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Abstract: Virtual constraints are relations imposed on a control system which insure invariance
via feedback control, as opposed to physical constraints acting on the system. In this work, we
introduce the notion of virtual constraints on Riemannian homogeneous spaces in a geometric
framework which is a generalization of the classical controlled invariant distribution setting and
we show the existence and uniqueness of a control law preserving the invariant distribution. We

illustrate the theory with an example.
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1. INTRODUCTION

Virtual constraints are relations on the state variables
of a mechanical model that are imposed through a
time-invariant feedback controller. Virtual holonomic con-
straints have been studied over the past few years in a
variety of contexts, such as motion planning and con-
trol (see Freidovich et al. (2008), Shiriaev et al. (2010),
Mohammadi et al. (2018) and Westerberg et al. (2009)
for instance) and biped locomotion where it was used
to achieve desired walking gaits (see Chevallereau et al.
(2003) and Westervelt et al. (2018) for instance).

Control systems on Lie groups provide a general frame-
work for a class of systems that includes controlled space-
craft and unmanned autonomous vehicles such as aerial
and underwater vehicles. In general, the configuration
space for these systems is globally described by a matrix
Lie group. This framework gives rise to coordinate-free
expressions for the dynamics describing the behavior of
the system. The theory of irtual constraints on Lie groups
has been recently developed in Stratoglou et al. (2023).

In this paper we discuss virtual constraints on spaces which
are not necessarily Lie groups themselves, but nonetheless
possess certain symmetries and invariances that allow
for similar results to be obtained: Homogeneous spaces
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defined as follows. Let G be a connected Lie group. A
homogeneous space H of G is a smooth manifold on which
G acts transitively. Note that any Lie group is itself a
homogeneous space, where the transitive action is given
by left-translation (or right-translation). Any homogenous
space H of G is diffeomorphic to a quotient space of
the form G/K, where K is a Lie subgroup of G. This
identification allowd us to translate much of the geometry
of the Lie Group G into the homogeneous space H. Just
as an example, Riemannian homogeneous spaces are the
ones in which the projection G — H is a Riemannian
submersion and much of the Riemannian geometry on G
might be projected to H. In particular, nonlinear dynamics
on H might be lifted and pushed forward to a dynamics
in the Lie algebra of G.

In particular, a virtual constraint on a Riemannian homo-
geneous space H is described by a G-invariant distribution
on the configuration manifold of the system for which there
is a feedback control making it invariant under the flow of
the closed-loop system. We provide sufficient conditions
for the existence and uniqueness of such a feedback law
defining the virtual constraint on a Riemannian homoge-
neous space. Although the result was already known from
previous papers (see, e.g. Simoes et al. (2023)), we are
able to explicitly construct the control law by making use
of the lifted dynamics to the Lie algebra. This procedure is
essential in many situations where finding out an explicit
formula for the controller would be challenging. An exam-
ple is the sphere, where to give an explicit formula for the
control law using methods from previous papers, it would
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require working with a coordinate chart on the sphere and
making sure that any singularity would be solved by a
proper change of coordinates. The use of the homogeneous
space structure conjugated with a proper treatment of
Lie groups given in Stratoglou et al. (2023) solves that
problem.

The paper is structured as follows. Section 2 introduces
the background on Riemannian manifolds and we explore
some geometric properties of Riemannian geometry on
Lie groups. Section 3 describes Riemannian homogeneous
spaces and the corresponding geodesic equations. In Sec-
tion 4 we introduce virtual constraints on Riemannian
homogeneous spaces, we provide sufficient conditions for
the existence and uniqueness of a feedback law defining the
virtual constraints. Finally in Section 5 we illustrate the
theory with an example, a damped spherical pendulum.

2. BACKGROUND ON RIEMANNIAN MANIFOLDS

Let @ be an n-dimensional manifold equipped with a
Riemannian metric (-, ), i.e., a positive-definite symmetric
covariant 2-tensor field. That is, to each point g € QQ we
assign a positive-definite inner product (-, ) 0 Te@xT,Q ~
R, where T,Q is the tangent space of Q at ¢ and (-, -)q varies
smoothly with respect to ¢. We denote by 7, : T,Q - Q
the smooth projection assigning to each tangent vector v,
the point ¢ at which the vector is tangent. The length

of a tangent vector is defines as |lv,| = (vq,vq)1/2 with
vy € Ty Q. For any p € @, the Riemannian metric induces an
invertible map b : T,Q) — T, Q), called the flat map, defined
by h(X)(Y) =(X,Y) for all X,Y €T,Q. The inverse map
f:7T,Q — T,Q, called the sharp map, is similarly defined
implicitly by the relation (f(a),Y) = a(Y) for all a € T, Q.
Let C*(Q) and I'(T'Q) denote the spaces of smooth scalar
fields and smooth vector fields on @, respectively. The
gradient of a function on a Riemannian manifold is given

by gradf(p) = §(df (p)) for all p € Q.

Vector fields are a special case of smooth sections of
vector bundles. In particular, they are smooth maps of
the form X : @ — TQ such that 79 o X = idg, the
identity function on Q. An affine connection on Q is a
map V:I'(TQ) xI'(TQ) - I'(T'Q) which is C*(Q)-linear
in the first argument, R-linear in the second argument, and
satisfies the product rule Vx (fY) = X(f)Y + fvxY for
all feC=(Q), X eI(TQ), Y eT'(TQ). The connection
plays a role similar to that of the directional derivative in
classical real analysis. The operator Vx which assigns to
every smooth section Y the vector field VxY is called the
covariant derivative (of Y') with respect to X.

Let ¢ : I - @ be a smooth curve parameterized by
t € I ¢ R, and denote the set of smooth vector fields
along ¢ by I'(¢). Then for any affine connection V on @,
there exists a unique operator V; : I'(q) - I'(g) (called
the covariant derivative along ) which agrees with the
covariant derivative V4W for any extension W of W to
Q. A vector field X € I'(q) is said to be parallel along
q if V4X =0. The covariant derivative allows to define
a particularly important family of smooth curves on @
called geodesics, which are defined as the smooth curves ~
satisfying V4 = 0.

The Riemannian metric induces a unique torsion-free
and metric compatible connection called the Riemannian
connection, or the Levi-Civita connection (see Boothby
(2003)). Along the rest of the paper, we will assume that
V is the Riemannian connection.

2.1 Riemannian geometry and Lie groups

Let G be a Lie group and its Lie algebra g be defined
as the tangent space to G at the identity, g := T.G. Let
Ly be the left-translation map Ly, : G - G given by
Ly(h) = gh, for all g,h € G, which is a left action of G
on itself and a diffeomorphism on G. Its tangent map
is denoted by T,L4 : TG — Ty,G. Let us denote the
set of vector fields on a Lie group G by X(G). A left
invariant vector field is an element X of X(G) such that
ThLg(X(h)) = X(Lg(h)) = X(gh) Vg,h € G. We denote
the vector space of left-invariant vector fields on G by
X1 (G). Consider the isomorphism (+)r, : g > X1 (G) given
by £1.(g) = Lg«&, where L, is the push-forward of the left-
translation map Lg, { € g and g € G. Note that under this
isomorphism we have g ~ X1, (G).

Consider an inner-product on the Lie algebra g denoted by
(-,-)g- Using the left-translation we define a Riemannian
metric on G by the relation (X,Y) := (¢7'X,g7'Y), for
all g € G, XY ¢ T,;G, which is called left-invariant
metric because (gX,gY) = (X,Y). Let V be the Levi-
Civita connection on G related to the above metric. The
isomorphism (-)r : g &> X1 (G) helps us define an operator
Veigxg—gby
Vgﬁ i= Ve, nr(e)

for all £,n € g. Although V? is not a connection we will
refet to it as the Riemannian g—connection corresponding

to V.
Lemma 1. The Riemannian g—connection satisfies:

V2= ([&1la - 1 adg o] -4 [y )])
forall &, neg.

The geodesics equations on a Lie group equipped with a
left-invariant metric might be recast as an equation on the
Lie algebra as the well-known result below establishes.
Lemma 2. Consider a Lie group G with Lie algebra g and
left-invariant Levi-Civita connection V. Let g : [a,b] - G
be a smooth curve and X a smooth vector field along g.
Then the following relation holds for all t € [a,b]:

Vo X (1) = g(t) (7(t) + VEn(t)), (1)
where £(t) = g(t) ™' g(t) and n(t) = g(t) " X (t).
From the previous Lemma, if g(¢) is a geodesic with
respect to the Levi-Civita connection, then g (f + Vg§) =

0, where ¢ := ¢g7'g, and we obtain the Euler-Poincare
equations for geodesics:
Theorem 1. Suppose that g : [a,b] > G is a geodesic, and
let €:= g71g. Then, ¢ satisfies

§+VE=0 (2)

on [a,b].
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3. RIEMANNIAN HOMOGENEOUS SPACES
3.1 Homogeneous spaces

Let G be a connected Lie group. A homogeneous space H
of G is a smooth manifold on which G acts transitively.
Any Lie group is itself a homogeneous space, where the
transitive action is given by left-translation (or right-
translation).

Suppose that ® : G x H - H is a transitive left-action,
which we denote by gz := ®4(z). It can be shown that
for any x € H, we have G/Stab(z) » H as differentiable
manifolds, where Stab(x) := {g € G | gz = 2} denotes the
stabilizer subgroup (also called the isotropy subgroup) of
x, and G/Stab(x) denotes the space of equivalence classes
determined by the equivalence relation g ~ h if and only if
g~'h € Stab(z). In addition, for any closed Lie subgroup
K c G, the left-action ® : G x G/K — G/K satisfying
®,([R]) = [gh] for all g,h € G is transitive, and so G/K is
a homogeneous space. Hence, we may assume without loss
of generality that H := G/K is a homogeneous space of G
for some closed Lie subgroup K.

Let @ : G - H be the canonical projection map. We
define the vertical subspace at g € G by Very := ker(m.|y),
from which we may construct the vertical bundle as VG :=
Lgec{g} x Very. Given a Riemannian metric (-,-), on G,
we define the horizontal subspace at any point g € G
(with respect to (-,-),) as the orthogonal complement
of Ver,. That is, Horg := Ver;. Similarly, we define the
horizontal bundle as HG := |lzec{g} x Hory. Both the
vertical and horizontal bundles are vector bundles, and are
in fact subbundles of the tangent bundle T'G. It is clear
that T,G = Verg@Hor, for all g € G, so that the Lie algebra
g of G admits the decomposition g = s@h, where s is the Lie
algebra of K and h = T (.)H. We denote the orthogonal
projections onto the vertical and horizontal subspaces by
VY and H.

A section Z € T'(HG) is called a horizontal vector field.
That is, Z e I'(T'G) and Z(g) € Hor, for all g € G. A vector
field Y € I'(T'G) is said to be w-related to some X e T'(TH)
if 7Yy = X, for all g € G. If in addition Y € I'(HG),
we say that Y is a horizontal lift of X. We further define
a horizontal lift of a smooth curve ¢ : [a,b] - H as a
smooth curve § : [a,b] - G such that 7o § = ¢ and §(t) is
horizontal for all ¢ € [a,b]. We have the following results
(see Goodman and Colombo (2024h))

Lemma 3. Let H be a homogeneous space of G and
X eT(TH). Then:

(1) For all X e T(TH), there exists a unique horizontal
lift X of X. That is, the map *: T'(TH) - T'(HG)
sending X ~ X is R-linear and injective.

(2) For all smooth curves q : [a,b] — H and qy €
7 ({q(a)}), there exists a unique horizontal lift § :
[a,b] —» H of q satisfying G(a) = qo, called the
horizontal lift of X which is w-related to X.

Lemma 4. Suppose that q: [a,b] -~ H and ¢ : [a,b] - G
is a horizontal lift of q. Then, for any 7 : [a,b] = b, there

exists a unique X € T'(q) such that its horizontal lift X

along q satisfies Lq(t)-l*f((t) =7(t) for allt € [a,b].

3.2 Riemannian Homogeneous Spaces

Consider a connected Lie group G and a homogeneous
space H = G/K of G. Since H is a smooth manifold,
it can be equipped with a Riemannian metric. As when
discussing Riemannian metrics on Lie groups in Section
2.1, we are interested in those metrics (-, -); which in some
sense preserve the structure of the homogeneous space. In
this case, we wish to choose (:,-);; so that the canonical
projection map 7 : G - H is a Riemannian submersion.
That is, so that m.|s is a linear isometry between Hor,
and Ty, H for all g € G. In such a case, we call H a
Riemannian homogeneous space. 1t is clear that if H is a
Riemannian homogeneous space, then (H(X),H(Y)) =
(X, 7Y )y for all XY e T,G,g € G. In particular,
(X,Y), =(X,Y), forall X,Y €T,G,g eG. The metric
(-,-) g is said to be G-invariant if it is invariant under the
left-action ®, for all g € G. It can be shown that every
homogeneous space H = G/K that admits a G-invariant
metric is reductive. That is, the Lie algebra admits a
decomposition g = 5 ® b, where s is the Lie algebra of K,
and b satisfies [s,h] c b. In particular, this implies that
b= Tr)(G/K) as vector spaces.

There is an equivalence between the existence of a G-
invariant metric on H and the existence of a left-invariant
metric on G for which H is a Riemannian homogeneous
space, for more details see Goodman and Colombo (2024b)
Denote the Levi-Civita connections on H and G with
respect to these metrics by V and V respectively. Also,
consider a connection on the horizontal bundle of G,
HG, the horizontal connection given by: V¥ : I'(TG) x
I'HG)->T(HG),
VR Z =H(VwZ),
for all W e I'(T'G),Z € T'(HG), which is the projection

of the Levi-Civita connection on G onto the horizontal
bundle.

Next, we define an operator called the Riemannian
h—connection (see Goodman and Colombo (2024b)) as

the bilinear map @gn = @?LnL(e), which is, in essence,
the projection of the Riemannian g-—connection, V¥, cor-
responding to the Levi-Civita connection V on G onto the
horizontal subbundle HG, i.e. @277 = ’H(@gn). Therefore,
we obtain the explicit expression

WE %H ([&:mls - g[adg b(m)] - [ad; b (©)]) . (3)

Lemma 5. Consider a Lie group G with Lie algebra g and
left-invariant Levi-Civita connection V. Let g : [a,b] > G
be a horizontal curve and X a smooth horizontal vector
field along g. Then the following relation holds for all
te[a,b]:

VIEX () = g(t) (n(1) + Vin(t)), (4)
where &(t) = g(t) ™' g(t) and n(t) = g(t) "' X (2).

From the previous Lemma, if g(¢) is a horizontal geodesic
with respect to the Levi-Civita connection, then

g(é+v) =0,

where ¢ := g7, and since left-translation is a diffeomor-
phism, we obtain the equations:



80 Efstratios Stratoglou et al. / IFAC PapersOnLine 58-6 (2024) 77-82

Theorem 2. Suppose that g : [a,b] - G is a horizontal
geodesic, and let & := g~1g. Then, & satisfies

§+VEE=0 (5)
on [a,b].

Proof. Equation (5) follows directly from Lemma 5. [

Let V : H - R be a potential function on the homogeneous
space H. Via the projection map 7, this potential function
generates a potential function on the Lie group G denoted
by V=Von.

Let g : [a,b] = G be a horizontal curve and a trajectory
of the mechanical system with G-invariant Lagrangian
function L : TG — R of the form kinetic energy minus
potential energy and given by L(g,g) = %(g,g) -V(g).
Then, the curve g satisfies the equation

Vitg(t) = ~gradg V(g(1)), (6)
where grads denotes the gradient with respect to the

metric (,-,-), and we used that grad, V is a horizontal
vector field by construction.

It is not difficult to show that because of G-invariance
of the metric and of the function V', one might deduce
gradg V(g) = g gradg V(e) and also , (gradg V(e)) =
grady V(7w(e)). Thus, we deduce that

Theorem 3. Suppose that g : [a,b] — G is a horizontal
trajectory of the mechanical system with Lagrangian L as
defined above and let € := g~1g. Then, € satisfies

£+ = ~(grady V) (n(e)). 7
on [a,b].

Proof. The result is a direct consequence of Lemma 5 and
of equation (6). O

4. VIRTUAL CONSTRAINTS ON RIEMANNIAN
HOMOGENEOUS SPACES

Next, we briefly recall the concept of virtual constraints
on a n-dimensional manifold ). Given an external force
F%:TQ - T*Q and a control force F: TQ xU — T*Q of

the form
m

F(q,q,u) = Z:luaf“(q) (8)

where f¢ is a one-form on @ with m <n, U c R™ the set
of controls and u, € R with 1 < a < m the control inputs,
consider the associated mechanical control system of the
form

Vand(t) =Y°(a(t),4(1) + ua ()Y *(a(1)),  (9)

with Y0 = §(F?) and Y* = §(f*) the corresponding force
vector fields.

The distribution F ¢ TQ) generated by the vector fields
§(fi) is called the input distribution associated with the
mechanical control system (9). A virtual constraint asso-
ciated with the mechanical control system (9) is a con-
trolled invariant integrable distribution D ¢ T'Q for that
system, that is, there exists a control function @ : D — R™
such that the solution of the closed-loop system satisfies
¢+(D) € D, where ¢y : TQ - TQ denotes its flow.

Provided that F and D are complementary (integrable)
distributions, there is a unique control law for the system
(9) making D a virtual constraint.

Suppose that H is a homogenous manifold, acted by a
Lie group G and 7 : G — H is the associated projection.
Consider a G-invariant control force F': TH xU — T*H of
the type (8) with m < k <n where n = dim G, k = rank H
and U c R™ the set of controls. Therefore there exists a
function f: TreyH xU — T;(S)H such that

F(q,vgu)=g-f(97'q,9 " vg,u), qeH, vyeT,H, uel.

In particular, the input distribution F is G-invariant and
Fq = g Fr(e)- In addition, suppose that D is also a G-
invariant integrable distribution on H so that D, = g -
Dy(e), where g€ H and q = g- 7 (e).

Using the identification between h and T (.)H described
in the previous section, there exists a subspace 0 of h
such that T.m(0) = D). Likewise, there exist a subspace
f € b such that T.7m(f) = Fr(e). These identifications are
particularly important for reproducing the trajectories of
the Lie algebra on the homogeneous space and vice-versa.

On the Lie algebra g, consider the controlled mechanical
system of the form

g=9¢ E+Vi+gradg V(e)=u'fo,  (10)

where f, € h are the set of m < k < n vectors spanning
the control input subspace f = span{ fi, ..., fim . Note that
this system evolves inside the horizontal bundle.

Definition 4. The subspace of the horizontal subspace
b c g, f given above is called the control input subspace
associated with the mechanical control system (10).

Definition 5. A wvirtual constraint associated with the
mechanical system of type (10) is a controlled invariant
subspace 0 of b, that is, there exists a control law making
the subspace 0 invariant under the flow of the closed-loop
system, i.e. £(0) €0 and &(t) €0, Vi > 0.

Theorem 6. Suppose b = f@® d. Then there exists a
unique control law u* making 0 a virtual contraint for the
controlled mechanical system (10).

Proof. Let dimd = d and dimf = m = k — d. Consider
the covectors p'...,p, € b* spanning the annihiliator
subspace of d. £(t) is a curve on b satisfying £(t) € 0
for all time if and only if it satifies p®(&(¢t)) = 0 for all
a = 1,...,m. Differentiating this equation and supposing
that £(t) is a solution of the closed loop system (10) for
an appropriate choice of control law u, we have that

-u® (@25 +gradg f/(e)) +ulu®(fy) = 0.

Since @25 +gradg V(e) ehand h=f&0, there is a unique
way to decompose this vector as the sum

Vi +gradg V(e) =n(t) +7°() fi,

with 1 € 9. In addition, note that the coefficients 7° may
be regarded as functions on . In fact, its definition is
associated with the projection to f together with the choice
of {fu} as a basis for f. Therefore, u®(£(t)) = 0 if and only
if

(7" —u”)u (fy) = 0.



Efstratios Stratoglou et al. / IFAC PapersOnLine 58-6 (2024) 77-82 81

Since u*(fy) is an invertible matrix, we conclude that
7 = ub proving existence and uniqueness of a control law
making 9 a virtual constraint. O

By construction, if (g(t),£(t)) is a trajectory of the
mechanical system (10), then g(¢) is a horizontal curve and
q(t) =m(g(t)) is the trajectory of the mechanical system

Vind(t) = —grady V(a(t)) + ua ()Y (q(1))-

In addition, if £(t) € 0 for all ¢, then ¢(t) € Dy for
all ¢t. Then, by uniqueness of the control law making the
integrable distribution D a virtual constraint, we have that
the control law u* € U given in Theorem 6 is also the
unique control law making D control invariant.

5. AN EXAMPLE

Consider a spherical pendulum with varying length. Let
the spherical body be of mass m and the length of be given
by the variable £. Its configuration space is S?x]0, +oo[ and
we are interested in a control system of the type
Vird(t) = —grad V(q(t)) +u(t)Y (q(t))
where V is the Levi-Civita connection on $%x]0,+oo[
relative to the metric induced by the euclidean metric on
R* and V is a potential function. We would like to find a
control law forcing the pendulum to move with constant
length. For that matter, we assume that D = T'S? and the
input distribution determined is spanned by the vector
field {Y'} which is a vector tangent to the vertical space of
the projection onto the first component pr; : SQ><]0, +oo[—>

S%, (¢,0) ~ q.

Finding an explicit expression for this control law can be
cumbersome since one has to deal with a local expression
of the Levi-Civita connection and the expression is limited
to the region where the coordinates are properly defined.
In the case of the sphere, there will be just one point not
covered by the coordinates but the issue might be even
more dramatic for other more complex manifolds. Working
with homogeneous manifolds solves some of these issues
since the goal with this strategy is to work in a linear
space: a subspace of the Lie algebra of the acting Lie group.
In addition, from the engineering point of view, many
times the controllers are themselves an element of the Lie
algebra: angular velocity, torque, etc. Therefore, in the
following, we will tackle the control problem making use of
the homogeneous structure of the configuration manifold.

Homogeneous structure of S*x]0,+oo[.  The configura-
tion space S2x]0,+oo[ can be identified with the ho-
mogeneous space H = G[/K for G = SO(3)x]0,+oo[
and K c G be the Lie subgroup isomorphic to SO(2)
whose elements are given by (k,1) ¢ G with k& =
cos(f) sin(f) 0
(—Sin(9) cos(6) 0) with @ € S*. From now on, to ease the
0 0 1
notation we will use the real set R instead of ]0, +oo[. G has
the left multiplication from SO(3) extended to SO(3) xR,
ie, (S,r) - (R,¢) = (SR,rl) with S € SO(3), r ¢ R. The
action of G on S?xR, denoted by ® : GxS?xR - S?xR and
given by ®(g ,y(q,¢) = (Sq,rf) is transitive and therefore

H is in fact an homogeneous space of G. For ez = [001]7

we get that K = Stab((es,1)) the stabilizer subgroup
of the action ®. The projection map 7 : G - S? x R
is given by m(R,¢) = (Res, ). By abuse of notation, we
will denote the projection SO(3) — S? also by , i.e.,
m(R) = Res, R € SO(3).

The Lie algebra so(3)xR.  Using the hat map, we identify
50(3) 2 R3. Consider the orthonormal basis {é;,é2,é3} of
50(3), where e, eq,e3 is the standard basis on R? so, we
have m,é1 = —eg, T4 €2 = €1 and m,é3 = 0.

Riemmannian homogeneous structure.  Let us equip the
Lie group SO(3) with a left-invariant metric defined by the
inner product on so0(3) given by (€21,Q2)s0(3) = 0T Q, for
all 1,95 € R3. We have that s = ker(m.|r) = span{eg}
and we can define h = s*. Note that h = span{é,és}.
We define an inner product on T,,S* via the relation
(X,Y)1,s2 = (7' X, 7Y )so3) for all X,Y e T.,S%
Following [Goodman and Colombo (2024a)] we have that
(-,-)TE382 is the standard Euclidean metric with respect
to the basis {e1,ea}. We extend this inner product to
an SO(3)-invariant Riemannian metric on S? by left-
action given by (X,Y)s = (RTX,RTY)TESSQ = RTX .
RTY = X .Y for all X,Y € T,S%,R € SO(3) such that
m(R) = ¢q. The metric on G = SO(3) xR is simply given by
((Q1,71),(Q2,72))c = (21, Q22)s0(3) +r172. The sharp map
f: T*G —» TG is given by §(u,r) = (u*,7). The adjoint
operation of g = 50(3) xR to itself is given by ad : gxg — g,
(adg, ©2,0) = ([Q1,95],0) = (2 x2,0)
where adﬁlﬂg is the adjoint operator on s0(3), £ = (Ql,rl)
and 1 = (Qa, 7).

aden =

Since s = span{és} the vertical space is defined by Ver, =
span{gés} and the horizontal space is defined as Hor, =
span{géy, gés} for g € SO(3). Thus, for G we get Ver, x
{0} and Hory x R the vertical and horizontal spaces
respectively. The horizontal projection can be calculated

by H(Q,r) = (Qxes,r).

The b-connection on the Lie algebra.
have that

- 1 — 1 —
Vin = 57{(91 x(12,0) = 3 ((91 x ) x 6370)7
where € = (Q,71) and 1 = (Qg,79).

For a horizonal curve R : [a,b] - G and a smooth
horizontal vector field X along R from Lemma 5 we have

TEX) = () (i T20(0) = (o) (e + ST e,

Hence, from (3) we

0),
where n = R1X, &= R'Rand R= (R,r). In particular, if
R is a horizontal geodesic then from equation (5) & = (£, £)

satisfies
2=0
(=0.

The control problem on h.  Now, consider the gravita-
tional potentlal function as V : S2 x R - R given by
V(gq,¢) = felq. We can pull back this function to G

using the projection V : G - R is defined as V(R 0) =
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EegRe§ . The gradient with respect to G of this function is
grad -V (I,1) =(0,1).

We would like to make the subspace 0 = span{é;, é3} € hxR
control invariant. With that in mind, let § = span{f},
where f = (0,1) € s0(3) x R. Thus, we look for a control
law making the system

=0
é:—1+u.

control invariant. It is clear that this is only possible if
u=1.

6. CONCLUSIONS AND FUTURE WORK

We introduced the notion of a virtual constraints on Rie-
mannian homogeneous spaces in a geometric framework,
which is a generalization of the classical controlled in-
variant distribution setting and we show the existence
and uniqueness of a control law preserving the invariant
subspace. We illustrated the theory with the example of
the damped spherical pendulum. In a future paper, we will
study in-depth the relation between the control law on the
horizontal space §h and the control law on the homogenous
space H.

In addition, we aim to extend this notion of virtual
constraint on Riemannian homogeneous spaces to the class
of nonholonomic virtual constraints as in our recent works
Simoes et al. (2023), Stratoglou et al. (2023a), Stratoglou
et al. (2023b) for linear, affine and nonlinear nonholonomic
virtual constraints. A typical example of these constraints
on Riemannian homogeneous spaces is a rolling ball on a
table, with and without rotational motion of the table (see
Bloch (2003) for instance).
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