RESEARCH ARTICLE

Check for updates

Solid state synthesis of BiFeO₃ occurs through the intermediate Bi₂₅FeO₃₉ compound

Corrado Wesley¹ Leah Bellcase¹ | Jennifer S. Forrester² Elizabeth C. Dickey³ Ian M. Reaney⁴ Jacob L. Jones¹

Correspondence

Corrado Wesley and Jacob L. Jones, Department of Materials Science, North Carolina State University, Raleigh, NC 27695, USA.

Email: corradojh@gmail.com and jljone21@ncsu.edu

Funding information

Center for Dielectrics and Piezoelectrics, North Carolina State University, Grant/Award Numbers: ECCS-2025064, IIP-1841453, IIP-1841466

Abstract

The solid-state synthesis of perovskite BiFeO₃ has been a topic of interest for decades. Many studies have reported challenges in the synthesis of BiFeO₃ from starting oxides of Bi₂O₃ and Fe₂O₃, mainly associated with the development of persistent secondary phases such as Bi₂₅FeO₃₉ (sillenite) and Bi₂Fe₄O₉ (mullite). These secondary phases are thought to be a consequence of unreacted Fe-rich and Bi-rich regions, that is, incomplete interdiffusion. In the present work, in situ high-temperature X-ray diffraction is used to demonstrate that Bi₂O₃ first reacts with Fe₂O₃ to form sillenite Bi₂₅FeO₃₉, which then reacts with the remaining Fe₂O₃ to form BiFeO₃. Therefore, the synthesis of perovskite BiFeO₃ is shown to occur via a two-step reaction sequence with Bi₂₅FeO₃₉ as an intermediate compound. Because $Bi_{25}FeO_{39}$ and the γ - Bi_2O_3 phase are isostructural, it is difficult to discriminate them solely from X-ray diffraction. Evidence is presented for the existence of the intermediate sillenite Bi₂₅FeO₃₉ using quenching experiments, comparisons between Bi₂O₃ behavior by itself and in the presence of Fe₂O₃, and crystal structure examination. With this new information, a proposed reaction pathway from the starting oxides to the product is presented.

KEYWORDS

ferrites, ferroelectricity/ferroelectric materials, perovskites, synthesis, X-ray methods

1 INTRODUCTION

BiFeO₃ is a scientifically and industrially interesting ferroic oxide because it can exhibit both antiferromagnetic and ferroelectric properties. The synthesis of BiFeO₃ is typically undertaken by solid-state reaction of the starting oxides of Bi_2O_3 and Fe_2O_3 in the region of 750°C, although techniques such as wet chemical and sol-gel methods have been explored with some success.^{2,3} Although the

solid-state reaction of BiFeO₃ from Bi₂O₃ and Fe₂O₃ is simple in chemical formula, significant complications and challenges have been reported.

A description of solid-state synthesis was outlined by Bernardo et al.⁴ in which it was proposed that the Bi₂O₃ diffuses into the Fe₂O₃ particle, which then forms BiFeO₃. This schematic diagram is reproduced in Figure 1. In Figure 1, the idealized final stage of the reaction is shown with the arrow toward the top-right of the figure, a process

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2024 The Authors. Journal of the American Ceramic Society published by Wiley Periodicals LLC on behalf of American Ceramic Society.

¹Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina, USA

²Analytical Instrumentation Facility, North Carolina State University, Raleigh, North Carolina, USA

³Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

⁴Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK