
Hybrid Offline Passive Grammatical Inference and
Online Planning for Non-Markovian Tasks

Mahyar Alinejad
Dept. of Electrical and Computer Engineering

University of Central Florida
Orlando, Florida

mahyar.alinejad@ucf.edu

Alvaro Velasquez
Dept. of Computer Science

University of Colorado
Boulder, Colorado

alvaro.velasquez@colorado.edu

Yue Wang
Dept. of Electrical and Computer Engineering

Dept. of Computer Science
University of Central Florida

Orlando, Florida
yue.wang@ucf.edu

George Atia
Dept. of Electrical and Computer Engineering

Dept. of Computer Science
University of Central Florida

Orlando, Florida
george.atia@ucf.edu

Abstract—Planning in non-Markovian environments often re-
quires inferring task structures, such as reward machines,
through interactions with the environment. Traditional active
grammatical inference methods, like Angluin’s L∗ algorithm,
depend on continuous querying to learn task structures for
the underlying planning objectives. In contrast, we propose a
hybrid approach that combines passive grammatical inference,
using the Regular Positive and Negative Inference (RPNI) algo-
rithm, with online planning. By leveraging pre-collected positive
and negative trajectories, RPNI learns a deterministic finite
automaton (DFA) that captures the task structure, significantly
reducing the need for real-time interactions. Subsequently, online
planning is conducted over the product MDP, which integrates
the environment with the learned DFA. This hybrid methodology
minimizes the cost of online interactions and improves learning
efficiency in complex environments. Our approach outperforms
baseline algorithms in terms of runtime and sample complexity,
and is well-suited for real-world scenarios where task structures
are implicit, and interactions with the environment are expensive.

Index Terms—Passive Grammatical Inference, RPNI Algo-
rithm, Automaton Learning, Non-Markovian Planning

I. INTRODUCTION

In reinforcement learning (RL), solving complex tasks of-
ten involves defining non-Markovian objectives, where the
rewards depend on the history of states rather than the current
state alone [1]. Traditional RL methods struggle with such
problems due to sparse or delayed reward signals. To address
this, automaton-based approaches have been developed, where
task specifications are encoded in a deterministic finite au-
tomaton (DFA). However, many of these methods rely on
active learning, requiring extensive online interaction with
the environment, which can be resource-intensive and time-
consuming.

This work was supported by DARPA under Agreement No. HR0011-24-9-
0427 and NSF under Award CCF-2106339.

A. Relation to Prior Work

Our method builds on several key advancements in RL
such as hierarchical RL (HRL), non-Markovian planning, and
grammatical inference.
Hierarchical RL. Classical approaches such as MAXQ [2]
and Options [3] focus on task decomposition and sub-goal
learning but are limited by their dependence on predefined
hierarchies, which can constrain the policy space and hinder
convergence to optimal solutions. In contrast, we use DFAs
to capture task sequences directly in the reward structure,
avoiding HRL’s policy restrictions.
Non-Markovian planning. Recent works on reward ma-
chines, such as [4] and [5], use finite-state automata to
represent non-Markovian reward functions. Unlike Q-learning
for Reward Machines (QRM) [4], which integrates standard
Q-learning with a known reward machine to guide the agent’s
learning process, we adopt the Regular Positive and Negative
Inference (RPNI) algorithm [6] to passively learn DFAs from
pre-collected data. This reduces the need for real-time query-
ing, making our approach more practical for environments
where direct interaction is costly or impractical.
Grammatical inference. Active grammatical inference meth-
ods, such as the L∗ algorithm [7], have been widely used to
learn automata by querying the environment through mem-
bership and equivalence queries. Techniques such as [8], [9],
[10], and [11] apply L∗ to learn automata in RL and planning
settings by proposing policies to answer these queries. The rise
of foundation models, particularly large language models, has
also led to renewed interest in grammatical inference by using
these models as oracles or sources of knowledge from which
DFAs can be extracted [12]–[14]. However, active inference
often requires continuous interaction with the environment,
which may not be feasible in many real-world scenarios.
Our method, on the contrary, focuses on passive grammatical



inference, as explored by [15] and [16], to learn the task
structure from static datasets. This makes our hybrid approach
applicable in environments with implicit task structures that
must be inferred without active querying.
Contribution. In this paper, we introduce the Hybrid Passive
Grammatical Inference and Online Planning (HiPO) algorithm
for planning with non-Markovian tasks. HiPO employs a
passive grammatical inference approach, leveraging the RPNI
algorithm to learn a DFA from a pre-collected, fixed dataset
of positive and negative trajectories gathered via an offline
behavior policy, eliminating the need for additional online
interactions. By utilizing this passive method, we significantly
reduce the reliance on costly real-time interactions with the
environment, resulting in substantial computational savings.
Following this, we learn an optimal policy by planning
over a product MDP, which integrates the non-Markovian
environment with the learned DFA. Our experimental results
demonstrate that HiPO achieves faster convergence compared
to existing active learning algorithms, effectively reducing both
training time and interaction costs.

II. BACKGROUND AND NOTATION

In this paper, we assume a non-Markovian reward decision
process (NMRDP) for the agent-environment dynamics, i.e.,
the reward function depends on the entire history of the agent’s
interaction with the environment and not just the current state.
The learning algorithm is assumed to have access to this
NMRDP model, except for the reward function R.

Definition 1 (Non-Markovian Reward Decision Pro-
cess): An NMRDP is defined as a tuple M =
(S, s0, A, P,AP, L,R), where S is a finite set of states,
s0 ∈ S is the initial state, A is a finite set of actions,
P : S × A × S → [0, 1] is a probabilistic transition function,
AP is a finite set of atomic propositions, L : S → 2AP∪{ε} is
a labeling function, and R : S∗ → {0, 1} is a non-Markovian
reward function.

The labeling function L : S → 2AP ∪ {ε} maps states
to the alphabet Σ = 2AP, which specifies the language
corresponding to the underlying goal. This alphabet represents
meaningful events that occur in the states. The empty string ε
is included to label states that are semantically insignificant, to
be ignored during the process of grammatical inference. The
non-Markovian reward function R assigns a reward of 1 to a
trace if it is part of the DFA’s language. A sequence of states
s1, s2, . . . , sk generates a trace L(s1)L(s2) . . . L(sk).

Definition 2 (Deterministic Finite Automaton): A DFA is a
tupleA = (Q,Σ, δ, q0, F ), where Q is a finite set of automaton
states, Σ is a finite alphabet of task-related labels, δ : Q×Σ→
Q is a transition function, q0 ∈ Q is an initial state, and F ⊆ Q
is a set of accepting states.

The task sequence that the agent must complete is modeled
using a DFA, which captures valid sequences of subtasks to
be achieved (e.g., items to be collected in a given order). The
DFA tracks the agent’s progress toward completing tasks by
transitioning between automaton states based on interactions

with labeled states. A trace is in the language of the DFA if
it leads to a reward of 1.

The combination of the environment M and the task
specification captured by the DFA A results in a product MDP
M⊗ =M⊗A, which we define next.

Definition 3 (Product MDP): Given an NMRDP M =
(S, s0, A, P,AP, L,R) and a DFA A = (Q,Σ, δ, q0, F ), their
product MDP is given by M⊗ = (S⊗, x0, A, P⊗, Q, L⊗, R),
where S⊗ = S × Q, the initial state x0 = (s0, q0), P⊗ :
(S × Q) × A × (S × Q) → [0, 1] is defined in (1), and
L⊗((s, q)) = {q}.

P⊗((s′, q′)|(s, q), a) =

{
P (s′|s, a) q′ = δ(q, L(s′))

0 otherwise
(1)

The transition function T⊗ : S⊗ ×A→ S⊗ updates both the
environment and automaton states based on the agent’s actions
and label interactions.

III. PROPOSED APPROACH

In this section, we describe our hybrid learning approach
HiPO, which combines passive automaton learning using the
RPNI algorithm with online policy learning via planning over
the product MDP. This hybrid method combines the strengths
of passive offline learning with active online adaptation, mak-
ing it suitable for complex, non-Markovian environments.

A. Automaton Learning Using RPNI

The initial stage of our approach involves learning a DFA
from a static dataset consisting of positive and negative task
execution traces. Using the RPNI algorithm, we can infer
the underlying structure of tasks without needing real-time
interaction with the environment, which is convenient in offline
learning scenarios.

Algorithm 1 describes the DFA learning process. It takes
sets of positive and negative trajectories, Ptraj and Ntraj ,
collected through some behavior policy, and outputs a DFA
A that represents valid task sequences from the pre-collected
data. A positive trajectory p ∈ Ptraj is a sequence of states
s0, s1, . . . , sk that successfully completes the task (such as
collecting items in the correct order), corresponding to a trace
of labels w ∈ Σ∗, where w = L(s0)L(s1) . . . L(sk). These
traces are split into segments, each representing specific sub-
tasks or labels in the correct order, forming the set of positive
examples P , used in the learning process. Negative trajectories
Ntraj represent sequences that fail to meet the tasks, such as
incorrect item order. These form the set of negative examples
N , ensuring the DFA rejects invalid sequences.

The algorithm proceeds by passively learning a DFA from
these positive and negative traces in two main steps. First,
a Prefix Tree Acceptor (PTA) is constructed from the set of
positive examples P , where each sequence forms a distinct
path from the root to a leaf. Initially, the PTA accepts only
the sequences in P without any generalization. In the second
step, the algorithm iteratively merges similar states in the PTA
to generalize the DFA. During this state-merging process, the



algorithm ensures that the resulting DFA rejects all negative
examples from N . If a merge would cause the DFA to accept
a negative example, that merge is discarded. The algorithm
continues this process of merging and validation against neg-
ative examples until no further merges are possible, resulting
in a minimal DFA A that accepts all positive examples while
rejecting all negative ones.

This approach differs from active learning methods, such
as L∗, which rely on interactive membership and equivalence
queries. Instead, it operates passively, constructing the DFA
solely from the pre-collected dataset of examples. This makes
it particularly well-suited for environments where it is im-
practical or costly to interact directly with the environment to
gather traces.

Algorithm 1 Passive DFA Learning in NMRDP
1: Input: NMRDP M, Positive trajectories Ptraj , Negative

trajectories Ntraj

2: Output: Learned DFA A
3: Step 1: Extract label sequences from trajectories
4: Extract positive label sequences P ←
{EXTRACTLABELSEQUENCE(M, traj) | traj ∈ Ptraj}

5: Extract negative label sequences N ←
{EXTRACTLABELSEQUENCE(M, traj) | traj ∈ Ntraj}

6: Step 2: Build Prefix Tree Acceptor (PTA)
7: Build PTA T from positive label sequences P
8: Initialize DFA A from the PTA T
9: Step 3: State Merging with Negative Sequences

10: for each pair of states q1, q2 in DFA A do
11: if ISCONSISTENT(q1, q2, N ) then
12: Merge states q1 and q2 in DFA A
13: end if
14: end for
15: Continue merging states until no further merges are pos-

sible
16: Return the learned DFA A

17: function EXTRACTLABELSEQUENCE(M, traj)
18: Given M, extract sequence of labels ℓ1ℓ2 · · · ℓn from

trajectory traj
19: return label sequence
20: end function

21: function ISCONSISTENT(q1, q2, N )
22: Check if merging states q1 and q2 contradicts any

sequence in N
23: return True if consistent, False otherwise
24: end function

B. Planning over the Product MDP

After learning the DFA A, it is combined with the envi-
ronment to form a product MDP, where planning and policy
learning are performed as described in Step 3 of Algorithm 2.
The product MDP captures both the dynamics of the environ-

ment and the task’s structural constraints, guiding the agent to
follow valid action sequences that lead to task completion.

Here, we use Q-learning over the product MDP, which
enables the agent to learn an optimal policy by interacting
with the environment and updating its knowledge of the task,
represented by the learned DFA, through experience. The agent
dynamically updates the Q-values associated with state-action
pairs, progressively improving the policy over time. The Q-
value update rule is defined as follows:

Q(s⊗, a)← Q(s⊗, a) + α
[
r + γmax

a′
Q(s′⊗, a′)−Q(s⊗, a)

]
(2)

where, for simplicity, we have used s⊗ := (s, q) and s′⊗ :=
(s′, q′), with q′ = δ(q, L(s′)), and Q(s⊗, a) represents the
expected cumulative reward for taking action a in state s⊗ ∈
S⊗, α is the learning rate, γ is a discount factor, and r is
the immediate reward received after transitioning to state s′⊗.
The Q-values are used by the agent to learn an optimal policy
π : S⊗ → P(A) that maximizes the discounted cumulative
reward, where P(A) is the probability simplex over A.

Algorithm 2 HiPO: Hybrid Passive Inference and Online
Planning

1: Input: NMRDP M, Positive trajectories Ptraj , Negative
trajectories Ntraj , Number of episodes T

2: Step 1: Learn DFA from trajectories
3: Use Algorithm 1 with Ptraj , Ntraj to learn DFA A
4: Step 2: Form Product MDP
5: Construct product MDP M⊗ =M⊗A
6: Step 3: Planning over Product MDP
7: Perform Q-learning on M⊗ using the update rule (2)
8: Return the learned policy π

IV. EXPERIMENTAL RESULTS

A. Environment Setup

We conducted experiments in two distinct gridworld envi-
ronments: the Office Labeled GridWorld and the Minecraft
Labeled Environment, depicted in Fig. 1 and 2, respectively.
Both environments test the agent’s ability to navigate and
complete tasks in a specific sequence, modeled as an NMRDP.

Fig. 1. Office Labeled GridWorld
environment. Fig. 2. Minecraft Labeled GridWorld

Environment.



1) Office Labeled Gridworld Environment: In this environ-
ment, the grid consists of rooms labeled with tasks such as
“coffee,” “mail,” and “office.” The agent’s goal is to collect
these items in the specified order, with rewards dependent on
following the correct sequence. The structured sequence of
tasks adds temporal dependencies, which traditional Marko-
vian models cannot capture.

2) Minecraft Labeled Gridworld Environment: In this envi-
ronment, the agent must also collect items in a specific order:
wood (w), iron (i), factory (f), and bridge (b). As in the Office
Labeled GridWorld, rewards are given only when the sequence
is completed correctly, and the environment is modeled as an
NMRDP. The Minecraft environment is more complex, with
four tasks instead of three, and a larger grid (15×15 vs. 9×12),
requiring more time and planning for completion.

B. Comparison with Active Grammatical Inference

We compare the performance of HiPO, which leverages
passive grammatical inference via RPNI, with the Active
Grammatical Inference method AGI [11], JIRP [16], and
AFRAI [9]. AGI relies on the L∗ algorithm for automata
learning, which requires interactive membership and equiva-
lence queries. In contrast, our method uses offline data for
DFA learning, reducing the need for real-time interaction
with the environment. JIRP jointly infers reward machines
and policies by iteratively refining the automaton from RL
episodes, updating its hypothesis when inconsistencies arise.
This enables simultaneous improvement of both the automaton
and the policy. AFRAI employs L∗ for active automaton learn-
ing, introducing an additional policy to answer membership
queries, guiding exploration and improving performance in
non-Markovian environments.
Evaluation Metrics: The primary evaluation metric is the
accumulated reward over time, which reflects the efficiency of
task completion. This captures how quickly the agent learns
to complete tasks in the correct sequence across both environ-
ments. We also consider the number of samples used. In HiPO,
the total sample count includes both the learning and execution
phases. During the learning phase, samples correspond to the
number of transitions in the positive and negative example
trajectories. In the planning phase, the number of samples
refers to the total number of training steps across all episodes.

Fig. 3. (Left) Reward versus time for HiPO in the Office. (Right) Reward
over time for AGI, JIRP, and AFRAI in the Office.

As shown in Figs. 3 and 4, HiPO achieves higher rewards
per unit time and converges faster compared to the other
approaches. This improvement stems from the offline learning
of the DFA, which reduces the need for real-time interaction
with the environment. The results are consistent across both

Fig. 4. (Left) Reward versus time for HiPO in Minecraft. (Right) Reward
over time for AGI, JIRP, and AFRAI in Minecraft.

the Office and Minecraft environments. The results are plotted
separately due to the differences in time scales and to ensure
fairness, as the DFA learning phase of HiPO is passive, while
the other algorithms rely on active learning.

Fig. 5. (Left) Reward per episode for HiPO and QAS in Office. (Right)
Samples vs reward for HiPO and QAS in Office.

Fig. 6. (Left) Reward per episode for HiPO and QAS in Minecraft. (Right)
Samples vs reward for HiPO and QAS in Minecraft.

In Figs. 5 and 6 we also compare against QAS [17]
which performs Q-learning in an augmented state space by
incorporating an additional binary vector to represent whether
each high-level event has been encountered. This augmentation
adds complexity by expanding the state space with extra
bits of information. HiPO demonstrates significantly better
performance in terms of reward per episode and sample
complexity. This can be attributed to our structured use of the
learning phase, which involves targeted task learning through
sequential label achievements, allowing more efficient and
robust adaptation to the environment’s dynamics.

V. CONCLUSION

We developed HiPO, a method combining offline automa-
ton learning with online planning in a product MDP. Using
RPNI, we learned task structures from static datasets, reducing
the need for real-time interaction. This structured knowledge
guided planning, enabling the agent to adapt and optimize its
policy in real-time. Our evaluation shows that this approach
leads to faster convergence and reduced sample complexity
compared to methods relying solely on continuous querying,
improving learning efficiency by separating task learning from
policy learning. HiPO strikes a balance between offline learn-
ing and online adaptability, providing an efficient solution for
reinforcement learning in non-Markovian settings.



REFERENCES

[1] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. MIT Press, 2018.

[2] Thomas G Dietterich. Hierarchical reinforcement learning with the
MAXQ value function decomposition. Journal of Artificial Intelligence
Research, 13(1):227–303, 2000.

[3] Richard S Sutton, Doina Precup, and Satinder Singh. Between MDPs
and semi-MDPs: A framework for temporal abstraction in reinforcement
learning. Artificial Intelligence, 112(1-2):181–211, 1999.

[4] Rodrigo Toro Icarte, Toryn Klassen, Richard Valenzano, and Sheila
McIlraith. Using reward machines for high-level task specification and
decomposition in reinforcement learning. In International Conference
on Machine Learning, pages 2107–2116. PMLR, 2018.

[5] Daniel Furelos-Blanco, Mark Law, Anders Jonsson, Krysia Broda, and
Alessandra Russo. Hierarchies of reward machines. In International
Conference on Machine Learning, pages 10494–10541. PMLR, 2023.

[6] Jose Oncina and Pedro Garcia. Inferring regular languages in polynomial
updated time. In Pattern Recognition and Image Analysis: Selected Pa-
pers from the IV-th Spanish Symposium, pages 49–61. World Scientific,
1992.

[7] Dana Angluin. Learning regular sets from queries and counterexamples.
Information and Computation, 75(2):87–106, 1987.

[8] Matan Gaon and Ronen Brafman. Reinforcement learning with non-
Markovian rewards. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 3980–3987, 2020.

[9] Zhe Xu, Bo Wu, Aditya Ojha, Daniel Neider, and Ufuk Topcu. Active
finite reward automaton inference and reinforcement learning using
queries and counterexamples. In Machine Learning and Knowledge
Extraction, CD-MAKE 2021, pages 115–135. Springer, 2021.

[10] Taylor Dohmen, Noah Topper, George Atia, Andre Beckus, Ashutosh
Trivedi, and Alvaro Velasquez. Inferring probabilistic reward machines
from non-markovian reward signals for reinforcement learning. In
Proceedings of the International Conference on Automated Planning
and Scheduling, volume 32, pages 574–582, 2022.

[11] Noah Topper, George Atia, Ashutosh Trivedi, and Alvaro Velasquez. Ac-
tive grammatical inference for non-Markovian planning. In Proceedings
of the International Conference on Automated Planning and Scheduling
(ICAPS), volume 32, pages 647–651, 2022.

[12] Yiyou Sun, Junjie Hu, Wei Cheng, and Haifeng Chen. DFA-RAG:
Conversational semantic router for large language model with definite
finite automaton. In Forty-first International Conference on Machine
Learning, 2024.

[13] Lekai Chen, Ashutosh Trivedi, and Alvaro Velasquez. LLMs as prob-
abilistic minimally adequate teachers for dfa learning. arXiv preprint
arXiv:2408.02999, 2024.

[14] Marcell Vazquez-Chanlatte, Karim Elmaaroufi, Stefan J Witwicki, and
Sanjit A Seshia. L∗LM : learning automata from examples using natural
language oracles. arXiv preprint arXiv:2402.07051, 2024.

[15] Mohammad Hasanbeig, Alessandro Abate, and Daniel Kroen-
ing. Logically-constrained reinforcement learning. arXiv preprint
arXiv:1801.08099, 2018.

[16] Zhe Xu, Ivan Gavran, Yousef Ahmad, Rupak Majumdar, Daniel Neider,
Ufuk Topcu, and Bo Wu. Joint inference of reward machines and
policies for reinforcement learning. In Proceedings of the International
Conference on Automated Planning and Scheduling (ICAPS), volume 30,
pages 590–598, 2020.

[17] C. J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning,
8(3):279–292, May 1992.


