
A Comparative Analysis of CPU and GPU-Based Cloud Platforms for CNN Binary
Classification

Taieba Tasnim

Department of Computer Science
Tuskegee University

Tuskegee, Alabama, U.S.A.
Email: ttasnim6386@tuskegee.edu

Mohammad Rahman
Department of Computer Science

Tuskegee University
Tuskegee, Alabama, U.S.A.

Email: mrahman@tuskegee.edu

Fan Wu
Department of Computer Science

Tuskegee University
Tuskegee, Alabama, U.S.A.
Email: fwu@tuskegee.edu

Abstract—This study explores how Convolutional Neural
Network (CNN) model performs in binary classification tasks,
particularly on a cloud platform configured with Central
Processing Unit (CPU) and Graphics Processing Unit (GPU)
resources. We conducted simulations of the CNN model for
binary classification with different parameters to compare the
CPU and GPU performances. We analyzed evaluation matrices,
emphasizing both binary classification accuracy and training
time. This analysis aims to facilitate the selection of a
computational platform by considering both budgetary
constraints and specific requirements.

Keywords- CNN; CPU; GPU; Cloud.

I. INTRODUCTION
Convolutional Neural Networks (CNNs) have become the

workhorse for image recognition tasks. Their power lies in
extracting relevant features from images using pooling
layers. This allows the network to make accurate predictions.
To achieve this, CNNs are trained on extensive datasets,
where they learn to identify features and classify images
through backpropagation. This automated training is guided
by human decisions in configuring network architecture and
parameters, ensuring that the CNN can accurately predict
new image labels once trained.

An essential step in effectively utilizing CNNs is verifying
their performance on different computing platforms,
including CPUs and GPUs. Evaluating performance across
these platforms ensures reliability, cost-effectiveness, and
adaptability. This process involves understanding each
hardware type's strengths and weaknesses, optimizing
resource usage, ensuring compatibility, and guiding
hardware-specific improvements. It also identifies current
limitations and explores new technologies, shaping the future
of computer development. A comprehensive evaluation
considers metrics beyond processing time, including
throughput, latency, memory consumption, and energy
efficiency. Standardized benchmark suites like DeepBench,
MLPerf, and TensorFlow Benchmark facilitate this process
across different setups [1].

This work evaluates CPUs and GPUs for CNNs,
emphasizing hardware selection's impact on performance,
focusing on binary classification tasks within cloud-based
environments. CPUs excel at sequential tasks and offer high
clock speeds, making them suitable for smaller tasks and

natural language processing on resource-limited devices.
Conversely, GPUs' parallel architecture optimizes them for
larger, complex CNNs, excelling in high-throughput, low-
latency tasks ideal for image recognition. This study extends
beyond traditional performance metrics to analyze cloud
environments' performance, efficiency, and reproducibility.
It addresses challenges such as resource variability and
provides insights into how hardware selection impacts the
performance and cost-efficiency of cloud-based machine
learning. Cloud computing supports this by allowing scalable
solutions across diverse CPU and GPU configurations,
enhancing CNN deployments' flexibility and potential.

In this research, our main contributions are outlined as
follows:

▪ We provide a detailed empirical analysis comparing
the performance of CNN binary classification tasks on
CPU and GPU platforms in a cloud environment,
highlighting the differences in training efficiency and
execution speed.

▪ Our study offers insights into the computational
resource utilization of CNNs, identifying how
different parameter settings of batch size and epoch
impact the performance of CPU and GPU hardware
platforms in binary classification tasks.

▪ We demonstrate the trade-off between training
duration and the performance capabilities of both
CPU and GPU hardware.

The paper is structured as follows: Section II covers the
literature review, Section III outlines the methodology,
including data sourcing, experimental setup, and training
environment. Section IV discusses evaluation metrics,
Section V analyzes the experimental findings, and Section VI
concludes with a summary and future research suggestions.

II. LITERATURE REVIEW
CNNs are pivotal in deep learning, excelling in various

applications. This review highlights that GPUs, with their
parallel processing capabilities, outperform CPUs by 2 to 24
times in CNN tasks due to CPUs' sequential processing
limitations [2]. Several recent studies confirm that GPUs
outperform CPUs in CNN tasks, particularly for extensive
datasets, due to their superior parallel processing capabilities
[3] [4] [5]. However, selecting hardware involves more than
speed; power efficiency and cost are also critical factors.

198Copyright (c) IARIA, 2024. ISBN: 978-1-68558-180-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2024 : The 2024 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

Süzen et al. [6] noted the importance of these considerations.
Oh et al. revealed that, in embedded systems, CPUs achieved
65% of a PC’s GPU performance while consuming only 2.6%
of the power, making CPUs effective for resource-limited
tasks [7]. To enhance efficiency, optimizing CNN models
through techniques like pruning and quantization can reduce
computational complexity. Blott et al. explored these
methods, showing they are adaptable across hardware and
improve performance [8]. Existing research also investigates
benchmarking the performance of CPUs and GPUs for other
machine learning tasks, such as Long Short-Term Memory
(LSTM) networks, providing a broader understanding of
hardware capabilities across different neural network
architectures [9]. Machine learning predicts CNN execution
time, power, and memory usage, especially on GPUs. Bouzidi
et al. presented a model to aid researchers in hardware
selection, further illustrating the practical applications of these
predictive insights [10].

III. METHODOLOGY

A. CNN Architecture Overview
In this study, we explored the architecture of a CNN as a

fundamental framework for image classification tasks, as
shown in Figure 1 [11]. This illustration outlines the CNN's
evolution, starting with the input layer, followed by
consecutive convolution and pooling layers for feature
extraction, and culminating with a series of fully connected
layers that lead to the final classification output. Such an
architecture is adept at recognizing and interpreting the
intricate patterns in our dataset, consisting of high-quality
images of dogs and cats.

B. Data Acquisition
This research leveraged data from two primary sources:

Kaggle and Google, renowned for their comprehensive
datasets, including the well-known dog and cat datasets.
Kaggle provided a dataset that consists primarily of high-
quality images of dogs and cats, complete with detailed
metadata and labels. This dataset is particularly useful for
studies involving CNNs due to its focus on these animals.

Additionally, we utilized Google to assemble a distinct
dataset encompassing a variety of dog and cat breeds. This
diverse collection was pivotal in training our machine-
learning models. We also curated multiple datasets from these
sources to evaluate the machine learning algorithms'
performance effectively.

C. Tools and Training Environment
For the experiment setup, we leveraged Google Colab, a

Jupyter notebook environment, to train our CNN model [12].
This environment offers excellent support from Keras,
allowing for network implementation and training on Google
Cloud's GPUs and CPUs [13] [14]. Google Colab enables
simultaneous multi-CPU and GPU usage and offers high
training speeds, allowing network pruning without losing
prediction accuracy. We trained the CNN model on CPU and
GPU, benefiting from Colab's easy switching between
runtime environments. We trained the same CNN model on
both CPU and GPU, enhancing GPU performance with minor
code adjustments while keeping the model's structure
unchanged. Google Colab's dynamic resource allocation can
cause inconsistent performance. Hardware specs and
software versions, like TensorFlow or PyTorch, may also
vary [1]. To ensure reproducibility, we ran several
experiments to reduce resource limits and make the results
more reliable.

D. Hardware and Software Integration
Google Colab provides a convenient way to import data

from Google Drive. We uploaded our dataset to Google Drive
and mounted it on the Colab environment. After completing
CPU training, we transitioned to GPU. We improved tensor
operations for parallel processing, managed memory better,
adjusted GPU settings for efficiency, and changed precision
settings for faster and more accurate results (Figure 2) [11].
Once adjustments were made, we resumed GPU training and
monitored epoch and batch durations. Despite longer setup
times due to model compilation, the enhancements
significantly reduced GPU training times compared to CPU,
proving the effectiveness of our optimizations.

IV. EVALUATION METRICS
In this study, we employed several evaluation metrics to

assess our model's performance on unseen data, particularly
in classification tasks. This section briefly describes these
metrics, which are paramount for ensuring the practical utility
of any binary classification model. The True Positive Rate
(TPR) is central to this evaluation.

 True Positive Rate (TPR) =
TP

TP+FN
 (1)

Here TP (True Positives) is the number of correctly
predicted positive instances, and FN (False Negatives) is the

Figure 1. Diagram of a Convolutional Neural Network Structure. Figure 2. Comparative Analysis of CPU and GPU System Architectures.

199Copyright (c) IARIA, 2024. ISBN: 978-1-68558-180-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2024 : The 2024 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

number of positive cases incorrectly predicted as negative.
TPR quantifies the proportion of correctly identified

positive instances. This metric is particularly crucial in
scenarios where class imbalances exist, offering insights into
the model's ability to discriminate between classes
accurately. Training times were monitored to evaluate model
efficiency across different hardware setups, highlighting
trade-offs between accuracy and speed.

V. RESULT AND DISCUSSION
To evaluate the performance of GPU and CPU, we

embarked on an experiment where the initial step involved
training a model using an 8000-image dataset of dogs and
cats. Employing various batch sizes (16, 32, 64, and 128) and
epochs (1, 2, 3, 4, and 5), we meticulously observed the
execution time, noting changes as we adjusted these
parameters. An epoch in this context refers to a complete pass
through the entire dataset by the learning algorithm. This
setup paved the way for a comparative analysis, using a
smaller, 1000-image dataset to test the machines.

Building on this groundwork, Figure 3 presents a bar graph
comparing True Positive Rates (TPR) for CPU and GPU
across five epochs. The TPR fluctuates with each epoch,
peaking at the fifth where the GPU slightly outperforms the
CPU. However, the difference in TPR performance between
CPU and GPU is often negligible, indicating that both
platforms can achieve similar accuracy.

The trend of improvement in correctly identifying positive
instances is due to effective model learning, fine-tuning, and
enhanced feature extraction with each epoch, with GPUs
offering a performance edge due to their superior parallel
processing capabilities.

Transitioning from TPR to training durations, Figure 4
compares the time taken by CPU and GPU across five epochs
with a fixed batch size of 128. The CPU's training times
notably increase at the fourth epoch before tapering off, while
the GPU shows consistent time expenditure. The GPU
generally outperforms the CPU, with nearly equal
performance at the third epoch.

Further dissecting the performance dynamics, Figure 5
compares TPR between CPUs and GPUs at varying batch
sizes during the fourth epoch. Surprisingly, the CPU
outperforms the GPU at a batch size 64 due to its efficiency
in managing moderately parallel tasks. This highlights the
CPU's strength in handling tasks more effectively than the
GPU, where operational overhead can detract from
performance. As the batch size increases to 128, the GPU
excels by handling larger volumes of parallel operations,
delivering peak performance, and surpassing the CPU,
showcasing its optimal design for high throughput
computing.

The narrative of efficiency continues in Figure 6, which
delineates the training durations for CPU and GPU across
different batch sizes during the fourth epoch. An interesting
trend is observed: while the CPU training time slightly

increases at the smallest batch size, it stabilizes as batch sizes
escalate, only to surge dramatically at the largest batch size
of 128. Conversely, the GPU shows a steady decrease in
training time, maintaining its efficiency edge across all tested
batch sizes.

Culminating our analysis, Figure 7 introduces a scatter plot
showing the relationship between training time and TPR for
models trained on CPUs and GPUs. The graph reveals a
trend: training time increases with improved accuracy, then
plateaus. It shows that GPUs consistently achieve similar
TPRs in shorter training times than CPUs, highlighting their
superior efficiency.

Figure 3. TPR by Epoch for CPU vs. GPU at Batch Size 128.

Figure 4. Training Time vs. Epoch for CPU and GPU at Batch sizes 128.

Figure 5. TPR Comparison by Batch Size for CPU and GPU at Epoch 4.

200Copyright (c) IARIA, 2024. ISBN: 978-1-68558-180-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2024 : The 2024 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

Figure 6. Training Time vs. Batch Size for CPU and GPU at Epoch 4.

Figure 7. TPR vs. Training Time for CPU and GPU.

VI. CONCLUSION
 Our investigation into the performance dynamics of GPUs

and CPUs for CNN applications yielded insightful findings.
Utilizing a dataset comprising 8,000 images of dogs and cats
for training and an additional 1,000 for testing, we
methodically analyzed the impact of various batch sizes and
epochs on the system's performance. Empirical data showed
GPUs consistently outperformed CPUs in training efficiency
and speed, achieving higher or comparable TPRs. GPUs
excelled with larger batch sizes, demonstrating superior
performance for extensive CNN tasks, offering significant
speed and accuracy advantages over CPUs.

Future research should include more hardware models, like
NVIDIA’s Tesla and RTX series, to better understand CPU
and GPU performance differences. This will help select
optimal hardware for CNN tasks and enhance our findings
with cost and performance analysis.

ACKNOWLEDGMENT
The work is partially supported by the National Science

Foundation (NSF) under NSF Awards #2019561, #2234911,
#2209637, and #2100134. The opinions, findings, and
recommendations in this material are those of the authors and
do not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] S. Verma et al., "Demystifying the MLPerf Training

Benchmark Suite," in 2020 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS),
2020, pp. 24-33.

[2] D. Strigl, K. Kofler, and S. Podlipnig, "Performance and
Scalability of GPU-Based Convolutional Neural Networks,"
in 2010 18th Euromicro Conference on Parallel, Distributed
and Network-based Processing, 2010, pp. 317-324.

[3] E. Buber and B. Diri, "Performance Analysis and CPU vs
GPU Comparison for Deep Learning," in 2018 6th
International Conference on Control Engineering &
Information Technology (CEIT), 2018, pp. 1-6.

[4] E. Cengil, A. Çinar, and Z. Güler, "A GPU-based
convolutional neural network approach for image
classification," in 2017 International Artificial Intelligence
and Data Processing Symposium (IDAP), 2017, pp. 1-6.

[5] M. U. Yaseen, A. Anjum, O. Rana, and R. Hill, "Cloud-based
scalable object detection and classification in video streams,"
Future Generation Computer Systems, vol. 80, pp. 286-298,
2018/03/01/ 2018.

[6] A. A. Süzen, B. Duman, and B. Şen, "Benchmark Analysis of
Jetson TX2, Jetson Nano and Raspberry PI using Deep-
CNN," in 2020 International Congress on Human-Computer
Interaction, Optimization and Robotic Applications (HORA),
2020, pp. 1-5.

[7] S. Oh, M. Kim, D. Kim, M. Jeong, and M. Lee, "Investigation
on performance and energy efficiency of CNN-based object
detection on embedded device," in 2017 4th International
Conference on Computer Applications and Information
Processing Technology (CAIPT), 2017, pp. 1-4.

[8] M. Blott et al., "Evaluation of Optimized CNNs on FPGA and
non-FPGA based Accelerators using a Novel Benchmarking
Approach," Proceedings of the 2020 ACM/SIGDA
International Symposium on Field-Programmable Gate
Arrays, pp. 317-317, 2020.

[9] A. Saha, M. Rahman, and F. Wu, "Evaluating LSTM Time
Series Prediction Performance on Benchmark CPUs and
GPUs in Cloud Environments," 2024, pp. 321-322.

[10] H. Bouzidi, H. Ouarnoughi, S. Niar, and A. A. E. Cadi,
"Performance Modeling of Computer Vision-based CNN on
Edge GPUs," ACM Transactions on Embedded Computing
Systems, vol. 21, no. 5, pp. 1-33, 2022.

[11] V. H. Phung and E. J. Rhee, "A deep learning approach for
classification of cloud image patches on small datasets,"
Journal of information and communication convergence
engineering, vol. 16, no. 3, pp. 173-178, 2018.

[12] Google Colaboratory (2024).
https://colab.research.google.com. Last Accessed 10 Mar
2024.

[13] Keras (2024). https://keras.io. Last Accessed 10 Mar 2024.
[14] V. Sharma, G. K. Gupta, and M. Gupta, "Performance

Benchmarking of GPU and TPU on Google Colaboratory for
Convolutional Neural Network," in Applications of Artificial
Intelligence in Engineering, Singapore, 2021, pp. 639-646:
Springer Singapore.

201Copyright (c) IARIA, 2024. ISBN: 978-1-68558-180-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2024 : The 2024 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

