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Abstract: In this paper we will introduce a discrete version of systems obtained by modifications of
the Euler-Poincaré equations when we add a special type of dissipative force, so that the equations
of motion can be described using the metriplectic formalism. The metriplectic representation of the
dynamics allows us to describe the conservation of energy, as well as to guarantee entropy production.
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continuous metriplectic equations preserving their main properties: preservation of energy and correct
entropy production rate.
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1. Introduction

In many examples of dynamics, especially in thermodynamics, it is necessary to combine the
dynamical structure of Hamiltonian systems and metric systems to produce what are called metriplectic
systems, as originally discussed in the work of Morrison, see [1,2] (see also [3,4]). The dynamics is
determined using a Poisson bracket for the Hamiltonian part, combined with a symmetric bracket which
allows us to introduce dissipative effects (see [5] for a more inclusive framework using a 4-bracket to
describe dissipative dynamics preserving energy and producing entropy).

After introducing the notion of metriplectic system, in this paper we study metriplectic systems
derived from a perturbation of the Euler-Poincaré equations or a Lie-Poisson system by adding a special
dissipation term [6,7]. Recall that the Euler-Poincaré equations are obtained by reduction from invariant
Lagrangian systems on the tangent bundle 7G of a Lie group G. The dissipation term that we add to the
equations makes the equations of motion verify two interesting properties: preservation of energy H
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and also the existence of a Casimir function S of the Lie-Poisson bracket verifying the property S > 0.
Both correspond exactly with the two laws of thermodynamics: preservation of the total energy and
irreversible entropy creation.

To numerically approximate the solutions of a metriplectic system while preserving the energy and
the entropy behavior it is natural to use a class of geometric integrators called discrete gradient methods.
These methods are adequate when we want to preserve exactly the energy of the system. In this sense,
they are quite useful for ODEs of the form X = II(x)VH(x) with x € R” and I1(x) a skew-symmetric
matrix (not necessarily associated to a Poisson bracket). Using a discrete gradient VH(x, x’) as an
adequate approximation of the differential of the Hamiltonian function (see Section 4 for more details),
it is possible to define a class of integrators x’ — x = I1(x, x')VH(x, x’) preserving the energy H exactly,
i.e. H(x) = H(x'). Here I(x, x') is a skew-symmetric matrix approximating I1(x). In Section 4, based
on discrete gradient methods, we derive geometric integrators for metriplectic systems and in particular,
the geometric derivation of the discrete dissipative term.

2. Metriplectic systems

The theory of metriplectic systems tries to combine together the dynamics generated by Poisson
brackets with additional dissipative effects. We will first review the different geometric elements that
define a metriplectic system.

2.1. Poisson structures

Consider a differentiable manifold P equipped with a Poisson structure [8,9] given by a bilinear map

CO(P)x C®(P) — C™(P)
.9 —  {f.g}

called the Poisson bracket, satisfying the following properties:

(1) Skew-symmetry,{g, f} = —{f, g};
(i1) Leibniz rule,{fg,h} = flg, h} + g{f, h};
(iii) Jacobi identity, {{f, g}, h} + {{h, f}, g} + {{g, h}, f} = 0;

for all f,g,h € C*(P).

Given a Poisson manifold with bracket {, } and a function f € C*(P) we may associate with f a
unique vector field X € X(P), the Hamiltonian vector field defined by X,(g) = {g, f}.

Moreover, on a Poisson manifold, there exists a unique bi-vector field I1, a Poisson bivector (that is,
a twice contravariant skew symmetric differentiable tensor) such that

{f’g} = H(df’dg)’ f,gGCOO(P),

The bivector field IT is called the Poisson tensor and the Poisson structure is usually denoted by (P, {, })
or (P,II). The Jacobi identity in terms of the bi-vector II is written as [II,I1] = 0, where here [ , ]
denotes the Schouten—Nijenhuis bracket (see [8]).
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Take coordinates (x'), 1 < i < dim P = m, and let IT” be the components of the Poisson bivector, that
is,
, o 0 0
HU: l,j, H:HlJfA—,.
W, ) oxt  ox/

Then if f, g € C*(P) we have

oy O 98 im@_fa_g

= ! J =
)= 2,155 oxi

ij=1 ij=1
and the Hamiltonian vector field is written in local coordinates as

Lof 0
X :H”—.—. .
f 0x’/ Ox

Observe that the m x m matrix (ITV) verifies the following properties:

(i) Skew-symmetry, IT/ = —I1/
(i1) Jacobi identity,

m

L OTT* )0 A,y
I +II¢ + 117 =0, ijk=1,...,m

l l l b b b b b
; ( Ox Ox Ox

Define fii; : T*P — TP by
fn(@) = =1 I1 = 11(-, @),

where @ € T*P, and (B, (,I1) = Il(a,p) for all B € T*P. The rank of Il at p € P is exactly the
rank of (), : T,P — T,P. Because of the skew-symmetry of I1, we know that the rank of IT at a point
p € P is an even integer.

Given a function H € C*(P), a Hamiltonian function, we have the corresponding Hamiltonian vector
field:

Xy = tn(dH).

Therefore, on a Poisson manifold, a function H determines the following dynamical system:

d
;f(t) = Xp(x(1)) . @.1)

We say that a function f € C*(P) is a first integral of the Hamiltonian vector field X if for any solution
x(t) of Equation (2.1) we have

df B
E(x(t)) =0.

In other words, if Xy(f) = 0 or, equivalently, {f, H} = 0. In particular, the Hamiltonian function is a
conserved quantity since {H, H} = 0 by the skew-symmetry of the bracket. For any Poisson manifold
(P,I1) a function C € C*(P) is called a Casimir function of IT if X = 0, that is, if {C, g} = O for all
g € C7(P).
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2.2. Positive semi-definite inner products
Assume that for each point x € P we have a positive semi-definite inner product for co-vectors
Ky:T:PXT;P—>R
from which we can define #4 : T*P — TP by

ﬁﬂ((a’x) = :K:x(a/xa )
and the gradient vector field

grad®s = #5(dS)
for any function § : P — R.

X defines a symmetric bracket given by
(df,dg) = K(df,dg).

Take coordinates (x'), 1 <i < dim P = m, and let K"/ be the components of the inner product given
by
K'Y = (x, x/).

Then if f, g € C*(P), the symmetric bracket is expressed as
O Of 08 X i 0f g
— i NS Klj__ )
(0= ) G55 =0 K g

i,j=1 i,j=1

Observe that the m x m matrix (K") verifies K/ = K’ and all the eigenvalues are positive or zero.

2.2.1. A construction of the positive semi-definite inner product with #*(dH) = 0 given a Riemannian
metric

In this section, we introduce a constructive way to derive the symmetric bracket K which is interesting
in applications. Assume that P is equipped with a Riemannian metric G inducing a positive definite
inner product §* on 7P (the co-metric),

G T'PxT:P->R

defined by §*(df,dg) = S(grad” f, grad” g) = grad” f(g).
Since we are interested in defining a semi-definite inner product K such that X(dH, -) = 0 then we
define

K(df.dg) = g (G (@H, dH)A] ~ §'(dH, df)dH, ' (dH, dH)dg ~ §'(dH, dg)dH)
= §'(dH,dH)S"(df,dg) — §"(dH,df)5 (dH, dg). (2.2)
In coordinates, we have
K" =Cpg' - g" %g” %,
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where Cy; = gV %%, (gij) are the components of the Riemannian metric in a given coordinate system

and (g/) denotes its inverse matrix.

By construction, X is positive semi-definite and K(dH, -) = 0.

Remark 2.1. Additionally we can add new functions L, : P — R, 1 < a < N, to this construction in
such a way that X(dL,, -) = 0, considering

K(df,dg) = §'(df = C*G*(dL,, df)dLy, dg = C*G"(dL,, dg)dLy)

where C, = §*(dL,,dL,), 1 <a<Nand L, = H.

2.3. Metriplectic systems

A metriplectic system consists of a smooth manifold P, two smooth vector bundle maps fii, i :
T*P — TP verifying that 7p = 7p o fi and p = Tp o i (Where 7p : TP — Pand 7p : T*P — P are
the canonical projections), and two functions H,S € C*(P) called the Hamiltonian (or total energy) and
the entropy of the system, such that for all f, g € C*(P):

o {f,g} = (df, fn(dg)) is a Poisson bracket (IT denotes the Poisson bi-vector).

e (f,g) = (df,#x(dg)) is a positive semi-definite symmetric bracket, i.e., (:,-) is bilinear and
symmetric.

e Hi(dH) = 0 or, equivalently, (H, f) = 0,V f € C(P).

e #1(dS) = 0 or, equivalently, {S, f} = 0, Vf € C®(P), thatis, S is a Casimir function for the Poisson
bracket.

Consider the function E = H + S : P — R. Then, the dynamics of the metriplectic system is
determined by

dx
dt

fn(dE(x(1))) + #x(dE(x(1)))

#r(dH(x(1))) + tsc(dS (x(£)))
X (x(1)) + grad™S (x(1)),

where Xy = #1(dH) and grad®S = #5(dS). From the equations of motion, it is simple to deduce the
following:

e First law: conservation of energy, ”Z—’;' ={H,H}+H,S)=0
e Second law: entropy production, ‘fi—f =(5,5)=>0.

Thus, metriplectic dynamics embodies both the first and second laws of thermodynamics.

In coordinates, the dynamics of the metriplectic system is written as

‘ OH A
XIZHIJ—,+KIJ—., 1<i<n
ox/ ox/
or, in matrix form, as
x=IIVH+ KVS, 1<i<n. (2.3)
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2.4. Symmetry preservation

Let ® : G X P — P be a smooth (left) action of a Lie group G on P, given by ®(g, x) = ®,(x) = g- x
with g € G and x € P. Denote by g the corresponding Lie algebra. The action satisfies the following
properties:

e ®(e, x) = x where e is the neutral element of G;
e For every g1, g, € G and for every x € P

D(g1, D(g2, X)) = D(g182, %) .

The infinitesimal generator of the action corresponding to a Lie algebra element & € g is the vector field
&p on P given by

d
ép(x) = o tzo(exp(ft) - X).

Let P be a Poisson manifold with Poisson bracket { , } and assume that the action @ is a Poisson action,
that is,

®:(f, h) = (@Lf,®:h}, Vf,heC(P) VgeG.

A momentum map for the action @ is a smooth map J : P — g such that for each £ € g, the
associated map J; : P — R defined by J:(x) = (J(x), &) satisfies that X;, = &p for all £ € g where
X;.(f) =1{f, Je}. As a consequence, for any function f € C*(P)

{f, Jg} = fP(f)-

If the Lie algebra g acts on the Poisson manifold P and admits a momentum map J : P — g%, and if
H o ®, = H (which is equivalent to {p(H) = 0 for all £ € g assuming that G is connected), then J; is a
constant of the motion of Xy.

Additionally, for the metriplectic system we will assume that
(f,Je)=0, VYéegand feC?(P),
or, equivalently, #x(J;) = 0. Then, for the metriplectic system we have

e (Je HY + (U $) = 0

dl’ - fv <f’ -
and, therefore, Js : P — R is a constant of motion of the metriplectic system. See [10] and references
therein for examples of thermodynamical systems with symmetry preservation as typically seen in the
case of coupled thermomechanical problems.

As a particular case of the previous construction, we will consider in the next section the case when
P = T*G, where G is a Lie group, and we consider as a left action ¥, = T*L, : T*G — T*G, where
L, : G — G is the left action. Under the symmetry conditions, the system reduces to a metriplectic
system on g*, the dual of the Lie algebra of G.
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3. Forced Euler-Poincaré equations and metriplectic dynamics

In this section we will derive a force for the Euler-Poincaré equations in such a way that the resulting
system is metriplectic. Consider a Lagrangian system [/ : ¢ — R, where g is a Lie algebra, and its
corresponding Euler-Poincaré equations [11, 12]:

d (ol ol
—\=|=ad:i—, 3.1
m(&) “e5e G-
where ¢ € g and (adga, &) =(a,l&,¢&]) forall ¢ € g and @ € g*. From this equation it is clear that the
energy £, = (g—’, &) — [ of the system is preserved, that is,
dE, d (06l
—=—(=,6-1]=0.
dt dt (<6§ & )

However, there are other variations of this system that are subjected to external forces that also preserve
energy. This class of systems is interesting in thermodynamics when we work with a closed system, as
we have seen in the Subsection 2.3 (see also [1,6]). For instance, if we add an external force F : g — g*
of the form

F@)=ad;5¢), €eg

where F : ¢ — g is an arbitrary map, then the forced Euler-Lagrange equations are

d (6l ol
—\|=lzadi— + F = ad:|— . 2
o (65) ad; 5 + ad; 5 +F (3.2)

Assume that g is finite dimensional and {e,}, 1 < a < n = dimg is a basis of the Lie algebra with
structure constants C Zb, that is,

ol

lea, €] = Clhyea,
and denote by (£“(¢)) the coordinates of a curve &(f) € g. Then, the equations (3.2) are
d ( ol
dr \ 6&P

ol

(f(t))) = Copt'() (5—56,(60)) + "fd(f(t))), (3.3)

where F(&) = F(&)e? and {e“}, 1 < a < n, is the dual basis of {e,}.
Example 3.1. In the case of G = S O(3) if we identify its Lie algebra g with R* with the usual vector

cross product then we have
(oL = oL XQ+ T xQ
dt \oQ 0Q

as a generalization of the equations of the rigid body also preserving the total energy of the system. In
particular if

1
1(Q,Q,Q3) = 5(!@% + LS + [,OY)
then (3.2) are

LQ, = (I - L)Y + Q35,(Q) — 0T3(Q),
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L, = (I; - )Y + Q,F;5(Q) — 0T(Q),
LQs = (I} - L)QQ, + 0T (Q) — O FH(Q),

where F = (3:1,92,353) and = (Q],Qz,Q3).

Using the Legendre transformation (that we assume in the sequel that is a local diffeomorphism) we
can write the forced Euler-Lagrange equations as

oH
= adysys, (,u + ?( o )) , (3.4)

where H is defined by H(u) = (u, &(u)) — L(é(w)) and u = g—é(f). This is a particular case of the forced
Lie-Poisson equations [6].

Now, if C : ¢* — R is a Casimir function for the Lie-Poisson bracket of g*, then along the evolution

of the system (3.4), we have
dC OoH\ [6H 6C
— ={(F|—],|—, =) (3.5
dt oM O O

Example 3.2. (See [1] and [13] for applications to control theory and stabilization of a rigid body).
For the rigid body equations with Hamiltonian and Casimir functions given by

(12 112 112

Ly 2,3

2\, L L

H(I1L, 11, I15)

1
C(, T, T) = (T} + 115 +115),

in induced coordinates (I1, = [Q,, 1, = Ly, I3 = Q) on (R?)* = R3, Equation (3.5) is

dcC 1 1 1 1 1 1
€ (2 LT, + = - — | ILF + [~ - — |,
dt (12 13) S (13 Il) e (Il 12) s

For instance, if we take T : g = R3 — g* = R? as
F(Q) = (I3 — 1)QQ3, (1) — [)1€3, (I, — 11)Q2,Q,),

then we get
dc

dr =
As in the case of metriplectic systems, we have a system verifying the first and second laws of thermody-
namics:

>0.

. L -1 I -1 -1

f, = (I 3)1'[21'[3 L& 3)1'[11'[% _ -l T2
LI 111,% ) 1112

. -1 L -1 -1

M, = (I3 1)H3H1 N (L - 1)1_121_[2 5= Z)Hzl'[%,
L1 D o5

. I -1 -1 L -1

f, = 1y 2)1_[11_12 (I3 2)1'[21'[3 ( - 3)1_[%1_[3.
I 21, P21,

These are the equations of the relaxed rigid body [1].
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Motivated by this example and [1, 13], we want to study the possible families of functions I : g — g*

such that

dC
_>()
dr —

and then our systems will automatically verify the second law of thermodynamics where the Casimir
function C will play the role of the entropy.

Given an arbitrary positive semidefinite scalar product on g

K:gxg—R (3.6)
we can define J by
oC
(F&),m = K(n, ¢, a—]) (3.7
i
foralln € g.

With this definition it is obvious that
¢ _ [g(9H) |9H oC
e oul’| op’ ou
o0H oC| |6H oC
K = 2 < ||l ¢ T > 0
o ou ou - ou
Remark 3.3. The force term J given in 3.7 is only a proposal that generalizes the construction given for
the metriplectic rigid body. An interesting application of this construction is for the design of controlled

Euler-Poincaré-equations preserving the metriplectic properties. Moreover, the map in (3.6) is related to
the covariant 3-tensor

cx: gXgxXxg — R

(61,62,63) — K61, [62, 8]

which, in the case of the Killing form X(&, ) = —trace(ad; o ad,), is skew-symmetric and this is related
with the construction given by [2].

4. Generic integrators

In this section, we will derive a second order integrator preserving some of the properties of a
metriplectic system. The typical methods for the type of thermodynamics evolution equations that
we are studying in this paper are known as generic integrators (GENERIC=general equation for the
non-equilibrium reversible—irreversible coupling, see [14, 15]). The methods that we are proposing in
this paper are of the generic type since our construction is based on the discrete gradient methods that
are typically used for systems defined by an almost-Poisson bracket, and, in this case, the methods
guarantee the exact preservation of the energy and good behavior of the entropy production. We will
start with the classical methods where P = R”, and after this, we will discuss the case of P being a
general differentiable manifold.
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4.1. Discrete gradient systems

For ODEs in skew-gradient form, i.e., x = II(x)VH(x) with x € R" and I1(x) a skew-symmetric
matrix, it is immediate to check that H is a first integral. Indeed,

H=VH(x) % =VHx) TI(x)VH(x) =0,

due to the skew-symmetry of II. Using discretizations of the gradient VH(x), it is possible to define a
class of integrators which preserve the first integral H exactly.

Definition 4.1. Let H : R" — R be a differentiable function. Then, VH : R* —s R" is a discrete
gradient of H if it is continuous and satisfies

VHx, X' (¥ —=x) = HX) - H(x), forall x,x €eR", (4.1a)
VH(x,x) = VH(x), forall x e R". (4.1b)

Some well-known examples of discrete gradients are:

e The mean value (or averaged) discrete gradient introduced in [16] and given by

1
ViH(x,x) := f VH((1 - &x+ &XNdé,  forx' # x. 4.2)
0
e The midpoint (or Gonzalez) discrete gradient, introduced in [17] and given by

T
H(x') - H(x) - VH (3(x' + 1)) (' - x)

AP (X' —x), (4.3)

_ 1
VoH(x,x') := VH(E(x' + x)) +
for x' # x.

e The coordinate increment discrete gradient, introduced in [18], with each component given by

H(x! Xi, X x,) — H(x! X x; X,)

— 17 AR 9 l+17 *ec n 17 AR _1’ 19 * > n .

ViH(x,x'); := L - { , 1<i<n, 4.4)
Xl- — X

when x] # x;, and V3H(x, x'); = z—g(x’l, ey XI5 XL = Xy Xig1, . - -, Xp) Otherwise.

4.2. Construction of Metriplectic or Generic integrators

The idea is to construct a geometric integrator preserving as much as possible the properties of
the continuous metriplectic Euler-Poincaré equations and, in particular, preserving the two laws of
thermodynamics. We are in the category of generic integrators [14, 15] since we will use a discretization
of the differential of H using a discrete gradient, and a discretization of the positive semi-definite inner
product K.

Consider a Gonzalez’ discrete gradient V,H : R* — R”, the Poisson tensor I1(z) where z = “Tx

and a discretization X, of the inner product K which is also positive semi-definite. Then the generic
integrator is constructed as a discretization of equation (2.3) as follows:

x —x

= (z)V,H(x, x') + K4(2)VS () 4.5)
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For any x € P, we assume that the numerical scheme (4.5) generates a local evolution in a
neighborhood U of x, in the sense that there exist real numbers h,T > 0, and a discrete flow map
¢ : Ux[0,h] = P such that for any x, € U and & € [0, h], the sequence {x;} generated by

X = @(xe1, h) = ¢ (x0, h)
satisfies equation (4.5) for all k such that kh € [0, T].

Proposition 4.2. [Second law] The generic integrator verifies

S (1) = S () = k(xep1)h + O(h*)  where Xy = (x, b)

Xt Xt 1

and k(xg.172) 2 0, where xp10 = #5

Proof. Using Taylor’s expansion we have that

S (xes1) = S 00 + O(xesr = %) = VS Gotrr 2)” (ot = X2
= VS (Xis12) TH1/2) Vo H (X, Xi1) + AYS (X1 72)" Ka(X12) VS (Xes1/2)
= hVS (Xes12)" Ka(Xis1/2)VS (Xig1/2) 2 0.

Remark 4.3. Observe that for an arbitrary second order integrator, we will uniquely obtain that
S (1) =S (x) = k(xx11/2)h+O(h?), but in general k(x; 1) is not necessarily always positive. Therefore,
it is crucial to discretize K while maintaining semi-definite positiveness.

Now, for the exact preservation of the energy it is necessary to construct a discretization X, of K
given in (2.2) such that V,H is an element of the kernel of X,.

As in (2.2), we consider
Ku(df.dg) = G(VoHV.H)[S (VH, V1) (df.dg) ~ §'(V2H,d )G (V:H,dg)| . (4.6)
With the semi-definite positive inner product (4.6), we deduce the following.
Proposition 4.4. [First law] The generic integrator preserves exactly the energy function H, that is,
H(xp41) — H(xp) = 0.
Proof.

H(x) — HOxy) = VoH" (g X)) (Xgs1 — %)
BV H (s X )1 72) Vo H (X, X1
+hVoH (X, %00 1) Ka(Xk01/2) VS (Xgs12) = 0

since Kd(X]H.]/Z)vZH(xk’ Xer1) = 0.
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Remark 4.5. Observe that Proposition 4.2 guarantees the correct behavior of the entropy, avoiding
the numerical dissipation which occurs with arbitrary general methods [19]. Moreover, the conditions
for deriving this metriplectic integrator are less restrictive than the usual ones for constructing generic
integrators since, in this last case, it is necessary to also construct a discrete gradient VC(x, x) for the
entropy verifying the property that I1(z)VC(x, x’) = 0, where IT is a discretization of the Poisson tensor.

Next, we will study the example of the relaxed rigid body to show the constructability of our method
but of course it is possible to apply to various thermodynamical examples as in [15] and to coupled
thermodynamical systems [10].

4.3. Example: Numerical integration of the relaxing rigid body

The rigid body equations are given by

LQ, = (L - L),
LDy = (- 1),
LQs = (I - L) Q9.

These equations are the Euler-Poincaré equations for the Lagrangian/: g - R
(94, Q Q)—1192+192+192
1s 25 3) — 2 1 1 2=ay 35e3 .

Now, using the Legendre transformation, we define the associated momenta:

ol ol ol
=— =19, = — =5LQ,, = — =1Q;.
P1 o0, 1221, P2 50, 2822, D3 003 3343
Then, the equations of motion of the system become
. bh-5L
Pt = L1 pP2P3,
. L1
P2 = L1 pPip3,
. L-5L
p3 = L Pip2-

This is a Lie-Poisson system, and the equations are written in matrix form as
p =1IVH = #n(dH),

where
0 -Lps bLps
II=| Lps 0 -Lip
—hLp, Lip 0
2 2 2
and H(py, pa2, p3) = % (’;—l‘ + ’;—22 + [1)—3) Consider now the positive semi-definite inner product defined by

K(df,dg) = [5"(dH,dH)S"(df,dg) — §"(dH,df)S"(dH, dg)].
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where G is the canonical metric of R3. After some straightforward computations, we derive that X is

defined by the matrix

2 2
P + Ps _pip _pip
I% I% hi L3
; 2 2
K = _pip2 Py + P3 __Dp2p3
LI r A bl
2 2
_pip3 _DP2p3 P, P
1113 ]2]3 12 I2

The entropy is defined by the Casimir function

S I PSR S
(P1:p2. p3) = 5 (Py + Py + p3)
and the dynamics of the metriplectic system is given by

p=TIVH + KVS ,

(see [20] for numerical integration of Lie-Poisson systems using the midpoint rule without the dissipative

term) or
. 12 - 13 1 1 ) 1 1 2
pPr = Ll pap3 t I_g - E pip; + E - E P1D3»
] L -1, 1 1 5 1 1 5
D2 = I pip3 + E—E p2py + E_E P2D3,
X I] - 12 1 1 2 1 1 2
p3 = L pip2 t+ 1—12 - E p3p) + E - E PaP3.

From construction, we get [IVS = 0 and KVH = 0.
Using the notation (Py, P, P3) = ¢(p1, p2, P3, h), the generic integrator is constructed taking

Pi+p P+ p P3+P3) _ Pi+pi Py+py P3+p3
2 2 7 2 21, 7 2L, 2L
@1/, 22/, 23/ 13)

V,H(

and the discrete semi-definite scalar product

5 + %3 2122 2123
LB LI 1113
2 2

_ U 4 ) 2723

Ki= hh ¢ + Z Ll
2
2z oL T R]

LIz VY& I? [%

The metriplectic integrator is given in this case by the midpoint rule:

P] — D1 12 — 13 1 1 2 1 1 2
P2 — P2 13 - Il 1 1 2 1 1 2
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P3 — D3 11 - 12 1 1 2 1 1 2
— 2 = +=5 - — +|l=s-— .
h nn (112 Lh) T\ T Lh) 2"

In this case, since the Casimir is quadratic, we have also that
VS =V,S,

the system verifies that
S(P13P29P3) _S(Pl,P2,P3) > O ,

and also H(P, P,, P3) = H(py, p2, p3) for the discrete flow ¢(py, p2, p3, h) = (P1, P2, P3). Then, in this
case, the midpoint method preserves the energy exactly and, moreover, the entropy production rate has
the correct behavior.

p1 evolution p2 evolution p3 evolution

° ;—-—_—--.——
T

0 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 o 1000 2000 3000 4000 5000
Time Time Time

1e-13+1.0000055e-1 Energy Entropy

00 10
-05 0o
-10 .

. 08

MR | 07

o 1000 2000 3000 4000 5000 o 1000 2000 3000 4000 5000
Time Time

Figure 1. I, = 10,1, = 5,1; = 1, h = 0.1, initial conditions p; = 0.001, p, = -1, p; = 0.001.

Remark 4.6. Observe that in this case, the numerical method corresponds exactly to the midpoint
discretization because the Hamiltonian is quadratic, leading to results similar to those in [20]. Of course,
the method can be applied to general metriplectic systems, and our results would differ from the standard
midpoint discretization.

Remark 4.7. The previous construction is based on the discretization K, of K given in (2.2). The
proposed method can be applied to a general metriplectic system (see Section 2.3):

d
d_)t‘ = H(x()VH(x(1))) + K(x(©)VS (x(?)

where X is a semi-definite inner product with VH € ker K. Then take an arbitrary complement D
(assuming local constant rank) such that

T°P=DdkerX
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and consider the positive definite inner product §* by
(Y., Yy) =X, Yy), S(Y.,Z)=0, S(Z,Zy)=0j;

where {Y;},1 <i<n-land {Z;},1 < k < [are bases of D and ker KX, respectively, and where VH = Z,.
Obviously, §* is positive definite, and if we denote by Pg- the orthogonal projector onto D, then

KXy, X2) = §7(Pg:(X1), Pg:(X2))

for all X;, X, € T*P. Now, given a discrete gradient VH, itis only necessary to take the new decomposi-
tion

TP = kerX @KkerX (4.7)
where a basis of Ker X is now given by {ﬁH, 2y, ..., 72} and Ker X is the corresponding §*-orthogonal

complement. If we denote the modified orthogonal projector ’iP‘g,i onto k,é?f-fCl, then the corresponding
semi-definite inner product with VH in its kernel is precisely

Ka(X1, X2) = G (Pge (X)), Pge(X2))

4.4. Extension to differentiable manifolds

We can extend this construction to the case where we are working on P a general manifold. To start,
we will need to introduce a finite difference map or retraction map R, : U € TP — P X P and its inverse
map R,' : U c Px P — TP [21]. For any (x,x") € U we denote by z = 7p(R,"(x,x")) € TP. We can
use a type of retraction that is constructed using an auxiliary Riemannian metric G on P with associated
geodesic spray I'g [22]. The associated Riemannian exponential for a small enough /4 > 0 is constructed
as

expp(v) = (7o(v), expryw)(hv)),

where we have the standard exponential map on a Riemannian manifold defined by

expTQ(V)(V) = yv(l)a

where t — v,(t) is the unique geodesic such that y;(0) = v. Another interesting possibility related to the
midpoint rule is
expy(v) = (expryy(—hv/2), expryuy(hv/2)). (4.8)

Both maps are local diffeomorphisms, and then we can consider the corresponding inverse maps that we
generically denote by R, at the beginning of this section.

Define a discrete gradient as a map VH : U C P x P — T*P such that the following diagram

commutes
VH

UcCPxP T*P
TP - P
and verifies the following two properties:
(VH(x, x'), R, (x, X)) = H(x') = H(x), forall (x,x) e U, (4.9a)
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VH(x, x) = dH(x), forallxe P. (4.9b)

In the case, when we have a Riemannian metric G on P, we construct the following midpoint discrete
gradient

H(x') - H(x) — dH@)(R," (x, X))

VoH(x, x') := dH(2) + 9(R;1(x, x’),RZI(X, x'))

bg(R, ' (x, X)), (4.10)

for x' # x,

where bg : TP — T*P is given by bg(u)(v) = G(u,v) for u,v € TP and z = 7p(R; ' (x, X)) € P.
The metriplectic integrator that we propose is written as

Ry (ks Xis1) = T(zo) Vo H (X, X411) + Ka(2)VC(2)

where z = TP(R;ll(xk, Xxi+1)) and X, is constructed as in (4.6).
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