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Abstract. Medical imaging segmentation is a highly active area of re-
search, with deep learning-based methods achieving state-of-the-art re-
sults in several benchmarks. However, the lack of standardized tools for
training, testing, and evaluating new methods makes the comparison of
methods di!cult. To address this, we introduce the Medical Imaging
Segmentation Toolkit (MIST), a simple, modular, and end-to-end med-
ical imaging segmentation framework designed to facilitate consistent
training, testing, and evaluation of deep learning-based medical imaging
segmentation methods. MIST standardizes data analysis, preprocessing,
and evaluation pipelines, accommodating multiple architectures and loss
functions. This standardization ensures reproducible and fair compar-
isons across di”erent methods. We detail MIST’s data format require-
ments, pipelines, and auxiliary features and demonstrate its e!cacy us-
ing the BraTS Adult Glioma Post-Treatment Challenge dataset. Our
results highlight MIST’s ability to produce accurate segmentation masks
and its scalability across multiple GPUs, showcasing its potential as a
powerful tool for future medical imaging research and development.
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1 Introduction

Medical imaging segmentation is a highly active area of research. Since its in-
troduction in 2015, the U-Net architecture has received nearly 90,000 citations
on Google Scholar [8,29]. Other architectures and frameworks like nnUNet have
achieved state-of-the-art accuracy in several medical imaging benchmarks like
the Brain and Tumor Segmentation (BraTS) and Medical Segmentation De-
cathlon (MSD) [1, 11, 12]. Since nnUNet’s introduction in 2018, several innova-
tive approaches for medical imaging segmentation have emerged. These innova-
tions include new architectures like vision transformers [34] and loss functions
like the boundary and generalized surface losses [6, 17]. Despite these recent
advances, there remains a lack of standardized tools for testing and evaluat-
ing di!erent approaches for medical imaging segmentation. For example, several
works like [3, 7, 10, 33, 39] report superior performance to nnUNet while [13] re-
futes these results. This inconsistency makes it di”cult to evaluate and assess
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claims of state-of-the-art performance for new research in deep learning-based
medical imaging segmentation.

To address this inconsistency, we propose the Medical Imaging Segmenta-
tion Toolkit or MIST, a simple, modular, and end-to-end deep learning-based
medical imaging segmentation framework that allows researchers to seamlessly
train, test, and evaluate existing and new methods on their data in a consistent
and reproducible way. MIST has a rule-based data analysis and preprocessing
pipeline that it makes available to multiple architectures, loss functions, and
training parameters. Additionally, MIST has a standardized and flexible evalu-
ation pipeline that computes multiple metrics like the Dice, Hausdor! distance,
and surface Dice for any user-defined segmentation class. This standardization
of several pipelines allows for fair comparisons between methods and their e!ect
on segmentation accuracy for any given dataset.

2 Methods

In this section, we describe the required data format for MIST, the di!erent
pipelines in MIST, and the auxiliary features, such as evaluation, postprocessing,
and test-time inference. We also provide the specific settings we use to train on
the BraTS challenge data.

2.1 Data Format

MIST uses the same file structure as the BraTS challenge datasets [15,35]. That
is, MIST assumes that the train and test (optional) data directories are formatted
so that each sub-directory corresponds to one patient and that each imaging
modality (i.e., T1, T2, or CT) is its own NIfTI file. The labels should all be in a
single NIfTI file in the same sub-directory for each patient. Once the dataset is
in the correct format, the next step is to prepare a small JSON file containing
the details of the dataset. These include information like the imaging modality,
naming conventions for the images and masks, labels, and the final classes that
we use for evaluation (i.e., labels 1, 2, and 3 for whole tumor). An example of
this JSON file is provided in the documentation page here. MIST also provides
support for converting datasets that are in CSV or MSD format.

2.2 Pipelines

MIST contains three main pipelines: Data Analysis, Preprocessing, and Training.
These pipelines can all run at once with a single command or individually. We
also provide several auxiliary pipelines for evaluation, postprocessing, and test-
time inference.

Data Analysis The data analysis pipeline gathers parameters about the dataset
including cropping to foreground, target spacing, patch size selection, normal-
ization parameters, and is described further below. The results of this analysis
are saved in a config.json file.

https://mist-medical.readthedocs.io/en/latest/getting_started/
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Cropping to Foreground Often, zeros or useless background information sur-
round the region of interest. For example, zeros surround the region outside of
the brain in the BraTS datasets, and the table and air surrounding the body in
CT imaging do not provide relevant information. From a computational perspec-
tive, it is desirable to crop the images to the foreground to make them smaller.
Additionally, cropping to the foreground also reduces the sparsity of the dataset.
MIST crops each image by first windowing it with its 33rd and 99.5 percentile
values, then using an Otsu filter to produce a foreground threshold. Note that
the windowing percentiles were determined experimentally with several datasets
like LiTS, MSD, NFBS, BraTS, and AMOS [2, 14, 28]. We then crop the image
according to the binary mask resulting from this threshold (i.e., one if the voxel
intensity is greater or equal to the threshold). To determine if we need to use
cropping, we check to see if, on average, the resulting volume reduction is at
least 20%.

Target Spacing To determine the target spacing for a dataset, we first look at
the distribution of the voxel spacings along each axis. Our initial target spacing
is the median spacing in each direction. However, suppose the resulting target
spacing is anisotropic (i.e., the maximum and minimum spacing ratio is greater
than three), then we take the 10th percentile spacing along the lowest resolution
axis in that case. However, if resampling with this selected target spacing results
in an example taking up more than 2 GB of memory, then MIST will print a
warning to users asking them to consider coarsening the image. We set this 2
GB threshold to conserve computational resources. Larger images take longer to
load from disk and require more resources to manipulate (i.e., patch extraction
and augmentation).

Patch Size Selection We set the patch size for training from the median resam-
pled image size by taking the nearest power of two less than or equal to each
dimension in the median image size up to a maximum patch size. The default
value for this maximum patch size is 256→256→256. However, users can adjust
this maximum patch size based on their knowledge of their computing resources.

Normalization Parameters If the dataset consists of MR or other non-CT images,
then our windowing parameters are the 0.5 and 99.5 percentile values of either
the entire image or the non-zero values of the image if, on average, the ratio of
the number of non-zero to zero-valued voxels is less than 0.2. We use the mean
and standard deviation with the same rules regarding the non-zero values for
normalization. On the other hand, if we are dealing with CT images, then we
compute the 0.5 and 99.5 percentile values, mean, and standard deviation of all
of the voxels over the entire dataset corresponding to regions labeled as non-zero
in the ground truth segmentation masks.

Other Checks In addition to the previous analysis steps, MIST checks to see that
the header information in the images and masks agree and, if there are multiple
modalities, that the headers in each image agree. If there is a disagreement
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between the headers, MIST prints a warning with the patient ID to the console
and excludes the example from training.

Preprocessing The preprocessing pipeline takes the information from the anal-
ysis pipeline to crop the images based on their foreground mask (if called for),
reorient to right-anterior-inferior (RAI), resample to the target spacing, and
window and normalize the intensity values. This pipeline can also compute the
distance transform maps (DTMs) for each class in the ground truth masks or
apply bias correction for MR images. Users also have the option to skip this
pipeline if, for example, their NIfTI files contain preprocessed images already.
Figure 1 illustrates the workflow for this pipeline.

Fig. 1: Workflow for the MIST preprocessing pipeline. This preprocessing
pipeline takes raw NIfTI files and outputs cropped (optional), bias corrected (op-
tional and MR only), reoriented, resampled, windowed, and normalized NumPy
files. This pipeline can also compute the DTMs for each label in the ground
truth mask and output them as NumPy files.

Reorient & Resample After optionally cropping or bias correcting each image,
the preprocessing pipeline will reorient each image and mask to the RAI orien-
tation. For resampling images to the target spacing, we use third-order spline
interpolation. We apply one-hot encoding and use linear interpolation to each
channel for masks. If the current image spacing is anisotropic, we first resample
along the low-resolution axis using nearest-neighbor interpolation and then ap-
ply the appropriate interpolation along the other two axes [11]. We implement
these operations using SimpleITK to optimize the speed and computational per-
formance of these operations [24].

Window & Normalize Before normalizing the voxel intensities in each image,
the preprocessing pipeline windows each image by either the image’s 0.5 and
99.5 percentile or, if we are using CT images, by the precomputed windowing
parameters. After windowing, MIST applies z-score normalization with either
the image’s mean and standard deviation or the precomputed normalization
parameters for CT images. Again, in the case that the ratio of non-zero to
zero-valued voxels is less than 0.2, then the mean and standard deviation are
computed from the non-zero voxels only, and we multiply the resulting images by
the non-zero mask (di!erent from foreground mask) to preserve the zero-valued
voxels.
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Distance Transform Maps A DTM represents the distance between each voxel
and an object’s closest boundary or edge. The values in a DTM are positive on
the exterior, zero on the boundary, or negative in the object’s interior. As a result,
they can provide helpful information during training. Several loss functions and
shape-aware networks use DTMs to improve the accuracy of medical imaging
segmentation methods [6,16,17,21]. MIST allows users to pre-compute the DTMs
for each label in the ground truth segmentation masks. Each channel in the
resulting DTM represents the DTM for that label (i.e., channel one is the DTM
for label one). If a label does not exist in the image, the DTM will be a 3D array
with all values being the diagonal distance of the image. Additionally, MIST
allows users to output normalized DTMs whose values range from -1 to 1.

Training Once preprocessing is complete, MIST uses a five-fold cross-validation
to train and evaluate a model on the dataset. In other words, for each fold MIST
sets aside 20% of the data as a validation dataset and uses the remaining 80%
of the data for training. Users can adjust these percentages, specify a di!erent
number of folds, or even specify custom folds if, for example, they are running
leave-one-institution-out cross-validation.

MIST’s default behavior is to use all available GPUs. When MIST runs
multi-GPU training, it uses data parallelism via PyTorch’s DistributedData-
Parallel package [20]. Additionally, MIST uses the Nvidia Data Loading Library
(DALI) to handle data loading, patch extraction, and random augmentation.
This feature further optimizes its computational performance by running most
of the operations on the GPUs.

Network Architectures MIST supports six di!erent network architectures. These
architectures include nnUNet (default) [11], U-Net [8, 29], Swin UNETR [3],
PocketNet [4], and MedNeXt [30]. MIST also provides users with options like
adding deep supervision [37] or variational autoencoder regularization [32] to
most of these architectures. Other regularization features like L2 and L1 reg-
ularization and gradient clipping are available for all architectures. For more
details about the supported architectures (and their di!erences), please refer to
our documentation page. Finally, MIST’s modular design allows users to im-
plement their own architectures and integrate them into MIST with minimal
e!ort.

Loss Functions Like with the choice of network architecture, MIST allows users
to choose from a variety of loss functions like Dice with Cross Entropy (default)
[26], the clDice loss [31], and boundary-based loss functions like the Boundary,
Hausdor!, and Generalized Surface losses [6, 16, 17]. Again, MIST’s modular
design allows researchers to implement custom loss functions and seamlessly use
them within the MIST framework.

Other Training Options Finally, MIST gives users the flexibility to choose di!er-
ent optimizers like Adam (default) [18], stochastic gradient descent, and AdamW

https://mist-medical.readthedocs.io/en/latest/advanced_topics/#network-architectures
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[23]. MIST also supports several learning rate schedulers, with a constant learn-
ing rate of 0.0003 being the default. Additional features including transfer learn-
ing are included in our documentation page here.

Auxiliary Pipelines

Evaluation Once training is complete, the evaluation pipeline launches to assess
the accuracy of the predictions with respect to the final classes defined by the
user in their dataset JSON file. By default, these metrics are the Dice similarity
coe”cient and the 95th percentile Hausdor! distance (HD95). Other metrics like
the surface Dice and average surface distance are also available. The output of
the evaluation pipeline is a CSV file called results.csv where each row shows
the accuracy for each class and metric for one patient. The last five rows give
the mean, standard deviation, median, and 25th and 75th percentiles for all of
the metrics and classes. The evaluation pipeline is also available as a stand-alone
pipeline that can run on any set of predictions. With the exception of the surface
Dice, all of our metrics are in line with Metrics Reloaded [25].

Postprocessing Postprocessing is available as an optional stand-alone pipeline.
This pipeline allows users to specify which labels to apply a user-specified set
of operations. These operations include the removal of small objects, only keep-
ing the top-k components (adjustable value of k), morphological cleaning, and
filling holes with a specified value. Once the postprocessing pipeline finishes,
the evaluation pipeline launches and compares the change in accuracy to the
baseline results. MIST computes this change in accuracy as a weighted average
of the specified metrics. Note that MIST applies postprocessing to the discrete
predictions, not the softmax probabilities.

Test-Time Inference Finally, MIST provides a stand-alone inference pipeline
that takes as input one or more MIST models and a CSV or JSON file with
the paths to test-time data. This pipeline writes test-time predictions to a user-
specified output directory.

2.3 BraTS 2024 Training Protocols

Our choice of architecture is the Pocket nnUNet with deep supervision (two
supervision heads) and with residual convolution blocks [4, 11]. MIST automat-
ically selects a patch size of 128→128→128. We use eight NVIDIA H100 GPUs
with a batch size of 32 uniformly distributed across the GPUs. Additionally,
we use L2 regularization with a penalty parameter equal to 1e-5. Our choice of
loss function is the Dice with Cross Entropy loss. While the default number of
epochs per fold for MIST is 1,000, we train for 15,000 epochs per fold. We use a
cosine learning rate schedule with an initial learning rate of 0.001 [22]. Within
each fold, we set aside 2.5% of the training data (27 patients) as a validation
set to select the best model. Once training is complete, MIST runs inference

https://mist-medical.readthedocs.io/en/latest/
https://metrics-reloaded.dkfz.de/
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on the challenge validation data using test time augmentation (flipping along
each axis and averaging each prediction) for each model. Inference uses slid-
ing windows with an overlap of 0.5 with Gaussian blending (ω = 0.125). The
predictions from all five models are averaged to produce a final prediction. All
other options and hyperparameters are left at their default values. Please refer
to MIST’s documentation for these values.

3 Results

3.1 Accuracy

We use MIST and the parameters described in Section 2.3 to perform a five-fold
cross-validation (CV) with the BraTS Adult Glioma Post-Treatment Challenge
data [35]. Table 1 gives the results of this five-fold CV in terms of the Dice score
and HD95. Tables 2 and 3 give the accuracy of the predictions in the validation
set in terms of the same metrics and their lesion-wise versions. Table 4 gives the
accuracy of the predictions in the test set for the lesion-wise metrics.

Class Labels
Dice HD95 (mm)

Mean (Std.) Median Mean (Std.) Median

NETC 1 0.8068 (0.3173) 1.0000 27.492 (87.446) 0.0000
SNFH 2 0.8978 (0.1027) 0.9262 5.0248 (15.888) 1.8660
ET 3 0.8030 (0.2823) 0.9193 26.638 (84.388) 1.0000
RC 4 0.7754 (0.2994) 0.9066 30.955 (88.628) 2.2361
TC 1, 3 0.7962 (0.2870) 0.9183 27.983 (85.971) 1.7321
WT 1, 2, 3 0.9063 (0.0100) 0.9328 5.0210 (15.846) 2.0000

Table 1: Dice and 95th percentile Hausdor! distances for each segmentation class
after a five-fold cross-validation on the BraTS Adult Glioma Post-Treatment
Challenge training data.

3.2 Computational Performance

In addition to the accuracy of our predictions, we also report the scalability of
MIST for di!erent numbers of A100 and H100 GPUs for multiple batch sizes.
Figures 2 and 3 show these results for A100 and H100 GPUs, respectively. In
these figures, we see that MIST e!ectively scales for multiple GPUs. This scaling
is especially evident for the H100 GPUs. It is also important to note that we
observe a roughly two times speed up with the H100 GPUs, which is in line with
what Nvidia reports in their comparisons between the two types of graphics
cards.

https://mist-medical.readthedocs.io/en/latest/
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Class Labels Dice HD95 (mm)

NETC 1 0.7010 58.165
SNFH 2 0.9208 6.6536
ET 3 0.7427 27.950
RC 4 0.6841 49.321
TC 1, 3 0.7379 28.514
WT 1, 2, 3 0.9257 6.6367

Table 2: Validation accuracy in terms of the Dice and 95th percentile Hausdor!
distances for each segmentation class in the BraTS Adult Glioma Post-Treatment
Challenge validation data. Note that we only report the mean for each metric
here since the competition evaluation pipeline does not provide the other statis-
tics in this case.

Class Labels
Lesion-Wise Dice Lesion-Wise HD95 (mm)

Mean (Std.) Median Mean (Std.) Median

NETC 1 0.7561 (0.3711) 1.0000 53.029 (115.98) 0.0000
SNFH 2 0.8504 (0.2063) 0.9449 30.391 (67.397) 1.4142
ET 3 0.7253 (0.3195) 0.8624 46.885 (100.89) 2.0000
RC 4 0.7024 (0.3595) 0.8834 54.809 (116.18) 3.5821
TC 1, 3 0.7066 (0.3147) 0.8361 49.134 (98.166) 3.5056
WT 1, 2, 3 0.8602 (0.1982) 0.9451 29.309 (66.096) 1.9126

Table 3: Lesion-wise validation accuracy in terms of the Dice and 95th percentile
Hausdor! distances for each segmentation class in the BraTS Adult Glioma Post-
Treatment Challenge validation data.

Class Labels
Lesion-Wise Dice Lesion-Wise HD95 (mm)

Mean (Std.) Median Mean (Std.) Median

NETC 1 0.8125 (0.3146) 1.0000 30.461 (90.135) 0.0000
SNFH 2 0.8774 (0.1718) 0.9528 18.213 (49.103) 1.0000
ET 3 0.7767 (0.3028) 0.9281 42.190 (98.363) 1.0000
RC 4 0.7442 (0.3372) 0.9183 47.834 (108.14) 2.0000
TC 1, 3 0.7764 (0.2978) 0.9178 42.697 (97.131) 2.0000
WT 1, 2, 3 0.8761 (0.1769) 0.9509 20.261 (52.819) 1.7321

Table 4: Lesion-wise validation accuracy in terms of the Dice and 95th percentile
Hausdor! distances for each segmentation class in the BraTS Adult Glioma Post-
Treatment Challenge test data.

4 Discussion

Our results indicate that models trained using MIST can produce accurate adult
post-operative gliomas, achieving median Dice scores of at least 0.9 for all of the
segmentation classes in our five-fold CV. We choose to submit the raw out-
put of our MIST pipeline to the BraTS 2024 competition, omitting the use of
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Fig. 2: Time per epoch for di!erent batch sizes and numbers of A100 GPUs.
Here, we see that MIST achieves better scaling with larger batch sizes for A100
GPUs.

post-processing. However, future submissions to the continuous evaluation and
competitions will explore di!erent post-processing strategies with MIST by us-
ing its built-in post-processing pipeline. Indeed, previous BraTS competitions
cite replacing small objects belonging to the ET class with the SNFH label as
beneficial [12]. Additionally, we may see improvements in accuracy by using in-
formation from DTMs using boundary-based losses like the Generalized Surface
Loss. Finally, di!erent architectures like the multi-grid inspired FMG-Net or
vision transformer-based architectures like Swin UNETR are also available on
MIST [3,5]. These architectures may also improve our results.

Future work will include an ablation study of the parameters that we se-
lected for the BraTS dataset, like the use of deep supervision, residual convo-
lution blocks, L2 regularization, and pocket architectures. Additionally, an in-
depth comparison between other frameworks like nnUNet, MedNeXt, and Swin
UNETR for this dataset will be an objective of future work. For an in-depth
comparison of these frameworks for a liver segmentation dataset, please refer
to [27].

MIST is able to utilize multiple GPUs to speed up training e”ciently. This
e”cient use of multiple GPUs is especially true for H100s, where we see a nearly
six times speed up when going from one to eight GPUs. The ability to take
advantage of multiple GPUs and compute nodes e!ectively will be essential to
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Fig. 3: Time per epoch for di!erent batch sizes and numbers of H100 GPUs.
Here, we see that MIST achieves near optimal scaling for all batch sizes.

keep training times manageable as larger datasets like TotalSegmentor become
available [9,38]. As the size and quality of publicly available 3D medical imaging
datasets increase, the creation of foundation models for medical imaging segmen-
tation will be beneficial to speed up training through transfer learning [19, 36].
MIST already supports transfer learning with other MIST models. Given this
capability and its scalability, MIST can be instrumental in the creation of future
foundation models.

In conclusion, our results show that MIST is capable of achieving accurate
segmentation results while also scaling well to multiple GPUs by e!ectively tak-
ing advantage of technologies like PyTorch’s DDP and Nvidia’s DALI loader.
MIST’s simplicity, accuracy, and scalability have the potential to make MIST
a valuable tool in the development of foundation models for medical imaging
tasks like segmentation and radiation treatment planning. MIST’s modular de-
sign makes it easy for researchers to add new loss functions or architectures to its
pipelines. This modularity and easy integration into MIST’s existing pipelines al-
low for new research to be evaluated and compared to existing methods fairly and
consistently. MIST is still under active development. We encourage researchers
and the broader medical imaging community to contribute to its development
by using it, providing feedback, or contributing new features.
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5 Availability & Attribution

MIST is an open-source package (Apache 2.0 license) and is available on GitHub
or PyPI. Please cite this manuscript, [4], and [5] if you use MIST for your own
publications.
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