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We study the identity testing problem for high-dimensional distributions. Given as input an explicit distribution
4, an ¢ > 0, and access to sampling oracle(s) for a hidden distribution 7, the goal in identity testing is to
distinguish whether the two distributions y and 7 are identical or are at least e-far apart. When there is
only access to full samples from the hidden distribution r, it is known that exponentially many samples
(in the dimension) may be needed for identity testing, and hence previous works have studied identity
testing with additional access to various “conditional” sampling oracles. We consider a significantly weaker
conditional sampling oracle, which we call the Coordinate Oracle, and provide a computational and statistical
characterization of the identity testing problem in this new model.

We prove that if an analytic property known as approximate tensorization of entropy holds for an n-
dimensional visible distribution y, then there is an efficient identity testing algorithm for any hidden distribution
7 using O(n/e) queries to the Coordinate Oracle. Approximate tensorization of entropy is a pertinent condition
as recent works have established it for a large class of high-dimensional distributions. We also prove a
computational phase transition: For a well-studied class of n-dimensional distributions, specifically sparse anti-
ferromagnetic Ising models over {+1, —1}", we show that in the regime where approximate tensorization of
entropy fails, there is no efficient identity testing algorithm unless RP = NP. We complement our results with a
matching Q(n/¢) statistical lower bound for the sample complexity of identity testing in the Coordinate Oracle
model.
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1 Introduction

A fundamental problem in statistics and machine learning is the identity testing problem (also known
as the goodness-of-fit problem). Roughly speaking, we are explicitly given a visible distribution u
and oracle access to samples from an unknown/hidden distribution 7; the goal is to determine if
these distributions are identical using as few samples from 7 as possible.

The complexity of identity testing for general distributions is now well-understood; this includes
conditions on the visible and hidden distributions which enable efficient identity testing; see [15,
16] for a comprehensive survey. An intriguing line of work considers a different perspective: what
additional assumptions on the sampling oracle for the hidden distribution are required to ensure
efficient identity testing. We present tight results with more modest oracle assumptions than
considered previously.

Let us begin with a formal definition of the classical identity testing framework. Let X be a finite
state space of size N = |X]|, and let d(,-) denote a metric or divergence between distributions
over X; the standard choices for d(-, -) are total variation distance (TV distance) or Kullback-
Leibler divergence (KL divergence). For a distribution y over X and a parameter ¢ > 0, denote
by ID-TEST(d, ¢; i) the identity testing problem for p: Given as input the full description of the
visible distribution y, and given access to a sampling oracle for an unknown distribution 7, our
goal is to distinguish between the cases 7 = p vs. d(7, 1) > € with probability at least 2/3.

For a distribution y over X, there are efficient identity testing algorithms with sample complexity
O(VN/&?) which matches, asymptotically, the information-theoretic lower bound; see [61, 67] for
landmark results and [1, 24, 34, 35, 48, 67] for other relevant works. (We recall that the sample or
query complexity of an identity testing algorithm is the number of queries it sends to the sampling
oracle.)

In practice, data are often high-dimensional, which raises the question of whether identity testing
can be solved more effectively for high-dimensional distributions; this will be our focus. To be more
precise, let K = {1,..., k} be alabel (spin/color) set and let X = K™ be a product space of dimension
n. We study the identity testing problem ID-TEST(d, ¢; i) for n-dimensional distributions p over X.

Identity testing for high-dimensional distributions has recently attracted some attention; see,
e.g., [5-7, 11, 18, 31, 33]. The focus is on visible distributions y that have a poly(n) size description
or parametrization; otherwise one could not hope to design efficient testing algorithms. Such
distributions include product distributions (including the uniform distribution), Bayesian nets, and
undirected graphical models (also known as spin systems) among others.

The goal is to design identity testing algorithms with poly(n) sample complexity and running
times. It is known, however, that identity testing may require a super-polynomial (in n) number of
samples [5, 11]. (The algorithms for the general identity testing problem have sample complexity
Q(k™? /%) in the high-dimensional setting since |X| = k™.)

Consequently, in order to design efficient algorithms, there are two types of further conditions
that one may attach to the identity testing problem. The first approach is to restrict the unknown
distribution 7 to be in some particular class of distributions; a natural example is to require that x
is from the same class as y. For example, Bhattacharyya et al. [7] study the setting where both p
and 7 are product distributions, Canonne et al. and Daskalakis and Pan [18, 33] require y and 7
to be Bayesian nets, and Daskalakis et al. [31] study the problem when p and 7 are Ising models.
More recently, Bhattacharyya et al. [6] consider the case where p is a product distribution, and
7 is a Bayesian net. While such an approach leads to fruitful results for testing high-dimensional
distributions, it is not ideal from a practical perspective, where 7 can be, for example, a “noisy”
version of y and may not necessarily belong to a nice class of distributions.
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Complexity of High-Dimensional Identity Testing 7:3

An alternative approach to overcome the apparent intractability of identity testing in the high-
dimensional setting is to assume access to stronger sampling oracles from the hidden distribution 7;
specifically, access to conditional sampling oracles for 7 (in addition to the sampling oracle for 7).
This approach for high-dimensional distributions is the focus of this article.

There are several types of conditional sampling oracles, and here we mention the most popular
choices. The first is the general conditional sampling oracle—see [19, 23, 37]—which given any
subset X’ of the space X generates a sample from the projection of 7 to X’; that is, the oracle
returns an element x from X’ with probability 7 (x)/7(X”). This oracle is not well-suited for the
high-dimensional setting because the query subset X’ could be exponentially large in n, and thus
one could not hope to formulate the queries to the oracle efficiently (unless restricted to a special
class of subsets X’).

The second is the pairwise conditional sampling oracle (Pairwise Oracle) which takes a pair
of configurations and generates a sample from the distribution restricted to these two choices:
Given x,y € X the oracle returns x with probability 7 (x) /(7 (x) + 7(y)) and y otherwise; see [19].
The queries for Pairwise Oracle can be easily formulated for high-dimensional distributions, and
identity testing has been studied in this setting. Recently, [60] provided an identity testing algorithm
for the Pairwise Oracle model with O(y/n/¢?) sample complexity and a matching statistical lower
bound; the O notation hides poly-logarithmic factors in n and 1/e.

The other conditional oracle previously studied in the high-dimensional setting is the subcube
conditional sampling oracle (Subcube Oracle) introduced by Bhattacharyya and Chakraborty [8]
and also studied in [17, 25]. A query to the Subcube Oracle consists of a subset A C [n] = {1,...,n}
of variables and a configuration x € K™ on A. If 7(x) > 0, the Subcube Oracle returns a sample
x’ € K!"I\A from the conditional distribution 7 (- | x) (see Definition 3.1). For the Subcube Oracle,
an identity testing algorithm using O(n?/¢?) queries was given in [8]; improved algorithms were
presented for uniformity testing in [17] and for testing juntas in [25].

In this work, we study identity testing for high-dimensional distributions under a weaker condi-
tional sampling oracle, which we call the Coordinate Oracle. The Coordinate Oracle corresponds to
the Subcube Oracle restricted to query sets A where |A| = n — 1; that is, we fix the configuration at
all but one coordinate and look at the conditional distribution at this particular coordinate given a
fixed configuration on the remaining coordinates. Hence, access to the Coordinate Oracle is a much
weaker assumption than access to the Subcube Oracle. We also note that the Subcube Oracle model
can be significantly harder to simulate. For instance, for the classical ferromagnetic Ising model
simulating the Coordinate Oracle is trivial, but sampling conditionally on arbitrary configurations,
as required by the Subcube Oracle, is computationally hard [45].

Access to the Coordinate Oracle is also a weaker assumption than access to the Pairwise Oracle
in the following sense. When k = 2 and X = {0, 1}", Coordinate Oracle access corresponds to
Pairwise Oracle access restricted to pairs of configurations that differ in exactly one coordinate.
When k > 3, one can simulate an §-approximate Coordinate Oracle with Pairwise Oracle access
in poly(k,log(1/8)) time (or a perfect one with poly(k) expected time) using a Markov chain;
see Remark 3 for the details. In addition, as in the case of the Subcube Oracle, simulating the
Pairwise Oracle can be computationally more demanding than simulating the Coordinate Oracle.
For example, in the context of the ferromagnetic Ising model on an n-vertex bounded degree graphs,
a query to the Coordinate Oracle will require O(1) random bits, but queries to the Pairwise Oracle
may require Q(n) random bits.

We provide a computational and statistical characterization of the identity testing problem in
the Coordinate Oracle model. Our focus is on imposing no conditions on the hidden distribution 7,
other than access to Coordinate Oracle, and explore which conditions on the visible distribution p
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7:4 A. Blanca et al.

are necessary and sufficient for identity testing. We mention that the Coordinate Oracle oracle has
already been implicitly used in [17] for uniformity testing (i.e., the special case of testing whether
7 is the uniform distribution).

Algorithmic Results. For our algorithmic work we consider the identity testing problem under KL
divergence, which we denote by Dk, (- || -) and is formally defined in Section 3. From an algorithmic
perspective, the choice of KL divergence is a natural one since, by Pinsker’s inequality, a testing
algorithm for ID-TEST(Dxy, (- || ), 2¢2; u) yields one for ID-TEST(dtv (-, ), &; p) (i.e., for identity
testing under TV distance) albeit with potentially sub-optimal sample complexity and running
time; the reverse is not true in general.

We start by introducing a key analytic property for the visible distribution, known as approximate
tensorization of entropy [20], which we will show is a sufficient (and essentially also necessary)
condition for efficient identity testing in the high-dimensional setting. Approximate tensorization
of entropy roughly states that the entropy of a distribution is bounded by the sum of the average
conditional entropies at each coordinate.

Definition 1.1 (Approximate Tensorization of Entropy). A distribution y fully supported on K"
satisfies approximate tensorization of entropy with constant C if for any distribution x over K":

Dt (2l p) £ C Y Beomy | D G- 10 - 1) |, 0

where 7,,\; () denotes the marginal distribution of 7z on [n] \ {i}, and 7;(- | x) and y;(- | x) denote
the marginals of 7 and p, respectively, on the ith coordinate conditional on x.

The constant C achieves the minimum C = 1 when y is a product distribution. More details about
approximate tensorization and equivalent formulations are provided in Section 3.4.

Approximate tensorization of entropy is known to imply optimal mixing times of single-site
update Markov chains, known as the Gibbs sampler or Glauber dynamics [22, 28]. It is also used to
establish modified log-Sobolev inequalities (MLSIs) and the concentration of Lipschitz functions
under the distribution [12, 59].

There are a plethora of recent results establishing approximate tensorization in a wide variety
of settings. In particular, [27] showed that the spectral independence condition introduced by [3]
implies approximate tensorization of entropy for sparse undirected graphical models (i.e., spin
systems on bounded degree graphs). Furthermore, recent works showed that spectral independence
(and hence approximate tensorization) is implied by certain forms of correlation decay [26, 27, 38],
path coupling for local Markov chains [10, 55], and the stability of the partition function [29]. As
such, approximate tensorization is now known to hold with constant C = O(1) (independent of n)
for a variety of high-dimensional distributions; see, e.g., [10, 29, 30, 40, 41, 55].

We show that approximate tensorization of the visible distribution yu yields an efficient identity
testing algorithm, provided access to the Coordinate Oracle and the General Oracle for the hidden
distribution 7. Access to the General Oracle oracle (i.e., to independent full samples from ) is a
standard assumption for testing under conditional sampling oracles. In particular, the General Oracle
corresponds to Subcube Oracle restricted to A = 0, so access to the Subcube Oracle implies
access to the General Oracle, and previous work under the Pairwise Oracle assumes access to the
General Oracle as well.

For our algorithmic result, we have four additional basic assumptions on the visible distribution
. Specifically, we require that:

(1) p has a description (parametrization) of poly(n) size;
(2) the Coordinate Oracle can be implemented efficiently for the visible distribution y;
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Complexity of High-Dimensional Identity Testing 7:5

(3) p is n-balanced: there is a lower bound 7 so that the conditional probability of any label
a € K at any coordinate i, fixing any configuration on [n] \ {i}, is at least  (see Section 3.3);
(4) p is fully supported on K".

We discuss these assumptions in detail below (see Remark 1.3). Our algorithmic result for the
Coordinate Oracle model follows.

THEOREM 1.2. Given a distribution y over X = K" satisfying (i)—(iv) and Approximate Tensorization
with constant C, there is a testing algorithm for ID-TEST(Dxy (- || ) , &; i) with Coordinate Oracle
and General Oracle access with O(n/¢) sample complexity and polynomial running time.

We refer the reader to Theorem 4.1 for a more precise theorem statement indicating the explicit
dependence on C and 7 in the sample complexity. See also Section 4.4 for applications of Theorem
1.2 to several well-studied high-dimensional distributions.

We shall see in what follows that our algorithmic result for the Coordinate Oracle model in
Theorem 1.2 is tight, both statistically and computationally; that is, we establish a matching Q(n/¢)
sample complexity lower bound and show that there is a class of high-dimensional distributions
where identity testing is computationally hard in exactly the same settings where approximate
tensorization of entropy does not hold. (These results also hold for the easier problem of testing
under TV; see Theorems 1.4 and 1.5.)

A surprising feature of our algorithm is that it bypasses sampling from visible distribution y;
it does not even require the concentration of any statistics under p. As in some of the previous
algorithms for high-dimensional testing—e.g., those in [17, 31]—our algorithm starts by “localizing”
the testing problem (i.e., reducing it to a one-dimensional setting). For this, we crucially use the
Approximate Tensorization of entropy of the visible distribution.

We then consider the problem of testing general (one-dimensional) distributions under KL
divergence. It turns out that this problem has been largely overlooked in the literature (the afore-
mentioned known results for identity testing are all under TV distance). This is likely because
there are pairs of distributions with infinite KL divergence but arbitrarily small TV distance, and
so testing under KL divergence is considered unsolvable in a worst-case sense; see [32]. However,
we can aim for algorithms with sample complexities that depend on the visible distribution, i.e.,
instance-specific bounds instead of worst-case ones, as done in [9, 35, 67].

We provide here an algorithm for the classical identity testing problem (that is, only access to the
General Oracle is assumed) for general distributions under KL divergence; the sample complexity
of our algorithm depends on the visible distribution (see Lemma 2.1). This is a key technical
development toward establishing Theorem 1.2, and one we believe could be of independent interest.

Remark 1.3. We pause now to discuss assumptions (i)—-(iv) in Theorem 1.2. As mentioned, con-
dition (i) is necessary as otherwise one can not hope to design testing algorithms with poly(n)
running times. Condition (ii) formally states that for any coordinate i, and any fixed assignment
o for the other n — 1 coordinates, we can compute the conditional distribution at i given ¢ in
polynomial time. This is equivalent to requiring that a step of the Gibbs Sampler Markov chain for
1 can be implemented efficiently; we believe (ii) is a mild assumption.

The notion of n-balancedness in condition (iii) is a byproduct of working with KL-divergence and
is closely related to other coordinate marginal conditions that are required for efficient learning
and sampling; specifically, under the assumption that p has full support, it is equivalent to the
notions §-biased in [53] and of b-marginally bounded distributions from [10, 29]. Finally, we note
that condition (iv) is also a byproduct of working with KL divergence but can be relaxed; we
could require instead that the support of 7 is a subset of the support of p. We emphasize that
these conditions are all for the visible distribution p, and that we impose no restrictions on the
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7:6 A. Blanca et al.

hidden distribution 7 (other than oracle access). For example, the uniform distribution, product
distributions, and undirected graphical models (e.g., the Ising and hard-core models) satisfy the
conditions in Theorem 1.2.

Computational Hardness Results. We show next that the algorithmic result in Theorem 1.2 is
computationally tight. In particular, for the anti-ferromagnetic Ising model (defined below), we
establish the following computational phase transition for identity testing in the Coordinate Oracle
model: (i) when approximate tensorization holds the problem can be solved efficiently, and (ii) when
approximate tensorization does not hold, there is no polynomial-time testing algorithm unless
RP = NP.

We do not directly prove that identity testing is hard when approximate tensorization fails.
We show instead that the same strong correlations that cause approximate tensorization to fail,
combined with the hardness of identifying the ground states of the model in the presence of
strong correlations, imply the hardness of identity testing. (The ground states are the most likely
configurations in the model, and for the anti-ferromagnetic Ising model correspond to the maximum
cuts of the graph.)

We introduce the Ising model next, which is the simplest and most well-studied example of an
undirected graphical model. Given a graph G = (V, E), the set of configurations of the model is
denoted by Q = {+1,—1}". For a real-valued parameter f, the probability of a configuration o € Q
is given by the Gibbs or Boltzmann distribution:

op(0) = g (BT e 90o) @

where the normalizing constant Zg, g is known as the partition function. When 8 > 0 the model
is ferromagnetic/attractive and when f < 0 then the model is anti-ferromagnetic/repulsive; see
Section 4.4.2 for a more general definition of the model.

The anti-ferromagnetic Ising model undergoes an intriguing computational phase transition at
the threshold f.(d) = —% ln(%) for the parameter f. This threshold corresponds to the so-called
uniqueness/non-uniqueness phase transition on the infinite d-regular tree defined as follows. Let p;
denote the marginal probability that the root of the complete d-regular tree of depth ¢ (i.e., the tree
where all internal vertices have degree d and all leaves are on the same level) has label/spin +1 when
one fixes the leaves to the all +1 configuration. Similarly, let p,” denote the analogous marginal
probability for the root to be +1 when the leaves are instead fixed to the all —1 configuration. When
p < Pc(d), then in the limit as £ — oo the two marginals are the same, i.e., lim; o p; = lim;c0 p; ;
this is known as the tree uniqueness region since it implies that there is a unique Gibbs distribution
for the infinite d-regular tree. On the other hand, when f > f.(d) then the limits are different; this
is called the tree non-uniqueness region as there are multiple Gibbs distributions for the infinite
d-regular tree. A key consequence for general graphs is the following rough statement: In graphs
of maximum degree at most d, when f < f.(d) long-range correlations die off, whereas when
B > P.(d) long-range correlations persist and mark the onset of hardness for several computational
problems (e.g., counting and sampling) on graphs of degree at most d; see [63] for further details.

For constant d > 3 and all 0 > § > f.(d), the approximate sampling and counting (i.e., approxi-
mating the partition function Zg g) problems can be solved efficiently on any graph of maximum
degree d [28]. Moreover, approximate tensorization holds in this regime, and hence Theorem 1.2
applies for identity testing in the Coordinate Oracle model. In contrast, it is also known that when
B < Bc(d) there are no polynomial-time approximate sampling or counting algorithms unless
RP = NP [42, 65].
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We establish here the computational hardness of identity testing in the Coordinate Oracle model
in the same parameter regime f < f.(d), which thereby exhibits a similar computational phase
transition for identity testing for the class of anti-ferromagnetic Ising models.

THEOREM 1.4. For sufficiently large constant d > 3 and constant < 0, consider identity testing for
the family of anti-ferromagnetic Ising models on n-vertex graphs of max degree d with parameter f5.

(i) If B > Pc(d), then there exists a polynomial-time algorithm for identity testing under KL
divergence with access to the Coordinate Oracle and the General Oracle with sample complexity
O(n/e);

(ii) If B < B.(d), then there is no polynomial-time algorithm for identity testing under TV distance
(and hence under KL divergence) with access to the Coordinate Oracle and the General Oracle
unless RP = NP.

There are few analogous computational hardness results for identity testing; most lower-bound
results in this setting are information-theoretic. The few examples appeared in [5, 11], and these
earlier results apply to the identity testing problem with access only to General Oracle and re-
quire both the hidden and visible models to be Ising models. In our current setting, the visible
model is an Ising model, but the hidden is an arbitrary high-dimensional distribution. This is
a significant conceptual difference, and the techniques from [5, 11] do not easily extend (see
Remark 2.2).

At a high level, as in [5], we prove the hardness result in Theorem 1.4 (ii) using a reduction from
the maximum cut problem. That is, given a graph G = (V, E), we construct a testing instance that if
solved, would find the maximum cut of G. In this approach, constructing a testing instance of small
degree is a key challenge, and the “degree reducing” gadgets from [5, 11] no longer work in our
setting.

Instead, we use a gadget introduced in [64] to establish the computational hardness of approximate
counting anti-ferromagnetic spin systems. An interesting technical aspect of our proof is that we
are required to design polynomial-time sampling algorithms to simulate the hidden oracles. This is
difficult for us because sampling anti-ferromagnetic Ising models throughout the non-uniqueness
regime, i.e., for all § < f.(d), is a notoriously hard problem (the problem is NP-hard even for
regular graphs). We manage to design efficient sampling algorithms for our testing instances using
the recent algorithmic result of Koehler et al. [54] that give an approximate sampling algorithm for
Ising models when the edge interaction matrix has low rank, in conjunction with the sampling
methods from [50] that use polymer models. A detailed overview of our reduction is given in
Section 2.2. We mention that in the reductions in [5, 11], sampling is trivial, since there it is assumed
that f < f.(d) (specifically, |f|d = Q(log n)) and the instance is bipartite, so the Gibbs distribution
concentrates in the configurations that align with the bi-partition; see Remark 2.2 for a detailed
account of the novelties in our reduction to establish Theorem 1.4 (ii).

Finally, we mention that the hardness result in Theorem 1.4 (ii) extends to any conditional
sampling oracle that could be implemented in polynomial time for the anti-ferromagnetic Ising
model, and thus applies to identity testing in the Pairwise Oracle model, complementing the
algorithmic results from [19, 60]. On the other hand, they do not extend to the Subcube Oracle
model since we do not know how to simulate this oracle efficiently.

Statistical Lower Bounds. We present next an information-theoretic lower bound for identity
testing problem in the Coordinate Oracle model that matches the sample complexity of our testing
algorithm for this model (Theorem 1.2). Our lower bound is for the special case of uniformity
testing under TV distance when k = 2, i.e., the visible distribution is the uniform distribution
over {0, 1}".
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THEOREM 1.5. Let u be the uniform distribution over {0, 1}". Then, any algorithm for ID-TEST
(drv (-, ), & pr) with access to both the Coordinate Oracle and the General Oracle requires Q(n/e?)
samples.

A direct corollary of this result is that solving the identity testing problem under KL divergence
requires Q(n/¢) samples in the Coordinate Oracle model, thus showing that the sample complexity
of our algorithm in Theorem 1.2 is asymptotically tight (up to logarithmic in n and 1/¢ factors).

Our proof of Theorem 1.5 follows a well-known strategy. We construct a family of “bad” distri-
butions B, each of which has TV distance at least ¢ from the uniform distribution y over {0, 1}".
The lower bounds follow from the fact that, for this carefully constructed family 8, one can not
distinguish between sequences of independent samples from p or from a distribution 7 chosen
uniformly at random from 8. However, since our setting is adaptive, i.e., the choice of conditional
queries of the testing algorithm may depend on the output to previous ones, we need to consider
query histories, as in [19, 60]. (Roughly speaking, a query history is a sequence of queries that
the testing algorithm sends the oracle along with the outputs from the oracle.) To show that two
query histories are indistinguishable (under y or ), we use ideas from [19] and the so-called hybrid
argument in cryptography; see [46].

New Results for the Subcube Oracle Model. While the main focus of this work is the study of identity
testing under weaker oracle assumptions (i.e., the Coordinate Oracle model), we also provide new
results for identity testing in the previously studied Subcube Oracle model. Our first results for
this model is an improved identity testing algorithm.

THEOREM 1.6. Let u be an n-balanced distribution fully supported on K" that has a poly(n) size
parameterization. If we can compute the marginal probability at any coordinate conditioned on any
partial configuration on any subset of coordinates, then there is an identity testing algorithm for
ID-TEST(Dx1. (- || ), & ) for the Subcube Oracle model with O(n/e) sample complexity and running
time that depends on the time it takes to compute the coordinate conditional marginals.

This algorithm, compared to the best-known algorithm for the Subcube Oracle model in [8],
additionally requires that y is n-balanced, but improves the sample complexity significantly from
O(n?/e?) to O(n/e). In addition, compared to Theorem 1.2, this result for the Subcube Oracle does
not require approximate tensorization of entropy. In fact, we point out several relevant settings
where Theorem 1.6 applies, but approximate tensorization fails (or we do not know if it holds)
and hence Theorem 1.2 does not apply: undirected graphical models (e.g., Ising model) on trees,
Bayesian networks, mixtures of product distributions, and high-temperature Ising models and
monomer-dimer models (i.e., weighted matchings) on arbitrary graphs. We remark that, similar to
Theorem 1.2, Theorem 1.6 also holds under the weaker assumption that the support of i contains
the support of 7; see Theorems 7.2 and 7.5 for more details.

We also provide a matching lower bound for uniformity testing in the Subcube Oracle.

THEOREM 1.7. Let u be the uniform distribution over {0,1}". Then, any algorithm for ID-TEST
(Dkr (- |1 ) » & p) with access to the Subcube Oracle requires Q(n/e) samples.

Note that when p is the uniform distribution, then n = ©(1), so Theorems 1.6 and 1.7 provide
asymptotically matching sample complexity bounds for identity testing under KL divergence.
Interestingly, if one considers uniformity testing under TV distance and Subcube Oracle access,
then the recent work [17] shows that O(y/n/?) oracle queries suffice. As far as we know, it is
unclear if the testing algorithm from [17] with sublinear sample complexity can be used for other
high-dimensional distributions, e.g., general product distributions.

Our last result concerns tolerant identity testing in the Subcube Oracle model. In this problem,
the goal is to distinguish between the cases Dxp, (7 || ) < § and Dxy, (|| pr) = & + € for §,¢ > 0;
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identity testing corresponds to § = 0. We show that, under the same assumptions as in Theorem 1.6,
one can estimate Dy, (7 || ) within additive error ¢ using O(n*/e*) queries to the Subcube Oracle.

THEOREM 1.8. Let i be an n-balanced visible distribution fully supported on K" that has a poly(n)
size parametrization. Suppose we can compute the marginal probability for y at any coordinate
conditioned on any partial configuration on a subset of coordinates. Given access to the Subcube Oracle
for a hidden distribution 7, there is an algorithm that for any ¢ > 0 computes S such that, with
probability at least 2/3, we have |S — Dgy. (|| ) | < e. The sample complexity of the algorithm is
O (n*/¢*) . The running time of the algorithm depends on the time it takes to compute the coordinate
conditional marginals.

2 Overview of Techniques

We present proof overviews for our main results in the Coordinate Oracle model: our testing
algorithm (Theorem 1.2), the computational hardness (Theorem 1.4 (ii)), and the lower bound
(Theorem 1.5).

2.1 Algorithmic Result for Coordinate Oracle Model: Theorem 1.2

Suppose p is the visible distribution and let & be an arbitrary distribution over K™. If approximate
tensorization of entropy holds for i with constant C, the following holds:

Dy (7|l p) < CnEix) [DKL (¥ I CI;()] ,

where i € [n] is a uniformly random coordinate, x € K™\ is generated from the marginal
distribution 7,\; of 7 on [n] \ {i}, p} = m;(- | x), and gF = p;(- | x) (see Definition 1.1). Therefore,
to distinguish between the cases = = p and Dky, (7 || pt) = e, it suffices to distinguish between

pY =g} for all pairs (i,x) vs. B [Dxe (p] lqF)] > Ci
n

This is the first step toward localizing the testing problem to a single coordinate. Now, un-
der the n-balanced assumption for y, we have that 0 < Dt (pf | ¢¥) < In(1/n). Hence, if
E(ix) [DKL (pX ll g7 )] > &, one can show via a reverse Markov inequality that there exists an
integer £ > 1, such that 2/ = O(n) and

Pr(ix) (DKL (p¥ llgF) = 2" ﬁ) 2 ﬁ, ®)
where D = 9 log(w)); see Lemma 4.2 for a precise statement.

With (3), it is not difficult to find a pair (i, x) such that Dx;, (p¥ || ¢¥) > 2° - 55 This can done
by first generating O(poly(n) - D) pairs (i, x;), by choosing i; € [n] uniformly at random and
then using the General Oracle to sample the partial configuration x; on [n] \ {i;}. Then, we can
exhaustively check for each ¢ (note that £ = O(log n)) whether among the generated pairs (iz, x;)’s
there is one, say (i, x), satisfying that Dy, (p¥ || ¢7) > 2° - 35 By (3), this will likely be the case.

In conclusion, we reduce identity testing for p to solving identity testing for the one-dimensional
distributions p := p{ and q := g} on a domain of size k with respect to KL divergence. We assume q
can be computed for the visible distribution y (this is assumption (iii) in Theorem 1.2), and we have
access to a sampling oracle for p¥ using the Coordinate Oracle for 7.

As mentioned earlier, in the distribution testing literature, testing under KL divergence has been
overlooked. This is because there are pairs of distributions with infinite KL divergence but arbitrarily
small TV distance, which entails that identity testing requires arbitrarily many samples even though
the KL divergence is arbitrarily large. For example, this happens when q is the distribution on a
single point 0 and p is the Bernoulli distribution with arbitrarily small mean [32]. As such, identity
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testing under KL divergence has been considered unsolvable in the sense of worst-case sample
complexity for arbitrary p and q.

However, the identity testing problem under KL divergence makes perfect sense for specific
visible distributions q if we are interested in the instance-specific sample complexity instead of the
worst-case one, as in [67] under TV distance. Namely, for a given distribution ¢, what is the number
of samples required, potentially depending on g, for the identity testing problem for g under KL
divergence? We give next a first attempt at solving this problem. The sample complexity of our
testing algorithm depends on the minimum probability = min,cx q(a).

LEMMA 2.1. Letk € N* and let ¢ > 0, 5 € (0,1/2]. Given a visible distribution q over domain K
of size k such that q(a) > n for any a € K, and given sample access to an unknown distribution p
over K, there exists a polynomial-time identity testing algorithm that distinguishes with probability
at least 2/3 between the cases p = q or Dxi. (p || q) > €. The sample complexity of the identity testing

algorithm is O( min {fﬁ’ W}) fork >3 and O(M) fork =2.

We remark that the dependency on 7 in the sample complexity is inevitable; see Remark 4.4.

A natural first approach to identity testing under KL divergence to prove Lemma 2.1 is a reduc-
tion to testing under TV distance via the so-called reversed Pinsker’s inequality: Dky, (p || ) <
(2/n)drv (p,q)* (see Lemma 4.5). The sample complexity of such algorithm is O(\/E/([:‘}])). This is
not optimal, for example, if q is the uniform distribution over % one has n = 1/k and so the sample
complexity is O(k*?/¢), but one would expect the sample complexity to be O(Vk/¢), by analogy
to what happens for testing in TV distance. A better reduction is to testing under ¢, distance via
the inequality: Dt (p || @) < (1/n) |Ip — ql|? (see Lemma 4.5). We then need to distinguish between
p =qand||p — qll, > \/en, which allows us to apply results from [35] and obtain an algorithm with
sample complexity of O(||q|l, /(en)); this time we get the O(Vk/¢) sample complexity bound when
q is the uniform distribution.

However, two major challenges ought to be solved for this approach to work. First, while ||q||,
can be bounded for certain specific distributions g (e.g., the uniform distribution), in general we do
not have a bound for ||q||,. This can be solved via the flattening method from [35] which, roughly
speaking, constructs a new testing instance (i.e., distributions p” and ¢’ over K”) that is equivalent
to the initial one with the additional property that ||q’||, is small. The idea is to divide “heavy”
elements (those a € K with large density g(a)) into many copies so that ¢’ (a’) = 1/¢ foralla’ € K’
where ¢ = |K”|, i.e., ¢’ is close to uniform.

The second challenge is that, even if when ||q||, small, the dependency on 5 could still be inverse-
polynomial. This is particularly problematic when 7 decays sharply as k grows, e.g., n = 27. To
overcome this, we divide the domain % into two parts, those with small density g(a) < { and those
with large density g(a) > { for some parameter {. We then deal with the two parts separately by
running different testing algorithms on each. This can be viewed as a simple application of the
bucketing technique from [4] using only two buckets.

While flattening and bucketing were previously known, the novelty of our approach is to combine
them to get a stronger bound for the sample complexity, specifically by selecting the right scale
¢ for flattening and the right threshold ¢ for bucketing. Our bound achieves O(Vk/e) for ¢ with
n = ©(1/k) such as the uniform distribution, and also maintains a vk dependency even for biased
q of tiny #, with only a logarithmic dependency on 1/5. For details see Lemmas 4.3 and 4.10.

2.2 Computational Hardness in the Coordinate Oracle Model: Theorem 1.4 (ii)

We establish hardness of the identity testing problem as stated in Theorem 1.4 (ii) for the anti-
ferromagnetic Ising model with Coordinate Oracle and General Oracle access via a reduction from
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the maximum cut problem. Let {G = (Vg, Eg), k} be an instance of the maximum cut problem.
That is, we want to check whether max-cut(G) < k or max-cut(G) > k. In our reduction, we
construct an identity testing instance for the anti-ferromagnetic Ising model, feed it as input to a
presumed testing algorithm, and claim that the output of the algorithm solves {G = (Vg, Eg), k}
with probability at least 2/3; this is not possible unless RP = NP.

We start by constructing the multi-graph F = (Vg, Er) by adding two special vertices s and ¢ to
G, ie., Vg = Vg U {s, t}. These two vertices are connected with N2 — k edges, where N = |V|. We
also add N edges between s and each vertex of Vi and do the same for ¢ so that:

(1) When max-cut(G) < k, the cut ({s, t}, V) of size 2N? is the unique maximum cut of F;
(2) When max-cut(G) > k, there exists another cut in F, other than ({s, t}, Vi), of size > 2N?2.

This is because for S C Vg, the cut (S U {s}, V5 \ S U {t}) of F will have size: max-cut(G) + |S|N +
[Vo \ SIN + N? — k = 2N? + max-cut(G) — k, which is > 2N? only when max-cut(G) > k.

We consider the anti-ferromagnetic Ising model on F. There is a natural bijection between the
cuts of F and the configurations of the Ising model. In particular, each cut (S, V¢ \S) of F corresponds
to exactly two Ising configurations: Vertices in S are assigned +1 and those in V¢ \ S are assigned
—1 (and vice versa). From the definition of the model (see (2)) we also see that the “ground states”
of the anti-ferromagnetic Ising model on F, that is the configurations of maximum probability in
the Gibbs distribution, correspond precisely to the maximum cuts of F.

Let Q be the set of all cuts of F and let Q be the set of all cuts (S, Vr \ S) of F except those where
s € S,t € Vp\ S, and the corresponding cut for G, ie., (S\ {s}, Vr \ {S,,s}), has size > k. This
way, if max-cut(G) < k, then Qg = Q, and if max-cut(G) > k, then Q \ Q, contains the cuts of F
corresponding to cuts of G of size > k.

We set the visible distribution of our testing instance to be the Gibbs distribution pF g of the
anti-ferromagnetic Ising model on F with f < f.(d) < 0 in the tree non-uniqueness region.
The hidden distribution will be prg(- | o), that is, urp conditioned on configurations that
correspond to cuts in Q. Our construction ensures that if max-cut(G) < k, then Q = Qg and so
prp(- | Qo) = pr,p. Moreover, when max-cut(G) > k, we have Q # Qg and pr g(- | Qo) # prg. In
fact, it can be shown that the TV distance between pr g(- | Qo) and pr g is 1 — 0(1); intuitively, this
is because Q \ Qg contains large cuts of F that account for a non-trivial portion of the probability
mass of yir g.

Our reduction is then completed by generating samples from pr (- | Qo) and giving these
samples and yr g to the identity testing algorithm as input. The testing algorithm is guaranteed
to succeed with probability at 2/3. If the algorithm detects that the samples did not come from
UF,p, it means that max-cut(G) > k; otherwise, it means that max-cut(G) < k. Hence, we have a
polynomial running time algorithm that solves the maximum cut problem with probability at least
2/3, which is not possible unless RP = NP.

There are two important complications in this approach. First, F is a multi-graph of unbounded
degree, and our goal is to establish hardness for the class of anti-ferromagnetic Ising models graphs
of maximum degree d = O(1) when f < f.(d). Second, we do not know how to generate samples
from pr g (- | Qo) efficiently in polynomial time.

Let us address first how we solve the issue of F being a multi-graph with large maximum degree.
For this, we use a “degree reducing” gadget; the one we use was introduced in [64] to establish
the hardness of approximate counting and sampling anti-ferromagnetic spin systems. Specifically,
each vertex of F is replaced by a gadget H which consists of a (nearly) d-regular random bipartite
graph with a relatively small number of trees attached to it. Being more precise, the leaves of each
tree will be identified with unique vertices on the same side of the bipartite graph; see Section 5.1

ACM Transactions on Algorithms, Vol. 21, No. 1, Article 7. Publication date: November 2024.



7:12 A. Blanca et al.

for the precise construction. The roots of these trees are called ports and are used to connect the
gadgets as dictated by the edges of F. This results in a simple d-regular graph F.

A key feature of the gadget H is that in the tree non-uniqueness region f < f.(d), a sample from
pr,p will have mostly +1’s on one side of H and mostly —1’s on the other, or vice versa. Hence there
are two possible “phases” for the gadget which we use to simulate the spin of the corresponding
vertex in F, i.e., the phase of the gadget is mapped to the spin of the corresponding vertex of F.
Therefore, in a configuration in 1? the phase of all the gadgets determines a cut for F, and thus one
for G. Consequently, the reduction described above from the maximum cut problem to identity
testing using F can be done using F instead.

The second technical complication is that we are required to sample from iz ﬁ(' | Qo). For this,
we observe first that sampling a phase assignment from iz ﬁ(Qo) is straightforward (see Lemma
5.3). We then sample the port configuration given the phase vector from Q. This is done via a
rejection sampling procedure by noting that the marginal distribution on the ports is within o(1)
TV distance of a suitably defined product distribution. Once the port configuration is sampled
within the desired accuracy, we sample the configuration on each gadget (independently) given
the configuration of the ports. For this we use a hybrid approach: We use the recent algorithm
from [54] for low-rank Ising models for one range of values of § (i.e., when | [Vd = O(1)) and
polymer models—see [50]—for the other. To use these algorithms, we fleshed out the spectrum of the
incidence matrix of the gadget. Note that simulating the Coordinate Oracle for the Ising model is
straightforward as the spin probability is a function of the number of neighboring +1 and —1 spins.

Remark 2.2. In [5], hardness of identity testing was established when both the visible and hidden
distributions are anti-ferromagnetic Ising models on graphs of bounded degree also via a reduction
from the maximum cut problem. As such, we believe it is meaningful to detail the conceptual
and technical differences, as well as some similarities, between the reduction described above and
the one from [5]. Conceptually, in [5] the hidden distribution 7 is assumed to be from the same
class as 1, so the testing problem in consideration is easier. In fact, this problem is not hard for all
B < Be(d) < 0since when |f|d = O(log n) it can be solved using the learning algorithm from [53] to
learn 7. Only when |f|d = Q(log n), this variant of identity testing becomes computationally hard,
and this is precisely what is established in [5]. Our goal here is to show hardness throughout the
entire non-uniqueness regime f < f.(d) (not only for |f|d = Q(log n)), so the hidden distribution
in our reduction can not be an Ising model. Our hidden distribution HE ﬁ(' | Q) is instead a
conditional anti-ferromagnetic Ising distribution, and, as noted, sampling from it is challenging.

At a technical level, the necessary assumption in [5] that ||d = Q(logn) simplifies matters
significantly. In particular, the degree reducing gadgets there simply consist of random regular
bipartite graphs; when fd = w(log n), sampling from the anti-ferromagnetic Ising model on these
gadgets is trivial since 1 — 0(1) of the probability mass is concentrated on two trivial configurations
(+1 in one side of the bipartite graph, —1 in the other side and vice versa). When f < f.(d), the
correlations in the model are super-polynomially weaker, i.e., there is no such strong concentration
in the ground states. As such, we must use a more sophisticated degree-reducing gadget (the one
from [64] as discussed earlier), and consider the phase of the gadget to simulate spin assignments
to vertices. In terms of similarities, the construction of the multi-graph F from the max-cut instance
detailed above is nearly identical to the construction in [5], i.e., F is essentially the same, but Fis
not since we must use a different gadget.

3 Preliminaries

In this section we gather a number of standard definitions and results that we will refer to in our
proofs. Let k,n € N* be integers. Let K = {1,...,k} denote a finite alphabet set of size k, and
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let 7 be an arbitrary distribution over K". Throughout the article, we use n in the subscript and
superscript to represent the set [n] = {1,...,n} and use n \ i to represent the set [n] \ {i} to ease
the notation.

3.1 Coordinate Conditional Sampling Oracle

We recall next the formal definitions of the various sampling oracles discussed in the article.
Definition 3.1. 'The sampling oracles for the hidden distribution 7 are defined as follows:

— General Sampling Oracle (General Oracle): Generate a sample x from 7.
— Coordinate Conditional Sampling Oracle (Coordinate Oracle): Given i € [n] and x € K™V as
inputs to the oracle:
~If 7(X,\; = x) > 0, the oracle samples a € K from the conditional marginal distribution
n(Xi =+ | Xni = x);
~If 7(Xp\; = x) = 0, the oracle outputs a € K arbitrarily.
— Subcube Conditional Sampling Oracle (Subcube Oracle): Given A C [n] and x € K™ as inputs
to the oracle:
~If 7(X, = x) > 0, the oracle samples x” € K1"1\A from the conditional distribution m(Xv\a =
| Xa =x);
~If 7(Xp = x) = 0, the oracle outputs x” € KV\A arbitrarily.
— Pairwise Conditional Sampling Oracle (Pairwise Oracle): Given x,y € K", the oracle returns x
with probability 7 (x)/(x(x) + 7(y)) and y otherwise.

We provide next two brief remarks noting that access to a Coordinate Oracle is a weaker as-
sumption than access to a Pairwise Oracle or a Subcube Oracle.

Remark 3.2. Pairwise Oracle is generally a stronger oracle than Coordinate Oracle. When k = 2
and the state space is the binary hypercube {0, 1}", this is obvious since the Coordinate Oracle
essentially generates samples conditioned in the set {x, y} where x and y differ in exactly one
coordinate, while Pairwise Oracle can handle any pair vectors x, y € K".If k > 3 is a constant (inde-
pendent of n), then one can also simulate an e-approximate Coordinate Oracle with Pairwise Oracle
access in poly(k,log(1/¢)) time (or a perfect one with poly (k) expected time) using a Markov chain.
Given a query (i,x) where i € [n] and x € K™\, to generate a random value at the coordinate i
conditional on x, one can simulate the Markov chain that in each step picks an element a € K
uniformly at random and lets a;.; = a with probability p(x;.)/(p(xiq) + pi(xig,)) and asq = a;
otherwise; x; , denotes the vector with the ith coordinating being a and all other coordinates given
by x. Every step of the Markov chain can be perfectly implemented with the Pairwise Oracle, and a
simple coupling argument shows that the e-mixing time is poly(k, log(1/¢)). For perfect sampling
with poly(k) expected time, one can use the Coupling from the Past Method; see [62].

Remark 3.3. The Subcube Oracle subsumes the Coordinate Oracle+ General Oracle combination
implying that:

—Algorithms with both Coordinate Oracle + General Oracle access give algorithms with
Subcube Oracle access

—Lower bounds for the Subcube Oracle model imply lower bounds the Coordinate Oracle +
General Oracle.

3.2 Identity Testing

We provide next the formal definition of the identity testing problem for a distribution p over K".
Let d be any metric or divergence for distributions over K™.

ACM Transactions on Algorithms, Vol. 21, No. 1, Article 7. Publication date: November 2024.



7:14 A. Blanca et al.

ID-TEST(d, ¢; ).

Input: Description of a distribution y over K™.

Provided: Access to Coordinate Oracle + General Oracle for an unknown distribution 7 over K.
Goal: Determine whether 7 = por d(7, ) > e.

Let ¥ denote a family of distributions (with varying dimensions), each of which is supported on
K™ for some integer n € N* and can be represented with poly(n) parameters. We say an algorithm
A is an identity testing algorithm for the family ¥ if for every p € ¥ it solves ID-TEST(d, ¢; y1)
with probability at least 2/3. Note that the unknown distribution 7 does not necessarily belong to
the family 7.

3.3 Coordinate Balancedness and Marginal Boundedness

We say a distribution y supported on K™ is n-balanced, if for every i € [n], every x € K™\ with
H(Xn\; = x) > 0, and every a € K, one has

either p(Xj=a| Xpi=x) =0, orpXi=al|Xp;i=x) =1

On the other hand, we say the distribution p is b-marginally bounded if for every A C [n], every
x € KN with u(X, = x) > 0, every i € [n] \ A, and every a € K, one has

either p(X;=a | Xpy=x)=0, orpu(X;j=a|Xp=x)=0D.

Note that marginal boundedness is a generalization of coordinate balance, and in particular, if
in the definition of b-marginally bounded one restricts to A where |A| = n — 1 then we obtain
b-balanced. Hence, any b-marginally bounded distribution is also b-balanced. Moreover, if y has
full support, then both notions are equivalent. See also Remark 7.3 for a weaker version of marginal
boundedness. Related notions to marginal boundedness appeared in [28, 53].

3.4 Approximate Tensorization of Entropy

Let u be a distribution over K™. For any non-negative function f : K" — Ry, the expectation of

f is defined to be p(f) = X eqn p(x)f(x), and the (relative) entropy of f is defined as
Enty (f) = p(f Inf) = p(f) In(u(f)),

with the convention that 0In 0 = 0.

Given a coordinate i and a partial configuration x € K™\! on all coordinates but i, one can define
the entropy of the function f with respect to the conditional distribution y;(- | x), which we denote
by Ent} (f). Furthermore, we regard Ent} (f) as a function of x and its expectation, when x is
generated from fi\;, is denoted as p[Ent;(f)]. We are now ready to give the formal definition of
approximate tensorization of entropy in the functional inequality form, as in [20-22].

Definition 3.4 (Approximate Tensorization of Entropy: Functional Form). We say that a distribution
p over K" satisfies approximate tensorization of entropy with constant C if for any non-negative
function f : K* — Ry one has

Ent(f) < C > ulEnti(f)]. @
i=1

As mentioned in the introduction, approximate tensorization is an important tool for proving
functional inequalities like the MLSI; it is also useful for deriving optimal mixing time bounds for
the Glauber dynamics. Although it is most often stated in this functional inequality form, mainly
because of several useful analytic properties, in this article we will consider its probabilistic version,
as in [49, 57].
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For two distributions y and 7 over a discrete state space K", we write 7 < p if p(x) = 0 implies
7(x) = 0 for any x € K", i.e., the support of r is contained in the support of p. The KL divergence
is defined as

muﬂm=§]mmﬁﬂﬁ)

S p(x)

The following definition of approximate tensorization is slightly more general than Definition 1.1
from the introduction.

Definition 3.5 (Approximate Tensorization of Entropy: Probabilistic Form). We say a distribution p
over K" satisfies approximate tensorization of entropy with constant C if for any distribution 7
over K" such that 7 < p one has

n
Di (el ) < € By [ Dia (- 1) - 1) . ©)
i=1
Note that in Definition 1.1 we required that y has full support, instead of the more general
assumption 7 < j1. We remark that in (5) the partial configuration x € K"\! is drawn from 7 rather
than p. It is easy to check that the two definitions (Definitions 3.4 and 3.5) are equivalent to each
other by letting f = x/y; see [57].

Remark 3.6. To the best of our knowledge, there is no known analog of the probabilistic form of
approximate tensorization of entropy (5) for other f-divergences, even when the visible distribution
1 is a product measure. An analog of (4), the functional form of the same condition, does exist for
the variance functional, which can be translated into a more intricate, weighted version of (5) for
x*-divergence, with the entropy replaced by variance; the weights depend on ratios of the two
densities and can be exponentially large. Although it is possible to establish such an inequality for
certain high-dimensional distributions, how to use it for algorithmic purposes remains unclear.
This contributes to our rationale for selecting KL in our work.

4 ldentity Testing via Approximate Tensorization

For integer k > 2 and real C > 1,5 > 0, let 7% (C, i) denote the family of all distributions over
K" (for any n € N*) with poly(n) many parameters that are n-balanced and satisfy approximate
tensorization of entropy with constant C. The goal of this section is to give an identity testing
algorithm for the family ¢ (C, n) in terms of the KL divergence. We observe that this also implies a
tester for the TV distance by the Pinsker’s inequality.

For applications in Section 4.4 all the parameters k, C, n are constants independent of n. In the
theorem below, however, we consider a more general setting where these parameters are functions
of the dimension n with only mild assumptions on their growth rate. This allows us to have a
clearer picture on the sample complexity and the dependency on all the parameters involved.

THEOREM 4.1. Let k = k(n) be an integer and C = C(n) = 1,5 = n(n) € (0,1/2] be reals. Suppose
that

max{log C,loglog(1/n)} = O(log n).

Then, there is an identity testing algorithm for the family ¥ (C,n) with query access to both the
Coordinate Oracle and the General Oracle and for KL divergence with distance parameter ¢ > 0. The
query complexity of the identity testing algorithm is

0 [min = Z1og? (%), c*VRtog 5) - 108t (2)}).
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The running time of the algorithm is polynomial in all parameters (1/n for the first bound, andlog(1/n)
for the second) and also proportional to the time of computing the conditional marginal distributions
pi(- | x) for any i € [n] and any feasible x € K™\ Furthermore, ifk = 2, i.e., we have a binary
domain K = {0, 1}, the query complexity can be improved to

octog(3) - 21og* (%))
4.1 Algorithm

Before presenting our algorithm, we first give a well-known fact, e.g., see [47, Section 8.2.4] and
[60, Proposition 6.7].

LEMMA 4.2. Let &, M > 0 be reals and let L = [logz(M/s)]. IfY is a non-negative random variable
such thatY < M always and BEY > ¢, then there exists a non-negative integer £ < L such that
1
20(L+1)
Proor. Suppose for sake of contradiction that for all 0 < ¢ < L it holds
1
20(L+1)°

Pr(Y > 271) >

Pr(Y > 271e) <
Notice that 2e > M. Then we have

M e/
EY = / Pr(Y > y)dy = / Pr(Y > y)dy + Z/ Pr(Y > y)dy
0 0 -1g

20e =27 1e) Pr(Y > 207 1e)

IA
Nlm
M~

=0

Nlm
M~

=6

o 2"(L +1)

which is a contradiction. ]

For i € [n] and x € K™\, we define ¢* = p;(- | x) to be a distribution over X induced by the pair
(i, x) from p, where we think of i and x as the parameters. Similarly, we define p} = m;(- | x) with
respect to 7.

Recall that the approximate tensorization of entropy for i can be written as

n
Di (211 < €Y By [ D G- 10 - 1 20) | = Cn Boay [P, (67 11 7).

i=1
where i € [n] is a uniformly random coordinate and x is generated from the marginal distribution
7p\;- Therefore, the original identity testing problem boils down to the following testing problem:

Pri)(pf =q) =1 vs. Eqy [Dr (07 1 g7)] 2 ¢,
where ¢/ = ¢/(Cn). Notice that Dgp, (pf I qf) < In(1/n) for all (i, x) assuming n-balancedness and
p < q. By Lemma 4.2 it further boils down to the following sequence of testing problems: let
L= |-log2 (ln(l/q)/e’)] and for each ¢ < L, for a random pair (i, x), distinguish between p} = g¥
surely versus
1
Prisy (Dxe (pF 11 qF) > 2070¢) > ————.
riiqx) (Dxe (7 11 47) ¢) 2(L+1)
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Algorithm 1: Identity Testing for 7% (C, n) for KL Divergence
Input: Description (parametrization) of a given distribution p € 7% (C, n7), query access to
both Coordinate Oracle and General Oracle for an unknown distribution 7, and
distance parameter ¢ > 0.
¢ —¢/(Cn);
L « [log,(In(1/n)/e));
for0 < ¢ <Ldo

g — 2071 /* Distance parameter */
§ « 2726, /* Failure probability */
T, « 2M2(L+ 1) ; /x Need T, samples of (i,x) to see D (p¥ |l qY) = & */

fort=1,2,...,T,do

Sample (i, x) from 7’ via General Oracle for 7;

Call Ay;.1p from Lemmas 4.3 and 4.10 to distinguish between p} and g7 with
distance parameter ¢, and failure probability & (samples from p} are obtained via
Coordinate Oracle for r) ; /* Check whether Dxp (p¥ [l gY) > & */

if Ay returns No (i.e., Dgy, (pf [ qf) > &) then

Output: No (i.e., Dxp (7 || ) = ¢), and the algorithm ends;
end

end
end
Output: Yes (ie., 7 = p)

For this testing problem, we sample (i, x) for O (2/(L + 1)) times so that we get to see the event
D (pF Il ¢¥) = 2/7'¢’, and when it happens the problem is reduced to a classical identity testing
setting on a finite state space where we can apply previously known identity testing algorithm. To
accomplish this we also give an identity testing algorithm for the KL divergence, which is missing
in the literature; see Lemmas 4.3 and 4.10.

We give a few more definitions before presenting our algorithm formally. For a distribution 7z
over X = K", we define the set X’ by

X ={(i,x) ;i€ [n], x e K"}

to be the set of all pairs (i, x) where i is one coordinate and x contains the values of all coordinates
other than i. We then define a distribution 7’ over X’ by

L 1 1
' (i,x) = ;ﬂn\i(x) =7 (Xn\i = x),

so that a sample from 7’ can be obtained in the following way: first pick i € [n] uniformly at
random, and then sample x from the marginal distribution 7y,;.

Our algorithm is given in Algorithm 1, which also appeared in the previous work [17] for
uniformity testing over the binary hypercube {0, 1}". We now give our proof of Theorem 4.1.

ProoF oF THEOREM 4.1. Suppose first that 7 = p. Then each time we call the KL tester in Line 1,
it returns Yes with probability at least 1 — & since p} = g7 for any (i, x). If every time the result is
Yes then Algorithm 1 will return Yes (i.e., 7 = p). By a simple union bound, the probability that

ACM Transactions on Algorithms, Vol. 21, No. 1, Article 7. Publication date: November 2024.
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Algorithm 1 mistakenly outputs No is at most

L L
ZTf"S: ZZ[+Z(L+1)-2_2L_6 < 2L+3(L+1) .g2L-6

1
=0 =0 8

where the last inequality is due to L + 1 < 2L.
Next assume that Dgy, (7 || 1) > €. Then by approximate tensorization of entropy we have

EGix [Dre (9] 11 67)] 2 €
where ¢/ = ¢/(Cn). By Lemma 4.2, there exists a non-negative integer £ < L such that
1
Pr (Dxw (p¥ 11 ¢F) = 2"7'¢) > ——.
r (Dxe (p5 11 47) ¢) Y
For this ¢, the algorithm repeats for T, = 2/*2(L + 1) times to find such a pair (i, x) via the general
sampling oracle; the probability that the algorithm fails to find such (i, x) is upper bounded by

RS W Y B 2 B
2i+)) P\ Txarn) T T so
In the case that such a pair is successfully found, the KL tester in Line 1 will return No with
probability at least 1 — 6, and hence then Algorithm 1 returns No. Therefore, if Algorithm 1 wrongly
outputs Yes then either a good pair (i, x) is not found, or the KL tester in Line 1 makes a mistake
on a good pair (i, x). The probability of outputting Yes is then upper bounded by 1/50 + § < 1/8.
Finally, Lemma 4.3, combined with the amplification technique for failure probability (e.g., see
[16, Lemma 1.1.1]), implies that the number of samples required by Algorithm 1 is at most

0 luin In(1/8) VklIn(1/n)In(1/8)
g E[\/ﬁ ’ E?

CL*n C*VkL*n*1n(1/n)

e\ ’ 20¢2

o (min {CL3n C2VkL?n? In(1/n) })

D= T

O | min

T
S

e\’ £
Since L = O(log(n/¢)) under our assumptions log(C) = O(log n) and loglog(1/n) = O(logn), we
obtain the sample complexity upper bound from the theorem. For k = 2 the sample complexity is
obtained in the same way, using Lemma 4.10 instead. O

4.2 ldentity Testing for KL Divergence on General Domain

In this and next subsection, we prove Lemma 2.1 from Section 2.1, which is also a key sub-routine
of Algorithm 1. We first consider general k > 2 in this subsection, and then give an improved
sample complexity bound for k = 2 in the next subsection.

LEMMA 4.3. Letk € N* be an integer, and let ¢ > 0,1 € (0,1/2] be reals. Given a target distribution
q over domain K of size k such that either q(a) = 0 or q(a) = n for any a € K, and given sample
access to an unknown distribution p < q over K, there exists a polynomial-time identity testing
algorithm that distinguishes with probability at least 2/3 between the two cases

p=q and Dxv(pllq) =« (6)
VkIn(1/n) )

&2

with sample complexity O( min {ﬁﬁ’
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The running time is polynomial in 1/7 if we apply the first bound, and log(1/#) for the second.

Remark 4.4. We remark that the dependency on 7 in the sample complexity is inevitable. This is
because, if n — 0, drv (p, g) could tend to 0 but Dgy, (p || q) can be independent of 7. For example,
if p and g are Bernoulli random variables with means p, § € (0, 1/2), respectively, one can have
Dk (pll g) = 0.1, for some p = p(§), with dry (p,q) = |p — §| — 0 as § — 0. In Lemma 2.1 we
show that the sample complexity for identity testing with respect to KL divergence depends, in
the worst case, logarithmically on 1/5. In particular, for uniformity testing under KL divergence,
Lemma 2.1 gives an O(Vk/¢) sample complexity which matches what one would expect given the
O(Vk/&*) sample complexity for uniformity testing under TV distance and Pinsker’s inequality.

We need the following standard inequalities between statistical divergences; see [16] for more.

LEmMMA 4.5. Let q be a distribution fully supported on a finite set K, and let n = mingc % q(a). Then
for any distribution p over K with p < q it holds

1 2
Dxi(pllg) < x*(pllg) < " lp - qll5 < EdTv (p.9)*.

Our KL tester uses the following identity testing algorithm from [35] for ¢, distance, and also
the flattening technique proposed there to reduce the £ norm. See also [16, Theorem 2.2.2] for an
exposition of the algorithms and techniques.

LEMMA 4.6 ([35]). Given the distance parameter ¢ > 0, full description of the target distribution q
with domain K of size k, and general sample access to an unknown distribution p over K, there exists
a polynomial-time identity testing algorithm Ay, that distinguishes with probability at least 2/3
between the two cases

£
llp —qll, < 2 and |lp—qll, > ¢ @)

with sample complexity O( max {m 1 )

e e
We are now ready to give our proof of Lemma 4.3.

Proor oF LEMMA 4.3. Without loss of generality we may assume that g is fully supported over
K, ie., q(a) = nfor all a € K. We establish the two bounds in the lemma separately using two
testing algorithms depending on the range of parameters, both based on the ¢, tester in [35]. To
clarify, our testing algorithm will check the two bounds 1/(e+/77) and (Vk/e®)In(1/ 1), find the
smaller one, and run the algorithm for that bound.

Algorithm A. We construct a new instance p’, ¢’ (including the oracle for p’) of the identity
testing problem from p, g such that /2 < ¢’(a) <  for all a € K’, where K’ is a new domain of
size k' = ©(1/n); this is achieved using the flattening technique from [35]. We show that the new
identity testing problem with p’, ¢’ is equivalent to the original one with p, g, requiring the same
number of samples. And we can apply Lemma 4.6 to the new instance p’, ¢’ with nicer properties to
obtain a better bound on the sample complexity instead of doing it directly to p, g. For each a € K,

define
kg = {MJ +1.
n
We split each a € K into k, distinct copies, denoted by ay, . . ., ak,, which constitute the new domain
K’, namely,

K ={a;:aeK, 1<i<k,}.
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Notice that the size k’ = |)X”| of the new domain is bounded by
1 2
SR I LA B
acK acK n 1 n

where the last inequality follows from n < 1/k since gq is fully supported on K. The new target
distribution q’ is given by for every a € K and i € [k,],

q(l)—q()

a
and similarly p’ is given by p’(a;) = p(a)/k,. We can easily transform a sample from p into a
sample from p’: If we receive a as a sample from p, then we can compute k, (since the target
distribution q is given in full description) and generate i € [k,] uniformly at random, so that g; is a
sample from the distribution p’. The crucial fact here is that the KL divergence (more generally,
any f-divergence) is preserved under flattening. Indeed, observe that

D lg)= Y, D playmEE =3 > ED LS - pg pllg).

acKiclky] /( ) acKiclky] ka

Thus, we only need to solve the identity testing problem for the flattened distribution p” and q’.
Moreover, we observe that for all a € K and i € [k,] it holds

n_ ., q(a)
- < ;) = <
5 =4 (a:) Ko S 1,

since we have

CORECI
n n n
where the first inequality follows from g(a) > 7. Therefore, we observe that

lg'l3="> q'@)?<n > q(a)=n

a; €K’ a; €K’

Note that Dxr. (p’ | ¢') < (2/n) |lp’ — ¢’|2 by Lemma 4.5. Applying Lemma 4.6, we are able
to distinguish between p’ = ¢’ versus [[p’ —¢'[|5 > en/2, and hence between p’ = ¢’ versus

Dxyp (p" 11 q) = €, using
llg'll, 1 }) ( 1 )
O|max{——=, — | =0|—
( {8’7 Ven e\n

samples from the unknown distribution p’. This then gives an identity testing algorithm for p and
q for KL divergence using the same number of samples from p.

Algorithm B. The previous algorithm works well when 1/5 is not too large. To get a better
dependency on 1/7 as in the second bound, more work is required. Our first step is still flattening
the distributions, but up to the scale 1/k instead of 5. This is done exactly in [35] and [16, Theorem
2.2.2]. Let k, = |kq(a)] + 1 for each a € K and let ¢’ (a;) = q(a)/k, for each a € K and i € [k,].
The flattened distributions p” and ¢’ satisty the following properties:

(a) Given an explicit description of g, one can efficiently give an explicit description of the
flattened distribution g;

(b) Given access to the sampling oracle for p, one can efficiently generate samples from the
flattened distribution p’;

(c) The KL divergence is preserved, i.e., Dk, (p" || ') = DL (p || 9);

(d) The size of the new domain is kK’ < 2k;
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(e) For every a; € K’, we have n/2 < q'(a;) < 2/k’;
(f) We have ||q'[|, < v2/k’.
The proofs of these properties are the same as before or as in [16, Theorem 2.2.2] so we omit here.
We only mention the lower bound on ¢’ (a;): since k, = | kq(a)| +1 < kq(a) + q(a)/n we have that
9@ g@
ka kq(a)+$ kn +1

q (@)= > g

Therefore, it suffices to consider the identity testing problem with respect to distributions p” and ¢’
satisfying properties (e) and (f). For ease of notation, in the rest of the proof we assume that our
p, q are already flattened to satisfy (e) and (f), instead of writing p’, ¢’, and k’.

Our second step is to divide elements in K into two classes, those with larger probability mass
and those with smaller one, and to upper bound the KL divergence by dealing with the two classes
separately. Let

£
¢= 10k In(2/7)’

andlet K; = {a e K:q(a) > {} and K, = {a € K : /2 < q(a) < {}. Hence, {K3, K} forms a
partition of K. We upper bound the KL divergence of p and q as follows. Observe that

Daplla= Y, plain 58+ 3 paymZE. ®
ac kK ackK;
For the second term, we have
> pla >1n( ) > p@n(2/n) = (In(2/n)) p(%e). ©)
ackK; ) ac’k;

For the first term, we have
r(@) p@) _
a;(”“ln(m) 2, ”(() 1)
p(a) p(a)
= 3 =gt (55 - 1)+ 3 gt (22 -1

acK; acK
-y, WO IOR L p) - go
ac K
éVIIP qll5 + q(%:) — p(%z), (10)

where the last inequality is because q(a) > { for a € K;. Therefore, combining (8)—(10) we obtain

Dxw(pllg) < IIP qll; + (In(2/n) = 1) p(%3) + (%) (11)

¢

In particular, (11) directly implies the following fact.

Fact 4.7. If Dxp (p || q) = ¢, then

4
either p(%;,) > or |lp— q||§ > ggg.

&
5In(2/n)
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To see this, suppose on contrary that p(%;) < ¢/(5In(2/n)) and [|p — ql|3 < ‘—S‘ggv. Since we know

&

9(e) < Sk = 100 < s’

we deduce from (11) that
4 1
e<Dgr(pllg < §5+g£=e,

which is a contradiction.

Our identity testing algorithm proceeds by conducting two tests independently. In the first test,
we try to distinguish between p(K,) = q(Kz) and p(K3) > ¢/(51n(2/n)) with failure probability
1/6 and sample complexity m; = O(In(1/75)/¢). (If K, = 0 then we do nothing in this first stage.)
To be more precise, let X (respectively, Y) be the indicator of the event that a sample drawn from
p (respectively q) is contained in /5. So both X and Y are Bernoulli random variables, where
the expectation q(K;) > 0 of Y is known to the algorithm, while the expectation p(K3) of X is
unknown but we have sample access to X via samples from p. We would like to distinguish between
the two cases p(K>) = q(K3), i.e., X and Y are the same, and p(K>) > ¢/(5In(2/n)), ie., X and Y
are far from each other since q(K3) < ¢/(101n(2/n)). This is a standard property testing problem
for Bernoulli random variables. We use the testing algorithm from Lemma 4.9 for

£
= Sq Ktz

with failure probability 1/6, using m; = O(In(1/n)/¢) samples from X.

In the second stage, we run the tester from Lemma 4.6 to distinguish between p = ¢ and
lp—qll? > 2¢{ with failure probability 1/6. Let m; be the number of samples that the ¢, tester
uses, and we obtain from Lemma 4.6 that

) lgl, 1 |\ _ . (Vk(i/p)
ms =0 (max{?z, \/_g_g}) =0 (T)

where we use the property (f) from flattening.

Suppose in both tests the outputs are Yes (i.e., p(K3) = q(K3) in the first and p = q in the second),
then our identity testing algorithm will output Yes (i.e., p = q). If in at least one test the output is
No, then our identity testing algorithm will output No (i.e., Dx, (p || ¢) = ¢). To finish up the proof,
we still need to bound the failure probability and the number of samples needed for our testing
algorithm. Suppose first that p = g, and hence p(%K;) = q(%K3). Our testing algorithm wrongly
outputs No if at least one of the two tests makes a mistake and outputs No. By a simple union
bound, the probability of this is at most 1/6 + 1/6 = 1/3. On the other hand, if Dk, (p || q) > ¢, then
either p(%K3) > ¢/(51In(2/n)) or ||p — q||§ > %5{ by Fact 4.7, and so at least one of the two tests
should output No if it does not make a mistake. Hence, the failure probability is at most 1/6. Finally,
the number of samples we need is

my+my =0 (ln(i/n)) +0

This establishes the second bound of the lemma. m]

Y

£2

«/Elnu/q)) ) O(x/ﬁln(l/n))
&2 e

4.3 ldentity Testing for KL Divergence on Binary Domain

If k = 2, i.e., we have a binary domain K = {0, 1}, then the sample complexity for the KL tester is
better.
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For p € [0, 1], the Bernoulli distribution denoted by Ber(p) is the distribution over {0, 1} such
that Pr(X = 1) = p. We record below the standard Chernoff bounds.

LEmMMA 4.8 (CHERNOFF BOUNDS). Suppose Xi, ..., Xy, are independent Bernoulli random variables

from Ber(p) where p € [0,1]. Let p = L 3™ X; denote the sample mean. Then for all § > 0,

Pr(p < (1-8)p) < e ¥Pm/2,

-5%pm/3 0<8§<1;
. —52]) /(2+5) e 5 = -
Pr(p>(1+8)p) <e P = {e-épmﬁ, §>1.

The following is a folklore fact.

LEMMA 4.9. Lety > 0 be a real number. Given q € (0,1/(1+ y)] and sample access to Ber(p) with
unknown p € [0, 1], there exists a polynomial-time identity testing algorithm that distinguishes with
probability at least 2/3 between the two cases

p=q and p=(1+y)q (12)
with sample complexity
1

ol—1, 0<y<1
(yzq)

1
O(m)’ vzl

ProoOF. Let p denote the sample mean of m independent samples from Ber(p) where
Fo( 1+ y)}
m=|—-——|.
yq
If p < (1+y/2)q, then the tester concludes p = g; otherwise, it concludes p > (1 +y)q.
Suppose first p = g. Then by the Chernoff bound Lemma 4.8 we have

2
5 Y __ram 1
Pr(p = (1+ z)q) < exp( 2(4+)/)) < 3
If p > (1+y)gq, then again by the Chernoff bound Lemma 4.8 we have

e o2 <o« (22w - )
v’pm vgm ) _ 1
= (_8(1—+y)2) =P (_8(1 +Y)) E

Finally, for 0 < y < 1 one has (1+y)/y? < 2/y? and for y > 1 one has (1+y)/y*> < 4/(1+7y),
which completes the proof of the lemma. O

We now give our testing algorithm for Bernoulli random variables.

LEMMA 4.10. Let ¢ > 0 be a real number. Given q € (0,1) and sample access to Ber(p) with
unknown p € [0, 1], there exists a polynomial-time identity testing algorithm that distinguishes with
probability at least 2/3 between the two cases

p=q and Dy (Ber(p)||Ber(q)) = ¢ (13)
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with sample complexity

o (ln(l/q))

€
where n = min{q, 1 — q}.

Proor. We may assume without loss of generality that ¢ < 1/2 and 5 = g, as otherwise we can
flip the Bernoulli. For g € (0,1) and p € [0, 1], we define

1-—
(5. ) = Do (Ber(p) | Ber(g)) =pln T+ (1= p)In 1.

The testing algorithm is as follows. Let S < T be parameters which, as will be clear soon, depend
on the distance parameter ¢ and the mean q of the given Bernoulli (note that both ¢ and g are
known to the algorithm). Compute the sample mean p for p using m independent samples from
Ber(p). The testing algorithm determines p = q or ¢ (p, q) > ¢ by checking whether p belongs to
the interval [S, T] or not. More specifically, if € [S, T], then it outputs p = q. If p ¢ [S, T, then it
outputs ¢ (p, q) > €. We need to choose suitable S and T so that the algorithm is accurate with
high probability and the number of samples required is minimized. Given ¢q € (0,1/2] and ¢ > 0,
we will consider three separate cases.

Case 1: ¢ < 2q. We choose S = ¢ —/eq/8, T = q ++/¢q/8, and let

-]

be the number of samples. If p = g, then by the Chernoff bound (Lemma 4.8) we have

)
Pr(p¢[ST)] < Pr(|ﬁ—q| > \/%) < 2exp (—%) < %,

where we use /eq/8 < q/2 by the assumption ¢ < 2q.
Now suppose ¢ (p, q) > ¢. By Lemma 4.5, we have

2
e < pu(p.q) < a(p -9

and hence either p < g —/eq/2 or p > q+ +/eq/2. Suppose p < q —+/eq/2.If p = 0 then trivially
Pr(p €[S, T]) =0since S = g—+/eq/8 = q/2 > 0.1f 0 < p < g—+/€q/2, then again by the Chernoff
bound (Lemma 4.8) we have
A A (S—p)*m em
P S, T]) <P >S) < —— | < -—— | <
t(pe[ST) <Pr(p>S) exp( wis=) = (5)

where the second to last inequality follows from S+ p < 2q and (S — p)? > eq/8.1f p > q + +/eq/2,
then Lemma 4.8 gives

B

_ T2
Pr(pe[S,T]) <Pr(p<T)<exp (—%) < exp (—%) < %

where the second to last inequality follows from the fact that (p — T)?/(2p) is minimized at
p =q++/€q/2 < 2q and hence
(-1 (a+ea2-T* ¢
2p  2(q++Jeqi2) 32
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Case 2: 2q < ¢ < 2q1In(1/q). (This case is possible only for g < 1/e.) Again if ¢ (p, q) > ¢ then

either p < g —+/eq/2 or p > q++/eq/2. But since ¢ > 2q, we have g — y/eq/2 < 0 and hence it must
be p > q + +/eq/2. This means that, we need to distinguish between p = g versus

p=q++eq/2 > 2q

as ¢ > 2q. Therefore, we can apply the identity tester from Lemma 4.9 for y = 1 with sample

complexity
m=0 (l) -0 (M)
q €

since ¢ < 2qIn(1/q).
Case 3: ¢ > max{2q, 2qIn(1/q)}. Just as in Case 2, if pi(p,q) > ¢ then one must have p > g,
since p < q implies

1
P (P, @) < @ (0,9) = ln(—) <1 < 2q.
1-¢q 1-¢
Since p > g, we have 1 — p < 1 — q and thus

p 1-p p 1
e<ou(p,q) =pln=+(1-p)ln—— <pln= < pln-.
p.q)=p p p 1-¢ P q P p

Therefore, it suffices to distinguish between p = g and p > ¢/In(1/q) > 2q. The identity tester
from Lemma 4.9 for y = ¢/(qIn(1/q)) — 1 > 1 can achieve 2/3 success probability with sample

complexity
In(1
n-o(249),
€

This completes the proof of the lemma. O

4.4 Applications
Here we give several applications of Theorem 4.1.
4.4.1  Product Distributions. For each i € [n] let y; be an arbitrary distribution over K, and define

a product distribution p = p; ® - - - ® pp, over K. It is well-known that every product distribution
satisfies approximate tensorization of entropy with an optimal constant C = 1.

LEmMmaA 4.11 ([20, 22, 56]). Let i be any product distribution over K". For any distribution & over
K" such that & < p, we have

Dit, (211 ) £ ) By | D (- 1 ) - 1) |-
i=1

Namely, every product distribution satisfies approximate tensorization of entropy with constant 1.

For a product distribution p, define () = min;e () mingeg. ;; (a)>0 fi(@). Observe that p is n(y)-
balanced. Let £ (n) denote the collection of all product distributions y such that n(y) > 5. The
following corollary follows immediately from Theorem 4.1 and Lemma 4.11.

COROLLARY 4.12. Letn € (0,1/2] be real. There is a polynomial-time identity testing algorithm
for the family P (n) of n-balanced product distributions with query access to both Coordinate Oracle
and General Oracle and for KL divergence with distance parameter ¢ > 0. The query complexity of
the identity testing algorithm is O((n/¢) log®(n/¢)).
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4.4.2  Sparse Ising Models in the Uniqueness Region. An Ising model is a tuple (G, f, h) where

—G = (V,E) is a finite simple graph;
—pf : E — R is a function of edge couplings;
—h : V — Ris a function of vertex external fields.

We may also view f§ and h as vectors; in particular, we write 3, to represent the edge coupling of
an edge {u,v} € E, and write h, to represent the external field of a vertex v € V.
The Gibbs distribution of an Ising model (G, §, h) is given by

exp Z Puvoyuoy + Z hyoo|, VYoe{+ —}V,

{u,0}€E veV

(0) = —
Gpn\0) =
H(G.B.h) Z(G,ﬁ,h)

where

Z(G,ﬁ,h) = Z exp Z ﬁuuo'uo'v + Z hvo'u

oe{+-}V {uo}eE vev
is the partition function.

Definition 4.13. (The Family I S(A, 8, h*) of Ising Models in Tree-Uniqueness). For an integer A > 3
and reals § € (0,1),h" > 0, let ZS(A, 8, h*) be the family of Gibbs distributions of Ising models
(G, B, h) satistying:

(1) The maximum degree of G is at most A;

(2) We have (A — 1) tanh(f*) < 1 - 6§, where * = maxy, ek | fuo| denotes the maximum edge
coupling in absolute value;

(3) For each v € V(G), we have |h,| < h*.

Recent works toward establishing optimal mixing of Glauber dynamics have shown approximate
tensorization of entropy for the family 7 S(A, §, h*).

LEMMA 4.14. ([27, 28]). For any integer A > 3 and reals § € (0,1), h* > 0, there exists a constant
C = C(A,8,h*) = 1, such that every Ising distribution pu from the family I S(A,, h*) satisfies
approximate tensorization of entropy with constant C.

We then deduce the following corollary from Theorem 4.1 and Lemma 4.14.

COROLLARY 4.15. Suppose A > 3 is an integer and § € (0,1), h* > 0 are reals. There is a polynomial-
time identity testing algorithm for the family I S(A, 6, h*) of Ising models with query access to both
Coordinate Oracle and General Oracle and for KL divergence with distance parameter ¢ > 0. The
query complexity of the identity testing algorithm is O((n/e) log®(n/e)).

4.4.3 Distributions Satisfying Dobrushin Uniqueness Condition. Let p be a distribution over K".
For i, j € [n], the Dobrushin influence of i on j is given by
aup= max dry (g | X =), g | Xy =x7)),
(X,X')GC,‘J
where C; ; denotes the collection of all pairs (x, x") of vectors in K™\ such that U(Xn\j =x) >0,
#(Xm\; =x") > 0,and x, x" either are the same or differ exactly at the coordinate i. The Dobrushin

influence matrix A is an n X n matrix with entries given as earlier. Note that A is not symmetric in

general.
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For b € (0,1/2], we say the distribution y is b-marginally bounded if for every A C [n], every
x € KM with (X = x) > 0, every i € [n] \ A, and every a € K, one has

either p(X;=a | Xpa=x)=2b orpX;=a|Xpr=x)=0.

Note that though seemingly similar, the notion of marginal boundedness is not the same as
the coordinate balancedness defined in Section 3.3. We observe that any b-marginally bounded
distribution is also b-balanced.

For § € (0,1) and b € (0,1/2], let D (3, b) be the family of all distributions over K" satisfying
the following conditions:

(1) The Dobrushin influence matrix A of y satisfies ||Al|, < 1-6;
(2) pis b-marginally bounded.

Marton proved that every distribution from the family D (8, b) satisfies approximate tensorization
of entropy.

LEMMA 4.16 ([57]). Suppose § € (0,1) and b € (0,1/2] are reals. Every distribution u from the
family D(8,b) satisfies approximate tensorization of entropy with constant C = 1/(b&?).

The following corollary follows from Theorem 4.1 and Lemma 4.16.

COROLLARY 4.17 Suppose & € (0,1) and b € (0,1/2] are reals. There is a polynomial-time identity
testing algorithm for the family D (38, b) with query access to both the Coordinate Oracle and the
General Oracle and for KL divergence with distance parameter ¢ > 0. The query complexity of the
identity testing algorithm is O((n/e) log®(n/e)).

For Ising models, there is also a stronger version of Dobrushin uniqueness in literature.

Definition 4.18 (The Family I Sp(6, h*) of Ising Models in Dobrushin-Uniqueness). For § € (0,1)
and h* > 0, let 7Sp (8, h*) be the family of Gibbs distributions of Ising models (G, f, h) satisfying:

(1) For each v € V(G), we have ¥,en(p) |fuol < 1-6;
(2) For each v € V(G), we have |h,| < h*.

Notice that in the Ising model we have a,,, < tanh(|f,,|) < |fuo| for {u,0} € Eand a,, = 0
for non-edges. So we have 7Sp (8, h*) € D(8,b) for b > 1/(e*™*+V) + 1). Hence, the following
corollary follows immediately from Corollary 4.17.

COROLLARY 4.19. Supposed € (0,1) and h* > 0 are reals. There is a polynomial-time identity testing
algorithm for the family 1 Sp (8, h*) of Ising models with query access to both Coordinate Oracle and
General Oracle and for KL divergence with distance parameter ¢ > 0. The query complexity of the
identity testing algorithm is O((n/¢) log’(n/e)).

4.5 ldentity Testing for TV Distance

One of the main goals of this article is to give efficient identity testing algorithms without any
restriction on the noisy, unknown distribution 7. However, since we work with KL divergence in
most parts of our algorithmic results, one assumption we have to make is that the support of the
hidden distribution x is contained in that of the visible y, denoted by 7= < p. This is necessary for
the KL divergence Dxy, (7 || #) to be finite. However, we emphasize that this assumption is fairly
mild and does not introduce any restriction in many settings for the following two reasons: (1) In
many cases the visible distribution y is already fully supported on K™ and hence the hidden one 7
can be arbitrary, e.g., y is the uniform distribution or from an Ising model. (2) Testing algorithms
for KL divergence can be easily applied as a black box to obtain identity testing algorithms for
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TV distance, where in the latter we do not require 7 < p. Here we show how our identity testing
algorithm (Algorithm 1) can be used to test for TV distance.

LEMMA 4.20. Suppose Ax;p is an identity testing algorithm for a family ¥ of distributions with
query access to both Coordinate Oracle and General Oracle and for KL divergence with distance
parameter ¢ > 0. The query complexity of Ax,.p is m(n, 1/¢) and the running time of Ay, is
polynomial in n and 1/¢. Then there exists a polynomial-time identity testing algorithm Ary..p for ¥
with the same query access and for TV distance with distance parameter ¢ > 0. The query complexity
of Aryp is O(m(n, 2/€?) +1/¢).

Proor. Let X, € X denote the support of y. By the law of total probability we have 7(-) =
m(Xy) (- | Xy) + (X)) m(- | X;) where X7 = X'\ X, is the complement. Therefore, we obtain
from the triangle inequality that

dry (7, ) < 2(XS) +dry (- | X, p) -

In particular, if dv (7, 4) > ¢, then either 7(X}) > ¢/2 or d1v (m(- | Xu), 1) > £/2, where the latter
implies Dxy, (7(- | X,,) || ) > €?/2 via the Pinsker’s inequality.

Our testing algorithm Ary.;p runs in two stages. In the first stage, we distinguish between
m(Xj;) = 0 versus m(X}) > ¢/2 using O(1/¢) samples from r, and we say 7 passes this stage if
none of these samples is in X. In particular, by choosing suitable constants we can make the
failure probability at most 1/3, i.e., if 7(X};) > ¢/2 then the probability that 7 passes is at most 1/3.
Observe that if 7(X};) = 0 then it always passes the first stage.

In the second stage, we test between (- | X,,) = pversus Dxy, (7(- | X)) || ) > €%/2, using Ao
with failure probability 1/3. Note that if we saw samples that belong to X; when running Ay,
either from calls of Coordinate Oracle or from calls of General Oracle, we can safely conclude that
n # p and hence dyy (7, ) > €. Otherwise, these samples can be viewed as generated perfectly
from the conditional distribution (- | X,). We say 7 passes the second stage if Ay,;p, outputs Yes
(e, z(- | Xy) = p).

If = passes both stages then Ay p outputs Yes (i.e, 7 = p); otherwise it outputs No (i.e.,
drv (7, 1) > ¢). Observe that, if 7 = p then it passes the first stage always and passes the second
stage with probability at least 2/3. Meanwhile, if drv (7, 1) > ¢ then either 7(Xj) > ¢/2 or
Dxp, (7(- | Xy) |l p) > €2/2.1F m(Xj;) > ¢/2 then it passes the first stage with probability at most 1/3.
And if Dyp (7 (- | X,) || p) > €%/2 it passes the second stage with probability at most 1/3. Hence,
the probability that 7 passes both stages is at most 1/3. Therefore, Ary.p is a polynomial-time
identity testing algorithm with sample complexity O(m(n, 2/¢%) + 1/¢). O

5 Hardness of Identity Testing When Approximate Tensorization Fails

In this section we show that approximate tensorization is essentially a necessary condition for
efficient identity testing, in the sense that there are high-dimensional distributions, specifically the
anti-ferromagnetic Ising model, for which either approximate tensorization holds with constant
C = O(1) (and thus there is an efficient identity algorithm from Theorem 1.2) or there is no
polynomial-time identity testing algorithm with General Oracle and Coordinate Oracle access
unless RP = NP.

We prove the hardness result in Theorem 1.4 from the introduction in the following sections.
We use a reduction from the maximum cut problem to identity testing. In particular, given a
hard maximum cut instance, we construct an identity testing instance whose outputs provide the
maximum cut. Our reduction is inspired by the one in [5], but we use a different “degree reducing”
gadget (namely, the one from [64]), and we are also required to design an algorithm to sample from
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the hidden model we construct. This is challenging because sampling from the anti-ferromagnetic
Ising model is NP-hard in general, but for our instance we manage to do it using a hybrid approach.
Specifically, we use the recent algorithm from [54] for low-rank Ising model for one range of
parameters and polymer models [50] for the other. Both algorithms rely on the fact that the graph
in our testing is a random bipartite graph with trees attached to it that happens to be a good
expander.

Our proof is organized as follows. First, we introduce our degree reducing gadget in Section 5.1.
The testing instance construction and the reduction is then provided in Section 5.2. Finally, Sections
5.3 and 5.4 contain our sampling algorithm.

5.1 The Degree Reducing Gadget
The gadget construction has as parameters integers n > 1, d > 3 and real numbers 0 < 6,y < 1/8.
Let¢ = ZL% log, ,n],t=(d- 1)L0lea1m) and m = t(d — 1)¢. The gadget is constructed as follows:

(1) Let G = (Va, Es) be a random bipartite graph with n + m vertices on each side.

(2) For s € {+, -}, let the vertices on the s-side of G be W, U Uy, where |W;| = n and |Us| = m.

(3) Let My,...,My_1 be d — 1 random perfect matchings between W, U Uy and W_ U U_, that is,
each M; is drawn uniformly at random from the set of all perfect matching between W, U U,
and W_ U U_.

(4) Let M’ be a random perfect matching between W, and W_.

(5) Set Ez = M’ U (Uf;ll Mi).

(6) Construct collections 73 and 7_ each of ¢ disjoint (d — 1)-ary trees of height ¢.

(7) Adjoin 75 (resp., 7-) to G by identifying each vertex of U, (resp., of U_) with one of the leafs
of the trees in 7 (resp., 7_). We denote the set of roots of the trees in 75 (resp., 7-) by Ry
(resp., R-).

Let G = (Vg, Eg) be the random multi-graph resulting from this construction.

5.2 The Reduction

Let (K = (Vk, Ek), k) be an instance of the maximum cut problem. Namely, we want to distinguish
between the cases max-cut(K) < k and max-cut(K) > k, where max-cut(K) denotes the size of
the maximum cut of the graph K.

Let N = |Vk|; we may assume that N = n”/**, where n and 0 are the parameters for the degree
reducing gadget construction in the previous section. Form the multi-graph F = (Vf, Er) by adding
two special vertices s and ¢ to K (i.e., Vg = Vg U {s, t}), connecting s and t with N2 —k edges, and
adding N edges between each s and t and each vertex in V; note that F has |Ex| + 3N? — k. This
construction ensures that:

0/12

(1) When max-cut(K) < k, then ({s, t}, V) is the unique maximum cut of F and has size 2N?;
(2) When max-cut(K) > k, then there exists another cut in F whose size is at least 2N?; this cut
is obtained by taking the maximum cut for K and adding s and ¢ to opposite sides of it.

Next, we generate an instance G = (Vg, Eg) of the degree reducing gadget from Section 5.1.
We then obtain the multi-graph F = (V Eg) by replacing every vertex v € Vp with a copy G; we
label each copy of G by G? and let R and R? denote R, and R_ for G,. Moreover, for each edge
{u,v} € Ep, we add a matching of size n3?/# between R? and R¥, and another matching of the same
size between R® and R*. Note that F is a d-regular multi-graph.
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We will consider the anti-ferromagnetic Ising model on the multi-graph F. (See Section 4.4.2 for
the definition of the Ising model on a simple graph. The definition extends to the multi-graph setting
by simply considering multi-edges in the summation.) For a configuration o € {+1,-1}"5, we
define its phaseY, (o) as +1 if the number of vertices assigned —1 in W, is greater than the number

of vertices assigned —1 in W_; otherwise we set Y (o) = —1. For a configuration ¢ € {+1,-1}'7,
we let Y (o) denote the phase vector of o, which contains as coordinates the phase of ¢ in each
gadget G,.

Let Q = {+1,—1}"F be the set of all phase vectors. Let &, € Q (resp., &;; € Q) be the phase vector
that assigns +1 (resp., —1) to s, t and —1 (resp., +1) to every other gadget in F.Let Qg = {&5. 8}
Observe that each phase vector Y (o) corresponds to a cut in the graph F, with the phase determining
the side of the cut for each vertex.

Let Q C Q be the collection of all phase vectors corresponding to cuts ({s} UU, {t} UVr \ U)
of F, which in turn correspond to cuts (U, Vk \ U) of K of size < k. Let Qg be Q; together with the

phase vectors for cuts ({s,t} UU, Vg \ U) of F. Then:

(1) if max-cut(K) < k, then Qy = Q;
(2) if max-cut(K) > k, then Qy € Q and Q\ Q, contains at least one phase vector corresponding
toacut ({s} UU,{t} UVg\U) of F, where (U, Vg \ U) is a maximum cut for K.

We are now ready to describe our instance for the identity testing problem. Let f < f.(d) :=
—% In( ﬁ); this parameter regime corresponds to the so-called tree uniqueness region for (d—1)-ary
infinite trees. The visible distribution of our testing instance will be the Gibbs distribution yz 8 for
the anti-ferromagnetic Ising model on F. The hidden distribution will be UE ﬁ(' | Y(o0) € Qy), that is,
HEp conditioned on the phase vector being in Q. Our construction ensures that if max-cut(K) < k,
then yi ﬁ(' | Y(o) € Q) = HE - In addition, we have the following fact.

LeEMMA 5.1. If max-cut(K) > k and f < B.(d), then dry (Ffﬁ(‘ | Y(o) € Qo),ufﬁ) =1-o0(1).
Proor. Observe that
drv (ip (1 V(o) € Qopzg) = D) hpylo),
Y (6)€Q\Qp
Since max-cut(K) > k, the set Q \ Q) contains (at least) the phase vector corresponding to a
maximum cut of F. Hence, 5.y(s)c0\q, HE g is at least the probability that a sample from HE g
reveals a maximum cut for F. The results in [14, 42, 64] imply that this probability is indeed

1-1/ 2n”"* as desired. Specifically, the argument in the proof of Theorems 1 and 2 in [64] shows
that this holds (under certain conditions) for the hard-core model; [42] extends the argument for
any anti-ferromagnetic spin system (including the Ising model); and Lemma 22 from [14] shows
that the required condition holds for all § < —% In( %) in the tree uniqueness region. O

The idea of our reduction is to provide this testing instance to a presumed polynomial-time
identity testing algorithm and use its output to determine whether uz ﬁ(- | Y(0) € Q) = pg 5 OF

drv (15,5 1 Y(0) € Q). iz p()) = 1= 0(1).

This gives whether Qy = Q or not, and thus whether the max-cut(K) < k or not, which would solve
the maximum cut problem in randomized polynomial time and imply that there is no polynomial-
time identity testing algorithm unless RP = NP.

All that remains to complete the reduction is that we show how to sample (in polynomial time)
from the hidden distribution HE ﬁ(' | Y(o) € Q) and how to simulate the Coordinate Oracle for it.
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Simulating the conditional marginal oracle for yi; ﬁ(' | Y(o) € Qo) is straightforward. Given a
vertex v € V3 and a configuration o € {+1, —1}VA\M®} we can first check if Y(o) ¢ Q; if this is the
case, we output {+1, —1} arbitrarily. Otherwise, we sample from the vertex marginal yz ﬁ(' | o),
which can be done in O(d) time. Sampling from HE ﬁ(' | Y(o) € Q) is much trickier, but it can
be done relying heavily on the structure of the graph F; note that the problem of approximately

sampling anti-ferromagnetic is computationally hard, even in the bounded degree case. We prove
the following.

LEMMA 5.2. For any ¢ € (0,1) and any phase vector Y € Q there is an algorithm that generates a
sample from a distribution i, such that dry (ﬂALG, '”Fﬁ(' | y)) <e+ ln(l/e)e—Q(ne/4) with running
time poly(|Vzl, 1/¢).

The proof of this lemma is provided in Section 5.3. We are now ready to prove Theorem 1.4 from
the introduction.

Proor oF THEOREM 1.4. The first part of the theorem was proved in Section 4.4.2. For the second
part, suppose there is an identity testing algorithm with polynomial running time and sample
complexity.

Let (K = (Vk, Ek), k) be the instance of the maximum cut problem with |Vx| = n®/**. Set M5 5 to
be the visible distribution and yz ﬁ(' | Y(o) € Q) to be the hidden one. Suppose L = poly(n) is the
sample complexity of the testing algorithm in this instance. Generate a set S of L samples from the
distribution p,;¢ from Lemma 5.2 setting ¢ = 1/(100L), so that

0/12

1
drv (g H2E( | Y(0) € Q0)) < L drv (o g | Y(0) € Q) < =,

®L and ygz (-] Y(o) € Qo) denote the product distributions corresponding to L independent

where p%.
samples from fi5,c and pz ﬁ(' | Y(o) € Qq), respectively.

Our algorithm for solving (K = (Vk, Ek),k) gives S to the testing algorithm. Recall that
our construction ensures that if max-cut(K) < k, then :”ﬁﬁ(' | Y(o) € Qp) = HE g and that if

max-cut(K) > k then

drv (llﬁﬁ(- | Y(o) € QO),pEﬂ) =1-0(1); (14)

see Lemma 5.1.
If 7L is the optimal coupling of the distributions p®% and ,ug; (-] Y(o) € Q),and (S,8’) is

ALG
sampled from 7%, then S’ = S with probability at least 49/50, S ~ u€L and S’ ~ y§;(~ | Y(o) €
Qo). Therefore, if (14) holds (i.e., max-cut(K) > k), then ’

®L]

Pr[TESTER outputs YEs when given samples S where S ~ ¢

= Pr[TESTER outputs YEs when given samples S where (S, S’) ~ 7]
< Pr[TESTER outputs YES when given samples S’ where (S, 8’) ~ 78] + 7®L(S # 8')

= Pr[TESTER outputs YEs when given samples S’where S’ ~ ,ug;( | Y(0) € Q)] + %L (S8

B

1 1 53
3 50 150
Hence, the TESTER returns No with probability at least 3/5 in this case.
Now, when max-cut(K) < k and tufﬁ(' | Y(0) € Q) = HF g» We can analogously deduce that the

TESTER returns YES with probability at least 2/3. Therefore, our algorithm can solve any maximum
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cut instance (K = (Vk, Ex), k) in polynomial time with probability at least 3/5, and the result
follows. O

5.3 Sampling Conditional on the Phase Vector: Proof of Lemma 5.2

We start with a number of definitions and facts required to describe and analyze our algorithm to
establish Lemma 5.2. The proofs of these facts are provided in Section 5.4. The first lemma states
that it essentially suffices to sample from the simpler conditional distribution pz /3(' | Y(o) € Q).

LEMMA 5.3. dry (pﬁ’ﬁ(- | Y(0) € Quo). iz 5+ | Y(0) € QO)) < b

We call the roots in [,ey, (RY UR?) used to connect the degree reducing gadgets ports. Let P denote

the set of all ports of F; we also use P C P to denote the set of ports of the gadget G,.

For a configuration {+1, —1}f7, let Zg, p(op,) denote the sum of the weights of all the configura-
tions on G, that agree with op,. We will need an approximation algorithm for this quantity and
an approximate sampling algorithm for g, 4(- | op,). A fully polynomial-time randomized
approximation scheme (FPRAS) for Zg, 3(op,) is an algorithm that for every e > 0 and § € (0,1)
outputs Z so that, with probability at least 1 — &, e*Z < Zg, plop,) < e*Z and runs in time poly-
nomial in |Vg,|, 1/¢ and log(1/6). A polynomial-time sampling algorithm for yg, 4(- | op,) is a
randomized algorithm that for every ¢ > 0 runs in time polynomial in |Vg,| and 1/¢ and outputs a
sample from a distribution e-close in TV distance to yg, 4(- | op,).

LeMMA 5.4. Let op, € {+1,—1}* be an arbitrary spin configuration on P,. For all sufficiently large
d = O(1), with probability 1 — o(1) over the choice of the random multi-graph G,, for all f < 0 there
is an FPRAS for Zg, g(op,) and a polynomial-time sampling algorithm for ug, s(- | op,).

For Y € Q,let upg(- | Y) denote the marginal distribution ofyf’ﬁ( | Y) on P. When f < .(d),
in the non-uniqueness regime for the infinite (d — 1)-ary tree, there are two semi-translation
invariant measures, denoted p* and pi~. These measures can be obtained by conditioning on the
leaves at level 2h (resp., 2h + 1) to have spin —1, and then taking the weak limits as h — oo. Let p*
(resp., p~) be the probability that the root of the tree is assigned —1 under p* (resp., p7).

Let PY = RYNP,and P® = R® NP,. For i € {+1, -1}, we define the following product distribution
over configurations ¢ € {+1, -1} on P,:

QZ(G) — (pi)|0'_(—1)ﬂPf|(l _ (pi))\(r_(+1)ﬁPf|(p—i)|0'_(—1)ﬂPf’|(1 _ (p—i))|0'_(+1)ﬂPf’|,

where o7 (i) denotes the set of vertices from P, assigned spin i in o.

The product distribution Q} (resp., Q) is known to be a good approximation for yig, g (- | Y, = +1)
(resp., pig, p(- | Yp = —1)), as formalized in the following lemma. Here Y, denote the phase of the
gadget G,.

LEMMA 5.5 (LEMMA 22 [14] AND LEMMA 19 [42]). Let f < B.(d). Then, there exists 0 and  such
that for s € {+1, -1}, with probability 1 — o(1) over the choice of the random n-vertex multi-graph
Gy, for any op, € {+1, —1}° we have

-20 ﬂGv,ﬂ(o'Pv | Yy =)

b T s on)

<1+

<1+n%. (16)

Moreover, fors € {+1,—1} we have g, (Y, = s) > %
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Next, for a phase vector Y € Q we define another product measure this time over configurations
o€ {+1,-1}Y on P. Let

wl“;/(O') = 1_[ QZVU(O'PU) l_[ ehouos

veVp {u,0}€E(P)
where E(P) is the set of edges with both endpoints in P. Let Z}y = Doe(+1,-1)P Wp‘y(O') and define

(0)

P

Q7 (o) =

We have the following approximation for yp g(- | V) in terms of Qg .

LEMMA 5.6 Let f < fB.(d). For every Y € Q and o € {+1,-1}F, we have

ppp(o | Y)
Q7 (o)

Finally, we will also use the following fact.

-1 =0(1).

LEMMA 5.7 Let Y € Q. Suppose op € {+1, -1} is sampled from QP and that o € {+1,-1}"F is

then sampled from ,uFﬂ( | op). Then, the phase vector of o is Y with probability at least 1 — e~ Q)

We can now provide the proof of Lemma 5.2.

PrROOF OF LEMMA 5.2. Let o™ denote the all-plus configuration on P. For o € {+1, —-1}F, recall
that we use Z5 ﬂ(a, Y) to denote the total weight of the configurations of F that agree with ¢ on P
and have phase vector Y. The algorithm is as follows:

(1) Sample Y € {&,, £, } uniformly at random. Note that by ignoring all other phase vectors in
Qy, the error is at most 1/2”6/‘1 by Lemma 5.3.

(2) Sample op € {+1,-1}" from a distribution £/3-close in TV distance to ppp(- | Y) with the
following rejection sampling algorithm:
2.1 Generate op € {+1, -1} from the product distribution Qg
2.2 Compute the approximation Z(op) for Z ﬁ(ap, Y) such that

(1= =) Zrplon ¥) < Z(ow) < (1+ ) Zg plon W)

this can be done in time poly(|Vz|, 1/¢) with success probability at least 1 — ¢/3 by
Lemma 5.4.
2.3 Accept op with probability:

2.4 Repeat until accept or exceed T = cIn(1/¢) rounds, for a suitable constant ¢ > 0, in
which case we let op = o*.
(3) Sample the conﬁguration of each gadget G, conditional on the port configuration op, on P,
from a distribution 3|V | ~close to pg, g(- | op,) with the algorithm from Lemma 5.4.
(4) Output the resulting configuration o.

ACM Transactions on Algorithms, Vol. 21, No. 1, Article 7. Publication date: November 2024.



7:34 A. Blanca et al.

For the analysis of this algorithm, let us focus first on the rejection sampling process in Step 2.
First, note that the process is well-defined since

1 0Y(a%) Z(O’p) 1 Q;‘)/(ff) ZrplonY)
T30 0Y(op) 20" 5 0l(op) Zeplot )
_ 1 peplop | Y) 07 (o*)
5 QY(on)  pepe 1Y)
where the last inequality follows from Lemma 5.6. Second, each iteration of the rejection sampling
algorithm can be implemented in polynomial time; in particular, we can compute r(op) using
the FPRAS from Lemma 5.4 to obtain Z(op) and Z(¢"). Finally, we claim that the output of

this algorithm is at least £/3-close to pp g(- | M) in TV distance. To see this, note that for each
op € {+1,—1}7, the probability that process outputs op in one round is

(P)
Z(o%)

Therefore, conditioned on the algorithm accepting on the first T = ¢ In(1/¢) rounds, the probability
that op is the output is

0F (op)r(op) = ==+ 0¥ (6") - 272  Z(ap).

7 75(0p.Y)
Zop) ( N f) ZFp
S 2(0) Yo Zz (0" )
and similarly for the lower bound. Moreover, since by Lemma 5.6
1 QYY) e 1 Q@) Ziglond)
SN0 0¥ (en) 200 - 20 QY(on) Zppon )
_ 1 peplor | Y) Q7 (o%) 5 L
20 QY (op) ppp(a [ Y) T 100
the probability that the algorithm accepts in the first T = ¢In(1/¢) rounds is at least

1 cln(1/e) e
1- (1 - —) >1-—

= (1+ %) uesplor | ),

100 10’

for a suitable constant ¢ > 0.
Now, note that by Lemma 5.7 and union bound, the phase vector of ¢ agrees with Y with

probability at least 1 — |T|e_Q(”3g/4)' hence, the output distribution of the algorithm satisfies
—Q(n39/4 _pf/4 —Q(nf/4
rv (e 175 19)) < 5 5 Vel - g+ 120 4207 < e m1 e 20,
as claimed. O

5.4 Sampling Conditional on the Phase Vector: Proof of Auxiliary Facts
We provide in this section the proofs of Lemmas 5.3, 5.4, 5.6, and 5.7.

Proor oF LEMMA 5.3. We have

drv (- 1 Y(0) € Q0)pipy(- | V(@) €)= 3 pigylo | Y(0) € Qo).
a:Y(0)eQo\ Qs
This is the probability of obtaining a phase vector in Qg \ Qs; under :”Fﬁ(' | Y(o) € Q. Observe
that among all the cuts of F corresponding to phase vectors in Qg, the largest ones are those
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corresponding to the phase vectors in Q. Hence, following the argument in the proof of Lemma
5.1, we get from the results in [14, 42, 64] that this probability is at least 1 — 1/ 2n”"* as desired.

7:35

]

PROOF OF LEMMA 5.6. Let 0 € {+1,—1}F. Let Zf’ﬁ(a, Y) be the sum of the weights of all the

configurations of F with phase vector Y that agree with o in P and, similarly, define Z5 ﬁ(y ) as

the sum of the weights of all configurations with phase vector Y, so that

Z5 .(0,Y)
FpY™ 1 pouo
,uP’ﬂ(O' | Y) = — == . ]—[ ZGv’ﬁ(Gpv,yv) . 1_[ eroude,
ZF,ﬁ(‘y) ZF,ﬁ(‘y) veVE {u,0}€E(P)
By Lemma 5.5, we have
(1+ n’29)|VF|
llP,ﬁ(O' | «y) < ZA—W) 1—[ ZGv,ﬁ(%)va“(crpu) l_[ eﬂouon
F.p veVE {u,0}€E(P)
(1+ n_w)WF|
= 'W}y(d) : 1_[ Z6,5(Mo).
F’ﬁ veVEr
Then,
cl|lY zy
%H < (1 +n*29)|VF| . Z_P . 1_[ ZGU,ﬂ(yZ))-
P (O.) Fﬂ veVF
Now,

zy. ]_[ Z6, (M) = Z 1—1 Poucs . 1’1 QY (0p,)Z5, §(Ho).

vEVF oe{+1,-1}? {u,0}€E(P) veVE

From (16), we have

1 1
To 20 HPes (0P, | Y,) < QY% (0p,) < Tz treplor, | Yo),

and so

7Y | | Ze.p(¥)

veVE
1 0,0,
< (1= n-20)IVel Z 1_[ ef 7. 1_[ pp,p(op, | Yo)Zg, 5(M)
oe{+1,-1}F {u,v}€E(P) veVE
—1 VA
(1 — n—20)IVrl Fp°

Thus, we have obtained the upper bound
pep(o | Y) (l+n_29)|VF|
QY(e) ~\1-n0)
and we can deduce analogously that
prp(@lY) (1 - n—w)'VF'
QY(0) \1+n20)

Recall that |Vy| = n?/12 + 2, so that

ppplo | Y)
7 (
P

1-0(1) < <1+40(1)

o)

and the result follows.

]
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Proor oF LEMMA 5.7. Consider a gadget G, of F such that Y, = +1. Letu € P*. We claim that
since p* > 1/2, then Q;‘,’(au = —1) > 1/2. To see this, let w be the neighbor of u in P and suppose
that the phase of the gadget containing w is +1. Then,

Qp(ou=-1) __(p")ef +p*(1-p*e”
QY (ou=+1) (1—p*)?ef+p*(1-pHef

which implies that Q}{/ (04 = —1) > 1/2. An analogous calculation shows that the same holds when
the gadget containing w is in the —1 phase. With the same reasoning, we can similarly deduce that
when u € P, , then Qg(ou = +1) > 1/2. This implies by a Chernoff bound that if op ~ Qg and
Y, = +1, then there exists a constant § > 0 such that

lop, (=1) N Py| = |op (=1) N PZ| > §|Py|,
and
|c71§v(+1) NnP°| - |61§v(+1) NP}| = 6|Pyl,

with probability at least 1 — exp(—Q(|P,])).
Now,

HGop(Yo = +1 1 0p,) _ piG,plop, | Yo=+1) G, (Yo = +1)

pG,p(Yo==110p,)  pc,plop, | Yo=-1) pc,p(Yo=-1)
N (1 ) i) Qi(op,) HrpPo=+1)
N n?0 ] Qy(op,) ppp(Yo=-1)

Kaop(Fo=t) 1. Moreover, from the definition of Q

by Lemma 5.5. Lemma 5.5 also implies that Houp(Pom D) 2

and Q, we have
0*(0p,) (p+)|U§U(—1)ﬁPf|(1 _p+)\0§0(+1)ﬂPf\(p—)\tfﬁv(—l)ﬁPi’l(l _pf)ldﬁv(ﬂ)ﬁPi’l
4 [ _
Q; (op,) - (p—)lcr;v(—l)ﬂpfl(l _p_)|a;U(+1)mPf|(p+)|a;v(—1)mP§\(1 _p+)|U§v(+1)ﬂPf|

p+ \o;ﬂ(—1)mPf|—|cr;,v(—1)mP£| 1-p- |a;,v(+1)mPf\—\o;v(+1)mPf\
:(p_) (1—p+)

> a5|Pu"

for a suitable constant a > 1 since p* > 1/2 and p~ < 1/2. This implies that for a suitable constant
¢y > 0, we have

Con Con
a&\Pl,l - Sn30/4’

pG,p(Mo=+1]0p,) 21~ -
a

since |P,| > n3?/%. Finally, we note that

[VF| 1+6/12
con con
(1 2 ) >1- 2

- a5n39/4 - a5n39/4

1Y Lop) = [ | ne,p (Yol op,) >
veVEp
since |Vg| = n%/'? + 2, and the result follows. ]

ACM Transactions on Algorithms, Vol. 21, No. 1, Article 7. Publication date: November 2024.



Complexity of High-Dimensional Identity Testing 7:37

5.4.1 Sampling from the Degree Reducing Gadget. We focus now in proving Lemma 5.4. Let yg g
and Zg g be the anti-ferromagnetic Ising distribution and its corresponding partition function on a
degree reducing gadget G. We need to show to prove Lemma 5.4 how to approximately sample
from g g and how to compute Zg s when conditioning on an arbitrary configuration on the ports
P of G. (Note that with a slight abuse of notation we are using P for the set of ports of a single
gadget G throughout this section.) Let 7{+1, —1}¥ be a configuration on the ports. Let Zéﬁ and
HE, ) denote the conditional Ising distribution and the corresponding partition function. ,

To establish Lemma 5.4 we provide two different algorithms: one based on the recent results
from [54] that works when f > -1/ V10d, and another based on polymer models that works when
B < —% (for a sufficiently large constant ¢ > 0), so that each value of the regime < 0 is covered
by one of these algorithms provided d is large enough.

Both algorithms use facts about the spectrum of the multi-graph induced by V; \ P. Hence, let
H = (Vy, Eg) be the multi-graph that results from removing P from V. Let Ay be the adjacency
matrix for the multi-graph H, that is, Ay (u, v) is the multiplicity of the edge {u, v} in H. For S C Vy,
let 9. (S) be the set of edges from Ey with one endpoint in S and one Vi \ S. For any real symmetric
matrix Q, let A;(Q) denote its ith largest eigenvalue.

Fact 5.8. Suppose d = O(1). Then, with probability 1 — o(1):

(1) d —2Vd -2 < 11(Ay) < d+2Vd;

(2) —d - 2Vd < Ay, | (Ap) < —d +2Vd +2;

(3) Fori>2,—4Vd —2 < A(Ay) < 4Vd +2;

(4) Forevery S C Vy such that |S| < |Vi|/2, we have |9.(S)| > d_‘*zﬂlﬂ,

Proor. Consider the symmetric matrices A, B, and T, of dimension |Vy| X |Vy| defined by:

—A(u,v) =xifu e Wy UU, andv € W_UU_ (or vice versa) and the edge {u, v} appears k times
in Uf:_ll M;; all other entries of A are 0.

—B(u,v) = 1ifu € W, and v € W_ (or vice versa) and {u,v} € M; all other entries of B are 0.

—T(u,v) =1if {u,0} € Ey and either u or v (or both) are vertices in Vi \ (W, UU, UW_ U U_);
all other entries of T are 0.

Note that Ay = A+ B+ T, so it follows from Wey!’s inequality (see [39]) that
Ai(A) + Ay (B) + Ay | (T) < Ai(Am) < 4i(A) + Ai(B) + 4 (T).

From Theorem 4 in [13] and contiguity (see Theorem 4 and Corollary 1 in [58]), we know that A
has real eigenvalues A;(A) > 13(A) > -+ > Ay, (A), where A1 (A) =d — 1, 4;(A) = =4y, -i+1(A),
and 2Vd — 1 < 1;(A) < 2Vd + 1 with probability 1 — 0(1). The matrix B has eigenvalues 1 and
—1. Also, all the eigenvalues of the matrix T are real and belong to the interval [—2Vd, 2Vd] (see
Theorem 3 in [44]). Combining these facts, we obtain parts 1, 2, and 3; part 4 follows from Cheeger’s
inequality (for multi-graphs). O

ProoF oF LEMMA 5.4. Let J be a |Vy| X |Vy| matrix indexed by the vertices of H with entries
J(u,0) = - Ag(u,0) for u # v and J(u,u) = @ where « is a real number we choose later. Let
oP C Vi be the set of vertices of H that were incident to P in G. Define a magnetic field h by letting
hy = B (resp., h, = =) if v € 9P and the vertex adjacent to v in P has +1 (resp., —1) spin in 7; we
set h, = 0 otherwise. The Ising model on H with edge interaction § and external field h assigns to
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each configuration ¢ on H probability:

,uH)ﬁ(O') — 1 exp (ﬁ Z 0,0, + Z hvov) = AL exp (%(0',]0) + (h, 0')), (17)

ZH"B {u,v}€Ey veVy ZH’ﬂ

where ZAH,ﬁ = ¢?lVu |ZH,ﬁ, and we interpret o and h as vectors indexed by the vertices of H. By
construction, Z&ﬂ = Zp p and ,ug’ﬁ(a) = pp,p(0o) for every o € {+, —}Va,

The matrix J has real eigenvalues A;(J) > A3(A) > - -+ > Ay, (J). To bound the spectrum of
J, we note that ] = fAg + al and so A;(J) = fA;(An) + a. Hence, setting a = —,[3(4\/3 +2) and
assuming that 0 > # > —1/(10Vd) and that d is sufficiently large, we obtain from Fact 2 that with
probability 1 —o(1): A;(J) = ©(Vd), My (J) = —O(Vd) and that every other eigenvalue of J is
in the interval [0, 1]. Then, Theorem 1.1 from [54] implies that:

(1) There is an algorithm that with probability 1 — e~V#! produces an e?-multiplicative approxi-
mation for Zy g = Z7, 5 with running time poly(|Vg|, 1/¢); and
(2) There is an algorithm to sample from a distribution within ¢ TV distance from pp g = pg, 5

with running time poly(|Vy|, log(1/¢)).

Hence, we have established the result for the case when § > —ﬁa. We consider next the case

when f < - Clgd, for a suitably large constant ¢ > 0. For this, we introduce the notion of polymer
models.

For a fixed configuration 7 in P, let P* C 9P be the set of vertices of dP adjacent to a vertex
assigned “+” in 7; define P~ C 9P similarly. For a configuration ¢ on H, let p* (o) (resp., p~(0))
denote the number of vertices from P* (resp., P~) that are assigned spin —1 (resp., +1) in o. Let also
D(H, o) denote the number of edges incident to two vertices with different spins in o. Then, we
can renormalize the Ising distribution (17) as

¢~ 2B(D(H) " (0)4p~ (o)) _, W(O)

() = =
prp(0) = = ,
Zy Zap

where Zy g = e PUEHIFIPD 7, o

Let Q = {+1,—1}"#. Observe the graph H is bipartite with partition (L, R) where L UR = Vi and
IL| = |R]. Let Q* C Q be the subset of configurations where the number vertices that are assigned
+1in L and -1 in R are more than |Vy|/2. Define QF analogously. Let Z;; = ¥ cq+ w(0) and
Zf = Y.peq-=w(0) so that Znp = Z3; + Z}j;. We define a polymer model whose partition function
will serve as a good approximation for Z}; and Zj,.

We say y C Vg is a polymer if the subgraph induced by y is connected and |y| < |Vg|/2. Two
polymers are compatible if the graph distance between them is at least 2. Let G be the family of all
sets of mutually compatible polymers. To each polymer y we assign the weight

e = o=2B(=12c(V) [+[P~ALOY|+[P*ARNY |~ P*ALAY| =[P~ NRAy])
y = .

Define the polymer partition function

o= 3 []w

T'eG yel

We say S C Vy is sparse if every connected component of S has size less than |Vy|/2. Note that
there is a one-to-one correspondence between the sparse subsets of Vi and polymer configurations
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from G. Then:
& = e 2BUEHI+IP ORIHIPTALY) | g

_ - +
— ¢~2B(En|+|P"NR|+|P*NL|) Z l_[WY

TegG yel
— Z e—zﬁ(|EH|—|ae(s)|+|P‘nR\+|P+nL|+|P‘mLmS\+|P+mRnS|—|P+ans|—|P‘mRmS|)
S sparse
- Z e 2BUEH|=19¢(S) [+| (R\S)U(SNL) )P~ [+] (L\S)U(SNR))NP*])
S sparse
Now, we say S C Vy is small if |S| < |Vy|/2 (otherwise we say it is large), so that
Z;} - Z e~ 2BUEH=19: (S) [+ (R\S)U(SNL) ) NP [+ (L\S)U(SNR))NP*])
S small
Hence,

0<b- o~ 2B(IEx|=12¢(8)I+] ((R\$)U(SAL)NP~ [+ (L\S)U(SNR) nPF ).

INH

<
S sparse, large
If S is sparse, by part 4 of Fact 5.8, each connected component S; of S satisfies 9.(S;) > 0|S;| with

0= 01—42&_ Summing over the components of S we get 9.(S) > 6|S| > 0|Vy|/2 when S is large.
Then,

|cf) - ZE| < e~ 2BUEHI=01VE|/2+| (R\S)U(SNL))NP™ [+ ((L\S)U(SNR))NP*|)

S sparse, large

. - - -
and since Z}, > e 2PUERIHLOPTIHROPT) and S| < |Vy|/2, we have

‘1 D] < gVl 2OVl Vinl2) < oV (18)
ZH

provided § > 1 and —f > %. An analogous argument yields the same bound for Z7,.

Our goal now is to use Theorem 8 from [50] to obtain an approximation for ® and consequently
for ®, Z}, Z7; and ultimately for Z g = Z;+Z},. For this, it suffices to check that our polymer model
satisfies the so-called Kotecky—Preiss condition (see, e.g., Equation (3) from [50]). This condition
requires that for every polymer y:

wy e <y, (19)
yid(yy') <1
where d(, -) denotes graph distance. First note that

— o 2B(=10:(y") 1+|P~nLy’ [+|P*NRNY’ |- |[P*NLOY' |- |[P"NRNY'|) . ,=2B(=0/2+1)]y’|
wy =e <e .
Hence,

2ly’| Iy’ [(2-2p(-0/2+1)) lv'[(2-2B(-0/2+1))
wyre < Z e < Z Z e .
yd(yy')<1 yd(yy')<1 0eyUd,(y) v'vey’

The number of polymers of size k that contain a given vertex is at most (ed)* (see Lemma 2.1 in
[43]), so

, 1
ly'1(2—2B(-0/2+1)) (3=2B(-0/2+41))\¢ . _~
E e < E (de )" < Ti1
y'wey’ t>1
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when —f > W and 6 > 2. (Note that the latter is true when d is large enough.) Since

ly Udy(y)| < (d+1)]yl, (19) follows. Hence, for sufficiently large d = O(1), for a suitable constant
¢ > 0, Theorem 8 from [50] gives an FPTAS for ® when —f > %‘ This yields the desired FPTAS
for Zp g. Note that if the desired approximation factor is smaller than e~Vul which is the best
approximation for Zy s we could obtain using the polymer function @ (see (18)), then we could
instead use brute force for counting and sampling, since the running time would be allowed to be
exponential in |Vg|. Finally, Theorem 9 from [50] gives the polynomial-time approximate sampling
algorithm for the distribution

H)/EF wy

—

Once a polymer configuration I' is sampled from v, it can be easily transformed into an Ising

v(T) =

configuration by setting the vertices in L \ T' and R N T to +1 with probability Z+ Z‘ and all other
vertices to —1, and doing the opposite with the remaining probability. O

6 Statistical Lower Bounds

In this section we establish lower bounds on the number of samples required to perform uniformity
testing over the hypercube {0, 1}" (i.e., k = 2), with a focus on comparisons between testing for
KL divergence and TV distance, and between testing with Coordinate Oracle + General Oracle and
Subcube Oracle. Throughout this section, we assume k = 2 and K = {0, 1}. Let u, denote the
uniform distribution over X, = {0, 1}" for an integer n € N*. We omit the subscript n when it is
clear from context.

6.1 Statistical Lower Bounds for Coordinate Oracle Model: Proof Sketch

We provide next an overview of our proof approach for Theorem 1.5 in which we establish an
information-theoretic lower bound for uniformity testing over the binary hypercube {0, 1}" in
the Coordinate Oracle model; our proof of Theorem 1.7 for the Subcube Oracle is similar and we
comment on it below. Our proof follows a well-known strategy. We construct a family of “bad”
distributions B, each of which has TV distance (or KL divergence) at least ¢ from the uniform
distribution over {0, 1}". Then, the lower bounds follow from, roughly speaking, the fact that the
joint distributions of L independent samples from the uniform distribution and of L independent
samples from a distribution from B (chosen uniformly at random) are close to each other.

Such an argument works nicely for non-adaptive identity testing algorithms, where the queries
are pre-determined before receiving any sample. In the presence of conditional sampling oracles,
we are required to show the lower bounds for adaptive testing algorithms which is necessary with,
and so we need to consider the whole query history, as in [19, 60]. Informally speaking, a query
history is a sequence of queries that the testing algorithm asks the oracle along with the outputs
from the oracle. Each step, the tester determines, possibly at random, a new query based on all
previous queries that have been asked and the corresponding outputs from the oracle. The output
of the testing algorithm can be viewed as a function (possibly randomized) of the query history.

Consequently, we need to show that the following two processes generate close query histories
in TV distance. In the first process, in each step the algorithm computes a query and the oracle
outputs a sample using the uniform distribution. In the second one, we first pick a bad distribution
7 € B uniformly at random, and then the oracle outputs samples using . To show that the two
generated query histories are close, we use ideas from [19] and also the so-called hybrid argument
in cryptography (see, e.g., [46]). For each ¢ < L, we consider a hybrid query history where the
first £ queries are answered by the oracle using the uniform distribution, while the other L — ¢
queries are answered by a single 7 € B chosen uniformly at random. It then suffices to show that
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every pair of “adjacent” hybrid query histories are close to each other. Since two adjacent hybrid
query histories differ only at one step, this can be done for a carefully constructed family 8B of bad
distributions.

Our family of bad distributions for the Coordinate Oracle model is the same as in earlier works
[18, 31]. Each distribution in 8 is constructed by taking a perfect matching of all coordinates (we
may assume n is even) and considering the distribution such that coordinates from different matched
pairs are independent of each other while within each pair the two coordinates are correlated
with covariance @(e/+/n). Then, one can show that the joint distribution of O(n/e?) samples from
the uniform distribution and that from a bad distribution corresponding to a uniformly random
perfect matching are close to each other. Furthermore, the Coordinate Oracle does not help in the
following sense: For the uniform distribution, the Coordinate Oracle outputs uniform Bernoulli
Ber(1/2) random variables, and for any distribution from 8 it outputs a sample from Ber(1/2 + &)
or Ber(1/2 — &), where £ = ©(e/+/n). We show that to distinguish between a sequence of Ber(1/2)
and a sequence of adaptively chosen Ber(1/2 + &), one needs Q(1/£?) = Q(n/e?) samples in this
specific setting; this is proved in Section 6.3.

Finally, we briefly describe our construction of the family 8 for establishing Theorem 1.7. It
is inspired by studying approximate tensorization of entropy. In particular, our identity testing
algorithm fails within O(n/¢) steps if for most of pairs (i, x) it holds 7;(- | x) = Ber(1/2) but
only for an ¢/n fraction of the pairs the KL divergence is large, which means we need Q(n/¢)
steps to be able to see it. For Subcube Oracle we would like to construct bad distributions with
similar behavior. Namely, for most (random) conditionings on a (random) subset of coordinates,
the conditional distribution is the same as what one gets from the uniform distribution, and with
probability O(e/n) the KL divergence between the two conditional distributions is as large as ©(n).
We achieve this using the following type of construction. We pick a random subset A of size ¢
such that 2 = O(n/¢), and pick a vector ¢ € K™. To generate a sample x from the bad distribution
T = Tag, we first sample x4 uniformly at random. If x4 # 04 then the other coordinates are
sampled randomly, but if x4 = 04 then we take x = 0. One can check, with careful calculations,
that such bad distributions satisfy our requirements. In particular, while the KL divergence for
any such bad distribution to the uniform distribution is ¢, the TV distance is ¢/n instead, and so a
Q(n/¢) lower bound is not a surprise for this construction of family of bad distributions.

6.2 Uniformity Testing with Subcube Oracle for KL Divergence
In this subsection we consider uniformity testing over {0, 1}" with access to Subcube Oracle for
KL divergence, and give an information-theoretic lower bound of Q(n/¢) on the number of samples
needed.

Let Alg denote an arbitrary uniformity testing algorithm (possibly randomized and adaptive), and
for simplicity let Ora[7] denote the Subcube Oracle with respect to a distribution 7 over {0, 1}".

Definition 6.1. A pinningr is a partial configuration on a subset of coordinates, namely 7 € {0, 1}*
where A C [n].

Observe that pinnings are exactly the inputs to the subcube oracle Ora[x].

Definition 6.2 (Query History for Subcube Oracle). Let 7 be the collection of all pinnings on
all subsets of coordinates. For L € N*, define the (subcube) query history with respect to Alg and
Ora[z] of length L to be the random vector in (7~ x {0, 1}")% generated as follows:

—Fori=1,...,L:
—Alg receives ((z1,x1), ..., (7i-1,x;—1)) as input and generates 7; € 7 (randomly) as output;

ACM Transactions on Algorithms, Vol. 21, No. 1, Article 7. Publication date: November 2024.



7:42 A. Blanca et al.

—Oral[x] receives 7; as input and generates x; € {0, 1}" as output.
—The (subcube) query history is H = ((1, 1), - - ., (7L, X))-

Note that the output of Alg with sample complexity L is a (randomized) function of the query
history H of length L.

Our main theorem is stated as below in terms of the query history, from which Theorem 1.6
follows immediately.

THEOREM 6.3. Let n € N* be a sufficiently large integer and € > 0 be a real. Let u = u,, denote the
uniform distribution over {0, 1}". There is no algorithm which can achieve the following properties
using only L < n/(64¢) samples:

—Pry (output = Yes) > 2/3 for a random query history H of length L with respect to Alg and
Oralu];

—Pry (output = No) > 2/3 for a random query history H’ of length L with respect to Alg and
Ora[ ] where 7 is any distribution such that Dxy, (7 || u) > e.

Our plan, as in many previous works, is to construct a family 8 of bad distributions that are all ¢
far away from u in KL divergence, such that when picking a bad distribution from 8 uniformly
at random and drawing limited number of samples, the joint distributions of these samples are
close to that of samples drawn from u. We present now our construction of the bad family 8. Let
t= [Iogz(n/g)] — 3 for sufficiently large n. For any A C [n] with |A| = t and any o € {0, 1}", define
the distribution 74 . in the following way. A sample from 74, is generated by:

—For each i € A independently sample x; € {0, 1} uniformly at random;

—If x4 # 04, then for each j € [n] \ A independently sample x; € {0, 1} uniformly at random
and output x;

—If X4 = 04 then output x = 0.

We remark that all steps are independent. Finally, we define

B = {ﬂA,g tA€ ([?]),0 € {0,1}"}.

We first show that the distributions in 8 are all bad in the sense that their KL divergence
to the uniform distribution is at least . A key intuition in our construction of 74, here is that
while the KL divergence Dk, (740 [|u) = ©(¢), the TV distance is much smaller than ¢ and is
drv (mau) = ©(27") = ©(¢/n). Hence, intuitively, it will take ©(1/dry (7, u)) = ©(n/e) samples
to test between the family 8 and the uniform distribution u.

CLAIM 6.4. For all m € B one has
Dy, (7 [|u) = e

PROOF. Suppose 7 = 74, € B is a bad distribution. By definition we have 7(x) = u(x) = 27" if
x4 # 04, and n(o) = 27%. Hence, we get

Dxw (|| u) :ﬂ(a)ln(@) _In2
ul\o ot

2
(n—-1t) > —E(n—t) > g,
n
for n sufficiently large. O

Define H to be the random query history of length L with respect to Alg and Ora[u], and let
output denote the random output with respect to H and Alg. Define H’ to be the random query
history of length L generated by
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—Pick 7 € B uniformly at random;
—Let H’ be the random query history of length L with respect to Alg and Ora[x].

Further, let output’ denote the random output with respect to H” and Alg. Our goal is to show
that the TV distance between the two query histories H and H’ is small and therefore by the
data processing inequality the TV distance between output and output’ is also small so the two
properties in Theorem 6.3 cannot simultaneously hold.

LEMMA 6.5. For the family B of bad distributions, query histories H, H' of length L < n/(64¢), and
output, output’ defined as above, we have

1
drv (output, output’) < drv (H,H') < T

We present next the proof of Theorem 6.3 provided in Lemma 6.5. The proof of the latter is
postponed to Section 6.2.1.

ProoF oF THEOREM 6.3. Suppose for sake of contradiction that Alg satisfies both properties as in
Theorem 6.3. Then for the family 8 of bad distributions, query histories H, H' of length L < n/(64¢),
and output, output’ defined as earlier, we know from these two properties that

Pr (output = Yes) > 2/3 and Pr (output’ = Yes) < 1/3.

This implies dv (output, output’) > 1/3 which contradicts Lemma 6.5. O

6.2.1  Proof of Lemma 6.5. Our proof is inspired by the hybrid argument from cryptography as
in [19]; we flesh out the details of the proof in what follows.
For 0 < ¢ < L, define the hybrid query historyH'?) with respect to Alg, Ora[u], and Ora[r] to be
the random vector in (7~ x {0, 1}")! generated as follows:
—Fori=1,...,¢:
—Alg receives ((r1,x1), ..., (7i—1,xi—1)) as input and generates 7; € 7 (randomly) as output;
—Orafu] receives 7; as input and generates x; € {0, 1}" as output.
—Pick 7 € B uniformly at random.
—Fori=¢+1,...,L:
- Alg receives ((r1,x1), .. ., (ti—1,X;—1)) as input and generates r; € 7 (randomly) as output;
—Oral[x] receives 7; as input and generates x; € {0, 1}" as output.
—The hybrid query history is H® = ((z1,x1), ..., (11, x)).

Observe that H®) = H” and H'") = H in distribution. We will prove the following lemma regarding
the distance between two adjacent hybrid query histories.

LEMMA 6.6. Foreveryl < ¢ < L, we have

dry (H<f—1>’H<f>) P
n

Note that Lemma 6.5 is an immediate consequence of Lemma 6.6.

ProoF oF LEMMA 6.5. By the triangle inequality and Lemma 6.6, we have that

L
16 1
drv (H,H/) < ZdTV (H(Z*I)’H([)) <L- i <,
=1 n 4
as claimed. °
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It remains to prove Lemma 6.6. Inspecting the definitions of H~") and H®), we see that they only
differ locally at one place, which we describe as follows. For 0 < i < Llet H; = ((z1, x1), - - -, (75, X))
denote the first i entries of a random hybrid query history (notice that Hy = 0). We write H(‘~)
and H'®) in the following form:

Generation of H(!: Generation of H(O:

Alg, Ora[u] Alg, Oralu]

(1) Hj ——— H,_y; (1) Hy ——— Hy-3;
o ) Al o}

2) =« urﬁg(g),ora[ﬂ] @) Hr_, g o rafu] X
(3) Hi-y — 77 — x4 (3) Hy < H;_1 append (¢, x¢);
(4) Hy « Hy-y append (z, x¢); (4) 7 ~ unif(B);

Alg, O Alg, O
(5) H, 222, gy — g, () He =22, by = HO,

In fact the ordering of the steps (2)—(4) can be changed appropriately without having any influence
on the final distribution of both H“~" and H(®), which will be helpful for a coupling argument.
We rewrite the generating processes of H"") and H(*) equivalently as follows:

Generation of H(=1): Generation of H(O:
Alg, Oralu] Alg, Oralu]
(1) Hp —————— H;_y; (1) Hp ————— H;_y;
Alg Alg
(2) Hi-1 — 145 (2) Hi-1 — 11
(0] (0]
3) 7 ~ unif(8), 7 227, 1, (3) 7 ~ unif(8), 7, =21, &
(4) Hy < Hy—1 append (1, x¢); (4) Hy < H;—1 append (1, x¢);
Alg, O Alg, O
(5) Hy La[”], H; = HD, (5) H, ﬂ H; =H®Y,

Note that before and after the third step, the two processes have exactly the same steps. In the
third step for H~1), we pick a bad distribution 7 € B uniformly at random, and Ora[x] receives
the pinning 7, as input and generates x, € {0, 1}" according to 7 conditioned on 7,. Meanwhile,
in the third step for H (0 we still pick a bad distribution 7 € 8 but do not use it (for now), and
Oralu] receives 1, as input and generates x; € {0, 1}" according to u instead of 7. It is enough to
show that, in this step, conditional on that H,_; and 7, are the same, the x, generated in the two
processes are the same with high probability. Since before and after this step the two processes are
doing the same thing, we can then couple these two processes to produce the same hybrid query
history with high probability, i.e., H¢ D = H©).

The following technical lemma bounds the probability that x,’s are the same in both processes in
the third step, which is crucial to us as explained earlier. The proof of it can be found in Section 6.2.2.

LEmMMA 6.7. Let T € T be an arbitrary pinning on some subset A C V of size m. Then for a random
distribution 7 chosen uniformly at random from B, we have

16¢
E7r~~unif(B) [dTV (u ( | T),T[(- | T))] < T
We give below the proof of Lemma 6.6.

PROOF OF LEMMA 6.6. We construct a coupling of H“~1) and H) via coupling step-by-step the
two processes generating H(*"1) and H(®). Initially Hy = 0 for both processes. Then we can couple
H;_; and 7; since they are generated in the same way in both processes. For the third step, the
bad distribution 7 can be chosen to be the same and we deduce from Lemma 6.7 that x,’s can be
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coupled with probability at least 1 — ¢/n. After that, suppose we couple x;, H; and then the final
outputs are coupled. Hence, for this coupling P we have

dry (HU, HO) <P (HED 2 HO) < 16,
n
as wanted. m]

6.2.2  Proof of Lemma 6.7. Here we give the proof of the technical lemma, Lemma 6.7.

Proor or LEMmMa 6.7. The distribution 7 € 8 depends on A and o. We will show that for any
choice of A € (['t’]) one has

Eo [drv (u (- | 1), a0 (- | 7))]

where ¢ is a uniformly random configuration in {0, 1}".
Suppose |A| = £. Suppose |[A N A| = j and hence |A \ A| =t — j. Notice that j < min{t, £}. We
partition X = {0, 1}" into three disjoint subsets.
Case 1. X1 = {0 € {0,1}" : 6anp # Tana}- We have
X1l _ -1
2n 2J

5

16¢
S —_
n

5

Pr(c e X)) =
and also
drv (w(-7),ma0(-17)) =0, VoeXi.

Case 2. Xy = {0 € {0,1}" : 0anA = TanA, Oa\A # Ta\A}- We have

[Xa] 1 1
PIJ(G€X2)= on =§—?.
By definition we have
0, ifxa\a = oa\as
A6 (x | T) = 1

on—{ _ gn—{—t+j’ ifo\A # 0A\A-

It follows that
1

drv (-] 7),ma6 (- 7)) = prayd Vo € X;.
Case 3. X3 = {0 € {0,1}" : oA = 15 }. We have
|X5] 1
Pr, (O’ € Xg) = on = ?
By definition we have
L
ﬁ, ifxa\n # 0a\n;
2t 20 ot+l—j
mae (x| 7) =40, ifxa\a = oa\nandxpa\a\a # O[n)\a\43
7 .
T 11 XA = o
or v or T gEey
It follows that
> 1 2!

dTV(u('|T),7TA,J('|T)):l1—1_ Vo € X;.

on—f _ ot + 9l _oj  on-0’
2t ﬁ T ot+—j 2" Zt +20 -2 2"
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Therefore, combining all three cases we get from the law of total expectation that
1 1 1) 1 1 2! 1
By (u 1900 C L0 = (1= 550 (55 ) 7+ e (g ~
< 1 N 1
T2t 2t42t-2J7
Note that the second term is monotone increasing in j and by definition j < min{¢, £}. Hence, we
deduce that
1 1 1 1
- < = < —.
2t 426 — 2] T ot 4 of _ omin{tl} omax{t,} — 2t
We conclude that for any A,

1 16¢
Eo [dTv (u (17),7mae (-] T))] < o1 < T
where in the last inequality we recall that ¢t = [logz(n/ 6)] —3 > log,(n/e) - 3. O

6.3 Uniformity Testing with Coordinate Oracle and General Oracle for TV Distance

In this section we consider uniformity testing over the binary hypercube for TV distance when we
have access to Coordinate Oracle and General Oracle. We assume the binary hypercube is denoted
by X, = {+1, —1}" instead of {0, 1}", since our bad distributions will be Ising models where +1, —1
are more often used.

Let Alg denote an arbitrary uniformity testing algorithm (possibly randomized and adaptive)
with Coordinate Oracle and General Oracle access. We assume that Alg receives L independent full
samples from the General Oracle and is allowed to make L queries to the Coordinate Oracle. For
ease of notation we denote by Ora[x] the Subcube Oracle with respect to a distribution 7 over
{+1,-1}".

Definition 6.8 (Query History for Coordinate Oracle and General Oracle). Let 7 denote the set
of all pinnings on n — 1 coordinates (which is exactly all possible inputs to the Coordinate Oracle).
For integer L € N*, we define the query history with respect to Alg and Ora[n] of length 2L to be
the random vector in XL x (7~ x {+1,-1})! generated as follows:

—Let x1,...,xz be L independent samples from 7;
—Fori=1,...,L:
- Alg receives (xy, ...,xr) and ((z1,a1),. .., (i-1,a;-1)) as input and generates 7; € 7 (ran-

domly) as output;
—Ora[ ] receives 7; as input and generates a; € {+1,—1} as output.
—The (coordinate and general) query history is H = (x1, ..., x1; (11, a1), . . ., (71, ar)).

Definition 6.8 is analogous to (in fact, a special case of) Definition 6.2; throughout this subsection,
we consider query history only with respect to Coordinate Oracle and General Oracle.

The output of Alg with sample complexity 2L is a (randomized) function of the query history H
of length 2L. Our main theorem is then stated as follows.

THEOREM 6.9. There exists a universal constant ¢ > 0 such that the following holds. Let n € N*
be a sufficiently large integer and ¢ > 0 be a real. Let u = u,, denote the uniform distribution over
{+1, —1}". Then there is no algorithm which can achieve the following properties using L samples from
General Oracle and L queries from Coordinate Oracle where L < cn/¢?:

—Pry (output = Yes) > 2/3 for a random query history H of length 2L with respect to Alg and
Oralu];
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—Pry (output = No) > 2/3 for a random query history H' of length 2L with respect to Alg and
Ora[x] where & is any distribution such that dyy (7, u) > €.

We observe that Theorem 1.5 follows immediately from Theorem 6.9.

In [31, Theorem 14] it was shown that Q(n/e?) samples are necessary for uniformity testing with
only General Oracle access but assuming the hidden distribution 7 is an Ising model. See also [18,
Theorem 14] for very similar lower bounds in the setting of Bayesian networks. Note that though
Theorem 14 from [31] is stated for symmetric KL divergence, it actually works for TV distance
as well; see [31, Remark 4]. We use the same constructions from [18, 31] for the family of bad
distributions for our purpose. Assume that n is even; the case of odd n can be easily reduced to
even n by adding an extra uniform, independent coordinate. Suppose M is a perfect matching of n
coordinates, i.e., M is a collection of n/2 pairs of coordinates such that each coordinate appears
in exactly one pair. Let M be the set of all perfect matchings on [n]. Each bad distribution
where M € M corresponds to an Ising model on the graph G = ([n], M) of n/2 edges, with the
edge coupling set to be § = pe/+/n where p is a universal constant sufficiently large. The following
are established in [18, 31].

CraiM 6.10. (18, 31]).
(1) For p > 0 sufficiently large, for all M € M, it holds
dry (mp,u) > €.

(2) For any p > 0 there exists c; = ¢1(p) > 0 such that the following holds. Suppose L < cin/e.
Let X = (x1,...,x) be L independent samples from u. Independently, let M € M be chosen
uniformly at random, and let X’ = (x{,...,x}) be L independent samples from mp. Then
drv (X, X’) < 0.98.

Proor. (1) follows from Lemma 8 in [18]. (2) is proved in Section 8.3.2 in [31]. See also in Section
8.1 from [18] the same result for a slightly different construction of mys, where every edge is set to
be ferromagnetic with probability 1/2 and anti-ferromagnetic otherwise. O

Define H to be the random query history of length 2L with respect to Alg and Ora[u], and let
output denote the random output with respect to H and Alg. Define H’ to be the random query
history of length 2L generated by

—Pick M € M uniformly at random and let & = 7;
—Let H’ be the random query history of length 2L with respect to Alg and Ora[x].

Further, let output’ denote the random output with respect to H and Alg. Then we can show the
following key lemma.

LEMMA 6.11. For query histories H, H' of length 2L where L < cn/¢ and output, output’ defined as
above, we have

drv (output, output”) < dpv (H,H’) < 0.99.

Proor. The first inequality follows from the data processing inequality. We focus on the second
one. For M € M and t € {0, 1}, let 7y, denote the Ising model on G = ([n], M) with edge coupling
tf = tpe//n. Observe that myp = u and my; = mpy. We rewrite the process for generating the
query histories H and H’ of length 2L in the following equivalent form:

—Let M € M be chosen uniformly at random from M;
—Let X; = (x1,...,x1) € XL be L independent samples from myy;
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—Let R, = (ry,...,r1) € {0,1}F be L independent Bernoulli random variables with mean
(1 + tanh(tpe/vn))/2;

—Fori=1,...,L:
- Alg receives (xi,...,xy) and ((71, a1), ..., (7i—1, ai—1)) as input and generates 7; € 7 (ran-

domly) as output;

—Ora[ ] receives 1; as input, which fixes all coordinates but one say j, and suppose j’ is
matched to j in M, then Ora[x] outputs a; = (7;)» (the j'th coordinate of 7;) as the sampled
value at the jth coordinate if r; = 1, and outputs a; = —(7;) j otherwise;

—The query history is H; = (x1,...,x1; (t,a1), . . ., (71, a1)).

Observe that if t = 0, then the final query history Hj is distributed as H; meanwhile, if t = 1,
then it is distributed as H’. Moreover, the process mentioned earlier can be viewed as a random
mapping from the vector (M, Xy, R;) to the query history H; where, for fixed (M, X, R;), the
randomness purely comes from the decision-making of Alg. Therefore, we can apply the data
processing inequality and obtain

drv (H,H') < drv ((M, Xo,Ro), (M, X1,R1)) < drv (Xo,X1) + drv (Ro, Ry) .

Note that dry (Xp, X1) < 0.98 by Claim 6.10. For the second term, we have

1 1 € £
dry (Ro, Ry) = dry (Bin (L, -) Bin (L, - (1 + tanh p—))) < VL- £ <001,

’ 2 Vi Vi

where ¢ > 0 is a universal large constant, and L < cn/e? for ¢ sufficiently small. Therefore, we

deduce that drv (H, H') < 0.98 + 0.01 = 0.99 as claimed. O

We end this section with the proof of Theorem 6.9.

Proor oF THEOREM 6.9. Suppose for sake of contradiction that Alg satisfies both properties as
in Theorem 6.9. Then by a standard amplification technique for failure probability, one can decrease
the failure probability from 1/3 to 0.001 with the number of samples needed increases only by a
constant factor; see [16, Lemma 1.1.1]. In particular, for query histories H, H' of length 2L where
L < cn/e and output, output’ defined as earlier, we have

Pr (output = Yes) > 0.999 and Pr (output’ = Yes) < 0.001.

This implies drv (output, output’) > 0.998 which contradicts Lemma 6.11. O

7 ldentity Testing with Subcube Oracle

In this section we give our algorithmic results for identity testing with access to the Subcube Oracle.
In particular, we establish slightly more general versions of Theorems 1.6 and 1.8 which relax the
assumption that y is fully supported and only require that the support of 7 is a subset of the support
of y1. For the case when p is not fully supported we instead require the slightly stronger assumption
that p is b-marginally bounded (this notion is equivalent to balancedness when y is fully supported).

7.1 ldentity Testing with Exact Conditional Marginal Distributions

Recall that [i] = {1,...,i} for an integer i € N*. The following factorization of (relative) entropy is
well-known; see, e.g., [21, 22, 56].

LEMMA 7.1. For any distribution & over K" such that & < yi we have

Dt (11 1) = ) Bromyeyy [Dit, (i | ) (- )] (20)

i=1
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We now give our testing algorithm with Subcube Oracle.

THEOREM 7.2. Let k = k(n) be an integer and let b = b(n) € (0,1/2] be a real. Suppose that
loglog(1/b) = O(logn). There is an identity testing algorithm for all b-marginally bounded distribu-
tions with query access to Subcube Oracle and for KL divergence with distance parameter ¢ > 0. The
query complexity of the identity testing algorithm is

o2 (2. VFv (1) ()]

The running time of the algorithm is polynomial in all parameters and also proportional to the time of
computing the conditional marginal distributions yi; (- | x) for anyi € [n] and any feasible x € K1i=11,
Furthermore, if k = 2, i.e, we have a binary domain K = {0,1}, the query complexity can be

improved to
1\ n n
olog(;) - 21og (2)).
( Blp) e 8 %
Proor. We observe that (20) can be equivalently written as
Dy (7 [l ) = n Eixy [Dxe (i (- | ) | (- [ )],
where i € [n] is a uniformly random coordinate and x is generated from 7[;_;]. Therefore, Algorithm
1 still works once we generate the pair (i, x) in Line 1 from the correct distribution as just described,
and define p¥ = m;(- | x), qF = (- | x) correspondingly. The analysis is exactly the same with the
constant C for approximate tensorization replaced by 1. We omit the proofs here and only highlight
the differences: The coordinate balancedness 1 is now replaced by the marginal boundedness b, and

the running time depends on the time to compute the conditional marginal distributions y;(- | x)
for any i € [n] and any x € K17~ such that Hri-11(x) > 0. O

Remark 7.3. We remark that the assumption of marginal boundedness can be relaxed to the
following slightly weaker version: for a fixed ordering of the coordinates, for every i € [n], every
x € Kli-11 with ,u[l-_l](x) > 0, and every a € K, one has

either y;(a | x) =0, orp(alx) =b.

In some circumstances, this weaker notion of marginal boundedness can give a better bound on
the sample complexity.

Theorem 7.2 that identity testing can be done efficiently for a wide variety of families of distri-
butions with the power of Subcube Oracle, assuming that one can efficiently compute the exact
marginal probabilities under any conditioning. Below we give a few examples where Theorem 7.2
applies:

—Consider any undirected graphical model (e.g., Ising model, Potts model) defined on trees of
constant degrees. Then the distributions are Q(1)-marginally bounded, and one can efficiently
compute the marginal probabilities under any pinning via, e.g., Belief Propagation. Hence, there
is a polynomial-time identity testing algorithm for undirected graphical models on bounded-
degree trees with Subcube Oracle access. The sample complexity is O((n/e) log®(n/e)) where
n is the number of vertices. If the degree is unbounded, then the marginal bound b can be as
small as e=®")_ Still, by the second bound in Theorem 7.2 the number of samples needed is at
most O((n®/e?) log®(n/e)).

—Consider the Bayesian network on a Directed Acyclic Graph (DAG), and assume without
loss of generality that [n] = {1,...,n} is the topological ordering of the DAG. In particular,
all conditional marginal probabilities at any coordinate i € [n] and conditioned on any fea-
sible pinning x € K"~ are given by the Bayesian network. If these conditional marginal
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probabilities are lower bounded by b = Q(1), then there is a polynomial-time identity testing
algorithm for such Bayesian networks with Subcube Oracle access, and the sample complexity
is O((n/e) log®(n/e)). If b is exponentially small, then similarly as before the sample complex-
ity is O((n®/e?)log®(n/e)). See also Remark 7.3 described earlier on relaxing the marginal
boundedness condition to specifically the topological ordering.

— Consider mixtures of polynomially many product distributions, each of which has () = Q(1)
as defined in Section 4.4.1. One can efficiently compute the conditional marginal probabilities
by the simple nature of mixtures of product distributions. Then by Theorem 7.2, we have an
efficient identity testing algorithm with Subcube Oracle access and the sample complexity is
O((n/e)log’(n/e)). Similarly as before, the sample complexity becomes O((n®/¢?) log®(n/e))
when the minimum #(y) is exponentially small.

7.2 ldentity Testing with Approximate Conditional Marginal Distributions

In Theorem 7.2 we assume that one can compute exactly any conditional marginal distribution in
polynomial time. In some applications the exact computation is not possible and one can get, at the
best, an estimator of the conditional marginal probabilities. As we will show in this subsection,
identity testing can still be done efficiently in this setting.

We first need more robust versions of Lemmas 4.3 and 4.10. We say there is an FPRAS for a
distribution q over K if for any € > 0 and § € (0, 1), one can compute a distribution ¢ over K as an
approximation of ¢ such that, with probability 1 — §, we have that for every a € K,

e’ < i@ <€,
q(a)

and ¢ can be computed with running time polynomial in k, 1/¢, log(1/6), and the input size of g
(e.g., the number of parameters representing q). We remark that if g(a) = 0 then ¢(a) = 0.

LEMMA 7.4. Let k € N* be an integer, and let ¢ > 0, b € (0,1/2] be reals. Given an FPRAS for a
target distribution q over domain K of size k such that either g(a) = 0 orq(a) > b for any a € K,
and given sample access to an unknown distribution p < q over K, there exists a polynomial-time
identity testing algorithm that distinguishes with probability at least 2/3 between the two cases

p=q and Dx(pllg) =e (21)
Fork > 3, the sample complexity of the identity testing algorithm is

ol ] 1 Ykin(1/b)
Vb e .

For k = 2, the sample complexity of the identity testing algorithm is

o (ln(l/b)) |

£

Proor. Let m be an upper bound for the number of samples required in Lemmas 4.3 and 4.10,
with the assumption being either g(a) = 0 or g(a) > b/2 for any a € K, distance parameter ¢/2, and
failure probability 1/10. Let £ = O(min{e, 1/m}) be a small constant, and let § be an approximation
of ¢ such that with probability 9/10 we have e~¢ < §(a)/q(a) < e? for every a € K. Notice that if
this holds then

In (g)
q
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We then apply the identity testing algorithm Ay, from Lemmas 4.3 and 4.10 to the distributions
p, ¢ with distance parameter ¢/2 and failure probability 1/10, and returns the output of Ay, as
our output. Note that §(a) = 0 if g(a) = 0 and §(a) > e ¥q(a) > b/2 if g(a) > b, assuming § is a &-
approximation of q. Thus, the number of samples required by A, 1p is at most m. If Dxy (p || q) = &,
then

. . €
Drw (p119) 2 Dia (Pl @) = IDxe (P 1§) = D (Pl ] 2 6= &> <.
Hence, the testing algorithm wrongly outputs Yes only if at least one of the following happens:

(1) gis not a é-approximation of g, which happens with probability at most 1/10;
(2) Agp-p makes a mistake, which happens with probability at most 1/10.

This shows that the failure probability is at most 1/5. If p = ¢, then notice that

dry (p.4) = drv (4:9) = 0(8) < —.
m

We consider an optimal coupling between m independent samples from p and m independent
samples from ¢, so the probability that these two sets of m samples are not exactly the same is at
most 1/10. One can think of the testing process as follows: We try to send m samples from § to
Axr-p, and it succeeds only when the samples are coupled with those from p. Therefore, the failure
probability, in addition to (1) and (2) above, also includes this uncoupled probability, and hence is
at most 3/10. Finally, the number of samples needed, m, is bounded in Lemmas 4.3 and 4.10. O

Lemma 7.4, combined with the proof of Theorem 7.2, immediately implies the following theorem.
See also Remark 7.3 for the discussion on relaxing marginal boundedness.

THEOREM 7.5. Let k = k(n) be an integer and let b = b(n) € (0,1/2] be a real. Suppose that
loglog(1/b) = O(log n). There is an identity testing algorithm for all b-marginally bounded distribu-
tions with query access to Subcube Oracle and for KL divergence with distance parameter € > 0. The
query complexity of the identity testing algorithm is

o 2 (2). e (2] 1))

The running time of the algorithm is polynomial in all parameters assuming that there is an FPRAS
for the conditional marginal distributions p;(- | x) for any i € [n] and any feasible x € K=,
Furthermore, ifk = 2, i.e., we have a binary domain K = {0, 1}, the query complexity can be improved

ofe (1) 2 (2)-

Again, we give a few examples as applications of Theorem 7.5, omitting all the technical details:

—Consider the Ising model with the interaction matrix J (with entries being f,,’s and assumed
to be positive semi-definite). We know from recent works [2, 36, 54] that one can efficiently
estimate all conditional marginal probabilities when ||J||; < 1 under any external fields.
There are two special features for this application. The first is that the marginal bounds
could potentially be as small as e"®V")_ The second is that we can only approximate the
conditional marginal probabilities rather than get the exact values, and hence we should
apply Theorem 7.5 instead of Theorem 7.2. With access to the Subcube Oracle, one can obtain
a polynomial-time identity testing algorithm for this family of Ising models with sample
complexity O((n*?/¢)log’(n/¢)) (note that k = 2).
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—Consider the monomer-dimer model (weighted matchings) on arbitrary (unbounded-degree)
graphs. We know from the classical work [51] that one can approximate the conditional mar-
ginal distributions for all pinnings. Similar to the previous example, the marginal probabilities
can be exponentially small (in the number of vertices) and one can at the best approximate
them efficiently rather than computing them exactly. Still, we can apply Theorem 7.5 to
obtain an efficient identity testing algorithm with access to the Subcube Oracle with sample
complexity O((mn/e) log®(n/e)) where m is the number of edges of the graph (which is the
dimension) and n is the number of vertices (note that k = 2).

7.3 Estimating KL Divergence with Additive Error
With access to the Subcube Oracle, we can also estimate the KL divergence from an unknown
distribution 7 to a given distribution y within an arbitrary additive error in polynomial time. This
corresponds to the tolerant identity testing problem for KL divergence, that is, given s, e > 0, we
want to distinguish between Dy, (7 || p) < sand Dgy, (|| ) > s +¢.

We first consider estimating KL divergence for distributions on a finite domain of size k.

LEMMA 7.6. Let k € N* be an integer, and let ¢ > 0, b € (0,1/2] be reals. Given an FPRAS for a
target distribution q over domain K of size k such that either q(a) = 0 orq(a) > b for any a € K,
and given sample access to an unknown distribution p < q over K, there exists a polynomial-time

algorithm that computes R such that with probability at least 2/3 it holds

R-Da i) < 22)

with sample complexity

k log?(1/b)
¢ (elog(k/e) M )

For a distribution p over a finite domain K, the (Shannon) entropy of p is defined as

Hp) = 3 pantn (15

acK
Observe that if p < ¢ are two distributions over K, then

D (pll9) = Y plartn| ) - > ptan R e | R

acK
It suffices to estimate the two terms on the rlght-hand side of (23), respectively, with good enough
accuracy.
We need the following well-known result from [68] for estimating the entropy of an unknown
distribution from samples; see also [52, 66, 69].

LEmMA 7.7 ([68]). Let k € N* be an integer, and let ¢ > 0 be a real. Given sample access to
an unknown distribution p over domain K of size k, there exists a polynomial-time algorithm that
computes H such that with probability at least 9/10 it holds

)ﬁ - H(p)( < (24)

k log? k
O(elog(k/e)+ o )

For the first term in (23), we show the following estimator.

with sample complexity
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LEMMA 7.8. Let k € N* be an integer, and let ¢ > 0, b € (0,1/2] be reals. Given an FPRAS for a
target distribution q over domain K of size k such that either q(a) = 0 orq(a) > b forany a € K,
and given sample access to an unknown distribution p < q over K, there exists a polynomial-time
algorithm that computes G such that with probability at least 4/5 it holds

1
‘G Fu (q(a))” = @)

o (lnz(l/b)) |

£2

with sample complexity

ProoF. Compute an approximation § of ¢ such that, with probability 9/10, we have that e~#/2 <

G(a)/q(a) < e/? for every a € K with g(a) > 0,and §(a) = 0 for g(a) = 0. Generate m independent

samples from p, denoted by ay, . .., a,,. Then our estimator is defined as
~ 1 &
G=—>ln
m jzz; (‘J(aj))

We will show that G satisfies (25) with probability at least 4/5 for
{8 In?(1/ b)}

£2

Observe that

R

SEL (q<aj>) I (q<a]))

Jj=1 Jj=1

@)

i (7)== (q())”‘ 0

J

Assuming ¢ is an (¢/2)-approximation of g, we can upper bound the first term in (26) by
m A m
i 1
NI IES s
LM gty )| = m 42

j=1
Meanwhile, for the second term in (26), since 0 < In(1/g(a)) < In(1/b) for all a € K with g(a) > 0
and since p <« q, we deduce from Hoeffding’s inequality that

rel () 2 [ (| 2 ) 2o (et ) <
m &4 \q(ay) P17 \q(a) - 2In?(1/b)) ~ 10°

Jj=
provided m > (8/¢?) In?(1/b). Therefore, we deduce from (26) that

1

m

1 £ €
G—Egp [In <-4+-=¢
' o [ (q(a)) 2
with failure probability at most 1/10 + 1/10 = 1/5 by the union bound, as wanted. O

Lemma 7.6 then follows easily from Lemmas 7.7 and 7.8.
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Proor LEMMA 7.6. Since the sample complexity upper bound we want to show is monotone
increasing in k, we can safely assume without loss of generality that g is fully supported on X i.e.,
q(a) > b for each a € K. In particular, this implies that b < 1/k. Take G from Lemma 7.8 and H
from Lemma 7.7, and let R = G — H. We then deduce from (23) that

1
‘“(m)

which fails with probability at most 1/5 + 1/10 = 3/10 by the union bound. The running time is
polynomial in all parameters and depends on the given FPRAS for q. The sample complexity is
given by

&

G —E,-
P 2

:g,

[R-Dwa (v 1) < ol - Hp)| < £+

k log® k log?(1/b)\ _ k log?(1/b)
O(elog(k/e)+ 2 )*O( 22 )_O(slog(k/e)+ 22 )

since we have k < 1/b. O

We now give our main theorem for estimating KL divergence with Subcube Oracle access.

THEOREM 7.9. Let k = k(n) be an integer and let b = b(n) € (0,1/2] be a real. Suppose that
k = O(n) andloglog(1/b) = O(logn). Given a visible distribution u over K" that is b-marginally
bounded, and given access to Subcube Oracle for a hidden distribution & < p over K", there is an
algorithm that for any ¢ > 0 computes S such that with probability at least 2/3 it holds

[S-Da ()| <= 27)

The query complexity of the algorithm is

1\ n* n
0log" (3) - % 10g ()]
( 8 \p) e Ble
The running time of the algorithm is polynomial in all parameters assuming that there is an FPRAS for
the conditional marginal distributions pi;(- | x) for anyi € [n] and any feasible x € K=11,

ProoF. From (20) we observe that

Dxr (7l p) = n By [Dxe (i | x) (- 1 x))],

where (i, x) is a random pair generated by taking a uniformly random coordinate i € [n] and
sampling x € K1~ from the marginal of 7 on the first i — 1 coordinates. Hence, it suffices to
estimate E(; ) [Dkr (i (- | x) || i (- | x))] with additive error ¢/n.

Let (i1, x1),. .., (ir, xr) be L independent random pairs generated via the General Oracle (which
is contained in the power of Subcube Oracle), where we define

{8n2 lnz(l/b)w
L=|2—— 17

&2
For1 < ¢ <L, welet

Re = Dxu, (i, (- | xe) || i, (- | x2)) -

Furthermore, for each ¢ let E[ be an estimate of R, which is obtained from Lemma 7.6 via the
Subcube Oracle, such that

—~ £ 1
Pr(‘Rl —R[( > —) < —
2n 10L
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Then, by the union bound we have

( ZRK——ZRf >_) ZPr(

Note that using the standard amplification technique for the failure probability, the number of
samples we need for each ¢ is

kn n?log?(1/b) ~ L1y .
0 (Slog(kn/g) * £2 ) -O(logL) =0 (log (E) . E_Zlog (;)) ,

where we use the assumptions k = O(n) and loglog(1/b) = O(logn).
Meanwhile, we observe 0 < Dgy, (7;(- | x) || i (- | x)) < In(1/b) for any feasible pair (i, x) since
1t is b-marginally bounded and 7= < p. Hence, Hoeffding’s inequality implies that

> <z (gz_L) <2
P\ mmiayp)) T 10

provided L > (8n?/e%) In*(1/b).
Therefore, by letting our estimator to be

R R’ ) 1 _1
£ =" 1L 100

ZRE E(i) [Dit, (mi(- | ) 1 (- | )]

{’ 1

we deduce that

15=Dxe. (7 || 1) |
Il 1% 1<
<n|p DR 7 DIR|H 0|7 D R~ By [P (il | ) - | x))]'
=1 =1 =1
€ €
<n-—+n-— =g,
2n 2n
with failure probability at most 1/10+1/10 = 1/5 by the union bound. Finally, the query complexity
is given by
5 (1 n? n _ 4 (1 nt n
0 (bg (5) loe () - =0(0g' (7) - G loe ()
as claimed. O

We remark that Theorem 7.9 is applicable to all the examples mentioned in Sections 7.1 and 7.2.
See also Remark 7.3 on relaxing the marginal boundedness condition.

8 Conclusion and Open Problems

In this article we give efficient algorithms for identity testing for the Coordinate Oracle model, and
also establish matching computational hardness and information-theoretical lower bounds. Our
algorithmic result builds on the fact that the visible distribution satisfies approximate tensorization
of entropy. While we show that for the anti-ferromagnetic Ising model, there is no polynomial-time
identity testing algorithm when approximate tensorization fails, it is in general unclear if one can
get a testing algorithm running in polynomial time without approximate tensorization, using either
Coordinate Oracle or Subcube Oracle in addition to General Oracle. One important example is the
ferromagnetic Ising model at all temperatures. We know that approximate tensorization fails at low
temperature (large f) since the Glauber dynamics has exponential mixing time. We do not know
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whether an efficient identity testing algorithm exists or not even with access to the more powerful
Subcube Oracle. Note that our Theorem 7.2 does not apply to ferromagnetic Ising models since we
cannot estimate conditional marginal probabilities under an arbitrary pinning (corresponding to
ferromagnetic Ising models with inconsistent local fields). Another important example is mixtures
of product distributions. It is easy to show that approximate tensorization could fail even for a
mixture of two product distributions with equal weights. We know from Theorem 7.2 that there is
an efficient identity testing algorithm for the family of mixtures of polynomially many balanced
product distributions given access to the Subcube Oracle. It is unclear to us, however, that if there
is a polynomial-time testing algorithm using only the weaker Coordinate Oracle.
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