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Abstract: In this paper we will introduce a discrete version of systems obtained by modifications of
the Euler-Poincaré equations when we add a special type of dissipative force, so that the equations
of motion can be described using the metriplectic formalism. The metriplectic representation of the
dynamics allows us to describe the conservation of energy, as well as to guarantee entropy production.
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entropy production rate.
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1. Introduction

In many examples of dynamics, especially in thermodynamics, it is necessary to combine the
dynamical structure of Hamiltonian systems and metric systems to produce what are called metriplectic
systems, as originally discussed in the work of Morrison, see [1, 2] (see also [3, 4]). The dynamics is
determined using a Poisson bracket for the Hamiltonian part, combined with a symmetric bracket which
allows us to introduce dissipative effects (see [5] for a more inclusive framework using a 4-bracket to
describe dissipative dynamics preserving energy and producing entropy).

After introducing the notion of metriplectic system, in this paper we study metriplectic systems
derived from a perturbation of the Euler-Poincaré equations or a Lie-Poisson system by adding a special
dissipation term [6,7]. Recall that the Euler-Poincaré equations are obtained by reduction from invariant
Lagrangian systems on the tangent bundle TG of a Lie group G. The dissipation term that we add to the
equations makes the equations of motion verify two interesting properties: preservation of energy H
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and also the existence of a Casimir function S of the Lie-Poisson bracket verifying the property Ṡ ≥ 0.
Both correspond exactly with the two laws of thermodynamics: preservation of the total energy and
irreversible entropy creation.

To numerically approximate the solutions of a metriplectic system while preserving the energy and
the entropy behavior it is natural to use a class of geometric integrators called discrete gradient methods.
These methods are adequate when we want to preserve exactly the energy of the system. In this sense,
they are quite useful for ODEs of the form ẋ = Π(x)∇H(x) with x ∈ Rn and Π(x) a skew-symmetric
matrix (not necessarily associated to a Poisson bracket). Using a discrete gradient ∇̄H(x, x′) as an
adequate approximation of the differential of the Hamiltonian function (see Section 4 for more details),
it is possible to define a class of integrators x′ − x = Π̄(x, x′)∇̄H(x, x′) preserving the energy H exactly,
i.e. H(x) = H(x′). Here Π̄(x, x′) is a skew-symmetric matrix approximating Π(x). In Section 4, based
on discrete gradient methods, we derive geometric integrators for metriplectic systems and in particular,
the geometric derivation of the discrete dissipative term.

2. Metriplectic systems

The theory of metriplectic systems tries to combine together the dynamics generated by Poisson
brackets with additional dissipative effects. We will first review the different geometric elements that
define a metriplectic system.

2.1. Poisson structures

Consider a differentiable manifold P equipped with a Poisson structure [8, 9] given by a bilinear map

C∞(P) ×C∞(P) −→ C∞(P)
( f , g) 7−→ { f , g}

called the Poisson bracket, satisfying the following properties:

(i) Skew-symmetry, {g, f } = −{ f , g};
(ii) Leibniz rule, { f g, h} = f {g, h} + g{ f , h};

(iii) Jacobi identity, {{ f , g}, h} + {{h, f }, g} + {{g, h}, f } = 0;

for all f , g, h ∈ C∞(P).
Given a Poisson manifold with bracket { , } and a function f ∈ C∞(P) we may associate with f a

unique vector field X f ∈ X(P), the Hamiltonian vector field defined by X f (g) = {g, f }.
Moreover, on a Poisson manifold, there exists a unique bi-vector field Π, a Poisson bivector (that is,

a twice contravariant skew symmetric differentiable tensor) such that

{ f , g} := Π(d f , dg), f , g ∈ C∞(P) .

The bivector field Π is called the Poisson tensor and the Poisson structure is usually denoted by (P, { , })
or (P,Π). The Jacobi identity in terms of the bi-vector Π is written as [Π,Π ] = 0, where here [ , ]
denotes the Schouten–Nijenhuis bracket (see [8]).
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Take coordinates (xi), 1 ≤ i ≤ dim P = m, and let Πi j be the components of the Poisson bivector, that
is,

Πi j = {xi, x j}, Π = Πi j ∂

∂xi ∧
∂

∂x j .

Then if f , g ∈ C∞(P) we have

{ f , g} =

m∑
i, j=1

{xi, x j}
∂ f
∂xi

∂g
∂x j =

m∑
i, j=1

Πi j ∂ f
∂xi

∂g
∂x j ,

and the Hamiltonian vector field is written in local coordinates as

X f = Πi j ∂ f
∂x j

∂

∂xi .

Observe that the m × m matrix (Πi j) verifies the following properties:

(i) Skew-symmetry, Πi j = −Π ji

(ii) Jacobi identity,

m∑
l=1

(
Πil∂Π jk

∂xl + Πkl∂Πi j

∂xl + Π jl∂Πki

∂xl

)
= 0 , i, j, k = 1, . . . ,m.

Define ]Π : T ∗P→ T P by
]Π(α) = −ιαΠ = Π(·, α),

where α ∈ T ∗P, and 〈β, ιαΠ〉 = Π(α, β) for all β ∈ T ∗P. The rank of Π at p ∈ P is exactly the
rank of (]Π)p : T ∗pP→ TpP. Because of the skew-symmetry of Π, we know that the rank of Π at a point
p ∈ P is an even integer.

Given a function H ∈ C∞(P), a Hamiltonian function, we have the corresponding Hamiltonian vector
field:

XH = ]Π(dH).

Therefore, on a Poisson manifold, a function H determines the following dynamical system:

dx
dt

(t) = XH(x(t)) . (2.1)

We say that a function f ∈ C∞(P) is a first integral of the Hamiltonian vector field XH if for any solution
x(t) of Equation (2.1) we have

d f
dt

(x(t)) = 0 .

In other words, if XH( f ) = 0 or, equivalently, { f ,H} = 0. In particular, the Hamiltonian function is a
conserved quantity since {H,H} = 0 by the skew-symmetry of the bracket. For any Poisson manifold
(P,Π) a function C ∈ C∞(P) is called a Casimir function of Π if XC = 0, that is, if {C, g} = 0 for all
g ∈ C∞(P).
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2.2. Positive semi-definite inner products

Assume that for each point x ∈ P we have a positive semi-definite inner product for co-vectors

Kx : T ∗x P × T ∗x P→ R

from which we can define ]K : T ∗P→ T P by

]K(αx) = Kx(αx, ·)

and the gradient vector field
gradKS = ]K(dS )

for any function S : P→ R.
K defines a symmetric bracket given by

(d f , dg) = K(d f , dg).

Take coordinates (xi), 1 ≤ i ≤ dim P = m, and let Ki j be the components of the inner product given
by

Ki j = (xi, x j).

Then if f , g ∈ C∞(P), the symmetric bracket is expressed as

( f , g) =

m∑
i, j=1

(xi, x j)
∂ f
∂xi

∂g
∂x j =

m∑
i, j=1

Ki j ∂ f
∂xi

∂g
∂x j .

Observe that the m × m matrix (Ki j) verifies Ki j = K ji and all the eigenvalues are positive or zero.

2.2.1. A construction of the positive semi-definite inner product with ]K(dH) = 0 given a Riemannian
metric

In this section, we introduce a constructive way to derive the symmetric bracket K which is interesting
in applications. Assume that P is equipped with a Riemannian metric G inducing a positive definite
inner product G∗ on T ∗P (the co-metric),

G∗ : T ∗x P × T ∗x P→ R

defined by G∗(d f , dg) = G(gradG∗ f , gradG∗g) = gradG∗ f (g).
Since we are interested in defining a semi-definite inner product K such that K(dH, ·) = 0 then we

define

K(d f , dg) =
1

G∗(dH, dH)
G∗(G∗(dH, dH)d f − G∗(dH, d f )dH,G∗(dH, dH)dg − G∗(dH, dg)dH)

= G∗(dH, dH)G∗(d f , dg) − G∗(dH, d f )G∗(dH, dg). (2.2)

In coordinates, we have

Ki j = CHgi j − gi j̄ ∂H
∂x j̄

gī j∂H
∂xī

,
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where CH = gi j ∂H
∂xi

∂H
∂x j , (gi j) are the components of the Riemannian metric in a given coordinate system

and (gi j) denotes its inverse matrix.
By construction, K is positive semi-definite and K(dH, ·) = 0.

Remark 2.1. Additionally we can add new functions La : P → R, 1 ≤ a ≤ N, to this construction in
such a way that K(dLa, ·) = 0, considering

K(d f , dg) = G∗(d f −CabG∗(dLa, d f )dLb, dg −CabG∗(dLa, dg)dLb)

where Cab = G∗(dLa, dLb), 1 ≤ a ≤ N and L1 = H.

2.3. Metriplectic systems

A metriplectic system consists of a smooth manifold P, two smooth vector bundle maps ]Π, ]K :
T ∗P → T P verifying that πP = τP ◦ ]Π and πP = τP ◦ ]K (where τP : T P → P and πP : T ∗P → P are
the canonical projections), and two functions H, S ∈ C∞(P) called the Hamiltonian (or total energy) and
the entropy of the system, such that for all f , g ∈ C∞(P):

• { f , g} = 〈d f , ]Π(dg)〉 is a Poisson bracket (Π denotes the Poisson bi-vector).
• ( f , g) = 〈d f , ]K(dg)〉 is a positive semi-definite symmetric bracket, i.e., (·, ·) is bilinear and

symmetric.
• ]K(dH) = 0 or, equivalently, (H, f ) = 0, ∀ f ∈ C∞(P).
• ]Π(dS ) = 0 or, equivalently, {S , f } = 0, ∀ f ∈ C∞(P), that is, S is a Casimir function for the Poisson

bracket.

Consider the function E = H + S : P → R. Then, the dynamics of the metriplectic system is
determined by

dx
dt

= ]Π(dE(x(t))) + ]K(dE(x(t)))

= ]Π(dH(x(t))) + ]K(dS (x(t)))
= XH(x(t)) + gradKS (x(t)),

where XH = ]Π(dH) and gradKS = ]K(dS ). From the equations of motion, it is simple to deduce the
following:

• First law: conservation of energy, dH
dt = {H,H} + (H, S ) = 0

• Second law: entropy production, dS
dt = (S , S ) ≥ 0.

Thus, metriplectic dynamics embodies both the first and second laws of thermodynamics.
In coordinates, the dynamics of the metriplectic system is written as

ẋi = Πi j ∂H
∂x j + Ki j ∂S

∂x j , 1 ≤ i ≤ n

or, in matrix form, as
ẋ = Π∇H + K∇S , 1 ≤ i ≤ n. (2.3)
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2.4. Symmetry preservation

Let Φ : G × P→ P be a smooth (left) action of a Lie group G on P, given by Φ(g, x) = Φg(x) = g · x
with g ∈ G and x ∈ P. Denote by g the corresponding Lie algebra. The action satisfies the following
properties:

• Φ(e, x) = x where e is the neutral element of G;
• For every g1, g2 ∈ G and for every x ∈ P

Φ(g1,Φ(g2, x)) = Φ(g1g2, x) .

The infinitesimal generator of the action corresponding to a Lie algebra element ξ ∈ g is the vector field
ξP on P given by

ξP(x) =
d
dt

∣∣∣∣
t=0

(exp(ξt) · x).

Let P be a Poisson manifold with Poisson bracket { , } and assume that the action Φ is a Poisson action,
that is,

Φ∗g{ f , h} = {Φ∗g f ,Φ∗gh} , ∀ f , h ∈ C∞(P) ∀g ∈ G .

A momentum map for the action Φ is a smooth map J : P → g∗ such that for each ξ ∈ g, the
associated map Jξ : P → R defined by Jξ(x) = 〈J(x), ξ〉 satisfies that XJξ = ξP for all ξ ∈ g where
XJξ( f ) = { f , Jξ}. As a consequence, for any function f ∈ C∞(P)

{ f , Jξ} = ξP( f ).

If the Lie algebra g acts on the Poisson manifold P and admits a momentum map J : P→ g∗, and if
H ◦ Φg = H (which is equivalent to ξP(H) = 0 for all ξ ∈ g assuming that G is connected), then Jξ is a
constant of the motion of XH.

Additionally, for the metriplectic system we will assume that

( f , Jξ) = 0, ∀ξ ∈ g and f ∈ C∞(P),

or, equivalently, ]K(Jξ) = 0. Then, for the metriplectic system we have

dJξ
dt

= {Jξ,H} + (Jξ, S ) = 0

and, therefore, Jξ : P→ R is a constant of motion of the metriplectic system. See [10] and references
therein for examples of thermodynamical systems with symmetry preservation as typically seen in the
case of coupled thermomechanical problems.

As a particular case of the previous construction, we will consider in the next section the case when
P = T ∗G, where G is a Lie group, and we consider as a left action Ψg = T ∗Lg : T ∗G → T ∗G, where
Lg : G → G is the left action. Under the symmetry conditions, the system reduces to a metriplectic
system on g∗, the dual of the Lie algebra of G.
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3. Forced Euler-Poincaré equations and metriplectic dynamics

In this section we will derive a force for the Euler-Poincaré equations in such a way that the resulting
system is metriplectic. Consider a Lagrangian system l : g → R, where g is a Lie algebra, and its
corresponding Euler-Poincaré equations [11, 12]:

d
dt

(
δl
δξ

)
= ad∗ξ

δl
δξ
, (3.1)

where ξ ∈ g and 〈ad∗ξα, ξ
′〉 = 〈α, [ξ, ξ′]〉 for all ξ′ ∈ g and α ∈ g∗. From this equation it is clear that the

energy El = 〈 δl
δξ
, ξ〉 − l of the system is preserved, that is,

dEl

dt
=

d
dt

(
〈
δl
δξ
, ξ〉 − l

)
= 0 .

However, there are other variations of this system that are subjected to external forces that also preserve
energy. This class of systems is interesting in thermodynamics when we work with a closed system, as
we have seen in the Subsection 2.3 (see also [1, 6]). For instance, if we add an external force F : g→ g∗

of the form
F(ξ′) = ad∗ξF(ξ′), ξ′ ∈ g

where F : g→ g∗ is an arbitrary map, then the forced Euler-Lagrange equations are

d
dt

(
δl
δξ

)
= ad∗ξ

δl
δξ

+ F = ad∗ξ

[
δl
δξ

+ F

]
. (3.2)

Assume that g is finite dimensional and {ea}, 1 ≤ a ≤ n = dim g is a basis of the Lie algebra with
structure constants Cd

ab, that is,
[ea, eb] = Cd

abed,

and denote by (ξa(t)) the coordinates of a curve ξ(t) ∈ g. Then, the equations (3.2) are

d
dt

(
δl
δξb (ξ(t))

)
= Cd

abξ
a(t)

(
δl
δξd (ξ(t)) + Fd(ξ(t))

)
, (3.3)

where F(ξ) = Fd(ξ)ed and {ea}, 1 ≤ a ≤ n, is the dual basis of {ea}.

Example 3.1. In the case of G = S O(3) if we identify its Lie algebra g with R3 with the usual vector
cross product then we have

d
dt

(
δl
δΩ

)
=

δl
δΩ
×Ω + F ×Ω

as a generalization of the equations of the rigid body also preserving the total energy of the system. In
particular if

l(Ω1,Ω2,Ω3) =
1
2

(I1Ω
2
1 + I2Ω

2
2 + I3Ω

2
3)

then (3.2) are

I1Ω̇1 = (I2 − I3)Ω2Ω3 + Ω3F2(Ω) −Ω2F3(Ω),
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I2Ω̇2 = (I3 − I1)Ω3Ω1 + Ω1F3(Ω) −Ω3F1(Ω),
I3Ω̇3 = (I1 − I2)Ω1Ω2 + Ω2F1(Ω) −Ω1F2(Ω),

where F = (F1,F2,F3) and Ω = (Ω1,Ω2,Ω3).

Using the Legendre transformation (that we assume in the sequel that is a local diffeomorphism) we
can write the forced Euler-Lagrange equations as

µ̇ = ad∗δH/δµ

(
µ + F

(
δH
δµ

))
, (3.4)

where H is defined by H(µ) = 〈µ, ξ(µ)〉 − L(ξ(µ)) and µ = δl
δξ

(ξ). This is a particular case of the forced
Lie-Poisson equations [6].

Now, if C : g∗ → R is a Casimir function for the Lie-Poisson bracket of g∗, then along the evolution
of the system (3.4), we have

dC
dt

=

〈
F

(
δH
δµ

)
,

[
δH
δµ
,
δC
δµ

]〉
. (3.5)

Example 3.2. (See [1] and [13] for applications to control theory and stabilization of a rigid body).
For the rigid body equations with Hamiltonian and Casimir functions given by

H(Π1,Π2,Π3) =
1
2

(
Π2

1

I1
+

Π2
2

I2
+

Π2
3

I3

)
,

C(Π1,Π2,Π3) =
1
2

(Π2
1 + Π2

2 + Π2
3) ,

in induced coordinates (Π1 = I1Ω1,Π2 = I2Ω2,Π3 = I3Ω3) on (R3)∗ ≡ R3, Equation (3.5) is

dC
dt

=

(
1
I2
−

1
I3

)
Π2Π3F1 +

(
1
I3
−

1
I1

)
Π1Π3F2 +

(
1
I1
−

1
I2

)
Π1Π2F3.

For instance, if we take F : g ≡ R3 → g∗ ≡ R3 as

F(Ω) = ((I3 − I2)Ω2Ω3, (I1 − I3)Ω1Ω3, (I2 − I1)Ω1Ω2) ,

then we get
dC
dt
≥ 0 .

As in the case of metriplectic systems, we have a system verifying the first and second laws of thermody-
namics:

Π̇1 =
(I2 − I3)

I2I3
Π2Π3 +

(I1 − I3)
I1I2

3

Π1Π
2
3 −

(I2 − I1)
I1I2

2

Π1Π
2
2 ,

Π̇2 =
(I3 − I1)

I3I1
Π3Π1 +

(I2 − I1)
I2
1 I2

Π2
1Π2 −

(I3 − I2)
I2I2

3

Π2Π
2
3 ,

Π̇3 =
(I1 − I2)

I1I2
Π1Π2 +

(I3 − I2)
I2
2 I3

Π2
2Π3 −

(I1 − I3)
I2
1 I3

Π2
1Π3 .

These are the equations of the relaxed rigid body [1].
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Motivated by this example and [1,13], we want to study the possible families of functions F : g→ g∗

such that
dC
dt
≥ 0

and then our systems will automatically verify the second law of thermodynamics where the Casimir
function C will play the role of the entropy.

Given an arbitrary positive semidefinite scalar product on g

K : g × g −→ R (3.6)

we can define F by

〈F(ξ), η〉 = K(η, [ξ,
∂C
∂µ

]) (3.7)

for all η ∈ g.
With this definition it is obvious that

dC
dt

=

〈
F

(
δH
δµ

)
,

[
δH
δµ
,
δC
δµ

]〉
= K

([
δH
δµ
,
δC
δµ

]
,

[
δH
δµ
,
∂C
∂µ

])
≥ 0.

Remark 3.3. The force term F given in 3.7 is only a proposal that generalizes the construction given for
the metriplectic rigid body. An interesting application of this construction is for the design of controlled
Euler-Poincaré-equations preserving the metriplectic properties. Moreover, the map in (3.6) is related to
the covariant 3-tensor

cK : g × g × g → R

(ξ1, ξ2, ξ3) 7−→ K(ξ1, [ξ2, ξ3])

which, in the case of the Killing form K(ξ, η) = −trace(adξ ◦ adη), is skew-symmetric and this is related
with the construction given by [2].

4. Generic integrators

In this section, we will derive a second order integrator preserving some of the properties of a
metriplectic system. The typical methods for the type of thermodynamics evolution equations that
we are studying in this paper are known as generic integrators (GENERIC=general equation for the
non-equilibrium reversible–irreversible coupling, see [14, 15]). The methods that we are proposing in
this paper are of the generic type since our construction is based on the discrete gradient methods that
are typically used for systems defined by an almost-Poisson bracket, and, in this case, the methods
guarantee the exact preservation of the energy and good behavior of the entropy production. We will
start with the classical methods where P = Rn, and after this, we will discuss the case of P being a
general differentiable manifold.

Communications in Analysis and Mechanics Volume 16, Issue 4, 910–927.
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4.1. Discrete gradient systems

For ODEs in skew-gradient form, i.e., ẋ = Π(x)∇H(x) with x ∈ Rn and Π(x) a skew-symmetric
matrix, it is immediate to check that H is a first integral. Indeed,

Ḣ = ∇H(x)T ẋ = ∇H(x)T Π(x)∇H(x) = 0 ,

due to the skew-symmetry of Π. Using discretizations of the gradient ∇H(x), it is possible to define a
class of integrators which preserve the first integral H exactly.

Definition 4.1. Let H : Rn −→ R be a differentiable function. Then, ∇̄H : R2n −→ Rn is a discrete
gradient of H if it is continuous and satisfies

∇̄H(x, x′)T (x′ − x) = H(x′) − H(x) , for all x, x′ ∈ Rn , (4.1a)
∇̄H(x, x) = ∇H(x) , for all x ∈ Rn . (4.1b)

Some well-known examples of discrete gradients are:

• The mean value (or averaged) discrete gradient introduced in [16] and given by

∇̄1H(x, x′) :=
∫ 1

0
∇H((1 − ξ)x + ξx′)dξ , for x′ , x . (4.2)

• The midpoint (or Gonzalez) discrete gradient, introduced in [17] and given by

∇̄2H(x, x′) := ∇H
(
1
2

(x′ + x)
)

+
H(x′) − H(x) − ∇H

(
1
2 (x′ + x)

)T
(x′ − x)

|x′ − x|2
(x′ − x) , (4.3)

for x′ , x .

• The coordinate increment discrete gradient, introduced in [18], with each component given by

∇̄3H(x, x′)i :=
H(x′1, . . . , x

′
i , xi+1, . . . , xn) − H(x′1, . . . , x

′
i−1, xi, . . . , xn)

x′i − xi
, 1 ≤ i ≤ n , (4.4)

when x′i , xi, and ∇̄3H(x, x′)i = ∂H
∂xi

(x′1, . . . , x
′
i−1, x

′
i = xi, xi+1, . . . , xn) otherwise.

4.2. Construction of Metriplectic or Generic integrators

The idea is to construct a geometric integrator preserving as much as possible the properties of
the continuous metriplectic Euler-Poincaré equations and, in particular, preserving the two laws of
thermodynamics. We are in the category of generic integrators [14,15] since we will use a discretization
of the differential of H using a discrete gradient, and a discretization of the positive semi-definite inner
product K.

Consider a Gonzalez’ discrete gradient ∇̄2H : R2n → Rn, the Poisson tensor Π(z) where z = x+x′
2 ,

and a discretization Kd of the inner product K which is also positive semi-definite. Then the generic
integrator is constructed as a discretization of equation (2.3) as follows:

x′ − x
h

= Π(z)∇̄2H(x, x′) + Kd(z)∇S (z) (4.5)
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For any x ∈ P, we assume that the numerical scheme (4.5) generates a local evolution in a
neighborhood U of x, in the sense that there exist real numbers h̄,T > 0, and a discrete flow map
ϕ : U × [0, h̄]→ P such that for any x0 ∈ U and h ∈ [0, h̄], the sequence {xk} generated by

xk = ϕ(xk−1, h) = ϕk(x0, h)

satisfies equation (4.5) for all k such that kh ∈ [0,T ].

Proposition 4.2. [Second law] The generic integrator verifies

S (xk+1) − S (xk) = k(xk+1/2)h + O(h3) where xk+1 = ϕ(xk, h)

and k(xk+1/2) ≥ 0, where xk+1/2 = xk+xk+1
2 .

Proof. Using Taylor’s expansion we have that

S (xk+1) − S (xk) + O(|xk+1 − xk|
3) = ∇S (xk+1/2)T (xk+1 − xk)

= h∇S (xk+1/2)T Π(xk+1/2)∇̄2H(xk, xk+1) + h∇S (xk+1/2)T Kd(xk+1/2)∇S (xk+1/2)
= h∇S (xk+1/2)T Kd(xk+1/2)∇S (xk+1/2) ≥ 0 .

Remark 4.3. Observe that for an arbitrary second order integrator, we will uniquely obtain that
S (xk+1)−S (xk) = k̄(xk+1/2)h+O(h3), but in general k̄(xk+1/2) is not necessarily always positive. Therefore,
it is crucial to discretize K while maintaining semi-definite positiveness.

Now, for the exact preservation of the energy it is necessary to construct a discretization Kd of K
given in (2.2) such that ∇̄2H is an element of the kernel of Kd.

As in (2.2), we consider

Kd(d f , dg) = G∗(∇̄2H, ∇̄2H)
[
G∗(∇̄2H, ∇̄2H)G∗(d f , dg) − G∗(∇̄2H, d f )G∗(∇̄2H, dg)

]
. (4.6)

With the semi-definite positive inner product (4.6), we deduce the following.

Proposition 4.4. [First law] The generic integrator preserves exactly the energy function H, that is,

H(xk+1) − H(xk) = 0.

Proof.

H(xk+1) − H(xk) = ∇̄2HT (xk, xk+1)(xk+1 − xk)
= h∇̄2HT (xk, xk+1)Π(xk+1/2)∇̄2H(xk, xk+1)

+h∇̄2HT (xk, xk+1)Kd(xk+1/2)∇S (xk+1/2) = 0

since Kd(xk+1/2)∇̄2H(xk, xk+1) = 0.
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Remark 4.5. Observe that Proposition 4.2 guarantees the correct behavior of the entropy, avoiding
the numerical dissipation which occurs with arbitrary general methods [19]. Moreover, the conditions
for deriving this metriplectic integrator are less restrictive than the usual ones for constructing generic
integrators since, in this last case, it is necessary to also construct a discrete gradient ∇̄C(x, x′) for the
entropy verifying the property that Π̃(z)∇̄C(x, x′) = 0, where Π̃ is a discretization of the Poisson tensor.

Next, we will study the example of the relaxed rigid body to show the constructability of our method
but of course it is possible to apply to various thermodynamical examples as in [15] and to coupled
thermodynamical systems [10].

4.3. Example: Numerical integration of the relaxing rigid body

The rigid body equations are given by

I1Ω̇1 = (I2 − I3)Ω2Ω3,

I2Ω̇2 = (I3 − I1)Ω1Ω3,

I3Ω̇3 = (I1 − I2) Ω1Ω2 .

These equations are the Euler-Poincaré equations for the Lagrangian l : g→ R

l(Ω1,Ω2,Ω3) =
1
2

I1Ω
2
1 + I2Ω

2
2 + I3Ω

2
3 .

Now, using the Legendre transformation, we define the associated momenta:

p1 =
∂l
∂Ω1

= I1Ω1, p2 =
∂l
∂Ω2

= I2Ω2, p3 =
∂l
∂Ω3

= I3Ω3 .

Then, the equations of motion of the system become

ṗ1 =
I2 − I3

I2I3
p2 p3,

ṗ2 =
I3 − I1

I1I3
p1 p3,

ṗ3 =
I1 − I2

I1I2
p1 p2.

This is a Lie-Poisson system, and the equations are written in matrix form as

ṗ = Π∇H = ]Π(dH),

where

Π =


0 −I3 p3 I2 p2

I3 p3 0 −I1 p1

−I2 p2 I1 p1 0


and H(p1, p2, p3) = 1

2

(
p2

1
I1

+
p2

2
I2

+
p2

3
I3

)
. Consider now the positive semi-definite inner product defined by

K(d f , dg) =
[
G∗(dH, dH)G∗(d f , dg) − G∗(dH, d f )G∗(dH, dg)

]
.
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where G is the canonical metric of R3. After some straightforward computations, we derive that K is
defined by the matrix

K =


p2

2
I2
2

+
p2

3
I2
3
−

p1 p2
I1I2

−
p1 p3
I1I3

−
p1 p2
I1I2

p2
1

I2
1

+
p2

3
I2
3
−

p2 p3
I2I3

−
p1 p3
I1I3

−
p2 p3
I2I3

p2
1

I2
1

+
p2

2
I2
2

 .
The entropy is defined by the Casimir function

S (p1, p2, p3) =
1
2

(p2
1 + p2

2 + p2
3)

and the dynamics of the metriplectic system is given by

ṗ = Π∇H + K∇S ,

(see [20] for numerical integration of Lie-Poisson systems using the midpoint rule without the dissipative
term) or

ṗ1 =
I2 − I3

I2I3
p2 p3 +

(
1
I2
2

−
1

I1I2

)
p1 p2

2 +

(
1
I2
3

−
1

I1I3

)
p1 p2

3,

ṗ2 =
I3 − I1

I1I3
p1 p3 +

(
1
I2
1

−
1

I1I2

)
p2 p2

1 +

(
1
I2
3

−
1

I2I3

)
p2 p2

3,

ṗ3 =
I1 − I2

I1I2
p1 p2 +

(
1
I2
1

−
1

I1I3

)
p3 p2

1 +

(
1
I2
2

−
1

I2I3

)
p2

2 p3.

From construction, we get Π∇S = 0 and K∇H = 0.
Using the notation (P1, P2, P3) = ϕ(p1, p2, p3, h), the generic integrator is constructed taking

∇̄2H(
P1 + p1

2
,

P2 + p2

2
,

P3 + p3

2
) =

(
P1 + p1

2I1
,

P2 + p2

2I2
,

P3 + p3

2I3

)
= (z1/I1, z2/I2, z3/I3)

and the discrete semi-definite scalar product

Kd =


z2

2
I2
2

+
z2

3
I2
3
−

z1z2
I1I2

−
z1z3
I1I3

−
z1z2
I1I2

z2
1

I2
1

+
z2

3
I2
3
−

z2z3
I2I3

−
z1z3
I1I3

−
z2z3
I2I3

z2
1

I2
1

+
z2

2
I2
2

 .
The metriplectic integrator is given in this case by the midpoint rule:

P1 − p1

h
=

I2 − I3

I2I3
z2z3 +

(
1
I2
2

−
1

I1I2

)
z1z2

2 +

(
1
I2
3

−
1

I1I3

)
z1z2

3,

P2 − p2

h
=

I3 − I1

I1I3
z1z3 +

(
1
I2
1

−
1

I1I2

)
z2z2

1 +

(
1
I2
3

−
1

I2I3

)
z2z2

3,
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P3 − p3

h
=

I1 − I2

I1I2
z1z2 +

(
1
I2
1

−
1

I1I3

)
z3z2

1 +

(
1
I2
2

−
1

I2I3

)
z2

2z3.

In this case, since the Casimir is quadratic, we have also that

∇S = ∇̄2S ,

the system verifies that
S (P1, P2, P3) − S (p1, p2, p3) ≥ 0 ,

and also H(P1, P2, P3) = H(p1, p2, p3) for the discrete flow ϕ(p1, p2, p3, h) = (P1, P2, P3). Then, in this
case, the midpoint method preserves the energy exactly and, moreover, the entropy production rate has
the correct behavior.

Figure 1. I1 = 10, I2 = 5, I3 = 1, h = 0.1, initial conditions p1 = 0.001, p2 = −1, p3 = 0.001.

Remark 4.6. Observe that in this case, the numerical method corresponds exactly to the midpoint
discretization because the Hamiltonian is quadratic, leading to results similar to those in [20]. Of course,
the method can be applied to general metriplectic systems, and our results would differ from the standard
midpoint discretization.

Remark 4.7. The previous construction is based on the discretization Kd of K given in (2.2). The
proposed method can be applied to a general metriplectic system (see Section 2.3):

dx
dt

= Π(x(t))∇H(x(t))) + K(x(t))∇S (x(t)

where K is a semi-definite inner product with ∇H ∈ kerK. Then take an arbitrary complement D
(assuming local constant rank) such that

T ∗P = D ⊕ kerK
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and consider the positive definite inner product G∗ by

G∗(Yi,Yi′) = K(Yi,Yi′), G∗(Yi,Z j) = 0, G∗(Z j,Z j′) = δ j j′

where {Yi}, 1 ≤ i ≤ n − l and {Z j}, 1 ≤ k ≤ l are bases of D and kerK, respectively, and where ∇H = Z1.
Obviously, G∗ is positive definite, and if we denote by PG∗ the orthogonal projector onto D, then

K(X1, X2) = G∗(PG∗(X1),PG∗(X2))

for all X1, X2 ∈ T ∗P. Now, given a discrete gradient ∇̃H, it is only necessary to take the new decomposi-
tion

T ∗P = k̃erK
⊥

⊕ k̃erK (4.7)

where a basis of k̃erK is now given by {∇̃H,Z2, . . . ,Zl} and k̃erK
⊥

is the corresponding G∗-orthogonal
complement. If we denote the modified orthogonal projector P̃G∗ onto k̃erK

⊥

, then the corresponding
semi-definite inner product with ∇̃H in its kernel is precisely

Kd(X1, X2) = G∗(P̃G∗(X1), P̃G∗(X2))

4.4. Extension to differentiable manifolds

We can extend this construction to the case where we are working on P a general manifold. To start,
we will need to introduce a finite difference map or retraction map Rh : U ⊂ T P→ P× P and its inverse
map R−1

h : Ū ⊂ P × P → T P [21]. For any (x, x′) ∈ Ū we denote by z = τP(R−1
h (x, x′)) ∈ T P. We can

use a type of retraction that is constructed using an auxiliary Riemannian metric G on P with associated
geodesic spray ΓG [22]. The associated Riemannian exponential for a small enough h > 0 is constructed
as

exph(v) = (τQ(v), expτQ(v)(hv)),

where we have the standard exponential map on a Riemannian manifold defined by

expτQ(v)(v) = γv(1),

where t → γv(t) is the unique geodesic such that γ′v(0) = v. Another interesting possibility related to the
midpoint rule is

ẽxph(v) = (expτQ(v)(−hv/2), expτQ(v))(hv/2)). (4.8)

Both maps are local diffeomorphisms, and then we can consider the corresponding inverse maps that we
generically denote by R−1

h at the beginning of this section.
Define a discrete gradient as a map ∇̄H : Ū ⊆ P × P −→ T ∗P such that the following diagram

commutes
Ū ⊆ P × P ∇̄H //

R−1
h

��

T ∗P
πP

��
T P

τP // P
and verifies the following two properties:

〈∇̄H(x, x′),R−1
h (x, x′)〉 = H(x′) − H(x) , for all (x, x′) ∈ Ū , (4.9a)

Communications in Analysis and Mechanics Volume 16, Issue 4, 910–927.



925

∇̄H(x, x) = dH(x) , for all x ∈ P . (4.9b)

In the case, when we have a Riemannian metric G on P, we construct the following midpoint discrete
gradient

∇̄2H(x, x′) := dH(z) +
H(x′) − H(x) − dH(z)(R−1

h (x, x′))

G(R−1
h (x, x′),R−1

h (x, x′))
[G(R−1

h (x, x′)) , (4.10)

for x′ , x ,

where [G : T P→ T ∗P is given by [G(u)(v) = G(u, v) for u, v ∈ T P and z = τP(R−1
h (x, x′)) ∈ P.

The metriplectic integrator that we propose is written as

R−1
h (xk, xk+1) = Π(zτ)∇̄2H(xk, xk+1) + Kd(z)∇C(z)

where z = τP(R−1
h (xk, xk+1)) and Kd is constructed as in (4.6).
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