kronheimer–Mrowka invariant by

m(W , s, ξ, λ) :=
{

#M(W , s, ξ) ∈ Z if 〈e(S+,
0|∂W ), [W , ∂W ]〉 = 0

0 ∈ Z if 〈e(S+,
0|∂W ), [W , ∂W ]〉 �= 0.

We often abbreviate m(W , s, ξ, λ) by m(W , s, ξ).

The above definition enables us to define a map

m : Spinc(W , ξ) → Z

for a fixed element in �(W , s, ξ), where Spinc(W , ξ) is the set of isomorphism classes

of all Spinc structures which are compatible with ξ on the boundary.

3 Families Kronheimer–Mrowka invariant

We introduce families Kronheimer–Mrowka invariants in this section. We follow the

construction of families Seiberg–Witten invariants [40, 54].

Let W be a connected compact oriented 4-manifold with contact boundary Y . It

is possible to consider a version of our invariant for disconnected Y : In that case, we

need to replace π1(�
cont(Y ), ξ) that appeared in the introduction with the direct sum

of such fundamental groups for all components of Y . For simplicity, we shall suppose

that Y is connected in this paper.
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As explained in Sect. 2, we define the notion of Spin structure/Spinc structure with-

out using Riemannian metric, by considering G̃L
+
(d, R). If a Spin structure or a Spinc

structure s is given on W , define Aut(W , s) to be the group of automorphisms of the

Spinc manifold (W , s).

Let �cont(Y ) be the space of contact structures on Y equipped with the C∞-

topology, which is an open subset of the space of oriented 2-plane distributions. Let


̃ : B → �cont(Y ) be a smooth map. We denote the smooth homotopy class of 
̃ by 
.

Let W → E → B be a fiber bundle over a closed smooth manifold B of dimension n.

Let Diff+(W , [s]) denote the group of orientation preserving diffeomorphisms fixing

the isomorphism class of s, and let Diff(W , [s], ∂) denote the group of diffeomor-

phisms fixing boundary pointwise and the isomorphism class of s. Let Aut∂(W , s)

denote the inverse image of Diff(W , [s], ∂) under the natural surjection

Aut(W , s) → Diff+(W , [s]).

Suppose that the structure group of E reduces to Aut∂(W , s). Namely, E is a fiber

bundle whose restriction to the boundary is a trivial bundle of 3-manifolds, and is

equipped with a fiberwise Spinc structure sE . Suppose also that

s
̃(b) = sE |Eb

on each fiber.

For these data, we define the families Kronheimer–Mrowka invariant

F K M(E, 
) = F K M(E, W , sE , 
) ∈ Z2.

This invariant is trivial by definition unless when 〈e(S+,
0), [W , ∂W ]〉 + n = 0

where e(S+,
0) is the relative Euler class with respect to a special section 
0, which

we introduced in the previous section.

When n = 1, we can define a signed family Kronheimer–Mrowka invariant

F K M(E) ∈ Z

under a certain assumption on determinant line bundles.

3.1 Notation

Let (Y , ξ) be a closed contact 3-manifold. We use the following geometric objects

used in Sect. 2:

• a contact 1-form θ on Y ,

• a complex structure J of ξ compatible with the orientation,

• the Riemannian metric g1 on Y such that θ satisfies |θ | = 1, dθ = 2 ∗ θ ,

• the symplectic form ω0 on R≥1 × Y ,

• the conical metric g0 on R≥1 × Y ,

• the canonical Spinc structure s0 on R≥1 × Y ,
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• the canonical positive Spinor 
0 on R≥1 × Y , and

• the canonical Spinc connection A0 on s0.

Let (W , s) be a connected compact oriented Spinc 4-manifold with connected contact

boundary (Y , ξ).

Assume that a trivialization of E |∂ , the fiberwise boundary of E , is given. From

this assumption, we may further suppose that there is a trivialization of a family of

collar neighborhoods of the family of the boundaries E |∂ . This is because the group

of diffeomorphisms of W fixing boundary pointwise is weakly homotopy equivalent

to the group of diffeomorphisms of W that are the identity near ∂W (see, e.g. [39,

Theorem 5.3.1]). Let W + be a non-compact 4-manifold with a conical end defined in

Sect. 2. We define a fiber bundle

W + → E+ → B

whose fiber is Spinc 4-manifold with conical end obtained from W → E → B by

considering W + = W ∪Y (R≥1 × Y ) on each fiber.

From now on, we will explain auxiliary data that are needed to define the family

Kronheimer–Mrowka invariant. These data consist of choices of a contact form, a

complex structure on a contact plane, a compatible Riemann metric, an extension of

the canonical connection and the canonical spinor, which are denoted by Q. In addition,

we also need to fix choices of a weight function and a perturbation, which are again

denoted by R. The main point here is that the set of these auxiliary data is non-empty

and contractible, and thus the cobordism class of the Seiberg–Witten moduli space

does not depend on the choices of such additional data. Although it is not so hard to

verify it, for the readers let us carefully write the spaces of such additional data.

Let Q(Y , W , s, ξ) be the set of tuples

(θ, J , g, AW
0 ,
W

0 ),

• θ is a contact form for the contact structure ξ ,

• J is an complex structure on the contact structure ξ compatible with orientation.

• g is a smooth extension of the canonical metric for (ξ, θ, J ) on the conical end to

the whole manifold W ,

• (AW
0 ,
W

0 ) is a smooth extension of the canonical configuration (A0,
0) on the

conical end to the whole manifold W .

Varying over �cont(Y ), we obtain a fiber bundle Q(Y , W , s) → �cont(Y ) with fiber

Q(Y , W , s, ξ).

Let P(Y , W , ξ, g) be the set of pairs (σ, η), where

• σ is a smooth proper extension of the R≥1 coordinate of the conical end to the

whole manifold W , and

• η is an imaginary valued g-self-dual 2-form that belongs to e−ε0σ Cr (i�+g ) for

some ε0 > 0 and r ≥ k, where e−ε0σ Cr (i�+g ) denotes the completion of the

vector space of compactly supported smooth sections of i�+g with respect to the

norm:
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‖s‖ := ‖e−ε0σ s‖Cr (W+;i�+g ).

Varying over the set of g, we obtain a fiber bundle R(Y , W , s, ξ) → Q(Y , W , s, ξ)

with fiber P(Y , W , ξ, g), which is independent from (AW
0 ,
W

0 )-component. Vary-

ing over �cont(Y ), we obtain a fiber bundle R(Y , W , s) → �cont(Y ) with fiber

R(Y , W , s, ξ), which covers Q(Y , W , s) → �cont(Y ).

Except for η, we consider the C∞-topology for the above data. For η, we equip

weighted Cr -topology. Since the total space of a fiber bundle with contractible fiber

and base is also contractible, we have that R(Y , W , s, ξ) is contractible.

The group Aut∂(W , s) acts on the total space R(Y , W , s) via pull-back. Thus

E induces an associated fiber bundle ER → B with fiber R(Y , W , s). Since the

image of Aut∂(W , s) under the natural map Aut(W , s) → Diff(W , [s]) is contained

in Diff(W , ∂), whose restriction to the boundary acts trivially on �cont(Y ), the map

R(Y , W , s) → �cont(Y ) induces a map ER → �cont(Y ). Define π : ER → B ×
�cont(Y ) be the product of these natural maps ER → B and ER → �cont(Y ). Then

each fiber of π is homeomorphic to R(Y , W , s, ξ). The fiber bundle

E 
̃
R := (Id, 
̃)∗ER → B

the pull back of π : ER → B × �cont(Y ) under (Id, 
̃) : B → B × �cont(Y ), has

fiber homeomorphic to R(Y , W , s, ξ). Since R(Y , W , s, ξ) is contractible, the space

of sections of E 
̃
R

→ B is non-empty and contractible.

In a similar manner, we can define a fiber bundle E 
̃
Q

→ B with fiber Q(Y , W , s, ξ),

associated with E and 
. We first fix a section

sQ = (θb, Jb, gb, A0,b,
0,b)b∈B : B → E 
̃
Q

which determines the following data:

• a fiberwise contact form θb,

• a fiberwise complex structure Jb,

• a fiberwise Riemann metric {gb}b∈B on E+ such that gb|R≥1×Y = g0,b, and

• a smooth family of smooth extensions (A0,b,
0,b) of (A0,
0) on each fiber.

Here g0,b is the metric on Y depending on Jb and θb introduced in the previous section.

Consider the following functional spaces on each fiber E+
b :

CW+,b = (A0,b,
0,b) + L2
k,A0,b,gb

(i�1
W+ ⊕ S+

W+) and

VW+,b = L2
k−1,A0,b,gb

(i�+
W+ ⊕ S−

W+).

These give Hilbert bundles:

UE+(sQ) :=
⋃

b∈B

CW+,b and VE+(sQ) :=
⋃

b∈B

VW+,b.
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For the precise definitions of these Sobolev spaces see Sect. 2. The gauge group

GW+ := { u : W + → U (1)
∣∣ 1 − u ∈ L2

k+1 }

is defined and it acts on UE+ preserving fibers in Sect. 2. We define a family version

of the configuration space by

BE+(sQ) := UE+/GW+ . (11)

Now we also choose a section

sR = (θb, Jb, gb, A0,b,
0,b, σb, ηb)b∈B : B → E

R

which is compatible with the fixed section sQ, i.e. the first five components of sR

coincide with these of sS = (θb, Jb, gb, A0,b,
0,b)b∈B . For each fiber E+
b , we have

the perturbed Seiberg–Witten map

Fb : CE+,b → VE+,b

(A − A0,b,
 − 
0,b)

�→
(

1

2
F+

At − ρ−1(

∗)0 − 1

2
F+

At
0,b

+ ρ−1(
0,b

∗
0,b)0 + ηb, D+

A 


)
.

(12)

This gives a bundle map

F(sR) : UE+(sQ) → VE+(sQ). (13)

Definition 3.1 We say that {ηb}b∈B is a family regular perturbation if (13) is transverse

to zero section of VE+(sQ).

For each fiber, we have the infinitesimal action of gauge group at every point

(Ab,
b) ∈ CW+,b

δ(Ab,
b) : L2
k+1,A0,b

(i�0
W+) → L2

k,A0,b
(i�1

W+ ⊕ S+)

and the linearization of the Seiberg–Witten map at (Ab,
b) ∈ CW+,b

D(Ab,
b)F : L2
k,Ab,gb

(i�1
W+ ⊕ S+

W+) → L2
k−1,Ab,gb

(i�+
W+ ⊕ S−

W+)

The sum

D(Ab,
b)F + δ∗
(Ab,
b) : L2

k,Ab,gb
(i�1

W+ ⊕ S+
W+) → L2

k−1,Ab,gb
(i�+

W+ ⊕ S−
W+)

is a linear Fredholm operator. This gives a fiberwise Fredholm operator

LE+(sQ) : TfiberUE+(sQ) → VE+(sQ),
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where Tfiber means the fiberwise tangent bundle of UE+(sQ). By taking the determinant

line bundle for each fiber, we obtain a line bundle

det(LE+(sQ)) → BE+(sQ). (14)

Remark 3.2 As a similar study, in [49], Juan defined the families monopole contact

invariant for families of contact structures on a fixed 3-manifold. At the moment, we

do not know the triviality of the line bundle (14).

3.2 Constructions of the invariant

For a fixed section sR : B → E

R

such that {ηb}b∈B is regular, the parametrized

moduli space is defined to be

M(E, 
̃, sR) := {(A,
) = (Ab,
b)b∈B ∈ UW+ |F(A,
) = 0}/GW+ .

Recall the formal dimension

d(W , s, ξ) = 〈e(S+,
0|∂W ), [X , ∂ X ]〉

of the (unparametrized) moduli space over the cone-like end 4-manifold W +.

Proposition 3.3 For a regular perturbation, M(E, 
̃, sR) is a smooth compact man-

ifold of dimension d(W , s, ξ) + n. If the determinant line bundle

det(LE+(sQ)) → BE+(sQ),

is trivialized, an orientation of M(E, 
̃, sR) is naturally induced by an orientation

of B and an orientation of det(LE+(sQ))|b on a fiber of b ∈ B.

Proof The proof is the standard perturbation argument with the compact parameter

space B. We omit it. ��

Definition 3.4 We define the families Kronheimer–Mrowka invariant of E by

F K M(E, 
̃, sR) :=
{

#M(E, 
̃, sR) ∈ Z2 if d(W , s, ξ) + n = 0,

0 ∈ Z2 if d(W , s, ξ) + n �= 0

for a fixed section sR.

Since we will see the number F K M(E, 
̃, sR) does not depend on the choices of

sections sR and 
̃ up to smooth homotopy, we always drop sR in the notion and write

F K M(E, 
).

Proposition 3.5 The number F K M(E, 
̃, sR) is independent of the choices of the

following data:
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• a section sR and

• a choice of 
̃ which belongs to the homotopy class 
.

Also F K M(E, 
) depends only on the isomorphism class of E as Aut((W , s), ∂)-

bundles and 
.

Proof We take a smooth homotopy 
̃t : I × B → �cont(Y ) between 
̃0 and 
̃1

parametrized t ∈ [0, 1]. Take two sections

sR
0 : B → ER


̃0
and sR

1 : B → ER


̃1

so that (13) is transverse for i = 0 and i = 1. Note that a fiber of the bundle

⋃

t∈I

E

̃t

R
→ I × B

is contractible, we can take a section sR
t : I × B →

⋃
t∈I E


̃t

R
connecting sR

0 and

sR
1 such that (13) for sR

t is transverse. So, the moduli space for sR
t gives a cobordism

between M(E, 
̃0, sR
0 ) and M(E, 
̃1, sR

1 ). This completes the proof. ��
Remark 3.6 Note that there is no reducible solution to the monopole equations over

the conical end 4-manifold W + under our boundary condition, and we do not have

to impose any condition on b+
2 (W ) to ensure the well-definedness of the invariant, as

well as the unparametrized Kronheimer–Mrowka invariant.

3.3 Invariant of diffeomorphisms

Now suppose that the base space B is S1 and 
̃ is a constant map to ξ . In this case, the

family E → S1 is determined by an element of Aut∂(W , s). An element of Aut∂(W , s)

is given as a pair ( f , f̃ ): f is a diffeomorphism f : W → W which preserves the

isomorphism class of s and fix ∂W pointwise, and f̃ is a lift of f to an automorphism

on the honest Spinc structure s acting trivially over ∂W . All E → S1 can be viewed

as the mapping torus of W by ( f , f̃ ).

Lemma 3.7 Let E be the mapping torus of W by ( f , f̃ ). Then the invariant

F K M(E, 
) depends only on the diffeomorphism f and ξ .

Proof The kernel of the natural surjection

Aut∂(W , s) → Diff(W , [s], ∂)

is given by the gauge group GW = { u : W → U (1)
∣∣ u|∂W ≡ 1 }. Now suppose

that we have two lifts f̃1 and f̃2 of f to Aut∂(W , s). Let Ei be the mapping torus of

( f , f̃i ). Then the composition f̃1 ◦ f̃ −1
2 is given by a smooth map u : W → U (1)

with u ≡ 1 on ∂W . Taking an extension of u to a neighborhood of W in W +, and also

a partition of unity around ∂W , we can extend u to a smooth map u+ : W + → U (1)

with 1 − u ∈ L2
k+1. Hence the moduli spaces used in the definition of F K M(E1) and

that of F K M(E2) are identical to each other. ��
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Definition 3.8 For a fixed contact structure ξ on Y , we define the Kronheimer–Mrowka

invariant for diffeomorphims F K M(W , s, ξ, f ) to be the invariant F K M(E, 
 ≡ ξ)

of the mapping torus E with fiber (W , s) defined taking a lift of f to Aut∂(W , s).

Note that, by Lemma 3.7, F K M(W , s, ξ, f ) is independent of the choice of lift. If

(s, ξ) is specified, we sometimes abbreviate F K M(W , s, ξ, f ) to F K M(W , f ).

Now we have defined a map

F K M(W , s, ξ, •) : Diff(W , [s], ∂) → Z2.

We will show that this map is a homomorphism and descents to a map

F K M(W , s, ξ, •) : π0(Diff(W , [s], ∂)) → Z2.

3.4 A signed refinement of FKM for diffeomorphisms

Again, in this subsection, we assume that 
 is a constant function to ξ . Define a

subgroup Diff H (W , [s], ∂) of the relative diffeomorphism group Diff(W , [s], ∂) as the

group of diffeomorphisms that act trivially on homology and preserve the isomorphism

class [s] and ∂W pointwise. Note that, if W is simply-connected, Diff H (W , [s], ∂)

coincides with the group Diff H (W , ∂), the group of diffeomorphisms that act trivially

on homology and preserve ∂W pointwise.

For each element of �(W , s, ξ), we shall define a map

F K M(W , s, ξ, •) : Diff H (W , [s], ∂) → Z.

The construction of this map is done essentially by a similar fashion to define F K M :
Diff(W , [s], ∂) → Z2, but we need to count the parametrized moduli space taking

into account its orientation.

For f ∈ Diff H (W , [s], ∂), let f̃ be a lift of f to an automorphism of the Spinc

structure. Let E
f , f̃

denote the mapping torus of (W , t) as a fiber bundle of Spinc

4-manifolds. Take a section

sQ : S1 → E

Q.

Let BE
f , f̃

(sQ) denote the families (quotient) configuration space associated to E
f , f̃

introduced in (11).

Lemma 3.9 Suppose f is homologically trivial. Each element in �(W , s, ξ) induces

a section of the orientation bundle

�(E
f , f̃

) → B(E
f , f̃

) (15)

over the configuration space B(E
f , f̃

) for all f ∈ Diff H (W , [s], ∂) and lifts f̃ to the

Spinc structure.
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Proof We first prove the line bundle (15) is trivial for any pair ( f , f̃ ) such that f is

homologically trivial.

We first regard BE
f , f̃

(sQ) as a mapping torus of the trivial bundle

BW ,s,ξ := I × BW ,s,ξ → I

via the map ( f , f̃ ). From Lemma 2.1, we see that the determinant line bundle

�(W , s, ξ) over BW ,s,ξ is trivial. So, it is sufficient to prove that the induced map

( f , f̃ )∗ : �(W , s, ξ) → �(W , s, ξ)

preserves a given orientation of �(W , s, ξ). In order to see this, we use the following

canonical identification (10). First, we fix an almost complex 4-manifold (Z1, J1)

bounded by (−Y , ξ). We recall that

�(W , s, ξ, Z , J )

is defined by the two-element set of trivializations of the orientation line bundle for

the linearized equation with a slice on the closed Spinc 4-manifold (W ∪ Z , s ∪ sJ ).

Then, (10) gives an identification

ψ : �(W , s, ξ, Z , J ) → �(W , s, ξ).

Note that ( f , f̃ ) also naturally acts on �(W , s, ξ, Z , J ).

Claim 3.10 The following diagram commutes:

�(W , s, ξ, Z , J )
ψ−−−−→ �(W , s, ξ)

( f , f̃ )∗

⏐⏐� ( f , f̃ )∗

⏐⏐�

�(W , s, ξ, Z , J )
ψ−−−−→ �(W , s, ξ).

Proof of Claim 3.10 This result follows the construction of ψ based on Theorem A.1.

��

Note that the orientation of �(W , s, ξ, Z , J ) is determined just by the homology

orientation of W ∪ Z . Since we assumed that ψ is homologically trivial, the induced

action

( f , f̃ )∗ : �(W , s, ξ, Z , J ) → �(W , s, ξ, Z , J )

is also trivial. Hence, we can see that the bundle �(E
f , f̃

) → B(E
f , f̃

) is trivial. Now,

we give an orientation of �(E
f , f̃

) from a fixed element in �(W , s, ξ). For a fixed

element in �(W , s, ξ), an element �(E
f , f̃

) is induced by choosing a point in BE
f , f̃
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and restricting the bundle �(E
f , f̃

) to the point. Note that such a correspondence does

not depend on the choices of lifts f̃ . This completes the proof. ��
If E = E

( f , f̃ )
is the mapping torus, we can count the parametrized moduli space

associated with E over Z by Lemma 3.9.

Definition 3.11 For f ∈ Diff H (W , [s], ∂) and a lift f̃ , let E = E
( f , f̃ )

be the mapping

torus of (W , s) by ( f , f̃ ). we define the signed families Kronheimer–Mrowka invariant

of E by

F K M(E, ξ) :=
{

#M(E, 
 ≡ ξ, sR) ∈ Z if d(W , s, ξ) + 1 = 0,

0 ∈ Z if d(W , s, ξ) + 1 �= 0

for a fixed element in �(W , s, ξ).

Repeating the argument in Lemma 3.7, we obtain:

Lemma 3.12 Let E be the mapping torus of (W , s) by ( f , f̃ ). Then the invariant

F K M(E) ∈ Z depends only on f ∈ Diff H (W , [s], ∂).

Proof The proof is essentially the same as that of Lemma 3.7. ��

Definition 3.13 We define the signed Kronheimer–Mrowka invariant for diffeomor-

phims F K M(W , s, ξ, f ) to be the invariant F K M(E, ξ) of the mapping torus E with

fiber (W , s) defined by taking a lift of f to Aut∂(W , s). Note that, by Lemma 3.12,

F K M(W , s, ξ, f ) is independent of the choice of lift. If (s, ξ) is specified, we some-

times abbreviate F K M(W , s, ξ, f ) to F K M(W , f ).

3.5 Properties of the families Kronheimer–Mrowka invariant

In this subsection, we prove some basic properties of the families Kronheimer–Mrowka

invariant. This is parallel to Ruberman’s original argument [54, Subsection 2.3].

Let (W , s) be a connected compact oriented Spinc 4-manifold with connected

contact boundary (Y , ξ). In this subsection, we fix (s, ξ) and we sometimes drop this

from our notation of F K M(W , s, ξ, f ).

First we note the following additivity formula:

Proposition 3.14 For diffeomorphisms f , f ′ of W preserving the isomorphism class

of s and fixing ∂W pointwise, we have

F K M(W , s, ξ, f ) + F K M(W , s, ξ, f ′) = F K M(W , s, ξ, f ′ ◦ f ) mod 2.

Moreover, when an element of �(W , s, ξ) is fixed, we have

F K M(W , s, ξ, f ) + F K M(W , s, ξ, f ′) = F K M(W , s, ξ, f ′ ◦ f )

as Z-valued invariants for homologically tirivial diffeomorphisms f , f ′.
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Proof We regard F K M(W , f ′◦ f ) as the counting of M(E f ′◦ f ). Note that the moduli

space M(E f ′◦ f ) is equipped with the map M(E f ′◦ f ) → S1. We fix the following

data:

• a Riemann metric g on W which coincides with g1 on ∂W = Y and

• a regular perturbation η on W + for the metric g.

The invariant M(E f ) can be seen as the counting of parametrized moduli space over

[0, 1
2
] with regular 1-parameter family of perturbation ηt and a 1-parameter family of

metrics gt satisfying

• g0 = g, g 1
2

= f ∗g and

• η0 = η, η 1
2

= f ∗η.

Also, the invariant ME f ′ can be seen as the counting of parametrized moduli space

over [ 1
2
, 1] with the regular 1-parameter family of perturbation ηt and a 1-parameter

family of metrics gt satisfying

• g 1
2

= f ∗g, g1 = ( f ′ ◦ f )∗g and

• η 1
2

= f ∗η, η1 = ( f ′ ◦ f )∗η.

Then we have a decomposition

⋃

t∈[0, 1
2 ]

M(W , gt , ηt ) ∪
⋃

t∈[ 1
2 ,1]

M(W , gt , ηt ) =
⋃

t∈[0,1]
M(W , gt , ηt ).

The counting of
⋃

t∈[0,1] M(W , gt , ηt ) is equal to F K M(W , f ′◦ f ) by the definition.

This completes the proof. Once we fix an orientation of �(W , s, ξ), the same argument

enables us to prove the equality

F K M(W , s, ξ, f ) + F K M(W , s, ξ, f ′) = F K M(W , s, ξ, f ′ ◦ f ) ∈ Z.

��

Proposition 3.14 immediately implies:

Corollary 3.15 We have F K M(W , s, ξ, f ) = 0 for f = Id.

Lemma 3.16 The number F K M(W , s, ξ, f ) is invariant under smooth isotopy of

diffeomorphisms in Diff(W , [s], ∂).

Proof By Corollary 3.15 and Proposition 3.14, it suffices to check that if f is isotopic

to the identity, then we have F K M(W , f ) = 0. Take a generic unparametrized per-

turbation η. Let ft be a smooth isotopy from Id to f . Let ηt = f ∗
t η, and gt be the

underlying family of metrics. The M(W , gt , ηt ) is diffeomorphic to M(W , g0, ηt ),

which is empty. ��

Corollary 3.17 If F K M(W , s, ξ, f ) �= 0, then f is not isotopic to the identity through

Diff(W , [s], ∂).
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Proof This follows from Corollary 3.15 and Lemma 3.16. ��

We end up with this subsection by summarizing the above properties:

Corollary 3.18 The families Kronheimer–Mrowka invariant defines homomorphisms

F K M(W , s, ξ, •) : π0(Diff(W , [s], ∂)) → Z2

and

F K M(W , s, ξ, •) : π0(Diff H (W , [s], ∂)) → Z.

Proof This follows from Proposition 3.14, Corollaries 3.15, and 3.16. ��

3.6 Isotopy of absolute diffeomorphisms

We now consider a slight refinement of the families Kronheimer–Mrowka invariant

for diffeomorphisms defined until Subsection 3.4 to take into account isotopies of

diffeomorphisms that are not necessarily the identity on the boundary. We need to

treat a family of contact structures on the boundary in Kronheimer–Mrowka’s setting.

Such a situation is also treated in [49].

For a contact structure ξ on an oriented closed 3-manifold Y , let [ξ ] denote the

isotopy class of ξ . Let W be a compact oriented smooth 4-manifold bounded by Y .

Let f ∈ Diff(W , [s], ∂) and γ be a homotopy class of a loop in π1(�
cont(Y ), ξ).

Henceforth we fix ξ and abbreviate π1(�
cont(Y ), ξ) as π1(�

cont(Y )). Pick a repre-

sentative γ̃ : S1 → �cont(Y ) of γ and a section sR : S1 → E
γ̃

R
. Then we defined a

Z2-valued invariant

F K M(W , [s], ξ, f , γ ) ∈ Z2.

For f and γ , we can define the monodromy action on �(W , s, ξ). If this action is

trivial, we may count the parametrized moduli space over Z, and thus can define

F K M(W , [s], ξ, f , γ ) ∈ Z,

whose sign is fixed once we choose an element of �(W , s, ξ). Henceforth we fix an

element of �(W , s, ξ). It is useful to note that, for a pair admitting a square root, say

( f 2, γ 2) ∈ Diff(W , [s], ∂) × π1(�
cont(Y ), ξ), the corresponding monodromy action

is trivial. Let us summarize the situation in the following diagram:

Diff(W , [s], ∂) × π1(�
cont(Y ), ξ)

F K M(W ,[s],ξ,•,•)
Z2

{ f 2
∣∣ f ∈ Diff(W , [s], ∂)} × { γ 2

∣∣ γ ∈ π1(�
cont(Y ), ξ) }

F K M(W ,[s],ξ,•,•)
Z.

mod 2
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The cobordism argument as in Proposition 3.5 enables us to prove the invariance

of the signed and refined families Kronheimer–Mrowka’s invariant.

Proposition 3.19 Let f ∈ Diff(W , [s], ∂). If f is isotopic to the identity through

Diff(W ), then there exists γ ∈ π1(�
cont(Y )) such that

F K M(W , [s], ξ, f , γ ) = 0 ∈ Z2 (16)

and

F K M(W , [s], ξ, f 2, γ 2) = 0 ∈ Z. (17)

Proof We may suppose that d(W , s, ξ) + 1 = 0. Let ft be a path in Diff(W )

between f and the identity. Define a path γ̃ : [0, 1] → �cont(Y ) by γ̃ (t) = f ∗
t ξ ,

and set γ = [γ̃ ] ∈ π1(�
cont(Y )). Pick a generic element a of the fiber of

R(Y , W , s) → �cont(Y ) over the ξ . The pull-back s(t) = f ∗
t a gives rise to a section

s : [0, 1] → γ̃ ∗R(Y , W , s). By formal-dimensional reason, the moduli space for a

is empty. Moreover, the pull-back under f induces a homeomorphism between the

moduli space for a and that for f ∗a, and hence the parametrized moduli space for s

is empty. This completes the proof of (16).

Next we prove (17). Let γ̃# : [0, 1] → �cont(Y ) denote the concatenated path

of two copies of γ̃ . The path γ̃# is a representative of γ 2 ∈ π1(�
cont(Y )). Define a

section s′ : [0, 1] → γ̃ ∗R(Y , W , s) by s′(t) = f ∗( f ∗
t a). Namely, s′ is the pull-back

section of s under f . By concatenating s with s′, we obtain a section s ∪ s′ : [0, 1] →
γ̃ ∗

# R(Y , W , s). The left-hand side of (17) is the signed counting of the parametrized

moduli space for s ∪ s′, but again the moduli space is empty. Thus we have (17). ��

Lemma 3.19 can be generalized more:

Proposition 3.20 Let f , g ∈ Diff(W , [s], ∂). If f and g are isotopic to each other

through Diff(W ), then there exists γ ∈ π1(�
cont(Y )) such that

F K M(W , [s], ξ, f , γ ) = F K M(W , [s], ξ, g, γ ) ∈ Z2 (18)

and

F K M(W , [s], ξ, f 2, γ 2) = F K M(W , [s], ξ, g2, γ 2) ∈ Z. (19)

Proof We may suppose that d(W , s, ξ) + 1 = 0. Let ht be a path in Diff(W )

between f and g. Define a path γ̃ : [0, 1] → �cont(Y ) by γ̃ (t) = h∗
t ξ , and set

γ = [γ̃ ] ∈ π1(�
cont(Y )). Take a section sR

f : [0, 1] → γ̃ ∗R(Y , W , s) so that

sR
f (1) = f ∗sR

f (0). The quantity F K M(W , [s], ξ, f , γ ) is the signed counting of

the parametrized moduli space for sR
f . Let sR

g denote the pull-back of the sec-

tion sR
f under �t∈[0,1](h∗

t f −1). This section satisfies that sR
g (1) = g∗sR

g (0), and

F K M(W , [s], ξ, g, γ ) can be calculated by the signed counting of the parametrized

moduli space for this section sR
g . However, the pull-back under �t∈[0,1](h∗

t ( f −1)∗)
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gives rise to a diffeomorphism between these moduli spaces corresponding to sR
f and

sR
g , and this implies (18).

To prove (19), as in the proof of Lemma 3.19, let γ̃# : [0, 1] → �cont(Y ) denote the

concatenated path of two copies of γ̃ , which represents γ 2 ∈ π1(�
cont(Y )). Define

a section (s′)Rf : [0, 1] → γ̃ ∗R(Y , W , s) as the pull-back section of sR
f under f .

Similarly, define (s′)Rg as the pull-back section of sR
g under g. The signed counting

of the concatenated section sR
f ∪ (s′)Rf is the left-hand side of (19), and similarly

for g. Again the pull-back under �t∈[0,1](h∗
t ( f −1)∗) gives rise to a diffeomorphism

between these moduli spaces corresponding to (s′)Rf and (s′)Rg , and together with

the diffeomorphism for sR
f and sR

g considered above, we obtain a diffeomorphism

between these moduli spaces corresponding to sR
f ∪ (s′)Rf and sR

g ∪ (s′)Rg . Thus we

have (19). ��

Proposition 3.21 Let f , f ′ ∈ Diff(W , [s], ∂) and γ ∈ π1(�
cont(Y )). Then we have

F K M(W , [s], ξ, f ◦ f ′, γ ) = F K M(W , [s], ξ, f ) + F K M(W , [s], ξ, f ′, γ )

= F K M(W , [s], ξ, f , γ ) + F K M(W , [s], ξ, f ′)
(20)

in Z2. Moreover, if all of the diffeomorphisms in (20) and γ induce the trivial mon-

odromy on �(W , s, ξ), then the equalities (20) hold over Z.

Proof Denote by γ̃const the constant path at ξ in �cont(Y ) and set γconst = [γ̃const] ∈
π1(�

cont(Y )). By definition, we have

F K M(W , [s], ξ, f , γconst) = F K M(W , [s], ξ, f ).

Pick a generic element a ∈ P(Y , W , s, ξ). Take a path a between a and f ∗a in

P(Y , W , s, ξ). Such a path can be thought of as a section

s : [0, 1] → γ̃ ∗
constP(Y , W , s) ∼= [0, 1] × P(Y , W , s, ξ).

Pick a loop γ̃ that represents γ , and take a generic section

s′ : [0, 1] → γ̃ ∗P(Y , W , s)

so that s′(0) = f ∗a and s′(1) = ( f ◦ f ′)∗a = f ′∗( f ∗a). Then F K M(W , [s], ξ, f ,

γconst) is the algebraic count of the parametrized moduli space for s, and F K M(W , [s],
ξ, f ′, γ ) is that for s′. Thus the algebraic count of the parameterized moduli space for

the path that is obtained by concatenating s and s′ is the right-hand side of (20).

On the other hand, parametrizing intervals, we can regard the concatenation of the

sections s and s′ as a section

s ∪ s′ : [0, 1] → γ̃ ∗P(Y , W , s)
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such that (s ∪s′)(0) = a and (s ∪s′)(0) = ( f ◦ f ′)∗a. Therefore the algebraic count of

the parameterized moduli space for s ∪ s′ is the left-hand side of (20). This completes

the proof of the first equality. The second equality follows just by a similar argument.

��

4 Several vanishing results

In this section, we prove several vanishing results for both of the families Seiberg–

Witten invariant and Kronheimer–Mrokwa invariant.

Before stating several vanishing results, let us introduce a notion of strong L-space

for convenience.

Definition 4.1 A rational homology 3-sphere Y is a strong L-space if there exists a

Riemann metric g on Y such that there is no irreducible solutions to the Seiberg–Witten

equation on (Y , g, s) for a Spinc structure s on Y .

Note that all strong L-spaces are L-space. However, the authors do not know whether

the converse is true or not.

We also recall the families Seiberg–Witten invariant for diffeomorphisms following

[54]. Let X be a closed oriented smooth 4-manifold with b+
2 (X) > 2 and s be a Spinc

structure on X . Fix a homology orientation of X . Let f : X → X be an orientation-

preserving diffeomorphism of X such that f ∗s = s (precisely, f ∗s is isomorphic to

s). Then we can define a numerical invariant F SW (X , s, f ), which takes value in Z
if f preserves the homology orientation, and which takes value in Z2 if f reverses the

homology orientation. It is valid essentially only when the formal dimension of s is

−1: otherwise the invariant F SW (X , s, f ) is just defined to be zero.

4.1 A family version of the vanishing result for embedded submanifolds

4.1.1 Embeddings of 3-manifolds

We first prove a family version of the vanishing result for embedded 3-manifolds. For

the original version, see [23] for example.

Theorem 4.2 Let (X , s) be a closed Spinc 4-manifold with b+
2 (X) > 0 and Y be a

closed oriented 3-manifold.

(i) Suppose there is a smooth embedding i : Y → X. Let (Y , g) be a strong L-space

for some metric g on Y and f be an orientation-preserving self-diffeomorphism

of X such that

◦ f ∗s = s,

◦ f (i(Y )) = i(Y ) as subsets of X, and

◦ f : (i(Y ), i∗g) → (i(Y ), i∗g) is an isometry.

We also impose that the map

H2(X; Q) → H2(Y ; Q)
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is non-zero. Then we have

F SW (X , s, f ) =
{

0 ∈ Z if f does not flip the homology orientation of X ,

0 ∈ Z2 if f flips the homology orientation of X .

(ii) Suppose X contains an essentially embedded smooth surface S with non-zero

genus and zero self-intersection that violates the adjunction inequality, i.e. we

have

2g(S) − 2 < | 〈c1(s), [S]〉 |.

Also, the normal sphere bundle ∂ν(S) is supposed to be f |∂ν(S) = Id∂ν(S).

Then, we have

F SW (X , s, f ) =
{

0 ∈ Z if f does not flip the homology orientation of X ,

0 ∈ Z2 if f flips the homology orientation of X .

Note that Theorem 4.2(ii) also follows from [9, Theorem 1.2]. In the proof, we mainly

follow the original Frøyshov’s argument which uses a neck stretching argument and

non-exact perturbations and Kronheimer–Mrowka’s proof of the Thom conjecture

[35].

Proof We first prove (i). Since the proof of (ii) is similar to that of (i), we only write

a sketch of proof of (ii). Because the family Seiberg–Witten invariant is an isotopy

invariant, we can assume that f can be a product in a neighborhood N of Y ′ which is

isometry with respect to g. Now, we consider the family version of the moduli space

PM(X , s, f ) → S1

as a mapping torus of the moduli space over I = [0, 1]:
⋃

t∈[0,1]
M(X , s, gt ) → I ,

where gt is a smooth 1-parameter family of metrics such that

• g1 = f ∗g0 and

• for any t ∈ [0, 1], we have gt |N = g + dt2.

Here we take a metric g so that there is no irreducible solution to the Seiberg–Witten

equation on Y . By assumption, we have a trivialization of the family E f → S1

obtained as the mapping torus of f near N :

E f |i(Y )
⊂ E f ,

where E f |i(Y )
us the mapping torus of f |i(Y ).

Now, near E f |i(Y )
, we consider a neck stretching argument. We consider a family

of metrics gt,s parametrized by s ∈ [0,∞) satisfying the following conditions:
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• gt,0 = gt ,

• as Riemann manifolds, (E f |i(Y )
, gt,s |N ) = ([0, s + 1] × Y , g + dt2),

• outside of E f (i(Y )) in E f , the metric gt,s coincides with gt .

By the assumption Im(H2(X; Q) → H2(Y ; Q)) �= 0, we take a closed 2-form η on

X such that

0 �= [η|Y ] ∈ H2(Y ; R).

Then, we consider the perturbation of the family Seiberg–Witten equation on E f using

η:

{
F+

At
t
+ σ(
t ,
t ) = εη+

DAt 
t = 0

for a small ε > 0. We take the ε so that there is no solution to the εη-perturbed

Seiberg–Witten equation on Y with respect to (g′, s|Y ):

{
FBt + σ(φ, φ) = εη|Y
DBφ = 0.

Suppose F SW (X , s, f ) �= 0. Put η0 := εη. Now we take an increasing sequence

si → ∞. Then, since F SW (X , s, f ) �= 0, there is a sequence of solutions (Ai ,
i )

to the Seiberg–Witten equation with respect to gti ,si
for some ti ∈ [0, 1].

Claim 4.3 We claim that

sup
i∈Z>0

E
top
η0,gti ,si

((Ai ,
i )|E f |i(Y )
) < ∞,

where, for a Spinc 4-manifold W with boundary, the topological energy perturbed by

η0 is defined to be

E top
η0

(A,
) := 1

4

∫

W

(FAt − 4η0) ∧ (FAt − 4η0) −
∫

∂W

〈
|Y , DB
|Y 〉.

Proof of Claim 4.3 For a Spinc 4-manifold W with boundary, define the perturbed ana-

lytical energy by

Ean
η0

(A,
) := 1

4

∫

W

|FAt − 4η0|2 +
∫

W

|∇A
|2 + 1

4

∫

W

(|
|2 + (s/2))2

−
∫

W

s2

16
+ 2

∫

W

〈
,ρ(η0)
〉 −
∫

∂W

(H/2)|
|2,

where s is the scalar curvature and H is the mean curvature. It is proven that if (A,
)

is a solution to the Seiberg–Witten equation perturbed by η0, the equality

Ean
η0

(A,
) = E top
η0

(A,
).
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holds ( [38, (29.6), Page 593]). Since X is closed, we know that, on X ,

sup
i∈Z>0

Ean
η0

(Ai ,
i ) = sup
i∈Z>0

E top
η0

(Ai ,
i ) < ∞.

On the other hand, we have

Ean
η0

(Ai ,
i ) = Ean
η0

((Ai ,
i )|E f |i(Y )
) + Ean

η0
((Ai ,
i )|(E f |i(Y )

)c ).

Since X is compact, η0 is bounded and gt,s is a compact family of metrics, we have

lower bounds

−∞ < inf
i∈Z>0

Ean
η0

((Ai ,
i )|(E f |i(Y )
)c(Ai ,
i ).

So, we see

sup
i∈Z>0

E
top
η0,gti ,si

((Ai ,
i )|E f |i(Y )
) = sup

i∈Z>0

Ean
η0,gti ,si

((Ai ,
i )|E f |i(Y )
) < ∞.

��

By taking a subsequence, we can suppose ti → t∞ ∈ [0, 1]. As in the proof of [36],

we can also take a subsequence of (Ai ,
i ) so that

E
top
gti ,si

((Ai ,
i )|[li ,li +1]×Y⊂E f |i(Y )
) → 0.

So, as the limit of (Ai ,
i )|[li ,li +1]×Y⊂E f |i(Y )
, we obtain an (perturbed) energy zero

solution (A∞,
∞) on [0, 1] × Y . By considering the temporal gauge, this gives a

solution to (4.1.1). This gives a contradiction.

The proof of (ii) is similar to (i). Let Y be the product S1 × S. We take a Riemann

metric g on Y forms

g = dt2 + g0,

where t is a coordinate of S1 and g0 has a constant scalar curvature. Kronheimer–

Mrowka’s argument in [38] implies that if there is a solution to the Seiberg–Witten

equation on Y with respect to (g, s|Y ), then the adjunction inequality

|〈c1(s), [S]〉| ≤ 2g(S) − 2

holds ([38, Proposition 40.1.1]) when g(S) > 0. Since we now are assuming the

opposite inequality |〈c1(s), [S]〉| < 2g(S) − 2, it is sufficient to get a solution to the

Seiberg–Witten equation on Y with respect to (g, s|Y ). The remaining part of the proof

is the same as that of (i), i.e. we consider the neck stretching argument near ∂(ν(S)).

This completes the proof. ��
We also provide a version of Theorem 4.2 for the Kronheimer–Mrowka invariant.
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Theorem 4.4 Let (W , s) be a compact Spinc 4-manifold with contact boundary (Y , ξ).

(i) Suppose there is a smooth embedding i : Y → W where (Y , g) is a strong L-space

for some metric g on Y . Let f be a self-diffeomorphism of W such that

– f |∂W is the identity,

– f ∗s = s,

– i(Y ) separates W ,

– f (i(Y )) = i(Y ) as subsets of W , and

– f : (i(Y ), i∗g) → (i(Y ), i∗g) is an isometry.

We also impose that the map

H2(W ; Q) → H2(Y ; Q)

is non-zero. Then we have

F K M(X , s, ξ, f ) =
{

0 ∈ Z if the action of f on �(Y , s, ξ) is trivial,

0 ∈ Z2 if the action of f on �(Y , s, ξ) is non-trivial.

(ii) Suppose W includes an essentially embedded smooth surface S with non-zero

genus that violating adjunction inequality and [S]2 = 0. Then for a homologically

trivial diffeomorphism f on W fixing the boundary pointwise such that f (∂(ν(S)))

is smoothly isotopic (rel ∂) to ∂(ν(S)), we have

F K M(X , s, ξ, f ) =
{

0 ∈ Z if the action of f on �(Y , s, ξ) is trivial,

0 ∈ Z2 if the action of f on �(Y , s, ξ) is non-trivial.

Proof The proof is essentially parallel to that of Theorem 4.2 An unparametrized ver-

sion of Theorem 4.4 is proven in [30, Theorem 1.19 (i)]. We use the same perturbations

used in the proof of [30, Theorem 1.19 (i)]. The only difference between the proofs

of Theorem 4.2 and Theorem 4.4 appears in the proof of Claim 4.3. Note that when

we consider the Seiberg–Witten equation on 4-manifolds with conical end, there is

no global notion of energy: on the interior, we have usual topological and analytical

energies, and on the cone, we have the symplectic energy. We combine these two

energies to show Claim 4.3. For that part, see that the proof of [30, Lemma 4.6]. It is

easy to see the proof of [30, Lemma 4.6] can be also applied to our family case. ��

4.1.2 Embeddings of surfaces

We also prove Theorem 4.4 for embedded surfaces to find exotic embeddings of

surfaces into 4-manifolds with boundary. Let �g denote a closed oriented surface of

genus g.

Theorem 4.5 Let (W , s) be a compact Spinc 4-manifold with contact boundary (Y , ξ).

Let i : �g → W be a smooth embedding satisfying one of the following two conditions:

(i) – i∗[�g] is non-torsion, and
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– g = 0.

(ii) – g > 0 and

– the adjunction inequality for (i(�g), s) is violated.

For any diffeomorphism f on W fixing the boundary pointwise and preserving the

Spinc structure s such that i is smoothly isotopic (rel ∂) to f ◦ i , we have

F K M(X , s, ξ, f ) =
{

0 ∈ Z if the action of f on �(Y , s, ξ) is trivial,

0 ∈ Z2 if the action of f on �(Y , s, ξ) is non-trivial.

Moreover, in the case (i), we can replace the assumption that i is isotopic to f ◦ i with

the assumption that the image i(�g) is smoothly isotopic to the image of f 2 ◦ i(�g).

Proof The proof is also based on the neck stretching argument near a normal neigh-

borhood of i(�g). The closed case is treated in [9]. Since there is no big difference

between the proof of Theorem 4.5 and [9, Theorem 1.2], we omit the proof. ��

4.2 A fiberwise connected sum formula

We first review a fiberwise connected sum formula which is first proven in [32, The-

orem 7.1]. Note that in [32, Theorem 7.1], the case that the connected sum along S3

is treated. We generalize the vanishing result in [32, Theorem 7.1] to the result on the

connected sums along any strong L-spaces with b1 = 0. In the context of Donaldson’s

theory, the connected sum result is written in [55, Theorem 3.3]. For a 4-manifold X ,

X◦ denotes a compact punctured 4-dimensional submanifold of X .

Theorem 4.6 Let (Y , h) be a strong L-space with b1(Y ) = 0. Let (X , s), (X ′, s′) be

two compact Spinc 4-manifolds with b+
2 > 1, ∂ X = −Y , ∂ X ′ = Y , and suppose there

is an isomorphism s|∂ X = s′|−∂ X ′ . Let f be an orientation-preserving diffeomorphism

on the closed 4-manifold X# := X ∪Y X ′ such that

(i) the diffeomorphism f is smoothly isotopic to a connected sum f ′#Y g′ on X ∪Y X ′

of diffeomorphisms f ′ and g′ on X and X ′ which are, near the boundary of X and

X ′, the product of an isometry of (Y , h) with the identity on [0, 1], and

(ii) the diffeomorphism f preserves the Spinc-structure s#s′ on X#.

Then we have

F SW (X#, s#s′, f ) =
{

0 ∈ Z if f does not flip the homology orientation of X ,

0 ∈ Z2 if f flips the homology orientation of X .

Proof For completeness, we give a sketch of the proof. Let Y be a rational homology

3-sphere with a Riemannian metric h such that there is no irreducible solution to the

Seiberg–Witten equation on Y with respect to (s|Y , h). Suppose X◦ and (X ′)◦ are

4-manifolds with boundary −Y and Y and define

X#X ′ = X◦ ∪Y (X ′)◦.
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Since the family Seiberg–Witten invariant F SW is an isotopy invariant, we can assume

that f is described as the connected sum f ′#g′ on X#Y X ′ of diffeomorphisms f ′ and g′

on X◦ and (X ′)◦ which are the identity near the boundary of X◦ and (X ′)◦. With respect

to the Spinc structure s#s′, the gluing theory enables us to construct a diffeomorphism

PM((X◦ ∪ [0,∞) × Y ), f ′) ×U (1) PM(((−∞, 0] × Y )

∪ (X ′)◦, g′) → PM(X#X ′, f ′#g′), (21)

where the spaces PM(X◦ ∪ [0,∞) × Y ), f ′) and PM(((−∞, 0] × Y ) ∪ (X ′)◦, g′)
are parametrized moduli spaces on the cylindrical-end Riemannian 4-manifolds X◦ ∪
[0,∞) × Y and ((−∞, 0] × Y ) ∪ (X ′)◦ asymptotically the flat reducible solutions.

Here we used the product metric h + dt2 on the cylinder part. Precisely, we need to

use weighted L2
k norms to obtain Fredholm properties of linearized Seiberg–Witten

equations with slice. From index calculations, we have

dim PM(X◦ ∪ [0,∞) × Y , f ′) = dim PM(X , f ′)

and

dim PM((−∞, 0] × Y ∪ (X ′)◦), g′) = dim PM(X ′, g′).

So we have

dim PM(X , f ′) + dim PM(X ′, g′) + 1 = dim PM(X#X ′, f ).

Note that dim PM(X#X ′, f ) is 0 if we assume the family Seiberg–Witten invariant

of (X#X ′, s#s′, f ) is non-zero. (Otherwise, we define 0 as the family Seiberg–Witten

invariant in this paper. ) Thus, one of dim PM(X , f ′) and dim PM(X ′, g′) is nega-

tive. This implies one of PM(X , f ′) and PM(X ′, g′) is empty since they are assumed

to be regular. This completes the proof. ��

In Theorem 4.6, we assumed that f is isotoped into f ′ so that f ′|Y is an isometry.

However, if Y admits a positive scalar curvature metric, then the following stronger

result holds:

Theorem 4.7 Let Y be a rational homology 3-sphere with a positive scalar curvature

metric and b1(Y ) = 0. Let (X , s), (X ′, s′) be two compact Spinc 4-manifolds with

b+
2 > 1, ∂ X = −Y and ∂ X ′ = Y . Suppose s|∂ X = s′|−∂ X ′ . Let f be an orientation-

preserving diffeomorphism on the closed 4-manifold X# := X ∪Y X ′ such that

(i) the diffeomorphism f is smoothly isotopic to a connected sum f ′#Y g′ on X ∪Y X ′

of diffeomorphisms f ′ and g′ on X and X ′ so that f (Y ) = Y ,

(ii) the diffeomorphism f preserves the Spinc-structure s#s′ obtained as the connected

sum of s and s′ along Y .
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Then we have

F SW (X#, s#s′, f ) =
{

0 ∈ Z if f does not flip the homology orientation ofX ,

0 ∈ Z2 if f flips the homology orientation of X .

Proof The proof is similar to that of Theorem 4.6. Instead of assuming the isometric

property of diffeomorphisms, we use the contractivity of the space of positive scalar

curvature metrics proven in [8]. Let us explain how to take a fiberwise Riemann metric

to obtain a diffeomorphism corresponding to (21). Because the family Seiberg–Witten

invariant is an isotopy invariant, we can assume that f is a product in a neighborhood

N of Y preserving the level of N = [0, 1]×Y . Now, we shall consider the parametrized

moduli space

PM(X , s, f ) → S1,

regarded as the quotient the moduli space over [0, 1]:
⋃

t∈[0,1]
M(X , s, gt ) → [0, 1],

where gt is a smooth 1-parameter family of metrics such that

• g1 = f ∗g0,

• for any t ∈ [0, 1], we have gt |N = ht + dt2 for a smooth 1-parameter family of

metrics ht on Y ,

• h0 is a positive scalar curvature metric on Y .

By the connectivity of the space of positive scalar curvature metrics proven in [8], we

can take ht so that ht is a positive scalar curvature metric for every t ∈ [0, 1]. Under

these settings, we obtain a diffeomorphism between moduli spaces of the form (21),

and the rest of the proof is the same as that of Theorem 4.6. ��

We next show a vanishing result of the Kronheimer–Mrowka invariant similar to

Theorem 4.6.

Theorem 4.8 Let Y be a strong L-space with b1(Y ) = 0. Let (W , s), (X ′, s′) be Spinc

4-manifolds with b+
2 > 1, ∂W = −Y ∪Y ′ and ∂ X ′ = Y for an oriented 3-manifold Y ′.

Suppose Y ′ is equipped with a contact structure ξ such that sξ = s|Y ′ and s|Y = s′|Y .

Let f be a diffeomorphism on the closed 4-manifold W # := W ∪Y X ′ such that

(i) the diffeomorphism f is smoothly isotopic to f ′∪g′ on W ∪Y X ′ of diffeomorphisms

f ′ and g′ on X and X ′ which are isometry (not necessarily identity) near the

boundary of W and X ′ with respect to metric h on Y , and

(ii) the diffeomorphism f preserves the Spinc-structure s#s′ on W #.

Then we have

F K M(W #, s#s′, f ) =
{

0 ∈ Z if f does not flip the elements in �(W #, s#s′, ξ),

0 ∈ Z2 if f flips the homology orientation of X .
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Proof The proof is completely the same as that of Theorem 4.6. ��

4.3 A fiberwise blow up formula

We first review a fiberwise blow up formula proven in [11] for the family Seiberg–

Witten invariant.

Theorem 4.9 ([11]) Let (X , s), (X ′, s′) be closed Spinc 4-manifolds with b+
2 (X) > 1

and b+
2 (X ′) = 1. Let f be an orientation-preserving diffeomorphism of the closed

4-manifold X#X ′. Suppose that the formal dimension of the Seiberg–Witten moduli

spaces for (X , s) and (X ′, s′) are 0 and −2 respectively.

(i) Let f be a homologically trivial diffeomorphism on X#X ′ such that f is smoothly

isotopic to a connected sum f ′#g′ of f ′ = IdX and a homologically trivial diffeo-

morphism g′ of X ′, which is the identity near boundary. Then we have

F SW (X#X ′, s#s′, f ) = 0 ∈ Z.

(ii) Let f be a self-diffeomorphism on X#X ′ such that

– f preserves the Spinc structure s#s′,
– f is smoothly isotopic to a union f ′ ∪ g′ on X#X ′ of the identity f ′ = IdX of

X and a diffeomorphism g′ on X ′ which is the identity near ∂ X ′, and

– g′ reverses the homology orientation of X ′.

Then we have

F SW (X#X ′, s#s′, f ) = SW (X , s) ∈ Z2,

where the right-hand side is the mod 2 Seiberg–Witten invariant.

Remark 4.10 Note that [11, Theorem 1.1] only treats the connected sum along S3, but

there is no essential change when we extend their result to the case of the sums along

any strong L-space with b1 = 0.

Now, we state a fiberwise blow up formula for the families Kronheimer–Mrowka

invariant.

Theorem 4.11 Let (W , s), (X , s′) be Spinc 4-manifolds with b+
2 (X) = 1, ∂W = −Y

and ∂ X = ∅ for an oriented 3-manifold Y . Suppose Y is equipped with a contact

structure ξ such that sξ = s|Y , d(W , s, ξ) = 0 and d(X , s′) = −2, where d(X , s′)
is the virtual dimension of the Seiberg–Witten moduli space for (X , s′). Let f be a

diffeomorphism on the 4-manifold X#W such that f preserves the Spinc structure

s#s′ obtained as the connected sum of s and s′.

(i) Suppose f is smoothly isotopic (rel ∂) to a union f ′ ∪ g′ on X#W of the identity

f ′ = IdX of X and a homologically trivial diffeomorphism g′ of W which is the

identity near boundary. Then we have

F K M(X#W , s#s′, ξ, f ) = 0 ∈ Z.
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(ii) Suppose f is smoothly isotopic to a union f ′ ∪ g′ of the identity f ′ = IdX of X

and a diffeomorphism g′ of W which is the identity near boundary and g′ reverses

the homology orientation of X.

Then we have

F K M(X#W , s#s′, ξ, f ) = m(W , s, ξ) ∈ Z2.

Proof The proof is essentially the same as that for a similar gluing formula for the

families Seiberg–Witten invariant of families of closed 4-manifolds [11, Theorem 1.1],

and we omit the proof. ��

Remark 4.12 We also remark that Theorem 4.11 can easily be generalized to the case

of the connected sum along a strong L-space.

As a special case, we give a certain fiberwise connected sum formula for a certain

class of 4-manifolds parametrized by S1.

Let W be an oriented compact smooth 4-manifold with contact boundary (Y , ξ)

and with b+
2 > 1. Let s be a Spinc structure on W of formal dimension 0. Let N , t, fN

be as in Sect. 5. Let us consider the manifold W #N obtained as the connected sum

along D4 in N and the diffeomorphism IdW # fN .

Proposition 4.13 Under the above notation, one has

F K M(W #N , s#t, ξ, Id # fN ) = m(W , s, ξ) ∈ Z2

Proof This is a corollary of Theorem 4.11. ��

5 Construction of diffeomorphisms and non-vanishing results

In this section, we construct an ingredient of desired exotic diffeomorphisms in our

main theorems.

First, we describe the setting we work on. Set

N := CP2#2(−CP2) = CP2#(−CP2
1 )#(−CP2

2 ).

Let t be a Spinc structure on N such that each component of

c1(t) ∈ H2(N ) = H2(CP2) ⊕ H2(−CP2
1 ) ⊕ H2(−CP2

2 )

is a generator of H2(CP2), H2(−CP2
1 ), and H2(−CP2

2 ). Let H , E1, E2 be the gen-

erators of H2(CP2), H2(−CP2
1 ), H2(−CP2

2 ), namely

c1(t) = H + E1 + E2.

By abuse of notation, let H , E1, E2 denote also representing spheres of the Poincaré

duals of these classes. A diffeomorphism fN : N → N satisfying the following
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properties is constructed in [31, Proof of Theorem 3.2] (where the diffeomorphism is

denoted by f ′
0):

• fN fixes the isomorphism class of t, and

• fN reverses orientation of H+(N ).

By isotopy, we may suppose also that fN fixes a 4-dimensional small disk D4 in N .

We consider simply connected compact oriented 4-manifolds W and W ′ with com-

mon contact boundary (Y , ξ). Assume also that we have a diffeomorphism

ψ : W #N → W ′#N

that satisfies the following: If we decompose H2(W ′#N ; Z) into

H2(W ′#N ; Z) = H2(W ′; Z) ⊕ H2(N ; Z),

the induced action ψ∗ : H2(W ′#N ; Z) → H2(W ′#N ; Z) on a + b ∈ H2(W ′; Z) ⊕
H2(N ; Z) is of the form

ψ∗(a + b) = h′(a) + b, (22)

where

h′ : H2(W ′; Z) → H2(W ′; Z)

is an isomorphism.

Let s be a Spinc structure on W , and let s′ be the Spinc structure on W ′ determined

by h′(c1(s
′)) = c1(s). Then it follows from (22) that

(ψ−1)∗(c1(s) + c1(t)) = c1(s
′) + c1(t). (23)

Define a self-diffeomorphism f of W #N by

f := (IdW # fN ) ◦ ψ−1 ◦ (IdW ′ # f −1
N ) ◦ ψ. (24)

Note that f is the identity on the boundary, while ψ might not be. Note also that f

acts trivially on the (co)homology of W #N . Indeed, we obtain from (22) that

f ∗ = ψ∗ ◦ diag(IdH2(W ′), ( f −1
N )∗) ◦ (ψ−1)∗ ◦ diag(IdH2(W ), f ∗

N )

= diag(h′ ◦ h′−1, ( f −1
N )∗ ◦ f ∗

N ) = Id .

Proposition 5.1 Suppose that

(m(W , s, ξ),m(W ′, s′, ψ∗ξ)) ≡ (1, 0) or (0, 1) ∈ Z2 × Z2.
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Then we have

F K M(W #N , s#t, ξ, f ) ≡ 1 ∈ Z2

for the above diffeomorphism f .

Proof It follows from a combination of the gluing formula Proposition 4.13, the addi-

tivity formula Proposition 3.14, and (23) that

F K M(W #N , s#t, ξ, f )

= F K M(W #N , s#t, ξ, IdW # fN ) + F K M(W #N , s#t, ξ, ψ−1 ◦ (IdW ′ # f −1
N

) ◦ ψ)

= F K M(W #N , s#t, ξ, IdW # fN ) + F K M(W ′#N , s′#t, ψ∗ξ, IdW ′ # f −1
N

)

= m(W , s, ξ) + m(W ′, s′, ψ∗ξ)

= 0 + 1 = 1 in Z2.

This completes the proof. ��

Corollary 5.2 For every non-zero integer n ∈ Z, we have

F K M(W #N , s#t, ξ, f n) �= 0 ∈ Z. (25)

Moreover, the mapping class of f above generates a Z-summand of the abelianization

of

Ker(π0(Diff(W #N , ∂) → Aut(H2(W #N ; Z))).

Proof This follows from Proposition 5.1 and Corollary 3.18. ��

We can modify the above argument for the generalized families Kronheimer–

Mrowka invariant with a loop in �cont(�(Y )).

Lemma 5.3 Let W be a compact oriented 4-manifold and with boundary Y = ∂W .

Let ξ be a contact structure on Y . Let � be an embedded 2-sphere in the interior of

W whose self-intersection is non-negative and whose homology class is non-torsion.

Let N = CP2#2(−CP2), s ∈ Spinc(W #N , ξ), and set t := s|N . Let f0 be a self-

diffeomorphism of N which preserves t. Then, for every γ ∈ π1(�
cont(Y )), we have

F K M(W #N , [s], ξ, IdW # f0, γ ) = 0

in Z2.

Proof Let us first consider the case with [�]2 = 0. General case can be reduced to this

case by standard argument using the blow-up formula Theorem B.3 and the connected

sum formula Theorem 4.11. Neck stretching argument along the boundary S1 × S2 of

a tubular neighbourhood of �, as in Theorem 4.4, gives the conclusion. ��
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Proposition 5.4 Let W be a compact oriented 4-manifold and with boundary Y = ∂W .

Let ξ be a contact structure on Y . Let � be an embedded 2-sphere in the interior of

W whose self-intersection is non-negative and whose homology class is non-torsion.

Suppose that

m(W ′, s′, ψ∗ξ) ≡ 1 ∈ Z2.

Then, for the above diffeomorphism f Eq. (24), we have

F K M(W #N , s#t, ξ, f , γ ) �= 0 ∈ Z2 (26)

for every γ ∈ π1(�
cont(Y )), and

F K M(W #N , s#t, ξ, f 2n, γ 2) �= F K M(W #N , s#t, ξ, f 2n′
, γ 2) ∈ Z (27)

for every γ ∈ π1(�
cont(Y )) and every distinct n, n′ ∈ Z.

Proof For every γ , it follows from the gluing formula Proposition 4.13, the additivity

formula Lemma 3.21, and (23) that

F K M(W #N , s#t, ξ, f , γ )

= F K M(W #N , s#t, ξ, IdW # fN , γ ) + F K M(W #N , s#t, ξ, ψ−1 ◦ (IdW ′ # f −1
N

) ◦ ψ)

= F K M(W #N , s#t, ξ, IdW # fN , γ ) + F K M(W ′#N , s′#t, ψ∗ξ, IdW ′ # f −1
N

)

= 0 + m(W ′, s′, ψ∗ξ) = 1 ∈ Z2.

Thus we have (26).

Next, applying Lemma 3.21 inductively, for n > 0 and every γ , we obtain that

F K M(W #N , s#t, ξ, f 2n, γ 2)

= F K M(W #N , s#t, ξ, ( f 2)n−1, γ 2) + F K M(W #N , s#t, ξ, f 2)

= · · ·
= F K M(W #N , s#t, ξ, Id, γ 2) + nF K M(W #N , s#t, ξ, f 2)

This combined with (25) implies (27) for n, n′ ≥ 0 with n �= n′. A similar argument

works for n, n′ ≤ 0 just by considering f −1 in place of f . ��

6 Proof of Theorem 1.4

Before proving Theorem 1.4, we review several definitions and theorems which are

used in the proof of Theorem 1.4.
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6.1 Contact topology

Let ξ be a contact structure on an oriented 3-manifold. A knot K ⊂ (Y , ξ) is called

Legendrian if Tp K ⊂ ξp for p ∈ K . A Legendrian knot K in a contact manifold (Y , ξ)

has a standard neighborhood N and a framing f rξ given by the contact planes. If K is

null-homologous, then f rξ relative to the Seifert framing is the Thurston–Bennequin

number of K , which is denoted by tb(K ). If one does f rξ − 1-surgery on K by

removing N and gluing back a solid torus so as to effect the desired surgery, then there

is a unique way to extend ξ |Y−N over the surgery torus so that it is tight on the surgery

torus. The resulting contact manifold is said to be obtained from (Y , ξ) by Legendrian

surgery on K . Also, for a knot K in (S3, ξstd), the maximal Thurston–Bennequin

number is defined as the maximal value of all Thurston–Bennequin numbers for all

Legendrian representations of K .

A symplectic cobordism from the contact manifold (Y−, ξ−) to (Y+, ξ+) is a com-

pact symplectic manifold (W , ω) with boundary −Y− ∪ Y+ where Y− is a concave

boundary component and Y+ is convex, this means that there is a vector field v near ∂W

which points transversally inwards at Y− and transversally outwards at Y+, Lvω = ω

and ιvω|Y± is a contact form of ξ±. If Y− is empty, (W , ω) is called a symplectic filling.

We mainly follow a technique to construct symplectic cobordisms called Weinstein

handle attachment [60]. One may attach a 1-, or 2-handle to the convex end of a

symplectic cobordism to get a new symplectic cobordism with the new convex end

described as follows. For a 1-handle attachment, the convex boundary undergoes,

possibly internal, a connected sum. A 2-handle is attached along a Legendrian knot L

with framing one less than the contact framing, and the convex boundary undergoes a

Legendrian surgery.

Theorem 6.1 Given a contact 3-manifold (Y , ξ = Ker θ) let W be a part of its sym-

plectization, that is (W = [0, 1] × Y , ω = d(etθ)). Let L be a Legendrian knot

in (Y , ξ) where we think of Y as Y × {1}. If W ′ is obtained from W by attaching

a 2-handle along L with framing one less than the contact framing, then the upper

boundary (Y ′, ξ ′) is still a convex boundary. Moreover, if the 2-handle is attached to

a symplectic filling of (Y , ξ) then the resultant manifold would be a strong symplectic

filling of (Y ′ξ ′).

The theorem for Stein fillings was proven by Eliashberg [16], for strong fillings by

Weinstein [60], and was first stated for weak fillings by Etnyre and Honda [17].

6.2 Proof of Theorem 1.4

In this section, we will show the existence of exotic diffeomorphisms of 4-manifolds

with boundary. First, we need the following result to guarantee the existence of topo-

logical isotopy between diffeomorphisms of 4-manifolds with boundary.

Theorem 6.2 (Orson–Powell, [50, Corollary C]) Let M be a smooth, connected,

simply connected, compact 4-manifold with boundary of rational homology of S3 or

of S1 × S2. Let f : M → M be a diffeomorphism such that f |∂ M = I d∂ M and

f∗ = I d : H2(M; Z) → H2(M; Z). Then f is topologically isotopic rel. ∂ M to
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I dM : M → M, i.e. there is a topological isotopy Ft : M → M with F0 = f ,

F1 = I dM such that Ft |∂ M = I d∂ M for all t ∈ [0, 1].

Lemma 6.3 Every closed oriented connected 3-manifold Y bounds a simply-connected

4-manifold W that can be decomposed as W0 ∪ (a 2-handle), where W0 has a Stein

structure and the 2-handle is attached along an unknot with framing −1.

Proof For a general Y , the third author constructed such a manifold W in [47, Proof

of Theorem 1.1]. ��

We shall now prove Theorem 1.4 where we show the existence of exotic diffeo-

morphisms of 4-manifolds with boundary.

Proof of Theorem 1.4 Let N , t, f be as in Sect. 5. For a 3-manifold Y , we consider

the associated 4-manifold W1 = W0 ∪ h1 as constructed in Lemma 6.3. If necessary,

we can attach a 2-handle h2 along the unknot with framing +1 on W1. Note that this

process does not change the upper boundary Y . Let us call this modification W1 as well.

Thus we can write W1 = W0 ∪h1 ∪h2. As a core of h2, we have an embedded 2-sphere

S whose self-intersection is non-negative and whose homology class is non-torsion.

Attach an Akbulut–Mazur cork (A, τ ), i.e, a pair of algebraically canceling 1- and

2-handle as shown in the Fig. 1 on W1 along Y such that the 2-handle of A linked the

unknotted 2-handle h2 algebraically thrice and with h1 algebraically once. Thus we

get a manifold W = W1 ∪ A and denote the boundary by Y ′ = ∂W . In particular, by

applying a cork-twist one can get a manifold W ′ = (W − int(A))∪τ A with boundary

Y ′. Notice that the cork-twist changed the dotted 1-handle with the 0 framed 2-handle

in the Fig. 1. Since, in W ′, the two 2-handles h1, h2 are passing over the 1-handle, this

process increases their Thurston–Bennequin numbers without changing the smooth

framing with respect to the standard contact structure on S3, see Fig. 2.

By construction and the use of Theorem 6.1, W ′ has a Stein structure and

m(W ′, s′, ξ) = 1, where s′ is the Spinc structure corresponding to the Stein struc-

ture and ξ is the induced contact structure on the boundary.

Notice that W and W ′ are related by the cork-twist of (A, τ ) and the cork-twist τ

on ∂ A extends over A#CP2 [3]. This gives a diffeomorphism W #CP2 → W ′#CP2

that is the identity map on W − int(A) and is the extension of the cork-twist to A#CP2

on the rest. Thus we get a diffeomorphism ψ : W #N → W ′#N as the one in Sect. 5

(if necessary, we need to precompose ψ with an involution of CP2 to get the map

that acts by identity on homology, a careful proof has been written by Auckly–Kim–

Melvin–Ruberman [5]), and construct a self-diffeomorphism f : W #N → W #N

along the procedure in Sect. 5. We claim that this diffeomorphism f is the desired

diffeomorphism.

Adopt the canonical Spinc structure on W as s in Sect. 5. As noted above, W contains

an embedded 2-sphere whose self-intersection is non-negative and whose homology

class is non-torsion. Moreover, we have that m(W ′, s′, ξ) = 1. Thus it follows from

Proposition 5.4 that

F K M(W #N , s#t, ξ, f 2n, γ 2) �= F K M(W #N , s#t, ξ, f 2n′
, γ 2) ∈ Z
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Fig. 1 Attach the

Akbulut–Mazur cork which is

linking with with h1 and h2

Fig. 2 Contact framing of the blue knot is increased by 1 when it passes through the 1-handle
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for every γ ∈ π1(�
cont(Y )) and every distinct n, n′ ∈ Z. Therefore, by Proposition

3.20, f n and f n′
are not smoothly isotopic to each other through Diff(W ). On the

other hand, it follows from Theorem 6.2 that all f n are topologically isotopic to the

identity through Homeo(W , ∂). This completes the proof. ��

Proof of Theorem 1.6 First, note that all f n are mutually topologically isotopic as in

the proof of Theorem 1.4 above. Thus all f n(S) are mutually topologically isotopic.

To show that f n(S) and f n′
(S) are not smoothly isotopic if n �= n′, it suffices to show

that f n−n′
(S) is not smoothly isotopic to S. This follows from Corollary 5.2 combined

with Theorem 4.5, which we shall prove in Sect. 4. ��

Remark 6.4 In the setup of Theorem 1.4, the mapping class of f in Diff(W , ∂) gen-

erates a direct summand isomorphic to Z in the abelianization of the kernel of

π0(Diff(W , ∂)) → π0(Homeo(W , ∂)).

This is a direct consequence of Corollary 5.2.

Remark 6.5 We will construct an explicit example of "small" 4-manifolds with bound-

ary that admits exotic diffeomorphism by following the strategy of the Proof of

Theorem 1.4. We start with a 4-manifold W which is obtained by attaching a 2-handle

h on B4 along an unknot with framing +1. Now we will attach a pair of canceling

1- and 2-handle such that the 2-handle of the canceling pair is linked positively with

h algebraically thrice, let this be called W and X = W #N where b2(X) = 4. Now

if we apply the cork-twist on W , that process will increase the maximum Thurston–

Bennequin number of h by 3 and thus the resultant manifold W ′ will have a Stein

structure. Note that W #N is diffeomorphic to W ′#N , and thus by the previous proof,

we can construct an exotic diffeomorphism on X .

7 Exotic embeddings of 3-manifolds in 4-manifolds

Before introducing the results on exotic embeddings, we first review a relation between

generalized Smale conjecture and exotic embeddings.

7.1 Generalized Smale conjecture and exotic embeddings

Let Y be a closed 3-manifold with the Riemann metric g whose sectional curvature is

±1. The generalized Smale conjecture says that the inclusion Isom(Y , g) → Diff(Y )

is a homotopy equivalence, where Isom(Y , g) denotes the group of isometries on

(Y , g). Some examples of (Y , g) which satisfy this property are known and some

examples of (Y , g) which do not satisfy it are known. For example, the hyperbolic

3-manifolds satisfy the generalized Smale conjecture [24]. We use some results related

to the generalized Smale conjecture. However, we do not need to restrict ourselves to

a Riemannian metric with sectional curvature ±1 for our purpose. Thus, we consider

a closed Riemannian 3-manifold more generally in this paper.
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Definition 7.1 We say a Riemannian 3-manifold (Y , g) is admissible, if the cokernel

of the induced map on

π0(Isom+(Y , g)) → π0(Diff+(Y ))

is trivial, where Isom+(Y , g) and Diff+(Y ) are the groups of orientation preserving

isometries and diffeomorphisms of (Y , g) and Y respectively.

Our techniques to detect exotic embeddings can be applied for a Riemannian 3-

manifold (Y , g) with finite cokernel of π0(Isom+(Y , g)) → π0(Diff+(Y )).

We use the following lemma for embeddings of Y into a 4-manifold X .

Lemma 7.2 Suppose (Y , g) is an admissible 3-manifold. Let i : Y → X be a smooth

embedding and f an orientation-preserving self-diffeomorphism of X satisfying that

f (i(Y )) = i(Y ). Then, for every n ∈ Z, we can deform f n by a smooth isotopy of

diffeomorphisms of X fixing i(Y ) setwise so that

f n|i(Y ) ∈ Isom(i(Y ), i∗g).

Proof We regard f as a self-diffeomorphism of i(Y ). Note that f |i(Y ) is orientation

preserving. Since by the assumption on (Y , g), the map π0(Isom+(i(Y ), i∗g)) →
π0(Diff+(i(Y ))) is sujective, and so the diffeomorphism f n lies in the image of the

map π0(Isom+(i(Y ), i∗g)) → π0(Diff+(i(Y ))). By isotopy extension lemma, we

complete the proof. ��
Lemma 7.3 Let (Y , g) be one of the following 3-manifolds:

(i) elliptic 3-manifolds and

(ii) hyperbolic 3-manifolds.

Then (Y , g) is admissible.

Proof For elliptic 3-manifolds, the π0-Smale conjecture is proven by combining sev-

eral works, for more details see [27, Theorem 1.2.1]. Also, the Smale conjecture for

hyperbolic 3-manifolds is solved by Gabai [24]. ��
In order to prove several vanishing results, we also need the following property:

Lemma 7.4 Let (Y , g) be one of the following geometric 3-manifolds:

(i) 3-manifolds having positive scalar curvature metric and

(ii) the hyperbolic three-manifolds labeled by

0, 2, 3, 8, 12, . . . , 16, 22, 25, 28, . . . , 33, 39, 40, 42, 44, 46, 49

in the Hodgson–Weeks census which correspond to 3-manifolds in [41, Table 1].

Then, for any Spinc-structure t on Y , there is no irreducible Seiberg–Witten solution

to (Y , t, g), i.e. Y is a strong L-space.

Proof Since 3-manifolds listed in (i) have positive scalar curvature, by the Weitzenböck

formula, we see that there is no irreducible Seiberg–Witten solution to (Y , t, g). For

hyperbolic 3-manifolds in (iv), [41, Theorem 1.1] implies the conclusion. ��
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7.2 Results on exotic embeddings

In this section, we prove Theorem 1.16.

Let Y be a closed, oriented, connected 3-manifold, and let X be a smooth 4-manifold

possibly with boundary. We first construct a 4-manifold for a given 3-manifold.

Lemma 7.5 Given a closed, connected, oriented 3-manifold Y , there exists a closed

simply-connected 4-manifold X such that X = X1 ∪Y X2 with b+
2 (X i ) > 1 for

i = 1, 2. Moreover, we can construct X in such a way that there exists a diffeomorphism

f : X → X which is topologically isotopic to the identity but F SW (X , s, f n) �= 0 for

every n ∈ Z\{0} and for some Spinc structure s on X, and thus not smoothly isotopic

to the identity.

Proof We will follow the strategy of Proof of the Theorem 1.4, where we showed

that given a 3-manifold Y we can construct a compact simply connected 4-manifold

W #N with boundary Y ′ (where there is a ribbon homology cobordism from Y to Y ′)
and there exists a self-diffeomorphism f : W #N → W #N which is topologically

isotopic to the identity rel to the boundary. By construction, Y is smoothly embedded

in W and Y bounds a submanifold W1 with b+
2 (W1) > 1. Now by attaching a simply

connected symplectic cap on (Y ′, ξ ′) with b+
2 > 1 (existence of such caps are shown

in [18]) we can get our desired simply-connected 4-manifold X . Let s be the Spinc

structure on X obtained as the connected sum of the canonical Spinc structure and the

Spinc structure t on N considered in Sect. 5. Also, we can extend f on the symplectic

cap as the identity and get our desired diffeomorphism f . Now F SW (X , s, f n) �= 0

for n �= 0 follows from [11, Corollary 9.6, Proof of Theorem 9.7]. ��
Proof of Theorem 1.16 Let Y be a hyperbolic 3-manifold listed in Theorem 1.16 and let

X and f be a corresponding 4-manifold and diffeomorphism constructed in Lemma

7.5. For n ∈ Z, define smooth embeddings in : Y → X by in(y) = f n(y) for

y ∈ Y . Since f : X → X is topologically isotopic to the identity, we see that all the

embeddings in’s are topologically isotopic to each other. It is now enough to prove

that the image of i0 is not smoothly isotopic to the image of in for every n �= 0. If

the image of i0 and the image of in are smoothly isotopic, then we can further deform

f n by smooth isotopy so that f n(Y ) = in(Y ) = Y . Moreover, using Lemma 7.2, we

may also assume f −1
n |Y is isometry with respect to the metric g considered in Lemma

7.4. Moreover, there is no irreducible solution to the Seiberg–Witten equation with

respect to (Y , t, g) from Lemma 7.4. But then the vanishing theorem Theorem 4.6

implies that F SW (X , f n) = 0 which is a contradiction. For a connected sum of

elliptic 3-manifolds, we use Theorem 4.7 instead of Theorem 4.6. ��
Remark 7.6 The proof of Theorem 1.16 is a constructive proof. One thing that we are

not sure about is how to control the second Betti number of X . So one may ask the

following question.

Question 7.7 Given an oriented, connected 3-manifold Y , what would be the small

second Betti number for X such that Y admits an exotic embedding in X.

More generally, we can find exotic embeddings when the family gauge theoretic invari-

ants do not vanish:
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Theorem 7.8 Let (X , s) be a compact simply-connected Spinc 4-manifold with or

without boundary. If ∂ X �= ∅, we equip ∂ X a contact structure ξ . Let f : X → X

be a self-diffeomorphism which is the identity on ∂ if ∂ X �= ∅. Suppose that

F SW (X , s, f ) �= 0 if ∂ X = ∅, and that F K M(X , s, ξ, f ) �= 0 if ∂ X �= ∅. Let

Y be one of the following 3-manifolds:

(i) the connected sum of elliptic 3-manifolds, and

(ii) the hyperbolic three-manifolds labelled by

0, 2, 3, 8, 12, . . . , 16, 22, 25, 28, . . . , 33, 39, 40, 42, 44, 46, 49

in the Hodgson–Weeks census which correspond to 3-manifolds in [41, Table 1].

(1) If ∂ X = ∅ and X has the decomposition X = X1 ∪Y X2 such that b+
2 (X i ) > 1

for i = 1, 2, where X1 and X2 are compact 4-manifold with boundary Y and −Y

respectively. Then there exist infinitely many embedded 3-manifolds { f n(Y )}n∈Z

that are mutually not smoothly isotopic.

(2) If ∂ X �= ∅ and X has the decomposition X = X1 ∪Y X2 such that b+
2 (X2) > 1,

where X1 and X2 are compact 4-manifold with boundary (∂ X) � Y and −Y

respectively. Then there exist infinitely many embedded 3-manifolds { f n(Y )}n∈Z

that are mutually not smoothly isotopic.

Proof When ∂ X = ∅, the result follows from the proof of Theorem 1.16. When

∂ X �= ∅, we just use the vanishing result Theorem 4.8 on the families Kronheimer–

Mrokwa’s invariant instead. ��

Remark 7.9 Notice that, given any closed, connected 3-manifold Y , we can always find

a closed simply-connected 4-manifold X where Y is smoothly embedded and a self-

diffeomorphism f : X → X which is topologically isotopic but not smoothly. So it is

very natural to think that the set { f n(Y )}n∈Z contains all exotically embedded pairs of

Y , i.e. topologically isotopic as a pair but not smoothly. However, we cannot conclude

that at this point because our vanishing result doesn’t hold for all 3-manifolds. So we

can ask the following question:

Question 7.10 Given a closed, connected 3-manifold Y how does one construct a

closed 4-manifold X such that there exists a pair of smooth embeddings i1, i2 : Y → X

that are topologically isotopic but not smoothly?
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Appendix A Excision for determinant line bundles

In this section, we explain the excision principle that is used to give signs to vari-

ants of Kronheimer–Mrowka’s invariant for 4-manifolds with contact boundary. This

argument is well-known for experts and essentially done in Appendix B of [14].

For i = 1, 2 let X i be a Riemannian 4-manifold and Ai , Bi be codimension 0

submanifold of X i . Here we assume X1 and X2 are closed for simplicity, but this

assumption is not essential. For example, we can apply similar arguments to manifolds

with conical ends under suitable Sobolev completion. Assume Ai ∩ Bi ⊂ X i is a

compact codimension-0 submanifold and also an isometry between A1 ∩ B1 and

A2 ∩ B2 is fixed. We will identify them by this isometry. For i = 1, 2, suppose we are

given vector bundles Ei , Fi on X i and elliptic differential operators of order l ∈ Z≥1

Di : 
(X i ; Ei ) → 
(X i ; Fi )

which are identical on A1 ∩ B1 = A2 ∩ B2.

Using the identification given above, we form Riemannian 4-manifolds X̃1 = A1 ∪
B2, X̃2 = A2 ∪ B1 and vector bundles Ẽ1 = E1|A1 ∪ E2|B2 , Ẽ2 = E2|A1 ∪ E1|B1 ,

F̃1 = F1|A1 ∪ F2|B2 F̃2 = F2|A1 ∪ F1|B1 .

Define elliptic operator

D̃1 =
{

D1 on A1

D2 on B2

D̃2 =
{

D2 on A2

D1 on B1

D1, D2, D̃1, D̃2 define Fredholm operators under Sobolev completions

L2
k+l → L2

k
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for k ∈ R. In general, for a Fredholm operator D, we will define the 1-dimensional

real vector space det D by

det D = �max Ker D ⊗ �max Cok D∗.

Theorem A.1 We can associate a linear isomorphism of 1-dimensional real vector

space

det D1 ⊗ det D2 → det D̃1 ⊗ det D̃2, (28)

which is independent of data used in the construction up to homotopy.

As remarked after the proof, this can be easily adapted to the case with conical ends

as considered in this paper. Note that in order to fix a sign of the unparametrized

Kronheimer–Mrowka invariant, considering families of operators, since it is enough

to give an orientation of one fiber of the determinant line bundle.

Proof Choose square roots of partition of unity

φ2
1 + ψ2

1 = 1

φ2
2 + ψ2

2 = 1

subordinate to (A1, B1) and (A2, B2) such that

φ1 = φ2 and ψ1 = ψ2

on A1 ∩ B1 = A2 ∩ B2. Define


 : 
(X1; E1) ⊕ 
(X2; E2) → 
(X̃1; Ẽ1) ⊕ 
(X̃2; Ẽ2)

and

� : 
(X̃1; F̃1) ⊕ 
(X̃2; F̃2) → 
(X1; F1) ⊕ 
(X2; F2)

by


 =
[

φ1 ψ2

−ψ1 φ2

]

and

� =
[
φ1 −ψ1

ψ2 φ2.

]

Using the fact that ψ1φ1 = ψ2φ2 holds on the whole manifold, we can see 
 and �

are inverse of each other (See [14]). Set D = D1 ⊕ D2 and D̃ = D̃1 ⊕ D̃2. Then we

123



1892 N. Iida et al.

have

det(D) = det(D1) ⊗ det(D2)

and

det(D̃) = det(D̃1) ⊗ det(D̃2).

We have

� D̃


=
[
φ1 −ψ1

ψ2 φ2

] [
D̃1

D̃2

] [
φ1 ψ2

−ψ1 φ2

]

=
[
φ1 ◦ D1 ◦ φ1 + ψ1 ◦ D1 ◦ ψ1 φ1[D2, ψ2] − ψ1[D2, φ2]

ψ2[D1, φ1] − φ2[D1, ψ1] ψ2 ◦ D2 ◦ ψ2 + φ2 ◦ D2 ◦ φ2

]
.

Here, we used obvious relations

D̃1 ◦ φ1 = D1 ◦ φ1, D̃2 ◦ φ2 = D2 ◦ φ2

D̃2 ◦ ψ1 = D1 ◦ ψ1, D̃1 ◦ ψ2 = D2 ◦ ψ2.

and

ψ1φ1 = φ2ψ1 φ1ψ2 = ψ1φ2.

On the other hand, we have

Di = Di ◦ (φ2
i + ψ2

i ) = ([Di , φi ] + φi ◦ Di ) ◦ φi + ([Di , ψi ] + ψi ◦ Di ) ◦ ψi

for i = 1, 2. Thus

K := � D̃
 − D : L2
k+l(X) → L2

k(X)

is calculated as

K =
[
−[D1, φ1] ◦ φ1 − [D1, ψ1] ◦ ψ1 φ1[D2, ψ2] − ψ1[D2, φ2]

ψ2[D1, φ1] − φ2[D1, ψ1] −[D2, φ2] ◦ φ2 − [D2, ψ2] ◦ ψ2.

]

The order of this operator is strictly smaller than l, so

K : L2
k+l(X) → L2

k(X)

is a compact operator. Thus the family of operators

{Dt = D + t K }t∈[0,1]
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gives a desired isomorphism between det(D) and det(D̃). ��

Note that each entry of K is supported on (A1 ∩ B1) × (A2 ∩ B2), so the same

conclusion holds even if X1 and X2 have conical ends as considered in this paper, as

long as suitable Sobolev completions are used and A1 ∩ B1, A2 ∩ B2 are relatively

compact.

Appendix B Blow up formula for Kronheimer–Mrowka’s invariant

Definition B.1 Fix an element of �(W , s, ξ). For a pair (W , ξ) and a fixed reference

Spinc structure s0 ∈ Spinc(W , ξ), we define two functions

K M(W , s0, ξ) :=
∑

e∈H2(W ,∂W ;Z)

m(W , s0 + e, ξ) exp(〈2e, −〉) : H2(W , ∂W ; R) → R.

and

K̃ M(W , ξ)(ν) := e
i

2π

∫
ν F

At
0 K M(W , s0, ξ)(ν) : H2(W , ∂W ; R) → R.

Here, A0 is a Spinc connection for s0 extending the canonical Spinc connection on the

conical end.

Note that K M(W , s0, ξ) depends on the fixed Spinc structure s0. On the other hand,

we can see the following:

Lemma B.2 The function K̃ M(W , ξ) does not depends on a fixed Spinc structure s0.

Proof Indeed, for l ∈ H2(X; Z), s′
0 := s0 + l, we have

2l = c1(s
′
0) − c1(s0) = i

2π

∫

ν

(FA′t
0

− FAt
0
),
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so

e
i

2π

∫
ν F

A′t
0 K M(W , s′

0, ξ)(ν)

= e
i

2π

∫
ν F

A′t
0

∑

e′∈H2(W ,∂W ;Z)

m(W , s′
0 + e′, ξ) exp(〈2e′, ν〉)

= e
i

2π

∫
ν F

A′t
0

∑

e′∈H2(W ,∂W ;Z)

m(W , s0 + l + e′, ξ, o) exp(〈2e′, ν〉)

= e
i

2π

∫
ν F

A′t
0

∑

e∈H2(W ,∂W ;Z)

m(W , s0 + e, ξ, o) exp(〈2(e − l), ν〉)

= e
i

2π

∫
ν F

A′t
0

∑

e∈H2(W ,∂W ;Z)

m(W , s0 + e, ξ, o) exp(〈2e, ν〉) exp

(
− i

2π

∫

ν
FA′t

0
− FAt

0

)

= e
i

2π

∫
ν F

At
0

∑

e∈H2(W ,∂W ;Z)

m(W , s0 + e, ξ, o) exp(〈2e, ν〉)

= e
i

2π

∫
ν F

At
0

∑

e∈H2(W ,∂W ;Z)

K M(W , s0, ξ)(ν)

Here we changed the variables by

e = l + e′.

��

We establish the blow-up formula for Kronheimer–Mrowka’s invariant for 4-

manifold with boundary, using the pairing formula and the formal (3 + 1)-TQFT

property of the monopole Floer homology. As a partial result, [28, Theorem 1.3] com-

bined with a computation of the Bauer–Furuta invariant for −CP2 gives the blow up

formula for Kronheimer–Mrowka’s invariant for 4-manifold with boundary under the

condition b3 = 0. In this section, we remove the condition b3 = 0 by following the

discussion given in Section 39.3 of [38].

Theorem B.3 Let X be a compact oriented 4-manifold equipped with a contact struc-

ture ξ on the boundary Y = ∂ X. Denote by the blow up of X at an interior point

by

X̂ = X#(−CP2)

and the exceptional sphere by E. Then for ν ∈ H2(X , ∂ X; R) and λ ∈ R,

K̃ M(X̂ , ξ)(ν + λE) = 2 cosh(λ)K̃ M(X , ξ)(ν)

holds.
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Proof Let us denote by

◦
X : S3 → Y

and

◦
X̂ : S3 → Y

the cobordism obtained by removing small open disk from X and X̂ respectively and

let

N : S3 → S3

be the cobordism obtained by removing two small open disks from −CP2. By the

pairing formula which is proves in [29] and the composition law Proposition 26.1.2

of [38], we have

K̃ M(X̂ , ξ)(h + λE) = 〈ĤM(

◦
X̂ , ν + λE)(1),�∂ν(ξ)〉

= 〈ĤM(N , λE) ◦ ĤM(
◦
X , ν)(1),�∂ν(ξ)〉,

where we denote the local system 
ν just by ν. Now, as explained in the proof of

Theorem 39.3.2 of [38], we have

ĤM(N , λE) =
∑

m∈Z

U m(m+1)/2e−(2m+1)λ,

which can in fact be expressed using the Jacobi eta function. Kronheimer–Mrowka’s

invariant is defined to be zero when formal dimension is non-zero, so all terms includ-

ing higher powers of U disappear. Thus we have

K̃ M(X̂ , ξ)(ν + λE) = (eλ + e−λ)〈ĤM(
◦
X , ν)(1),�∂ν(ξ)〉

= 2 cosh(λ)K̃ M(X , ξ)(ν).

��

In particular, if Kronheimer–Mrowka’s invariant is non-trivial for some element of

Spinc(X , ξ), then Kronheimer–Mrowka’s invariant is non-trivial for some element of

Spinc(X̂ , ξ).
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