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Abstract. Bordered Floer homology is an
invariant for 3-manifolds with boundary, de-
fined by the authors in 2008. It extends
the Heegaard Floer homology of closed 3-
manifolds, defined in earlier work of Zoltán
Szabó and the second author. In addition
to its conceptual interest, bordered Floer
homology also provides powerful computa-
tional tools. This survey outlines the the-
ory, focusing on recent developments and
applications.

The goal of this note is to survey some develop-
ments in bordered Floer homology, an extension of
Heegaard Floer homology. We start with a biased
outline of Heegaard Floer homology, focusing some-
what on the aspects relevant to the extension. We
then briefly outline the structure of bordered Floer
homology, before turning to a discussion of its use for
computations, extensions of it, and some recent ap-
plications to 4-dimensional topology and its 3-dimen-
sional shadows.

1. Heegaard Floer homology

Heegaard Floer homology [135,138] is an invariant
of 3- and 4-dimensional manifolds defined by Zoltán
Szabó and the second author via methods from sym-
plectic geometry (specifically, Lagrangian Floer ho-
mology [40]). The construction was inspired by gauge
theory, especially the Seiberg-Witten invariants [159],
which also give a package of invariants with similar
properties [88]. Thanks to work of Çağatay Kut-
luhan, Yi-Jen Lee, and Clifford H. Taubes [92–96] and
Vincent Colin, Paolo Ghiggini, and Ko Honda [21–
23], building on earlier work of Michael Hutchings
and Taubes [71–73], we now know that, at least for
3-manifolds, these two differently defined invariants
agree. The two perspectives have different relative
strengths: Seiberg-Witten theory is more directly con-
nected with the differential geometry of the underly-
ing manifold, whereas Heegaard Floer homology is
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more closely connected to its combinatorial topolog-
ical properties.

On a formal level, Heegaard Floer homology asso-
ciates to a 3-manifold Y the chain homotopy type of
a chain complex CF−(Y ) over a polynomial algebra
in an indeterminant U ; in particular, its homology
HF−(Y ) is also a 3-manifold invariant. The U = 0

specialization of CF−(Y ), denoted ĈF (Y ), and its
homology, ĤF (Y ), are also useful invariants. (The
invariant HF−(Y ) is analogous to the S1-equivariant
homology of a space, while ĤF (Y ) is like its non-
equivariant homology; cf. [27, 85,88,120].)

A striking result of Sucharit Sarkar and Jiajun
Wang led to a combinatorial scheme for computing
ĤF (Y ), via so-called nice auxiliary data [146], a no-
table achievement given the many 3-dimensional ap-
plications of ĤF (Y ). However, the construction of
invariants of smooth, closed 4-dimensional manifolds
requires the use the U -unspecialized version HF−(Y )
[138]. Specifically, a cobordism between two 3-man-
ifolds Y1 and Y2 gives rise to a map between their
respective Heegaard Floer homology groups. The
closed, smooth 4-manifold invariant is constructed
using the interaction between these maps with the
U -module structure of HF−(Y ). Although the 4-
manifold invariant can now be, in principle, described
combinatorially [123], the algorithm for computing it
is still too unwieldly to be implemented in practice.

1.1. Knot invariants from Heegaard Floer ho-
mology. In 2003, Jacob Rasmussen and, indepen-
dently, Szabó and the second author constructed a
version of Heegaard Floer homology for knots in S3.
The resulting knot Floer homology is a bigraded abelian
group whose graded Euler characteristic is the Alexan-
der polynomial. This invariant contains much topo-
logical information about the underlying knot, in-
cluding its Seifert genus [133] and whether its com-
plement fibers over the circle [48,128]; see also [75].

Building on Sarkar’s earlier work, Ciprian Man-
olescu, Sarkar, and the second author gave a com-
binatorial construction of knot Floer homology, now
called grid homology [122, 124, 130]. For a knot with
n crossings, grid homology can be computed as the
homology groups of a chain complex with roughly n!
generators. As such, it can be computed explicitly
for knots with ≤ 16 or so crossings [8, 13].

Heegaard Floer homology can also be used to con-
struct link invariants in a different manner. Given a
link L ⊂ S3 there is a closed 3-manifold, the double
cover of S3 branched along L, which is the unique
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3-manifold Σ(L) that admits a map f : Σ(L) → S3

which is a 2-to-1 covering space away from L and
is modeled on z 7→ z2 in the normal direction to
L. Thus, given a closed 3-manifold invariant, apply-
ing that invariant to Σ(L) gives a link invariant. In
the case of ĤF , the link invariant ĤF (Σ(L)) is sur-
prisingly similar to an invariant defined by Mikhail
Khovanov, inspired by the Jones polynomial and con-
structions in representation theory [79]. For an un-
link, the (reduced) Khovanov homology and the Hee-
gaard Floer homology of its branched double cover
agree. More strikingly, both ĤF (Σ(L)) and the Kho-
vanov homology of L satisfy an exact triangle when
one resolves a crossing in the two possible ways; for
Heegaard Floer homology, this is a special case of
the surgery exact triangle [134], parallel to one en-
visaged by Andreas Floer in gauge theory [18, 41].
These properties lead to a precise relationship be-
tween ĤF (Σ(L)) and Khovanov homology: for every
link diagram, there is a spectral sequence whose E2

term is the (reduced) Khovanov homology of L and
which converges to ĤF (Σ(L)) (both with mod-2 coef-
ficients) [137]. By now we know that there are a num-
ber of other spectral sequences from Khovanov ho-
mology to various Floer-homological invariants: su-
tured Heegaard Floer homology [52], instanton Floer
homology [90], monopole Floer homology [16], and
knot Floer homology [31]. Because of the topologi-
cal content of these latter invariants, the spectral se-
quences have interesting consequences for Khovanov
homology.

1.2. Contact geometry and Heegaard Floer ho-
mology. Gauge theory is closely tied with the sym-
plectic geometry of the underlying manifold. Accord-
ing to a celebrated theorem of Donaldson’s [26], his
smooth 4-manifold invariant is non-zero for a Kähler
manifold. Taubes [150] proved the analogous non-
vanishing theorem for Seiberg-Witten invariants of
symplectic manifolds. This has a 3-dimensional coun-
terpart: Kronheimer and Mrowka [86,91] constructed
an invariant for contact structures over 3-manifolds,
which takes values in its Seiberg-Witten Floer homol-
ogy; moreover, this contact invariant is non-trivial
when the contact structure is fillable, in a suitable
sense, by a symplectic manifold. These results, com-
bined with work of Yakov Eliashberg and William
Thurston [36] relating contact structures and folia-
tions, form a bridge between gauge theory and funda-
mental topological constructions developed by David
Gabai [45, 46]. This bridge was exploited by Kron-
heimer and Mrowka in their celebrated proof that all
knots in S3 have “Property P” [87].

An analogous bridge between Heegaard Floer ho-
mology and contact geometry is built upon the work
of Emannuel Giroux [49], who reformulated contact
structures over Y as certain equivalence classes of
open book decompositions of Y . Using Giroux’s cor-
respondence, Szabó and the second author were able
to define an invariant for contact structures over Y ,
analogous to the Kronheimer-Mrowka contact invari-
ant, but taking values in ĤF (−Y ) [136] (where −Y
denotes orientation reverse). By work of Taubes [151–
155] and Colin-Ghiggini-Honda [21–23], this contact
invariant is a refinement of Kronheimer and Mrowka’s.
(See also [10].)

This contact invariant forms an important techni-
cal tool within the theory (used, e.g., to prove that
ĤFK detects the Seifert genus [133]); and it is also
a vehicle for studying contact structures in their own
right (e.g., [115–117]).

2. Bordered Floer homology

Bordered Floer homology is an invariant for 3-man-
ifolds with boundary [111]. The basic structure is
easy to describe. To a surface F , it associates a dif-
ferential graded algebra A(F ). Given an F -bordered
3-manifold, that is, an oriented 3-manifold Y and an
orientation-preserving diffeomorphism ϕ : F → ∂Y ,
the theory associates a right A∞-module ĈFA(Y, ϕ)A(F )

over the algebra A(F ) and a left dg module of a par-
ticular kind (a twisted complex or, in the internal lan-
guage of the subject, type D structure) A(−F )ĈFD(Y, ϕ)
over the algebra associated to the orientation-reversed
surface. Both ĈFA and ĈFD depend on some aux-
iliary choices, but up to homotopy equivalence are
independent of those choices. Given two bordered
3-manifolds (Y1, ϕ1 : F → ∂Y1) and (Y2, ϕ2 : −F →
∂Y2), we can recover the Heegaard Floer invariant
ĈF (Y1 ∪ϕ2◦ϕ−1

1
Y2) as either a tensor product

ĈFA(Y1)A(F ) ⊠
A(F )ĈFD(Y2)

or as the complex of A∞-module morphisms

MorA(F )(ĈFA(−Y2), ĈFA(Y1))

or type D structure morphisms

MorA(F )(ĈFD(−Y1), ĈFD(Y2))

[7, 106, 111]. We call these results pairing theorems
(to distinguish them from the gluing theorems used
in the analysis underlying the subject).

The analytic proof of the pairing theorem involves
a neck-stretching argument, inspired by the proofs of
product formulas for gauge-theoretic invariants [28,
88]. (See also [17,35].) We start by taking a Heegaard
diagram which is adapted to the splitting Y1 ∪F Y2
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and degenerating the Heegaard surface along a cor-
responding circle. The counts of holomorphic disks
that constitute the Heegaard Floer differential degen-
erate into counts of pairs of holomorphic disks on the
two sides, satisfying a matching condition along F .
So far, the counts are not algebraic: because of the
matching condition, high-dimensional moduli spaces
on the two sides contribute to the count. The next
step is to deform the matching condition. Formally,
this deformation can be realized as a cellular approxi-
mation to the diagonal in James Stasheff’s associahe-
dra [147]. After the deformation, we obtain algebraic
counts that correspond to the tensor product descrip-
tion from the pairing theorem.

The dependence of ĈFA(Y1, ψ) on the choice of
boundary parameterization is governed by certain bi-
modules [109]. Given a surface diffeomorphism ϕ :

F → F , there is a bimodule ĈFDA(ϕ), with the
property that for any bordered 3-manifold (Y1, ψ :
F → Y1)

(2.1) ĈFA(Y1, ψ)⊠ ĈFDA(ϕ) ≃ ĈFA(Y1, ψ ◦ ϕ).
Moreover, the tensor product of the bimodules as-
sociated to ϕ1 and ϕ2 coincides with the bimodule
associated to the composite ϕ2 ◦ ϕ1.

The algebra A(F ) is defined combinatorially, from
a handle decomposition for F . (Different handle de-
compositions lead to derived equivalent, but non-quasi-
isomorphic, algebras [109].) By contrast, ĈFA(Y )

and ĈFD(Y ) are defined by counting J-holomorphic
curves. For suitable (nice, extending [146]) choices
of auxiliary data, these curve counts are combina-
torial, and there is also a combinatorial proof of the
tensor-product pairing theorem. However, there is no
known combinatorial proof of invariance for ĈFA and
ĈFD along these lines (but see [168]), and nice aux-
iliary choices result in enormous complexes. So, in
practice—and for most of the computational appli-
cations below—one often ends up counting J-holo-
morphic curves, not using nice auxiliary choices.

3. Computations from bordered Floer
homology

Every closed 3-manifold Y 3 admits a Heegaard de-
composition Y = H1 ∪F H2 into two handlebodies
glued together along their boundaries. If we identify
each Hi with some standard (bordered) handlebody,
then Y is determined by the gluing diffeomorphism,
which is a map ϕ : F → F . For an appropriate choice
of standard handlebody, it is easy to compute the bor-
dered invariants ĈFD(Hi) and ĈFA(Hi). So, in view
of Equation (2.1), to compute ĤF (Y ) for general Y ,
it suffices to compute suitable bimodules associated

to surface diffeomorphisms—or, in fact, for any set of
generators of the mapping class group. It turns out
that there are particularly simple generators, called
arcslides, for a groupoid extension of the mapping
class group [5,14], for which the bimodules are deter-
mined by a few simple curve counts and the structure
equation ∂2 = 0 [108]. A computer implementation
of this algorithm [166] (and refinements of it [167]) is
practical for many manifolds.

The bordered description arising from factoring
mapping classes contains information beyond ĤF of
the underlying 3-manifold. When Y = Σ(L) is a
branched double cover of a link L in S3, we can fac-
tor its gluing map as a product of Dehn twists along
an explicit set of curves which correspond to crossings
in a projection of L. The bimodules for these Dehn
twists can be expressed as mapping cones between
pairs of bimodules, corresponding to the two resolu-
tions of the crossing. This description induces a fil-
tration on ĈF (Σ(L)) [107], which can be shown [110]
to induce the aforementioned spectral sequence [137]
from the Khovanov homology of L to ĤF (Σ(L)). Like
the arcslide bimodules, these resolution bimodules
and the maps between them can be described ex-
plicitly, using only a few simple curve counts and
the structure equation; this gives a combinatorial for-
mula for the spectral sequence [107]. (Another con-
jectural combinatorial description of the spectral se-
quence was given by Szabó [149]; it would be interest-
ing to relate the two.) The higher differentials in the
original spectral sequence count holomorphic poly-
gons, and the key step in showing the spectral se-
quences agree is an extension of the pairing theorem
to polygons [110].

3.1. Satellite knots. Suppose K is a knot in S3,
say, and P is another knot, called the pattern, in the
solid torus S1 × D2. Choose a framing for K or,
equivalently, an identification of ∂(S3 \nbd(K)) with
∂(S1×D2). Replacing nbd(K) with the copy of S1×
D2 containing P using this framing gives a new knot
KP in S3, called a satellite knot.

It is natural to wonder how invariants of K, P ,
and KP relate. For the Alexander polynomial, there
is a simple formula:

∆KP
(t) = ∆K(tn)∆P (t)

where ∆P is the Alexander polynomial of P ⊂ S3,
and n is the winding number of the pattern around
the solid torus. For knot Floer homology, an an-
swer comes from bordered Floer homology. First,
one can express the bordered invariants of the ex-
terior of K in terms of the knot Floer homology of
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K [111] (see also [64, 67]). Then, the knot Floer ho-
mology of KP is a tensor product of this bordered
invariant with an appropriate module. In fact, Ina
Petkova showed that, in a precise sense, this con-
struction lifts the classical formula for the Alexander
polynomial [143]. Satellite formulas from bordered
Floer homology have been used by many authors for
computations and applications; some applications of
these will be mentioned below. We also note that
there is important earlier work on satellite operations
in knot Floer homology by Matthew Hedden [60, 61]
and Eaman Eftekhary [32].

4. Extensions of bordered Floer homology

4.1. Bordered-sutured Floer homology. Inspired
by Gabai’s notion of sutured manifold hierarchies [45,
46], András Juhász introduced a different extension
[74] of Heegaard Floer homology to 3-manifolds with
sutures on their boundary. This invariant can be seen
as a natural generalization of the knot Floer homol-
ogy ĤFK , and its behavior under sutured decompo-
sitions can be used to prove or re-prove important
properties of knot Floer homology [75]. (See also [89]
for an analogous construction in gauge theory.)

Ruman Zarev realized both bordered Floer homol-
ogy and sutured Floer homology as special cases of
a more general theory, bordered-sutured Floer ho-
mology [161, 162]. His framework unifies many dif-
ferent objects appearing in bordered Floer homology,
and the geometric objects it allows are important for
proving properties of the theory, like the formulation
of the pairing theorem in terms of morphism spaces
described above, or John Etnyre, Shea Vela-Vick, and
Zarev’s description of HFK− in terms of ĤFK [38]
(see also [97]). Bordered-sutured Floer homology also
gives an invariant of tangles (strong enough, for in-
stance, to detect trivial tangles [4]); see also Sec-
tion 4.4.

4.2. Cornered Floer homology. Since the Seiberg-
Witten invariant was shown to admit extensions to 3-
manifolds (Heegaard Floer homology, monopole Floer
homology) and then 2-manifolds (bordered Floer ho-
mology), it is natural to ask if it can be extended fur-
ther. Christopher Douglas and Manolescu proposed
the next step, an extension to closed 1-manifolds, sur-
faces with boundary, and 3-manifolds with corners,
which they called cornered Floer homology [30]. The
invariant of a circle is a kind of algebra with both hori-
zontal and vertical multiplications, which they called
a sequential 2-algebra. To a surface with boundary
they associate an algebra-module over this (which be-
haves like an algebra with respect to horizontal multi-
plication, say, and a module with respect to vertical

multiplication), and to a 3-manifold with a corner,
a 2-module. Suitable tensor products recover bor-
dered Floer homology. Their construction of the 3-
manifold invariants uses Sarkar-Wang’s notion of nice
diagrams, which makes the construction combinato-
rial but means they were not able to prove invariance
directly. A variant of their construction, with some-
what more complicated structures but where it was
possible to prove invariance, was given by Douglas,
Manolescu, and the first author [29]. A key idea is
that the invariants of a 3-manifold Y with boundary
F1∪S1F2 and a corner at S1 can be obtained from the
bordered invariant of the smoothing of Y by taking a
tensor product with an invariant of [0, 1]×(F1∪S1F2),
viewed as smooth on one side and with a corner on
the other. Invariance then follows from the invariance
theorem for bordered Floer homology, and the pair-
ing theorem follows from a computation for certain
specific tri-modules and the bordered Floer pairing
theorem.

Work of Andrew Manion and Raphael Rouquier
has revealed surprising connections between the orig-
inal Douglas-Manolescu construction and representa-
tion theory [119].

4.3. Invariants of contact manifolds. As men-
tioned above, a contact structure ξ on a closed 3-
manifold Y induces a class c(ξ) ∈ ĤF (−Y ). It is nat-
ural to guess that if −Y is decomposed as Y1 ∪F Y2
then there should be classes c(ξ1) ∈ ĈFA(Y1) and
c(ξ2) ∈ ĈFD(Y2) so that, under the pairing theo-
rem, c(ξ) = c(ξ1) ⊗ c(ξ2). Akram Alishahi, Viktória
Földvári, Kristen Hendricks, Joan Licata, Petkova,
and Vera Vértesi [2] showed that this is, in fact the
case. Key to their definition is a precise formula-
tion of how ξ and F should interact or, equivalently,
what structure ξi should induce on the boundary of
Yi. The answer is given by the notion of a foliated
open book, introduced by Licata and Vértesi [101].
A second ingredient is Honda, William Kazez, and
Gordana Matic’s definition of c(ξ) [69], which is tied
more directly to a Heegaard diagram than the origi-
nal definition, and a third is the flexibility provided
by Zarev’s bordered-sutured theory. A key property
of c(ξ) is that c(ξ) = 0 if ξ is overtwisted (the class of
contact structures satisfying an h-principle [34]). The
bordered contact invariant leads to a satisfying new
proof of this fact: it reduces to a local computation
of the contact invariant near an overtwisted disk [3].

There are also other hints of connections between
bordered Floer homology and contact topology. For
instance, in unpublished work Honda associated a
triangulated category to a surface, which he called
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the contact category ; objects encode contact struc-
tures near a surface and the morphism spaces are
generated by bypass attachments. Benjamin Cooper
showed that a version of the contact category maps
to the category of modules over the bordered-sutured
algebras, and at least in special cases this map is an
equivalence [24]. Daniel Mathews gave another re-
sult along these lines [125]; as he notes, this implies
there are A∞-style operations on the set of contact
structures, which can be computed but are not yet
understood geometrically [126].

4.4. Invariants of tangles. Bordered Floer homol-
ogy was partly inspired by extensions of Khovanov
homology to tangles (by Khovanov [80] and Dror Bar-
Natan [11]), and attempts to give an extension of
ĤFK to tangles led to many of the basic definitions
in bordered Floer homology [105]. Nonetheless, tech-
nical difficulties relating to invariance prevented us
from carrying out this construction. Since then, three
other extensions of knot Floer homology, in the spirit
of bordered Floer homology, have emerged. The first
was mentioned above: tangle exteriors are a spe-
cial case of Zarev’s bordered-sutured Floer homol-
ogy. A second construction was given by Petkova-
Vértesi [144]. Like our earlier attempt, they start
from a variant of Manolescu-Ozsváth-Sarkar’s grid
diagrams. In particular, the definition of their in-
variants is combinatorial and their relationship to
knot Floer homology is immediate. By contrast, their
proof of invariance uses holomorphic curves. (In-
deed, for the most elaborate version of their construc-
tion, invariance remains a conjecture: proving it re-
quires overcoming analytic obstacles similar to those
for bordered HF− discussed in Section 5 below.) A
third tangle invariant is due to Szabó and the sec-
ond author. It starts from a standard knot diagram,
and the Heegaard diagram it induces, and associates
A∞-bimodules over certain algebras to cups, caps,
and crossings. Tensoring these bimodules together,
one obtains chain complexes associated to knot di-
agrams. Two papers [140, 142] give algebraic def-
initions of these bimodules and prove that the ho-
mology groups of the resulting chain complexes are
indeed knot invariants. In another paper [141], it
is shown that these operations correspond to holo-
morphic curve counts and, using this, show that the
theory indeed recovers knot Floer homology. One re-
markable feature of this extension is how efficient it
is for computation: while the previous algorithm for
computing ĤFK using grid diagrams is effective only
up to 16 crossings or so, this tangle invariant allows
computations for many knots of 80 or more cross-
ings [148].

4.5. Fukaya-categorical invariants. If F is a torus
T 2, the algebra A(T 2) is an explicit, 8-dimensional
algebra over F2 with trivial differential. The invari-
ant of a manifold with torus boundary is a differential
module over this algebra. Jonathan Hanselman, Ras-
mussen, and Liam Watson [57] showed that this in-
variant is equivalent to a simple, geometric object: an
immersed 1-manifold in T 2, perhaps equipped with a
local system (over F2). The tensor product in the
pairing theorem turns into taking Floer homology of
curves in the torus, an entirely combinatorial con-
struction. The dependence of the invariant on the
parametrization of the boundary becomes transpar-
ent: if the immersed curve associated to Y is viewed
as lying in ∂Y , no parametrization of the boundary
is needed. (So, in a sense, the theory becomes bor-
derless.)

While there are reasons one might expect such a
result [6, 54, 98], their construction is complicated,
surprising—and useful. In particular, in addition to
obvious computational applications, it also has theo-
retical ones. One of the most remarkable is to Cameron
Gordon’s Cosmetic Surgery Conjecture [51], which
states that distinct Dehn surgeries on a knot K ⊂ S3

never give the same oriented 3-manifold. Although
there had been earlier progress on this problem us-
ing Heegaard Floer techniques [47,129,139,158,160],
Hanselman’s approach provided a powerful new frame-
work for studying this topological problem. Using
this theory of immersed curves, Hanselman showed
that if r-surgery and s-surgery on K are orientation-
preserving homeomorphic then {r, s} is either {±2}
or {±1/q} for a particular integer q, as well as a num-
ber of further restrictions (e.g., that in the first case
the knot has genus 2) [55]. Konstantinos Varvarezos
has shown that if one drops the requirement that the
homeomorphism be orientation-preserving (in which
case there are many known examples of cosmetic sur-
gery, such as [15]), the immersed curve theory still
gives obstructions [156].

There are also bordered-style invariants via im-
mersed curves in other settings. Claudius Zibrowius
introduced an immersed curve invariant for 4-ended
tangles extending knot Floer homology and used it
to show that a version of knot Floer homology is in-
variant under mutation [169], verifying a conjecture
formulated by John Baldwin and Adam Levine [9].
Tye Lidman, Allison Moore, and Zibrowius used this
invariant to show that so-called L-space knots have
no essential Conway spheres [103], verifying a con-
jecture Lidman and Moore formulated seven years
earlier [102]. (See [33,57,64] for analogous results for
closed 3-manifolds.) In a different direction, Artem
Kotelskiy, Watson, and Zibrowius showed that, for
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4-ended tangles, Bar-Natan’s extension of Khovanov
homology to tangles can also be interpreted as an
immersed curve in a 4-punctured sphere [83], and
this immersed curve in fact agrees [84] with an in-
variant introduced by Hedden, Christopher Herald,
Matthew Hogancamp, and Paul Kirk, inspired by in-
stanton link homology [62] (see also [63,82]).

5. Bordered HF−

Extending bordered Floer homology to the HF−

variant of Heegaard Floer homology presents a set of
interesting algebraic, geometric, and analytical chal-
lenges. To date, most work has focused on the case
where the boundary is T 2.

In bordered Floer homology, the operations on the
(bordered) modules are defined by counting rigid holo-
morphic curves with boundary on certain Lagrangian
submanifolds. These submanifolds are non-compact;
elements of the bordered algebra record the possi-
ble asymptotics of curves, while operations on the
algebra correspond to (most) codimension-1 degen-
erations of in the moduli spaces. Passing from ĤF
to HF− introduces two new complications. First,
there are complicated, new codimension-1 degenera-
tions; philosophically, these correspond to non-empty
moduli spaces of holomorphic disks with boundary on
a single Lagrangian (cf. [43, 44]). Second, there are
new possible asymptotics of curves, coming from or-
bits going off to the boundary. The result is that the
algebra A(T 2) must be replaced by a formal 1-pa-
rameter deformation of an A∞-algebra, or a weighted
A∞-algebra [113]. The higher operations correspond
to the new kinds of degenerations, and the deforma-
tion parameter corresponds to the number of orbits.
We denote this formal deformation by A−. Similarly,
the module ĈFA(Y1) is replaced by a weighted A∞-
module CFA−(Y1) over A− [114].

The module ĈFD(Y2) can be defined as

ĈFD(Y2) = ĈFA(Y2)⊗ ĈFDD(I)

where ĈFDD(I) is a type DD structure (bimodule
version of a twisted complex) associated to the iden-
tity cobordism of the surface F . For the case of HF−,
the analogous definition has a subtlety: to formu-
late the notion of a type DD structure over a pair of
(weighted) A∞-algebras requires a well-behaved ten-
sor product of (weighted) A∞-algebras, and taking
one-sided tensor products requires some further vari-
ants of this notion. In the unweighted case, the (sur-
prisingly subtle) construction of the tensor product of
two A∞ algebras was given by Samson Saneblidze and

Ronald Umble [145]; with some effort, their notion ex-
tends to the versions needed for bordered Floer the-
ory [112]. With this algebra in hand, it is easy to con-
struct an appropriate type DD bimodule CFDD−(I)
and define

CFD−(Y2) = CFA−(Y2)⊗ CFDD−(I).

The next step is to establish a pairing theorem
for the type A and the type D modules associated to
bordered manifolds. Once again, this pairing theorem
can be viewed as a deformation of the diagonal. In the
case of ĤF , this deformation took place in the prod-
uct of associahedra, which is a compactification of a
configuration of points in R relevant to A∞-algebras;
in the case of bordered HF−, the associahedron is
replaced by a suitable compactification of the config-
uration of points in the interior and boundary of a
disk, which we call the associaplex [112]. Details of
this pairing theorem are forthcoming [104].

A different construction of an extension of HF−

to bordered 3-manifolds with (perhaps several) torus
boundary components has been given by Ian Zemke
[163, 164], using the link surgery formula introduced
by Manolescu and the second author [121]. A module
over the algebra Zemke associates to a torus captures,
in a succinct way, the data needed for the surgery
formula. To construct the module associated to a 3-
manifold Y with torus boundary, he presents Y as
a Dehn filling of a link complement in S3. The link
surgery formula can be applied further to prove a
version of the pairing theorem. At the time of writing,
invariance of his modules remains conjectural, but he
was already able to use them to give a sought-after
proof of a conjecture [164] about the Heegaard Floer
homology of plumbed 3-manifolds [127,132].

A third construction of a bordered extension of
HF− was recently given by Hanselman [56], as an ex-
tension of the immersed curve invariants discussed in
Section 4.5. In this case, the invariants take the form
of immersed curves equipped with bounding cochains
(and some additional data). He proves that, up to ap-
propriate equivalence, this data depends only on the
bordered 3-manifold (which he thinks of as a 3-man-
ifold with a specified knot in it), and that it deter-
mines the HF− invariant of any Dehn filling of the
3-manifold. At the time of writing, a formula for the
behavior when one changes the parameterization of
the boundary, a general pairing theorem for this in-
variant, and its relationship to the earlier immersed
curve invariants, remain conjectural, but the under-
lying techniques are instrumental in his results on
the Cosmetic Surgery Conjecture mentioned in Sec-
tion 4.5.
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6. Applications to 4-dimensional topology

6.1. Knot concordance. Heegaard Floer homology
is a useful topological tool for studying the inter-
play between knot theory and smooth 4-dimensional
topology. One place where this interplay is particu-
larly visible is the study of knot concordance. We re-
view this subject briefly; for a more thorough overview,
see [118].

Recall that knotsK0 andK1 are said to be smoothly
concordant if there is an embedded annulus A in [0, 1]×
R3 which, for i = 0, 1, meets the corresponding bound-
ary component {i} × R3 along Ki. The set of equiv-
alence classes of knots can be made into an abelian
group, so that addition corresponds to connected sum.
This group C is called the smooth concordance group,
and knots that are smoothly concordant to the un-
knot are called smoothly slice knots.

Surprisingly little is known about this concordance
group. Currently, the only known source of torsion in
C is knots which are the same as their mirror images
(i.e., are negatively amphicheiral). In particular, it is
unknown whether C contains elements of odd order;
indeed, at the time of writing, it is conceivable that
C ∼= Z∞ ⊕ (Z/2Z)∞.

There is a weaker notion of concordance, where the
annulus A, rather than being required to be smoothly
embedded, is merely topologically flat (is covered by
neighborhoods homeomorphic as pairs to (R4,R2)).
There is a corresponding group Ctop , the topological
concordance group. Once again, knots that are topo-
logically flatly concordant to the unknot are called
topologically slice knots.

There is a natural quotient map C → Ctop . The
kernel consists of knots which are topologically but
not smoothly slice. A deep theorem of Freedman [42]
states that any knot with trivial Alexander polyno-
mial is topologically slice. Since the advent of gauge
theory [50], it has been known that there are knots
which are topologically but not smoothly slice; in-
deed, using gauge theory, Hisaaki Endo demonstrated
an infinite set of linearly independent knots in C which
are topologically slice [37], an especially tangible man-
ifestation of the richness of smooth 4-manifold topol-
ogy.

Knot Floer homology can also be used to study
concordance phenomena. In [68], Jennifer Hom con-
structs a different infinite set of topologically slice
knots that are linearly independent in the smooth
concordance group. Her knots are built via satel-
lite constructions (cabling, Whitehead doubling, and
connected sums). In [131], András Stipsicz, Szabó,
and the second author construct infinitely many ho-
momorphisms from the smooth concordance group

to Z, demonstrating an infinite rank free direct sum-
mand in the concordance group of topologically slice
knots; compare also [25]. The homomorphisms are
constructed via knot Floer homology, and the compu-
tations of their invariants rest on bordered techniques
for computing knot Floer homology of satellite knots.

Another exciting application of satellite computa-
tions was given by Levine [99]. Using bordered Floer
homology, he showed that the Heegaard Floer τ and ϵ
invariants behave in a predictable way under Mazur-
pattern satellites. Using this, he showed that most
of these satellites do not bound disks in any ratio-
nal homology ball (resolving [81, Problem 1.45]), and
that there are knots in homology 3-spheres that do
not bound PL disks in any homology 4-balls (resolv-
ing [81, Problem 1.31]).

6.2. Exotic phenomena. Suppose that Y1 and Y2
are bordered 3-manifolds with boundary parameter-
ized by F and W is a 4-manifold with boundary iden-
tified with (−Y1) ∪ [0, 1] × F ∪ Y2. It is natural to
expect that to this data, bordered Floer homology
would associate a map

FW : ĈFD(Y1) → ĈFD(Y2)

(or similarly for ĈFA or the minus variants); and that
these maps would satisfy the obvious analogue of the
pairing theorem. While it is straightforward to asso-
ciate a map FW to W , independence of the map from
the choices in its construction has in general not been
verified (but see [19]).

Nonetheless, bordered Floer homology has been
used recently for dramatic 4-dimensional applications.
For instance, Gary Guth showed that, for any n,
there are surfaces (S1, ∂S1) and (S2, ∂S2) in (B4, S3),
which are topologically isotopic rel boundary but which
remain smoothly non-isotopic even after attaching n
1-handles [53]. (Any pair of surfaces become iso-
topic after attaching enough 1-handles [12, 70].) His
construction starts from an example of Kyle Hay-
den’s, who gave a pair of disks in the 4-ball which are
smoothly but not topologically isotopic [58, 59], and
uses a lower bound on stabilization distance coming
from Heegaard Floer homology, discovered by Juhász
and Zemke [76]. Subsequently, Sungkyung Kang gave
a pair of contractible 4-manifolds which remain non-
diffeomorphic after taking the connected sum with
S2 × S2 [78]. (Several other groundbreaking “one-is-
not-enough” results have also appeared recently, us-
ing other techniques.)

Both of these results require complicated compu-
tations of Heegaard Floer invariants. The disks in
Guth’s result are cables of Hayden’s disks. To com-
pute their Heegaard Floer homology, he notes that
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if F : K1 → K2 is a concordance, P is a pattern in
the solid torus, and FP is the satellite of F , then
there is some map F# : ĈFA(K1) → ĈFA(K2) so that
the Heegaard Floer map (FP )∗ : HFK

−((K1)P ) →
HFK−((K2)P ) [1, 165] is induced by

F# ⊗ I
ĈFD(S1×D2,P )

and the pairing theorem. The key to proving this
is the pairing theorem for triangles [110]. It is not
needed for this computation that F# be an invariant
of F , just that some map with this property exists.
Kang’s elaborate computation uses similar ideas, as
well as work of Hendricks and the first author [65]
and Kang’s [77] on a bordered extension of Hendricks-
Manolescu’s involutive Floer homology [66].

Both Guth’s and Kang’s results can be seen as
resolving relative versions of an old question of Wall’s:
how many stabilizations (connected sums with S2 ×
S2) are required to make a pair of homeomorphic
(or homotopy equivalent), simply-connected, closed
4-manifolds diffeomorphic [157].

Other applications of Heegaard Floer homology to
4-manifolds seem around the corner. For instance,
Jesse Cohen recently gave an algorithm for comput-
ing the maps on ĤF associated to cobordisms using
bordered Floer homology [20], extending our algo-
rithm for computing ĤF itself [108]. (The pairing
theorem for triangles [110] is again a key step; an-
other is a rigidity result for the modules associated
to handlebodies [65].) As noted above, these maps on
ĤF do not provide interesting invariants of closed 4-
manifolds, but for 4-manifolds with boundary, which
have seen an explosion of interest, they do.

Most recently, Levine, Tye Lidman, and Lisa Pic-
cirillo have used the immersed curve formulation of
bordered Heegaard Floer homology to give many ex-
otic 4-manifolds with b1 = 1 [100]. In fact, they
show that Fintushel-Stern knot surgery [39] for any
nontrivial knot in S3—including knots with trivial
Alexander polynomial—can be used to produce ex-
otic manifolds.
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