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Abstract—This study explores how Convolutional Neural 
Network (CNN) model performs in binary classification tasks, 
particularly on a cloud platform configured with Central 
Processing Unit (CPU) and Graphics Processing Unit (GPU) 
resources. We conducted simulations of the CNN model for 
binary classification with different parameters to compare the 
CPU and GPU performances. We analyzed evaluation matrices, 
emphasizing both binary classification accuracy and training 
time. This analysis aims to facilitate the selection of a 
computational platform by considering both budgetary 
constraints and specific requirements. 
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I.  INTRODUCTION  
Convolutional Neural Networks (CNNs) have become the 

workhorse for image recognition tasks. Their power lies in 
extracting relevant features from images using pooling 
layers. This allows the network to make accurate predictions. 
To achieve this, CNNs are trained on extensive datasets, 
where they learn to identify features and classify images 
through backpropagation. This automated training is guided 
by human decisions in configuring network architecture and 
parameters, ensuring that the CNN can accurately predict 
new image labels once trained. 

An essential step in effectively utilizing CNNs is verifying 
their performance on different computing platforms, 
including CPUs and GPUs. Evaluating performance across 
these platforms ensures reliability, cost-effectiveness, and 
adaptability. This process involves understanding each 
hardware type's strengths and weaknesses, optimizing 
resource usage, ensuring compatibility, and guiding 
hardware-specific improvements. It also identifies current 
limitations and explores new technologies, shaping the future 
of computer development. A comprehensive evaluation 
considers metrics beyond processing time, including 
throughput, latency, memory consumption, and energy 
efficiency. Standardized benchmark suites like DeepBench, 
MLPerf, and TensorFlow Benchmark facilitate this process 
across different setups [1]. 

This work evaluates CPUs and GPUs for CNNs, 
emphasizing hardware selection's impact on performance, 
focusing on binary classification tasks within cloud-based 
environments. CPUs excel at sequential tasks and offer high 
clock speeds, making them suitable for smaller tasks and 

natural language processing on resource-limited devices. 
Conversely, GPUs' parallel architecture optimizes them for 
larger, complex CNNs, excelling in high-throughput, low-
latency tasks ideal for image recognition. This study extends 
beyond traditional performance metrics to analyze cloud 
environments' performance, efficiency, and reproducibility. 
It addresses challenges such as resource variability and 
provides insights into how hardware selection impacts the 
performance and cost-efficiency of cloud-based machine 
learning. Cloud computing supports this by allowing scalable 
solutions across diverse CPU and GPU configurations, 
enhancing CNN deployments' flexibility and potential. 

In this research, our main contributions are outlined as 
follows: 

▪ We provide a detailed empirical analysis comparing 
the performance of CNN binary classification tasks on 
CPU and GPU platforms in a cloud environment, 
highlighting the differences in training efficiency and 
execution speed. 

▪ Our study offers insights into the computational 
resource utilization of CNNs, identifying how 
different parameter settings of batch size and epoch 
impact the performance of CPU and GPU hardware 
platforms in binary classification tasks. 

▪ We demonstrate the trade-off between training 
duration and the performance capabilities of both 
CPU and GPU hardware. 

The paper is structured as follows: Section II covers the 
literature review, Section III outlines the methodology, 
including data sourcing, experimental setup, and training 
environment. Section IV discusses evaluation metrics, 
Section V analyzes the experimental findings, and Section VI 
concludes with a summary and future research suggestions. 

II. LITERATURE REVIEW 
CNNs are pivotal in deep learning, excelling in various 

applications. This review highlights that GPUs, with their 
parallel processing capabilities, outperform CPUs by 2 to 24 
times in CNN tasks due to CPUs' sequential processing 
limitations [2]. Several recent studies confirm that GPUs 
outperform CPUs in CNN tasks, particularly for extensive 
datasets, due to their superior parallel processing capabilities 
[3] [4] [5]. However, selecting hardware involves more than 
speed; power efficiency and cost are also critical factors. 
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Süzen et al. [6] noted the importance of these considerations. 
Oh et al. revealed that, in embedded systems, CPUs achieved 
65% of a PC’s GPU performance while consuming only 2.6% 
of the power, making CPUs effective for resource-limited 
tasks [7]. To enhance efficiency, optimizing CNN models 
through techniques like pruning and quantization can reduce 
computational complexity. Blott et al. explored these 
methods, showing they are adaptable across hardware and 
improve performance [8]. Existing research also investigates 
benchmarking the performance of CPUs and GPUs for other 
machine learning tasks, such as Long Short-Term Memory 
(LSTM) networks, providing a broader understanding of 
hardware capabilities across different neural network 
architectures [9]. Machine learning predicts CNN execution 
time, power, and memory usage, especially on GPUs. Bouzidi 
et al. presented a model to aid researchers in hardware 
selection, further illustrating the practical applications of these 
predictive insights [10]. 

III. METHODOLOGY 

A. CNN Architecture Overview 
In this study, we explored the architecture of a CNN as a 

fundamental framework for image classification tasks, as 
shown in Figure 1 [11]. This illustration outlines the CNN's 
evolution, starting with the input layer, followed by 
consecutive convolution and pooling layers for feature 
extraction, and culminating with a series of fully connected 
layers that lead to the final classification output. Such an 
architecture is adept at recognizing and interpreting the 
intricate patterns in our dataset, consisting of high-quality 
images of dogs and cats. 

B. Data Acquisition 
This research leveraged data from two primary sources: 

Kaggle and Google, renowned for their comprehensive 
datasets, including the well-known dog and cat datasets. 
Kaggle provided a dataset that consists primarily of high-
quality images of dogs and cats, complete with detailed 
metadata and labels. This dataset is particularly useful for 
studies involving CNNs due to its focus on these animals. 

Additionally, we utilized Google to assemble a distinct 
dataset encompassing a variety of dog and cat breeds. This 
diverse collection was pivotal in training our machine-
learning models. We also curated multiple datasets from these 
sources to evaluate the machine learning algorithms' 
performance effectively. 

C. Tools and Training Environment 
For the experiment setup, we leveraged Google Colab, a 

Jupyter notebook environment, to train our CNN model [12]. 
This environment offers excellent support from Keras, 
allowing for network implementation and training on Google 
Cloud's GPUs and CPUs [13] [14]. Google Colab enables 
simultaneous multi-CPU and GPU usage and offers high 
training speeds, allowing network pruning without losing 
prediction accuracy. We trained the CNN model on CPU and 
GPU, benefiting from Colab's easy switching between 
runtime environments. We trained the same CNN model on 
both CPU and GPU, enhancing GPU performance with minor 
code adjustments while keeping the model's structure 
unchanged. Google Colab's dynamic resource allocation can 
cause inconsistent performance. Hardware specs and 
software versions, like TensorFlow or PyTorch, may also 
vary [1]. To ensure reproducibility, we ran several 
experiments to reduce resource limits and make the results 
more reliable. 

D. Hardware and Software Integration 
Google Colab provides a convenient way to import data 

from Google Drive. We uploaded our dataset to Google Drive 
and mounted it on the Colab environment. After completing 
CPU training, we transitioned to GPU. We improved tensor 
operations for parallel processing, managed memory better, 
adjusted GPU settings for efficiency, and changed precision 
settings for faster and more accurate results (Figure 2) [11]. 
Once adjustments were made, we resumed GPU training and 
monitored epoch and batch durations. Despite longer setup 
times due to model compilation, the enhancements 
significantly reduced GPU training times compared to CPU, 
proving the effectiveness of our optimizations. 

IV. EVALUATION METRICS 
In this study, we employed several evaluation metrics to 

assess our model's performance on unseen data, particularly 
in classification tasks. This section briefly describes these 
metrics, which are paramount for ensuring the practical utility 
of any binary classification model. The True Positive Rate 
(TPR) is central to this evaluation.  

 True Positive Rate (TPR) =
TP

TP+FN
                   (1) 

Here TP (True Positives) is the number of correctly 
predicted positive instances, and FN (False Negatives) is the 

Figure 1. Diagram of a Convolutional Neural Network Structure. Figure 2. Comparative Analysis of CPU and GPU System Architectures. 
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number of positive cases incorrectly predicted as negative. 
TPR quantifies the proportion of correctly identified 

positive instances. This metric is particularly crucial in 
scenarios where class imbalances exist, offering insights into 
the model's ability to discriminate between classes 
accurately. Training times were monitored to evaluate model 
efficiency across different hardware setups, highlighting 
trade-offs between accuracy and speed. 

 

V. RESULT AND DISCUSSION 
To evaluate the performance of GPU and CPU, we 

embarked on an experiment where the initial step involved 
training a model using an 8000-image dataset of dogs and 
cats. Employing various batch sizes (16, 32, 64, and 128) and 
epochs (1, 2, 3, 4, and 5), we meticulously observed the 
execution time, noting changes as we adjusted these 
parameters. An epoch in this context refers to a complete pass 
through the entire dataset by the learning algorithm. This 
setup paved the way for a comparative analysis, using a 
smaller, 1000-image dataset to test the machines. 

Building on this groundwork, Figure 3 presents a bar graph 
comparing True Positive Rates (TPR) for CPU and GPU 
across five epochs. The TPR fluctuates with each epoch, 
peaking at the fifth where the GPU slightly outperforms the 
CPU. However, the difference in TPR performance between 
CPU and GPU is often negligible, indicating that both 
platforms can achieve similar accuracy. 

The trend of improvement in correctly identifying positive 
instances is due to effective model learning, fine-tuning, and 
enhanced feature extraction with each epoch, with GPUs 
offering a performance edge due to their superior parallel 
processing capabilities. 

Transitioning from TPR to training durations, Figure 4 
compares the time taken by CPU and GPU across five epochs 
with a fixed batch size of 128. The CPU's training times 
notably increase at the fourth epoch before tapering off, while 
the GPU shows consistent time expenditure. The GPU 
generally outperforms the CPU, with nearly equal 
performance at the third epoch. 

Further dissecting the performance dynamics, Figure 5 
compares TPR between CPUs and GPUs at varying batch 
sizes during the fourth epoch. Surprisingly, the CPU 
outperforms the GPU at a batch size 64 due to its efficiency 
in managing moderately parallel tasks. This highlights the 
CPU's strength in handling tasks more effectively than the 
GPU, where operational overhead can detract from 
performance. As the batch size increases to 128, the GPU 
excels by handling larger volumes of parallel operations, 
delivering peak performance, and surpassing the CPU, 
showcasing its optimal design for high throughput 
computing. 

The narrative of efficiency continues in Figure 6, which 
delineates the training durations for CPU and GPU across 
different batch sizes during the fourth epoch. An interesting 
trend is observed: while the CPU training time slightly 

increases at the smallest batch size, it stabilizes as batch sizes 
escalate, only to surge dramatically at the largest batch size 
of 128. Conversely, the GPU shows a steady decrease in 
training time, maintaining its efficiency edge across all tested 
batch sizes. 

Culminating our analysis, Figure 7 introduces a scatter plot 
showing the relationship between training time and TPR for 
models trained on CPUs and GPUs. The graph reveals a 
trend: training time increases with improved accuracy, then 
plateaus. It shows that GPUs consistently achieve similar 
TPRs in shorter training times than CPUs, highlighting their 
superior efficiency. 

 

 
Figure 3. TPR by Epoch for CPU vs. GPU at Batch Size 128. 

 
Figure 4. Training Time vs. Epoch for CPU and GPU at Batch sizes 128. 

 
Figure 5. TPR Comparison by Batch Size for CPU and GPU at Epoch 4. 
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Figure 6. Training Time vs. Batch Size for CPU and GPU at Epoch 4. 

 
Figure 7. TPR vs. Training Time for CPU and GPU. 

 

VI. CONCLUSION 
 Our investigation into the performance dynamics of GPUs 

and CPUs for CNN applications yielded insightful findings. 
Utilizing a dataset comprising 8,000 images of dogs and cats 
for training and an additional 1,000 for testing, we 
methodically analyzed the impact of various batch sizes and 
epochs on the system's performance. Empirical data showed 
GPUs consistently outperformed CPUs in training efficiency 
and speed, achieving higher or comparable TPRs. GPUs 
excelled with larger batch sizes, demonstrating superior 
performance for extensive CNN tasks, offering significant 
speed and accuracy advantages over CPUs. 

Future research should include more hardware models, like 
NVIDIA’s Tesla and RTX series, to better understand CPU 
and GPU performance differences. This will help select 
optimal hardware for CNN tasks and enhance our findings 
with cost and performance analysis. 
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