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ABSTRACT

To build effective therapeutics, biologists iteratively mutate antibody sequences to
improve binding and stability. Proposed mutations can be informed by previous
measurements or by learning from large antibody databases to predict only typical
antibodies. Unfortunately, the space of typical antibodies is enormous to search,
and experiments often fail to find suitable antibodies on a budget. We introduce
Clone-informed Bayesian Optimization (CloneBO), a Bayesian optimization pro-
cedure that efficiently optimizes antibodies in the lab by teaching a generative
model how our immune system optimizes antibodies. Our immune system makes
antibodies by iteratively evolving specific portions of their sequences to bind their
target strongly and stably, resulting in a set of related, evolving sequences known
as a clonal family. We train a large language model, CloneLM, on hundreds of
thousands of clonal families and use it to design sequences with mutations that are
most likely to optimize an antibody within the human immune system. We pro-
pose to guide our designs to fit previous measurements with a twisted sequential
Monte Carlo procedure. We show that CloneBO optimizes antibodies substan-
tially more efficiently than previous methods in realistic in silico experiments and
designs stronger and more stable binders in in vitro wet lab experiments.

1 INTRODUCTION

Antibody therapeutics are the fastest growing class of drugs, with approved treatments for a breadth
of disorders ranging from cancer to autoimmune disease to infectious disease (Carter & Lazar,
2018). Biologists wish to design antibodies that strongly bind to targets of interest while being stable
in the human body. Stable antibodies do not unfold or cause an adverse immune reaction (Jarasch
et al., 2015). To develop these antibodies, biologists first screen many diverse antibody sequences,
or use a lab animal’s immune system to find an initial candidate that binds a target. This candidate
often does not bind strongly or is unstable in the human body, so it is used as a starting point in an
iterative optimization experiment in which biologists predict mutations that result in better or more
stable binders (Lu et al., 2020).

To make these predictions, we can learn from up to thousands of sequence measurements from many
previous iterations (Rapp et al., 2024; Yang et al., 2019; Fannjiang et al., 2022; Brookes et al., 2019).
We can also learn from databases of protein sequences to avoid predicting mutations that produce
nonfunctional antibodies (Gruver et al., 2023; Stanton et al., 2022; Hie et al., 2023; Prihoda et al.,
2022). However, even with this restriction, there are a combinatorial number of mutations we could
predict, only a handful of which are beneficial. Therefore, optimization experiments regularly fail
to find suitable sequences on a budget.

To optimize more efficiently than current methods, we need an informed prior about where and how
to mutate to positively affect binding and stability. Ideally we could learn what mutations often
lead to better sequences in optimization experiments in the lab. Unfortunately such data is scarce.
In principle, we can instead learn from abundant data about what mutations often lead to better
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Figure 1: Our immune system introduces mutations (blue) to evolve weak binders of a target into
strong binders (green). The result is a set of related sequences that bind the antigen strongly and
stably known as a clonal family. We use a model trained on these families, CloneLM, to perform
Bayesian optimization in a procedure called CloneBO. We use experimental data to generate a clonal
family that might have evolved to bind our antigen and suggest sequences to test in the lab.

sequences in our bodies. To make an antibody that binds a new target, our immune system evolves
sets of related sequences known as clonal families; through selection, sequences in clonal families
accumulate mutations that increase binding to a target while maintaining stability (Burnett et al.,
2018). Through large-scale sequencing efforts, we can now learn from databases that contain large
numbers of these evolving sequences (Olsen et al., 2022a).

In this paper, we introduce Clone-informed Bayesian optimization (CloneBO), a Bayesian optimiza-
tion procedure which efficiently optimizes antibody sequences in the lab by teaching a generative
model how the human immune system optimizes antibodies (Fig. 1). In Section 2 we review related
work. In Section 3 we introduce the problem of iterative Bayesian optimization. In Section 4 we
describe how in theory we can build a prior for where and how to mutate given observed clonal
families. In Section 5 we build such a prior in practice by fitting a large language model, CloneLM,
to hundreds of thousands of clonal families. We take a martingale posterior approach to sampling in
which we generate new clonal families that contain our candidate. In Section 6 we describe how to
condition on previous measurements using a twisted sequential Monte Carlo procedure so that good
mutations are included in our clonal family, and bad mutations are excluded. We use our model to
build a Bayesian optimization procedure, CloneBO. In Section 7 we show that CloneBO optimizes
realistic oracles for stability and binding strength much more efficiently than current methods and
also designs strong and stable binders in wet lab experiments. CloneBO outperforms naive and in-
formed greedy methods as well as LaMBO, a state of the art method for optimizing sequences. In
Section 8 we conclude and describe directions for future work.

Our code and model weights are available at https://github.com/AlanNawzadAmin/
CloneBO.

2 RELATED WORK

To iteratively optimize a protein, one can predict sequences using previous measurements (Rapp
et al., 2024; Yang et al., 2019; Fannjiang et al., 2022; Brookes et al., 2019). To optimize antibodies
for stability in the human body, Hie et al. (2023) and Prihoda et al. (2022) suggest introducing mu-
tations to select for typicality, make them look more typical, measured by the likelihood of a model
trained on large databases of protein sequences. More generally, Gruver et al. (2023) and Stanton
et al. (2022) avoid suggesting atypical protein sequences by training a latent space to represent a
database of sequences and then optimizing in this latent space. However, even the space of typical
antibodies is combinatorially large, and therefore challenging to search using only up to thousands
of previous measurements. CloneBO builds an informed prior to efficiently search this space.

CloneBO builds this prior using clonal families — sets of sequences evolving to strongly and stably
bind a target (Burnett et al., 2018). Biologists infer evolutionary pressures on antibodies by examin-
ing individual clonal families (Mascola & Haynes, 2013) or comparing clonal families (Phad et al.,
2022). In the lab, “repertoire mining” optimizes antibodies by suggesting mutations from sequences
in a clonal family that contains the candidate (Richardson et al., 2021; Olsen et al., 2023). In prac-
tice, such a family rarely exists. CloneBO optimizes a candidate by generating new clonal families
that contain the candidate and that match experimental data.
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To build a prior over measurements in the lab, we assume that sequences in a clonal family are
distributed with abundance according to their fitness, and that fitness is close to the function we
measure in the lab. These are standard assumptions in generative modelling of protein sequences
(Weinstein et al., 2022) — one fits a distribution p to a set of protein sequences, then uses log p(X)
as an estimate of the fitness of a sequence X; this fitness then correlates strongly with the function
of the protein as measured in the lab (Frazer et al., 2021; Riesselman et al., 2018; Notin et al., 2022;
Shin et al., 2021). In our case, each clonal family has its own fitness function which we use to build
a prior over fitness functions. Our model, CloneLM, models clonal families as sets of sequences,
similar to the architecture of Truong & Bepler (2023) who used a language model to model protein
families as sets of sequences.

For each clonal family we observe a set of sequences which evolve with respect to a latent fitness
function drawn from a prior. Instead of attempting to build an explicit latent variable model, Fong
et al. (2024) suggest performing Bayesian inference with a “martingale posterior”. Instead of sam-
pling and conditioning on the latent variable, they do the same with a large number of observations.
Lee et al. (2022) suggests using this approach for Bayesian optimization. Falck et al. (2024) suggests
that, with some bias, large language models can perform martingale posterior inference. We take
this approach when sampling from our prior. We use a large language model to flexibly fit observed
sequences and sample sets of sequences, i.e. clonal families, as draws from our prior.

When proposing sequences, we sample a clonal family from an autoregressive language model,
CloneLM, but condition its output to fit experimental measurements. To do so, we build a twisted
sequential Monte Carlo procedure (Whiteley & Lee, 2014) in which we bias the generation of each
letter towards the posterior. This technique is used to sample from filtering models (Lawson et al.,
2023; 2024), large language models (Zhao et al., 2024), or diffusion models (Trippe et al., 2023).

Complementary with work on iterative design are structure-based de novo design methods which aim
to predict antibody sequences that bind a particular antigen (Jin et al., 2021; Luo et al., 2022; Kong
et al., 2023). These models have the potential to design starting sequences for iterative optimization.
These models could in principle also be used for iterative design, but cannot make use of a pool of
previous measurements, and must have access to structure. We show below empirically that these
models are not well suited for this task.

3 BACKGROUND

We start with an antibody variable domain Xy, a sequence of 110 ~ 130 letters made of the 20
amino acids, identified to bind a target of interest. X often does not bind the target strongly enough
or is unstable in the human body, making it unsuitable as a therapeutic. We therefore iteratively
propose sequences we expect are stronger or more stable binders, X Ty--- . X, and measure their
binding or stability in the lab Y7, ..., Y.
We assume that our measurements are evaluations of a function f that takes sequences to a scalar
measurement of binding or stability in the lab: Y,, = f (X ). To suggest the next sequence, X N+1»
given X1.n, Yi.n we can perform Bayesian optimization (Frazier, 2018). First we place a prior on
f given our known weak or unstable binder X, p(f|Xo). Then we infer f by building a posterior,
p(f]Xo, X 1:N, Y1.n ). Finally, we suggest X N1 given our knowledge of f, for example by Thomp-
son sampling: we sample a value of f we believe to be plausible, f ~ p(f|Xo, X 1:N, Y1.n), and
test the sequence that maximizes this sample, Xy, = argmax < f(X).
In the lab we often have a limited experimental budget, and therefore want to find a strong or stable
binder in as few iterations as possible. To do so, we need an accurate prior on f. The ideal prior could
in principle be constructed by performing many optimization experiments in the lab for a diverse

array of targets and starting candidates and measuring f in each case. Unfortunately, performing a
large number of these experiments is prohibitively expensive.

4 A PRIOR FROM FITNESS FUNCTIONS OF EVOLVING ANTIBODY SEQUENCES

While we do not have access to a large number of optimization experiments in the lab, we do
have access to a large number of similar optimization experiments that occur in our bodies. Our
immune system generates antibodies by first identifying candidate sequences that bind a target. It
then evolves this sequence towards binding its target more strongly while remaining stable in the
body: mutations are introduced to sequences and those sequences with higher “fitness” — those that
bind the target more strongly and stably — are selected for reproduction. Each starting candidate
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sequence typically produces many diverse sequences that have been evolved to bind a target strongly
and stably. For each optimization experiment the immune system performs, we therefore observe a
set of evolved sequences X7, ..., X/ known as a “clonal family”.

The f we measure in the lab measures binding and stability, similar to a function of the fitness of
sequences under selection. Therefore to build a prior over f we start by building a prior over fitness
functions F'. Then in Section 6 we allow for some discrepancy between f and F' which may be
caused by a difference between measurements in the lab and selection in our bodies.

To get a prior over functions F' from observed clonal families, we first note that the distribution
of sequences we observe, p(X1, Xs,...), can be written as a Bayesian model. The probability of
observing a set of sequences in a clonal family is exchangable, i.e. it does not depend on their order;
s0, by De Finetti’s theorem' (Hewitt & Savage, 1955), sequences in each clonal family are generated
iid conditional on a latent random variable which we call clone:

M
p(Xuar) = [ ] o lclone)p(clone).
m=1

Next we make the standard assumption that families of evolving proteins are distributed with abun-
dance proportional to their fitness (Weinstein et al., 2022), that is,

F(X) = log p(X|clone). (1)

Sella & Hirsh (2005) showed that Eqn. | holds exactly if a protein evolves under F' over long time
scales. In reality, sequences drawn from p(X |clone) can also be correlated by being descendants of
the same sequence, but we make the standard assumption that these correlations can be ignored (We-
instein et al., 2022). Finally, we can represent that the initial candidate X binds the target by assum-
ing we have observed it in the clonal family, i.e., by looking at p(clone| X() o p(clone)p(Xg|clone).

We can therefore sample fitness functions from p(F|Xy) in theory by 1) sampling clonal families
that contain X, clone™ ~ p(clone|Xj), and then 2) we can set F/(X) = log p(X|clone®).

5 CLONELM: LEARNING A PRIOR OVER FITNESS FUNCTIONS

In this section we fit a model to the distribution of clonal families and use it to sample fitness
functions in practice. In principle, we could build a model with an explicit latent variable meant
to represent clone. Instead, we take a martingale posterior approach (Fong et al., 2024) — simply
by building an accurate model of clonal sequences we learn an implicit prior on clone that we can
approximately sample from.

In Section 5.1 we fit an autoregressive large language model, CloneLM, to large scale clonal fam-
ily data and show it can generate realistic clonal families X7.5; that contain a candidate sequence
Xo. In Section 5.2 we show that given a clone, Xg.5s, CloneLM implicitly infers the fitness func-
tion when predicting sequences: F'(X) = log pcionerm (X ar+1]|Xo.ar)- Finally in Section 5.3 we
show CloneLLM can therefore sample fitness functions from an implicit prior on clone by generating
realistic clonal families that contain X then inferring their fitness functions.

5.1 FITTING A LARGE LANGUAGE MODEL TO GENERATE CLONAL FAMILIES

We train a large language model on large scale human clonal family data. Each antibody is made up
of two amino acid sequences — the “light chain” and the “heavy chain”. We train separate models
on heavy and light chains of antibody sequences in clonal families.

To build a training set, we collect all sets of human heavy and light chain antibody sequences from
the database of Observed Antibody Space (OAS) (Olsen et al., 2022a). We annotate clonal families
in each set of sequences using FastBCR (Wang et al., 2023) and remove any clonal family with fewer
than 25 sequences. Our dataset contains 908 thousand heavy chain clonal families and 34 thousand
light chain clonal families.

We then train autoregressive language models with 377 million parameters based on the Mistral-7B
architecture on the heavy and light chain datasets (Jiang et al., 2023). We represent each clonal
family as a sequence of tokens made up of all the amino acid sequences in the clonal family each
separated by a special sequence-separator token. We place spaces between amino acids so that the
tokenizer represents each amino acid with its own token. Our model, CloneLM, accurately fits this

"We ignore the dependence between the number of sequences we observe, M, and the sequences themselves
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Prompt over PSQTLSLTCTVSGGSFNSGGYYWNRI IGYMYYSGSTYYNPFIRSRVIISGDTSVNHFSLKLSSV YFCARGYR( YWGG
T W K L ADTSE RKLSY N F
Clonal T W K L LADTSE R RSWVF
famlly T W K LSSRLIISADTPE RR TCYP FN
QESGER L SWEROPPCKR HTCN SLKCRVT KSHFPLRLTA AvY G LADYG GAD
Sample 1 Q R L GWIROPPCK HTCN SLKSRVT K RLT Y GS LA T
W K SL TISGG P H LLVDYWAEETV
W K YL ENQ LCP c F T
Sample 2 W K SL E L T
W K SL E ASHVE T
W LK T s T T
Sample 3 W M RGETSVK R s I T
WIROHQED L VKR K D G AWVT T

Figure 2: CloneLM samples plausible clones. We compare sequences in a clonal family to families
generated by CloneLM conditional on Xy ("Prompt"). We align sequences to X, and highlight
locations where sequences differ from X in blue. The sampled clonal families have variants in
similar places, are similarly diverse as the real one, and share similar variants within each family.
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Figure 3: CloneLLM is a prior over fitness functions. (a) For 5 different clonal families, with start-
ing sequences X, pcioneLm (X ar+1]X71.57) gets close to pcioneL.m (X Mipget 11 X1:011,,, ) in KL. We
shade one standard deviation across 10 samples of X1.xs,,,,., X1.,,. (b) For 5 different heavy chain
clonal families, pcioner.m (X | Xo.ar) better predicts sequences in a clonal family when conditioned
on more sequences from that same clonal family X.»;. We shade one standard deviation across 10
samples of X7.,;. (¢) To sample from our prior F' | X we perform a martingale posterior procedure.
(d) We evolve three antibody therapeutics with three mutations from 25 sampled fitness functions.
These sequences evolve to look more like human antibodies.

data — it achieves a test perplexity of 1.276 on the heavy chain data and 1.267 on the light chain
data. We provide details of the data curation and of training the models in App. A.1.

To see if CloneLM generates realistic clonal families, in Fig. 2 we compare a heavy chain clonal
family from the test set to clonal families generated by CloneLLM conditional on a randomly selected
sequence from the original family X,. We see the sampled clonal families are similarly diverse to
the real clonal family, include variants in similar locations as the true clonal family, and sequences
within the same sampled clonal families contain similar variants. We show more examples of gen-
erated heavy and light chain clonal families in Appendix C.1.

5.2 APPROXIMATELY EXTRACTING A FITNESS LANDSCAPE FROM A CLONAL FAMILY

CloneLLM does not explicitly represent the latent variable clone so we cannot exactly query the
fitness function F'(X) = log p(X|clone). However, CloneLM approximates the predictive distribu-
tion of a Bayesian model p(X ns41|Xo.0s) which implicitly integrates over the latent clone:

p(Xar+1|Xonr) = /p(XM_H|c10ne)dp(clone\X0:M).

As M — oo, p(clone| X(.pr) converges to a point mass at the latent clone™ generating the sequences.
Therefore, in theory, as M becomes large, log pcioner.m (X ar+1|Xo:as) should converge to F:

log pcionerm (X ar+1]Xo:0r) = log p(Xar41|Xo:mr) =~ log p(Xar41|clone™) = F(Xar41).

We see that CloneLM can infer F' as such on real data as well — as M becomes large,
the predictive of CloneLM, pcionerm(Xar+1|X1.07), approaches convergence and its limit in-
creasingly approaches the distribution of sequences in a clonal family, p(X|clone). First in
Fig. 3a we take random sequences Xo.1r,,,,., X5, from heavy chain clonal families and see if
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PCloneLM (X nr41]|X(. ) converges to pcioneLM (X s, pe+1|X0:011,,,.) in Kullback-Leibler diver-
gence. Setting M,,qc = 24, we see that although the divergence does not go to 0, the distributions
become very similar as M becomes large. Next in Fig. 3b we take random sequences Xg.ps from
heavy chain clonal families and see if pcioner.m (X |Xo:2s) approaches p(X |clone). We see indeed
that when we use pcionerm (X | Xo:2s) to predict sequences in the clonal family, its perplexity is
decreasing in M.

5.3 SAMPLED FITNESS LANDSCAPES AND EVOLVING SEQUENCES

Given our model samples realistic clonal families and can recover F'(X) = log p(X|clone), we can
approximately sample from pcionerm (F'|Xo) using a martingale posterior procedure (Fong et al.,
2024) — we sample from the prior of clonal families that contain Xo, X1.ar ~ PcioneLm (X1:01)s
and then approximate the fitness function as F'(X) = log pcioner.m (X | Xo.ar) (Fig. 3c).

The fitness functions we sample reflect how our immune systems evolve antibodies. In Fig. 3d we
take the heavy chains of three antibody therapeutics, bococizumab, trastuzumab, and ranibizimab,
sample fitness functions setting from CloneLM conditional on these sequences with M = 10, and
iteratively evolve these sequences by adding the most likely mutation under each sampled fitness
functions three times. These therapeutics are not originally human sequences and therefore can
be unstable in the human body — in particular, bococizumab was discontinued due to harsh side
effects. If they were to evolve in our bodies, we would expect them to become more human-like,
and therefore likely more stable. Indeed we see that as we evolve these sequences they look more
like human antibodies, where human-ness is measured by the likelihood of IgLM (Shuai et al.,
2023), a model trained on a large set of human antibodies.

6 CLONEBO: INFERENCE WITH EXPERIMENTAL MEASUREMENTS

We now describe how to use our prior over fitness functions F' to optimize sequences in the lab.
In Section 6.1 we build a prior for measurements in the lab f using our prior for F. We cannot
exactly condition on the implicit clone, so in Section 6.2 we approximate the posterior over the
latent clone with a posterior over concrete clonal families X7.5,. In Section 6.3 we describe how to
sample from our approximate posterior using a twisted sequential Monte Carlo (SMC) procedure.
Finally in Section 6.4 we describe how to suggest sequences to perform iterative optimization with
CloneLLM; we call our method Clone-informed Bayesian Optimization (CloneBO).

6.1 BUILDING A PRIOR ON LABORATORY MEASUREMENTS

In our bodies, antibodies are optimized to stably and strongly bind their targets. In principle, we
are interested in doing same in the lab. We therefore assume that the function we optimize in the
lab, f, is approximately drawn from our prior on fitness functions, F', while allowing for some
discrepancy due to mismatches between measurements in the lab and those in our bodies. For
simplicity, we assume that f is an affine linear transformation of F' and that the deviation between
experiment and fitness is independent normal with error o2 that is, for some T > 0,C, calling

F,, = log p(X,|clone),

Y, | clone ~ N(TF, + C,0*I).
To reflect our vague uncertainty about 7" and C' we use uniform priors: C' ~ Uniform(—oo, co) and
T ~ Uniform(0, co). With these priors, we get an analytical expression for the marginal likelihood.

Proposition 6.1. (Proof in App. D.l.) For some constant D, and R =
\/NWCOI‘(FLN, Y1.v), with ® as the Gaussian CDF,

1 1
logp(Y1.5|F1.n) = ~5 log Cov(F1.n) + §R2 +1log®(R) + D. 2)

The first term in Eqn. 2 pushes the fitness values of the measured sequences, F}.y, to be different,
while the later terms push F.y to strongly and positively correlate with Y7. .

As before, we assume we have a starting candidate X that belongs in the clonal family. Therefore,

p(clone| Y.y, Xin, Xo) x p(clone)p(Xol|clone)p (Yi.n|F1.N)
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Figure 4: We accurately sample functions from the posterior with a twisted SMC procedure.
a) To sample from our posterior, we bias our generated sequences to look more like those sequences
that were measured in the lab to be good. b) A sample from tSMC better fits the data than an
importance sample. We show a line of best fit between F4; (fitness from a clone of M sequences)
and Y.y (measurement) for example clonal families sampled by importance sampling or twisted
SMC, with M = 6, D = 300 particles for IS, and D = 4 for twisted SMC. c¢) We quantify the result
from (b) across 10 replicates for various clone sizes M.

6.2 APPROXIMATING THE POSTERIOR

To infer f given measurements Y7, N,X 1.n, we would like to sample from the posterior F' ~

p(F|Y7. . X1 ~N;Xo). As we only implicitly represent clone, we approximate the posterior by
swapping the latent clone for a concrete clonal family, X7.,s; then, as in Sec. 5.2, we can approxi-
mately query the fitness function F'(X) =~ log p(X|Xo.ar)-

To create an approximate posterior, we replace Fj, with FM = log p(X n|Xo:ar):
Par(Xiar[Yin, Xav, Xo) o< p(X s | Xo)p (Vi.n|FR) 3)
As M — oo, F%V — Fi1.n, s0, pys converges to the distribution one obtains by sampling clone

from the posterior and sampling X,,, ~ p(X,,|clone) iid:

Proposition 6.2. (Proofin App. D.2) As M — o0, pys converges to the true posterior of Xo. .
In practice, we approximate p(X1.p7|Xo) and FM,; with CloneLM.

6.3 SAMPLING FROM THE APPROXIMATE POSTERIOR WITH TWISTED SMC

To sample from p,s, we need to generate M sequences from CloneLM such that the probabilities
of the (M + 1)st sequence matches experimental measurements. Naively, we might sample X7.,,
from CloneLLM and then importance sample. However, the space of sequences is large, and we may
fail to resample a mutation that improved measurements in the lab.

Instead we bias generation at each letter by adding measured sequences to our clonal family so
that mutations that improve measurements are encouraged and those that harm measurements are
avoided (Fig. 4a). We call this bias a “twisted” distribution, a term from the sequential Monte Carlo
literature. In practice, this bias does not exactly sample from the posterior, so we efficiently correct
for the discrepancy with a sequential Monte Carlo procedure.

Twisted distributions Define X () to be the letter at the Ith position of a sequence X and X (V)
as the first [ letters in X; if [ is greater than the length of X, we define X () as an empty position.
To build our twisted distributions, we decompose the likelihood of X, given M + 1 sequences into
contributions from the first M sequences and contributions from each letter in sequence M + 1:

p(Xar41]Xoar, Xn)
(X411 Xo:0r)
zzlog p(XJ(\?-&-I‘XOIMvXI(\;[l—;P’Xn) M 4)
l p(X1(\£1)+1|X0:MvXJ(Ql;P) !
= ZFé‘”l’(l) + FM,
1

FMAL

= log p(Xn|Xo.ar41) =log + log p(Xn| Xo:a1)
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We can calculate Fp' 1.0 by adding X, to the end of the clonal family X.5s and calculating

how much the conditional likelihood of the [-th letter of X 3;1 increases. To approximately sample

from the posterior therefore, when sampling each letter we bias towards letters with M 1O that
better match experimental measurements (Fig. 4a); we call these approximations of the posterior the
“twisting distributions” and we define them formally in App. A.2.

The twisted distributions are not the exact marginals. We correct for this discrepancy by sampling
D > 1 sequences at a time and importance sampling in a sequential Monte Carlo procedure (SMC),
which we also describe in App. A.2. The final method is known as twisted SMC, and when D = 1,
it is equivalent to sampling from the approximations described above.

Empirical results We sample a clonal family conditional on laboratory measurements of the melt-
ing temperature of 75 related antibodies from an experiment described in Sec. 7. In Fig. 4b and 4c we
see that clonal families from twisted SMC fit the experimental data substantially better than clonal
families importance sampled from unconditional samples from CloneLM. We also see in Fig. 4c
that correcting for bias with D = 4 also improves the fit to the data and that as M increases, the
likelihood p(Y1.n |FM) plateaus, reflecting the convergence of fy to the true posterior. We show
similar results for laboratory measurements of binding in App. C.2

6.4 BAYESIAN OPTIMIZATION WITH CLONEBO

After sampling F' from the posterior we would like to suggest sequences to test in lab. We take
a Thompson sampling approach (Russo et al., 2018): we propose testing the sequence predicted
to maximize F'(X), and therefore maximize f(X), in the lab. We cannot optimize F'(X) over all
sequences, so in practice we start with 4 sequences with the highest measurements Y and iteratively
optimize F'(X) over the top substitution for up to 3 substitutions.

In theory, X represents a candidate sequence to optimize. In practice, we found it helpful to take a
greedy approach — we randomly select X from the 4 sequences with the highest measurements Y.

Conditioning on a large number of measurements X 1.N, Y1.n 1S computationally expensive. To
accommodate large IV, other Bayesian optimization methods build summaries of the measurements,
for example by fitting a neural network to them (Stanton et al., 2022). In our case, we only condition
on the measurements of sequences predicted to be most informative — we calculate the probability
that each X, appears in a clonal family with X, p(Xo, X ) and condition on the measurements of
the 75 most likely sequences. Additional details of CloneBO are provided in App. A.3.

7 EXPERIMENTS

Now we demonstrate that CloneBO efficiently optimizes antibody sequences in practice. In Section
7.1 we demonstrate that our method efficiently optimizes fitness functions or laboratory measure-
ments in silico. In Section 7.2 we also show that our method suggests mutations that optimize
sequences in the lab. We provide experimental details in App. B.

7.1 OPTIMIZING ANTIBODIES in silico

We show that CloneBO efficiently optimizes fitness functions or measurements in the lab in silico.
To simulate fitness functions or lab measurements, we train oracles f on real data. We show that
CloneBO outperforms naive and informed baselines.

7.1.1 BASELINES

First we consider a naive Greedy baseline which suggests a random substitution of one of the top 4
sequences. We also compare to an informed greedy baseline which randomly picks one of the top
4 sequences and introduces the mutation predicted to make the antibody look most like a typical
antibody, where typicality in measured by the likelihood of a masked language model trained on
antibody sequences, Sapiens (Prihoda et al., 2022); this is a popular strategy for making antibodies
that are more stable in the body. We also compare to LaMBO (Stanton et al., 2022), a state-of-the-art
Bayesian optimization method for sequences which builds a latent space using a pool of sequences
and fits experimental measurements in this latent space; by conditioning on this latent space, it is
less likely to suggest atypical sequences. We also build a LaMBO model informed by the space
of antibodies by pretraining its latent space using 100000 antibody sequences from the observed
antibody space database (Olsen et al., 2022a), LaMBO-Ab. We also compare to other popular
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Figure 5: CloneBO efficiently optimizes antibodies in silico. We show the mean and standard
deviation of the best acheived value across 10 replicates. (a) CloneBO efficiently optimizes a fitness
function. The blue line is CloneBO; the grey are LaMBO-Ab, LaMBO, Sapiens, and Greedy. (b)
CloneBO optimizes binding and stability in silico over 100 steps of iterative design (p value is
Mann-Whitney). It does significantly better than the next best method for binding (p=0.018 Mann-
Whitney) and stability (p=0.006 Mann-Whitney).

strategies for iterative optimization of sequences that do not have antibody-based priors, Genetic,
AdaLead (Sinai et al., 2020), and EvoBO (Sinai et al., 2020); CMA-ES (Hansen & Ostermeier,
2001), Dyna-PPO (Angermueller et al., 2020), and CbAS (Brookes et al., 2019). In total, we
compare CloneBO to 10 baselines that represent state-of-the-art industry practice?.

7.1.2 RESULTS

Oracle of a fitness function of a clonal family We first demonstrate the potential of the CloneBO
prior to accelerate optimization. We build an oracle to simulate the fitness function of a real human
clonal family, that is, a function from the CloneBO prior. We trained a language model on a heavy
chain clonal family of 10015 sequences from our test set and try to maximize f (X) = the log

likelihood of X of this model. We start with a single measurement X 1, Y7 where X 1 1s a sequence
from the clonal family. Very few mutations of an antibody improve fitness, so in Fig. 5a we see
some baselines struggle to identify positive mutations. CloneBO’s prior on the other hand gives it
knowledge about what sorts of mutations are most likely to improve fitness allowing it to quickly
optimize f even at very low V.

Oracles from laboratory measurements of melting temperature and binding We next demon-
strate the utility of CloneBO in an in silico simulation of a realistic in-lab setting. We trained oracles
on lab measurements from an experiment that aimed to optimize a VHH domain, a sequence similar
to an antibody heavy chain, for binding and stability at high temperature. We trained neural network
ensembles on the melting temperature and binding (measured in — log K p) measurements and try to
maximize f(X) = the mean predictions of these ensembles. We simulate starting part way through
this experiment by starting with 1000 measurements X 1:1000, Y1:1000 Where X 1:1000 are the first
1000 sequences measured in the experiment and Y7.10g¢ are oracle predictions. We do not expect
mutations outside of the CDR regions of an antibody to substantially affect binding, so we only
allow mutations in these regions of the sequence when optimizing for binding. In Fig. 5b, we see
that after 100 steps, greedy methods and methods informed by an antibody prior optimize antibodies
more efficiently than previous methods against these oracles; in particular, CloneBO outperforms all
baselines. In App. C.3 we plot these results against /V and in table form.

Comparison to structure-based design model for binding SARS CoV. In App. C.4 we show
that CloneBO can also efficiently optimize antibodies in silico for SARS CoV binding as measured
by a predictor trained on CoVAbDaB (Raybould et al., 2020). In particular we see CloneBO beats
structure-based design method DiffAb (Luo et al., 2022).

Ablations and sensitivity In App. C.5 we show that CloneBO accelerates optimization by build-
ing an accurate posterior — the performance of CloneBO is harmed when we ablate sampling large
clonal families, conditioning on experimental data, or our twisted SMC sampling strategy. We also

Note that some of these methods are developed for different regimens, such as short sequences or large
amounts of training data. Their performance here does not necessarily represent their performance for the
problems they are optimized for.
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Figure 6: CloneBO efficiently optimizes antibodies in vitro. LaMBO in this plot refers to LaMBO-
Ab. (a) CloneBO design sequences predicted to be synthesizable. (b) CloneBO designs strong and
stable binders in the lab. Measurements from previous rounds are shown in a histogram. The vertical
black line represents the best value previously achieved.

perform two other ablations demonstrating that our results above are reliable — we show 1) CloneBO
is robust to different starting sequences and starting pool sizes, and 2) CloneBO can efficiently op-
timize antibodies when f deviates from the CloneBO prior, especially at low N. Finally we sweep
hyperparameters to show that CloneBO is not particularly sensitive to hyperparameters other than
the amount of noise in the data; we describe a heuristic that allows us to make a good choice for the
amount of noise.

7.2  OPTIMIZING AN ANTIBODY in vitro

We now demonstrate that CloneBO can design sequences as part of a real-world antibody optimiza-
tion campaign. We started with 1000 lab measurements of binding and melting temperature’ (visual-
ized in Fig. 7) and designed 200 sequences using CloneBO and our strongest baseline, LaMBO-Ab,
for one wetlab iteration of optimizing binding or melting temperature. In a real world optimization
campaign, this one step would be repeated many times.

Before measuring designed sequences, sequences need to be synthesized; sequences which are atyp-
ical can fail to synthesize, making their measurement impossible. In Fig. 6a we plot the predicted
synthesizability of sequences from CloneBO and LaMBO-Ab; sequences from CloneBO are signif-
icantly more synthesizable (Mann-Whitney p < 1le —5), suggesting they are more realistic. We next
measure 20 sequences designed by CloneBO and LaMBO-Ab that are predicted to synthesize.

In Fig. 6b we plot sequences we were able to measure; we include any sequences that were proposed
that we had measured in previous experiments. We see that sequences from CloneBO achieve the
best binding and stability. Our strongest binder is only beaten by 2 / 997 previously measured
sequences and our most stable sequence beats the previously measured sequences by a large margin.
We also conclude that sequences from CloneBO are significantly stronger binders than those from
LamBO-Ab (Mann-Whitney p = 0.021). We discuss these results in more detail in App. C.6.

8 CONCLUSION

To develop new disease treatments, antibodies must be optimized for a range of properties. By learn-
ing from the human immune system’s approach to antibody maturation and therefore substantially
accelerating optimization in the lab, CloneBO can help build safer and more effective therapeutics.

An important direction of future work is addressing theoretical and practical limitations of CloneBO.
First, CloneBO currently assumes a simple relationship between the fitness of a clonal family and
measurements in the lab (Section 6.1). Future work may account for heteroskedasticity or nonlinear
relationships. As well, CloneBO evaluates the fitness of a sequence by assessing how likely it is
to belong to a clonal family of X. Future work may attempt to incorporate patterns learned from
measurements of diverse sequences which are unlikely to belong to the same clonal family. Finally,
the cost of sampling from the CloneBO posterior scales with the number of laboratory measurements
N (Section 6.3), so CloneBO scales by conditioning only a subset of measured sequences. Future
work could instead build a more scalable model or approximate sampling procedure.

Another important future direction is extending CloneBO to multi-objective iterative Bayesian op-
timization of antibodies for binding and stability simultaneously. We can do so for example by
swapping Thompson sampling for other acquisition functions (Daulton et al., 2020).

394 / 1000 sequences were measured for melting temperature and 997 / 1000 were measured for K p.

10



Published as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

We include weights for our CloneBO models and code for implementing sampling in our code
release. We describe how to train a CloneBO model, including the parameters that were used to
build the training data, in the appendix. Sequences from the iterative optimization experiment are
proprietary; we release all other data: we include the trained oracle for Fig. 5a in our code release;
we describe how implement baselines and the oracle in Fig. 12 in the appendix.
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A DETAILS OF CLONELM AND CLONEBO

A.1 DATA COLLECTION AND TRAINING CLONELM

Clonal family data We downloaded all data units of human single chain data on OAS (Olsen
et al., 2022a). For both light and heavy chain data, we put 10% of these units into a test set,
10% into a validation set, and 80% into a train set. We annotated clonal families in each of these
data units with FastBCR (Wang et al., 2023) using the default parameters cluster_thre = 3,
overlap_thre = 0.1, consensus_thre = 0.8. We removed any clonal families with
fewer than 25 sequences. We ended up with 731 thousand heavy chain clonal families for training,
81 thousand for validation, and 96 thousand for testing; and 26 thousand light chain clonal families
for training, 4 thousand for validation, and 4 thousand for testing.

Training CloneLM We trained CloneLM using Mistral 7B as our base architecture (Jiang et al.,
2023). We scale down the model size to 24 layers of attention blocks with 16 attention heads and
a hidden size of 1024 across embedding and all intermediate hidden states. We set our maximum
context size to 2048. We end up with a Mistral model containing 377 million parameters. For
training, we use a batch size of 2, a gradient accumulation step of 4, and we sweep learning rates
over {0.0005,0.00025,0.0001} using a constant learning rate scheduler. All training is performed
on 4 NVIDIA A100-SXM4-80GB GPUs. For human light chain data, we train for 24 hours for 40
epochs. For human heavy chain data, we train for 48 hours for 1 epoch.

14



Published as a conference paper at ICLR 2025

A.2 TWISTED SEQUENTIAL MONTE CARLO

Twisted distributions We approximate the marginal fs+1(X J(\jl_p Xo.ar) just as in Section 6.2
by replacing F4 in Eqn. 3 with F)AT ) = ! b 4 g

~(:l :l :l M+1,(:1
5\4)-5-1(X1(\42r17X0:M) X p(XleaXM+1|X0)p(Y1!N|F1:N ( ))-
We call this approximation the “twisted” distribution.

If we pretend that these twisted distributions are exact marginals and that pj, is also the marginal of
Da+1, we can therefore sample each sequence letter-by-letter according to

I+1 ~(:l+1 I+1 :l I+1 :l M+1,(:1+1
XJ(M+1) ~ §\4+1)(X1(\4+1)|X1(\4)+1vX0:M) 0‘p(Xz(\4+1)|XJ(\4)+17XO:M)p(Y1:N|F1:N ( ))- )]

The first term in Eqn. 5 samples the next letter according to the unconditional distribution. The
second term is a bias that upweights letters X ((, Lll for which F° 1M 1\?' LEHD correlates with Yi.ns
this usually means upweighting letters that are more likely if sequences that were measured to have

high Y,,, X n», were included in the clonal family.

Importance sampling The twisted distributions are not exactly the marginals. We can correct
for this discrepancy with sequential weighted importance sampling. Say we have X.,s, X};jl_l
approximately sampled from 155»:&1()(0: M,Xj(jll) with importance weight w?*+1:()_ Then
we can calculate the importance weight of X. M,X](V[ +1) by multiplying by the ratio between
Py (Xoor, X§711) and gy 1) (X 1X 57,1 Xoaan) B (Xoar, X574 ), so,

. (141 I M+1,(:1
wM+1,(H+1) ( M+1)|XJ(\4)+1’XO:M) X p(Yl:N|F1;1\;r1( +1))

x .
M+1,(:1 ~(:l4+1 (141 M+1,(:1
w 0 pg\/[+1)( M+1)|XM+1aX0:M) p(Yi.n|Fy ( ))

Therefore if we have D samples X0 2741 With weights w1 D then we can approximately sample
M1 wht

from pp741 by sampling X ¢ 0:r41 With probability wy =, e

Sequential Monte Carlo Say we are iteratively sampling and weighting D sets of sequences and

the importance weight for one set w, M.(D) pecomes much smaller than that of the others. Ideally
we wouldn’t waste any more compute on sampling the rest of the sequence. This is the idea of
sequential Monte Carlo — while generating each set of sequence letter-by-letter, every so often, we

resample the sets of sequences with probabilities w;. /, M-(D To decide when to resample, we calculate
the essential sample size ), (W, e l)) and resample when it goes below /D, a classic heuristic.

After we resample, we reset the Welghts wg = 1/D. As D — oo we expect to approximate pps41
arbitrarily well.

We also note when using the predictive distributions of CloneLM, Eqn. 4 is an approximation. The
discrepancy comes from the fact that M+ is the conditional probability of X, as the M + 2nd
sequence while Fé”“ = F,ZIMH’(Z) + FEM is the probability of X, as the M + 1st sequence.
For p, these probabilities are identical, but this may not be exactly the case for CloneLLM. Therefore,
once we have sampled all the letters in a sequence X, then we have sampled from a distribution
proportional to

p(Xoan)p(Yin| Fy)-
Therefore we also resample at this stage after multiplying the importance weight of sample d, wé”
by
p(Yin|F 1MN)
p(Yin|F 1]\:JN )

A.3 EXPERIMENTAL DETAILS OF CLONEBO

Before conditional generation, we normalized Y7.y to to Y, = (Y,, — startmean)/startstd where
startmean and startstd are the mean and standard deviation of the initial dataset Y7.n. In our
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experiments we used D = 4 during twisted SMC, and generated clones of size M = 6. We
tempered o by the maximum number of sequences we conditioned on, i.e. we used 0 = &//75
where & = 0.25. We run each experiment on a single NVIDIA A100 GPU with 80GB of memory;
100 steps with CloneBO takes roughly 10 hours.

B EXPERIMENTAL DETAILS

B.1 BASELINES

We implemented Sapiens using the code in https://github.com/Merck/Sapiens under
the MIT licence. We suggested mutations to a sequence by taking the highest likelihood mutation
suggested by sapiens.predict_scores that had not previously been measured.

We implemented LaMBO using the code in https://github.com/samuelstanton/
lambo under the Apache-2.0 licence. We used default hyperparameters for the masked language
model version of LaMBO. To restrict mutations to the CDRs, we kept sampling mutations from
LaMBO until only the CDR was modified.

To build LaMBO-Ab we pretrained the latent space of a LaMBO MLM model on a training set of
100000 antibody sequences. We built the training set by taking one sequence from each of 100000
random clonal families from the CloneLLM training set.

We also compare to two other genetic algorithms with trained surrogates, Adalead and Genetic; a
NN ensemble Bayesopt method, “Evo-BO”; an evolution method, CMA-ES (Hansen & Ostermeier,
2001); an RL method, Dyna-PPO (Angermueller et al., 2020); and an adaptive sampling method,
CbAS (Brookes et al., 2019). The first three methods are described in Sinai et al. (2020). We
implemented these methods with code from FLEXS (Sinai et al., 2020) using the code from https:
//github.com/samsinai/FLEXS/tree/master under an Apache-2.0 license; we used
default settings for all methods.

B.2 TRAINING ORACLES AND INITIALIZING OPTIMIZATION

Oracle of a fitness function of a clonal family We trained an oracle language model adapted from
Llama2 (Touvron et al., 2023) on a single reference human heavy chain clone. There are in total
10015 sequences in the clone and we split them into 90% train, 5% validation, and 5% test sets. Due
to the scarcity of our data, we downscaled a Llama2 model with 7 billion parameters by keeping 12
hidden layers with hidden state size of 512. We used 4 attention heads, 4 key-value heads, and kept
the context size at 2048. We ended up with a language model containing 50 million parameters. We
trained our model on a single NVIDIA A100-SXM4-80GB GPU for 10 epochs with a batch size of
32, a gradient accumulation step of 2, a learning rate of 0.0005. We obtained a perplexity value of
1.2634 on the validation set. Using the clone oracle, we start optimization with 2 randomly chosen

sequences from the test set X 1.2, and predictions from the oracle Y7 .5.

Oracles from lab measurements of therapeutic Antibodies We were provided temperature and
binding measurements of 6880 sequences from an iterative optimization experiment performed in
the lab. We aligned these sequences to a reference antibody sequence and trained ensembles of 10
CARP/Bytenet models (Kalchbrenner et al., 2016; Yang et al., 2022) on the one hot encodings of the
aligned sequences to fit the temperature and binding data. The K; model ensemble had a measured
vs. predicted spearman correlation in crossvalidation of 0.95, while the the T,,, model ensemble
had an spearman correlation of 0.72. We use the mean prediction of the ensemble as f. We start
optimization given the measurements of the first 1000 sequences of this experiment X 1:1000, and
predictions from the oracle Y7.1000-
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B.3 TRAINING DATA FROM ITERATIVE OPTIMIZATION
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(b) Sequences with stability data.

Figure 7: Starting pool for (a) binding and (b) stability optimization. We plot the Hamming distance
matrices and UMAPs. sequences are coloured by predicted property

B.4 LAB VALIDATION

We built a predictor of synthesizability from measures of expression just the same as predictors of
melting temperature and binding in Sec B.2. The predictor achieves a test AUROC of 0.87.

Designed sequences were synthesized via cell-free protein synthesis (Dopp & Reuel, 2020) in 96-
well format and purified via Protein A binding on Pierce magnetic beads. Purity and yield were
confirmed before further analysis. Affinities (—log K p) were measured with Bio-Layer Interfer-
ometry (BLI) on an Octet instrument, with the antigen immobilized at three different dilutions of
antibody. Thermostability (melting temperature) was measured by Nano differential scanning inter-
ferometry (NanoDSF) on an Uncle instrument.

C SUPPLEMENTARY RESULTS

C.1 MORE EXAMPLE GENERATED CLONAL FAMILIES

In this section we show more light and heavy chain clonal families generated from CloneLM. In
Fig. 8b and Fig.s 9b, 9c, we see that sequences generated by ClonelLM include can introduce in-
sertions and deletions. The large sets of deletions in the sequences of the clonal family in Fig. 8b
are due to the fact that some sequences in OAS are missing the beginning or end of their sequences
(Olsen et al., 2022b).
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Figure 8: Examples of heavy chain clonal families generated by CloneLM.
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Figure 9: Examples of light chain clonal families generated by CloneLLM.

C.2 TWISTED SMC FITTING AFFINITY DATA

In Fig. 10 we show similar results to Fig. 4c for 75 laboratory measurements of binding.
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Figure 10: Twisted SMC fits laboratory measurements of affinity. Experiments are similar to
those in Fig. 4c.
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C.3 EFFICIENT OPTIMIZATION VERSUS NUMBER OF STEPS
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Figure 11: Results of Fig. 5b for various NV for representative baselines.

Method logp(X]clone) Norm. log;, Kp Melting temp.
CbAS -27.42 0.2572 66.76
Dyna-PPO -27.42 0.2572 66.76
CMA-ES -27.42 0.2853 66.76
EvoBO -27.42 0.2572 66.76
Genetic -25.94 0.3001 70.19
Adalead -25.30 0.2998 69.42
Greedy -26.65 0.2986 69.28
LaMBO -24.99 0.3085 69.40
Sapiens -24.51 0.2875 70.39
LaMBO-Ab -24.51 0.3381 70.44
CloneBO -7.29 0.3713 72.92

Table 1: Result from Fig. 5 in table form. We report the mean best value achieved across 10 repli-
cates.

C.4 OPTIMIZING ANTIBODIES TO BIND SARS CoV

Above, we validated CloneBO using predictors trained on large-scale mutational data from a lab as
well as in in vitro experiments — these are the most reliable evaluations of CloneBO. As another eval-
uation of CloneBO, and to compare it to structure-based design models, here we explore optimizing
the CDRH3s of antibodies for binding SARS CoV 1 and 2 in humans as measured by predictors used
inJin et al. (2021) (downloaded from https://github.com/wengong-jin/RefineGNN).
We caution however that while we expect CloneBO to be a good prior for SARS binding, these
predictors have large epistemic uncertainty as they are trained on only a few thousand extremely
diverse sequences. We thus expect we are optimizing an objective similar to those in Fig. 14 so that
CloneBO should perform best at low N.

These predictors were trained on only functional antibodies and may not generalize outside this set.
So, we optimize binding + humanness (measured by IgL.M likelihood); we standardize both binding
and humanness to the same variance.

We start with N = 1 sequence from CoVAbDab. In Fig. 12 we see that for 6 randomly selected
starting sequences, CloneBO is consistently among the most efficient methods for CoV1 and, at low
N, for CoV2 as well.

We were interested in seeing if structure-based design methods could also be used for iterative
design. When structure is available, we therefore also compare to a state-of-the-art structure method,
DiffAb (Luo et al., 2022). To perform iterative design with DiffAb, we greedily pick one of the 4
best measured sequences and optimize it as in Sec 4.3 of Luo et al. (2022). We see that CloneBO
beats this algorithm.
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Figure 12: CloneBO efficiently optimizes 6 sequences from CovAbDab for binding to SARS CoV1
(first 3 columns) or CoV2 (last 3 columns). In particular it outperforms a structure-based baseline
(DiffAb) for the 3 sequences with an available structure. We show mean and standard deviation
achieved across 3 replicates.

C.5 ABLATIONS OF in silico OPTIMIZATION

CloneBO efficiently optimizes sequences by building an accurate posterior. We now show
that CloneBO efficiently optimizes sequences by conditioning on experimental measurements and
accurately sampling from the martingale posterior. In Fig. 13 we see optimization is often harmed
by 1) not accurately sampling from the martingale posterior by only sampling clones of size M = 1,
2) using a naive importance sampling procedure instead of twisted SMC, or 3) not conditioning on
previous measurements. We see the M = 1 or importance sampling ablations have less of an effect
when optimizing fitness, potentially because it is easier to condition on data from a function from
the CloneBO prior.
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) c —_—- M=1
2 S- -+ IS (D=300)
£ o 5 . Coneso
=z 0 50 100 - 70 50 100
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Figure 13: CloneBO better optimizes antibodies than models that ablate accurately sampling
from the posterior. We shade a standard deviation across 3 replicates. We show results for optimiz-
ing binding in silico, stability in silico, and the fitness function of a clone.

CloneBO is robust to different starting pool sizes and deviations from its prior at low N. In
Fig. 14a we optimized for stability as in Fig. 5b of the paper with a starting pool of various /N mea-
surements. We see that CloneBO outperforms our baselines across these different starting stabilities
and starting pool sizes, especially at low N.

In Fig. 5a in the paper we showed that when optimizing an objective from CloneBQO’s prior (the
fitness function of a clone), F', CloneBO strongly outperforms baselines. Here we mix F' with
a random neural network, G, and optimize wF + (1 — w)G; w € [0, 1] controls how well the
CloneBO prior describes the objective. We start with N = 2 sequences. In Fig. 14b we see that in
this small IV setting, CloneBO outperforms other methods even when the objective only somewhat
matches the prior (w = 0.4). Even at w = 0.2, CloneBO is the best method at very low N (up to
N=25).
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Figure 14: CloneBO is robust to ablating (a) the starting pool size or (b) how well its prior de-
scribes the objective. We show the mean and standard deviations of the best achieved value across 3
replicates.

Sensitivity to hyperparameters in silico We now investigate the sensitivity of our results to 3
hyperparameters: the noise level in the likelihood &, the maximum number of allowed mutations
L, and the number of sequences we draw X from K, as described in Sec. 6.4. In our experiments
above we use logy 6 = —2, L = 3,and K = 4.

We picked K and L based on intuition. We picked & by looking at the clones generated when con-
ditioned on the initial binding data in silico when suing values log, ¢ = —4, —3, —2, —1; we noted
that when log, 6 = —4, —3, generated clones contained very short or long sequences, indicating
it was hard to find clones that fit the data with little noise. Thus we picked log, & = —2 to fit the
data with as little noise as possible. Performing the same procedure for the in silico stability data,
we arrived at the same value log, 6 = —2 was a good choice. We fixed this value for all our other
experiments.

We see in Fig. 15a that K = 1 performs badly when optimizing binding, likely due to a higher
chance of getting stuck in a local minima; otherwise CloneBO is not very sensitive to K. In Fig. 15b
we see CloneBO is also not very sensitive to L. In Fig. 15¢c we note CloneBO is sensitive to the
choice of ¢ but our procedure described above picked the optimal & for binding and stability. For
fitness, we noted the posterior is easy to sample from even at log, & = —3 (we see this manifest
in Fig. 13 as well) and indeed a smaller value of & is optimal. This suggests one can optimize
antibodies more efficiently by improving the CloneBO likelihood, potentially by picking a better &
or by adding a prior and marginalizing over it.
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Figure 15: CloneBO sensitivity to hyperparameters for fitness, binding and stability. Experi-
ments are run with 10 replicates; blue boxes represent hyperparameters used in the main text . a)
Sensitivity to size of pool X is randomly selected from, K. b) Sensitivity to maximum allowed
number of mutations, L. c) sensitivity to noise in likelihood, &.

C.6 ADDITIONAL DISCUSSION OF in vitro RESULTS

We were able to measure the affinities of 9 sequences for CloneBO, and 11 for LaMBO-Ab, and the
melting temperatures of 19 sequences from CloneBO and 10 sequences from LaMBO-Ab. Adding in
previously measured sequences, we were able to get two more affinity measurements for CloneBO
and 2 more for LaMBO-Ab, and no other affinity measurements. Note when interpreting these
results that affinity and stability may be correlated with dropout and whether or not a sequence
was previously measured. In Fig. 16 we plot the affinity measurements removing the previously
measured sequences; the results are qualitatively similar to those of Fig. 6.
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Figure 16: The result of Fig. 6b for affinity with only sequences that were newly measured.
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D THEORETICAL RESULTS

D.1 ANALYTIC FORM OF MARGINAL LIKELIHOOD
Proposition D.1. (Proof of Prop. 6.1) For some constant C,

1 1
logp(Y1.n|F1.n) = ~5 log Cov(Fi.n) + §R2 +log®(R) + C’

Proof. We first put a wide prior on M, M ~ N(0, 72), and then later send 7 — oo. Then we can
marginalize M out to get

Y, ~ N(BE,,c*I + nt’e®e)

where we define e to be the vector with 1/ v/N in each position, e = f/ V'N. Calling ¥ = o2l +
nrle® e, U% = (FLNS™ 1 FR.N) Y s = U%FENE_IYLN, we get

o0 o0
/ p(Yi.n, BF1.n)dp OC/ I TS i g g
0 0
=(2r03)"/2e5/275 P(N (15, 03) > 0)

ocage“l%/%%q) (Mﬂ) .
9B

Now,
Yl=(0*(I-e®e)+ (6 +nm?)e®e)™ !
= I —-e®e)+ (0> +nt?) le®e

—o (I —e®e)as T — 00

(b (1) (49)

Therefore, as 7 — oo, FL Y 1F.y is No~2 times the variation of Fy.y, Var(Fi.y), and
FLX71Y1.n is No~2 times the covariance of Fy.y and Y1.n, Cov(Fi.n, Y1.n).

Therefore, if we call g—g — V/No~'Cor(Fy.n, Y1.n)Std(Y1.x) = R then we get that when we
send 7 — 00,

1 1
logp(Yi.N|Fi.n) = 3 log Cov(Fy.n) + §R2 +log®(R) +C’

for some constant C’. O

D.2 CONVERGENCE OF APPROXIMATE POSTERIOR

We show that the approximate posteriors converge defined in Eqn. 3 converge to the true posterior.
We make the mild assumption that the hypothetical latent variable clone has been defined such that
clone — p(X|clone) is measurable and no two variables clone;, clones have the same conditional
distribution p(X|clone;) # p(X |clones). We also assume that all measured sequences are antibod-
ies that can plausibly, although maybe with extremely low likelihood, appear in a clone together,
i.e. p(Xo, X 1.n) # 0. Finally, we assume the sequences X 1.n are sufficiently diverse so that their
log likelihoods cannot all be identical for any clone, i.e. for some ¢ > 0, Cov(Fj.ny) > € with
probability 1 under p(clone| X)*.

Proposition D.2. (Proof of Prop. 6.2) Assume clone — p(X|clone) is measurable and injective,
p(Xo, X1.n) # 0, and Cov(F1.y) > € or some € > 0 with probability 1 under p(clone|Xy). Then,
as M — oo, the approximate and true posteriors converge in total variation —

153 (X1ae [Yien, X1:nv, Xo) — p(X1u|Yin, X1v, Xo) [ mv — 0.

*We need this assumption to ensure the density p(Y1.n|Fi'y) is bounded above. Alternatively, one can
assume a proper prior on M by picking 7 large but finite in the proof of Prop. D.1.

23



Published as a conference paper at ICLR 2025

Proof. By our assumptions, by Doob’s theorem (Miller, 2018), if clone ~ p(clone|Xy) and X, ~
p(X|clone) iid, with probability 1,

(X X1ar) = p(X0| X101)

for each n. In particular, we get that F%\, — Fy.n and therefore, since, assuming Cov(F}.n) > e,
p(Y1.n|F}L,) is a bounded function of F}.y,

EXl;M,cloneNp(Xl;M\Clone)p(clone|X0) |p(Y1N‘F11VIN) - p(Yl:N‘FlzNN — 0.

Now we show that the the normalizing constants of the approximate and true posteriors converge.

M
Zy = /p(leN\F%v)dp(Xlszo) :/P(YLN\F{\;/IN) H dp(Xm|clone)dp(clone| Xo)

m=1
:EXl;M,cloneNp(XhM\clone)p(clone|X0)p(Y1:N|F1J\;4N) (6)
_>Eclone~p(clone|Xo)p(YI:N|F1:N)

:/p(Y1:N\F1;N)dp(clone|X0) =7

By our assumption that p(Xo, X1, ~) # 0, for a set of clone of probability greater than 0 under
p(clone| Xy), p(Xy,|clone) > 0 for all n; for this set, p(Y1.n|Fi1.n) > 0 and therefore Z > 0.

Now we show that the approximate and true posteriors converge in total variation:

Z p(Yin | FYN)p(X 1| Xo) _ J p(X1.0|clone)p(Yr. x| Fi:n )dp(clone| X)

X1:m 2% Z
<Y PN FMOp(X 1| Xo) |23t = 27|
XIY )
+ 7 Z /p(X1:M|clone) (p(Yl:N|F%\/) *p(Y1:N|F1;N)) dp(clone|Xy)
X1:m
|Z Zw|

+ Ep(clone|X0)|p(Y1 N‘Fl N) (YlN‘FlkgV” — 0.
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