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Abstract. Hypergraphs and tensors extend classic graph and matrix theories to account for
multiway relationships, which are ubiquitous in engineering, biological, and social systems. While
the Kronecker product is a potent tool for analyzing the coupling of systems in a graph or ma-
trix context, its utility in studying multiway interactions, such as those represented by tensors and
hypergraphs, remains elusive. In this article, we present a comprehensive exploration of algebraic,
structural, and spectral properties of the tensor Kronecker product. We express Tucker and ten-
sor train decompositions and various tensor eigenvalues in terms of the tensor Kronecker product.
Additionally, we utilize the tensor Kronecker product to form Kronecker hypergraphs, which are
tensor-based hypergraph products, and investigate the structure and stability of polynomial dynam-
ics on Kronecker hypergraphs. Finally, we provide numerical examples to demonstrate the utility of
the tensor Kronecker product in computing Z-eigenvalues, performing various tensor decompositions,
and determining the stability of polynomial systems.
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genvalues, multilinear system, block tensors
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1. Introduction. Engineering, biological, and physical systems are often char-
acterized as the composite of smaller, interconnected systems. Early contributions
by Kalman [34] and Gilbert [25] emphasized the importance of partitioning control
systems, enabling the study of subsystems to gain insights into the primary system.
The Kronecker product (KP) \otimes is a fundamental operation that has been used across
a variety of fields to describe coupled systems. This article aims to consolidate and
advance the application of the KP in the context of tensors and hypergraphs.

Seeded in classic results from matrix theory [76], the KP has roots in network
science and dynamical systems. In the 1950s, graph products emerged as a means
of investigating the combinatorial and structural properties resulting from different
methods of combining networks [23, 63, 75, 73, 28]. Stemming from this, various graph
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1622 PICKARD ET AL.

products have since been expressed by the KP [75, 33, 28]. From these structures,
methods for network compression and summarization [42], along with insights into
the dynamics and control of coupled systems [12, 11, 29], have sprouted. This frame-
work has cultivated additional offshoots in multiagent systems [8, 41], data science
[72, 69, 9], and many other domains that utilize matrix and graphical models [71].
While the KP of matrices and graphs offers a foundation for coupling systems, recent
research builds beyond pairwise structures of matrices and graphs towards tensors
and hypergraphs [37, 4].

Hypergraphs extend graph theory by allowing hyperedges to contain more than
two vertices [7]. Pairwise interactions alone fail to unambiguously capture the struc-
ture or dynamics of many systems. For instance, social and communication structures
with ``friend groups"" or ``group chats"" cannot be adequately described by a list of pairs
of people that interact, compelling the adoption of hypergraphs to represent multi-
way group interactions. This approach has been adopted in ecology [27], genomic
and polymer analysis [21], and many other domains. Although hypergraph products
have been utilized since the early 1990s [66, 67] and remain an active area of study
[31, 51, 35, 30], previous investigations into hypergraph products have been limited
to a tensor-free approach.

Tensors are the matrices of multiway interactions, playing a crucial role in hyper-
graph analysis. The multiway analogue of the graph adjacency matrix is an adjacency
tensor(s), offering a means to explore the structure and dynamics of the network. Ten-
sor eigenvalues, distances, and decompositions have been utilized to study hypergraph
centrality [5], similarity [68], and entropy [15]. The homogeneous polynomials of ten-
sors have been used to model hypergraph dynamics, from which the controllability
[16], observability [56, 55], and stability [14, 13, 19] have been investigated. Tensor-
based hypergraph products are imperative to quantitatively study the compositions
of hypergraphs. Nevertheless, the tensor KP for this purpose remains relatively un-
explored.

Tensor-based hypergraph products provide a natural means to quantitatively
study hypergraph products, and several approaches to the tensor KP (see Figure 1)

Fig. 1. An example of the tensor Kronecker product.
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KRONECKER PRODUCT OF TENSORS AND HYPERGRAPHS 1623

have been made. To the best of our knowledge, the tensor KP was first introduced
by Nicholson in 2001 [47] for 3rd- and 4th-order tensors in mechanics. Parallel to the
matrix KP, which, despite its homage to Kronecker was first published by Zehfuss
in 1858 [76] as documented in [46, 32], the tensor KP operation has been reintro-
duced and misattributed several times. For instance, an identical operation dubbed
``recursive tensor multiplication"" was defined in [1], where it is utilized to study net-
work dynamics, and has been given attribution by [22, 17]; the operation was defined
again in [52] for identifying patterns in textured images and spectrograms, and it is
the origin for the operations of [53, 22, 74, 17]; Ragnarsson provides the most com-
prehensive discussion of the tensor KP, in the context of block tensor unfolding and
factorization, although with little attribution [59, Chapter 4]. Several proposed in-
stances of this operation, labeled either as a KP [45, 40, 3] or under alternative names
such as the ``direct product"" [65], have discussed a similar operator without proper
attribution to earlier works, but a comprehensive list of all such instances is currently
unavailable.

Continuing the story of Zehfuss and Kronecker, along with the tensor extensions
by Nicholson and others, this article makes the following contributions:

\bullet We provide a comprehensive list of algebraic, structural, and spectral prop-
erties and derive tensor decompositions, such as the Tucker, higher-order sin-
gular value, canonical polyadic, orthogonal, and tensor train decompositions
in terms of the tensor KP.

\bullet We introduce and characterize the structure of Kronecker hypergraphs in
terms of the KP of adjacency tensors. Characterizations of the stability of
polynomial dynamics defined according to Kronecker hypergraph structure
are expressed in terms of the factor hypergraphs.

\bullet We showcase a several-orders-of-magnitude improvement in runtime when
computing canonical polyadic and tensor train decompositions as well as Z-
eigenvectors of modest sized tensors with Kronecker structure. Furthermore,
we present a concrete example demonstrating the polynomial stability result.

We discuss the structural, spectral, and decomposition properties of the tensor
KP (section 2), examine structural and dynamic properties of Kronecker hypergraphs
(section 3), and provide several numerical examples where Kronecker structure is
utilized to calculate eigenvalues, tensor decompositions, and polynomial stability in
improved time (section 4).

2. Tensor Kronecker product. In this section we investigate various algebraic,
structural, and spectral properties of the tensor KP. We utilize these properties to
express and compute Tucker and tensor train decompositions with tensor KP.

2.1. Tensor preliminaries. Tensors are multidimensional arrays generalized
from vectors and matrices.1 The order of a tensor is the number of its indices, also re-
ferred to as modes. A kth-order real-valued tensor is often denoted by T\in Rn1\times \cdot \cdot \cdot \times nk ,
where nj is the dimension of the jth mode. A tensor T is supersymmetric if Tj1...jk

is invariant under any permutation of its indices. Moreover, tensor norms are defined
similarly to their matrix counterparts.

1In precise mathematical terminology, a multidimensional array is not formally equivalent to a
tensor [62, Chapter 14]. Nevertheless, for the sake of consistency with the nomenclature used in [37],
we adopt the practice of referring to multidimensional arrays as tensors.
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1624 PICKARD ET AL.

Definition 2.1 (tensor norms [37]). Given a kth-order tensor T \in Rn1\times \cdot \cdot \cdot \times nk ,
the l1-norm and the Frobenius norm, denoted by \| \cdot \| 1 and \| \cdot \| F , are

\| T\| 1 =
n1\sum 

j1=1

\cdot \cdot \cdot 
nk\sum 

jk=1

| Tj1...jk | and \| T\| F =

\sqrt{}    n1\sum 
j1=1

\cdot \cdot \cdot 
nk\sum 

jk=1

T2
j1...jk

,

respectively.

In order to represent the fibers and slices of a tensor (as defined below), we employ
the MATLAB colon notation. For example, Ai: represents the ith rows of a matrix
A, while A:j corresponds to the jth columns of A.

Definition 2.2 (fibers and slices [37]). Fibers refer to vectors obtained from a
tensor by keeping all indices fixed except for one. Slices, on the other hand, correspond
to matrices obtained from a tensor by fixing all indices except for two.

Consider a 3rd-order tensor T \in Rn1\times n2\times n3 . The fibers T:jl, Ti:l, and Tij: are
commonly referred to as columns, rows, and tubes. The slices Ti::, T:j:, and T::l are
commonly known as transverse, lateral, and frontal slices, respectively. Fibers and
slices can be further generalized by fixing any set of indices as the number of modes
increases. For instance, if T \in Rn1\times n2\times n3\times n4 , we denote T4=1, where 4 indicates the
fixed mode and 1 is the selected index, as the tensor T:::1. These structures play a
fundamental role in the tensor decompositions of the tensor KP.

2.1.1. Tensor products. Multiplying a tensor T by a vector, matrix, or an-
other tensor involves multiplying each fiber of T along a specified mode with the
corresponding vector, rows/columns of the matrix, or fibers of the other tensor.

Definition 2.3 (tensor inner product [37]). Given two kth-order tensors T \in 
Rn1\times \cdot \cdot \cdot \times nk and S\in Rn1\times \cdot \cdot \cdot \times nk of the same size, the tensor inner product is

\langle T,S\rangle =
n1\sum 

j1=1

\cdot \cdot \cdot 
nk\sum 

jk=1

Tj1...jkSj1...jk .

The tensor Frobenius norm therefore can be expressed as \| T\| 2F = \langle T,T\rangle . Two
tensors T and S are called orthogonal if \langle T,S\rangle = 0. The tensor outer product is a
direct extension of the vector outer product.

Definition 2.4 (tensor outer product [37]). Given a k1th-order tensor T \in 
Rn1\times \cdot \cdot \cdot \times nk1 and a k2th-order tensor S\in Rm1\times \cdot \cdot \cdot \times mk2 , the tensor outer product is

(T \circ S)j1...jk1
i1...ik2

=Tj1...jk1
Si1...ik2

.

Furthermore, tensors can be multiplied by vectors or matrices, similar to matrix
vector or matrix multiplications.

Definition 2.5 (tensor matrix multiplication [37]). Given a kth-order tensor
T\in Rn1\times \cdot \cdot \cdot \times nk , the tensor matrix multiplication T\times pA\in Rn1\times \cdot \cdot \cdot \times np - 1\times m\times np+1\times \cdot \cdot \cdot \times nk

along mode p for a matrix A\in Rm\times np is

(T\times p A)j1...jp - 1ijp+1...jk =

np\sum 
jp=1

Tj1...jp...jkAijp .

The tensor vector multiplication follows directly from the tensor matrix multipli-
cation by treating the vector as a matrix. Furthermore, the tensor vector multiplica-
tion can be extended to
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KRONECKER PRODUCT OF TENSORS AND HYPERGRAPHS 1625

(2.1) T\times 1 v1 \times 2 \cdot \cdot \cdot \times k vk \in R,

for vp \in Rnp . The above expression is also known as the homogeneous polynomial
associated with T. If vp = v for all p, we write (2.1) as Tvk for simplicity. Last but
not least, the Einstein product is one particular form of tensor multiplication.

Definition 2.6 (Einstein product [18]). Given an even-order tensor
T \in Rn1\times m1\times \cdot \cdot \cdot \times nk\times mk and a kth-order tensor X \in Rm1\times \cdot \cdot \cdot \times mk , the Einstein prod-
uct T \ast X\in Rn1\times \cdot \cdot \cdot \times nk is

(T \ast X)j1...jk =
m1\sum 
i1=1

\cdot \cdot \cdot 
mk\sum 
ik=1

Tj1i1...jkikXi1...ik .

The above tensor products are fundamental to tensor eigenvalue problems and
tensor decompositions and will be used throughout the remainder of the article.

2.1.2. Spectral definitions. Tensor eigenvalues were introduced independently
in 2005 by Qi [57] and Lim [43], and various versions have since been developed. Tensor
eigenvalues extend the concept of eigenvalues from matrices to account for repeated
tensor vector or tensor multiplications.

Definition 2.7 (H-eigenpair [57]). Given a kth-order supersymmetric tensor
T\in Rn\times \cdot \cdot \cdot \times n, the H-eigenpair (\lambda ,x), where \lambda \in R and x\in Rn, is a solution to

(2.2) Txk - 1 = \lambda x\{ k - 1\} ,

where x\{ k - 1\} denotes Hadamard product exponentiation to the (k - 1)th power.

Definition 2.8 (Z-eigenpair [57]). Given a kth-order supersymmetric tensor
T\in Rn\times \cdot \cdot \cdot \times n, the Z-eigenpair (\lambda ,x), where \lambda \in R and x\in Rn, is a solution to

(2.3) Txk - 1 = \lambda x and x\top x= 1.

Definition 2.9 (generalized M-eigentriple [58]). Given an even-order (2kth-
order) tensor T\in Rn\times n\cdot \cdot \cdot \times n\times n, the M-eigentriple (\lambda ,x,y), where \lambda \in R, x and y \in Rn,
and x\top x= y\top y= 1, is the solution to

Txkyk - 1 = \lambda y and Tykxk - 1 = \lambda x.

Definition 2.10 (U-eigenpairs [18]). Given an even-order (2kth-order) tensor
T \in Rn1\times n1\times \cdot \cdot \cdot \times nk\times nk , the U-eigenpair (\lambda ,X), where \lambda \in C and X \in Cn1\times \cdot \cdot \cdot \times nk , is the
solution to

T \ast X= \lambda X.

The computation of tensor eigenvalues continues to be a topic of active research.
By leveraging mixed product properties, we can utilize the Kronecker structure of a
tensor to facilitate the computation of specific tensor eigenvalues.

2.1.3. Tensor decompositions. A wide range of tensor decompositions have
been developed [37, 48]. These decompositions serve as powerful tools to represent
and analyze complex data structures that exhibit multidimensional relationships.
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1626 PICKARD ET AL.

Definition 2.11 (Tucker decomposition [70]). The Tucker decomposition repre-
sents a kth-order tensor T \in Rn1\times \cdot \cdot \cdot \times nk as a core tensor S multiplied by matrices Up

along each mode p, i.e.,

(2.4) T= S\times 1 U1 \times 2 \cdot \cdot \cdot \times k Uk,

where S\in Rm1\times \cdot \cdot \cdot \times mk and Up \in Rnp\times mp .

The canonical polyadic decomposition (CPD), orthogonal decomposition, and
higher-order singular value decomposition (HOSVD) are special cases of the Tucker
decomposition. In the case of CPD, S becomes a diagonal tensor such that T can be
equivalently represented as the sum of rank one tensors, and the number of nonzero
diagonal entries in S is referred to as the CP-rank [36]. For orthogonal decomposition,
a supersymmetric tensor is called orthogonally decomposable when S is diagonal and
the matrices Uj contain orthonormal columns [61]. The HOSVD is a multilinear
extension of the matrix SVD that requires the matrices Uj to contain orthonormal
columns and the core tensor S to satisfy the following two conditions [20]:

\bullet All-orthogonality: the subtensors Sjp=\alpha and Sjp=\beta are orthogonal for all pos-
sible values p,\alpha ,\beta subject to \alpha \not = \beta .

\bullet Ordering: \| Sjp=1\| F \geq \cdot \cdot \cdot \geq \| Sjp=np
\| F \geq 0 for all possible values of p.

The Frobenius norms \| Sjp=\alpha \| F = \gamma 
(p)
\alpha are the p-mode singular values of T, and

the number of nonvanishing p-mode singular values is called the p-rank of T. The
multilinear rank of T is defined as the maximum of its p-ranks.

The tensor train decomposition (TTD) is an alternative decomposition to the
Tucker decomposition.

Definition 2.12 (TTD [49, 48]). Given a kth-order tensor T \in Rn1\times \cdot \cdot \cdot \times nk , the
TTD represents T as a sum of the outer product of fibers taken from 3rd-order tensors,
i.e.,

(2.5) T=

r0\sum 
j0=1

\cdot \cdot \cdot 
rk\sum 

jk=1

T
(1)
j0:j1

\circ \cdot \cdot \cdot \circ T(k)
jk - 1:jk

,

where \{ r0, . . . , rk\} is called the set of TT-ranks, and T(p) \in Rrp - 1\times np\times rp are called the
core tensors of T.

The computation of the TTD is numerically stable, exhibiting linear complexity
in both time and storage relative to the dimensions of T. This efficiency makes it
particularly suitable for addressing high-dimensional problems.

2.2. Block definition of KP. Block tensors, developed using principles similar
to block matrix operations, are intimately related to the tensor KP. Just like block
matrices, a block tensor is a tensor in which the elements themselves are tensors.
In the case of a kth-order block tensor T, we denote the (j1, . . . , jk)th block of T
as [T]j1...jk , where brackets denote tensor blocks. As outlined in [60], block tensors
have the following three principle advantages: (1) Structure: block-level sparsity is a
common feature of many data and algorithms; (2) generalizability: many operations
naturally extend to block tensors; (3) performance: block operations are often faster
than elementwise methods, as we will see in section 4.

Similar to matrices, operations on block tensors can be defined and executed either
elementwise or through vectorization, bypassing the use of blocks. This viewpoint was
adopted by [47, 1, 52, 3] in their independent introductions of the tensor KP. Using
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KRONECKER PRODUCT OF TENSORS AND HYPERGRAPHS 1627

block tensors, we can alternatively define the tensor KP in a manner more consistent
with the matrix KP.

Definition 2.13 (tensor Kronecker product). Given two kth-order tensors B \in 
Rn1\times \cdot \cdot \cdot \times nk and C\in Rm1\times \cdot \cdot \cdot \times mk , the tensor Kronecker product B\otimes C\in Rn1m1\times \cdot \cdot \cdot \times nkmk

is defined as

(2.6) [B\otimes C]i1...ik =Bi1...ikC.

In accordance with the dimensions of B and C provided in Definition 2.13, the
tensor KP can also be defined from an elementwise perspective as

(2.7) (B\otimes C)((i1 - 1)m1+j1)((i2 - 1)m2+j2)...((ik - 1)mk+jk) =Bi1...ikCj1...jk ,

similar to the products used in [1, 52]; the closest definition is proposed in [59], where
linear, rather than tuple, indices are used. The adoption of block tensors in Definition
2.13 allows for a more natural development of various properties for the tensor KP,
as opposed to an elementwise definition. Figure 1 provides a visual representation of
the tensor KP, using the concept of block tensors.

2.3. Algebraic properties. The tensor KP exhibits various algebraic proper-
ties similar to those of the matrix KP. Just like the matrix KP, the tensor KP \otimes is
bilinear, meaning that the functionf(B,C) = B\otimes C is linear with respect to both B
and C.

Property 2.14 (Kronecker product algebra [3]). Given three kth-order tensors
B, C, and D with a scalar \alpha , the following relations hold:

\bullet Distribution over tensor addition:

(2.8) B\otimes (C+D) =B\otimes C+B\otimes D and (B+ C)\otimes D=B\otimes D+ C\otimes D;

\bullet commutation with scalar multiplication:

(2.9) \alpha (B\otimes C) = (\alpha B)\otimes C=B\otimes (\alpha C);

\bullet Kronecker product association:

(2.10) (B\otimes C)\otimes D=B\otimes (C\otimes D).

For the matrix KP, the mixed product property, i.e., (AB) \otimes (CD) = (A \otimes C)
(B\otimes D) [26, Chapter 12.3.1], simplifies the expression of diverse matrix decomposi-
tions. Similarly, translating tensor decompositions into KPs necessitates mixed prod-
uct properties, each corresponding to the various tensor products involved.

Property 2.15 (mixed tensor matrix multiplication [59, Chapter 4]). Given two
kth-order tensors B\in Rn1\times \cdot \cdot \cdot \times nk and C\in Rm1\times \cdot \cdot \cdot \times mk , the following relation holds:

(2.11) (B\otimes C)\times p (X\otimes Y) = (B\times p X)\otimes (C\times p Y)

for any two matrices X\in Rr\times np and Y \in Rh\times mp .

Properties 2.14 and 2.15 are explicitly outlined in [3] and [59, Chapter 4], re-
spectively, and these properties are clearly derived from the index-free perspective of
tensor products presented in [62, Chapter 14, pp. 359--378]. The subsequent prop-
erties, namely Properties 2.16--2.18, follow a similar index-free perspective and are
provided without proof for brevity.
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1628 PICKARD ET AL.

Property 2.16 (mixed tensor inner product [59, Chapter 4]). Given two kth-
order tensors B \in Rn1\times \cdot \cdot \cdot \times nk and C \in Rn1\times \cdot \cdot \cdot \times nk of the same size, the following
relation holds:

(2.12) \langle B\otimes C,X\otimes Y\rangle = \langle B,X\rangle \langle C,Y\rangle 

for any two tensors X\in Rn1\times \cdot \cdot \cdot \times nk and Y\in Rn1\times \cdot \cdot \cdot \times nk .

Property 2.17 (mixed tensor outer product). Given two k1th-order tensors
B\in Rn1\times \cdot \cdot \cdot \times nk1 and C\in Rm1\times \cdot \cdot \cdot \times mk1 , the following relation holds:

(2.13) (B\otimes C) \circ (X\otimes Y) = (B \circ X)\otimes (C \circ Y)

for any two k2th-order tensors X\in Rh1\times \cdot \cdot \cdot \times hk2 and Y\in Rr1\times \cdot \cdot \cdot \times rk2 .

Property 2.18 (mixed Einstein product). Given two even-order tensors B \in 
Rn1\times m1\times \cdot \cdot \cdot \times nk\times mk and C\in Rh1\times r1\cdot \cdot \cdot \times hk\times rk , the following relation holds:

(2.14) (B\otimes C) \ast (X\otimes Y) = (B \ast X)\otimes (C \ast Y)

for any two kth-order tensors X\in Rm1\times \cdot \cdot \cdot \times mk and Y\in Rr1\times \cdot \cdot \cdot \times rk .

Properties 2.16, 2.17, and 2.18 play a crucial role in understanding and computing
Kronecker tensor eigenvalues and tensor decompositions. In addition, the norms of
the tensor KP can be computed from the individual tensor norms.

Property 2.19 (separable norms). Given two kth-order tensors B \in Rn1\times \cdot \cdot \cdot \times nk

and C\in Rm1\times \cdot \cdot \cdot \times mk , the l1-norm and Frobenius norm of the tensor KP B\otimes C can be
computed as

(2.15) \| B\otimes C\| 1 = \| B\| 1\| C\| 1 and \| B\otimes C\| F = \| B\| F \| C\| F ,

respectively.

For brevity, the proof is omitted. Furthermore, the tensor KP preserves fiber,
slide, and subtensor structures, proving crucial in computing the TTD or HOSVD of
a tensor generated via this product.

Property 2.20 (fiber structure). Given two kth-order tensors B \in Rn1\times \cdot \cdot \cdot \times nk

and C \in Rm1\times \cdot \cdot \cdot \times mk , the KP of the p-mode fibers of B and C is the p-mode fiber of
the tensor KP B\otimes C.

Proof. Consider the p-mode fibers Bi1...ip - 1:ip+1...ik and Cj1...jp - 1:jp+1...jk . From
(2.7), the KP of these fibers can be written as

(B\otimes C)((i1 - 1)m1+j1)...((ip - 1 - 1)mp - 1+jp - 1):((ip+1 - 1)mp+1+jp+1)...((ik - 1)mk+jk),

which happens to be a p-mode fiber in B\otimes C as desired.

Property 2.21 (slice and subtensor structure). Given two kth-order tensors
B \in Rn1\times \cdot \cdot \cdot \times nk and C \in Rm1\times \cdot \cdot \cdot \times mk , the KP of the (p1, p2)-mode slices of B and C is
a (p1, p2)-mode slice of the tensor KP B\otimes C. Moreover, the KP of subtensors Bjp=\alpha 

and Cjp=\beta forms the subtensor (B\otimes C)jp=(\alpha  - 1)mp+\beta .

Note that Properties 2.20 and 2.21 are true only if the fibers (slices or sub-tensors)
are taken in the same mode(s) of a tensor.
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KRONECKER PRODUCT OF TENSORS AND HYPERGRAPHS 1629

2.4. Tensor Kronecker structure. Many tensor structures, such as diagonal,
banded, block, and stochastic [6], are similar to their corresponding matrix structures;
for instance, a tensor is diagonal if Tj1...jk = 0, except possibly when j1 = \cdot \cdot \cdot = jk.
These structures are preserved under the tensor KP.

Property 2.22 (tensor Kronecker structure). The tensor KP of kth-order\left(          

diagonal
banded

supersymmetric
upper (lower) triangular

stochastic
Hankel [3]
Toeplitz [3]

\right)          
tensors is a

\left(          

diagonal
block banded

supersymmetric
upper (lower) triangular

stochastic
Hankel [3]
Toeplitz [3]

\right)          
tensor.

Proof. These properties are relatively straightforward to verify, and as an ex-
ample, we illustrate the preservation of diagonal structure. Suppose B and C are
diagonal tensors such that Bi1,...,ik \not = 0 and Cj1,...,jk \not = 0 if and only if i1 = \cdot \cdot \cdot = ik and
j1 = \cdot \cdot \cdot = jk. It follows that [B\otimes C]i1,...,ik \not = 0 if and only if i1 = \cdot \cdot \cdot = ik. Moreover,
within the block [B \otimes C]i1,...,ik , the (j1, . . . , jk)th element is nonzero if and only if
j1 = \cdot \cdot \cdot = jk. Therefore, an element of B \otimes C is nonzero if and only if the element
is a diagonal element of a diagonal block of B\otimes C, which is equivalent to saying the
element is along the main diagonal of the KP B\otimes C. Preservation of the remaining
structures may be verified similarly.

Additionally, the tensor KP preserves the properties of being general symmetric,
persymmetric, and centrosymmetric [3].

2.5. Spectral properties. In contrast to matrix eigenvalues, the preservation
of positive or negative definiteness of tensors under the KP is not guaranteed. Still,
some tensor H-, Z-, M-, and U-eigenpairs of the tensor KP can be computed from
factor tensors.

Property 2.23 (H-eigenpairs). Given the H-eigenpairs (\alpha ,x) and (\beta ,y) of two
kth-order supersymmetric tensors B and C, respectively, the pair (\alpha \beta ,x \otimes y) is an
H-eigenpair of the tensor KP B\otimes C.

Proof. According to Property 2.15, taking the tensor KP of the left and right
sides of (2.2) yields

Bxk - 1 \otimes Cyk - 1 = \alpha x\{ k - 1\} \otimes \beta y\{ k - 1\} \Leftarrow \Rightarrow (B\otimes C)(x\otimes y)k - 1 = \alpha \beta (x\otimes y)\{ k - 1\} .

Therefore, based on Definition 2.7, (\alpha \beta ,x \otimes y) is an H-eigenpair of the tensor KP
B\otimes C.

Following steps similar to those in the proof above, one can establish analogous
properties for other tensor eigenvalue problems.

Property 2.24 (Z-eigenpairs [59, Chapter 4]). Given the Z-eigenpairs (\alpha ,x)
and (\beta ,y) of two kth-order tensors B and C, respectively, the pair (\alpha \beta ,x \otimes y) is
a Z-eigenpair of the tensor KP B\otimes C.

Property 2.25 (M-eigentriples). Given the M-eigentriples (\alpha ,w,x) and (\beta ,y,z)
of two even-order tensors B and C, the triple (\alpha \beta ,w \otimes y,x\otimes z) is a M-eigenpair of
the tensor KP B\otimes C.
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1630 PICKARD ET AL.

Property 2.26 (U-eigenpairs). Given the U-eigenpairs (\alpha ,X) and (\beta ,Y) of two
even-order tensors B and C, respectively, the pair (\alpha \beta ,X\otimes Y) is a U-eigenpair of the
tensor KP B\otimes C.

The converse of Properties 2.23--2.25 does not hold universally. Specifically, not all
eigenpairs of B\otimes C will correspond to KPs of eigenpairs of B and C. This discrepancy
arises as a result of the number of eigenvalues associated with a tensor [10]. It is worth
noting that the dominant Z-eigenpair can be expressed as the KP of the dominant
Z-eigenpairs of the factor tensors [17].

2.6. Tensor decompositions. Computing tensor decompositions, particularly
for high-dimensional, high-mode tensors, can be facilitated by leveraging the KP
or tensors generated with this structure. In this subsection, we explore the use of
Kronecker factors in expressing different tensor decompositions. Our focus centers
around the problem of efficiently computing the tensor decomposition of the tensor
KP B\otimes C, where the decompositions of B and C are known.

Property 2.27 (Tucker decomposition). Given two kth-order tensors B and C
with Tucker decompositions that have core tensors S and R and factor matrices Up

and Vp, respectively, the Tucker decomposition of the tensor KP B \otimes C has a core
tensor S\otimes R and factor matrices Up \otimes Vp for all p.

Proof. According to Property 2.15, taking the tensor KP of the Tucker decompo-
sitions of B and C yields

(B\otimes C) = (S\times 1 U1 \times 2 \cdot \cdot \cdot \times k Uk)\otimes (R\times 1 V1 \times 2 \cdot \cdot \cdot \times k Vk)

= (S\otimes R)\times 1 (U1 \otimes V1)\times 2 \cdot \cdot \cdot \times k (Uk \otimes Vk).

In this form, (B \otimes C) is expressed as a core tensor (S \otimes R) times factor matrices
(Up \otimes Vp) for all p. This constitutes a Tucker decomposition of B\otimes C.

Since the CPD and orthogonal decomposition are special cases of the Tucker
decomposition, Properties 2.28 and 2.29 follow similarly, and we state them without
proof for brevity.

Property 2.28 (CPD). Given two kth-order tensors B and C with CPDs that
have diagonal core tensors S and R and factor matrices Up and Vp with unit column
length, respectively, the CPD of the tensor KP B \otimes C has a core tensor S \otimes R and
factor matrices Up \otimes Vp for all p.

The CPD requirement that the core tensor S from the Tucker decomposition (2.4)
be diagonal and remain diagonal when computing the CPD of B \otimes C is fulfilled by
Property 2.22. A similar factorization can be shown where the CPD is stated in
terms of a summation over matrix outer products [59, Chapter 4]. The diagonal
requirement on the core tensor is similarly applied to the orthogonal decomposition,
and the additional constraint that the factor matrices of orthogonal decomposition
remain orthogonal is satisfied by the well-known property of the matrix KP which
preserves orthogonality.

Property 2.29 (orthogonal decomposition). Given two kth-order supersymmet-
ric tensors B and C with orthogonal decompositions that have diagonal core tensors S
and R and orthogonal factor matrices U and V, respectively, the orthogonal decompo-
sition of the tensor KP B\otimes C, which is supersymmetric, has a core tensor S\otimes R and
factor matrix U\otimes V.
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KRONECKER PRODUCT OF TENSORS AND HYPERGRAPHS 1631

Whereas the CPD and orthogonal decompositions of B \otimes C come directly from
the decompositions of B and C, when C is not sufficiently well conditioned, computing
the HOSVD of B\otimes C can require reindexing the separate HOSVDs of B and C.

Property 2.30 (HOSVD). Given two kth-order tensors B and C with HOSVDs
that have core tensors S and R and orthogonal factor matrices Up and Vp, respectively,
the HOSVD of the tensor KP B\otimes C has a core tensor that is generated by permuting
the indices of S\otimes R and factor matrices Up \otimes Vp with similarly permuted indices for
all p.

Proof. Consider two kth-order tensors B and C with HOSVDs that have core
tensors S \in Rn1\times \cdot \cdot \cdot \times nk and R \in Rm1\times \cdot \cdot \cdot \times mk and orthogonal factor matrices Up and
Vp, respectively. In order for S\otimes R and factor matrices Up\otimes Vp for all p to constitute
a valid HOSVD, both the all-orthogonality and ordering properties must be satisfied
by S\otimes R as follows:

\bullet All-orthogonality: From the HOSVD of B and C, the all-orthogonality prop-
erty stipulates \langle Sjp=\alpha 1 ,Sjp=\beta 1\rangle = 0 and \langle Rjp=\alpha 1 ,Rjp=\beta 1\rangle = 0 for all valid
p,\alpha 1, \alpha 2, \beta 1, \beta 2, subject to \alpha 1 \not = \beta 1 and \alpha 2 \not = \beta 2. The subtensor of (S\otimes R)jp=\alpha 3

can be expressed as the product of subtensors Sjp=\alpha 1
\otimes Rjp=\alpha 2

, where \alpha 1 and
\alpha 2 are set according to Property 2.21. From Property 2.16, the inner product
of any two subtensors of S\otimes R can be written

\langle (S\otimes R)jp=\alpha 3
, (S\otimes R)jp=\beta 3

\rangle = \langle Sjp=\alpha 1
\otimes Rjp=\alpha 2

,Sjp=\beta 1
\otimes Rjp=\beta 2

\rangle 
= \langle Sjp=\alpha 1

,Sjp=\beta 1
\rangle \langle Rjp=\alpha 2

,Rjp=\beta 2
\rangle = 0.

All mode jp-mode subtensors of S \otimes R are orthogonal, so S \otimes R obeys the
all-orthogonality property.

\bullet Ordering: From the HOSVD of B and C, the ordering principle requires
\| Sjp=1\| F \geq \cdot \cdot \cdot \geq \| Sjp=np\| F and \| Rjp=1\| F \geq \cdot \cdot \cdot \geq \| Rjp=np\| F for all valid
p. The jp-mode subtensors of S \otimes R have the relation \| (S \otimes R)jp=\epsilon \| F =
\| Sjp=\alpha \| F \| Rjp=\gamma \| F , which allows us to apply the mixed product property,
Property 2.19, and rewrite the ordering constraint \| (S \otimes R)jp=1\| F \geq \cdot \cdot \cdot \geq 
\| (S\otimes R)jp=npmp

\| F in terms of the p-mode singular values of S and R as

(2.16)
\| Sjp=1\| F \| Rjp=1\| F \geq \cdot \cdot \cdot \geq \| Sjp=1\| F \| Rjp=mp

\| F
\geq \cdot \cdot \cdot \geq \| Sjp=np

\| F \| Rjp=1\| F \geq \cdot \cdot \cdot \geq \| Sjp=np
\| F \| Rjp=mp

\| F .

When \| Sjp=i+1\| F \| Rjp=mp
\| F \geq \| Sjp=i\| F \| Rjp=1\| F for all indices i, (2.16) is

satisfied. If C is sufficiently well conditioned such that \| Rjp=1\| F  - \| Rjp=mp
\| F

is small, this criteria is satisfied, and S\otimes R obeys the ordering property. Oth-
erwise, when the p-mode singular values of C are not well conditioned, the
p-mode indices of S\otimes R may be rearranged so that the ordering property is
satisfied. This rearrangement must coincide with the rearrangement of the
indices in Up\otimes Vp. Since the all-orthogonality principle is satisfied, rearrang-
ing the indices in one mode of S\otimes R neither impacts the singular values in
any other mode nor causes the all-orthogonality principle to be violated. By
performing this rearrangement of indices in all modes, the ordering principle
can be satisfied, and the HOSVD of B\otimes C can be generated from the HOSVDs
of B and C.

We conclude that the all-orthogonality property is always obeyed, and it is possible
to permute the indices of S\otimes R to satisfy the ordering.
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1632 PICKARD ET AL.

A similar instance of permuting indices used in the proof above is required when
computing the SVD of the matrix B\otimes C from the SVDs of B and C separately. The
thesis of Ragnarsson investigated the all-orthogonal property of S\otimes R in [59, Chapter
4] in the context of the HOSVD. Regardless of whether the singular values must be
reordered, the p-mode singular values of the tensor KP B\otimes C are equal to the product
of the p-mode singular values of B and C. Furthermore, the p-mode rank of the tensor
KP is the product of the p-mode ranks of B and C.

The multilinear rank of the tensor KP B\otimes C is less than or equal to the product
of the multilinear ranks of B and C; this equality holds only when the p-mode ranks
of B and C are maximized in the same mode for both tensors, which occurs in the
case of supersymmetric tensors, such as those associated with hypergraphs.

Property 2.31 (TTD). Given two kth-order tensors B and C in the TTD form
with TT-ranks rp and sp and core tensors B(p) and C(p), respectively, the tensor KP

B\otimes C can be computed in the TTD form with TT-ranks rpsp and core tensors B(p)\otimes C(p)

for all p.

Proof. Suppose that B(p) and C(p) are the core tensors of B and C with TT-ranks
\{ r0, . . . , rk\} and \{ s0, . . . , sk\} , respectively. Taking the tensor KP of the TTDs of B
and C yields

B\otimes C=

\Biggl( 
r0\sum 

i0=1

\cdot \cdot \cdot 
rk\sum 

ik=1

B
(1)
i0:i1

\circ \cdot \cdot \cdot \circ B(k)
ik - 1:ik

\Biggr) 
\otimes 

\left(  s0\sum 
jC0=1

\cdot \cdot \cdot 
sk\sum 

jk=1

C
(1)
j0:j1

\circ \cdot \cdot \cdot \circ C(k)
jk - 1:jk

\right)  
=

r0\sum 
i0=1

\cdot \cdot \cdot 
rk\sum 

ik=1

s0\sum 
j0=1

\cdot \cdot \cdot 
sk\sum 

jk=1

(B
(1)
i0:i1

\circ \cdot \cdot \cdot \circ B(k)
ik - 1:ik

)\otimes (C
(1)
j0:j1

\circ \cdot \cdot \cdot \circ C(k)
jk - 1:jk

)

=

r0\sum 
i0=1

s0\sum 
j0=1

\cdot \cdot \cdot 
rk\sum 

ik=1

sk\sum 
jk=1

(B
(1)
i0:i1

\otimes C
(1)
j0:j1

) \circ \cdot \cdot \cdot \circ (B(k)
ik - 1:ik

\otimes C
(k)
jk - 1:jk

).

The third line follows as an application of Property 2.17. Based on Property 2.20,
the above expression can be rewritten as

B\otimes C=

r0s0\sum 
l0=1

\cdot \cdot \cdot 
rksk\sum 
lk=1

(B(1) \otimes C(1))l0:l1 \circ \cdot \cdot \cdot \circ (B
(k) \otimes C(k))lk - 1:lk .

In this form, (B(i) \otimes C(i)) are the core tensors of a TT-decomposition of B\otimes C, and
from the summations, risi are the TT-ranks of B\otimes C.

The expression of the Tucker decompositions and the TTD for B\otimes C in terms of the
respective decompositions of B and C is of interest when computing the factorizations.
For large systems where the Kronecker factorization is known, as we will see in section
4, it is beneficial to compute decompositions in terms of the Kronecker factors.

3. Kronecker hypergraphs. Exploring the structures and dynamics of graph
and hypergraph products has been a longstanding and active objective in graph theory
and network science [23, 63, 75, 73, 42, 22, 17], and there is growing work on tensor-
free hypergraph products [31, 51, 35, 50, 30]. Recent focus directed towards exploring
higher-order structures, such as motifs and multilayer networks, can be seen through
the lens of graph and hypergraph products [22, 64]. In this section, we outline pre-
liminaries on hypergraphs, introduce Kronecker hypergraphs through the tensor KP,
and explore the structural and dynamic properties of Kronecker hypergraphs.
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KRONECKER PRODUCT OF TENSORS AND HYPERGRAPHS 1633

3.1. Hypergraph preliminaries. A hypergraph \scrH is a pair \{ \scrV ,\scrE \} where \scrV is
the node set and \scrE \subseteq \scrP (\scrV ) \setminus \{ \emptyset \} is the hyperedge set, where \scrP (\scrV ) is the power set of
\scrV . We exclusively consider k-uniform, unweighted hypergraphs, where all hyperedges
contain exactly k nodes, throughout the remainder of the paper.

3.1.1. Hypergraph structure. As the multiway analogue of an adjacency ma-
trix, an adjacency tensor is the principal representation of a hypergraph.

Definition 3.1 (adjacency tensors [68]). Given a hypergraph \scrH = \{ \scrV ,\scrE \} with n
nodes, the adjacency tensor A(\scrH )\in Rn\times \cdot \cdot \cdot \times n of \scrH , which is a kth order n-dimensional
supersymmetric tensor, is defined as

A(\scrH )j1j2...jk =

\left\{     
1

(k - 1)! if \{ vj1 , vj2 , . . . , vjk\} \in \scrE ,

0 otherwise.

The degree d(v) of a node v \in \scrV is d(v) = | \{ e \in \scrE s.t. v \in e\} | . Similar to dyadic
graphs, the degree of node vj of a hypergraph can be computed as

(3.1) d(vj) =

n\sum 
j2=1

n\sum 
j3=1

\cdot \cdot \cdot 
n\sum 

jk=1

A(\scrH )jj2j3...jk ,

which is equivalent to the vectorized equation d = A(\scrH )1k - 1
n , where 1n denotes the

vector of all ones in Rn and d is the degree vector. If all nodes have the same
degree d, then \scrH is d-regular. The degree vector, which encodes the degree distribu-
tion, is one mechanism through which the importance or centrality of nodes may be
ranked.

Definition 3.2 (eigenvector centrality [5]). Given a hypergraph \scrH , an H- or
Z-eigenvector centrality vector c is any positive real vector satisfying (2.2) or (2.3),
respectively, for the hypergraph adjacency tensor A(\scrH ).

There are additional notions of hypergraph centrality, but we restrict ourselves
to the multilinear definition of centrality for the purpose of investigating the tensor
KP; see [24] for more on the spectra of weighted hypergraphs. There are also several
graph and matrix representations of hypergraphs.

Definition 3.3 (clique expansion). Given a hypergraph \scrH = \{ \scrV ,\scrE \} with n nodes,
the clique graph \scrG = \{ \scrV ,\scrE \prime \} , where \scrE \prime = \{ (vi, vj) s.t. vi, vj \subseteq e\in \scrE \} .

For a hypergraph \scrH , the adjacency matrix of the clique expansion can be writ-
ten in terms of the hyperedge set \scrE as A(\scrG )ij = | e \in \scrE s.t. vi, vj \in e| . While the
graph representation may reduce the computational resources required to analyze
hypergraphs, the clique expansion is lossy and limits the ability of hypergraphs to
unambiguously describe multiway interactions. Other graph representations, such as
the star expansion, are lossless but utilize a modified vertex set from \scrH .

3.1.2. Hypergraph dynamics. Hypergraph dynamics can be conceptualized
in various ways. Analogous to how linear dynamical systems are defined according
to graph structure [44], we refer to the homogeneous polynomial dynamical system
defined according to hypergraph structure as ``hypergraph dynamics."" The state vec-
tor x(t) \in Rn of a hypergraph on n nodes represents the state of each node at time
point t.
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1634 PICKARD ET AL.

Definition 3.4 (hypergraph dynamics [16, 56]). Given a hypergraph \scrH with n
nodes, the continuous- and discrete-time dynamics of \scrH are defined as

(3.2) \.x(t) =A(\scrH )x(t)k - 1 and x(t+ 1) =A(\scrH )x(t)k - 1,

respectively, where x(t)\in Rn is the state vector.

Recent work has investigated the controllability [16] and observability [56, 55]
properties of the hypergraph dynamical systems through polynomial systems theory
and tensor algebra. Furthermore, the stability theory of the hypergraph dynamical
systems (3.2) with orthogonally decomposable adjacency tensors has been developed
in continuous and discrete time.

Property 3.5 (stability of continuous-time hypergraph dynamics [13]). Given
a hypergraph \scrH with n nodes such that its adjacency tensor A(\scrH ) is orthogonally
decomposable, i.e., A(\scrH ) =

\sum n
j=1 \lambda juj \circ \cdot \cdot \cdot \circ uj, and the initial condition x(0) =\sum n

j=1\alpha juj, the equilibrium point xe = 0 of the continuous-time case in (3.2) is
\bullet stable if and only if \lambda j\alpha 

k - 2
j \leq 0 for all j = 1, . . . , n;

\bullet asymptotically stable if and only if \lambda j\alpha 
k - 2
j < 0 for all j = 1, . . . , n;

\bullet unstable if \lambda j\alpha 
k - 2
j > 0 for some j = 1, . . . , n.

Moreover, all other equilibrium point will inherit the behavior of xe.

Property 3.6 (stability of discrete-time hypergraph dynamics [14]). Given a
hypergraph \scrH with n nodes such that its adjacency tensor A(\scrH ) is orthogonally decom-
posable, i.e., A(\scrH ) =

\sum n
j=1 \lambda juj \circ \cdot \cdot \cdot \circ uj, and the initial condition x(0) =

\sum n
j=1\alpha juj,

the equilibrium point xe = 0 of the discrete-time case in (3.2) is

\bullet stable if and only if | \alpha j\lambda 
1

k - 2

j | \leq 1 for all j = 1, . . . , n;

\bullet asymptotically stable if and only if | \alpha j\lambda 
1

k - 2

j | < 1 for all j = 1, . . . , n;

\bullet unstable if and only if | \alpha j\lambda 
1

k - 2

i | > 1 for some j = 1, . . . , n.
Moreover, all other equilibrium point will inherit the behavior of xe.

A 2-uniform hypergraph is equivalent to a graph, in which the above stability
properties are equivalent to the famous linear stability conditions.

3.2. Kronecker hypergraph structure. We define Kronecker hypergraphs in
terms of the KP of adjacency tensors and explore the structural and dynamic prop-
erties of this hypergraph product.

Definition 3.7 (Kronecker hypergraphs). Given hypergraphs \scrH 1 and \scrH 2, the
Kronecker hypergraph \scrH = \scrH 1 \otimes \scrH 2 is defined by the adjacency tensor that is the
tensor KP of the adjacency tensors of \scrH 1 and \scrH 2,

(3.3) A(\scrH ) =A(\scrH 1)\otimes A(\scrH 2).

Note that for 2-uniform hypergraphs, which are graphs, this definition reduces
to a classic Kronecker graph. Since the tensor KP does not change the number of
modes for a tensor, the KP of k-uniform hypergraphs remains k-uniform. Kronecker
hypergraphs can also be defined directly in terms of their vertex and edge sets.

Property 3.8 (node and hyperedge sets). Given hypergraphs \scrH 1 = \{ \scrV 1,\scrE 1\} and
\scrH 2 = \{ \scrV 2,\scrE 2\} with m and n hyperedges, respectively, the node and hyperedge sets of
the Kronecker hypergraph \scrH =\scrH 1 \otimes \scrH 2 are given by \scrV = \scrV 1 \times \scrV 2 (Cartesian product)
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KRONECKER PRODUCT OF TENSORS AND HYPERGRAPHS 1635

and

\scrE =
\bigl\{ 
\{ (v(1)i1

, v
(2)
j1

), . . . , (v
(1)
ik

, v
(2)
jk

)\} \subseteq \scrV 1 \times \scrV 2| 

\{ v(1)i1
, . . . , v

(1)
ik

\} \in \scrE 1 and \{ v(2)j1
, . . . , v

(2)
jk

\} \in \scrE 2\} 
\bigr\} 
,

respectively.

Proof. The result follows from the close correspondence between Definitions 1
and 1\prime in [75] or from Observation 1 in [42].

Based on Property 3.8, the hyperedge set of \scrH is a function of the number of
hyperedges in \scrE 1, the number of hyperedges in \scrE 2, and the number of ways a hyperedge
in \scrE 1 and \scrE 2 can be aligned, of which there are k! permutations. Therefore, the total
number of hyperedges in the Kronecker hypergraph is mnk!.

Adopting the perspective of the original work on Kronecker graphs [75], Property
3.8 can be seen as an equivalent definition for Kronecker hypergraphs; this view-
point has been utilized in the tensor-free graph products of Hellmuth, Ostermeier,
and Stadler [31]. A correspondence exists between Kronecker hypergraphs from this
vantage point.

Property 3.9 (isomorphism). Given hypergraphs \scrH 1 and \scrH 2, the Kronecker
hypergraphs \scrH 1 \otimes \scrH 2 and \scrH 2 \otimes \scrH 1 are isomorphic.

Proof. Based on Property 3.8, there is a natural isomorphism between the node
sets of \scrH 1 \otimes \scrH 2 and \scrH 2 \otimes \scrH 1 that preserves the hyperedge set structure.

Furthermore, tensor KP algebra from section 2.3 reveals that the degree vector,
eigenvector centrality, and the clique expansion of Kronecker hypergraphs can be
directly expressed and computed from the constituent graphs.

Property 3.10 (degree vector). Given hypergraphs \scrH 1 and \scrH 2 with m and n
nodes, respectively, with degree vectors d1 and d2, the Kronecker hypergraph \scrH =
\scrH 1 \otimes \scrH 2 has a degree vector d1 \otimes d2. Moreover, if \scrH 1 and \scrH 2 are r- and s-regular,
respectively, then \scrH is rs-regular.

Proof. Applying Property 2.15, the degree vector of \scrH can be computed as

d= (A(\scrH 1)\otimes A(\scrH 2))1
k - 1
mn =A(\scrH 1)1

k - 1
m \otimes A(\scrH 2)1

k - 1
n = d1 \otimes d2,

where 1n denotes the vector of all ones in Rn. Furthermore, if \scrH 1 and \scrH 2 are r- and
s-regular, i.e., all the elements in d1 and d2 are r and s, respectively, then all the
elements in d1 \otimes d2 are rs, so \scrH is rs-regular.

Property 3.11 (eigenvector centrality). Given hypergraphs \scrH 1 and \scrH 2 with H-
or Z-eigenvector centrality vectors c1 and c2, the H- or Z-eigenvector centrality of the
Kronecker hypergraph \scrH =\scrH 1 \otimes \scrH 2 is given by c1 \otimes c2.

Proof. The result follows from Properties 2.23 and 2.24 in conjunction with Def-
inition 3.2.

Property 3.12 (clique expansion). Given hypergraphs \scrH 1 and \scrH 2 on n and m
vertices, respectively, the clique expansion of the Kronecker hypergraph \scrH =\scrH 1 \otimes \scrH 2

is the KP of the clique expansions of \scrH 1 and \scrH 2.

Proof. The adjacency matrix of the clique expansion of \scrH is computed as A(\scrH ) =
A(\scrH )1k - 1

mn . Applying Property 2.15, we obtain
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A(\scrH ) =A(\scrH )1k - 2
nm =A(\scrH 1)1

k - 2
n \otimes A(\scrH 2)1

k - 2
m =A(\scrH 1)\otimes A(\scrH 2).

Given the one-to-one correspondence between adjacency tensors and hypergraphs,
A(\scrH ) = A(\scrH 1) \otimes A(\scrH 2) indicates that the clique expansion of \scrH is the KP of the
clique expansions of \scrH 1 and \scrH 2.

While short, the proofs for Properties 3.10, 3.11, and 3.12 highlight the utility
of Property 2.15. Various additional structures, such as the degree tensor, Laplacian
tensor [2], and stochastic tensors [42, 22], are derived and expressed similarly to their
analogous structures for Kronecker graphs; however, some hypergraph operations,
such as alternative graph representations, do not have simple forms. For instance, the
star expansion of a Kronecker hypergraph cannot be represented in terms of the star
expansions of the factor hypergraphs alone.

3.3. Kronecker hypergraph dynamics. The dynamics of a Kronecker hy-
pergraph can be decoupled and studied through the separate dynamics of its factor
hypergraphs. For instance, given satisfactory initial conditions, the trajectory of the
discrete-time equations of a Kronecker hypergraph can be integrated based upon the
trajectory of the factor hypergraphs.

Property 3.13 (discrete-time trajectory). Given hypergraphs \scrH 1 and \scrH 2 with
adjacency tensors A(\scrH )1 \in Rn\times \cdot \cdot \cdot \times n and A(\scrH )2 \in Rm\times \cdot \cdot \cdot \times m and state vectors x1(t) \in 
Rn and x2(t) \in Rm, respectively, the trajectory of the discrete-time dynamics of the
Kronecker hypergraph \scrH = \scrH 1 \otimes \scrH 2 can be computed as x(t) = x1(t) \otimes x2(t) with
initial condition x(0) = x1(0)\otimes x2(0).

Property 3.13 is verified through the application of Property 2.15, similar to
the corresponding result on Kronecker graphs [11]. The following properties present
results for the stability of Kronecker hypergraphs.

Property 3.14 (stability of continuous-time Kronecker hypergraph dynamics).
Given hypergraphs \scrH 1 and \scrH 2 with n and m nodes, respectively, such that their
adjacency tensors A(\scrH 1) and A(\scrH 2) are orthogonally decomposable, if the origin is
asymptotically stable for the continuous-time factor hypergraph dynamics with initial
condition x1(0) and x2(0), the origin is unstable for the continuous-time dynamics of
the Kronecker hypergraph \scrH =\scrH 1\otimes \scrH 2 with the initial condition x(0) = x1(0)\otimes x2(0).

Proof. If A(\scrH 1) and A(\scrH 2) are orthogonally decomposable, then \scrH (A) is orthog-
onally decomposable based on Property 2.29. Suppose that (\lambda i,vi) and (\mu j ,uj) are
the Z-eigenpairs in the orthogonal decompositions of A(\scrH 1) and A(\scrH 2). Then, the
initial conditions of \scrH 1 and \scrH 2 may be decomposed in terms of the orthonormal
bases as x1(0) =

\sum n
i=1\alpha ivi and x2(0) =

\sum m
j=1 \beta juj , respectively. The origin of x(0)

is represented as

x(0) = x1(0)\otimes x2(0) =
n\sum 

i=1

m\sum 
j=1

\alpha i\beta jvi \otimes uj ,

where \alpha i\beta j are coefficients of the orthonormal basis vi \otimes uj . Since the factor hy-
pergraph dynamical systems are asymptotically stable at the origin, it follows that
\lambda i\alpha 

k - 2
i < 0 and \mu j\beta 

k - 2
j < 0 according to Property 3.5, and from Property 2.24, \lambda i\mu j

are Z-eigenvalues of \scrH (A) for all valid i and j. Then,

(\lambda i\mu j)(\alpha i\beta j)
k - 2 = (\lambda i\alpha 

k - 2
i )(\mu j\beta 

k - 2
j )> 0,
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so it follows from Property 3.5 that the origin is unstable on the vector field defined
by \scrH (A) with the initial condition x(0).

Property 3.15 (stability of discrete-time Kronecker hypergraph dynamics).
Given hypergraphs \scrH 1 and \scrH 2 with n and m nodes, respectively, such that their
adjacency tensors A(\scrH 1) and A(\scrH 2) are orthogonally decomposable, if the origin is
asymptotically stable for the discrete-time factor hypergraph dynamics with initial
condition x1(0) and x2(0), the origin is also asymptotically stable for the discrete-
time dynamics of the Kronecker hypergraph \scrH = \scrH 1 \otimes \scrH 2 with the initial condition
x(0) = x1(0)\otimes x2(0).

A proof of Property 3.15 follows a structure similar to the proof of Property
3.14 but is based on Property 3.6 rather than Property 3.5. Despite their similari-
ties, Properties 3.15 and 3.14 show how the stability of Kronecker hypergraphs is not
the same for discrete-time versus continuous-time systems. In discrete time, Kron-
ecker hypergraphs inherit both trajectory and stability properties from their factor
systems. However, the continuous-time dynamics display opposite stability charac-
teristics of the factor hypergraphs and the trajectory that cannot be purely separated
into the trajectories of the factor hypergraphs. This is consistent with the trajectories
and stability exhibited by KPs of linear dynamical systems.

4. Numerical examples. Three examples illustrate applications of the tensor
and hypergraph KPs. Subsections 4.1 and 4.2 consider the time to compute tensor
decompositions and Z-eigenvalues of B \otimes C = A with a direct approach on A and a
Kronecker approach by performing operations on B and C separately. Subsection 4.3
provides an instance of continuous hypergraph dynamics to illustrate the stability of
Kronecker hypergraphs (Property 3.5). All examples were performed with 16GB of
RAM and a 2.60GHz Intel Core i7 processor in MATLAB 2022b.2

4.1. Tensor decompositions. In this example, we illustrate our ability to com-
pute the TTD and the CPD for tensors with Kronecker structure. n-dimensional 3rd
order tensors B and C are randomly sampled from a uniform distribution and com-
bined to form B\otimes C=A, with A containing a maximum of 2.4\times 108 elements.

Computing the TTD of A requires \scrO (kn2r3), where k is the order, n is the
dimension of B and C, and r is an approximate TT-rank [48]. The time complexity to
compute the TTD can be reduced to \scrO (kn2r2+kr4) for a tensor with a known Tucker
decomposition, and it can be further reduced for a tensor with a known Kronecker
factorization. Based on Property 2.31, when B and C are both k-mode n-dimensional
tensors with approximately the same TT-ranks r\prime , computing the TTD of A can
occur in \scrO (2knr\prime 3) where r\prime \approx 

\surd 
r. Despite relying on strong assumptions, such as the

equal approximate TT-ranks of each factor tensor, the theoretical time complexity for
computing the TTD of a tensor with and without a known Kronecker structure has
a strong numerical agreement with our numerical experiment, as shown in Figure 2.

The CPD is computed using a series of optimization techniques. We utilize the
alternative least squares method, implemented in [38], to compute the CPD of the
tensor A directly and based upon the Kronecker factors B and C. Due to the absence
of a theoretical complexity analysis of CPD computation, we present numerical com-
parisons to assess the runtime performance. With a fixed CP-rank, in Figure 2, we
observe that the Kronecker approach, which computes the CPD of A through the

2Code utilized in section 4 is available in the software outlined in [54] and can also be accessed
at https://github.com/Jpickard1/kronecker-products-tensors-and-hypergraphs.
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Fig. 2. Runtime measurements for CPD (left), TTD (middle), and Z-eigenvalues (right) of
tensors using the direct and Kronecker approaches. The mean runtime for each tensor size is
displayed over 5 trials, along with standard error bars. These calculations were performed with a
CP-rank of 4, and similar results were obtained at different CP-ranks.

CPDs of B and C, significantly outperforms the runtime of the direct approach for
various tensor sizes.

4.2. Tensor eigenvalues. In this example, we consider tensor eigenvalue cal-
culations for tensors with Kronecker structure. We randomly generate two 3rd order
n-dimensional tensors B and C to construct B\otimes C=A according to the method in sub-
section 4.1. The iterative SS-HOMP algorithm is employed to perform Z-eigenvalue
calculations on the tensors A,B, and C [39]. Then, applying Property 2.24 to the Z-
eigenpairs of B and C, we obtain an alternative method of computing the Z-eigenpair
of A. Figure 2 illustrates the runtime comparison for each method of calculating the
Z-eigenpair of A. For factors B and C with dimensions larger than 5, or when A has a
dimension larger than 25, Z-eigenvalue calculations uniformly occur faster when the
Kronecker structure of A is exploited.

The previous examples of TTD, CPD, and Z-eigenvalue maximized the numerical
advantage linked to the Kronecker structure of tensor A, where its dimensions are the
square of its factors B and C. However, in principle, tensor decompositions, eigenvalue
problems, multiplication, and other operations can be performed on tensors where the
Kronecker structure does not necessarily provide evenly sized factors.

4.3. Stability. In this example, we illustrate the counterintuitive result of Prop-
erty 3.14 and consider the two-dimensional polynomial system of degree three,

(4.1)

\Biggl\{ 
\.x1 = - 1.2593x3

1 + 1.6630x2
1x2  - 1.5554x1x

2
2  - 0.1386x3

2,

\.x2 = 0.5543x3
1  - 1.5554x2

1x2  - 0.4158x1x
2
2  - 0.7036x3

2,

borrowed from [14]. The system (4.1) can be represented in the form of (3.2) where
the state transition tensor B\in R2\times 2\times 2\times 2 is

(4.2)

B::11 =

\biggl[ 
 - 1.2593 0.5534
0.5543  - 0.5185

\biggr] 
, B::12 =

\biggl[ 
0.5543  - 0.5185
 - 0.5185  - 0.1386

\biggr] 
,

B::21 =

\biggl[ 
0.5543  - 0.5185
 - 0.5185  - 0.1386

\biggr] 
, B::11 =

\biggl[ 
 - 0.5185  - 0.1386
 - 0.1386  - 0.7037

\biggr] 
,

and x =
\bigl[ 
x1 x2

\bigr] \top 
. The tensor B is orthogonally decomposable and has strictly

negative Z-eigenvalues, so the system (4.1) is asymptotically stable (Property 3.5).
The KP system has a state transition tensor A = B \otimes B. From Property 2.29, A is
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orthogonally decomposable, and from Property 2.24, A has positive eigenvalues, so
the KP system is unstable according to Property 3.14.3

5. Conclusion. This article provides a comprehensive description of the tensor
KP and its properties and proposes the concept of Kronecker hypergraphs as a tensor-
based hypergraph product. In particular, we have demonstrated that

\bullet the KP generalizes naturally to tensors and has many nice structural, al-
gebraic, and spectral properties in addition to being a convenient way to
represent and calculate various tensor decompositions.

\bullet hypergraph products may be expressed and understood in terms of the KP
of adjacency tensors, and the stability of homogeneous polynomial dynamics
defined according to Kronecker hypergraphs may be characterized using its
factored hypergraphs.

\bullet Kronecker structure can aid large tensor decompositions and eigenvalue cal-
culation.

In the future we plan to employ the tensor and hypergraph KP concepts in real-world
applications.
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