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Abstract

We define family versions of the invariant of 4-manifolds with contact boundary due
to Kronheimer and Mrowka and use these to detect exotic diffeomorphisms of 4-
manifolds with boundary. Further, we show the existence of the first example of exotic
3-spheres in a smooth closed 4-manifold with diffeomorphic complements.

1 Introduction

Let W be a smooth compact 4-manifold with boundary. Denote by Homeo(W) and
Diff (W) the groups of homeomorphisms and diffeomorphisms of W, respectively;
and by Homeo(W, d) and Diff (W, 9) the groups of homeomorphisms and diffeomor-
phisms fixing boundary pointwise, respectively. In this paper, we study a comparison
between the mapping class groups arising from these groups, through the maps

mo(Diff (W)) — mg(Homeo(W)), mo(Diff (W, 9)) — mo(Homeo(W, d)) (1)
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induced from the natural inclusions. A non-zero element of the kernels of maps (1)
may be called an exotic diffeomorphism of W. Such a diffeomorphism is topologically
isotopic to the identity, but not smoothly so.

The first example of exotic diffeomorphisms in dimension 4 was given by Ruberman
[54]. This example was detected by an invariant for diffeomorphisms based on Yang—
Mills gauge theory for families. Later, based on Seiberg—Witten theory for families,
Baraglia and the second author [11], Kronheimer and Mrowka [37], and J. Lin [43]
gave other examples. However, all of these examples are given for closed 4-manifolds.
In this paper, we shall present exotic diffeomorphisms of 4-manifolds with non-trivial
(i.e. not $) boundary. Some of our main results are formulated as an attempt at solving
the following conjecture that we propose:

Conjecture 1.1 Let Y be a closed, connected, oriented 3-manifold. Then there exists
a compact, oriented smooth 4-manifold W with OW =Y such that the natural map

mo(Diff (W, 8)) — mo(Homeo(W, 8))

is not injective, i.e. there exists an exotic diffeomorphism of W relative to the boundary.
More strongly,

7o (Diff (W)) — mg(Homeo(W))

is not injective.

The problem of finding exotic smooth structures on W was considered in [61, Question
1.4] and [18, Question 1] and finding a non-trivial element in the kernel of the above
maps is related to finding a non-trivial loop in the space of smooth structures on W,
so this conjecture can be seen as a family version of the work in [61, Question 1.4]
and [18, Question 1]. Three major difficulties in solving this conjecture are:

e What kind of gauge-theoretic invariants of diffeomorphisms in the case of a 4-
manifold with boundary should be considered? One possibility might be to use
families Floer theoretic relative invariants such as those in [56], but they are hard
to compute in general.

e For what concrete diffeomorphisms can the invariants be calculated?

e In the closed simply-connected case a homeomorphism acting trivially on homol-
ogy is topologically isotopic to the identity by work of Quinn [53] and Perron [51].
Is there an analog of this theorem for 4-manifolds with boundaries?

The last point was resolved by Orson and Powell [50] very recently, and one of our
main contributions in this paper is about the first two points where we define a numer-
ical and computable invariant for diffeomorphisms of 4-manifolds with boundary.

Remark 1.2 One may also conjecture that the maps in Conjecture 1.1 are non-
surjective. To our knowledge, there is no known counter example to this conjecture.
Positive evidence to the non-surjectivity of the maps is given in [34] where non-
surjectivity is shown for certain W, which is a partial generalization of results for
closed 4-manifolds in [10, 15, 21, 22, 33, 45] to 4-manifolds with boundary.
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Remark 1.3 For higher homotopy groups, it seems also natural to state conjectures
similar to Conjecture 1.1. Compared to the m( case, there are few results on the non-
injectivity or the non-surjectivity on mr; for i > 0, even for closed 4-manifolds. For
example, a non-injectivity result for S4 is proven by Watanabe in [57] and a non-
surjectivity result on K3 is proven by Baraglia and the second author in [12]. Our
framework also yields invariants, say, ; (Diff (W, 0)) — Z fori > 0, and it may be
possible to attack this problem using these invariants.

1.1 Families Kronheimer-Mrowka invariants

Our basic strategy is to make use of contact structures on 3-manifolds Y to study
diffeomorphisms of 4-manifolds bounded by Y . Let us first explain the main tool of this
paper, which is a family version of the invariant defined by Kronheimer and Mrowka in
[36] for 4-manifolds with contact boundary. This is a rather simple numerical invariant
compared to invariants using monopole Floer theory [38].

Let (W, s) be a compact Spin® 4-manifold with contact boundary (Y, &), here
the Spin® structure on Y induced by & agrees with the one induced by s. Define
Diff (W, [s], d) to be the group of diffeomorphisms that preserve the isomorphism
class [s] and W pointwise. Define a subgroup Diff 5 (W, [s], 9) of Diff (W, [s], 9)
by collecting all diffeomorphisms in Diff (W, [s], 9) that act trivially on the homology
of W. From these groups, we shall define homomorphisms

FKM(W,s,&,e) : mo(Diff (W, [s], 3)) — Zp )
and
FKM(W,s,&, ) : mo(Diff gy (W, [s], 9)) — Z, 3)

which we call the families Kronheimer—Mrowka invariants of diffeomorphisms. These
invariants are defined by considering a family of Seiberg—Witten equations over a
family of 4-manifolds with a cone-like almost Kahler end. This end is associated with
the contact structure £ on Y.

The families Kronheimer—-Mrowka invariant is defined similarly to the definition of
the families Seiberg—Witten invariant for families of closed 4-manifolds [40, 54], but
to derive an interesting consequence involving isotopy of absolute diffeomorphisms
(property (i) of Theorem 1.4) we need to consider a refined version of the above
invariant using information about the topology of the space of contact structures on
Y. Let E®(Y) denote the space of contact structures on Y. We shall define a map,
which is not a homomorphism in general,

FKM(W,s,&, e,0):Diff (W, [s],d) x 71 (E“"(Y), &) — Z,
or equivalently

FKM(W, s, £, o) : Diff(W, [s], 8) — (Zp)™ E™ X6 4)
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1848 N.lida et al.

which is defined by considering families of 4-manifolds with contact boundary, rather

than fixing the contact structure on the boundary. The map (4) satisfies the property

that,if f € Diff (W, [s], 9) isisotopic to the identity in Diff (W), then some component

of the value FKM (W, s, &, f) € (Zg)”l(scom(y)’g) is trivial. For some class of f and

element of 71 (E°M(Y), &), we may also extract a Z-valued invariant rather than Z,.
Now we shall see some applications of these invariants.

1.2 Exotic diffeomorphisms

We give evidence for Conjecture 1.1 by showing that many 3-manifolds bound 4-
manifolds that admit exotic diffeomorphisms with several other interesting properties.

Let Yy, Y2 be two closed, oriented 3-manifolds. We say there is a ribbon homology
cobordism from Y] to Y> if there is an integer homology cobordism from Y7 to Y> which
has a handle decomposition with only 1- and 2-handles. Note that ribbon homology
cobordism is not a symmetric relation.

Theorem 1.4 Given any closed, oriented 3-manifold Y with rational homology of
S3 or of S' x 82, there exists a ribbon homology cobordism to a 3-manifold Y’
such that Y’ bounds a compact oriented smooth 4-manifold W for which there exists
a diffeomorphism f € Diff (W, d) such that the (absolute) mapping class [ f] €
o (Diff (W)) generates an infinite subgroup of the kernel of

7o (Diff (W)) — mo(Homeo(W)).

Namely, { f"},ez\ (o) are exotic diffeomorphisms that are smoothly non-isotopic to
each other in Diff (W). Moreover, in fact, { f"},cz are topologically isotopic to the
identity in Homeo(W, ). (This follows from a result by Orson and Powell, Theorem
6.2.)

Remark 1.5 For a general oriented closed 3-manifold Y, we have a statement similar to
Theorem 1.4, under replacing o (Diff (W)) — mo(Homeo(W)) with o (Diff (W)) —
Aut(Hy(W; 7).

Moreover, the diffeomorphism f in Theorem 1.4 yields exotic spheres in 4-
manifolds:

Theorem 1.6 In the setup of Theorem 1.4, there exists a homologically non-trivial
embedded 2-sphere S in W such that the spheres { f"(S)}nez are mutually exotic in
the following sense: if n # n’, then f"(S) and f"/(S) are topologically isotopic in
Homeo(W, 9), but not smoothly isotopic in Diff (W, 9).

Remark 1.7 There is a great deal of work on exotic surfaces in 4-manifolds that makes
use of the diffeomorphism types of their complements, see [1, 5, 19, 20]. Recently,
Baraglia [9] gave exotic surfaces in closed 4-manifolds whose complements are dif-
feomorphic, based on a method closely related to our technique. Also, in [44], J. Lin
and the third author gave exotic surfaces in the punctured K3 whose complements
are diffeomorphic using the 4-dimensional Dehn-twist and the families Bauer—Furuta
invariant.
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Diffeomorphisms of 4-manifolds with boundary... 1849

Remark 1.8 One motivation to consider 4-manifolds with boundary is to find simple
manifolds with exotic diffeomorphisms. At the moment the simplest example of a
closed 4-manifold that admits an exotic diffeomorphism has b, = 25: concretely,
ACP?*#21(—CP?) = K3#CP?*#2(—CP?). On the other hand, when we consider
4-manifolds with boundary, one may get an exotic diffeomorphism of a compact 4-
manifold with b, = 4, see Remark 6.5 for details.

An interesting point in Theorem 1.4 is that, despite that this theorem shall be shown
by the invariants involving contact structures explained in Subsection 1.1, the results
can be described without contact structures. Another interesting point is that the f”
are not mutually smoothly isotopic in the absolute diffeomorphism group Diff (W).
Of course, this is stronger than the corresponding statement for Diff (W, d), and the
proof requires us to use the refined invariant (4), which is less straightforward than
the invariants (2) and (3). Not only the gauge-theoretic aspect, the proof of Theorem
1.4 uses some non-trivial techniques of Kirby calculus.

Remark 1.9 Under the setup of Theorem 1.4, the mapping class of f in Diff (W, 9)
generates a direct summand isomorphic to Z in the abelianization of the kernel of

mo(Diff (W, 9)) — mo(Homeo(W, 9)),

see Remark 6.4. This comes from the fact that the map (3) is a homomorphism. In
an upcoming paper [29], under suitable conditions on Y, we also prove the exis-
tence of a Z°-summand in the abelianization of the kernel of 7o (Diff (W, 9)) —
wo(Homeo(W, 9)).

1.3 Exotic codimension-1 submanifolds in 4-manifolds

Now we will focus on exotic 3-manifolds in 4-manifolds.

Definition 1.10 We call two smoothly embedded 3-manifolds ¥; and Y> in a smooth,
oriented 4-manifold X are exotic if

(i) there is a topological ambient isotopy H; : X x [0, 1] — X such that Hy = Id
and Hy (Y1) = Y2,
(>ii) there is no such smooth isotopy,
(iii)) complements of Y7 and Y, are diffeomorphic.

Remark 1.11 If we ignore (i) in Definition 1.10, recently, Budney—Gabai [13] and
independently Watanabe [58] found examples of smoothly embedded 3-balls in S! x
D?3 that are homotopic but not smoothly isotopic.

Remark 1.12 1f we do not consider (iii), one can easily construct an example that
satisfies (i) and (ii) in Definition 1.10 as follows. Let W and W’ be a pair of Mazur corks
[2, 25] that are homeomorphic but not diffeomorphic [4, 26]. Then their doubles D (W)
and D(W’) are diffeomorphic to the standard $% [48]. Thus we have two embedded
3-manifolds ¥ = dW and Y’ = dW’ that are not smoothly isotopic in %, since if they
were smoothly isotopic. By the isotopy extension theorem, their complements would
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be diffeomorphic as well. Now notice that the two embedded 3-manifolds Y and Y’
are topologically isotopic since there exists an orientation preserving homeomorphism
f 8% — S*suchthat f(¥) = Y’.Now Quinn’s result [52] says that f is topologically
isotopic to identity and thus the two embedded 3-manifolds Y and ¥’ are topologically
isotopic.

In this work, to the author’s best knowledge, we construct the first example of
exotic 3-spheres in a 4-manifold with diffeomorphic complements i.e, satisfying all
conditions (i)-(iii):

Theorem 1.13 Let X = 4CP?#21(—CP?) and S be the 3-sphere embedded in X
which gives a connected sum decomposition X = X 1#X», with b;‘(Xl) = b;’ (Xy) =
2. Then there exists infinitely many copies of S with diffeomorphic complements that
are topologically isotopic but not smoothly.

This theorem follows from a more general statement, Theorem 7.8.

Remark 1.14 Itis not explicitly stated but known to the experts that techniques involv-
ing the complexity of h-cobordism defined Morgan—Szabé [46] can be used to show
the existence of exotic 3-spheres in 4-manifolds. However, to the authors’ knowledge,
the techniques can only produce a pair of such S and moreover, the complements of
such spheres may not be diffeomorphic.

Remark 1.15 In [9], Baraglia gave examples of exotic embedded surfaces X in some 4-
manifolds with diffeomorphic complements. It follows from his work that one may find
infinitely many exotic embedded S'! x ¥ whose complements are diffeomorphic to each
other. Baraglia’s argument is based on a family version of the adjunction inequality.
Our exotic embedded 3-manifolds have vanishing b1, and use some vanishing results
for family versions of connected sum formula for Seiberg—Witten invariants.

In Sect. 7, we generalize Theorem 1.13 to 3-manifolds other than S 3 in particular,
we establish the following result.

Theorem 1.16 Let Y be one of the following 3-manifolds:

(1) a connected sum of elliptic 3-manifolds, or

(ii) a hyperbolic three-manifold labelled by
0,2,3,8,12,...,16,22,25,28,...,33,39,40,42,44, 46, 49

in the Hodgson—Weeks census, [59].

Then there exists a smooth closed 4-manifold X and infinitely many embeddings
{in : Y — X},ez that are exotic in the following sense: topologically isotopic (as
embeddings) but not smoothly isotopic (as submanifolds). Moreover, the complements
X\i, (Y) are diffeomorphic to each other.

Remark 1.17 In addition to the use of the families gauge theory, the proof of Theorem
1.16 uses two deep results in 3-manifold theory; the generalized Smale conjecture
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for hyperbolic 3-manifolds proven by Gabai [24] and the connectivity of the space of
positive scalar curvature metrics for 3-manifolds proven by Bamler and Kleiner [8].
These results are used to obtain the vanishing of certain parameterized moduli space
for the Seiberg—Witten equations. The list in (ii) comes from [42, Figure 1] due to
F. Lin and Lipnowski, which lists small hyperbolic 3-manifolds having no irreducible
Seiberg—Witten solution.

Remark 1.18 Recently in [6, 7], Auckly and Ruberman also detected higher-
dimensional families of exotic embeddings and diffeomorphisms by using families
Yang—Mills gauge theory. Also, they detected exotic embeddings of 3-manifolds into
s4,

Drouin also detected exotic lens spaces in some 4-manifolds by modifying the
argument by Auckly and Ruberman.

Organization: In Sect.2, we review the Kronheimer—-Mrowka invariant for 4-
manifolds with contact boundary, which has a sign ambiguity and show that certain
auxiliary data fixes the sign. In Sect.3, we define the families Kronheimer—Mrowka
invariants (2) and (2) of 4-manifolds with contact boundary, and the refined fami-
lies Kronheimer—-Mrowka invariant (4) as well. We also establish basic properties of
these invariants. In Sect. 4, we show several vanishing results for the families Seiberg—
Witten and Kronheimer—Mrokwa invariant which can be regarded as family versions
of the connected sum formula, Frgyshov’s vanishing result, and adjunction inequality.
In Sect. 5, we construct some diffeomorphisms of some 4-manifolds with boundary,
for which we shall show the families Kronheimer—Mrowka invariants are non-trivial.
In Sect. 6.2, we give the proof of one of our main theorems, Theorem 1.4. In Sect.7,
we prove the results on exotic embeddings of 3-manifolds into 4-manifolds.

2 Signed Kronheimer-Mrowka invariants

We first review the Kronheimer—Mrowka invariant introduced in [36]. The Kronheimer—
Mrowka invariant

m(W,s, &) € Z/{£1}

is an invariant of a 4-manifold W with a contact boundary (Y, £) equipped with a
4-dimensional Spin® structure s compatible with the &.

Usually, the notion of Spin/Spin® structure on an oriented manifold W of dimension
d is defined by fixing a metric on W and as a lift of the structure of the S O (d)-frame
bundle of W to a principal Spin(d)- or Spin€(d)-bundle. Here we note that one can
define those notions without using Riemannian metric, which shall be convenient
when we consider families of manifolds. Denote by GL™*(d, R) the group of real
square matrices of size d of det > 0. A Spin structure on an oriented d-manifold
can be defined as a lift of the structure group of the frame bundle from GL*(d, R)
to the double cover 5Z+(d , R). Similarly, a Spin® structure is also defined using
(GL"(d,R) x S')/ % 1 instead of Spin°(d).

@ Springer



1852 N. lida et al.

In the case of the usual Seiberg—Witten invariant for a closed 4-manifold X, it is
enough to fix ahomology orientation of X ,i.e. an orientationof H' (X; R)Y@H T (X; R)
to fix a sign of the invariant. However, in Kronheimer—Mrowka’s setting, we cannot
use such data to give an orientation of the moduli space. In order to improve this, we
introduce a two element set

AW,s,§)
depending on a tuple (W, s, §) whose element gives an orientation of the moduli space
in Kronheimer—-Mrowka’s setting.

Let W be a connected compact oriented 4-manifold with connected contact bound-
ary (Y, &). Let s be a Spin© structure on W which is compatible with &. Pick a contact
I-form 6 on Y and a complex structure J of & compatible with the orientation. There
is now an unique Riemannian metric g on Y such that 6 satisfies |0| = 1,d0 = 20,

and J is an isometry for g|g, where * is the Hodge star operator with respect to gi.
This can be written explicitly by

1
g1=0Q60+ Ed@(', J-)|g.

Define a symplectic form wg on Rzl x vy by the formula wy = %d (s20), where s is
the coordinate of R=!. We define a conical metric on R=! x Y by

g0 = ds® + s2g1. (®)]
On RZ! x ¥, we have a canonical Spin€ structure s, a canonical Spin® connection
Ap, a canonical positive Spinor ®(. These are given as follows. The pair (go, wo)
determines a compatible almost complex structure J on R=! x ¥. The Spin® structure
on R=! x Y is given by:
so:= (T =A% @ A%% 57 =A% p: A! > Hom(sT, $7)),
where the Clifford multiplication p is given by
o =+/2Symbol(@ +3").
(See Lemma 2.1 in [36].) The notation ®g denotes
0,0 0,2
(1,0) e QR,ZI xY b QR’Zl <Y 1—‘(SJrl]Rzle)'
Then the canonical Spin® connection Ag on s is uniquely defined by the equation
+ _
DA0 $p=0 (6)

on R=! x Y. We write the conical part R=! x ¥ by C*.
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Let W be a non-compact 4-manifold with a conical end
Wt = w Uy R xY).
Fix a smooth extension of (Ag, ®¢) on W+. On W define Sobolev spaces

Cy+ = (Ao, Do) + L 4, (A @ Syh,y) and

Vs = Li_j 4, (A}, ®Sy0)

for k > 4, where S;;H and S, are positive and negative spinor bundles and the
Sobolev spaces are given as completions with respect to the following inner products:

k
(s1, 52) By = Z /w(v;,osl, Vi, 52) dvolyy+, (7
i=0

where the connection Vf;‘ is induced from Aq and the Levi-Civita connection. The
gauge group is defined by

G+ = [u WF S UM —ue L§+1}.
The action of Gy+ on Cy+ is given by
u-(A, @) :=(A—utdu,ud).
Set
By+ = Cw+/Gw+
and call it the configuration space. Note that since (Ag, ®¢) is irreducible in the end,
one can see every element in By + is irreducible.
We have the perturbed Seiberg—Witten map
S Cy+ = Vy+

1 _ 1 _ )
(A, @) > (EF?C =T (@® = SF 4+ 1(¢0¢3)0+U,D:{©>-

Here 7 is a generic perturbation decaying C” exponentially.
We have the infinitesimal action of gauge group at every point (A, ®) € Cy+

A : Ly 4y (AYys) = L 4, (iA s @ ST)
and the linearization of the Seiberg—Witten map at (A, ®) € Cy+
Diao)S 1 L 4y (i Ayys © Sihi) = Li_y 4, (AL @ Sy
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1854 N. lida et al.

The sum

Diao)S +8(a.0) Li’AO(iA%W @S — Lﬁfl‘AO(iA%,Jr DiAL. D Sy.)
©)]

is a linear Fredholm operator.
The moduli space is defined to be

M(W,s, &) :={(A, ®) € By+|F(A, ) =0}.

It is proven in [36], the moduli space M (W, s, £) is compact. For a suitable class of
perturbations, it is proven in [36] that M (W, s, £) is a smooth manifold of dimension

d(W,s,&) = (e(ST, Dolaw), [W, dW]),

where e(St, ®glyw) € H*(W, dW) is the relative Euler class of St with respect to
the section ®¢|yw on the boundary.
In order to give orientations of moduli spaces, we need the following lemma:

Lemma 2.1 [36, Theorem 2.4] The line bundle
det(D(A’.;p)S + 5&’@)) — By+

is trivial. O
Here we give data to fix this sign. We first give a definition of an orientation set.

Definition 2.2 Define the two element set by
A(W, s, &) := {orientations of the determinant line bundle of (9) over By +}.

Note that A (W, s, £) does not depend on the choices of elements in By + since By + is
connected. Once we fix an element in A(W, s, £), we have an induced orientation on
the moduli space M (W, s, £). We also give another description of A(W, s, £) using
almost complex 4-manifolds bounded by (Y, £). We use the following existence result
of almost complex 4-manifolds bounded by a given 3-manifold. The proof is written
in the proof of Proposition 28.1.2 of [38], for example.

Lemma 2.3 Let Y be a closed oriented 3-manifold and & be an oriented 2-plane field
on Y. Then there is an almost complex 4-manifold (W, J) bounded by (Y, &), which
means OW =Y and JTY NTY = & up to homotopy of 2-plane fields. O

Using this lemma, we also define another two element set.

Definition 2.4 For a fixed almost complex 4-manifold (Z, J) bounded by (-Y, &),
we define

AW,s, 8, Z,J)
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to be the two-element set of trivializations of the orientation line bundle for the lin-
earized equation with a slice on the closed Spin¢ 4-manifold (W U Z, s U s;), where
57 is the Spin® structure determined by J.

By its definition, A(W, s, &, Z, J) can be regarded as the set of homology orientations
of the closed 4-manifold W U Z.

We see behavior of A(W, s, &, Z, J) under the changes of (Z, J). The excision
argument enables us to show the following:

Lemma 2.5 For any two choices of almost complex bounds (Z, J) and (Z', J"), one
has a canonical identification

A(W757 é? Z? ]) ; A(W7 57 S? Z/7 ]/)'
Proof This follows from an excision argument. Take an almost complex 4-manifold
Z1 bounded by (Y, &£). We apply Theorem A.1 by putting A} = W, By = Z, A, = Z;,
B, =27,

D1 = The linearization of the Seiberg—Witten map with sliceon X; = WU Z, and
D, = The linearization of the Seiberg—Witten map with slice on X, = Z; U 7z

By Theorem A.1, we have an isomorphism

det D; ® det Dy — det 51 ® det 52
up to homotopy. Since the Spin® structures on X, and X, are induced by almost
complex structures, det D, and det D, has a canonical trivialization. So, we obtain a
canonical isomorphism

det D; — det 51.

This gives a correspondence between A (W, s5,&, Z, J)and A(W,s,&,Z',J). O

For a Spin® 4-manifold with countact boundary (W, &), we introduced two orien-
tations sets

AW,s,86,Z,J) and A(W,s,§).
We can define a natural correspondence between these orientation sets. Take an almost
complex bound Z; of (Y, &). We again apply Theorem A.l by putting Ay = W,
Bi=CT,Ay=Zjand B, = Z

D1 = The linearization of the Seiberg—Witten map with sliceon X1 = WU C *, and
Dy = The linearization of the Seiberg—Witten map with slice on X, = Z; U Z.

By Theorem A.1, we have an isomorphism

det D; ® det D — det51 ® det 52.
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1856 N. lida et al.

Since the Spin® structures on X, and X, are induced by almost complex structures,
det D, and det D, has a canonical trivialization. So, we obtain a canonical isomor-
phism

det D; — det 51.
This gives a bijection
viAW,s, &, Z,J) > AW,s,§).

A similar proof enables us to show ¥ does not depend on the choices of Zj.

Lemma 2.6 There is a canonical one-to-one correspondence
viAW,s, & Z,J) > A(W,s,§). (10)

We use this alternative description of the orientation set when we define signed families
Kronheimer—Mrowka invariants.

Remark 2.7 For a symplectic filling (W, w), one can choose a canonical element in
AW, s,, &) by choosing an orientation coming from a compatible almost complex
structure, where s, is the Spin® structure coming from w.

Definition 2.8 For a fixed element in A € A(W,s, &), we define the signed
Kronheimer—Mrowka invariant by

#M(W, 5, &) € Zif (e(ST, @olaw), [W,dW]) =0

m(W,s,§,4) := .

0 € Zif (e(S*, Dolaw), [W, dW]) # 0.
We often abbreviate m(W, s, &, A) by m(W, s, §).
The above definition enables us to define a map

m: Spin“(W,&) —> Z

for a fixed element in A(W, s, &), where Spin® (W, &) is the set of isomorphism classes
of all Spin® structures which are compatible with & on the boundary.

3 Families Kronheimer-Mrowka invariant

We introduce families Kronheimer—Mrowka invariants in this section. We follow the
construction of families Seiberg—Witten invariants [40, 54].

Let W be a connected compact oriented 4-manifold with contact boundary Y. It
is possible to consider a version of our invariant for disconnected Y: In that case, we
need to replace 71 (EM(Y), &) that appeared in the introduction with the direct sum
of such fundamental groups for all components of Y. For simplicity, we shall suppose
that Y is connected in this paper.
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As explained in Sect. 2, we define the notion of Spin structure/Spin® structure with-
out using Riemannian metric, by considering GL" (d, R).If a Spin structure or a Spin©
structure s is given on W, define Aut(W, s) to be the group of automorphisms of the
Spin® manifold (W, s).

Let EC"(Y) be the space of contact structures on Y equipped with the C*°-
topology, which is an open subset of the space of oriented 2-plane distributions. Let
[': B — E°M(Y) be asmooth map. We denote the smooth homotopy class of I by I".
Let W — E — B be a fiber bundle over a closed smooth manifold B of dimension .
Let Difft (W, [s]) denote the group of orientation preserving diffeomorphisms fixing
the isomorphism class of s, and let Diff (W, [s], d) denote the group of diffeomor-
phisms fixing boundary pointwise and the isomorphism class of s. Let Auty (W, s)
denote the inverse image of Diff (W, [s], d) under the natural surjection

Aut(W, s) — Diff ™ (W, [s]).

Suppose that the structure group of E reduces to Auty (W, s). Namely, E is a fiber
bundle whose restriction to the boundary is a trivial bundle of 3-manifolds, and is
equipped with a fiberwise Spin® structure sg. Suppose also that

51’*([,) = 5E|Eb

on each fiber.
For these data, we define the families Kronheimer—Mrowka invariant

FKM(E,I')=FKM(E,W,sg,I') € Z,.

This invariant is trivial by definition unless when (e(S™*, ®¢), [W,dW]) +n = 0
where e(ST, &) is the relative Euler class with respect to a special section ®(, which
we introduced in the previous section.

When n = 1, we can define a signed family Kronheimer—-Mrowka invariant

FKM(E) e Z

under a certain assumption on determinant line bundles.

3.1 Notation

Let (Y, &) be a closed contact 3-manifold. We use the following geometric objects
used in Sect. 2:

a contact 1-form6& on Y,

a complex structure J of & compatible with the orientation,

the Riemannian metric g; on Y such that 0 satisfies || = 1, d0 = 2 % 0,
the symplectic form wg on R=! x ¥,

the conical metric go on R=! x Y,

the canonical Spin¢ structure so on R=! x ¥,
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e the canonical positive Spinor ®g on R=! x ¥, and
e the canonical Spin© connection Ag on 5.

Let (W, s) be a connected compact oriented Spin® 4-manifold with connected contact
boundary (Y, &).

Assume that a trivialization of E|j, the fiberwise boundary of E, is given. From
this assumption, we may further suppose that there is a trivialization of a family of
collar neighborhoods of the family of the boundaries E|;. This is because the group
of diffeomorphisms of W fixing boundary pointwise is weakly homotopy equivalent
to the group of diffeomorphisms of W that are the identity near dW (see, e.g. [39,
Theorem 5.3.1]). Let W+ be a non-compact 4-manifold with a conical end defined in
Sect.2. We define a fiber bundle

wt > Et > B

whose fiber is Spin® 4-manifold with conical end obtained from W — E — B by
considering W+ = W Uy (R=! x Y) on each fiber.

From now on, we will explain auxiliary data that are needed to define the family
Kronheimer—Mrowka invariant. These data consist of choices of a contact form, a
complex structure on a contact plane, a compatible Riemann metric, an extension of
the canonical connection and the canonical spinor, which are denoted by Q. In addition,
we also need to fix choices of a weight function and a perturbation, which are again
denoted by R. The main point here is that the set of these auxiliary data is non-empty
and contractible, and thus the cobordism class of the Seiberg—Witten moduli space
does not depend on the choices of such additional data. Although it is not so hard to
verify it, for the readers let us carefully write the spaces of such additional data.

Let Q(Y, W, s, &) be the set of tuples

6,J,8 AY . oY),

6 is a contact form for the contact structure &,

J is an complex structure on the contact structure £ compatible with orientation.
g is a smooth extension of the canonical metric for (£, 6, J) on the conical end to
the whole manifold W,

AY, CD(‘)}V ) is a smooth extension of the canonical configuration (A, ®¢) on the
conical end to the whole manifold W.

Varying over E®™(Y), we obtain a fiber bundle Q(Y, W, s) — E(Y) with fiber
oY, W,s,&).
Let P(Y, W, &, g) be the set of pairs (o, ), where

e o is a smooth proper extension of the R=! coordinate of the conical end to the
whole manifold W, and

e 7 is an imaginary valued g-self-dual 2-form that belongs to e’ C" (i A™¢) for
some €y > 0 and r > k, where e~“° C" (i A™¢) denotes the completion of the
vector space of compactly supported smooth sections of i A*¢ with respect to the
norm:
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sl := ||e76065||cr(w+;i1\+g)'

Varying over the set of g, we obtain a fiber bundle R(Y, W,s,&) — O, W,s,§)
with fiber P(Y, W, &, g), which is independent from (A}, ®})-component. Vary-
ing over E°°"(Y), we obtain a fiber bundle R(Y, W,s) — E©"(Y) with fiber
R(Y, W, s, &), which covers Q(Y, W, s) — EN(Y),

Except for n, we consider the C*°-topology for the above data. For 1, we equip
weighted C"-topology. Since the total space of a fiber bundle with contractible fiber
and base is also contractible, we have that R(Y, W, s, £) is contractible.

The group Auty(W, s) acts on the total space R(Y, W, s) via pull-back. Thus
E induces an associated fiber bundle Er — B with fiber R(Y, W, s). Since the
image of Auty(W, s) under the natural map Aut(W, s) — Diff (W, [s]) is contained
in Diff (W, 9), whose restriction to the boundary acts trivially on E°"(Y), the map
RY,W,s) — E©"(Y) induces a map ERr — E®©"(Y). Define 7 : Eg — B X
ECOnt(Y) be the product of these natural maps Er — B and Er — E"(Y). Then
each fiber of 7 is homeomorphic to R(Y, W, s, £). The fiber bundle

EL = (d,F)*Ex — B

the pull back of 7 : ER — B x 8"(Y) under (Id, ') : B — B x E°"(Y), has
fiber homeomorphic to R(Y, W, s, £). Since R(Y, W, s, £) is contractible, the space

of sections of E% — B is non-empty and contractible.

In a similar manner, we can define a fiber bundle E l:Q — Bwithfiber Q(Y, W, s, &),
associated with E and I". We first fix a section

s = 0. Jp. 86+ Aob. Po.p)ves : B — Eg

which determines the following data:

a fiberwise contact form 6,

a fiberwise complex structure Jp,

a fiberwise Riemann metric {gs}pep on ET such that 8blr=1xy = 80.p, and

a smooth family of smooth extensions (Ag p, ®o,p) of (Ao, o) on each fiber.

Here go p is the metric on Y depending on J;, and 8, introduced in the previous section.
Consider the following functional spaces on each fiber E;‘:

Cw+p = (A0bs P0b) + L} ay, (A y+  Spyy) and

2 . _
Vs = Li 1.0, Ay © Spys)-

These give Hilbert bundles:

Up+ (9 == Cw+p and Vi) = Ve -
beB beB
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For the precise definitions of these Sobolev spaces see Sect.2. The gauge group
Gw+ ={u:Wr > UM |[1-uelLi,)

is defined and it acts on Ug+ preserving fibers in Sect.2. We define a family version
of the configuration space by

B+ (s9) := Ugt /Gy+. (11)
Now we also choose a section
R _ . r
s = (O, b, gb> Ao,b» P0,b> 06, Mp)beB : B = Ep
which is compatible with the fixed section 52, i.e. the first five components of s
coincide with these of s = b, Jb, 8b, Ao.b, Po.b)pep. For each fiber Elj we have

the perturbed Seiberg—Witten map

Sb:Cptp = VE+ )
(A—App, ®—DPyp)

(12)
1 _ 1 _
> (EF; = p7 (@®0 = SF +p7 (®0p®G )0+ b, chb) :
This gives a bundle map
3R 1 Upi (69 = Vs (s9). (13)

Definition 3.1 We say that {1}, p is a family regular perturbation if (13) is transverse
to zero section of Vg+(s Q).

For each fiber, we have the infinitesimal action of gauge group at every point
(Ap, Dp) € Cy+p

Seap ) Lt ag, (AY+) = Li ay, (AYys & ST)
and the linearization of the Seiberg—Witten map at (A, ) € Cy+
Do) Li gy gy (B s © Sihi) = Li_1 4, o (AT, @ Sy0)
The sum
Diayon) + 8a,.0p) © Lic.ay.gp ( A+ ® Syr) = Li_1 a4, 0 (AT & Sp0)
is a linear Fredholm operator. This gives a fiberwise Fredholm operator
L+ (s9) : Tiner Ut (59) = V= (59,
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where Tper means the fiberwise tangent bundle of U g+ (s Q). By taking the determinant
line bundle for each fiber, we obtain a line bundle

det(L g+ (s9)) — By (s9). (14)

Remark 3.2 As a similar study, in [49], Juan defined the families monopole contact
invariant for families of contact structures on a fixed 3-manifold. At the moment, we
do not know the triviality of the line bundle (14).

3.2 Constructions of the invariant

For a fixed section s : B — E7F2 such that {n;}pep is regular, the parametrized
moduli space is defined to be

M(E, T, s™) := {(A, ®) = (Ap, ®p)pes € Uy+|F(A, ®) = 0}/Gyy+.
Recall the formal dimension
d(W,s,&) = (e(ST, Dolyw), [X, 9X])

of the (unparametrized) moduli space over the cone-like end 4-manifold W .

Proposition 3.3 For a regular perturbation, M(E, r , SR) is a smooth compact man-
ifold of dimension d(W, s, &) + n. If the determinant line bundle

det(Lp+(s9)) — B+ (s9),

is trivialized, an orientation of M(E, T, sRy is naturally induced by an orientation
of B and an orientation of det(L g+ (s Q)) |» on a fiber of b € B.

Proof The proof is the standard perturbation argument with the compact parameter
space B. We omit it. O

Definition 3.4 We define the families Kronheimer—Mrowka invariant of E by

#M(E,T,s®) eZ, ifdW,s, &) +n=0,

FKM(E,T,sR):= .
0€eZ itd(W,s, &) +n #0

for a fixed section s7°.

Since we will see the number FKM (E, f‘, sR) does not depend on the choices of
sections s7* and T up to smooth homotopy, we always drop s in the notion and write
FKM(E,T).

Proposition 3.5 The number FKM(E, T, s™) is independent of the choices of the
following data:
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e asection s™ and

e a choice of T which belongs to the homotopy class T.

Also FKM(E,T") depends only on the isomorphism class of E as Aut((W, s), d)-
bundles and T.

Proof We take a smooth homotopy I, : I x B —> E®M"(Y) between [g and T';
parametrized ¢ € [0, 1]. Take two sections

sgz:BeElli and is:B—>EIz?1

so that (13) is transverse for i = 0 and i = 1. Note that a fiber of the bundle

| JEL - 1xB

tel

is contractible, we can take a section 5% : [ x B — User E%’ connecting sga and
s? such that (13) for s/ is transverse. So, the moduli space for s/% gives a cobordism
between M(E, T, s(’)R) and M(E, T, is). This completes the proof. O

Remark 3.6 Note that there is no reducible solution to the monopole equations over
the conical end 4-manifold W under our boundary condition, and we do not have
to impose any condition on b;‘ (W) to ensure the well-definedness of the invariant, as
well as the unparametrized Kronheimer—-Mrowka invariant.

3.3 Invariant of diffeomorphisms

Now suppose that the base space B is S! and I" is a constant map to &. In this case, the
family £ — S 1is determined by an element of Aut; (W, s). An element of Auty (W, s)
is given as a pair (f, f): f is a diffeomorphism f : W — W which preserves the
isomorphism class of s and fix W pointwise, and f is a lift of f to an automorphism
on the honest Spin® structure s acting trivially over 3W. All E — S! can be viewed
as the mapping torus of W by (f, f).

Lemma3.7 Let E be the mapping torus of W by (f, f). Then the invariant
FKM(E,T) depends only on the diffeomorphism f and &.

Proof The kernel of the natural surjection
Auty (W, s) — Diff (W, [s], 9)

is given by the gauge group Gy = {u : W — U(1) | ulaw = 1}. Now suppose
that we have two lifts f] and fz of f to Auty(W, s). Let E; be the mapping torus of
(f. fi). Then the composition f] ) ]?2—1 is given by a smooth map u : W — U(1)
with u = 1 on dW. Taking an extension of u to a neighborhood of W in W™, and also
a partition of unity around dW, we can extend u to a smooth map u™ : W — U(1)
with 1 —u € L?, .. Hence the moduli spaces used in the definition of F K M(E;) and

k+1°
that of F K M (E») are identical to each other. ]
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Definition 3.8 For a fixed contact structure £ on Y, we define the Kronheimer—Mrowka
invariant for diffeomorphims FK M (W, s, &, f) to be the invariant FK M(E, T = &)
of the mapping torus E with fiber (W, s) defined taking a lift of f to Auty(W, s).
Note that, by Lemma 3.7, FKM (W, s, &, f) is independent of the choice of lift. If
(s, &) is specified, we sometimes abbreviate FKM (W, s, &, f)to FKM (W, f).

Now we have defined a map
FKM(W,s, &, ) : Diff (W, [s], 9) — Z;.
We will show that this map is a homomorphism and descents to a map

FKM(W,s, £, o) : mo(Diff (W, [s], 8)) — Zo.

3.4 A signed refinement of FKM for diffeomorphisms

Again, in this subsection, we assume that I" is a constant function to £. Define a
subgroup Diff i (W, [s], 9) of the relative diffeomorphism group Diff (W, [s], 9) as the
group of diffeomorphisms that act trivially on homology and preserve the isomorphism
class [s] and dW pointwise. Note that, if W is simply-connected, Diff y (W, [s], 9)
coincides with the group Diff i (W, 9), the group of diffeomorphisms that act trivially
on homology and preserve d W pointwise.

For each element of A(W, s, £), we shall define a map

FKM(W,s, &, e) :Diffy (W, [5], 0) — Z.

The construction of this map is done essentially by a similar fashion to define FK M :
Diff(W, [s], ) — Z,, but we need to count the parametrized moduli space taking
into account its orientation.

For f € Diffy(W, [s], 9), let f be a lift of f to an automorphism of the Spin®
structure. Let E . ; denote the mapping torus of (W, t) as a fiber bundle of Spin®
4-manifolds. Take a section

Q. ¢l r

Let B E, f(sQ) denote the families (quotient) configuration space associated to E F
introduced in (11).

Lemma 3.9 Suppose f is homologically trivial. Each element in A(W, s, &) induces
a section of the orientation bundle

A(Ef,f) — B(Ef,f) (15)

over the configuration space B(Ef,f) forall f € Diff (W, [s], 8) and lifts f to the
Spin€ structure.
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Proof We first prove the line bundle (15) is trivial for any pair (f, f) such that f is
homologically trivial.
We first regard B E, ; (s9) asa mapping torus of the trivial bundle

EW,ﬁ,(‘E = I X BWVE’S —> I

via the map (f, f). From Lemma 2.1, we see that the determinant line bundle
A(W,s,§) over By, , ¢ is trivial. So, it is sufficient to prove that the induced map

(fs et AW, 5,8) — AW, 5,£)

preserves a given orientation of A(W, s, £). In order to see this, we use the following
canonical identification (10). First, we fix an almost complex 4-manifold (Z1, Jp)
bounded by (—Y, &). We recall that

A(W5 55 E’ Z’ J)

is defined by the two-element set of trivializations of the orientation line bundle for
the linearized equation with a slice on the closed Spin® 4-manifold (W U Z,s U s).
Then, (10) gives an identification

v AW,s,E Z,]) > AW, s, ).
Note that (f, f) also naturally acts on A(W,s,§&, Z, J).
Claim 3.10 The following diagram commutes:

AW, s, €, 7, 1) —2— AW, s, £)

(f,f')*l (f,f')*l

AW, s, €, Z,]) —— AW, s, ).

Proof of Claim 3.10 This result follows the construction of ¥ based on Theorem A.1.
O

Note that the orientation of A(W,s, &, Z, J) is determined just by the homology

orientation of W U Z. Since we assumed that i is homologically trivial, the induced
action

(f+ s AW, 5.6, Z,J) > AW, 5,8, 2, )
is also trivial. Hence, we can see that the bundle A(Ef ]:) — B(Ef f) is trivial. Now,
we give an orientation of A(E ;. 7) from a fixed element in A(W, s, &). For a fixed

element in A(W, s, &), an element A(E 7 f) is induced by choosing a point in B E,;
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and restricting the bundle A (E ¥ f) to the point. Note that such a correspondence does

not depend on the choices of lifts f . This completes the proof. O
fE=F .5 is the mapping torus, we can count the parametrized moduli space

associated with E over Z by Lemma 3.9.

Definition 3.11 For f € Diff g (W, [s], ) and a lift f, let E = E(f 7 be the mapping

torus of (W, s) by (f, f ). we define the signed families Kronheimer—Mrowka invariant
of E by

#M(E,T=¢£,s®)eZ ifdW,s, &) +1=0,

FKM(E,§) :=! .
0eZ ifd(W,s,6)+1#0

for a fixed element in A (W, s, &).
Repeating the argument in Lemma 3.7, we obtain:

Lemma3.12 Let E be the mapping torus of (W,s) by (f, f). Then the invariant
FKM(E) € Z depends only on f € Diff y(W, [s], 9).

Proof The proof is essentially the same as that of Lemma 3.7. O

Definition 3.13 We define the signed Kronheimer—Mrowka invariant for diffeomor-
phims FKM(W, s, &, f) tobe the invariant F K M (E, &) of the mapping torus E with
fiber (W, s) defined by taking a lift of f to Auty(W, s). Note that, by Lemma 3.12,
FKM(W,s, &, f) isindependent of the choice of lift. If (s, £) is specified, we some-
times abbreviate FKM(W,s,&, f)to FKM(W, f).

3.5 Properties of the families Kronheimer-Mrowka invariant

In this subsection, we prove some basic properties of the families Kronheimer—Mrowka
invariant. This is parallel to Ruberman’s original argument [54, Subsection 2.3].

Let (W, s) be a connected compact oriented Spin® 4-manifold with connected
contact boundary (Y, &). In this subsection, we fix (s, £) and we sometimes drop this
from our notation of FKM(W, s, &, f).

First we note the following additivity formula:

Proposition 3.14 For diffeomorphisms f, f' of W preserving the isomorphism class
of s and fixing W pointwise, we have

FKMW,s,&, f)+FKMW,s, &, fY=FKMW,s,&, f o f) mod 2.
Moreover, when an element of A(W, s, £) is fixed, we have
FKMW,s,&, f)+ FKM(W,s,&, fY=FKM(W,s,&, f o f)

as Z-valued invariants for homologically tirivial diffeomorphisms f, f'.
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Proof Weregard FKM(W, f'o f) as the counting of M(E s/, r). Note that the moduli
space M(E f1,¢) is equipped with the map M(Eo7) — S'. We fix the following
data:

e a Riemann metric g on W which coincides with g; on 9W =Y and
e aregular perturbation n on W for the metric g.

The invariant M(E r) can be seen as the counting of parametrized moduli space over
[0, %] with regular 1-parameter family of perturbation 1, and a 1-parameter family of
metrics g; satisfying

® g0 =g 81 = f"gand

o no=mnn1=fn
Also, the invariant Mg o can be seen as the counting of parametrized moduli space
over [%, 1] with the regular 1-parameter family of perturbation n; and a 1-parameter
family of metrics g; satisfying

* g1 =/"8 8 =(f"of)gand

o ny = f"n.m = ("o f)n

Then we have a decomposition

U MW, g.nou [ MW, gm0 = | MW, g, m).

1€[0, ] re[1.1] t€[0,1]

The counting of (9.1 M(W, g, nr) isequal to FK M(W, f’o f) by the definition.
This completes the proof. Once we fix an orientation of A(W, s, £), the same argument
enables us to prove the equality

FKMW,s,&, f)+ FKM(W,s,&, f')= FKM(W,s,&, f o f) € Z.

Proposition 3.14 immediately implies:
Corollary 3.15 We have FKM(W,s,&, f) =0 for f =1d.

Lemma 3.16 The number FKM(W,s, &, f) is invariant under smooth isotopy of
diffeomorphisms in Diff (W, [s], 9).

Proof By Corollary 3.15 and Proposition 3.14, it suffices to check that if f is isotopic
to the identity, then we have FKM (W, f) = 0. Take a generic unparametrized per-
turbation 7. Let f; be a smooth isotopy from Id to f. Let n;, = f;*n, and g; be the
underlying family of metrics. The M(W, g;, ;) is diffeomorphic to M (W, go, 1;),
which is empty. O

Corollary3.17 If FKM (W, s, &, f) # O, then f is not isotopic to the identity through
Diff (W, [s], 9).
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Proof This follows from Corollary 3.15 and Lemma 3.16. O
We end up with this subsection by summarizing the above properties:

Corollary 3.18 The families Kronheimer—-Mrowka invariant defines homomorphisms
FKM((W,s, &, o) : mo(Diff (W, [s], 3)) — Zo

and
FKM(W,s, &, o) : mo(Dift g (W, [s], 9)) — Z.

Proof This follows from Proposition 3.14, Corollaries 3.15, and 3.16. O

3.6 Isotopy of absolute diffeomorphisms

We now consider a slight refinement of the families Kronheimer—-Mrowka invariant
for diffeomorphisms defined until Subsection 3.4 to take into account isotopies of
diffeomorphisms that are not necessarily the identity on the boundary. We need to
treat a family of contact structures on the boundary in Kronheimer—Mrowka’s setting.
Such a situation is also treated in [49].

For a contact structure £ on an oriented closed 3-manifold Y, let [£] denote the
isotopy class of £&. Let W be a compact oriented smooth 4-manifold bounded by Y.
Let f € Diff(W, [s], 3) and y be a homotopy class of a loop in 71 (E°"(Y), £).
Henceforth we fix & and abbreviate 71 (E°"(Y), &) as 71 (E°™(Y)). Pick a repre-
sentative 7 : ST — E°"(Y) of y and a section s : S — EZ. Then we defined a
Zy-valued invariant

FKM(W,[s].§, f.y) € Z.

For f and y, we can define the monodromy action on A(W, s, £). If this action is
trivial, we may count the parametrized moduli space over Z, and thus can define

FKM(W,[s].§, f.y) € Z,

whose sign is fixed once we choose an element of A(W, s, £). Henceforth we fix an
element of A(W, s, £). It is useful to note that, for a pair admitting a square root, say
(f2, y?) e Diff (W, [s], 8) x 1 (E"(Y), &), the corresponding monodromy action
is trivial. Let us summarize the situation in the following diagram:

FKM(W,[s],£ 0,0
Diff (W, [s], 8) x 71 (B (Y), &) (W,[s].6,0,0) Z

mod 2

(2] f e Diff W, [s], )} x {2 |y € m(BMWY), )} — e
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The cobordism argument as in Proposition 3.5 enables us to prove the invariance
of the signed and refined families Kronheimer—Mrowka’s invariant.

Proposition 3.19 Let f € Diff(W, [s], 0). If f is isotopic to the identity through
Diff (W), then there exists y € w1 (B (Y)) such that

FKMW,[s).&, f.y)=0€Z» (16)
and
FKM(W,[s],&, f2,v*) =0¢€Z. (17)

Proof We may suppose that d(W,s,&) + 1 = 0. Let f; be a path in Diff (W)
between f and the identity. Define a path 7 : [0, 1] — E®™(Y) by y(1) = f*&,
and set y = [y] € m(E®M(Y)). Pick a generic element a of the fiber of
R(Y,W,s) — E"(Y) over the &. The pull-back s(t) = f,*a gives rise to a section
s : [0,1] - p*R(Y, W, s). By formal-dimensional reason, the moduli space for a
is empty. Moreover, the pull-back under f induces a homeomorphism between the
moduli space for a and that for f*a, and hence the parametrized moduli space for s
is empty. This completes the proof of (16).

Next we prove (17). Let p& : [0, 1] — E"(Y) denote the concatenated path
of two copies of 7. The path 4 is a representative of y2 € 71 (E®"(Y)). Define a
section 5" : [0, 1] — P*R(Y, W, s) by s'(r) = f*(f*a). Namely, s’ is the pull-back
section of s under f. By concatenating s with s’, we obtain a section s Us’ : [0, 1] —
Vi R(Y, W, s). The left-hand side of (17) is the signed counting of the parametrized
moduli space for s U s’, but again the moduli space is empty. Thus we have (17). O

Lemma 3.19 can be generalized more:

Proposition 3.20 Let f, g € Diff (W, [s], 0). If f and g are isotopic to each other
through Diff (W), then there exists y € w1 (E°™(Y)) such that

FKM(W,[s),& f,y) = FKM(W,[s),&, g, v) € Zs (18)
and
FKMW,[s],&, >, y*) = FKM(W,[s], & g% v*) € Z. (19)

Proof We may suppose that d(W,s,&) + 1 = 0. Let h; be a path in Diff (W)
between f and g. Define a path 7 : [0,1] — E®"™(Y) by 7(r) = h}&, and set
y = [y] € 7 (E®M(Y)). Take a section s}z : [0,11 - p*R(Y,W,s) so that
s}z(l) = f*s}z(O). The quantity FKM (W, [s], &, f, y) is the signed counting of
the parametrized moduli space for s}z. Let s? denote the pull-back of the sec-

tion s}z under I_I,e[o,l](h;"f’]). This section satisfies that s;z(l) = g*s?(O), and
FKM(W,[s], £, g, v) can be calculated by the signed counting of the parametrized
moduli space for this section sz,z. However, the pull-back under Li;cjo,17 (] (f —Lyx)
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gives rise to a diffeomorphism between these moduli spaces corresponding to s7fZ and
5%, and this implies (18).

To prove (19), as in the proof of Lemma 3.19, let y» : [0, 1] — E°"(Y) denote the
concatenated path of two copies of 7, which represents y2 € 71(E°°™(Y)). Define
a section (s/)zcz 1 [0, 1] - p*R(Y, W, s) as the pull-back section of s}z under f.
Similarly, define (s’ )E as the pull-back section of sZ,z under g. The signed counting
of the concatenated section s}a U (s’)zcz is the left-hand side of (19), and similarly

for g. Again the pull-back under Li;cjo,17(h} (f —lyx) gives rise to a diffeomorphism
between these moduli spaces corresponding to (s’ )? and (s))®, and together with

the diffeomorphism for s}z and sz,z considered above, we obtain a diffeomorphism

between these moduli spaces corresponding to s}z U (s’ )? and sz,z U (s’ )?. Thus we
have (19). O

Proposition 3.21 Let f, f' € Diff (W, [s], 9) and y € w1 (E™(Y)). Then we have

FKM(W,[s],&, fof,y)=FKMW,I[sl,§, f)+ FKM(W,[s1,&, f',v)
=FKMW,[s].£, f.y) + FKM(W,[s].& f)
(20)

in Zo. Moreover, if all of the diffeomorphisms in (20) and y induce the trivial mon-
odromy on A(W, s, &), then the equalities (20) hold over Z.

Proof Denote by Vconst the constant path at & in E°°™(Y) and set Yeonst = [Veonst] €
71 (E(Y)). By definition, we have

FKM(Wa [5]7 Ev fv VCOHSI) - FKM(Wv [5]7 Sﬂ f)

Pick a generic element a € P(Y, W, s, &). Take a path a between a and f*a in
P, W,s, ). Such a path can be thought of as a section

5:00,11 > 5, PY, W,5) Z[0,1] x P(Y, W,s,&).
Pick a loop y that represents y, and take a generic section
s" 00,11 = p*P(Y, W, 5)
so that s'(0) = f*a and s'(1) = (f o f)*a = f™*(f*a). Then FKM(W, [s], &, f,
Yeonst) 18 the algebraic count of the parametrized moduli space for s, and F K M (W, [s],
&, f’,y) is that for s’. Thus the algebraic count of the parameterized moduli space for
the path that is obtained by concatenating s and s’ is the right-hand side of (20).

On the other hand, parametrizing intervals, we can regard the concatenation of the
sections s and s’ as a section

sUSs 1 [0,1] = 7*P(Y, W, s)
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such that (s Us”)(0) = a and (s Us")(0) = (f o f')*a. Therefore the algebraic count of
the parameterized moduli space for s Us’ is the left-hand side of (20). This completes
the proof of the first equality. The second equality follows just by a similar argument.

O

4 Several vanishing results

In this section, we prove several vanishing results for both of the families Seiberg—
Witten invariant and Kronheimer—Mrokwa invariant.

Before stating several vanishing results, let us introduce a notion of strong L-space
for convenience.

Definition 4.1 A rational homology 3-sphere Y is a strong L-space if there exists a
Riemann metric g on Y such that there is no irreducible solutions to the Seiberg—Witten
equation on (Y, g, s) for a Spin® structure s on Y.

Note that all strong L-spaces are L-space. However, the authors do not know whether
the converse is true or not.

We also recall the families Seiberg—Witten invariant for diffeomorphisms following
[54]. Let X be a closed oriented smooth 4-manifold with b; (X) > 2 and s be a Spin°©
structure on X. Fix a homology orientation of X. Let f : X — X be an orientation-
preserving diffeomorphism of X such that f*s = s (precisely, f*s is isomorphic to
5). Then we can define a numerical invariant FSW (X, s, f), which takes value in Z
if f preserves the homology orientation, and which takes value in Z, if f reverses the
homology orientation. It is valid essentially only when the formal dimension of s is
—1: otherwise the invariant FSW (X, s, f) is just defined to be zero.

4.1 A family version of the vanishing result for embedded submanifolds
4.1.1 Embeddings of 3-manifolds

We first prove a family version of the vanishing result for embedded 3-manifolds. For
the original version, see [23] for example.

Theorem 4.2 Let (X, 5) be a closed Spin© 4-manifold with b; (X) >0andY be a
closed oriented 3-manifold.

(1) Suppose there is a smooth embeddingi : Y — X. Let (Y, g) be a strong L-space
for some metric g on Y and f be an orientation-preserving self-diffeomorphism
of X such that

o f*s=s,
o f(i(Y)) =i(Y) as subsets of X, and
o f:((Y),ixg) — (i(Y),ixg) is an isometry.

We also impose that the map
H*(X;Q) — H*(V; Q)
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is non-zero. Then we have

0 € Z if f does not flip the homology orientation of X,

FSW(X,s, f) = ) ) . .
0 € Z, if f flips the homology orientation of X .

(ii) Suppose X contains an essentially embedded smooth surface S with non-zero
genus and zero self-intersection that violates the adjunction inequality, i.e. we
have

28(8) —2 < | {c1(9), [SD I

Also, the normal sphere bundle dv(S) is supposed to be f|y,(s) = Idjy(s).
Then, we have

0 € Z if f does not flip the homology orientation of X,

FSW(X,s, f) = ) } . .
0 € Z, if f flips the homology orientation of X .

Note that Theorem 4.2(ii) also follows from [9, Theorem 1.2]. In the proof, we mainly
follow the original Frgyshov’s argument which uses a neck stretching argument and
non-exact perturbations and Kronheimer—-Mrowka’s proof of the Thom conjecture
[35].

Proof We first prove (i). Since the proof of (ii) is similar to that of (i), we only write
a sketch of proof of (ii). Because the family Seiberg—Witten invariant is an isotopy
invariant, we can assume that f can be a product in a neighborhood N of Y’ which is
isometry with respect to g. Now, we consider the family version of the moduli space

PM(X,s, f) — S!

as a mapping torus of the moduli space over I = [0, 1]:

U M 5,60 > 1,
tel0,1]

where g; is a smooth 1-parameter family of metrics such that

® g1 =f"goand

e foranyt € [0, 1], we have g;|y = g + dr?.
Here we take a metric g so that there is no irreducible solution to the Seiberg—Witten
equation on Y. By assumption, we have a trivialization of the family £y — S !
obtained as the mapping torus of f near N:

Efiiyy CEy,
where E ¢, us the mapping torus of f;y).

Now, near Ey|,,,, we consider a neck stretching argument. We consider a family
of metrics g; ¢ parametrized by s € [0, co) satisfying the following conditions:
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® 81,0 = &>

e as Riemann manifolds, (Ef|,.(y), gisIin) =(0,s+1]1xY, g+ dtz),

e outside of Ef(;(y)) in Ef, the metric g, ; coincides with g;.
By the assumption Im(H*(X; Q) — H2(Y;Q)) # 0, we take a closed 2-form 7 on
X such that

0 # [nly]l € H*(Y; R).

Then, we consider the perturbation of the family Seiberg—Witten equation on E 7 using
n:

Fli4o(@, o) =en®
t
DAICDI - 0

for a small ¢ > 0. We take the € so that there is no solution to the en-perturbed
Seiberg—Witten equation on Y with respect to (g’, s|y):

Fpgi +0(¢,d) =enly
Dp¢p = 0.

Suppose FSW(X, s, f) # 0. Put no := en. Now we take an increasing sequence
s; — oo. Then, since FSW (X, s, f) # 0, there is a sequence of solutions (A;, ®;)
to the Seiberg—Witten equation with respect to g, 5, for some #; € [0, 1].

Claim 4.3 We claim that

sup Eégpgt 8 (A, cI)")|Ef|i(}/)) <0,

i€Z=0

where, for a Spin® 4-manifold W with boundary, the topological energy perturbed by
no is defined to be

top . 1
E (A, @) :=— [ (Far —4n0) A (Far —4m0) — (®ly, DpPly).
4 Jw W

Proof of Claim 4.3 For a Spin® 4-manifold W with boundary, define the perturbed ana-
Iytical energy by

E(A, B) = / |FAr—4no|2+/ |VA®|2+1/<|®|2+<s/2)>2

/—+2/ (@, p(no)®) — /(H/2)|q>|

where s is the scalar curvature and H is the mean curvature. It is proven that if (A, ®)
is a solution to the Seiberg—Witten equation perturbed by 7o, the equality

EIM(A, D) = EI% (A, D).
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holds ( [38, (29.6), Page 593]). Since X is closed, we know that, on X,

sup Ep'(Ai, @;) = sup £ (A;, &;) < 0.

i€Z~0 i€Zxg

On the other hand, we have
Ea(Ai, @) = Egt (A, @)y, )+ Em(Ai ®)lEy, )

Since X is compact, 1o is bounded and g; s is a compact family of metrics, we have
lower bounds

: an . . . i .
—0 < iel%f;o EUO ((Al, CD‘)|(Ef\,-(y>)L (Al, q),).
So, we see

sup &ggpgt 5 ((A;, D; )|Ef| (Y)) = z:lle 5;;:& s ((Aj, D; )|Efl (Y)) e

l€Z>0

O

By taking a subsequence, we can suppose t; — foo € [0, 1]. As in the proof of [36],
we can also take a subsequence of (A;, ®;) so that

Eerl (A, @), +11xv ) = 0.

So, as the limit of (A;, ®;) |1 1, +11x YCE )y, W obtain an (perturbed) energy zero
solution (Axo, @o) on [0, 1] x Y. By considering the temporal gauge, this gives a
solution to (4.1.1). This gives a contradiction.

The proof of (ii) is similar to (i). Let Y be the product § I x S. We take a Riemann
metric g on Y forms

g =di’* + go,

where ¢ is a coordinate of S! and gy has a constant scalar curvature. Kronheimer—
Mrowka’s argument in [38] implies that if there is a solution to the Seiberg—Witten
equation on Y with respect to (g, s|y), then the adjunction inequality

l{c1(s), [SDI = 2g(S) —

holds ([38, Proposition 40.1.1]) when g(S) > 0. Since we now are assuming the
opposite inequality |{c1(s), [S])| < 2g(S) — 2, it is sufficient to get a solution to the
Seiberg—Witten equation on Y with respect to (g, s|y). The remaining part of the proof
is the same as that of (i), i.e. we consider the neck stretching argument near d(v(S)).
This completes the proof. O
We also provide a version of Theorem 4.2 for the Kronheimer—Mrowka invariant.
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Theorem 4.4 Let (W, s) be a compact Spin© 4-manifold with contact boundary (Y, £).

(1) Suppose there is a smooth embeddingi : Y — W where (Y, g) is a strong L-space
for some metric g on Y. Let f be a self-diffeomorphism of W such that

— flaw is the identity,

- f*s=s,

— i(Y) separates W,

— fAY)) =i(Y) as subsets of W, and

— 1Y), ixg) > ((Y),isg) is an isometry.

We also impose that the map
H*(W: Q) - H*(Y; Q)
is non-zero. Then we have

0 € Z if the action of f on A(Y, s, €) is trivial,
0 € Z, if the action of f on A(Y, s, &) is non-trivial.

FKM(X,s,§, f) = {

(i) Suppose W includes an essentially embedded smooth surface S with non-zero
genus that violating adjunction inequality and [S]> = 0. Then for a homologically
trivial diffeomorphism f on W fixing the boundary pointwise such that f (9(v(S)))
is smoothly isotopic (rel 3) to 3 (v(S)), we have

0 € Z if the action of f on A(Y, s, &) is trivial,

FKM(X,s,&,f):{ : . . .
0 € Z; if the action of f on A(Y, s, §) is non-trivial.

Proof The proof is essentially parallel to that of Theorem 4.2 An unparametrized ver-
sion of Theorem 4.4 is proven in [30, Theorem 1.19 (i)]. We use the same perturbations
used in the proof of [30, Theorem 1.19 (i)]. The only difference between the proofs
of Theorem 4.2 and Theorem 4.4 appears in the proof of Claim 4.3. Note that when
we consider the Seiberg—Witten equation on 4-manifolds with conical end, there is
no global notion of energy: on the interior, we have usual topological and analytical
energies, and on the cone, we have the symplectic energy. We combine these two
energies to show Claim 4.3. For that part, see that the proof of [30, Lemma 4.6]. It is
easy to see the proof of [30, Lemma 4.6] can be also applied to our family case. O

4.1.2 Embeddings of surfaces

We also prove Theorem 4.4 for embedded surfaces to find exotic embeddings of
surfaces into 4-manifolds with boundary. Let X, denote a closed oriented surface of
genus g.

Theorem 4.5 Let (W, 5) be a compact Spin© 4-manifold with contact boundary (Y , £).
Leti : ¥y — W be asmooth embedding satisfying one of the following two conditions:

() - ix[Zg] is non-torsion, and
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- g=0.
(i) - g>0and
— the adjunction inequality for (i(Zy), 5) is violated.

For any diffeomorphism f on W fixing the boundary pointwise and preserving the
Spin© structure s such that i is smoothly isotopic (rel d) to f o i, we have

FKM(X.s.£. f) = 0eZ if.the acti(fn of fon A(Y,s,§) is. trivial, N
0 € Z; if the action of f on A(Y, s, &) is non-trivial.

Moreover, in the case (i), we can replace the assumption that i is isotopic to f oi with

the assumption that the image i(Zg) is smoothly isotopic to the image of f 2oi (Zp).

Proof The proof is also based on the neck stretching argument near a normal neigh-
borhood of i(Xg). The closed case is treated in [9]. Since there is no big difference
between the proof of Theorem 4.5 and [9, Theorem 1.2], we omit the proof. O

4.2 A fiberwise connected sum formula

We first review a fiberwise connected sum formula which is first proven in [32, The-
orem 7.1]. Note that in [32, Theorem 7.1], the case that the connected sum along S3
is treated. We generalize the vanishing result in [32, Theorem 7.1] to the result on the
connected sums along any strong L-spaces with b; = 0. In the context of Donaldson’s
theory, the connected sum result is written in [55, Theorem 3.3]. For a 4-manifold X,
X° denotes a compact punctured 4-dimensional submanifold of X.

Theorem 4.6 Let (Y, h) be a strong L-space with b1 (Y) = 0. Let (X, 5), (X', ") be
two compact Spin© 4-manifolds with b; > 1,0X = —Y, 3X’' =Y, and suppose there
is an isomorphism s|yx = s'|_yx'. Let [ be an orientation-preserving diffeomorphism
on the closed 4-manifold X* := X Uy X' such that

(i) the diffeomorphism f is smoothly isotopic to a connected sum f'#yg’ on X Uy X’
of diffeomorphisms f' and g’ on X and X' which are, near the boundary of X and
X', the product of an isometry of (Y, h) with the identity on [0, 1], and

(i) the diffeomorphism f preserves the Spin¢-structure s#s' on X*.

Then we have

0 € Z if f does not flip the homology orientation of X,

FSW(X*, s#s', f) = o o
0 € Z; if f flips the homology orientation of X .

Proof For completeness, we give a sketch of the proof. Let Y be a rational homology
3-sphere with a Riemannian metric £ such that there is no irreducible solution to the
Seiberg-Witten equation on Y with respect to (s|y, ). Suppose X° and (X')° are
4-manifolds with boundary —Y and Y and define

X#X' = X° Uy (X)°.
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Since the family Seiberg—Witten invariant F'SW is an isotopy invariant, we can assume
that f is described as the connected sum f'#g’ on X#y X’ of diffeomorphisms f’ and g’
on X° and (X’)° which are the identity near the boundary of X° and (X’)°. With respect
to the Spin‘ structure s#s’, the gluing theory enables us to construct a diffeomorphism

PMUX°UI0,00) x Y), f/) xg 1y PM(((—o0, 0] x Y)
U(X)°, g) = PMX#X', f'#g), (21)

where the spaces PM(X° U [0, 0o) x Y), f') and PM(((—00,0] x Y) U (X')°, g)
are parametrized moduli spaces on the cylindrical-end Riemannian 4-manifolds X° U
[0, 00) x Y and ((—o0, 0] x Y) U (X’)° asymptotically the flat reducible solutions.
Here we used the product metric & 4 d¢? on the cylinder part. Precisely, we need to
use weighted L% norms to obtain Fredholm properties of linearized Seiberg—Witten
equations with slice. From index calculations, we have

dim PM(X° U0, 00) x Y, /) = dim PM(X, f')
and
dim PM((—o00,0] x Y U (X)°), ¢') = dim PM (X', ).
So we have
dim PM(X, )+ dimPM(X', g) + 1 = dim PM(X#X', f).

Note that dim PM(X#X', f) is 0 if we assume the family Seiberg—Witten invariant
of (X#X', s#s', f) is non-zero. (Otherwise, we define 0 as the family Seiberg—Witten
invariant in this paper. ) Thus, one of dim PM (X, ) and dim PM (X', g’) is nega-
tive. This implies one of PM (X, f) and PM (X', g’) is empty since they are assumed
to be regular. This completes the proof. O

In Theorem 4.6, we assumed that f is isotoped into f’ so that f’|y is an isometry.
However, if Y admits a positive scalar curvature metric, then the following stronger
result holds:

Theorem 4.7 Let Y be a rational homology 3-sphere with a positive scalar curvature
metric and b1 (Y) = 0. Let (X, 5), (X', ") be two compact Spin® 4-manifolds with
b;‘ >1,0X = —Y and X' =Y. Suppose s|y3x = §'|_yx'. Let f be an orientation-
preserving diffeomorphism on the closed 4-manifold X* := X Uy X’ such that

(i) the diffeomorphism f is smoothly isotopic to a connected sum f'#yg’ on X Uy X’
of diffeomorphisms f' and g’ on X and X' so that f(Y) =Y,

(ii) the diffeomorphism f preserves the Spin®-structure s#s’ obtained as the connected
sum of s and 5" along Y.
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Then we have

0 € Z if f does not flip the homology orientation of X,

FSW (X", s#s', f) = W i
0 € Z, if f flips the homology orientation of X .

Proof The proof is similar to that of Theorem 4.6. Instead of assuming the isometric
property of diffeomorphisms, we use the contractivity of the space of positive scalar
curvature metrics proven in [8]. Let us explain how to take a fiberwise Riemann metric
to obtain a diffeomorphism corresponding to (21). Because the family Seiberg—Witten
invariant is an isotopy invariant, we can assume that f is a product in a neighborhood
N of Y preserving the level of N = [0, 1] x Y. Now, we shall consider the parametrized
moduli space

PM(X,s, f) — S,

regarded as the quotient the moduli space over [0, 1]:

L Mx.s.)— 10,11,
tel0,1]

where g; is a smooth 1-parameter family of metrics such that
® g1 = f"g0,
e for any ¢ € [0, 1], we have g/|y = h; + dt? for a smooth 1-parameter family of

metrics /; on Y,
e h is a positive scalar curvature metric on Y.

By the connectivity of the space of positive scalar curvature metrics proven in [8], we
can take h, so that /i, is a positive scalar curvature metric for every ¢ € [0, 1]. Under
these settings, we obtain a diffeomorphism between moduli spaces of the form (21),
and the rest of the proof is the same as that of Theorem 4.6. O

We next show a vanishing result of the Kronheimer—Mrowka invariant similar to
Theorem 4.6.

Theorem 4.8 Let Y be a strong L-space with b (Y) = 0. Let (W, 5), (X', 5) be Spin®

4-manifolds with by > 1,dW = —YUY' and dX' = Y for an oriented 3-manifold Y'.

Suppose Y' is equipped with a contact structure & such that s = sy and s|ly = §'|y.

Let f be a diffeomorphism on the closed 4-manifold W* := W Uy X' such that

(i) thediffeomorphism f is smoothly isotopicto f'Ug’ on WUy X' of diffeomorphisms
f/and g on X and X' which are isometry (not necessarily identity) near the
boundary of W and X' with respect to metric h on Y, and

(i) the diffeomorphism f preserves the Spin¢-structure s#s' on W¥,

Then we have

0 € Z if f does not flip the elements in A(W#, s#s’ &),

FKM(W* s#s/, f) = M o
0 € Z, if f flips the homology orientation of X .
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Proof The proof is completely the same as that of Theorem 4.6. O

4.3 A fiberwise blow up formula

We first review a fiberwise blow up formula proven in [11] for the family Seiberg—
Witten invariant.

Theorem 4.9 ([11]) Let (X, 5), (X', 8') be closed Spin® 4-manifolds with b;r(X) > 1
and b;r (X') = 1. Let f be an orientation-preserving diffeomorphism of the closed
4-manifold X#X'. Suppose that the formal dimension of the Seiberg—Witten moduli
spaces for (X, s) and (X', s') are 0 and —2 respectively.

(i) Let f be a homologically trivial diffeomorphism on X#X' such that f is smoothly
isotopic to a connected sum f'#g' of f' = Idx and a homologically trivial diffeo-
morphism g’ of X', which is the identity near boundary. Then we have

FSW(X#X',s#s', f) =0e Z.

(ii) Let f be a self-diffeomorphism on X#X' such that

— [ preserves the Spin© structure s#s’,

— f is smoothly isotopic to a union f'U g’ on X#X' of the identity ' = Idx of
X and a diffeomorphism g’ on X' which is the identity near dX’, and

— g reverses the homology orientation of X'.

Then we have
FSW(X#X', s#ts', f) = SW(X, 5) € Z,,

where the right-hand side is the mod 2 Seiberg—Witten invariant.

Remark 4.10 Note that [11, Theorem 1.1] only treats the connected sum along S3, but
there is no essential change when we extend their result to the case of the sums along
any strong L-space with b; = 0.

Now, we state a fiberwise blow up formula for the families Kronheimer—Mrowka
invariant.

Theorem 4.11 Let (W, 5), (X, 5') be Spin© 4-manifolds with b;'(X) =1, 0W=-Y
and 0X = () for an oriented 3-manifold Y. Suppose Y is equipped with a contact
structure & such that s¢ = s|ly, d(W,s,&) = 0and d(X,s') = —2, where d(X, s')
is the virtual dimension of the Seiberg—Witten moduli space for (X, s'). Let f be a
diffeomorphism on the 4-manifold X#W such that [ preserves the Spin® structure
s#s’ obtained as the connected sum of s and §'.
(i) Suppose f is smoothly isotopic (rel 3) to a union ' U g’ on X#W of the identity
f' = 1dx of X and a homologically trivial diffeomorphism g’ of W which is the
identity near boundary. Then we have

FKM(X#W, s#s' £, ) =0¢€Z.
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(i1) Suppose f is smoothly isotopic to a union f' U g’ of the identity f' = Idx of X
and a diffeomorphism g’ of W which is the identity near boundary and g’ reverses
the homology orientation of X.
Then we have

FKM(X#W,s#s', &, ) =m(W,s,§) € Zs.

Proof The proof is essentially the same as that for a similar gluing formula for the
families Seiberg—Witten invariant of families of closed 4-manifolds [11, Theorem 1.1],
and we omit the proof. O

Remark 4.12 We also remark that Theorem 4.11 can easily be generalized to the case
of the connected sum along a strong L-space.

As a special case, we give a certain fiberwise connected sum formula for a certain
class of 4-manifolds parametrized by S'.

Let W be an oriented compact smooth 4-manifold with contact boundary (Y, &)
and with b; > 1. Let s be a Spin® structure on W of formal dimension 0. Let N, t, fx
be as in Sect.5. Let us consider the manifold W#N obtained as the connected sum
along D* in N and the diffeomorphism Idy # f.

Proposition 4.13 Under the above notation, one has
FKM(W#N,s#t, &, 1d#fy) =m(W,s,&) € Zp

Proof This is a corollary of Theorem 4.11. O

5 Construction of diffeomorphisms and non-vanishing results
In this section, we construct an ingredient of desired exotic diffeomorphisms in our
main theorems.
First, we describe the setting we work on. Set
N := CP*#2(—CP?) = CP*#(—CPH#(—CP}).
Let t be a Spin® structure on N such that each component of

c1(t) € H*(N) = HX(CP? @ H*(—CP}) ® H*(—CP})

is a generator of H%(CP?), Hz(—(CPf), and HZ(—(CPZZ). Let H, E1, E; be the gen-
erators of H2(CP?), HZ(—(CPIZ), HZ(—(CPZZ), namely

cai(t) =H+ E; + Es.

By abuse of notation, let H, E, E> denote also representing spheres of the Poincaré
duals of these classes. A diffeomorphism fy : N — N satisfying the following

@ Springer



1880 N. lida et al.

properties is constructed in [31, Proof of Theorem 3.2] (where the diffeomorphism is
denoted by f):

e fn fixes the isomorphism class of t, and
e fy reverses orientation of H1(N).

By isotopy, we may suppose also that fy fixes a 4-dimensional small disk D* in N.
We consider simply connected compact oriented 4-manifolds W and W’ with com-
mon contact boundary (Y, £). Assume also that we have a diffeomorphism

v WEN — W#N
that satisfies the following: If we decompose H>(W'#N'; Z) into
H*(W'#N;Z) = H*(W'; Z) & H*(N; Z),

the induced action ¥* : HX(W'#N;7Z) — H>(W'#N;Z)ona +b e H* (W', Z) &
H?*(N; Z) is of the form

V*(a+b)=h'(a) +b, (22)
where
h o H*(W':7Z) —> H*(W'; 7)

is an isomorphism.
Let s be a Spin® structure on W, and let s’ be the Spin® structure on W’ determined
by h'(c1(s")) = c1(s). Then it follows from (22) that

W H*(1(8) + 1 (®) = c1(&) + 1 (b). (23)
Define a self-diffeomorphism f of W#N by
f=dw#fn) oy o (dy #fy") oy (24)

Note that f is the identity on the boundary, while ¢ might not be. Note also that f
acts trivially on the (co)homology of W#N. Indeed, we obtain from (22) that

f*=y* odiag(d 2 yry, (fy)) o (W~ H* o diag(d g2y, f3)
=diag(h' o h'~!, (fy ) o f3) = 1d.

Proposition 5.1 Suppose that
(m(W9 59 S)? m(W/a 5/7 1//*%-)) = (15 0) or (07 1) € Z2 X Z2~
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Then we have
FKM(W#N,s#t, &, f)=1€Z

for the above diffeomorphism f.

Proof 1t follows from a combination of the gluing formula Proposition 4.13, the addi-
tivity formula Proposition 3.14, and (23) that

FKM(W#N, s#t, &, f)
= FKM(WH#N, s#t, &, 1dw #fy) + FKM(W#N, s#t, &,y Lo Iy #fy ) o ¥)
= FKM(WH#N s#t.& 1dy #fy) + FKM(W'#N s#t Y&, My # £ )

= m(Wv s, S) + m(W/s 5/3 1//*5)
—0+1=1inZ,.

This completes the proof. O

Corollary 5.2 For every non-zero integer n € 7, we have
FKM(WH#N,s#t, &, ") #£0 € Z. (25)

Moreover, the mapping class of f above generates a Z-summand of the abelianization

of
Ker (o (Diff (W#N, 8) — Aut(Ha(W#N; 7).

Proof This follows from Proposition 5.1 and Corollary 3.18. O

We can modify the above argument for the generalized families Kronheimer—
Mrowka invariant with a loop in E°™(E(Y)).

Lemma 5.3 Let W be a compact oriented 4-manifold and with boundary Y = 0W.
Let & be a contact structure on Y. Let ¥ be an embedded 2-sphere in the interior of
W whose self-intersection is non-negative and whose homology class is non-torsion.
Let N = CP*#2(—CP?), s € Spin®(W#N, &), and set t := s|y. Let fy be a self-
diffeomorphism of N which preserves t. Then, for every y € w1 (E"(Y)), we have

FKMW#N,[s], & Idw #fo,y) =0

inZy.

Proof Let us first consider the case with [2]% = 0. General case can be reduced to this
case by standard argument using the blow-up formula Theorem B.3 and the connected
sum formula Theorem 4.11. Neck stretching argument along the boundary S' x §2 of
a tubular neighbourhood of X, as in Theorem 4.4, gives the conclusion. O
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Proposition 5.4 Let W be a compact oriented 4-manifold and with boundaryY = oW.
Let & be a contact structure on Y. Let ¥ be an embedded 2-sphere in the interior of
W whose self-intersection is non-negative and whose homology class is non-torsion.
Suppose that

m(W', s, yé) =1 € Zy.
Then, for the above diffeomorphism f Eq. (24), we have
FKM(W#N,s#t, &, f,y) #0 € Z, (26)
for every y € m(E®(Y)), and
FKM(W#N, s#t, &, £, y%) # FKM(W#N, s#t, &, 2y e Z (27)

for every y € w1 (E"(Y)) and every distinct n, n’ € Z.

Proof For every y, it follows from the gluing formula Proposition 4.13, the additivity
formula Lemma 3.21, and (23) that

FKM(W#N,s#t, &, f,y)
= FKM(W#N, st#t, &, Idw # /i, y) + FK M(WH#N, s#t, £,y o Ay # £y o 9)
= FKM(WH#N, s#t, &, Idyw #fn,v) + FKM(W'#N, s'#t, &, Idy #f,;l)
=0+m(W,s yu&)=1€eZs.

Thus we have (26).
Next, applying Lemma 3.21 inductively, for n > 0 and every y, we obtain that

FKM(W#N, s#t, £, £ %)
= FKM(WH#N, s#t, &, (f2"' y2) + FKM(W#N, s#t, &, £2)

= FKM(W#N, s#t, £, 1d, y%) + nFK M(W#N, s#t, &, )

This combined with (25) implies (27) for n, n’ > 0 with n # n’. A similar argument
works for n, n’ < 0 just by considering f~! in place of f. O

6 Proof of Theorem 1.4

Before proving Theorem 1.4, we review several definitions and theorems which are
used in the proof of Theorem 1.4.
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6.1 Contact topology

Let & be a contact structure on an oriented 3-manifold. A knot K C (Y, &) is called
Legendrianif T, K C &, for p € K. A Legendrian knot K in a contact manifold (Y, &)
has a standard neighborhood N and a framing fr; given by the contact planes. If K is
null-homologous, then frg relative to the Seifert framing is the Thurston—Bennequin
number of K, which is denoted by tb(K). If one does frg — l-surgery on K by
removing N and gluing back a solid torus so as to effect the desired surgery, then there
is a unique way to extend & |y_ y over the surgery torus so that it is tight on the surgery
torus. The resulting contact manifold is said to be obtained from (Y, &) by Legendrian
surgery on K. Also, for a knot K in ($3, &std), the maximal Thurston—Bennequin
number is defined as the maximal value of all Thurston—Bennequin numbers for all
Legendrian representations of K.

A symplectic cobordism from the contact manifold (Y_, &) to (Y4, £4) is a com-
pact symplectic manifold (W, w) with boundary —Y_ U Y, where Y_ is a concave
boundary component and Y is convex, this means that there is a vector field v near 0 W
which points transversally inwards at Y_ and transversally outwards at Y, L,0 = @
and (,w|y, is acontact form of £1. If Y_ is empty, (W, w) is called a symplectic filling.

We mainly follow a technique to construct symplectic cobordisms called Weinstein
handle attachment [60]. One may attach a 1-, or 2-handle to the convex end of a
symplectic cobordism to get a new symplectic cobordism with the new convex end
described as follows. For a 1-handle attachment, the convex boundary undergoes,
possibly internal, a connected sum. A 2-handle is attached along a Legendrian knot L
with framing one less than the contact framing, and the convex boundary undergoes a
Legendrian surgery.

Theorem 6.1 Given a contact 3-manifold (Y, & = Ker 0) let W be a part of its sym-
plectization, that is (W = [0,1] x Y, w = d(e'0)). Let L be a Legendrian knot
in (Y, &) where we think of Y as Y x {1}. If W' is obtained from W by attaching
a 2-handle along L with framing one less than the contact framing, then the upper
boundary (Y', &') is still a convex boundary. Moreover, if the 2-handle is attached to
a symplectic filling of (Y, &) then the resultant manifold would be a strong symplectic

filling of (Y'E").

The theorem for Stein fillings was proven by Eliashberg [16], for strong fillings by
Weinstein [60], and was first stated for weak fillings by Etnyre and Honda [17].

6.2 Proof of Theorem 1.4

In this section, we will show the existence of exotic diffeomorphisms of 4-manifolds
with boundary. First, we need the following result to guarantee the existence of topo-
logical isotopy between diffeomorphisms of 4-manifolds with boundary.

Theorem 6.2 (Orson—Powell, [50, Corollary C]) Let M be a smooth, connected,
simply connected, compact 4-manifold with boundary of rational homology of S° or
of S' x §%. Let f : M — M be a diffeomorphism such that flap = Idyy and
fe = 1d : Hy(M;Z) — Hy(M; Z). Then f is topologically isotopic rel. dM to
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Idy : M — M, i.e. there is a topological isotopy Fy : M — M with Fy = f,
F1 = Idy such that Fylay = Idyy forallt € [0, 1].

Lemma 6.3 Every closed oriented connected 3-manifold Y bounds a simply-connected
4-manifold W that can be decomposed as Wy U (a 2-handle), where Wy has a Stein
structure and the 2-handle is attached along an unknot with framing —1.

Proof For a general Y, the third author constructed such a manifold W in [47, Proof
of Theorem 1.1]. O

We shall now prove Theorem 1.4 where we show the existence of exotic diffeo-
morphisms of 4-manifolds with boundary.

Proof of Theorem 1.4 Let N, t, f be as in Sect.5. For a 3-manifold Y, we consider
the associated 4-manifold Wi = Wy U h as constructed in Lemma 6.3. If necessary,
we can attach a 2-handle 4, along the unknot with framing +1 on Wj. Note that this
process does not change the upper boundary Y. Let us call this modification Wy as well.
Thus we can write Wi = WoUh| Uhs. As acore of hy, we have an embedded 2-sphere
S whose self-intersection is non-negative and whose homology class is non-torsion.

Attach an Akbulut-Mazur cork (A, 1), i.e, a pair of algebraically canceling 1- and
2-handle as shown in the Fig. 1 on W; along Y such that the 2-handle of A linked the
unknotted 2-handle &, algebraically thrice and with % algebraically once. Thus we
get a manifold W = W; U A and denote the boundary by Y’ = dW. In particular, by
applying a cork-twist one can get a manifold W' = (W —int(A)) U; A with boundary
Y’. Notice that the cork-twist changed the dotted 1-handle with the O framed 2-handle
in the Fig. 1. Since, in W, the two 2-handles A1, h; are passing over the 1-handle, this
process increases their Thurston—Bennequin numbers without changing the smooth
framing with respect to the standard contact structure on S, see Fig. 2.

By construction and the use of Theorem 6.1, W’ has a Stein structure and
m(W’', s, &) = 1, where &' is the Spin® structure corresponding to the Stein struc-
ture and £ is the induced contact structure on the boundary.

Notice that W and W' are related by the cork-twist of (A, t) and the cork-twist T
on A extends over A#CP? [3]. This gives a diffeomorphism W#CP? — W/#CP?
that is the identity map on W —int(A) and is the extension of the cork-twist to A#CP?
on the rest. Thus we get a diffeomorphism ¢ : W#N — W'#N as the one in Sect. 5
(if necessary, we need to precompose v with an involution of CP? to get the map
that acts by identity on homology, a careful proof has been written by Auckly—Kim—
Melvin—Ruberman [5]), and construct a self-diffeomorphism f : W#N — W#N
along the procedure in Sect.5. We claim that this diffeomorphism f is the desired
diffeomorphism.

Adopt the canonical Spin® structure on W as s in Sect. 5. As noted above, W contains
an embedded 2-sphere whose self-intersection is non-negative and whose homology
class is non-torsion. Moreover, we have that m(W’, s’, £) = 1. Thus it follows from
Proposition 5.4 that

FKM(W#N, s#t, &, f2', y?) # FKM(W#N, s#t, &, 2, y2) e Z
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Fig.1 Attach the
Akbulut-Mazur cork which is
linking with with /21 and />
ha

h2

Cork twist

Isotopy

%

Legendrian Representation

Fig.2 Contact framing of the blue knot is increased by 1 when it passes through the 1-handle
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for every y € 7 (E®"(Y)) and every distinct n, n’ € Z. Therefore, by Proposition
3.20, f™ and f"/ are not smoothly isotopic to each other through Diff (W). On the
other hand, it follows from Theorem 6.2 that all f" are topologically isotopic to the
identity through Homeo(W, 9). This completes the proof. O

Proof of Theorem 1.6 First, note that all /" are mutually topologically isotopic as in
the proof of Theorem 1.4 above. Thus all f”(S) are mutually topologically isotopic.
To show that f"(S) and f"/ (8) are not smoothly isotopic if n # n’, it suffices to show
that f n=n'"($) is not smoothly isotopic to S. This follows from Corollary 5.2 combined
with Theorem 4.5, which we shall prove in Sect. 4. O

Remark 6.4 In the setup of Theorem 1.4, the mapping class of f in Diff (W, 9) gen-
erates a direct summand isomorphic to Z in the abelianization of the kernel of

wo(Diff (W, 0)) — mg(Homeo(W, 0)).

This is a direct consequence of Corollary 5.2.

Remark 6.5 We will construct an explicit example of "small" 4-manifolds with bound-
ary that admits exotic diffeomorphism by following the strategy of the Proof of
Theorem 1.4. We start with a 4-manifold W which is obtained by attaching a 2-handle
h on B* along an unknot with framing +1. Now we will attach a pair of canceling
1- and 2-handle such that the 2-handle of the canceling pair is linked positively with
h algebraically thrice, let this be called W and X = W#N where by(X) = 4. Now
if we apply the cork-twist on W, that process will increase the maximum Thurston—
Bennequin number of 4 by 3 and thus the resultant manifold W’ will have a Stein
structure. Note that W#N is diffeomorphic to W#N, and thus by the previous proof,
we can construct an exotic diffeomorphism on X.

7 Exotic embeddings of 3-manifolds in 4-manifolds

Before introducing the results on exotic embeddings, we first review a relation between
generalized Smale conjecture and exotic embeddings.

7.1 Generalized Smale conjecture and exotic embeddings

Let Y be a closed 3-manifold with the Riemann metric g whose sectional curvature is
+1. The generalized Smale conjecture says that the inclusion Isom(Y, g) — Diff(Y)
is a homotopy equivalence, where Isom(Y, g) denotes the group of isometries on
(Y, g). Some examples of (Y, g) which satisfy this property are known and some
examples of (Y, g) which do not satisfy it are known. For example, the hyperbolic
3-manifolds satisfy the generalized Smale conjecture [24]. We use some results related
to the generalized Smale conjecture. However, we do not need to restrict ourselves to
a Riemannian metric with sectional curvature &1 for our purpose. Thus, we consider
a closed Riemannian 3-manifold more generally in this paper.
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Definition 7.1 We say a Riemannian 3-manifold (Y, g) is admissible, if the cokernel
of the induced map on

mo(Isom™ (Y, g)) — mo(Difft(Y))

is trivial, where Isom™ (Y, g) and Diff*(Y) are the groups of orientation preserving
isometries and diffeomorphisms of (Y, g) and Y respectively.

Our techniques to detect exotic embeddings can be applied for a Riemannian 3-
manifold (Y, g) with finite cokernel of mo(Isom™ (Y, g)) — mo(Diff *(¥)).
We use the following lemma for embeddings of Y into a 4-manifold X.

Lemma 7.2 Suppose (Y, g) is an admissible 3-manifold. Leti : Y — X be a smooth
embedding and f an orientation-preserving self-diffeomorphism of X satisfying that
f@(Y)) = i(Y). Then, for every n € Z, we can deform f" by a smooth isotopy of
diffeomorphisms of X fixing i (Y) setwise so that

iy € Tsom(i(Y), ixg).

Proof We regard f as a self-diffeomorphism of i (Y). Note that f/|;(y) is orientation
preserving. Since by the assumption on (Y, g), the map mo(Isom™ (i (Y), ixg)) —
mo(Diff T (i (Y))) is sujective, and so the diffeomorphism f” lies in the image of the
map 7o(Isom™ (i (Y), ivg)) — mo(Diff*(i(Y))). By isotopy extension lemma, we
complete the proof. O
Lemma 7.3 Let (Y, g) be one of the following 3-manifolds:

(i) elliptic 3-manifolds and
(ii) hyperbolic 3-manifolds.

Then (Y, g) is admissible.

Proof For elliptic 3-manifolds, the rp-Smale conjecture is proven by combining sev-
eral works, for more details see [27, Theorem 1.2.1]. Also, the Smale conjecture for
hyperbolic 3-manifolds is solved by Gabai [24]. O

In order to prove several vanishing results, we also need the following property:

Lemma7.4 Let (Y, g) be one of the following geometric 3-manifolds:

(1) 3-manifolds having positive scalar curvature metric and
(ii) the hyperbolic three-manifolds labeled by

0,2,3,8,12,...,16,22,25,28, ...,33,39,40,42, 44, 46, 49

in the Hodgson—Weeks census which correspond to 3-manifolds in [41, Table 1].
Then, for any Spin®-structure t on Y, there is no irreducible Seiberg—Witten solution
to (Y, t,g),ie Y isastrong L-space.

Proof Since 3-manifolds listed in (i) have positive scalar curvature, by the Weitzenbock
formula, we see that there is no irreducible Seiberg—Witten solution to (Y, t, g). For
hyperbolic 3-manifolds in (iv), [41, Theorem 1.1] implies the conclusion. O
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7.2 Results on exotic embeddings

In this section, we prove Theorem 1.16.
Let Y be aclosed, oriented, connected 3-manifold, and let X be a smooth 4-manifold
possibly with boundary. We first construct a 4-manifold for a given 3-manifold.

Lemma 7.5 Given a closed, connected, oriented 3-manifold Y, there exists a closed
simply-connected 4-manifold X such that X = X; Uy X, with b;'(Xi) > 1 for
i = 1, 2. Moreover, we can construct X in such a way that there exists a diffeomorphism
f + X — X whichis topologically isotopic to the identity but FSW (X, s, f™*) # 0 for
every n € Z\{0} and for some Spin® structure s on X, and thus not smoothly isotopic
to the identity.

Proof We will follow the strategy of Proof of the Theorem 1.4, where we showed
that given a 3-manifold ¥ we can construct a compact simply connected 4-manifold
W#N with boundary ¥’ (where there is a ribbon homology cobordism from ¥ to ¥’)
and there exists a self-diffeomorphism f : W#N — W#N which is topologically
isotopic to the identity rel to the boundary. By construction, Y is smoothly embedded
in W and Y bounds a submanifold W with b; (W1) > 1. Now by attaching a simply
connected symplectic cap on (Y’, &) with b;r > 1 (existence of such caps are shown
in [18]) we can get our desired simply-connected 4-manifold X. Let s be the Spin©
structure on X obtained as the connected sum of the canonical Spin® structure and the
Spin¢ structure t on N considered in Sect. 5. Also, we can extend f on the symplectic
cap as the identity and get our desired diffeomorphism f. Now FSW(X,s, f) #0
for n # 0 follows from [11, Corollary 9.6, Proof of Theorem 9.7]. |

Proof of Theorem 1.16 Let Y be a hyperbolic 3-manifold listed in Theorem 1.16 and let
X and f be a corresponding 4-manifold and diffeomorphism constructed in Lemma
7.5. For n € Z, define smooth embeddings i, : ¥ — X by i,(y) = f"(y) for
y € Y. Since f : X — X is topologically isotopic to the identity, we see that all the
embeddings i,,’s are topologically isotopic to each other. It is now enough to prove
that the image of ip is not smoothly isotopic to the image of i, for every n # 0. If
the image of i and the image of i, are smoothly isotopic, then we can further deform
f™ by smooth isotopy so that f*(Y) = i,(Y) = Y. Moreover, using Lemma 7.2, we
may also assume f,~!|y is isometry with respect to the metric g considered in Lemma
7.4. Moreover, there is no irreducible solution to the Seiberg—Witten equation with
respect to (Y, t, g) from Lemma 7.4. But then the vanishing theorem Theorem 4.6
implies that FSW (X, f") = 0 which is a contradiction. For a connected sum of
elliptic 3-manifolds, we use Theorem 4.7 instead of Theorem 4.6. O

Remark 7.6 The proof of Theorem 1.16 is a constructive proof. One thing that we are
not sure about is how to control the second Betti number of X. So one may ask the
following question.

Question 7.7 Given an oriented, connected 3-manifold Y, what would be the small
second Betti number for X such that Y admits an exotic embedding in X.

More generally, we can find exotic embeddings when the family gauge theoretic invari-
ants do not vanish:
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Theorem 7.8 Let (X, s) be a compact simply-connected Spin® 4-manifold with or
without boundary. If 0X # (0, we equip 0X a contact structure §&. Let f : X — X
be a self-diffeomorphism which is the identity on 0 if 0X # (. Suppose that
FSW(X,s, f) #0if0X = @, and that FKM(X,s,&, f) # 0if 0X # (. Let
Y be one of the following 3-manifolds:

(1) the connected sum of elliptic 3-manifolds, and
(ii) the hyperbolic three-manifolds labelled by

0,2,3,8,12,...,16,22,25,28, ...,33,39,40,42, 44, 46, 49

in the Hodgson—Weeks census which correspond to 3-manifolds in [41, Table 1].

(1) If 90X = @ and X has the decomposition X = X1 Uy X, such that b;r(Xi) > 1
fori = 1,2, where X1 and X, are compact 4-manifold with boundary Y and —Y
respectively. Then there exist infinitely many embedded 3-manifolds { f" (Y)},ez
that are mutually not smoothly isotopic.

2) If 0X # W and X has the decomposition X = X1 Uy X, such that b;'(Xz) > 1,
where X1 and X, are compact 4-manifold with boundary (0X) U Y and —Y
respectively. Then there exist infinitely many embedded 3-manifolds { f" (Y)}nez
that are mutually not smoothly isotopic.

Proof When X = (, the result follows from the proof of Theorem 1.16. When
0X # (0, we just use the vanishing result Theorem 4.8 on the families Kronheimer—
Mrokwa’s invariant instead. O

Remark 7.9 Notice that, given any closed, connected 3-manifold Y, we can always find
a closed simply-connected 4-manifold X where Y is smoothly embedded and a self-
diffeomorphism f : X — X which is topologically isotopic but not smoothly. So it is
very natural to think that the set { /" (Y)},ez contains all exotically embedded pairs of
Y, i.e. topologically isotopic as a pair but not smoothly. However, we cannot conclude
that at this point because our vanishing result doesn’t hold for all 3-manifolds. So we
can ask the following question:

Question 7.10 Given a closed, connected 3-manifold Y how does one construct a
closed 4-manifold X such that there exists a pair of smooth embeddingsiy, iz : Y — X
that are topologically isotopic but not smoothly?
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Appendix A Excision for determinant line bundles

In this section, we explain the excision principle that is used to give signs to vari-
ants of Kronheimer—Mrowka’s invariant for 4-manifolds with contact boundary. This
argument is well-known for experts and essentially done in Appendix B of [14].
Fori = 1,2 let X; be a Riemannian 4-manifold and A;, B; be codimension 0
submanifold of X;. Here we assume X and X, are closed for simplicity, but this
assumption is not essential. For example, we can apply similar arguments to manifolds
with conical ends under suitable Sobolev completion. Assume A; N B; C X; is a
compact codimension-0 submanifold and also an isometry between A; N B and
As N By is fixed. We will identify them by this isometry. For i = 1, 2, suppose we are
given vector bundles E;, F; on X; and elliptic differential operators of order ! € Z>

D; :T'(X;; E;) — I'(X;; Fy)

which are identical on A1 N By = Ay N By.

Using the identification given above, we form Riemannian 4-manifolds X, =4U
Bz, Xz = A, U B and vector bundles E1 = Ei|la, Y E32lB,, E2 = Es|a, U E]B,
F = Fila, U P2, = F2|a, U F1lB,.

Define elliptic operator

~ D1 on A1
Dy =
D, on By
~ D A
D, = 2 On Az
Di on B

Dy, D,, 51, 52 define Fredholm operators under Sobolev completions
2 2
Ly — Ly
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for k € R. In general, for a Fredholm operator D, we will define the 1-dimensional
real vector space det D by

det D = A™* Ker D @ A™** Cok D*.

Theorem A.1 We can associate a linear isomorphism of 1-dimensional real vector
space

det D1 ® det Dy — det l~)1 ® det 52, (28)

which is independent of data used in the construction up to homotopy.

As remarked after the proof, this can be easily adapted to the case with conical ends
as considered in this paper. Note that in order to fix a sign of the unparametrized
Kronheimer-Mrowka invariant, considering families of operators, since it is enough
to give an orientation of one fiber of the determinant line bundle.

Proof Choose square roots of partition of unity

o7 +yl=1
¢3+v3 =1

subordinate to (A, By) and (A3, B>) such that
¢1=¢2 and Y =1y
on A1 N By = Ay N By. Define

@ :T(X1; E1) @ T(Xa; E2) — T'(X1; E1) @ T(Xy; Ey)

and
W T(Xy; F1) @ T(Xa; F2) — T'(X1; F1) @ T(Xa; Fa)
by
é1 Vo
=
|:—¢1 ¢2:|
and

é1 —¥
\If =
[l/fz #.
Using the fact that y1¢1 = ¢ holds on the whole mamfold we can see ® and ¥
are inverse of each other (See [14]). Set D = D; & D, and D= D] ® D2 Then we
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have

det(D) = det(D) ® det(D>)
and

det(D) = det(D1) ® det(D).
We have

UDd

_|:¢1 _1/f1:| |:51 ~]|:¢1 Wz}

Y Dy||=v1 ¢2

=[¢loDlo¢1+wloDlow1 ¢1[D2, Y] = Y1[D2, $2] ]
Y2[Dy, ¢1] — ¢2[ Dy, Y1l YroDyoyp+¢roDrodn|”

Here, we used obvious relations

Diogi=Diopi, Drogy=Drogn
Dyoy1 =Dioyry, Dioyn = Dyoyn.

and
Vg1 = ¢y d1y2 = Y.
On the other hand, we have
D; = Di o (¢} + ) = (IDi, ¢il + ¢i © Di) o i + (IDi, il + i 0 Dj) o i
fori =1, 2. Thus
K:=W¥D®—D: L} (X)— LI(X)

is calculated as

K — —[D1, ¢110 1 — [D1, Y1l o ¥ @1[D2, Y21 — Y[ D2, ¢2]
Y2[ D1, ¢11 — ¢2[ D1, Y1 ] —[D2, $210 ¢2 — [D2, Yr2] 0 V2.

The order of this operator is strictly smaller than /, so
.72 2
K: L (X)— Li(X)
is a compact operator. Thus the family of operators

{D; = D+ tK}efo,1]
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gives a desired isomorphism between det(D) and det(l~)). m]

Note that each entry of K is supported on (A; N By) x (A2 N By), so the same
conclusion holds even if X and X, have conical ends as considered in this paper, as
long as suitable Sobolev completions are used and A1 N By, Ay N B, are relatively
compact.

Appendix B Blow up formula for Kronheimer-Mrowka’s invariant

Definition B.1 Fix an element of A(W, s, £). For a pair (W, &) and a fixed reference
Spin€ structure sg € Spin“(W, &), we define two functions

KM(W, s, &) == > m(W, 5o+ e, &) exp((2e, —)) : Hy(W,0W; R) > R.
ecH2(W,0W;Z)

and

KMW, &) () := T Fa kMW, 50, £)(v) - Ha(W, 9W; R) — R.

Here, Ay is a Spin© connection for s¢ extending the canonical Spin connection on the
conical end.

Note that K M(W, s, &) depends on the fixed Spin® structure sg. On the other hand,
we can see the following:

Lemma B.2 The function T(M(W, &) does not depends on a fixed Spin© structure s.

Proof Indeed, for/ € H2(X; Z), 56 := 50 + [, we have

i
2l = c1(sg) — c1(s0) = Z/V(FAg = Far),
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SO

L[ F,
gl A KM(W, 50, £)(v)

3= [y F
o7 g > m(W, s + ¢, §) exp((2e’, v))
e'eH2(W,0W;Z)

S [ F
=e? s A9 Z m(W,s0+1+¢, & 0)exp((2¢/, v))
e'cHX(W,0W;Z)

S [ F
— N Al Z m(W, s + e, &, 0) exp({2(e — ), v))
ecH?(W,0W;Z)

[ Fy '
_ b > m(W, 50+ e, &, 0) exp({2e, v)) exp (-é/v Al T FA},)

ecH2(W,0W;Z)

4+ [ F
— o= Iy . m(W,so+e £ 0)exp((2e, )
ecH2(W,dW;Z)

[ F
_ o b Fay Y KM(W.s0.6)(v)
ecH>(W,0W;Z)

Here we changed the variables by
e=1+¢.
O

We establish the blow-up formula for Kronheimer—Mrowka’s invariant for 4-
manifold with boundary, using the pairing formula and the formal (3 4 1)-TQFT
property of the monopole Floer homology. As a partial result, [28, Theorem 1.3] com-
bined with a computation of the Bauer—Furuta invariant for —C P? gives the blow up
formula for Kronheimer—Mrowka’s invariant for 4-manifold with boundary under the
condition b3 = 0. In this section, we remove the condition b3 = 0 by following the
discussion given in Section 39.3 of [38].

Theorem B.3 Let X be a compact oriented 4-manifold equipped with a contact struc-
ture & on the boundary Y = 0X. Denote by the blow up of X at an interior point
by

X = X#(—CP?
and the exceptional sphere by E. Then for v € Hy(X,0X;R) and » € R,
KM(X, £)(v + LE) = 2coshO)K M (X, £)(v)
holds.
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Proof Let us denote by

R 4

<o

and

o

X:8 >y

the cobordism obtained by removing small open disk from X and X respectively and
let

N:S>—> 83

be the cobordism obtained by removing two small open disks from —C P2, By the
pairing formula which is proves in [29] and the composition law Proposition 26.1.2
of [38], we have

KM, &)(h+ LE) = (HM(X, v + LE)(1), W5, (£))

— (HM(N, »E) o HM(X, v)(1), Wy, (&),

where we denote the local system I, just by v. Now, as explained in the proof of
Theorem 39.3.2 of [38], we have

HM(N,AE) = Y U emtD/2=Cmi i,

mez

which can in fact be expressed using the Jacobi eta function. Kronheimer—Mrowka’s
invariant is defined to be zero when formal dimension is non-zero, so all terms includ-
ing higher powers of U disappear. Thus we have

KMR. &) (v +AE) = (" + e ) HMX, v)(1), Wy (£))
—2cosh()K M(X, £)(v).

O
In particular, if Kronheimer—Mrowka’s invariant is non-trivial for some element of
Spin€ (X, &), then Kronheimer—Mrowka’s invariant is non-trivial for some element of
Spin€(X, &).
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