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Abstract

A popular approach to protein design is to combine a generative model with a
discriminative model for conditional sampling. The generative model samples
plausible sequences while the discriminative model guides a search for sequences
with high fitness. Given its broad success in conditional sampling, classifier-guided
diffusion modeling is a promising foundation for protein design, leading many
to develop guided diffusion models for structure with inverse folding to recover
sequences. In this work, we propose diffusioN Optimized Sampling (NOS), a
guidance method for discrete diffusion models that follows gradients in the hidden
states of the denoising network. NOS makes it possible to perform design directly
in sequence space, circumventing significant limitations of structure-based methods,
including scarce data and challenging inverse design. Moreover, we use NOS to
generalize LaMBO, a Bayesian optimization procedure for sequence design that
facilitates multiple objectives and edit-based constraints. The resulting method,
LaMBO-2, enables discrete diffusions and stronger performance with limited edits
through a novel application of saliency maps. We apply LaMBO-2 to a real-
world protein design task, optimizing antibodies for higher expression yield and
binding affinity to several therapeutic targets under locality and developability
constraints, attaining a 99% expression rate and 40% binding rate in exploratory in
vitro experiments.

1 Introduction

Optimizing protein sequences for improved function has the potential for widespread impact [63].
Among many potential applications in engineering and medicine, engineered antibodies can be used to
create cancer therapeutics that are much less harmful to the patient than radiotherapy or chemotherapy.
Because the space of possible proteins is vast and discrete, and experimental validation is slow and
expensive, all practical methods for protein design must restrict themselves to a small enriched library
of candidates to find a viable option in as few measurements as possible [44]. In practice these
enriched libraries are usually obtained through massive high-throughput in vitro screening [67], or in
the case of antibodies by injecting a live animal with the target antigen and sequencing the animal’s
immune response [52]. Generative protein models offer the tantalizing prospect of enriched libraries
produced nearly instantly at a fraction of the cost. Success in real-world applications, however, has
proven elusive, in part because naive generative models produce outputs that are similar to their
training data and are therefore unlikely to improve target qualities [53].

There are many approaches to guided generation of proteins, but one broad and important distinction
is between methods that search in sequence space and those that search in structure space. A basic
tenet of molecular biology is “sequence determines structure, structure determines function” [9].
Hence when optimizing a protein for a desired function, it may seem more direct to design the protein
in structure space, where gradient-based sampling methods can be used in tandem with carefully
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Figure 1: We propose diffusioN Optimized Sampling (NOS), a method for gradient-guided sampling
from discrete diffusion models. NOS uses 71" sampling steps of denoising diffusion, where each
step consists of applying a corruption, gradient steps to optimize a value function, f, and sampling
of the next discrete sequence, or corresponding latent state. NOS generates samples that optimize
an arbitrary objective while maintaining high likelihood with respect to a reference distribution of
sequences. We combine NOS with LaMBO, a strong Bayesian optimization method for sequence
design [73], to make LaMBO-2, our improved method for protein design.

engineered potentials [1, 45, 77]. One of the drawbacks of this approach is the optimized structure
must still be converted back to an amino acid sequence in order to be synthesized, a task known
as “inverse-folding” [19]. There is no guarantee that the optimized structure can be realized by an
actual sequence, and the inverse-folding procedure may not find the sequence if it exists. Structural
models are also computationally intensive and limited by the scarcity of high-quality structural data.
Searching directly in sequence space eliminates the need to recover sequence from structure. Protein
sequence models are also comparatively fast, especially during inference, and can leverage sequence
datasets that are often several orders of magnitude larger than their structural equivalents.

Although sequence models are arguably the most practical foundation for protein design, they have
historically suffered from the challenges of optimizing discrete sequences, where gradient-based
sampling is not directly applicable. As a result, many sequence search methods resort to gradient-free
sampling methods like Metropolis-Hastings MCMC [78, 37], which are flexible but computationally
expensive, eroding a key advantage over structure search. Several methods have been proposed that
maintain gradient-based search by performing guidance in a continuous latent space, with a learned
decoder to sample discrete sequences [33, 32]. Notably, Stanton et al. [73] proposed LaMBO (Latent
Multi-Objective Bayesian Optimization), an optimization method that uses masked language model
(MLM) style denoising guided with Bayesian acquisition values to address the online, multi-objective
nature of real-world protein design. While LaMBO can quickly sample sequences with improved
acquisition value, it has two key limitations. First, LaMBO is built on top of MLMs which, while
strong representation learners are not strong generative models. In particular, MLMs lag behind other
methods in producing high likelihood samples or infills. Second, despite being designed to improve
known sequences instead of designing them completely from scratch, LaMBO and related methods
have no principled framework for simultaneously enforcing an edit budget and choosing optimal edit
locations based on that budget.

To address the first issue we propose NOS (diffusioN Optimized Sampling), a new method for
controllable categorical diffusion (Figure 1). Diffusion models capture complex distributional
dependencies by making iterative denoising steps, but there is relatively little previous work on how
to control these processes. NOS generates sequences with both high likelihood and desirable qualities
by taking many alternating steps between corruption, guidance, and denoising in the continuous
latent space of the model. Our in silico validation shows that NOS outperforms many state-of-the-art
structure and sequence-based baselines on both unguided and guided infilling tasks.” To address
the second problem (choosing optimal edit locations) we propose using embedding-gradient feature
attributions (i.e. saliency maps) to determine which positions on the sequence are most important
to edit to improve the guidance objective value. We combine NOS with saliency-selected edits
to create LaMBO-2, a more powerful variant of the original LaMBO algorithm. Exploratory in
vitro experimental validation of our designs provides evidence that LaMBO-2 can be used to create
enriched antibody libraries without the aid of additional in vitro high-throughput screening.

*https://github.com/ngruver/NOS
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2 Related Work

Discrete diffusions Austin et al. [4] and Hoogeboom et al. [40] constructed diffusion models for
discrete categorical data using a categorical noise process. Recently, categorical diffusion has shown
promise as a competitor to autoregressive models in text generation for machine translation and
summarization. The approaches can be roughly grouped into methods that apply categorical noise
distributions directly to sequences (CMLM [31], SUNDAE [65]), and those that apply Gaussian
corruptions to token-vector embeddings (SED [74], CDCD [21]). In this work we show that NOS
can guide both types of categorical diffusions. Within the space of protein design, our method is
also closely related to joint diffusion models over both sequence and structure [2, 51], which also
circumvent inverse folding. Because these models still rely on structure information at training time,
they can be limited by data availability in the same manner as pure structure models.

Discrete generative guidance Gradient guidance typically augments sampling from a generative
model with gradient steps to increase the occurrence of a desired attribute [54]. Gradient guidance
is natural within the framework of continuous diffusion models [20], and Li et al. [47] use this
connection to perform gradient-guided sampling from a diffusion language model. To obtain a
continuous space, they perform Gaussian diffusion [39] on word embeddings, decoding out to tokens
using a linear head. The original method required many careful engineering interventions, e.g.
clamping latent representations to the nearest word embedding, that have been improved by recent
methods, such as CDCD [21], but gradient guidance has not been discussed for these more recent
formulations.

To achieve a similar form of gradient guidance without carefully engineering a latent space, Dathathri
et al. [17] and Yang and Klein [83] propose gradient-guided autoregressive models by using the
decoder’s activations as a gradient-friendly latent space. These methods alternate between sampling
from logits and ascending the likelihood of a separately trained classifier model. Surprisingly, despite
work on gradient guidance for continuous noise diffusions and autoregressive language models, there
has been little work on gradient guidance for general categorical diffusions that predict denoised
categorical distributions (e.g. CMLM, SUNDAE, CDCD), which is a topic we explore in detail.
One closely related method proposed in the context of generative models of small molecules is
DiGress [79], which performs gradient guidance on one-hot token embeddings to bias the categorical
sampling distribution of a denoising model. In our setting we show that categorical and Gaussian
discrete diffusions guided with NOS outperform PPLM and DiGress (Subsec. 5.2).

Genetic algorithms Evolutionary algorithms are a popular solution for black-box optimization
in discrete spaces [3, 22]. These methods are often evaluated on their ability to optimize in silico
proxy estimates of actual in vitro fitness, e.g. deep learning models trained on experimental datasets.
In Subsec. 5.3 we baseline NOS against two genetic optimizers from protein design literature,
Adalead [70] and Proximal Exploration (PEX) [61]. We show these baselines rapidly degrade
sequence likelihood as the proxy fitness is improved, limiting the effective number of edits that can
be made before checking the actual fitness of the samples, ultimately limiting their sample efficiency
and rate of convergence to optimal solutions. By contrast, NOS consistently improves proxy fitness
while maintaining sequence likelihood.

3 Background

We pose protein design as the problem of finding sequences, w € A" with alphabet A and fixed
length L,’ which maximize a single objective f(w) (e.g., binding affinity) or multiple objectives
fi(w), ..., fu(w) (e.g., expression yield, binding affinity, and aggregation tendency). Designs
can be generated from random noise (ab initio design) or by making a fixed number of edits
Be{l,...,L—1}toaseed sequence s € A”. A protein is only useful if it can be synthesized (i.e.
expressed), and the objective value of non-expressing proteins is undefined since their properties
cannot be measured. Therefore we must introduce the constraint w € £ c AL, where £ is the set of
all expressible proteins. Since naturally occurring sequences must express in order to be observed,
p(w), the likelihood of a protein with respect to an empirical distribution of natural protein sequences,
is often taken as a proxy for the tendency of a protein to express. In protein design, these proxies are

3Length change is enabled by the use of protein sequence alignments, which introduce a gap token “-”.
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Figure 2: Two approaches to diffusion generative modeling for categorical variables. (Left) Cate-
gorical data is embedded into continuous variables with an accompanying continuous noise process.
(Right) Categorical noise is applied directly to sequences, and corrupted sequences are denoised
using standard language modeling methods.

typically called metrics of naturalness. Since we are looking for sequences that by definition have
not yet been identified in nature, naturalness and our other objectives are often in tension.

We can trade off naturalness and objective value by drawing samples from the unnormalized density

p(w) = exp(=E(w))/Z, E(w) = E(w) —v(w),, M

where E(w) = — log p(w) is a scalar energy function, and the value function v : A — R expresses
the utility of a sequence with respect to our objectives. When designing proteins from primary
sequence, sampling efficiently from the resulting energy function can be challenging. Simple
approaches, such as the MCMC sampler used by Verkuil et al. [78] can require hundreds of thousands
of steps to converge (Appendix C.2). Guided diffusion models are an appealing alternative because
they construct a fixed-length Markov chain that quickly generates low-energy samples.

Diffusion models Denoising diffusion models construct samples by reversing a diffusion process
that maps clean data points, x, to samples from a prior 7(x) (Figure 2). The forward process
(xg — xr) is composed of conditional distributions p(x:|x:—1) (i.e., the noise process) that admit
closed forms for the conditional distributions p(x¢|zo) and p(x;—1|z¢, zo) (e.g., independent Gaussian
corruption). The reverse process (7 — x¢) converts samples from the prior into samples from the
learned data distribution py (z) by repeatedly predicting the denoised variable 2 from noisy values x;
and using the conditional distribution p(x;_1|z¢, Zo) to derive a transition distribution, pg (z—1|x¢).
The specific choice of noise process has been shown to significantly affect the likelihood and quality of
image samples [71]. For categorical data there are two common approaches to constructing a diffusion
generative model, depending on the nature of the noise process. We include brief descriptions below
and a more detailed account in Appendix A.

Continuous noise To learn a distribution p(w), one strategy is to first embed w to a continuous
variable z( with embedding matrix Uy and apply Gaussian noise [21]. The prior is taken to be
m(x) = N(0, I) while the forward process is p(z¢|xo) = N (x¢; /@0, (1 — & )I) for ay € [0, 1].
The values of a; are determined by a user-specified corruption schedule. For the reverse process,
we learn a function, py(w|xz,, t), to predict the sequence from noised points x; by minimizing the
following loss with respect to 6:

L(0) = Eugt [—log pg(wolzt)], @ ~ p(ai]zo = Upwo).

Using pg(w|x¢,t) we can construct a distribution for the reverse process

Po(T—1]we) = ZP(%AW:&@O = Upw) p(]zy, 1), 2
@
where p(x:_1|xt, xo) is also a Gaussian distribution. At inference time, we can use the learned
reverse process to convert samples from 7(x) into samples from the learned distribution py(z¢) by
repeatedly sampling pg(x—1|z:), followed by sampling w ~ pg(w|xg, 0).

Categorical noise Alternatively, Austin et al. [4] proposed a forward process which operates
directly on w, by introducing an absorbing state for each token w(*) = [MASK]. The forward process
(wo — wr) is defined by a discrete transition matrix, describing the probability of mutating a token
into a [MASK], and the corresponding prior is simply a point mass on the sequence of all [MASK]
tokens. To learn the parameters of the denoiser pg(wWo|wy,t) we maximize the likelihood of the
denoising process on ground truth sequences

L(0) = Euy ¢ [~ 1og po(wo|we)], we ~ p(wi|wo)



Then, as above, we can use the denoiser to construct the reverse process

Po(wi_1|ws) = > p(wi_1|wr, wo)pe (to|w, t) 3
wo
where p(w;_1|wg, wp) is also a categorical distribution derived using Bayes’ rule. To sample, the
transition distribution is applied for ¢t = [T, ..., 0].

4 Methods

Now we present practical methods for efficiently sampling from p(w) oc p(w) exp(v(w)) (Eq. 1) by
modifying the learned transition distribution with a learned value function vy (w). We then show how
this sampling method can be used to perform protein design through guided infilling in sequence
space. As before, we provide the most salient information below and the full details in Appendix B.

4.1 NOS: diffusioN Optimized Sampling

We introduce a general form of gradient guidance (NOS) for discrete diffusions with categorical
denoising models, i.e. diffusion models that predict logits over the ground truth tokens (e.g. [21, 4]).
The key challenge in applying gradient guidance to categorical data is simply the lack of a continuous
representation. Fortunately, in any denoising network, e.g. pg(w|z¢,t), the discrete sequence w; has
many corresponding continuous representations in the form of hidden states of the model h; = gq(w;)
for d € {0,..., D}, where D is the depth of the encoder network and go(w;) = Upw;. Notably,
for the Gaussian diffusion models in Sec. 3, we can equivalently have x; = go(w;), as corruption
and sampling are performed on the learned token embeddings. In the case of the categorical noise
diffusion pg (o |w:) = pe(wo|h:), and thus for the purpose of guidance, we can consider a general
po(w|h:) for both forms of corruption.

To sample from Py (w;) o€ pg(wy) exp(ve(w;)), we construct a modified denoising model,
Po(W|he) o po(|hy) exp(vg(he)).

This formulation requires that the denoising model and the value function share hidden states up to
depth d, and that the value function also be trained on corrupted inputs w;. In Appendix D.4 we
propose a simple procedure for corrupted discriminative training inspired by label smoothing [76].
Using this modified denoising model we can construct modified transition distributions using Eq. 2
or Eq. 3. There is one key difference between these transition distributions: in the continuous case
(Eq. 2), smooth steps are taken in the token embedding space, while in the discrete case (Eq. 3) the
transition leads to large jumps from one token embedding to another. In either case, it is possible
to sample a discrete sequence w at any point in the chain using the logits of the denoiser pg(1b|h).
When using Eq. 2 to derive a continuous transition distribution, we call the method NOS-C, and
when using Eq. 3 for discrete transitions, we call the method NOS-D.

To sample from the modified transition distribution at each diffusion step, we use Langevin dynamics
with temperature 7 > 0, with the update step,

hi — hy = V1 [AKL(py (0|ht)[Ipe (| he)) — vo(hi)] + /207, e ~N(0,1), (4

where 7) is the step size and ) is the regularization strength, followed by sampling pg(w:—1|h}) or
po(hi—1|h}). While the gradient Vv guides towards high values of the objective, the KL term
ensures the resulting transition distribution still maximizes the likelihood of the original prediction.

NOS is related to the popular method plug-and-play language model (PPLM), which can be used
for gradient-guidance of autoregressive language models [17]. PPLM guides sampling by taking
gradient steps similar to Eq. 4 for each autoregressive decoding step (details in Appendix B). Unlike
PPLM, NOS is a form of iterative refinement, meaning that tokens across the entire sequence can
be modified at each optimization step. This distinction is particularly important for protein design,
because function can be determined by complex interactions between distant parts of the sequence.
As we see in Sec. 5, NOS leads to better trade-offs between likelihood and objective value.

4.2 LaMBO-2: function-guided protein design

Many unique challenges arise when applying guided diffusion to real-world protein design tasks.
Our approach builds on the LaMBO-1 algorithm proposed by Stanton et al. [73], which explicitly
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Figure 3: An example of a binding affinity saliency map produced by LaMBO-2 with NOS-D.
For simplicity, only the variable heavy (VH) region of the hu4D5 antibody is shown. Positions
corresponding to complementarity defining regions (CDRs) are enclosed in green boxes. Converting
this saliency map to an edit position distribution will concentrate computational resources on editing
CDRH3, which is often manually selected by experts. Some resources are also allocated to the
framework and other CDRs since these positions may also affect binding.

accounts for the online, multi-objective nature of protein design by optimizing a multi-objective
Bayesian acquisition function. LaMBO-2 replaces the guided MLM sampler with NOS, selects edit
positions based on acquisition value saliency, and replaces the discriminative deep kernel Gaussian
process (GP) with ensemble-based uncertainty quantification.

Architecture and value function In order to apply the methods discussed in Subsec. 4.1 we require
a generative diffusion model py(w) and a discriminator fy(w) which share hidden layers up to depth
d. The discriminator is trained to predict the objective function f. Like LaMBO-1 our architecture
consists of many task-specific feature extraction layers that share a bidirectional encoder. Bayesian
optimization is an iterative cycle of inference and data acquisition. During the data acquisition phase
of any iteration ¢ we need to find sequences with maximal acquisition value v;(w) = E[u(w, f, D;)],
where D; is the data already available and the expectation is taken with respect to a posterior py ( f|D;)
and u is some utility function. For multi-objective tasks wu is the hypervolume improvement utility
function [18], however we note that single-objective tasks are easily accommodated by a different
choice of utility function [82]. To estimate the expectation we draw samples from py(f|D) with an
approach we call partial deep ensembles, where the discriminative layers of the model above the
shared encoder are replicated k times and randomly initialized [81]. We provide further details about
partial deep ensembles and our learned discriminators in Appendix D.2 and D.3.

Choosing edit positions When B « L encoder-only architectures allow very precise control of edit
positions since we will only change positions we corrupt. However, this feature introduces the need for
some procedure to choose those positions, ideally where edits will most improve our objective value.
We automatically select edit positions by computing the gradient of the value function with respect to
ho to determine which positions affect the value estimate the most (see Figure 3 for an illustration).
This method is related to the use of saliency maps to explain the decisions of classifiers [5, 69].
We use input saliency to induce a distribution over edit positions. Specifically, given an embedded

sequence hy we define s;(hg), the saliency with respect to v of position ¢ € {1,..., L} as
1/
G si(ho)
si(hg) := max ’Vuh Z) ,s}, Pedltw():77 (®)]
(ho) {(2( wolho)),, i) =

where 7 > 0 is a temperature hyperparameter and 0 < ¢ < 1. As 7 — 400, P[edit w(()l)] =1/L
for all 7. For each sequence we draw B edit positions without replacement according to Eq. 5. We
conserve parts of the input we cannot change (e.g. the antigen sequence) by setting the the saliency
to 0 before computing the edit position distribution. Importantly, the diffusion sampling process
can also preserve the original values of selected positions when appropriate. If we select a highly
conserved position, then the predicted logits will be low entropy and the guidance will incur a large
KL penalty for changes (Eq. 4).

5 Experiments

We evaluate our methods on three increasingly complex antibody design tasks. First we compare
our trained diffusion models on unguided infilling tasks, showing that sequence diffusion methods
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Figure 4: We infill antibody CDRs with discrete diffusion models (ours) and compare against
structure-based diffusion models (DiffAb [51] and and RFDiffusion [80]) and an autoregressive
antibody language model (IgLM [68]). We see diffusion on sequences alone—without structural
priors—reliable leads to high sequence recovery. For structure based methods, we first fold seed
sequences with IgFold [64] and then run joint sampling of sequence and structure for the CDR. We
sample 10 infills for each of the 10 antibody seed sequences selected randomly from paired OAS [56].

consistently outperform structure-based methods when only predicted structures are available*. We
then evaluate NOS by optimizing two objectives that can be simulated effectively in silico. Lastly, we
evaluate LaMBO-2 on antibody lead optimization, with both in silico and in vitro experiments.

5.1 Unguided antibody CDR infilling

We focus on immunoglobulin G (IgG) format antibodies, which are comprised of a heavy (H) chain
and a light (L) chain. Each chain has three complimentarity determining regions (CDRs), which tend
to have strong effects on binding affinity to a target antigen but limited effects on other structural
properties of the protein. Antibody design methods traditionally focus on proposing mutations to
CDRs while leaving the rest of the protein fixed, which can be viewed as an infilling task. We
select 10 seeds at random from paired OAS [56] and infill each CDR individually as well as in
combination. To evaluate the performance of each model, we measure the sequence recovery rate,
which is simply the accuracy of the infilling predictions given the ground truth sequence. As baselines,
we include IgL.M [68], a GPT2 language model trained on OAS, and two structure-based methods:
DiffAb [51], a joint sequence-structure diffusion model trained on SAbDab, and RFDiffusion [80],
a structural diffusion model trained on the PDB [10] that uses inverse folding to derive sequences.
Although IgI.M is trained with fill-in-the-middle augmentations [7], it does not natively support
infilling multiple non-contiguous regions, and we do so by replacing regions that are not yet sampled
with [UNK] tokens. For the structure-based methods, we provide starting structures generated with
IgFold [64].

In Figure 4, we find that diffusion models often generate infills that are on-par or better than that
those returned by IgL.M by default, especially when multiple regions must be filled simultaneously.
We also see that DiffAb, while being capable of sequence-structure co-design out of the box, often
underperforms sequence-only diffusion, most likely because our sequence-based approaches have
access to a larger training dataset, while paired datasets with sequences and structures are much more
limited. Lastly RFDiffusion tends to generate relatively low likelihood CDR infills. The gap between
DiffAb and RFDiffusion may be explained by the relative scarcity of antibody structures in the PDB
compared to SAbDab, which has an antibody in every structure. The poor performance of structural
methods on CDR infilling could also be a result of poor sequence recovery from structure during
inverse folding, a problem that could be amplified for relatively unstructured loop regions like CDRs.

5.2 Optimizing antibodies for in silico objectives
To test guided sampling from our model, we run experiments on two simple single-objective tasks:

» The percentage of beta sheets, measured on primary sequence [15]

* The solvent accessible surface area (SASA) of the protein’s predicted structure [64]

*In practical protein design campaigns it is infeasible to get ground truth structural measurements for
proposed designs, and predicted structures are the only alternative available.
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Figure 5: Comparing samples from NOS (ours) with alternative guided generation methods and
structure-based models. NOS exhibits higher likelihood for similar or dramatically improved values
of the objective. (left) Sequence diversification (resampling and selecting improved points) with
DiffAb [51] or RFDiffusion [80]. DiffAb generates sequences and structures simultaneously, while
sequences for RFDiffusion are obtained using ProteinMPNN [19]. Compared with NOS, these
methods do not effectively optimize the objective and yield low-likelihood sequences. (right) Guided
generation using PPLM [17], a guidance method for autoregressive language models (in this case
IglLM [68]) and DiGress, a competing guidance method for discrete diffusion models [79]. NOS,
PPLM, and DiGress are sampled for many settings of guidance strength (e.g. n and A (Eq. 4)) to
demonstrate the full range of trade-offs between the objective and likelihood. We provide details
about hyperparameter settings in Appendix C.5 and additional density plots in Appendix C.6.

Since we want plausibly natural antibodies with high objective value we examine the Pareto front
for samples optimized for each objective, with log-likelihood assigned by ProtGPT [29] (trained on
Uniref50 [75]) plotted against the value of the objective. As an autoregressive guided baseline, we run
PPLM, using IgL.M as the base generative model (details in Appendix C.3). We use DiGress [79] as a
guided diffusion baseline. DiGress uses gradients on one-hot representations to performing guidance
in the embedding layer and is thus closely related to our approach. We discuss differences between the
methods and the details of our DiGress experiments in Appendix C.5. For PPLM, DiGress, and NOS,
we generate samples for many different setting of the control hyperparameters (Section 4.1), which
yields samples across the spectrum from aggressively optimizing the objective to conservatively
maintaining high likelihood. We also include DiffAb and RFDiffusion without guidance as baselines,
as examples of popular “diversification” procedures, in which new samples are generated for later
ranking and filtering. In Figure 5, we see that for both continuous and discrete corruptions NOS
offers better trade-offs between optimizing the objective and maintaining high likelihood, while also
generating high values of the objective at the extreme.

5.3 Antibody lead optimization: in silico evaluation

Having established the performance of NOS on simpler benchmarks, we now turn to real-world
antibody design with LaMBO-2. From this point forward in all experiments we jointly condition
on the heavy chain, light chain, and antigen sequence, and we jointly optimize the heavy and light
chains only for improved expression yield and binding affinity to the antigen. As we discussed in
Subsec. 4.2, one of the critical subproblems in Bayesian optimization is the identification of high
value additions to the existing dataset. In this section we show that LaMBO-2 effectively applies
NOS to this subproblem in the antibody design setting by finding high acquisition value sequences
while preserving naturalness (which we quantify with the metric proposed by Shanehsazzadeh et al.
[67]). We focus on optimizing hu4D35, a therapeutic antibody targeting the HER2 antigen®

Comparison with genetic algorithms We first compare LaMBO-2 to two discrete optimization
baselines, Adal.ead and PEX. We generated 32 designs from the hu4D5 seed with each method,
optimizing the same acquisition function derived from the same model. To ensure a fair comparison
we limited all methods to a total of 512 model evaluations and a maximum of 2 edits per sampling
iteration. We evaluated both the sample acquisition value and naturalness after each iteration. We
identified an empirical naturalness threshold below which expression became unreliable and treated
this threshold as a simple inequality constraint. Note that this experiment evaluates how each method
balances the tradeoff between acquisition value and naturalness as sampling progresses, and does not
involve evaluations of the actual black-box objective.

SHER2 is an important target for certain types of breast and stomach cancer [36].
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Figure 6: (left) Naturalness constraints present a challenge for genetic methods, which rapidly decline
in naturalness even as their objective value improves. The grey dashed line is an empirical lower
bound on naturalness above which in vitro expression is reliable. Although Adal.ead and PEX both
improve the acquisition value, they quickly leave well-supported areas of the search space (drop
below the dashed line), shown by the faded section of each curve. By contrast, the naturalness of
LaMBO-2 samples degrades much more slowly while consistently improving the acquisition value.
(right) Ablating the effects of guidance and edit position selection. We start with the hu4D5 HER2
antibody and vary the edit budget B € {8, 32}, optimizing for expression yield and binding affinity.
For all choices of edit budget, we find that the effect size of edit position selection is much larger
than that of guidance, making salient unguided edits a surprisingly strong baseline.

LaMBO-2 strictly dominates PEX in terms of naturalness and acquisition value at every sampling
iteration, with PEX producing infeasible samples beyond 4 iterations. Adal.ead improved sample
value the most rapidly of all methods in this experiment, but also degrades naturalness the fastest,
violating the constraint after only 2 sampling iterations. In contrast LaMBO-2 samples satisfy the
naturalness constraint out to 16 sampling steps, producing the highest value feasible solutions. This
result highlights the importance of accounting for distributional constraints when optimizing empirical
proxies of fitness, since the quality of the proxy signal degrades rapidly outside the support of the
training data. Genetic algorithms easily hack empirical models by leaving the support of natural
sequences, where training data is necessarily absent, leading to poor quality solutions that nevertheless
attain high acquisition value. In Appendix D.5 we show that both sequence and structure-based
unguided infilling (i.e. random hit diversification) has the opposite behavior, producing samples with
reasonable naturalness but low acquisition value.

Effect of salient edits To separate and independently study the effects of guidance (NOS) and
salient position selection, we present an ablation in Figure 6 for optimization with a relatively small
edit budget B (B <= 10% of mutable positions). To isolate the effects of salient edits we baseline
against edit positions chosen uniformly at random, and to isolate the effects of guidance we set the
step size n (Eq. 4) to 0. Small edit distance constraints are common in antibody engineering because
the goal is typically to increase binding affinity without altering the binding location on the antigen
(i.e. the engineered antibody should bind to the same epitope) [43]. One heuristic way to constrain
the design to the same epitope is to set B ~ 8, (about 2.7% of the antibody sequence length) [43],
precisely the range we consider in Figure 6.

In the few edit regime we find that while both interventions improve sample objective value, selecting
positions using saliency has a much larger effect than guidance. Although gradient guidance is a
reliable and generally applicable tool for improved sampling, the scale of the edit position search
dominates the scale of the search over token replacements that guidance affects. With a vocabulary of
21 tokens the number of possible token combinations (218) is dwarfed by the combinations of possible
edit positions (C5°0). Salient selection of edit positions is, therefore, key to any practical application
of NOS in budget-constrained design. Interestingly, this facet of protein design differs significantly
from guided sampling of images, where generation is typically limited to fixed locations [50, 14], not
a fixed edit budget spread over any location that will optimize the objective. These additional degrees
of freedom pose an extra challenge.

5.4 Antibody lead optimization: in vitro evaluation

As our final evaluation in Figure 7 we present results using LaMBO-2 (specifically with NOS-D)
to optimize 20 seed antibodies distributed across 4 different therapeutic target antigens, including
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Figure 7: We use LaMBO-2 to optimize 20 seed antibodies for 4 different target antigens over three
experimental rounds, retraining the model after each round. Some design choices and hyperparameters
varied from round to round, with substantial impact on the results. In the last round we tested 56
antibodies and attained a 99% expression rate and 40% binding rate on average across targets. On
average 43% of the expressing designs had higher yield and 21% of binding designs had higher
binding affinity than the corresponding seed. These results are very encouraging when placed in
context with a related experiment designing HER2 antibody libraries [67]. Our results provide
evidence that enriched antibody libraries can be created in silico without the assistance of high-
throughput in vitro screening.

hudD5/HER2°. We tested 374 designs in total over three rounds, retraining the model after each
round and varying a range of design choices and hyperparameters. While expression and binding
performance varied from round to round across seeds and targets, by the final round we were able to
generate multiple submicromolar binders for all 4 targets with a median of 5 edits to the seed. See
Appendix D.7 for individual yield and affinity measurements and experimental details.

The improvements to yield and affinity over time can be attributed both to the data added to the
training corpus and methodological insights gleaned after each round. For example, the sharp drop in
expression in Round 2 can mainly be attributed to framework residue deletions that arose when A
(the KL penalty coefficient) was set too small. In the following round we tried a range of larger A
values and fixed the sequence lengths and expression immediately recovered.

Figure 7 also reports binding affinity results of a related experiment from Shanehsazzadeh et al. [67]
for context, though we emphasize that there are substantial differences between our wetlab validation
and that of Shanehsazzadeh et al. [67] which prevent a true apples-to-apples comparison. In the latter
experiment 1M designs were generated for the HER?2 target and screened with a high-throughput
assay. After screening 421 designs were validated with a high-fidelity surface plasmon resonance
(SPR) assay. In addition to wetlab screening, their experiment also restricted edits to specific antibody
CDRs. We optimized antibodies for a range of targets including HER?2 and relied exclusively on in
silico screening before validating with SPR, while placing no explicit restrictions on the edit locations.
Despite these differences, our results provide initial evidence that it is possible to generate enriched
libraries of antibody designs exclusively with in silico methods operating only on primary sequence.
While the experimental validation provided is preliminary, we are actively pursuing more rigorous
experimental testing in the form of up-scaled and repeated expression and binding experiments and
specificity assessment.

6 Discussion

There are many exciting directions for future work. The original LaMBO algorithm was used to
optimize small molecules in addition to proteins, and applying LaMBO-2 to small molecule design is
a fruitful direction, as LaMBO-2’s improvements are not protein-specific. While sequence alignments
are a convenient solution to the length change problem in protein design, padding methods [47]
or diffusion with a variable-length corruption process (e.g. [60]) will be needed for applications
like small molecules which do not admit alignments. We are also eager to consider optimizing
much longer sequences, such as gene perturbations [42], which can exceed 20K tokens in length and
may necessitate the use of recent advancements such as implicit convolutions [35, 57, 59] or clever
modifications of self-attention [16, 13, 48]. More general notions of guidance such as classifier-free
guidance [38] for text or class-conditional generation [62, 12] are another intriguing direction, since
some goals are difficult to express as black-box functions or constraints [49, 58].

Due to the sensitive nature of the data, we do not disclose the other seeds or drug targets.
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A Extended Background

In this section we provide full descriptions of the diffusion processes introduced in Sec. 3.

A.1 Continuous noise diffusion

The forward process is defined by noise variances /3. We use the cosine variance schedule from Nichol
and Dhariwal [55]. For convenience we further define

t
ap =1— 3, @tznai
i

The forward process is defined by the conditional distributions

pailri—1) = N(ze;4/1 = Brwe—1, Bed)
p(xe|zo) = N (245 vVaiwo, (1 — ap)l)
p(xiw) = N(x; v/ aUgw, (1 — ay)I)
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Figure 8: Illustration of a string gradually corrupted by [MASK] tokens.

where Uy is an embedding matrix. The reverse process is defined by

m(z) = N(0,1)
p(xi_1|we, 20) = N(xtflhutao—tQI)
\/ﬁﬁt% N Var(l — 1)

e="1"4, 1-a, &
1—ay_
2 _ t—1
Oy = q1_a a Bt
po(w|z;) = Softmax(gg (o))
po(xi—a|ae) = D p(xi_a|ae, mo = Ugtd)p (b]ay)

A.2 Categorical noise diffusion
Following Austin et al. [4] we define the MM style categorical diffusion using transition matrices

1 if i=j=m
[Qtlij = { au if j=m,i#m
l—ay ifi=73#m

and Q; = Q1Qs...Q; for noise schedule @; € [0, 1] (see Figure 8 for an illustration). These transition
matrices correspond to categorical conditional distributions

pwiwi—1) = Cat(wy; p = wi—1Q4)
p(we|wo) = Cat(wy; p = woQy)
The reverse process is defined by
m(w) = 1w = [MASK]”]
wQf QuwoQ/_y )

p(we—1|we, wo) = Cat <wt_1;p = =
woQrwy

po(wo|wy) = Softmax(¢g(w;))
po(wi—1|we) = ¥ plwy—1|wy, do)pe (tbo|we)

B Methodological Details

B.1 Infilling algorithm

We sample infills using the procedure in Algorithm 1. The infill mask P is constructed by setting
the index of conserved residue equal to 1, in this case at every residue that is not included in set of
CDR regions being infilled. We use the same algorithm to perform the guided infilling in Subsec. 5.2,
where it is extended with a guidance Langevin sampling step.
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Algorithm 1 Infilling with categorical denoising diffusion model

Inputs: Denoiser py (|, t), corruption process p(z¢|zo), infilling mask P, and seed sequence s
Returns: Sample from p(w) = pp(w|P, s) exp(f(w))
z7 ~ p(zT)
st ~ p(srls)
T < (I— PTP)I'T +PTST
fort=1T,...,1do
P(@i]20) — X Do |2, B)po (bl 1)
Ty ~ p($t71|$t
st ~ p(se|s)
xtH(I—PTP)l’t'i‘PTSt
end
w ~ po(w|zo)
return w

B.2 Hidden State Langevin Sampling

Design of molecules or images with generative models is often posed as the problem of sampling
from a posterior distribution p(x|a) given the unconditional distribution p(z) and attribute model
p(al|x). Indeed, reinforcement learning, the design of good actions in an environment, can also be
framed as posterior sampling where p(a|z) is the probability that a given state or state-action pair
is optimal [46]. Methods that employ posterior sampling of this form are often call “plug-and-play”
because p(a|x) and p(z) need not share parameters and therefore users can mix and match different
instantiations [54, 17, 34, 26]

The most common way to sample from the posterior p(z|a) oc p(a|x)p(z) is through Langevin
sampling on the unnormalized joint density p(a, z) = p(a|z)p(x), with sampling steps

2 =2t 4+ Vg pla, ) +4/2n2°,  2' ~ N(0,1)
z' +n(Viogp(alz) + Viegp(x)) + /212", 2 ~ N(0,1)

When we work with generative models over continuous random variables that permit a likelihood
(e.g. normalizing flows), score function (e.g. diffusions), or energy (e.g. EBMs) V log p(x) has a
natural interpretation and sampling can be performed with essentially vanilla Langevin sampling.
In other cases where only a denoising function over continuous variables is available, authors have
proposed approximate samplers using an approximation of the score function [54].

When we instead hope to sample from a posterior over discrete random variables constructing an
analogy to the score function V log p(z) is challenging, and prior work adopts a different approach of
regularizing the conditional sampling distribution p(w|a) with unconditional sampling p(w) in order
to maintain high likelihood [17]. In autoregressive models, p(w) is broken down using the chain rule,
p(w¢|w<¢) and thus the appropriate regularization is

KL(p(wi|w<t) || p(welw<e, a)) (6)

In our case, the distribution p(w) is factorized by the transition distributions p(w;|w;_1) (or their
continuous analogies in token embedding space), and we hope to sample from the perturbed transition
plwe—1|we) = po(wi—1|wy) exp(vg(wy))

The correct regularization term in our case is thus
KL(p(wi—1|we) || p(wi—1]we, a))

To put the pieces together, we first recognize that the denoising model pg (wg|w;) can be broken down
into an language model head, Hy, and trunk, Tp, with

hy = To(wt)
po(wolwy) = Hy(wo|hy)

We can then perform Langevin sampling on the hidden representations, initializing with h;, as shown
in Algorithm 2. In the experiments above we set A3 = 0, as we saw no noticable benefit from adding
additional stochasticity. Importantly, sampling from p(w;_1|w;) already introduces randomness into
the reverse process.
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Algorithm 2 Guided diffusion sampler

Inputs: Denoiser pg(|xy,t) = [Ty, Hy], value function vy, and weights A1, A2, A3
Returns: Sample from p(w) = p(w) exp(f(w))
wr = [MASK]*
fort=1T,...,1do
plwi—1|wy) « Zm p(wi—1|we, w)pe (w|w;)
h,O <« Tg(’wt)
fori=0,..., K —1do
2t~ N(0,1) _
ph <« Z,mp(wt,1|wt,w)H9(w|hl) )
R — B 4+ M Viavg(h') + Ao VRKL(p(wi—1|we)|[pr) + sz’
end
Wt_1 ~ Hg(hK)

end
return w

C Infilling / NOS Guidance

All of our diffusion models are train on all paired heavy and light chain sequences from OAS [56]
(pOAS) combined with all sequences from SAbDab [25], aligned with ANARCI [24].

C.1 Infilling experiment

For our trained diffusion models, we use Algorithm 1 without guidance, generating P based on
the indicated CDRs, using chothia numbering for consistency with DiffAb. For the baselines, we
constructed wrapper scripts to convert the chosen CDR 1ids into each method’s native format.

C.2 MCMC comparison

Following Verkuil et al. [78], we construct a Markov chain using uniform random mutations to map a
sequence w to a mutated sequence w’, using the following
Metropolis-Hastings correction:

exp(—E(w’)/T)>
exp(—E(w)/T) )’

where T' > 0 is a temperature hyperparameter. While this method
has appealing theoretical properties, obtaining good samples from 0
this Markov chain in practice requires hundreds of thousands of
steps of burn-in.

p(accept w'|w) = min (1,

5000 10000 15000 20000
Sampling Steps

Figure 9: (left) Comparing

In our experiment (Figure 9), we define the energy, F, by combining
sequence level probabilities assigned by IgLM with a beta sheets
objective function trained on IgLM’s representations. We construct
the energy as

E(w) = piom(w) + Avg(w),

We tune A to generate sequences with approximately 40% beta sheets.

We also tune the NOS \ parameter (Eq. 4) to produce approximately
40% beta sheets.

C.3 PPLM details

convergence in sampling us-
ing a Metropolis Hastings-
adjusted MCMC [78] against
NOS models. Diffusion mod-
els (ours) accelerate sampling
by two orders of magnitude
while converging to similar en-
ergy values.

In order to generate full (heavy and light chain) optimized antibodies with PPLM and IgLM, we
train two separate value function models on IgL.M’s aggregated hidden representations, one for heavy
chain sequences and one for light chain sequences. IgL.M uses special tokens for both the chain
identity and the species identity of each sequences, and we pass in appropriate corresponding tokens
when calculating the hidden representations for each model. To determine the correct species token
for each sequence, we use the predicted species returned by ANARCI [24]. Our value function is a
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simple one-layer feed-forward neural network trained on top of the mean-aggregated representations
for the corresponding chain identity.

To sample using PPLM, we overwrite the forward pass of the huggingface decoder used by IgL.M to
include a Langevin sampling step over the current hidden representations. We perform K gradient
steps to update the current hidden representation h’ by descending on the objective

AKL[p(w[h') || p(i[h)] — v(h')

where h is the original hidden representation output by the model’s encoder, and 7 and A are the step
size and regularization strength respectively. We ran optimization with both vanilla gradient descent
and AdaGrad [23] and found AdaGrad to be more robust to poor specifications of the step size. For
the results in Sec. 5, we draw samples and present results for all of the hyperparameter settings in
Table 1

A 0,0.001, 0.01, 0.1, 1.0

n 0.5,08,1.1,1.4, 1.7, 2.

K 5,10
optimizer SGD, AdaGrad

Table 1: Hyperparameter settings used for PPLM. A controls the strength of the regularization. Large
values prevent sampling values that differ significantly from the unguided model. n controls the size
of steps taken in the latent space. Larger step sizes, when not too large, can increase the distance
traveled in the latent space and the extent to which sampling can yield samples with high values of
the objective.

One critical difference between controllable autoregressive models and controllable diffusions is the
ability to resample previously sampled values. Procedures that allow for resampling are often called
“iterative refinement” procedures because they can produce increasingly plausible generations by
refining the model’s previous output at each step in an iterative procedure. Because there are many
potential differences between our NOS models and PPLM, including but not limited to the nature
of iterative refinement, we performed an additional experiment to assess the impact of adapting a
discrete diffusion to perform autoregressive sampling. Autoregressive models can themselves be
thought of as diffusions with an idiosyncratic corruption process that masks out all tokens to the right
of the last sampled token. As in our discrete corruption process, the prior is also a sequence of all
mask tokens. Using this insight, we can run our trained discrete diffusions in autoregressive mode
by contriving the sampling noise schedule to be autoregressive and recover an approximation of the
timestep post-hoc from the percentage of masks at each step in autoregressive sampling.

Figure 10 shows the difference in objective values and likelihood for samples obtained by running
the model in typical diffusion mode (iterative refinement) or in contrived autoregressive mode. We
can see that on the beta sheets objective, iterative refinement has a noticeable positive impact on the
objective values of the sample. This effect is also present in the SASA objective, but to a much more
limited extent. We speculate that the iterative refinement facet of NOS is helpful for outperforming
other methods but not completely sufficient.

C.4 Model Architecture and Training

The gaussian and categorical diffusions are trained with the bert-small transformer backbone intro-
duced by Bhargava et al. [8]. We use a cosine noise schedule for both diffusions and train for 100
epochs with a batch size of 64, optimizing with AdamW using an initial learning rate of 5e-3 with
a linear warmup. The value function is a feed-forward neural network with one hidden layer. The
value function is trained jointly with the denoiser by alternating optimization steps, with 5 steps on
the generative objective for each step on the discriminative objective. We train the models for 100
epochs in total.

C.5 Hyperparameter settings

For each guided sampling experiment with NOS, we sample using many different hyperparameter
combinations in order to generate both conservative and aggressive optimization of the value function.
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Figure 10: We compare samples from running our guided discrete diffusion (NOS-D) with diffusion
style sampling versus autoregressive style sampling. We find that using an iterative refinement
procedure does lead to consistent improvements in the objective value, though not to an extent that
would suggest iterative refinement is sufficient for strong sampling performance.

The full hyperparameter settings for both objectives (beta sheets and SASA) and both corruption
types (NOS-D and NOS-C) are shown in Table 2. In Table 2, there is an additional hyperparameter,
“guidance layer”, which we did not discuss at length in the main text of the paper. This parameter
dictates whether we perform guidance in the first layer of the neural network (the token embeddings),
as is standard in continuous diffusion models for discrete sequences, or the final layer of the neural
network (the layer before the final linear head). In either case, we can use the same gradient descent
objective and corruption process in each case and need only change the variable we propagate gradient
updates to. Table 2 shows the hyperparameters used in the just Figure 5.

To aid intuition for the effects of each hyperparameter, we show the sample densities that result from
each combination of A and 7 in Table 2 when guiding in the first (Figure 11) and last (Figure 12) layer
of the NOS-D and NOS-C models. We see that the most important parameter is A, which controls
how far samples tend to move from the seeds. We can also observe that guiding in the first hidden
state tends to perform better when sampling with NOS-C, while guiding in the final hidden state
tends to perform better with NOS-D.

DiGress comparison DiGress [79] is built on top of a model with one-hot encodings and discrete
corruptions. The guided sampling procedure can be described as follows (using the notation from our
submission): At each denoising step ¢, we use the one-hot encodings as a continuous variable and
construct a perturbation distribution from a learned discriminative model ¢ = vg(wy),

po (0|wi—1) o€ exp(—MNV y,vo(wt), wi—1))

We then sample the next value from the base diffusion transition pg(w;_1|w;) perturbed with
Do <6|wt71>9 R
wi—1 ~ po(Wi—1|we)pe(Dwi—1)

The key details for guided sampling can be found in the DiGress code repo, where we see that the
guided distribution is the normalized product of the original denoising distribution and the softmax of
the gradients scaled with A.

On a theoretical level, this guidance has noticeably different properties from NOS. For large A, the
perturbation p(w;|?) collapses to a one-hot on the token index with the largest gradient value. For
small values of A, p(w;|0) becomes a uniform distribution. Therefore A interpolates p(w;—_1|w¢)
between the original unguided distribution and a one-hot in the max gradient direction. NOS also
reduces to unguided infilling when A = 0, but A > 0 only modulates the direction of the gradient
update. The distance between the guided and unguided distribution is controlled by the number of
langevin steps and the step size hyperparameter 7. Digress amounts to a single update step applied
directly to the output token probabilities using a continuous relaxation of the one-hot encoded input,
whereas NOS performs a sequence of local updates to hidden states that are actually continuous.

In our comparison, the embeddings and corruptions of each model are chosen to be:

1. NOS-C [Gaussian corruptions + learned embeddings]
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Figure 11: Density plots for every combination of the regularization (\) and step-size (1) parameter,
when performing guidance in the first layer (token embeddings) of the neural network denoiser. We
observe that lambda has the strongest effect on trading off fitness under the objective with likelihood
or closeness to the seed sequences.

2. NOS-D [Discrete (mask) corruptions + learned embeddings]
3. DiGress [Discrete (mask) corruptions + fixed one-hot encodings]

All models use the same backbone transformer and regression heads, facilitating an apples-to-
apples comparison. For DiGress, we perform sampling for large range of scaling values \ €
{leb, 3e4, led, 3e3, 1e3, 3e2, 1e2, 3el, lel, 1e0, le—1, le—2, le—3}. For each model, A modulates
the degree to which the model prefers greedy sampling from the value function gradient.

A 0.001, 0.01, 0.1, 1.0, 10.0
7 0.1,0.5, 1.0
K 5,10
guidance layer first, last
optimizer SGD, AdaGrad

Table 2: NOS guided sampling hyperparameter settings. A controls the regularization strength, con-
straining the plausibility of samples, 77, when chosen effectively, can effect the degree of optimization
that takes place on the hidden states. The guidance layer is the layer in the neural network over which
guidance is applied, the first being the token embeddings and the last being the final representations
before the linear head. The same values are used for both NOS-D and NOS-C.

A 0, 0.001, 0.01, 0.1, 1.0, 10.0
n 1.0
K 10

optimizer AdaGrad

Table 3: Hyperparameter settings used in Sec. 5. The guidance layer for NOS-D is final, and the
guidance layer for NOS-C is last.

C.6 Density plots
Because pareto fronts present only a partial view of sampling outcomes (focusing on the best

case outcomes along each axis), we also include sample density plots to confirm that our methods
consistently yield samples with better trade-off between likelihood and fitness. Figure 13 shows
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Figure 12: Density plots for every combination of the regularization (\) and step-size (1) parameter,
when performing guidance in the last layer (pre-logits layer) of the neural network denoiser. NOS-C
and NOS-D exhibit quite different performance as a function of guiding the first or final hidden
representation.
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Figure 13: We compare sample densities for the methods presenting in Sec. 5, in order to augment the
limitations of simply showing pareto fronts. We see that NOS-C and NOS-D can both consistently
generate samples with favorable trade-offs while other methods tend to radically decrease likelihood
with little benefit to the value function or be relatively limited to the neighborhood around the seed
sequences.

density plots for NOS and baselines when optimizing each of the two objectives (percentage of beta
sheets and SASA). We find that DiffAb and IgL.M samples tend to cluster around the starting seeds,
while RFDiffusion samples tend to generate more diverse samples under the objective, but often with
much lower likelihood than the seed sequences. By contrast, both NOS methods consistently improve
values of the objective without sacrificing likelihoods.

D LaMBO-2

D.1 Intro to Multi-Objective Bayesian Optimization

When there are multiple objectives of interest, a single best (i.e. strictly dominant) sequence x* may
not exist. Suppose there are k objectives, f : X — R¥. The goal of multi-objective optimization
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Algorithm 3 LaMBO-2: one guided discrete diffusion step

Inputs: Seed sequence wy, edit budget projection P, diffusion timestep ¢, corruption function c(w, t),
constraint function u(w), encoder gp (w), value function vy (h), decoder dg(h), regularization strength
A, SGLD step-size n and temperature 7.

Returns: Best feasible sample from SGLD chain with distribution p’(x)oc p(x) exp(f o g(x))

w*, v* = wp, vy o g(wo) (initialize optimal solution)
w(, = c(wo, t) (apply diffusion noise)
hy = go(wy) (initialize hidden state)

fori=1,...,1do

loss = AKL[d(h;_y)l|dg(hg)] — (1 = A)vg(hi_;)
R}, =h}_; — PNV loss + /2n1e), € ~N(0,I) (projected SGLD step)
w; ~ dg(h}) (decode hidden state)
if v* < Vg © gg(wi) & u(w,) then
w* «— w;
V¥ «— g © go(w;)
end
end

return w*, v*

(MOO) is to identify the set of Pareto-optimal (i.e. non-dominated) solutions such that improving one
objective within the set leads to worsening another. We say that x dominates x’, or f(x) > f(x'),
if f;(x) > f;(x’) forall j € {1,...,m} and f;(x) > f;(x’) for some j. The set of non-dominated
solutions 2" * is defined in terms of the Pareto frontier (PF) P*,

2 =1{x:f(x)eP*}, whereP* ={f(x) : xe X, Ix e Xst f(X) > f(x)}. (T

MOO algorithms typically aim to identify a finite approximation to 2 * (which may be infinitely
large), within a reasonable number of iterations. One way to measure the quality of an approximate
PF P is to compute the hypervolume HV (P|r..¢) of the polytope bounded by P U {r,ef}, where
rrof € R™ is a user-specified reference point.

upnvi(X, f, D) = HVI(P', Plrrer) = [HV(P'[trer) — HV(Plrrer)]+, ®)

where P/ = P U {f(x)} [27, 28, 18]. To decide where to query f next, we search for
argmax, E[ugpnvi(x, f, D)], where the expectation is w.r.t. p(f|D).

D.2 Discrete EHVI

Although expression yield and binding affinity are both continuous measurements, we chose to
discretize them and model them as classification with a softmax likelihood (See Appendix D.4). As a
result we needed an extension of EHVI for discrete outcomes. Informally, EHVI is simply computing
the HVT for different realizations of f and marginalizing f using p(f|D). Instead of taking f to be
the latent function of some regression y = f(w) + €. € ~ N(0,0?), we instead take f to be the
logits of a categorical distribution, p(y = i|w, D) = { softmax;(f(w))p(f|D)df.

Lety = [y; --- yi] . Given a set of baseline points B = AL we define P (Eq. 8) using the posterior
mean y(w) = E[y|w, D], w € B. We model y1, ...,y as conditionally independent given some
shared hidden state h = gq(w), so p(y|h, D) factorizes nicely. Finally we define P’ = P u {y} and
take the expectation of Eq. 8 w.r.t. p(y|h, D). Since p(y|h, D) is discrete and factorizes, we can
marginalize in closed form when K7 x - - x K} is not too large, where K is the number of classes
corresponding to the discretization of the original continuous f;.

D.3 Architecture and Hyperparameters

The inputs of the LaMBO-2 model for antibody design are the variable heavy (VH) and variable
light (VL) regions of the antibody sequence as determined by Aho alignment with ANARCI, as well
as the (unaligned) antigen sequence. Note that the concatenation of the antigen to the input makes
the samples from the generative head conditional on the antigen as well as the unmasked portion
of the antibody sequence. The LaMBO-2 model jointly predicts antigen-conditional categorical
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token distributions for corrupted positions and discriminative distributions over protein properties.
Discriminative predictions that should not depend on the antigen are made invariant through data
augmentation with random antigen sequences. See Algorithm 3 for an overview of a single guided
diffusion step with LaMBO-2.

Model Architecture: our architecture for this experiment is inspired by the one proposed by Stanton
et al. [73]. In particular we jointly a train an encoder shared between a generative discrete diffusion
head and discriminative heads which predict expression and affinity. Rather than use a deep kernel
GP, we simply ensemble 10 heads for each discriminative task to obtain uncertainty estimates. Like
Stanton et al. [73] for this experiment we use 1D CNN residual blocks (kernel width 9), with layer
normalization and sinusoidal position embeddings. The shared encoder was comprised of 4 residual
blocks, and each task head was comprised of 2 residual blocks followed by a linear layer, with the
exception of the generative head which was just a linear layer on top of the shared embeddings. Note
that in future work self-attention layers could be used instead of CNN layers, as was the case for
the pOAS experiments in Sec. 5. We set the embedding dimension to 32, and the latent channel
dimension to 256.

Training Hyperparameters: The LaMBO-2 model is both a jointly trained generative and discrimi-
native model, as well as a true multi-task model, which is necessary since measurements for various
protein properties are often missing from a substantial fraction of rows in real-world datasets. We
trained for 500K gradient updates using the Adam optimizer with n = le-3, 5y = 0.99, 81 = 0.999.
At each gradient step we randomly sampled a task head and task minibatch (batch-size 121) and
updated the corresponding weights (including shared weights). We used a linear learning rate warmup
over 10K gradient updates, and decayed the learning rate to le-6 with a cosine schedule. We did not
regularize with weight decay or dropout.

Generation Hyperparameters: to generate the designs in Figure 7, we sampled 1K designs from a
pool of seed antibody sequences hand-selected by domain experts. For each seed we set the total edit
budget shared between chains to B = 16. In this experiment each infilling method took 16 diffusion
steps, using an inverse linear noise schedule @; = 1/(1 + t). Although the models were trained with
a standard cosine noise schedule, we found the inverse linear schedule gave better results in terms of
sample acquisition value at generation time. Within each diffusion step we took 64 Langevin steps,
with noise scale 7 = le-2. For guided infills with uniformly distributed edit positions we set 7 = 1e6.
For guided infills with saliency-informed edit position selection we set 7 = 0.1. We set A = 0.5 to
balance the tradeoff of sequence likelihood and value during guidance.

Generation Constraints: in addition to the edit budget locality constraint, our LaMBO-2 designs
were also constrained to meet certain sequence liabilities constraints:

* Canonical Cysteine Conservation: there are specific conserved cysteine residues in anti-
body sequences which play a crucial role in the formation of disulfide bridges. Disulfide
bridges are covalent bonds formed between two cysteine residues through oxidation of their
sulfur atoms. These bridges contribute to the overall structural stability and integrity of
antibodies.

* No Unpaired Cysteines: odd numbers of cysteines within individual chains (i.e. unpaired
cysteines) are generally undesirable since they can lead to non-native disulfide bonds
between different antibody molecules, which may disrupt assembly, folding, or function.

* No Glycosylation Motifs: A glycosylation motif is a specific amino acid sequence within a
protein that serves as a recognition site for the attachment of sugar molecules. The presence
of a glycosylation motif in a protein can affect its stability, solubility, activity, and function.
The addition of sugar molecules can alter the protein’s conformation, change its interactions
with other proteins or molecules, and affect its trafficking and localization within the cell.

D.4 Training Data, Class Imbalance, and Label Smoothing

Training Data: the expression task heads were trained on a dataset of 10K linear transfection
expression measurements, which was subsequently augmented to 160K rows by pairing the same
measurements with different random antigens to teach the model to ignore the antigen sequence
when predicting expression. The binding task heads were trained on a dataset of 10K SPR affinity
measurements for various antigens, which was then augmented to 12K rows by pairing binders with
different random antigens and imputing a non-binding label. This augmentation is important for
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Figure 14: An illustration of using quantization to address heavily imbalanced data. On the right we
show the original marginal label distribution in green, and the discretization boundaries as dotted
lines. The boundaries are defined by a minimal level of affinity to be considered a binder (pKD = 4),
and pKD deciles computed from the remaining measurements.

training a pan-target affinity model, since experimental measurements of affinity to off-target antigens
are uncommon. Note that the expression and affinity data only partially overlapped, necessitating the
multi-task architecture described in Appendix D.3. The generative diffusion head was trained only on
binding antibody-antigen pairs in the SPR binding data.

We did not pretrain our LaMBO-2 models. It is likely that performance could be improved with
the right pretraining corpus, however it is unclear if datasets like pOAS are particularly useful for
pretraining antibody design models since most do not report antigen sequences and may not have the
right level of variability. In any case, it is very encouraging to see positive real-world results before
scaling in earnest.

Label Discretization. As noted above, biological data tends to be very imbalanced, and historical
experimental data even more so since there are strong selection effects imposed by the scientists
collecting the data. We chose to discretize continuous properties like expression yield and binding
affinity, making it easier to correct for class imbalance by upsampling minority classes. In Figure 14
we illustrate our discretization scheme. Any antibody-antigen pair with — log(KD) (pKD) less than
4 was assigned to the non-binding class 0. Then binders were assigned to classes 1 - 10 based on
which pKD decile (computed from binders only) they resided in. One consequence of this scheme is
increasing any objective value by one unit corresponds to moving up one decile in the empirical label
distribution.

Training Discriminators on Noisy Inputs: the benefits of discretization are not limited to addressing
class imbalance. Working with discretized labels also allowed a simple approach to training the
discriminator on corrupted inputs inspired by label smoothing [76]. We train the discriminators with
the same noise schedule as the diffusion model and the usual cross-entropy loss, using modified labels

V= sy + (1 —ap)/K =1,

where y is the one-hot encoded label and K is the number of classes. Informally, as @y — 0 the
discriminator reverts to a uniform prior since the inputs are not distinguishable. Training on corrupted
inputs avoids evaluating the value gradient on out-of-distribution inputs during generation, and causes
the strength of the value gradient to grow as the diffusion progresses and the samples become more
defined.

D.5 Baselining LaMBO-2 Against Unguided Sequence and Structure-Based Diversification:

Structure-Based Diversification We have shown that we can effectively optimize antibodies for
predicted yield and affinity, and our method performs well compared to unguided sequence-based
infilling methods. We expand our evaluation for this task to include unguided infilling with DiffAb
and RFDiffusion of CDRs H2 and H3 of hu4D5 (i.e. the seed), a publicly released therapeutic
antibody that is ideally suited for structure-based methods since we have a ground truth crystal
structure of hu4D5 docked with its target ERBB2. While it is not feasible to validate the resulting
designs in vitro during the author response period, we can compare the AntiBERTY naturalness scores
and the acquisition value (log expected hypervolume improvement or log-EHVI) of the designs
relative to our guided infills (Fig. 15). To summarize, unguided structure-based infilling produces
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high likelihood samples, but even when conditioned on the antigen the distribution shift toward better
predicted function is very slight.
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Figure 15: (left) we find that structure-based infills, particularly from DiffAb, tend to score consis-
tently well on naturalness. Guided infilling produces a much wider range of scores, but the mode is
very close to that of RFDiffusion. (middle) as assessed by the same model used to guide towards
higher yield and binding affinity. The guided infills have very high acquisition value, since they
were explicitly optimized for that outcome. Given 1024 samples each, DiffAb failed to produce
any sequences of higher expected value than the seed, and RFDiffusion produced only 7 marginally
improved designs. We also took the opportunity to assess the sensitivity of RFDiffusion to the antigen
by comparing infills generated using the antibody stucture only (right). While the effect is not large,
antigen information does produce a small shift in the distribution of acquisition values to the right.

Sequence Diversification This in silico evaluation compares two variants of LaMBO-2 (one using
NOS-C, the other NOS-D) against a competing method, walk-jump sampling (WJS), an unguided
smoothed discrete sampling algorithm proposed by Frey et al. [30]. Each method generated 1K
designs from the same set of seeds, and all methods were restricted to B = 8 edits. LaMBO-2 chose
all edit positions automatically along the entire antibody sequence, whereas WJS was given manually
selected edit positions restricted to CDRs only. In the left two panels of Figure 7 we compare the
predicted expression yield, predicted binding affinity, and naturalness of the antibody designs, using
the metric proposed by . Comparing the Pareto frontiers obtained from each set of designs, we see
that while WJS excels at generating “natural” antibodies, it struggles to generate designs at the higher
end of the objective range. Conversely LaMBO-2 designs (particularly those generated with NOS-C)
have high predicted objective value but also lower naturalness scores. LaMBO-2 designs generated
with NOS-D strike a balance between the two extremes.
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Figure 16: We evaluate LaMBO-2 in the context of real-world antibody lead optimization. LaMBO-2
can use either NOS-C or NOS-D to generate design libraries with higher predicted objective value
than the unguided sampling baseline WIS [30], however intensive optimization comes at the cost of
reduced naturalness (panels left and center).

D.6 Are Saliency Maps Reliable?

There is substantial controversy regarding the reliability of input-gradient-based feature attribution
methods, specifically related to their ability to consistently highlight ground truth task-discriminative
features and ignore irrelevant features. For example, Hooker et al. [41] claim that random attribution
is competitive with input-gradient methods, and Casper et al. [11] claim that gradient-free attribution
outperforms input-gradient competitors. On the other hand, many papers claim that specific types
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Figure 17: Binding affinity feature attributions for hu4D5 produced by independent models trained
with different input corruptions. While the attributions do not match exactly, there is substantial
agreement on the importance of CDRH3 (top panel) and CDRLI1. Some importance is also assigned to
various framework regions, which could be related to the fitness of different antibody germlines. We
emphasize that these models were trained solely on aligned sequences, with no additional positional
information.

of regularization can improve the performance of input-gradient attribution, including adversarial
training [66], mask denoising [6], and model curvature penalties [72].

A thorough investigation of these claims is beyond the scope of this work, however we have found
that saliency maps produced by independent models trained with different corruption processes seem
to consistently highlight specific regions of the antibody sequence (Figure 17). It is also worth noting
that most of the related literature evaluates feature attribution in the offline setting. In LaMBO-2
feature attributions are used online to intervene on the data collection process (specifically where
to introduce changes in the antibody sequences). If LaMBO-2 changes a position that does not
affect function it is reasonable to conjecture that input-gradient attributions would adjust accordingly
after the model is retrained for the next round. Further investigation into feature attribution in
decision-making contexts (as opposed to post hoc interpretability) is an exciting direction for future
work.

D.7 Wetlab Validation
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Figure 18: Here we show the experimentally validated yield (top) for all expressing designs and
affinity (bottom) for all binding designs as a function of edit-distance from the original seed. In the
right column we show the absolute measurement, and the left column shows the change relative to a
seed measurement in the same batch.
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In this section we briefly summarize the experimental procedures used to validate LaMBO-2 designs
in vitro. Designed antibody sequences from LaMBO-2 were expressed and purified, and surface
plasmon resonance (SPR) measurements were used to determine binding affinity. See Figure 18 for a
plot of design binding affinity vs. edit distance from seed antibody.

Plasmid Construction and Antibody Production: synthesized DNA of antibody variable domains
(Twist Biosciences) were cloned into mammalian expression vectors using Gibson assembly. The
whole vector was amplified using PrimeStar Max polymerase (Takeda). PCR products were trans-
fected transiently in ImL Expi293 cell culture. Expression lasted 7 days before harvest. Antibodies
were affinity purified over a MAb Select SuRe resin (Cytiva), and their concentration was measured
by optical density at 280nM.

Binding Affinity Measurements: affinity of the antibodies towards their target antigen was measured
by surface plasmon resonance (SPR) at 37 °C on a Biacore 8K instrument (Cytiva) in HBS-EP+
buffer (10 mM Hepes, pH 7.4, 150 mM NaCl, 0.3mM EDTA and 0.05% vol/vol Surfactant P20).
Antibodies were captured on a Protein A chip and their target antigen were injected for 5 minutes and
allowed to dissociate for 10 minutes at 30ul/min. The surface was regenerated between cycles with
10 mM glycine pH 1.5. Affinity constants were obtained using Biacore Insight (Cytiva) using a 1:1
binding kinetics model.
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