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Abstract

Deep neural networks are often seen as different

from other model classes by defying conventional

notions of generalization. Popular examples of

anomalous generalization behaviour include be-

nign overfitting, double descent, and the success

of overparametrization. We argue that these phe-

nomena are not distinct to neural networks, or

particularly mysterious. Moreover, this general-

ization behaviour can be intuitively understood,

and rigorously characterized using long-standing

generalization frameworks such as PAC-Bayes

and countable hypothesis bounds. We present

soft inductive biases as a key unifying principle

in explaining these phenomena: rather than re-

stricting the hypothesis space to avoid overfitting,

embrace a flexible hypothesis space, with a soft

preference for simpler solutions that are consis-

tent with the data. This principle can be encoded

in many model classes, and thus deep learning is

not as mysterious or different from other model

classes as it might seem. However, we also high-

light how deep learning is relatively distinct in

other ways, such as its ability for representation

learning, phenomena such as mode connectivity,

and its relative universality.

1. Introduction

ªThe textbooks must be re-written!º

Deep neural networks are often considered mysterious and

different from other model classes, with behaviour that can

defy the conventional wisdom about generalization. When

asked what makes deep learning different, it is common to

point to phenomena such as overparametrization, double

descent, and benign overfitting (Zhang et al., 2021; Nakkiran

et al., 2020; Belkin et al., 2019; Shazeer et al., 2017).

Our position is that none of these phenomena are dis-

tinct to neural networks, or particularly mysterious.

Moreover, while some generalization frameworks such as

VC dimension (Vapnik, 1998) and Rademacher complexity

(Bartlett & Mendelson, 2002) do not explain these phenom-

ena, they are formally described by other long-standing

frameworks such as PAC-Bayes (McAllester, 1999; Catoni,

2007; Dziugaite & Roy, 2017), and even simple countable

hypothesis generalization bounds (Valiant, 1984; Shalev-

Shwartz & Ben-David, 2014; Lotfi et al., 2024a). In other

words, understanding deep learning does not require re-

thinking generalization, and it never did.

We are not aiming to argue that deep learning is fully under-

stood, to comprehensively survey works on understanding

deep learning phenomena, or to assign historical priority to

any work for explaining some phenomenon. We are also not

claiming to be the first to note that any of these phenomena

can be reproduced using other model classes. In fact, we

want to make clear that there has been significant progress in

understanding what is often perceived as mysterious general-

ization behaviour in deep learning, and contrary to common

belief, much of this behaviour applies outside of deep learn-

ing and can be formally explained using frameworks that

have existed for decades. The textbooks wouldn’t need to

be re-written had they paid attention to what was already

known about generalization, decades ago! Instead, we need

to bridge communities, and acknowledge progress.

Indeed, we will aim to introduce the simplest examples

possible, often basic linear models, to replicate these phe-

nomena and explain the intuition behind them. The hope

is that by relying on particularly simple examples, we can

drive home the point that these generalization behaviours

are hardly distinct to neural networks and can in fact be

understood with basic principles. For example, in Figure 1,

we show that benign overfitting and double descent can be

reproduced and explained with simple linear models.

We will also treat all of these phenomena collectively,

through a unifying notion of soft inductive biases. While

inductive biases are often thought of as restriction biases

Ð constraining the size of a hypothesis space for improved

data efficiency and generalization Ð there is no need for

restriction biases. Instead, we can embrace an arbitrarily

flexible hypothesis space, combined with soft biases that ex-

press a preference for certain solutions over others, without

entirely ruling out any solution, as illustrated in Figure 3.

Frameworks such as PAC-Bayes are entirely consistent with

this view of inductive biases, capable of producing non-

vacuous generalization bounds on models with even billions

of parameters, as long as these models have a prior prefer-

ence for certain solutions over others (Lotfi et al., 2024b).

Broadly speaking, a large hypothesis space, combined with

a preference for simple solutions, provides a provably useful

recipe for good performance, as in Figure 2.
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But in order to have good generalization, we must have a

prior bias towards certain types of solutions, even if we are

allowing for any type of solution. While the generalization

phenomena we discuss defy some conventional wisdom

around overfitting and notions of generalization such as

Rademacher complexity, as argued in Zhang et al. (2016;

2021), they are entirely aligned with this intuition.

It turns out these phenomena are also formally charac-

terized by generalization frameworks that have existed for

many decades, including PAC-Bayes (McAllester, 1999;

Guedj, 2019; Alquier et al., 2024) and simple countable

hypothesis bounds (Valiant, 1984; Shalev-Shwartz & Ben-

David, 2014). We introduce these frameworks in Section 3.1.

We then define effective dimensionality in Section 3.2 which

we will return to later in the paper for intuition. Finally we

introduce frameworks that do not describe these phenomena

in Section 3.3, but have greatly impacted the conventional

wisdom in thinking about generalization.

This section briefly introduces some definitions and general-

ization frameworks Ð preliminaries through which we will

examine generalization phenomena in later sections.

3.1. PAC-Bayes and countable hypothesis bounds

PAC-Bayes and countable hypothesis bounds provide a com-

pelling approach for large and even overparametrized mod-

els, since they are focused on which hypotheses are likely,

rather than merely the size of the hypothesis space (Catoni,

2007; Shalev-Shwartz & Ben-David, 2014; Dziugaite &

Roy, 2017; Arora et al., 2018b; PÂerez-Ortiz et al., 2021;

Lotfi et al., 2022a). They harmonize with the notion of soft

inductive biases in Section 2, which provide a mechanism

for achieving good generalization with an arbitrarily large

hypothesis space combined with preferences for certain so-

lutions over others independently of their fit to the data.

Theorem 3.1 (Countable Hypothesis Bound). Consider

a bounded risk R(h, x) ∈ [a, a + ∆], and a countable

hypothesis space h ∈ H for which we have a prior P (h).
Let the empirical risk R̂(h) = 1

n

∑n
i=1 R(h, xi) be a sum

over independent random variables R(h, xi) for a fixed

hypothesis h. Let R(h) = E[R̂(h)] be the expected risk.

Then, with probability at least 1− δ,

R(h) ≤ R̂(h) + ∆

√

log 1
P (h) + log 1

δ

2n
. (1)

This bound is related to the finite hypothesis bound, but

includes a prior P (h) and a countable rather than finite

hypothesis space (Ch 7.3, Shalev-Shwartz & Ben-David,

2014). We can think of the prior as a weighting function

that weights certain hypotheses more highly than others.

Importantly, we can use any prior to evaluate the bound: it

need not have generated the true hypothesis for the data,

contain the true hypothesis, or even be used by the model

that is trained to find some hypothesis h∗. If the model uses

a prior quite different from the prior used to evaluate Eq. (1),

then the bound will simply become loose. We including an

elementary proof of this bound in Appendix C.

We can derive informative bounds through a Solomonoff

prior P (h) ≤ 2−K(h|A) (Solomonoff, 1964) where K is

the prefix-free Kolmogorov complexity of h taking as input

model architecture A. Substituting this prior into Eq. (1),

expected risk
︷ ︸︸ ︷

R(h) ≤

empirical risk
︷ ︸︸ ︷

R̂(h) +

compression
︷ ︸︸ ︷

∆

√

K(h|A) log 2 + log 1
δ

2n
.

(2)

The prefix-free Kolmogorov complexity of hypothesis h,

K(h), is the length of the shortest program that produces

h for a fixed programming language (Kolmogorov, 1963).

While we cannot compute the shortest program, we can

absorb the architecture and any constant not determined by

the data into the prior, by working with K(h|A). We can

then convert from the prefix-free to standard Kolmogorov

complexity, to compute the upper bound

log 1/P (h) ≤ K(h|A) log 2 (3)

≤ C(h) log 2 + 2 logC(h) (4)

where C(h) is the number of bits required to represent hy-

pothesis h using some pre-specified coding. Therefore even

large models with many parameters that represent hypothe-

ses with a low empirical risk and a small compressed size

can achieve strong generalization guarantees.

PAC-Bayes bounds can further reduce the number of bits

required from log2
1

P (h) to KL(Q ∥ P ) by considering a

distribution of desirable solutions Q. If we are agnostic

to the specific element of Q we sample, we can recover

bits that could then be used to encode a different message.

Since PAC-Bayes bounds with a point-mass posterior Q can

recover a bound similar to Eq. (1) (Lotfi et al., 2022b), we

will sometimes refer to both bounds as PAC-Bayes. We also

note that marginal likelihood, which is the probability of

generating the training data from the model prior, directly

corresponds to a PAC-Bayes bound (Germain et al., 2016;

Lotfi et al., 2022b).

These generalization frameworks have been adapted to pro-

vide non-vacuous generalization guarantees on models that

have millions, or even billions, of parameters. They ap-

ply to deterministically trained models, and have also been

adapted to LLMs, to accommodate the unbounded bits-per-

dimension (nats-per-token) loss, stochastic training, and

dependence across tokens (Lotfi et al., 2023; 2024b; Finzi

et al., 2025). Moreover, computing these bounds is straight-

forward. For example: (i) train a model to find hypothesis
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h∗, using any optimizer; (ii) measure the empirical risk

R̂(h∗) (e.g., training loss); (iii) measure the filesize of the

stored model for C(h∗); (iv) substitute Eq. (4) into Eq. (2).

In words, we can interpret these generalization bounds as:

Expected Risk ≤ Empirical Risk + Model Compressibility

where compressibility provides a formalization of complex-

ity. In Figure 2, adapted from Lotfi et al. (2023), we vi-

sualize how each term contributes to the bound. This rep-

resentation of the bounds also provides a prescription for

building general-purpose learners: combine a flexible hy-

pothesis space with a bias for low Kolmogorov complexity.

A flexible model will be able to achieve low empirical risk

(training loss) on a wide variety of datasets. Being able

to compress these models will then provably lead to good

generalization. Goldblum et al. (2024) show that neural

networks, especially large transformers, tend to be biased

towards low Kolmogorov complexity, and so is the distribu-

tion over real-world data. For this reason, a single model

can achieve good generalization over many real-world prob-

lems.

Indeed, even within a maximally flexible hypothesis space

consisting of all possible programs, if we choose a hypoth-

esis that fits the data well and has low complexity then we

will be guaranteed to generalize by the countable hypothesis

bound in Eq. (1). We can relate this insight to Solomonoff

induction, which provides a maximally overparametrized

procedure, with no limit on the complexity or number of

parameters a hypothesis can have, but formalizes an ideal

learning system (Solomonoff, 1964; Hutter, 2000). By as-

signing exponentially higher weights to simpler (shorter)

programs, Solomonoff induction ensures that even though

the hypothesis space is enormous, the chosen hypothesis

will be simple if it fits the data well.

In general, there are common misconceptions about PAC-

Bayes and countable-hypothesis bounds. For example,

they do apply to models with deterministic parameters,

rather than only distributions over parameters. Moreover,

recent bounds become tighter, not looser, with larger models.

We discuss several misconceptions in Appendix A. It is also

worth noting that these bounds are not only non-vacuous for

large neural networks, but also can be surprisingly tight. For

example, Lotfi et al. (2022a) upper bound the classification

error of a model with millions of parameters on CIFAR-

10 at 16.6% with at least 95% probability, which is fairly

respectable performance on this benchmark.

3.2. Effective Dimensionality

Effective dimensionality provides a useful intuition for ex-

plaining generalization phenomena. The effective dimen-

sionality of a matrix A is Neff(A) =
∑

i
λi

λi+α
, where λi

are the eigenvalues of A, and α is a regularization parameter.

The effective dimensionality measures the number of rela-

tively large eigenvalues. The effective dimensionality of the

Hessian of the loss, evaluated for parameters w, measures

the number of sharp directions in the loss landscape Ð the

number of parameters determined from the data.

Solutions with lower effective dimensionality are flatter,

meaning that the associated parameters can be perturbed

without significantly increasing the loss. Flatness is not the

only factor influencing generalization, and flatness as mea-

sured by the Hessian is not parametrization invariant (like

SGD, ℓ2 regularization, and many standard procedures),

meaning it is easy to find and construct examples where

flatter solutions do not generalize better (e.g., Dinh et al.,

2017). On the other hand, the connection between flatness

and generalization is not a spurious empirical association.

We have a mechanistic understanding of why flatness can

lead to better generalization: flatter solutions are more com-

pressible, have better Occam factors, tend to lead to wider

decision boundaries, and tighter generalization bounds (Hin-

ton & Van Camp, 1993; Hochreiter & Schmidhuber, 1997;

MacKay, 2003; Keskar et al., 2016; Izmailov et al., 2018;

Foret et al., 2020; Maddox et al., 2020).

Like Rademacher complexity, the effective dimension is not

a generalization bound in itself, but it is an intuitive quantity

that can be formally incorporated into generalization bounds

(MacKay, 2003; Dziugaite & Roy, 2017; Maddox et al.,

2020; Jiang et al., 2019). It is also closely related to other

concepts that frequently arise in explaining generalization

phenomena, such as the effective rank of a model (Bartlett

et al., 2020), and sloppy models (Quinn et al., 2022).

We will often return to effective dimensionality for intuition

when discussing generalization phenomena.

3.3. Other Generalization Frameworks

Rademacher complexity (Bartlett & Mendelson, 2002) ex-

actly measures the ability for a model to fit uniform

{+1,−1} random noise. Similarly, the VC dimension (Vap-

nik et al., 1994) measures the largest integer d such that the

hypothesis space H can fit (ªshatterº) any set of d points

with {+1,−1} labels. The fat-shattering dimension (Alon

et al., 1997) fatγ(H) refines the VC dimension to fitting

(ªshatteringº) labels by some margin γ. Unlike PAC-Bayes,

all of these frameworks penalize the size of the overall hy-

pothesis space H, suggesting a prescription for restriction

biases, rather than the soft inductive biases of Section 2.

We discuss these frameworks further in Appendix B, with a

comparative summary in Table 1.

4. Benign Overfitting

Benign overfitting describes the ability for a model to fit

noise with no loss, but still generalize well on structured
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data. It shows that a model can be capable of overfitting

data, but won’t tend to overfit structured data. The paper

understanding deep learning requires re-thinking general-

ization (Zhang et al., 2016) drew significant attention to this

phenomenon by showing that convolutional neural networks

could fit images with random labels, but generalize well on

structured image recognition problems such as CIFAR. The

result was presented as contradicting what we know about

generalization, based on frameworks such as VC dimen-

sion and Rademacher complexity, and distinct to neural

networks. The authors conclude with the claim: ªWe argue

that we have yet to discover a precise formal measure under

which these enormous models are simple.º Five years later,

the authors maintain the same position, with an extended

paper entitled understanding deep learning (still) requires

re-thinking generalization (Zhang et al., 2021). Similarly,

Bartlett et al. (2020) note ªthe phenomenon of benign over-

fitting is one of the key mysteries uncovered by deep learning

methodology: deep neural networks seem to predict well,

even with a perfect fit to noisy training data.º

However, benign overfitting behaviour can be reproduced

with other model classes, can be understood intuitively, and

is described by rigorous frameworks for characterizing gen-

eralization that have existed for decades.

Intuition. Intuitively, in order to reproduce benign over-

fitting, we just need a flexible hypothesis space, combined

with a loss function that demands we fit the data, and a

simplicity bias: amongst solutions that are consistent with

the data (i.e., fit the data perfectly), the simpler ones are pre-

ferred. For a moment, consider regression, and the simple

polynomial model with order-dependent regularization in

Section 2. In our likelihood, we will drive σ to a small value,

so the model will prioritize fitting the data (squared error is

multiplied by a large number). However, the model strongly

prefers using the lower order terms, since the norms of co-

efficients are increasingly penalized with the order of the

coefficient. Simple structured data will be fit with simple

structured compressible functions that will generalize, but

the model will adapt its complexity as needed to fit the data,

including pure noise, as shown in Figure 1 (top). In other

words, if understanding deep learning requires rethinking

generalization, then understanding this simple polynomial

does too, for this polynomial exhibits benign overfitting!

Formal generalization frameworks. Benign overfitting

is also characterized by PAC-Bayes and countable hypothe-

sis bounds, which are formal and long-standing frameworks

for characterizing generalization. We can evaluate these

bounds for neural networks that exhibit benign overfitting,

providing non-vacuous generalization guarantees (Dziugaite

& Roy, 2017; Zhou et al., 2018; Lotfi et al., 2022a). More-

over, as we describe in Section 3, these generalization frame-

works can precisely define how large neural networks are

simple, through Kolmogorov complexity. In fact, larger

neural networks often have an even stronger bias for low

Kolmogorov complexity solutions (Goldblum et al., 2024).

Mix of signal and noise. The ability to fit a mix of signal

and noise, but still achieve respectable generalization, can

also be reproduced and is characterized by the generaliza-

tion frameworks in Section 3.1. In particular, we can exactly

reproduce the mixed noisy-label experiment in Zhang et al.

(2021) for CIFAR-10 in Figure 1(d)(e), following Wilson

& Izmailov (2020). Here a Gaussian process (GP) is fit

to CIFAR-10 with no training error but increasing num-

bers of altered labels. Generalization is reasonable, and

steadily degrades with increasing numbers of altered labels.

Importantly, both the GP and ResNet marginal likelihoods

decrease, and the marginal likelihood directly aligns with

PAC-Bayes generalization bounds (Germain et al., 2016).

Research on benign overfitting. There is by now a large

body of work studying and reproducing benign overfitting

with other model classes. Yet the conventional wisdom of

benign overfitting as a mysterious and deep learning specific

phenomenon, one that still requires rethinking generaliza-

tion, persists. It is not our intention, nor would it be possible,

to cover all of this work here, but we note some of the key

developments. Dziugaite & Roy (2017) show non-vacuous

and vacuous PAC-Bayes bounds for neural networks trained

on structured and noisy MNIST, respectively. Smith & Le

(2018) demonstrate benign overfitting for logistic regression

on MNIST, interpreting the results using Bayesian Occam

factors (MacKay, 2003). Several studies analyze two-layer

networks (e.g., Cao et al., 2022; Kou et al., 2023). Wilson &

Izmailov (2020) exactly reproduce the experiments in Zhang

et al. (2016) with Gaussian processes and Bayesian neural

networks, and explain the results using marginal likelihood.

Bartlett et al. (2020) show that linear regression models

can reproduce benign overfitting. They understand this phe-

nomenon by studying the rank of the data covariance matrix,

and minimum-norm least squares solutions, related to how

Maddox et al. (2020) explain double descent through effec-

tive dimensionality. We will return to this reasoning in the

next sections on overparametrization and double descent.

Conclusion. Understanding deep learning (still) requires

rethinking generalization (Zhang et al., 2021) proposes the

test: ªFor any purported measure of generalization, we can

now compare how it fares on the natural data versus the

randomized data. If it turns out to be the same in both cases,

it could not possibly be a good measure of generalization for

it cannot even distinguish learning from natural data (where

generalization is possible) from learning on randomized

data (where no generalization is possible).º PAC-Bayes and

the countable hypothesis bounds clearly pass this test, and
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show that overparametrized least-squares models increas-

ingly favour small-norm solutions with low effective rank

(more in Section 6). As we increase the number of parame-

ters, we can also exponentially increase the volume of flat

solutions in the loss landscape, making them more easily ac-

cessible (Huang et al., 2019), which is empirically supported

by larger models having smaller effective dimensionality

(Maddox et al., 2020). This also helps explain why the im-

plicit biases of stochastic optimization, contrary to common

belief, are not necessary for generalization in deep learning:

even though some parameter settings overfit the data, they

are vastly outnumbered in volume by the parameter settings

that fit the data well and also generalize well. Indeed, Geip-

ing et al. (2021) found that full-batch gradient descent could

perform nearly as well as SGD for training large residual

networks, and Chiang et al. (2022) further showed that even

guess and check Ð randomly sampling parameter vectors

and stopping once a low-loss solution was found Ð can

provide competitive generalization with stochastic training.

There is often a perceived tension between flexibility and

inductive biases, with the assumption that more flexible

models must have weaker inductive biases. But as we have

seen, not only is there not necessarily a trade-off between

flexibility and inductive biases, the larger and more flexi-

ble models often have stronger inductive biases, which we

illustrate in Figure 6.

6. Double Descent

Double descent typically refers to generalization error (or

loss) that decreases, then increases, then again decreases,

with increases in the number of model parameters. The

training loss is typically close to zero near the beginning of

the second descent. The first decrease and then increase cor-

responds to a ªclassical regimeº, where the model initially

captures more useful structure in the data, improving gen-

eralization, but then begins to overfit the data. The second

descent, which gives rise to the name ªdouble descentº, is

referred to as the ªmodern interpolating regimeº.

Double descent was introduced to the modern machine learn-

ing community by Belkin et al. (2019), and prominently

studied for deep neural networks in Nakkiran et al. (2020).

It is often considered one of the great mysteries of deep

learning, with the second descent challenging the conven-

tional wisdom around generalization. If increasing model

flexibility is leading to overfitting in the classical regime,

how can further increasing flexibility alleviate overfitting?

Belkin et al. (2019) even speculates on reasons for the ªhis-

torical absenceº of double descent.

But double descent is hardly a modern deep learning phe-

nomenon. The original introduction of double descent sur-

prisingly dates back three decades earlier, at least to Opper

et al. (1989), and was also presented in Opper et al. (1990),

LeCun et al. (1991), and BÈos et al. (1993). It can also be

understood and reproduced using other model classes. In

fact, the Belkin et al. (2019) paper itself demonstrates dou-

ble descent with random forests and random feature models

in addition to two-layer fully-connected neural networks.

Double descent can also be understood. As the number

of parameters grows, initially the ability to fit the data im-

proves, and the learned parameters have higher effective

dimensionality (Section 3.2). Once the number of param-

eters has increased to the point we are choosing between

parameter settings that all achieve a perfect data fit, the value

of the loss is no longer the deciding factor of which param-

eters are selected. As we continue to increase the number

of parameters, the volume of flat solutions grows, making

these solutions more discoverable during training. The ef-

fective dimensionality of the solutions will thus decrease,

and generalization will improve.

This explanation applies to linear models and neural net-

works alike, but we can gain additional insight with linear

models. Suppose we have Xw = y, where X is an n × d
matrix of features, w represents d parameters, and y are the

n datapoints. Once d > n, the model can interpolate the

data perfectly with infinitely many parameter settings w. As

d continues to increase, the number of undetermined param-

eters, and flat directions in the loss, increases. The least

squares solution w∗ = (X⊤X)−1X⊤y. For d > n there

are at most n non-zero eigenvalues of the Hessian X⊤X .

As d continues to increase, the signal will get spread out

across more parameters, causing individual parameters to be

less strongly determined and the effective dimensionality to

decrease. Alternatively, w∗ provides the minimum ℓ2 norm

solution, favouring simpler models that rely primarily on

the most informative directions in feature space (Bartlett

et al., 2020). As with benign overfitting, these notions of

simplicity can be formally characterized using countable

hypothesis or PAC-Bayes bounds.

Following Maddox et al. (2020), in Figure 1 (bottom) we

show double descent for a ResNet-18 and a linear model.

For the ResNet we show cross-entropy loss on CIFAR-100

as we increase the width of each layer. We show mean-

squared error for the linear model, which uses the weakly

informative features y + ϵ, where ϵ ∼ N (0, 1). Both follow

a similar trend: effective dimensionality increases up to the

interpolation regime, and then decreases, at which point

generalization and effective dimensionality are aligned.

It is also possible to track double descent with formal PAC-

Bayes bounds, as in Lotfi et al. (2022a, Figure 7). In the

second descent, larger models achieve similar empirical risk,

but can be more compressible.
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7. Alternative Views

The alternative view is that benign overfitting, double de-

scent, and overparametrization, are largely modern deep

learning phenomena that require rethinking generalization.

How did this alternative view (which is quite mainstream!)

arise in the first place?

The bias-variance trade-off decomposes expected gener-

alization loss into the expected data fit (the bias) and the

expected square difference between fits (the variance), over

the data generating distribution. Constrained models tend to

have high bias and low variance, and unconstrained models

tend to have low bias and high variance, suggesting the ªU

shapedº curve in the classical regime of double descent.

Accordingly, textbooks do indeed warn ªa model with zero

training error is overfit to the training data and will typically

generalize poorlyº (Hastie et al., 2017). But ªtrade-offº is

a misnomer: models such as our order-dependent polyno-

mial in Section 2, or ensembles (Bishop, 2006; Wilson &

Izmailov, 2020), can have low bias and low variance.

Rademacher complexity, which measures the ability for

a function class to fit uniform ±1 labels, will not lead to

meaningful generalization bounds for models that perform

benign overfitting. Similar reasoning applies to VC and

fat-shattering dimensions. But even in the more recent retro-

spective ª...still requires re-thinking generalizationº (Zhang

et al., 2021) there is only a single sentence on PAC-Bayes:

ªwhere the learning algorithm is allowed to output a distri-

bution over parameters, new generalization bounds were

also derivedº. As we discussed in Section 3, PAC-Bayes

and countable hypothesis bounds can apply to deterministi-

cally trained models. They additionally provide a rigorous

conceptual understanding of this generalization behaviour,

and have existed for many decades. The basic idea behind

the bounds is even described in well-known textbooks, for

example Shalev-Shwartz & Ben-David (2014, Chapter 7.3).

However, these frameworks must not have been broadly

known or internalized, and the deterministic variants as non-

vacuous bounds on large networks became more visible

somewhat later, for example in Lotfi et al. (2022a).

The implicit regularization of neural networks differs,

for instance, from our running example of a large polyno-

mial with order-dependent regularization. However, both

types of regularization are examples of soft inductive biases,

and we have discussed how increasing the size of a neural

network can increase its implicit regularization. Moreover,

this implicit regularization is reflected in the generalization

frameworks of Section 3, and characterized by quantities

such as effective dimension. Implicit regularization is also

not specific to neural networks, and applies to our random

feature linear model in Section 6. Moreover, contrary to con-

ventional wisdom, the implicit regularization of stochastic

optimizers is not likely to play a major role in deep learning

generalization, as discussed in Section 5. On the other hand,

we are still in the early stages of understanding precisely

how and why scale and other factors influence the implicit

regularization in neural networks.

Overall, these phenomena are certainly intriguing and wor-

thy of (further) study. But they are not indescribable by

every known generalization framework, nor are they spe-

cific to deep learning, as is so often claimed.

8. What is Different or Mysterious?

If these phenomena aren’t distinct to deep neural networks,

then what is?

Deep neural networks are certainly different from other

model classes, and in many ways they are not well under-

stood. Their empirical performance alone sets them apart.

Indeed, the substantial disparity in performance between

deep convolutional neural networks and the next leading

approaches on ImageNet is responsible for renewed interest

in (and the subsequence dominance of) this model class

(Krizhevsky et al., 2012). But if they are not in fact dis-

tinguished by overparametrization, benign overfitting, or

double descent, what does make these models different?

To conclude, we briefly highlight some, but surely not all,

particularly salient properties and generalization behaviours

that are relatively distinctive to neural networks.

8.1. Representation Learning

Representation learning is largely what sets neural networks

apart from other model classes. What does representation

learning actually mean?

Most model classes can be expressed as an inner product

of parameters w and basis functions ϕ: f(x,w) = w⊤ϕ(x).
While the function class may be highly flexible (in some

cases more so than any neural network we can fit in mem-

ory) (Williams & Rasmussen, 2006), and the basis functions

non-linear, the basis functions typically are a priori fixed.

For example, we may be using a polynomial basis, Fourier

basis, or radial basis. Beyond possibly a few hyperparam-

eters, such as the width of a radial basis, the basis func-

tions do not typically have many of their own parameters

that are learned from data. Neural networks, by contrast,

specify an adaptive basis: f(x,w) = w⊤ϕ(x, v) where v
are a relatively large set of parameters to be learned (the

weights of the neural network) that significantly control

the shape of the basis functions, typically through a hierar-

chical formulation involving successive matrix multiplica-

tions passed through pointwise non-linearities σ: f(x,w) =
Wp+1σ(Wp . . . σ(W2σ(W1x)) . . . ). Here, ϕ(x, v) =
σ(Wp . . . σ(W2σ(W1x)) . . . ), and v = W1, . . . ,Wp.
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At first glance, it may seem unnecessary to learn basis func-

tions. After all, as we saw in Section 5, we can achieve as

much flexibility as we need Ð universal approximators Ð

with fixed basis functions, through kernels. But by learning

the basis functions, we are effectively learning the kernel Ð

a similarity metric for our particular problem. Being able

to learn a similarity metric is profoundly important for high

dimensional natural signals (images, audio, text, . . . ), where

standard notions of similarity, such as Euclidean distance,

break down. This notion of representation learning as simi-

larity learning transcends the standard basis function view of

modelling. For example, it also applies to procedures such

as k-nearest neighbours (knn), where performance hinges

on choosing a fixed distance measure, which ideally could

instead be learned.1

To consider a simple example of representation learning,

suppose we wish to predict the orientation angle of a face.

Faces with similar orientation angles may have very differ-

ent Euclidean distances of their pixel intensities. But the

internal representation of a neural network can learn that,

for the task at hand, they should be represented similarly. In

other words, the Euclidean distances between deep layers,

rather than raw inputs, for faces with similar orientation

angles will be similar. This ability to learn similarity met-

rics is necessary for extrapolation Ð making predictions far

away from the data. Euclidean distances on the raw inputs

is perfectly fine if we have enough datapoints distributed

densely enough for interpolation to work well: if we have

many examples of 59 and 61 degree rotations, interpolation

will work reasonably well for predicting a 60 degree rota-

tion. But through representation learning, a neural network

will be able to accurately predict a 60 degree rotation from

having seen only distant angles (Wilson et al., 2016).

Representation learning, however, is not unique to neural

networks. It’s not uncommon to see claims about what

neural networks can do that kernel methods cannot (e.g.,

Allen-Zhu & Li, 2023). Nearly always these contrasts are

implicitly assuming that the kernel is fixed. But in fact ker-

nel learning is a rich area of research (Bach et al., 2004;

GÈonen & Alpaydın, 2011; Wilson & Adams, 2013; Wilson

et al., 2016; Belkin et al., 2018; Yang & Hu, 2020). And

there is no need to view kernel methods and neural net-

works as competing. In fact, they are highly complementary.

Kernel methods provide a mechanism to use models with

an infinite number of basis functions, and neural networks

provide a mechanism for adaptive basis functions. There

is no reason we cannot have infinitely many adaptive basis

functions! Deep kernel learning (Wilson et al., 2016) pre-

cisely provides this bridge, and was initially demonstrated

on the very orientation angle problem we considered here.

1While k-nearest neighbours could be derived from a basis
function view, it’s not the most natural interpretation.

This approach has recently seen a resurgence of interest

for epistemic uncertainty representation that only requires a

single forward pass through the network.

Neural networks are also not the only way to do representa-

tion learning. In low-dimensional spaces, for example, it can

be effective to interpolate on spectral densities (learning the

salient frequencies of the data) as a mechanism for kernel

learning (Wilson & Adams, 2013; Benton et al., 2019).

But neural networks are a relatively efficient way to learn

adaptive basis functions, especially in high dimensions. It’s

not entirely clear why, either. Not only do neural networks

learn a notion of distance, this distance measure changes

depending on where we are in input space x Ð it is non-

stationary. Non-stationary metric learning is notoriously

difficult without making certain assumptions that are well-

aligned with data (Wilson & Adams, 2013). Fundamentally,

neural networks provide hierarchical representations for

data, and these hierarchies are often a natural representa-

tion of real-world problems. As we will discuss in the next

Section 8.2, they also provide a strong bias for low Kol-

mogorov complexity that could align well with natural data

distributions.

8.2. Universal Learning

Historically, the conventional wisdom is to build specialized

learners with assumptions constrained to specific problem

settings. For example, if we are modelling molecules, we

could hard-code rotation invariance Ð and talk with do-

main experts to understand the other constraints we want

to impose on our model. This approach is often motivated

from the no free lunch theorems (Wolpert, 1996; Wolpert

& Macready, 1997; Shalev-Shwartz & Ben-David, 2014),

which say that every model is equally good in expectation

over all datasets drawn uniformly. These theorems typically

imply that if a model performs well on one problem, it has

to perform poorly on other problems, leading to the desire

for highly tailored assumptions.

However, developments in deep learning have run exactly

contrary to this conventional wisdom! We have seen a con-

fluence of models Ð a move from hand-crafted feature

engineering (SWIFT, HOG, etc.), to neural networks spe-

cialized to particular domains (CNNs for vision, RNNs for

sequences, MLPs for tabular data, . . . ), to transformers for

everything. This result can be explained by both neural

networks models, and the distribution of naturally occur-

ring data (rather than data sampled uniformly), having a

bias for low Kolmogorov complexity. Surprisingly, even

models designed for specific domains, such as convolutional

neural networks for image recognition, provably have in-

ductive biases for completely different modalities of data,

such as tabular data, due to this bias (Goldblum et al., 2024).

Starting with a neural network trained on one problem, it
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reproducible using other model classes, and intuitively un-

derstandable. Going forward, we hope we can help bring

different communities closer together, so that a variety of

perspectives and generalization frameworks are less at risk

of being overlooked.

Grokking and scaling laws are other phenomena of recent in-

terest, similarly fascinating and worth understanding further.

But unlike the phenomena we consider in this paper, they

are not typically presented as evidence we need to re-think

generalization frameworks, or as deep learning phenom-

ena. And indeed, it is being shown that scaling laws and

grokking apply to linear models (Lin et al., 2024; Atanasov

et al., 2024; Miller et al., 2023; Levi et al., 2023). Impor-

tantly, PAC-Bayes and countable hypothesis bounds are also

consistent with large LLMs, as we saw in Figure 2, and re-

cent work even shows that these bounds describe Chinchilla

scaling laws (Finzi et al., 2025).

What is the role of the optimizer in deep learning gener-

alization? There is a conventional wisdom that the green

and pink colours in Figure 6 are essentially inverted, and

that the main reason deep learning works is because the

implicit biases of stochastic optimizers cause them to tra-

verse a relatively small subspace of low loss solutions with

good generalization. However, it has been shown that not

only full batch gradient descent, but even guess and check,

stopping when the loss falls below a threshold, can find solu-

tions with similar generalization as stochastic optimization

(Geiping et al., 2021; Chiang et al., 2022), in alignment

with Figure 6 (right). While in principle it is possible for

an optimizer to still find bad optima under such a loss land-

scape, it would have to be actively adversarial. Far from

adversarial, stochastic optimization has biases that can in-

deed improve generalization. But, importantly, these biases

are not necessary for respectable generalization. Of course,

stochastic optimization is much more computationally prac-

tical than the alternatives. No one is suggesting we use

guess and check! Moreover, developing optimizers which

generalize better under a given computational budget is a

particularly exciting research direction, especially with re-

cent results showing the rise of second-order optimizers

(Liu et al., 2025; Vyas et al., 2024). Finally, the general-

ization bounds of Section 3.1 can be evaluated regardless

of whether the model uses stochastic optimization, and in-

deed these bounds track the benign overfitting behaviour of

Gaussian processes, which perform Bayesian inference.

What is the relationship between structural risk min-

imization and soft inductive biases? SRM is a way to

encode a soft inductive bias, but is more narrowly focused,

and often differently motivated. SRM is often used as a

mechanism to reduce VC dimension, trading off data fit

with model complexity. It is not typically used as a pre-

scription for arbitrarily flexible models, and indeed model

selection tools with priors corresponding to standard ℓ2 regu-

larization suggest we should use intermediate order models

(Bishop, 2006). A key point in our paper is that we can

embrace models that fit data perfectly (including noise) but

still have a bias for simplicity. Other ways of implementing

soft inductive biases include overparametrization, Bayesian

priors and marginalization, the optimizer, and architectural

specification.

How can we better understand generalization in deep

learning? There are many fascinating open questions in

deep learning generalization. As an approach, we believe it

is promising to analyze the solutions neural networks actu-

ally reach to explain their behaviours. The generalization

bounds of Section 3.1 are fully empirical, non-asymptotic,

and can be evaluated using a single sample. We view be-

ing able to empirically evaluate the bounds as essential in

determining how much of the empirical model behaviour

is actually explained by the theory. We have found the

Solomonoff prior particularly useful for evaluating descrip-

tive generalization bounds. Solomonoff induction uses a

maximally overparametrized model, containing every pos-

sible program, but formalizes an ideal learning system that

assigns exponentially higher weights to shorter programs. In

the future, it would be enlightening to investigate properties

of priors that may lead to tighter bounds, ever more closely

describing deep learning generalization.
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A. Common Misconceptions about PAC-Bayes

There are several common misconceptions about PAC-

Bayes and countable hypothesis bounds.

Misconception: PAC-Bayes only applies to stochastic net-

works, rather than the deterministically trained networks

we use in practice, since it characterizes the expected gen-

eralization of a posterior sample. However, the posterior

need not be the Bayes posterior, and we can evaluate the

PAC-Bayes bound with a point-mass posterior and a discrete

hypothesis space: using the relative entropy definition of

the KL divergence, KL(Q ∥ P ) = H(Q,P ) − H(Q), the

cross-entropy H(Q,P ) becomes log2
1

P (h) and the entropy

H(Q) or ªsurpriseº in seeing a sample from a point mass

Q is zero, recovering a bound very similar to the countable

hypothesis bound. Alternatively, the countable hypothesis

bound directly applies to deterministically trained models.

Misconception: the countable hypothesis bound doesn’t

apply to models with continuous parameters. The neu-

ral networks we use are in fact programs on a computer,

and therefore must represent a finite hypothesis space. The

weights can only take a finite number of values determined

by the precision, such as floating point. There is a related

misconception that the countable hypothesis bounds must

then be loose because there are many hypotheses repre-

sented by floating point neural network parameter values.

However, the form of the bounds makes clear that we should

avoid strictly measuring the number of hypotheses and in-

stead understand generalization from the perspective of

which hypotheses are a priori likely. Indeed, these bounds

can be tighter for larger models representing more hypothe-

ses (Lotfi et al., 2024a).

Misconception: these bounds become loose as we in-

crease the number of parameters. While many bounds,

including some PAC-Bayes bounds, do have parameter

counting terms (Jiang et al., 2019), this is not true of all

PAC-Bayes or countable hypothesis bounds. Indeed, re-

cent bounds can become tighter with increasing numbers

of model parameters (Lotfi et al., 2022a; 2024a;b) because

larger models can have a stronger compression bias, leading

to a decreased complexity penalty in the bound.

Misconception: tight neural network bounds are for un-

realistic model compressions. There is a form of bound,

referred to as a compression bound, which bounds the gen-

eralization of a model whose parameters have been com-

pressed into a lower-dimensional space. It is true that this ap-

proach had early success in achieving non-vacuous bounds

for larger neural networks on larger datasets (Zhou et al.,

2018; Lotfi et al., 2022a). However, there are a few miscon-

ceptions to address: (1) the compression techniques used,

such as forming linear subspaces of the parameter space,

famously perform often nearly as well as the original model

(Li et al., 2018). The bounds are often describing a model

that is practically compelling, rather than an unrealistic

model reduction; (2) the ability to compress larger neu-

ral networks into lower dimensional subspaces is informa-

tive about generalization; (3) the more recent non-vacuous

bounds are not compression bounds, such as the bounds on

billion parameter LLMs in Lotfi et al. (2024b) and Finzi

et al. (2025).

Misconception: Kolmogorov complexity is not com-

putable and so generalization bounds based on a

Solomonoff prior cannot be evaluated. The prefix-free

Kolmogorov complexity K(h) represents the shortest pro-

gram in bits to represent h using some pre-specified coding.

While we cannot compute the shortest program, we can

upper bound the shortest program by the stored filesize of

the model and a constant given by terms that do not depend

on the data, such as the size of the (e.g., Python) script

we use to load and run the model. We can absorb these

constant terms that do not depend on the data, represented

by A, into the Solomonoff prior, by working with K(h|A).
We can then in turn upper bound the non prefix-free (stan-

dard) Kolmogorov complexity C (conditioned on A) by the

stored filesize of the trained model to compute informative

generalization bounds.

Incidentally, a profound property of Kolmogorov complex-

ity is that it measures the absolute information independently

of the programming language or Universal Turing Machine

used. We can write a compiler that translates the code of

one language to another without reference to any partic-

ular strings. In particular, the invariance theorem upper

bounds the difference in Kolmogorov complexity under any

two Universal Turing Machines by the shortest possible

compiler (Kolmogorov, 1965; Li & VitÂanyi, 2008). Such

a compiler would typically be at most on the order of kilo-

bytes, which is negligible compared to typical ML datasets

which can be terabytes.

Misconception: the bounds only hold if the prior P (h)
is not misspecified. The bound does not require that the

prior be used to generate the correct hypothesis, or con-

tain the hypothesis, or even be used by the model we are

bounding. It simply provides a mechanism to compute the

bound. If, for example, the prior used in the bound favours

simple solutions, and the model has a prior that favours

complex solutions, we will merely have a looser bound. The

assumptions of the bound apply to the models we are us-

ing in practice, including, for instance, the CIFAR benign

overfitting experiments of Zhang et al. (2016).

B. Other Generalization Frameworks

Rademacher complexity (Bartlett & Mendelson, 2002) ex-

actly measures the ability for a model to fit uniform
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{+1,−1} random noise. In particular, the Rademacher

complexity of a hypothesis space H and an input sample

{xi, . . . , xn} is R(H) = Eσ

[
suph∈H

1
n

∑n
i=1 σih(xi)

]
,

where σi are i.i.d. Rademacher random variables ({+1,−1}
with equal probability). The expected risk of a hypothesis

h is then bounded as R(h) ≤ R̂(h) + 2R(H) + C, where

C is a constant defined by the loss function, n, and the

confidence 1− δ of the bound. Thus, if the model has a hy-

pothesis space H that can fit the Rademacher noise, then the

Rademacher generalization bound will be uninformative.

Similarly, the VC dimension (Vapnik et al., 1994) measures

the largest integer d such that the hypothesis space H can

fit (ªshatterº) any set of d points with {+1,−1} labels (e.g.,

classify these points in all 2d possible ways). If the VC

dimension H is d, then the expected generalization error is

bounded as R(h) ≤ R̂(h) + O

(√
d log(n)

n

)

. Thus, mod-

els with large hypothesis spaces have uninformative VC

generalization bounds.

The fat-shattering dimension (Alon et al., 1997) fatγ(H)
refines the VC dimension to fitting (ªshatteringº) labels by

some margin γ (or the function having all possible values

within some range [yi − γ, yi + γ] for each target yi). The

fat-shattering dimension is closely related to Rademacher

complexity: R(H) ≤ cγ
√

fatγ(H)
n

. We can bound expected

generalization as R(h) ≤ R̂(h) + O

(√
fatγ(H) log(n)

n

)

.

With larger γ, the fat-shattering dimension d will decrease,

as the constraints are harder to satisfy. The ability to fit

noise, and a flexible hypothesis space, can be explained

by the fat-shattering dimension if the model can only fit

noise with small but not larger γ; however, the fat-shattering

dimension is in general difficult to compute for arbitrary

neural networks.

We provide a comparative summary of different generaliza-

tion bounds in Table 1.

C. Countable Hypothesis Bound

Theorem C.1. Consider a bounded risk R(h, xi) ∈ [a, a+
∆] and a countable hypothesis space h ∈ H for which we

have a prior P (h) that does not depend on {xi}. Let the

empirical risk R̂(h) = 1
n

∑n
i=1 R(h, xi) be a sum over in-

dependent random variables R(h, xi) for a fixed hypothesis

h. Let R(h) = E[R̂(h)] be the expected risk.

With probability at least 1− δ:

R(h) ≤ R̂(h) + ∆

√

log 1/P (h) + log 1/δ

2m
. (5)

Proof (Lotfi et al., 2024a). As mR̂(h) is the sum of inde-

pendent and bounded random variables, we can apply Ho-

effding’s inequality (Hoeffding, 1994) for a given choice of

h. For any t > 0

P (R(h) ≥ R̂(h) + t) = P (nR(h) ≥ nR̂(h) + nt)

P (R(h) ≥ R̂(h) + t) ≤ exp (−2nt2/∆2).

We will choose t(h) differently for each hypothesis h ac-

cording to

exp (−2nt(h)2/∆2) = P (h)δ.

Solving for t(h), we have

t(h) = ∆

√

log 1/P (h) + log 1/δ

2n
(6)

This bound holds for a fixed hypothesis h. However, for

an h∗({x}) constructed using the training data, the random

variable

R̂(h∗) =
1

n

n∑

i=1

R(h∗({x}), xi),

cannot be decomposed as a sum of independent random

variables. Since h∗ ∈ H, if we can bound the probability

that R(h) ≥ R̂(h) + t(h) for any h, then the bound also

holds for h∗.

Applying a union over the events
⋃

h∈H

[
R(h) ≥ R̂(h) +

t(h)
]
, we have

P (R(h∗) ≥ R̂(h∗) + t(h∗)) ≤ P
( ⋃

h∈H

[
R(h) ≥ R̂(h) + t(h)

])

≤
∑

h∈H

P
(
R(h) ≥ R̂(h) + t(h)

)

≤
∑

h∈H

P (h)δ = δ.

Therefore we conclude that for any h (dependent on x or

not), with probability at least 1− δ,

R(h) ≤ R̂(h) + ∆

√

log 1/P (h) + log 1/δ

2n
.
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Table 1. Summary of Generalization Bounds

Bound Type Measure Generalization Bound Introduced Interpretation

Rademacher Rn(H) R(h) ≤ RS(h) + 2Rn(H) + 3

√

log(2/δ)
2n 2000s Measures expected maximum correlation any h ∈ H can achieve with

uniform {+1,−1} samples. Does not explain overparametrization,

benign overfitting, or double descent.

VC Dimension d R(h) ≤ R̂(h) + O

(

√

d log(n)
n

)

1990s Measures number d uniform {+1,−1} samples any h can fit. Does

not explain overparametrization, benign overfitting, or double descent.

Fat Shattering fatγ(H) R(h) ≤ R̂(h) + O

(
√

fatγ (H) log(n)

n

)

1990s Refines VC for real-valued functions and margin γ. Possibly describes

benign overfitting for larger γ, but can be hard to evaluate.

PAC-Bayes KL(Q∥P ) R(h) ≤ R̂(h)+O

(

√

KL(Q∥P )+log(n/δ)+2
2n−1

)

1990s Generalization is controlled by which solutions are likely under the prior,

rather than size of the hypothesis space. Describes overparametrization,

benign overfitting, and double descent.

Finite

Hypothesis

P(h) R(h) ≤ R̂(h) + O

(

√

log 1/P (h)+log 1/δ
2n

)

1980s Generalization is controlled by which solutions are likely under the prior.

Applies to deterministic models. Prior can be evaluated through bound on

Kolmogorov complexity given by storage space of trained model. Non-

vacuous bounds for million and billion parameter neural nets. Bounds

often improve for larger models. Describes overparametrization, benign

overfitting, double descent.

D. Experimental Details

In Figure 1(a)(b)(c), we use a 150th order polynomial

with order-dependent regularization
∑

j 2
jw2

j (green) to

fit regression data generated from (a) sin(x) cos(x2), (b)

x+ cos(πx), (c) N (0, 1) noise.

Figure 1(d)(e) is adapted from Wilson & Izmailov (2020),

which uses a Gaussian process with an RBF kernel, and

a PreResNet-20 and isotropic prior p(w) = N (0, α2I)
and Laplace marginal likelihood, and in turn replicates the

CIFAR-10 noisy label experiment in Zhang et al. (2016).

Figure 1(f) is adapted from Maddox et al. (2020) and uses

a ResNet-18 with increasing layer width, measures train

loss, test loss, and effective dimensionality for α = 1. For

Figure 1(g) we use the random feature least squares model

Xw = y with each column of Xi = yi + ϵ where ϵ ∼
N (0, 1). We measure MSE, and use α = 1 for effective

dimensionality.

Figure 2 is adapted from Lotfi et al. (2024a), and evalu-

ates the countable-hypothesis bounds with upper bound on

Kolmogorov complexity in Section 3 for LLMs of various

sizes.

Figure 5 fits two 15th order polynomials and one 2nd order

polynomial to data generated from a 2nd order polynomial,

15th order polynomial, and cos( 32πx). One of the 15th
order polynomials uses the order-dependent regularization
∑

j 0.01
2j2w2

j . Train and test input locations are sampled

from N (0, 1). The number of test samples is 100 and the

number of train samples range from 10 to 100. For each

train sample size, we re-generate data 100 times, and record

the RMSE and its standard deviation (represented by shade).

A similar result was shown in Goldblum et al. (2024).

All other figures are conceptual figures.


