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We give an efficient perfect sampling algorithm for weighted, connected induced subgraphs (or graphlets) of
rooted, bounded degree graphs. Our algorithm utilizes a vertex-percolation process with a carefully chosen
rejection filter and works under a percolation subcriticality condition. We show that this condition is optimal
in the sense that the task of (approximately) sampling weighted rooted graphlets becomes impossible in
finite expected time for infinite graphs and intractable for finite graphs when the condition does not hold.
We apply our sampling algorithm as a subroutine to give near linear-time perfect sampling algorithms for
polymer models and weighted non-rooted graphlets in finite graphs, two widely studied yet very different
problems. This new perfect sampling algorithm for polymer models gives improved sampling algorithms
for spin systems at low temperatures on expander graphs and unbalanced bipartite graphs, among other
applications.
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1 INTRODUCTION

Sampling is a fundamental computational task: given a specification of a probability distribution
on a (large) set of combinatorial objects, output a random object with the specified distribution
or with a distribution close to the specified distribution. This task becomes challenging when the
specification of the distribution is much more succinct than the set of objects, and one wants to
sample using time and space commensurate with the specification. Fundamental examples include
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sampling from Markov random fields and probabilistic graphical models and sampling substruc-
tures of graphs. We will address both of these examples here and connect them in a new way.

We consider a natural sampling problem: given a bounded-degree graph G, sample a graphlet (a
connected, vertex-induced subgraph) of G containing a fixed vertex r with probability proportional
to an exponential in the size of the subgraph. That is, sample a graphlet S containing vertex r with
probability proportional to 115!, where A > 0is a distribution parameter and |S| denotes the number
of vertices in S. In the article, we are concerned with small values of A, where the expected size of
a sampled graphlet is much smaller than the size of the graph.

Sampling graphlets is an important task in data science, network analysis, bioinformatics, and
sociology, as it allows us to gain information about massive graphs from small sections of it; see,
e.g., References [5, 29, 42, 46]. A number of variants of the problem have consequently been studied,
including sampling graphlets of a given size uniformly at random or sampling weighted graphlets
of all sizes [1, 6, 10-13, 16, 40, 47, 48, 50, 51]. The variant we consider here, i.e., sample a graphlet S
with probability proportional to A!S], arises as a key subroutine in recent sampling algorithms for
spin systems (hard-core model, Ising model, Potts model, etc.) in the regime of strong interactions
via polymer models described below in Section 1.2; see References [7, 14, 15, 18, 26, 35, 38, 39, 45].

One major limitation of previous sampling algorithms for graphlets and polymer models (those
in, e.g., [17, 25, 35, 45, 50], among others) is the use of exhaustive enumeration of graphlets of a
given size; this requires restrictive parameter regimes or large polynomial running times, with the
logarithm of the maximum degree A of the graph appearing in the exponent of the polynomial.
Here, we design a fast perfect sampling algorithm for weighted graphlets based on a vertex per-
colation process combined with a rejection filter. This method bypasses the enumeration barrier
and allows us to design perfect sampling algorithms for a number of applications, substantially
improving upon existing algorithms in three ways: (1) our algorithms have considerably faster
running times, with no dependence on A in the exponent; (2) our algorithms return perfect, rather
than approximate, samples from the desired distributions; and (3) our algorithms are conceptually
simple and practical to implement.

Our algorithm proceeds as follows. First, run a vertex percolation process on the graph G begin-
ning at vertex r in a breadth-first search (BFS) manner, repeatedly adding each adjacent vertex
to the graphlet with a carefully-chosen probability p. Once the percolation process terminates, the
graphlet is accepted as the random sample with a certain probability that depends on the graphlet
and rejected otherwise; if the graphlet is rejected, the algorithm restarts another percolation pro-
cess from r. Because of the careful way we choose the percolation and rejection probabilities, we
can prove the final accepted sample is drawn exactly from the desired distribution and the expected
running time is bounded by a constant that depends only on A and the maximum degree A.

For our applications to polymer models, we use this graphlet sampling algorithm as a subroutine
to implement a Markov chain on polymer configurations. We then use this Markov chain to devise
a perfect sampling algorithm for polymer models based on the coupling from the past (CFTP)
method from Reference [49] and the notion of bounding chains from Reference [36].

1.1 Sampling Rooted Graphlets

Our key contribution is a new algorithm for perfectly sampling weighted graphlets containing a
given vertex r. We start by fixing the model of computation we work with throughout the article.
We assume a model that allows for querying the adjacency list of a given vertex in a bounded
degree graph in constant time, including in a rooted infinite graph. We also assume that, in a finite
graph, we can query a uniformly random vertex in constant time. This is a standard model used in
the study of sublinear algorithms [28]. We also assume access to a stream of perfectly random real
numbers in [0, 1]. The model of computation is fixed for consistency; in particular, our methods
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extend to other models, only requiring to adjust the running time to account for any additional
computational overhead.

Let G = (V,E) be a finite or infinite graph of maximum degree A. For r € V, let S(G, r) be the
set of all connected, vertex-induced subgraphs of G containing r. (The subgraph induced by U € V'
has vertex set U and includes all the edges of G with both endpoints in U.) We call r the root of
G and the elements of S(G, r) graphlets rooted at r. For A > 0 define the probability distribution
vG.r.a on S(G,r) by

[S1 .
A , Wwhere Zg, ;= Z ISt (1)
$eS(G,r)

VG, r,/l(s)

ZG, r,A

The distribution is well defined when the normalizing constant Zg , 3, known as the partition
function, is finite. This is the case for every graph of maximum degree A and every r when A is
below the critical threshold:

( A — 2)A—2 . )
(A—1)A17 @
see Lemma 1.3 below. This threshold was already considered in Reference [50], who gave an ¢-
approximate sampling algorithm for v , 5 for the class of maximum-degree A graphs when A <
A«(A) with running time poly(¢7!). We give a perfect sampling algorithm for v, 1 for A < 1.(A)
with constant expected running time.

A(A) =

THEOREM 1.1. Fix A > 3 and let A < A.(A). There is a randomized algorithm that for any graph
G = (V,E) of maximum degree A and any r € V outputs a graphlet distributed according to v, )
with expected running time bounded by a constant that depends only on A and A.

Previous algorithms to generate e-approximate samples from vg , 3 (e.g., those in References [17,
25, 35, 50]) exhaustively enumerate all graphlets of size < k, for some k that depends on the
error parameter ¢ that describes how accurate the sample must be. This results in algorithms with
(1/¢)©0°e2) running times. Applications such as sampling from polymer models require multiple
samples from v , ;3 and have small error tolerance per sample; in particular, they require ¢ <
1/n, which results in inefficient algorithms with overall running time n®(°¢®), The algorithm in
Theorem 1.1, on the other hand, is an exact sampler whose expected running time depends only
on A and A and thus provides a significant advantage in applications as we detail below.

We also show that Theorem 1.1 is sharp in two ways. First, we establish that there is no
polynomial-time approximate sampling algorithm for vg , » when A € (1.(A), 1) for the class of
finite graphs of maximum degree at most A unless RP = NP; see Definition 5.3 for the precise defini-
tion of a polynomial-time approximate sampler. (We note that a similar hardness result was proved
in Reference [50] for the related problem of sampling “unrooted graphlets”; we provide more de-
tails about this in Section 1.4.) Second, in the infinite setting, the normalizing constant Zg , ) may
diverge (and consequently, the distribution v, , ; is not be well-defined) when A > A.(A); con-
versely, we prove that Zg ,  is finite on every graph of maximum degree A when 1 < 4.(A).

LEmMA 1.2. Fix A > 3 and A € (A.(A),1). If there is a polynomial-time approximate sampler for
va.r.a for finite graphs G = (V, E) of maximum degree A and eachr € V, then RP = NP.

LEMMA 1.3. The partition function Zg,, is finite for every (possibly infinite) graph G = (V,E) of
maximum degree A and everyr € V if and only if A < A.(A).

Finally, we mention that the algorithmic result in Theorem 1.1 cannot be extended even to the
case A = A,.(A): for the infinite A-regular tree, we can show that the expected size of a graphlet
sampled from vg . 5 is infinite when A = A,(A), and so it is impossible to have sampling algorithms
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with finite expected running time. In summary, the algorithm in Theorem 1.1 for A < A,(A), com-
bined with the hardness/impossibility results in Lemmas 1.2 and 1.3 for A > A.(A), provide a
resolution to the computational problem of sampling from v, 1 on graphs of maximum degree at
most A.

As mentioned, our sampling algorithm is based on exploring the connected component of r in
a vertex-percolation process. We carefully choose a specific percolation parameter p € (0, 1) as
a function of A and A (see Lemma 2.2). We then perform BFS from r, labeling each new vertex
encountered “active” with probability p and “inactive” with probability 1 — p independently over
all vertices; we continue the BFS exploring only unexplored neighbors of active vertices. In this
way, we uncover the “active” component of r, call it y. We then accept y with a given probability
depending on A, A, |y| and |0y |, where dy denotes the set of vertices outside of y that are adjacent to
y.If we reject y, we begin again with a new percolation process. We note that only when A < 1,(A)
there exists a suitable percolation probability p that results in a subcritical percolation process, so
that the size of the active component has finite expectation and exponential tails. The weighted
model we sample from is particularly well suited to this type of exploration algorithm because of
the direct connection to a subcritical percolation process.

Random exploration and rejection sampling have been used previously to sample graphlets and
other structures, most notably in the recent work of Bressan [10], who uses a novel bucketing
scheme in combination with rejection sampling to perfectly sample uniformly random graphlets
of size k from a graph, as well as studying the mixing time of the random walk on the set of all
such graphlets. See also Reference [3], in which a random growth process and rejection sampling
are used to perfectly sample spin configurations.

We prove a more general version of Theorem 1.1 in Section 2, allowing for vertex-labeled
graphlets and modifications of the weights by multiplication by a non-negative function bounded
by 1. These generalizations are needed for the application to polymer models in Section 1.2.

1.2 Sampling from Polymer Models

We use our algorithm for sampling weighted rooted graphlets to design fast and perfect samplers
for polymer models. Polymer models are systems of interacting geometric objects representing
defects from pure ground states (i.e., most likely configurations) in spin systems on graphs in clas-
sical statistical physics [23, 30, 43]. These geometric objects are most often represented by vertex-
labeled graphlets from a given host graph. Recently, polymer models have found application as an
algorithmic tool to sample from spin systems on various classes of graphs in strong interaction
regimes; see, e.g., References [7, 14, 15, 17, 18, 21, 25, 26, 34, 35, 38, 39, 45]. In these applications,
the problem of sampling weighted vertex-labeled rooted graphlets emerged as a significant com-
putational barrier.

We will work with subset polymer models in which all polymers are vertex-labeled graphlets
from a host graph G = (V,E). These models were defined in Reference [30] and generalized in
Reference [43]. Such a polymer model consists of:

— Aset C = C(G) of polymers, each of which is a graphlet in G with the vertices of the graphlet
labeled with colors from a set ¥ of size q.

— Weights w), > 0 for each y € C. We assume without loss of generality that all vertex-labeled
graphlets of G, including each individual vertex v € V, are elements of C, by setting w, = 0
when necessary.

— An incompatibility relation + defined by connectivity. We say two polymers y,y’ € C are in-
compatible and write y + y’ if the union of their corresponding vertices induces a connected
subgraph in G. Otherwis,e they are compatible and we write y ~ y’.
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Table 1. Comparison of Conditions and Running Times of Known Polymer Sampling Algorithms

Condition Bound on exponential | Running Time | Type of Sampler
decay of weights
Kotecky—Preiss [14, 35, 38] wy < (e?qA)TY] nOUogh) approximate
Polymer Sampling [17, 25] | w, < (e’¢?A%)~ V1 O(nlogn) approximate
Clique dynamics [24] wy < (eqA)~IY] nOUogh) approximate
This work (Theorem 1.4) wy < (eqA)7TV] O(nlogn) perfect

Let Q(C) denote the set of all sets of pairwise compatible polymers from C. The polymer model
is the Gibbs distribution y on Q(C) defined by

_ HyEX Wy

p(X)—W, where Z(C) = Z HWY

is the polymer model partition function. The size |y| of a polymer y is the number of vertices in
the corresponding graphlet. We let C, be all polymers containing vertex v.

We will often work with a family of polymer models corresponding to an infinite family of host
graphs G. We say the weights of a family of polymer models are computationally feasible if w, can
be computed in time polynomial in |y| uniformly over the polymer models in the family.

Algorithms for sampling polymer models fall into two classes: those based on truncating
the cluster expansion of a polymer model to approximate a partition function and using self-
reducibility to sample, and those based on Markov chains on the set of collections of compatible
polymers. The cluster expansion approach, while giving polynomial-time algorithms, is relatively
inefficient in general, with the degree of the polynomial bound on the running time growing with
the degree of the underlying graph; e.g., running time n®°¢%) for n-vertex graph of maximum
degree A. A Markov chain approach based on adding and remove polymers from a polymer con-
figuration in principle can be much faster (near linear time in the size of the graph) but runs into
one hitch: a much stricter condition on the parameters of the model is needed to perform one up-
date step of the Markov chain efficiently (the “polymer sampling condition” in References [17, 25]).
We solve this problem by adapting our rooted graphlet sampler to sample polymers models, lead-
ing to a near linear-time perfect sampling algorithm for polymer models under the least restrictive
conditions known (see Table 1).

THEOREM 1.4. Fix A > 3, > 1,0 € (0,1), and X < A (A,q) := %

sampling algorithm for pi with expected running time O(|V|log |V]) for any family of subset polymer
models on maximum degree A graphs G = (V, E) with computationally feasible weights satisfying:

There is a perfect

wy < MW forally € C; and (3)

Zyw lylwy, <0 forallveV. 4)

The threshold defined in Equation (3) is the generalization of the critical threshold for rooted
graphlet sampling to the labeled case (taking ¢ = 1 recovers the definition in Equation (2)).
Theorem 1.4 improves upon the known results for sampling from polymer models in two ways. For
a very general class of polymer models, our algorithm simultaneously provides perfect sampling
with near-linear running time under weak conditions on the polymer weights. We now review
previous works to illustrate these improvements; see the accompanying Table 1.
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A number of conditions on polymer weights have been used to provide efficient sampling algo-
rithms. The first papers in this direction (including References [14, 35, 38]) used the Kotecky—Preiss
condition for convergence of the cluster expansion of the polymer model partition function [43]:
2yrey w,,/el)/| < |y| Yy € C. This condition is typically verified by ensuring that:

Z w},e"’l <1 VoueV. (5)
)/’)“’U

Since the number of vertex-labeled rooted graphlets of size k in a maximum degree A graph grows
roughly like (eqA)*~! (see Reference [8]), weights of polymers of size k must decay roughly like
(€?qA)7F for the polymer model to satisfy Equation (5), with the extra factor of e coming from the
exponential in the left hand side of the condition Equation (5).

The major downside to the algorithms based on the cluster expansion, i.e., those using
Equation (5) or the Kotecky-Preiss condition, is that the running times obtained are of the form
nOlogd) Subsequent works, namely [17, 25], addressed this downside but at the cost of a signifi-
cantly stricter condition on the polymer weights.

In Reference [17], the authors devised a new Markov chain algorithm for sampling from polymer
models. The condition on the polymer weights for rapid mixing of this chain is somewhat less
restrictive than the Kotecky—Preiss condition; it is the Polymer Mixing condition:

ZY’*Y ly'lwys < 0lyl Vy € C for some 6 € (0,1). (6)

This requires weights of polymers of size k to decay like (eqA)~*, a savings of factor e in the base
of the exponent over (5). However, to implement a single step of this Markov chain in constant
expected time, a stronger condition (the Polymer Sampling condition) was required:

wy < (esAe’q3>_|y| . (7)
This is a significant loss of a factor e*A?¢? in the base of the exponent compared with Equation (5),
but the resulting sampling algorithm does run in near linear time.

In Reference [24], the authors use a different Markov chain condition, the Clique Dynamics con-
dition, similar to Equation (6), which requires weights of polymers of size k to decay like (eqA)~¥,
saving the same factor e over (5). Their running times, though, are again of the form n©{°g®)
since implementing one step of their Markov chain involves enumerating rooted polymers of size
O(logn).

Our results are a “best-of-both-worlds” for polymer sampling: under the conditions
Equations (3) and (4) that both require polymer weights to decay like (eqA)~* (this is shown later;
see, e.g., the proof of Corollary 1.6), we obtain a near linear time algorithm. Moreover, unlike any
of the previous results, our algorithm is a perfect sampler.

To conclude this section, we comment briefly on the algorithm we design to sample from p. Our
starting point is the polymer dynamics Markov chain from Reference [17]. We use it to implement
a CFTP) algorithm (see Reference [49]). To do so efficiently (in terms of the number of steps of the
Markov chain), we design a new “bounding Markov chain” for the polymer dynamics, a method
pioneered in References [31, 36], and to implement each step of the Markov chain efficiently, we
turn to our sampler for weighted rooted graphlets from Theorem 1.1.

1.3 Applications to Spin Systems

Our new algorithm for sampling subset polymer models can be used as a subroutine in essentially
all previous applications of polymer models for spin system sampling at low temperatures, includ-
ing those in [14, 15, 17, 18, 21, 25, 26, 34, 38, 45]. This results in faster sampling algorithms under
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less restrictive conditions on model parameters in all those settings. As examples, we fleshed out
here the details in two of these applications; more details are provided in Section 4.

Hard-core model on bipartite graphs. The hard-core model on a graph G is the probability
distribution /JZC on 7 (G), the set of all independent sets of G, with

1

c /1 c
uh (1):286(/1), where  Z!! (A)zle;G)A'”. (8)

The complexity of approximate counting and sampling from ,ugc on bounded-degree graphs is
well understood: there is a computational threshold at some A.(A), with efficient algorithms for
A < A:(A) [4, 19, 20, 54] and hardness above the threshold (no polynomial-time algorithms unless
NP =RP) [27, 52, 53]. However, on bipartite graphs, the complexity of these problems is unresolved
and is captured by the class #BIS (approximately counting independent sets in bipartite graphs)
defined by Dyer, Goldberg, Greenhill, and Jerrum [22].

Theorem 1.4 implies the existence of a fast perfect sampling algorithm for the hard-core model
in a certain class of bipartite graphs called unbalanced bipartite graphs, considered in References
[14, 24].

COROLLARY 1.5. There is a perfect sampling algorithm for ,ugc running in expected time O(nlog n)
for n-vertex bipartite graphs G with bipartition (L, R), with maximum degree Ay in L, maximum
degree Ar in R, and minimum degree 6 in R if

A1+ (1 +e) (AL — 1)AR) < (1 + A)OR/AL, 9)

Approximate sampling algorithms with large polynomial run times were previously given

for this problem when 6AA;Ag < (1 + A)%%/AL in Reference [14] and when 3.33530A;Ap <
(1 + A)%=/AL in [24]. Our result applies to a comparable parameter range: inequality (9) holds,
for instance, when (1 + e)AALAg < (1 + A)%*/AL or when 3AA;Ag < (1 + A)%R/AL and A; < 6.
More importantly, our algorithm is the first to achieve perfect sampling and near-linear running
time.
Potts model on expander graphs. The Q-color ferromagnetic Potts model on a graph G = (V, E)
is the probability distribution ,ug"tts on the set of Q-colorings of the vertices of G; i.e., {1,..., Q}V.
Each Q-coloring ¢ is assigned probability ,ulg’tts(a) o e/m(G:9) where m(G, o) is the number of
monochromatic edges of G under the coloring ¢ and f > 0 is a model parameter. When the
parameter f is large, and G has some structure (e.g., G is an expander graph), typical configurations
drawn from pPGO”S are dominated by one of the Q colors; that is, there is phase coexistence in the
model. This enables sampling using subset polymer models.

Recall that an n-vertex graph G = (V, E) is an a-expander if for all subsets S C V with |S| < n/2,
the number of edges in E with exactly one endpoint in S is at least «|S|.

COROLLARY 1.6. Consider the Q-color ferromagnetic Potts model on an a-expander n-vertex graph
of maximum degree A. Suppose

1+log (&5 + 1) +log((Q - 1)A)
(04

B> : (10)

Then, there is a sampling algorithm with expected running time O(nlogn) that outputs a sample o

with distribution fi so that ||i — pge™||y < e~ n),

Previously, Reference [17] provided a ¢-approximate sample for yg"tts in time

O(nlog(n/e)log(1/¢)) whenever § > w. Condition (10) holds when f > w,
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so our algorithm applies to a larger range of parameters and removes the dependence on ¢ from
the running time. We do not achieve perfect sampling in this application only because the subset

polymer models used give approximations of yf?""* rather than describing pto"* exactly.

1.4 Sampling Unrooted Graphlets in Finite Graphs

As another application of our algorithm for sampling weighted rooted graphlets, we consider next
the problem of sampling weighted unrooted graphlets in a finite graph. Given a finite graph G, let
S(G) be the set of all graphlets of G. Define the distribution vg 3 on S(G) by

Alvl

ve,a(y) = Zox where Zg ) = ZyeS(G) Alvl

Read-McFarland and Stefankovié¢ [50] gave a polynomial-time approximate sampling algorithm
for v, for the class of maximum-degree A graphs when A < A.(A) and prove that there is no
such algorithm for A € (1.(A),1) unless NP = RP.! We give a new algorithm for this problem,
covering the entire A < A.(A) regime, and improving on the result of Reference [50] in two ways:
(i) our running time is constant in expectation (with no dependence on n), while the running time
of the e-approximate sampler in Reference [50] is n - (1/¢)°1°8%); and (ii) our algorithm outputs a
perfect sample instead of an approximate one (and thus, the running time has no dependence on
any approximation parameter).

THEOREM 1.7. Fix A > 3 and let A < A.(A). Then for the class of finite graphs of maximum degree
A there is a randomized algorithm running in constant expected time that outputs a perfect sample
fromvg, ;. The expected running time is bounded as a function of A and A.

The algorithm we use for this theorem is a modification of the one for sampling rooted graphlets.
We pick a uniformly random v € V, run the same BFS percolation exploration, and accept the
connected component of v with an adjusted probability (to account for the fact that a graphlet can
be generated from any of its vertices). The acceptance probability is bounded away from 0 and so
the algorithm runs in constant expected time. As mentioned earlier, the ¢-approximate sampling
algorithm from Reference [50] is based on the exhaustive enumeration of all subgraphs of size < k,
for some k that depends on ¢. Our new algorithm entirely bypasses this enumeration barrier.

2 GRAPHLET SAMPLING: ALGORITHMS

In this section, we present our efficient perfect sampling algorithm for weighted, vertex-labeled
graphlets containing a fixed vertex r from a maximum degree A graph; in particular, in Section 2.1,
we prove a generalized version of Theorem 1.1 from the introduction. We also provide in
Section 2.2, our algorithm for sampling weighted graphlets (i.e., the unrooted, unlabeled case)
and establish Theorem 1.7. Our hardness results, that is, Lemmas 1.2 and 1.3, are proved later in
Section 5.

2.1 Sampling Rooted Vertex-Labeled Graphlets

Let G = (V,E) be a (possibly infinite) graph of maximum degree A. For U C V, let G[U] denote
the corresponding vertex-induced subgraph of G; specifically, G[U] = (U, E(U)), where E(U) C E
is the set of edges of G with both endpoints in U. A vertex-induced subgraph is a graphlet if it is
connected. For r € V, let S(G, r) be the set of all graphlets of G that contain vertex r. We call the
graphlets in S(G, r) the graphlets rooted at r.

In Reference [50], the threshold is incorrectly stated as A < A,(A + 1); this is due to a minor error interchanging the
infinite A-regular tree with the infinite A-ary tree; with this small correction their analysis goes through with the bound
on A as stated here.
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LetX = {1,...,q} beaset of vertex labels or colors, and let S(G, 7, q) = U(s, £(s))eS(G.r) %5 be the
set of all vertex-labeled graphlets rooted at . Given a real parameter A > 0, we assign to each rooted
vertex-labeled graphlet y € S(G,r,q) U {0} with |y| vertices the weight w, = AMYIF(y), where
f:8(G,r,q) U {0} — [0,1]. Note that 0 < w), < A1 which will be important for later analysis.

Define the probability distribution vg, , 3 on S(G,r, q) U {0} by setting

Wy
S ZGoray an
where Z(G,r, 1) = ¥es5(G,r,q)u(0) Wy’ We assume that G, f, q and A are such that Z(G,r, 1) is
finite, so that this distribution is well defined. When ¢ = 1 and f(y) = 1(y # 0), vg,,.2 corresponds
exactly to the distribution defined in Equation (1) over the unlabeled graphlets of G rooted at r.

We consider the problem of sampling from vg, , ;; this more general version of the sampling
problem is later used as a subroutine for sampling polymer systems in Section 3. Let

(A _ 2)A—2 .
q(A - 1At

VG, r,/l(}/)

A(A,q) =

cf., (2). Our main algorithmic result for sampling colored rooted graphlets is the following.

THEOREM 2.1. FixA > 3,q > 1, and suppose 0 < A < A.(A, q). There is a randomized algorithm to
exactly sample from v, , ) for graphs G of maximum degree A and functions f : S(G,r,q) U {0} —
[0, 1] where f(y) is computable in time polynomial in |y|; this randomized algorithm has expected
running time O(Zg;}r,a)'

Theorem 1.1 from the introduction corresponds to the special case wheng = 1and f(y) = 1(y #
0) (in this case Zg, , 3 = A). Other mild assumptions on the function f, e.g., f(0) = 1 or f(r) =1,
ensure that Zg , ; is bounded away from 0 and, consequently, that the sampling algorithm in the
theorem also has constant expected running time in those cases.

As a warm-up, let us consider first our algorithm for sampling labeled rooted graphlets on a
finite graph G = (V,E) with f = 1, and purposely omit certain non-essential implementation
details for clarity. First, we find p € (0,1) such that %(1 — p)A=2 = }; this choice of p will be
justified in what follows. The algorithm then repeats the following process until a vertex-labeled
graphlet is accepted:

(1) Each vertex of the graph is independently assigned with probability p a uniform random
color from {1,...,q}, or it is marked as “not colored” with the probability 1 — p.

(2) Let y be the vertex-labeled graphlet from S(G,r,q) U {0} corresponding the colored con-
nected component of r; i.e., the set of vertices connected to r by at least one path of colored
vertices.

(3) Observe that the probability that § = y is (p/q)!"!(1 = p)!9¥!, where dy denotes to set of
vertices in G that are not in y but are adjacent to a vertex in y (with a slight abuse of notation,
we let |00] = 1). When § = y, our aim is to output y with probability oc A1"! which has no
dependence on dy. Therefore, we use a “rejection filter” and only accept y with probability
(1 — p)A-2Ir+2-19y1 50 that the probability that y is the output becomes:

lyl [yl
({;’) <1—p>'f"Y'<1—p><A-2>'V'+2-""Y'=<1—p>2(§<1—p>A—2) =(1-p2. (2

From Equation (12), the choice of p such that §(1 —p)A~% = )is apparent. We will prove that only

when A < A.(A, q) there exists p € (0,1) such that §(l — p)272 = ). In the actual implementation
of the algorithm, it will in fact suffice to find an approximation for p.
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We comment briefly on the intuition for the rejection filter. The acceptance probability must
include a factor of (1 — p)~191, so that the final acceptance probability depends on |y| but not on
|dy|. However, (1 — p)~!9Y1 > 1 is not a valid probability, so we use instead (1 — p)A=2)IvI+2=19y]
which is at most 1 since (A — 2)|y| + 2 > |dy|. This bound on |dy| is best possible since it is tight
for the A-regular tree. We note that using looser bounds for |dy| affects the range of the parameter
A for which we can find p € (0,1) so that %(1 -p)At=1

Finally, we mention that the algorithm as described requires Q(|V) time per iteration and cannot
be extended to infinite graphs. This is easily corrected by assigning colors starting from r and
revealing only the colored component of r in a breadth-first fashion. The threshold A, (4, q) is sharp
in the sense that only when A < A,(A, q) is the value of p such that the revealing process is a sub-
critical process that creates a small component with high probability. This ensures the algorithm
can be implemented efficiently. In particular, we stress that our algorithm avoids exhaustively
enumerating labeled graphlets, as done in previous methods [17].

Before giving the implementation details of our algorithm and proving Theorem 2.1, we consider
the problem of finding p € (0, 1) such that %(1 —p)22 = L. For A > 3 and q > 1, consider the

real function g(x) = %(1 — x)272_ It can be readily checked that the function g is continuous and

differentiable in [0, 1], has a unique maximum at x = 15 with g(55) = A.(A, g), is increasing in
[0, 5= 1] and decreasing in [A 7, 1]. This implies that only when A < 4.(A, q), there exists a value
of p € [0, 5= 1) such that g(p) = A. In particular, when A > A, (A, q) there is no value of p for which
g(p) = Aand when A = 1.(A, q), the only possible value is p = 5. The latter case would result in
a critical percolation process, corresponding to the fact that the eXpected size of a graphlet from
VG, r,2 has no uniform upper bound in the class of graphs of maximum degree A; in fact, it is infinite
on the A-regular tree. We can find a suitable approximation for p when A < 1.(A, g) via a simple

(binary search) procedure.

LEmMA 2.2. For any A € [0,A.(A,q)) we can find rational numbers p € [0, AL_I) and ) €
(A, A (A, q)] such that g(p) = A in O(] log xao ) time.

The proof of this lemma appears after the proof of Theorem 2.1. We now prove Theorem 2.1, in-
cluding giving a more detailed version of the algorithm outlined above that includes the previously
omitted implementation details and allows for general functions f : S(G,r, q) U {0} — [0, 1].

Proor oF THEOREM 2.1. For ease of notation, let 1, = A.(A, g). Our algorithm to sample from
vG.r.2 When A < A, explores from r in a breadth-first manner and stops once it has revealed the
colored connected component of r. It proceeds as follows:

(1) Find p € [0, ﬁ) and A € [AA,) such that g(p) = A. This can be done in time
O(]log ml) per Lemma 2.2.

(2) Let Q be a queue. With probability 1 — p do not add r to Q; otherwise, assign r a color
uniformly at random from {1, ..., g} and add r to Q. Mark r as explored.

(3) While Q # 0, repeat the following:

3.1) Pop a vertex v from Q.

3.2) For each unexplored neighbor w of v, with probability 1 — p do not add w to Q; otherwise,
assign w a color uniformly at random from {1, ..., ¢} and add w to Q. Mark w as explored
(regardless of whether it was added to Q or not).

(4) Let y be the vertex-labeled graphlet from S(G,r,q) U {0} corresponding the colored con-
nected component of r. Accept y with probability:

fy) - ( )(A 2)ly1+2-10y| (A)M_
A
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(5) If y is rejected, go to Step 2 and repeat.
The probability of obtaining y € S(G,r,q) U {0} in an iteration of the algorithm is

A\ vl A\
(2] =92 ra =2 (27— ) A = -
and thus the overall acceptance probability in an iteration is

pi=(=p> > wy=(1-p)Zra
yeS(G,r,q)u{0}

Then,

512
Pr[y € S(G,r,q) U {0} is the output] = Zt>1(1 —ﬁ)zwy(l -p)t= m =vG.r.2(Y)-

We next bound the expected running time of the algorithm. We claim first that expected running
per iteration is, at most, a constant that depends only on a, A and q. If y is the configuration
generated in an iteration, it is discovered in O(|]y| + |dy|) = O(]y|) time and, by assumption, f(y)
can be computed in at most O(|y|?) time, for suitable a constant a > 0. Let /i the output distribution
of Step 3 of the algorithm. Then, there exists a constant C = C(g, A) > 0 such that the expected
running time of each iteration is at most:

C > el pry] = C Byl et (13)
y€S(G,r,q)U0

We show next that |y| (under f) is stochastically dominated by a random variable W = X +
Y (ie, |y| < W), where X and Y are ii.d. random variables corresponding to the cluster size
of a homogeneous Galton-Watson process with offspring distribution Bin(A — 1,p). We recall
that this is the branching process that starting from a single vertex (or individual) Ny, adds Z; ~
Bin(A—-1, p) descendants to Ny. The process is then repeated for each new descendant. The process
can either die out or go on forever; the cluster size is the number of descendants of N;. When
different offspring of Ny use different distributions to generate its descendants, the process is called
heterogeneous (see, e.g., Reference [37] for additional background).

To see that |[y| < W = X + Y, first note that |y| < L, where L is the cluster size of a heteroge-
neous Galton-Watson process, in which the root vertex has offspring distribution Bin(A, p) and
every other vertex has offspring distribution Bin(A — 1, p). This is because the branching process
generating y includes the root only with probability p (the root is always present in the Galton-
Watson process), and, in addition, it considers at most A (from the root) or A — 1 (from any other
vertex) potential branches (or descendants). In turn, we can bound the cluster size Lby L < X +Y,
since, in the branching process corresponding to L, we can couple the first A — 1 branches of the
root Ny with X (starting at the root) and the remaining branch with Y (starting at the child of the
root not coupled with X).

It is well-known that X and Y have finite moments when (A —1)p < 1 (see, e.g., Reference [37]).
In particular, there exists a constant A = A(a, A, p) > 0 such that

Euxllyl?] < E[L?] < E[(X + Y)?] < 2%(E[X“] + E[Y“]) < A. (14)

This, together with Equation (13), shows that the expected running time in each iteration of the
algorithm is bounded by C - A.
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Now, let R be the number of times Steps 2-5 are repeated, let T be the overall running time of
the algorithm. Then:

E[T] = ZE[T |R=t]Pr[R=t]<C-A- Zt(l —p)lp< %A, (15)

t>1 t>1

and the result follows. ]
We conclude this section with the proof of Lemma 2.2.

Proor oF LEMMA 2.2. It suffices to find p € [p, ﬁ] This can be done via binary search in ¢

steps, provided ¢t > 0 is such that ﬁ ‘ 2% < ﬁ — p. Since ¢’ < é, it follows from the mean
value theorem that q(A. — 1) < ﬁ — p. Thus, for the binary search to require at most ¢ steps, it is
sufficient to pick t so that ﬁ . zlt < q(A« — 1), and the result follows. ]

2.2 Sampling Unrooted Graphlets

We consider next the problem of sampling weighted graphlets from a finite graph G = (V,E) of
maximum degree A; specifically, in this variant of the sampling problem, we consider unrooted, un-
labeled, weighted graphlets of G. Let S(G) be the set of all graphlets of G. We define the probability
distribution v 3 on S(G) by setting

sl

vG,A(S) = 7o

where Zg,) = Ysesuio) A8l The problem of (approximately) sampling from vg,; is quite
natural. In Reference [50], it was established that this problem is computationally hard when

A > (D) = % ; an e-approximate sampling algorithm was also given in Reference [50]

for the case when A < A.(A) with running time n - (1/¢)©1°8%), We establish the following:

THEOREM 2.3. Suppose A > 3 and A > 0 are such that A < A.(A). There is a randomized algo-
rithm to exactly sample from v, ) with O(1) expected running time for finite graphs G of maximum
degree A.

Proor. For ease of notation, we set A, = A,(A) throughout this proof. Our algorithm to sample
from vg_ is based on the algorithm to sample from v , 3 (the rooted, vertex-labeled, weighted
case). The idea is to pick a root uniformly at random and run the algorithm for the rooted case
from this random vertex with the rejection filter adjusted to account for the fact that a graphlet
can be generated from any of its vertices. It proceeds as follows:

(1) Find p € [0, 1) and A € [A, A,) such that g(p) = A using the method from Lemma 2.2.
(2) Pick a vertex r € V uniformly at random.
(3) Let Q be a queue. With probability p add r to Q and mark it as colored. Mark r as explored.
(4) While Q # 0, repeat the following:
3.1) Pop a vertex v from Q.
3.2) For each unexplored neighbor w of v, with probability p add w to Q and mark w as colored.
Mark w as explored.
(5) Let S € S(G) be the graphlet corresponding to the colored connected component of v. Accept
S with probability:

1 1 S|
— . (1 - p)ADISH2-105] (7) )
S| A
(6) If S is rejected, go back to Step 2 and repeat.
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The analysis of this algorithm is similar to that in the proof of Theorem 2.1. Let n = |V|. The
probability that the algorithm outputs S in an iteration is

1 1 AN\ @ - pyzals
258l gy 108, g _ pya-2Ise2-18s] (4] 2
E — P (1-p) 5] (1-p) (A) - . (16)

veS

Hence, conditioned on acceptance, the probability of obtaining S € S(G) is thus vg 1(S), and so
the output distribution of the algorithm is v ;.

For the running time of the algorithm, we note that Step 4 of the algorithm is analogous to Step
3 of the algorithm in the proof of Theorem 2.1, and so the expected running time of each round is
also bounded by a constant C = C(A, p) > 0. Let T be the overall the running time of the algorithm.
From Equation (16), we have that the overall acceptance probability in a round is p = WTZ(GA)
Then, as in Equation (15), we deduce that E[T] = O(nZ(G,A)™!). Since Z(G, 1) > nA, we have
E[T] = O(1). ]

3 APPLICATIONS TO POLYMER MODELS

In this section, we show how to use our algorithm for sampling rooted vertex-labeled graphlets
from Section 2 to sample from subset polymer models and prove Theorem 1.4.

Consider a subset polymer model on an n-vertex graph G = (V,E); see Section 1.2 for the
definition. Recall that we use C, for the set of all polymers containing vertex v € V, and let yp

denote the empty polymer. Define the distribution v, on C, U {yp} where v, (y) = % and
1
volro) =1- 70 Z Wy
7eCoUiyo}

We note that v, is well-defined when condition (3) holds, since under this condition we have
2yeC,Ulyy) Wy < 40; this is proved later in Lemma 5.1. The following Markov chain on Q(C) is
similar to the one introduced in Reference [17].

Polymer dynamics. Given a configuration X; € Q(C), form X;,; as follows:

(1) Pick v € V uniformly at random and let S, = {y € X; : v € y} (note that S,, is either empty
or contains 1 polymer).

(2) With probability 1/41, let X;+1 = X; \ So.

(3) Otherwise, with the remaining probability 40/41, sample y from v,,. Let X;4; = X; U {y} if
X U{y} € Q(C) and let X;;1 = X; otherwise.

We first note that this Markov chain is irreducible (every configuration can reach and can be
reached from the empty set of polymers with positive probability), and aperiodic (there is positive
probability of remaining on the same state). It is also reversible with respect to p: letting P be the
transition matrix for this chain, I' € Q(C), and a polymer y ¢ T be such that T U {y} € Q(C), we
have p(T' U {y})/u(T) = wy, and for y # yp:

P(I‘,F U {}/}) _ Zvey %VU(Y) _
PCUGLT) ol -

41n

Now, to implement a single update step of the polymer dynamics, one must sample from v,, in
Step 3. We give a fast perfect sampler for v,,.

THEOREM 3.1. Fix A > 3,q > 1, and let A < A.(A, q). Consider a family of subset polymer models
defined on graphs of maximum degree A with computationally feasible weights that satisfy w, < Alrt,
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There is a randomized algorithm to sample perfectly from v, for any v € V(G) with a constant
expected running time.

Proor. For each vertex v, let 7, be the distribution over C, U {yp} where 7, (y) = w,/Z, with
Zy = Yjec,uly) Wy and wy, = 1. By Theorem 2.1, we can perfectly from 7, in constant expected
time, with the constant depending A, A, and q. Our algorithm to sample from v,, draws a perfect
sample from v,, first and then outputs the sample with probability Z,,/40; otherwise, it outputs the
empty polymer yg. The output distribution of this algorithm is exactly v,,, and so all that remains is
for us to show how to sample exactly from a Bernoulli distribution with parameter Z;,/40, denoted
Ber(Z,,/40).

We can sample exactly from Ber(1/Z,) in constant expected time by drawing an exact sample
from v, (using the algorithm from Theorem 2.1) and outputting 1 if the sample is yp and 0 other-
wise. With this, we can then use a “Bernoulli factory” to obtain a perfect sample from Ber(Z,/40).
Specifically, we know how to simulate a Bernoulli coin with parameter p = 1/Z,, and would like
to obtain a Bernoulli coin with parameter f(p) = 1/(40p) = Z,/40. This is possible in constant
expected time (independent of p) since 1 + 1 < Z,, < 40, and the function f(p) = 1/(40p) is real
analytic in the closed interval [1/40, 1 + A]; see Theorem 2 from Reference [55]. O

Note that Bernoulli factories have been used in a similar fashion to design perfect sampling
algorithms for CSP solutions and spin models in References [2, 32, 33].

Using this theorem, we give next a perfect sampling algorithm that works whenever a new
condition (4) is satisfied (our algorithm also requires the assumptions in Theorem 3.1).

3.1 Perfect Sampling for Polymer Systems: Proof of Theorem 1.4

We propose here an algorithm to output a perfect sample from p. Our algorithm is based on the
polymer dynamics and the CFTP method [49], using the notion of bounding Markov chains [31, 36]
to efficiently implement it.

We proceed with the proof of Theorem 1.4. We start with the description of a grand coupling
for the polymer dynamics, which is then used to implement a CFTP algorithm. For an n-vertex
graph G = (V, E), let {X!} denote an instance of the polymer dynamics started from the polymer
configuration T € Q(C). For all T € Q(C), the chains {X} are coupled by choosing the same
uniform random random vertex v € V, the same polymer y sampled from v,,, and the same uniform
random number in [0, 1] to decide whether to remove S, (Step 2) or to add y (Step 3). A CFTP
algorithm will find a time —T such the grand coupling started from all possible states at time —T
coalesces to a single state by time 0. This guarantees that the output of the algorithm, that is, the
state at time 0, has distribution p (see Theorem 1 from Reference [49]). Such a T can be found
with a binary search procedure. Unfortunately, implementing the CFTP algorithm in this manner
for the polymer dynamics Markov chain is infeasible, since it requires simulating an exponential
number of copies of the polymer dynamics, one from each T’ € Q(C).

To work around this, we consider a bounding Markov chain for the polymer dynamics rather
than the polymer dynamics chain itself. Bounding Markov chains were pioneered in References [31,
36] as a method for efficiently implementing CFTP. The bounding chain for the polymer dynamics
has state space Q(C) x 2¢ and will be denoted by {B;, D;}, where B, € Q(C) and D; C C are sets
of polymers. The chain will maintain throughout that all polymers in B; are compatible and that
every polymer in B, is compatible with every polymer in D,. The polymers in D, do not need to
be compatible with each other. A step of the bounding Markov chain is defined next.

Polymer Dynamics Bounding Chain. Given {B;, D;}, the chain generates {B;,1, D;+1} by:
(1) Uniformly at random, select v € V.
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(2) With probability 1/41, remove all polymers containing v by setting B;+1 = B; \ C, and
Diy1 =Dy \ Cy.
(3) With the remaining probability 40/41, draw a sample y according to v, and:
(a) If y is compatible with B; and y is compatible with D; \ {y}, let B;4; = B; U {y} and let
Diy1 =Dy \ {y}
(b) Else if y is compatible with B, but y is not compatible with Dy, let B;y; = B; and let
Dty =Dy U {y}
(c) If y is incompatible with B;, do nothing: B;;; = B; and D;4; = D;.

Observe that polymers are only added to B, if they are compatible with all other polymers in B;
hence, if By is a valid polymer configuration, so is B, for all t > 0.

To implement a step of the polymer dynamics bounding chain it suffices to pick a vertex v € V
uniformly at random, a uniform random number in [0, 1], and a polymer y from v,, just like for
the polymer dynamics. Hence, we can couple the evolution of {B;, D;} with the grand coupling of
the polymer dynamics described earlier. If we set By = 0 and Dy = C, it can be checked that for all
FreQ(C)andallt >0:

B, C X; CB,UD,.

Indeed, this holds initially for t = 0, and the grand coupling ensures that whenever a polymer is
removed from X! it is also removed from B;, and whenever a polymer is added to X! it is also added
to B; or D;. Consequently, {B;, D;} is a bounding chain for the polymer dynamics. In particular,
the first time B; = B; U Dy, all instances Xtr have necessarily coalesced to the same configuration.
This bounding chain allows us to implement the CFTP algorithm efficiently, as follows.

Coupling from the Past. Set k = 1.

(A) Fort = —ok _ok 4 q,.. ., —2k1 generate p; = (v, Vs, 1+) by choosing v; € V uniformly at
random, r; € [0, 1] uniformly at random, and by sampling y; € C,, from v,,,.

(B) Set B_yv =0 and D_,x = C.

(C) Simulate the polymer dynamics bounding chain from time —2* to time 0 using p_,«, . . ., p_1.

(D) If By = By U Dy, then output By; otherwise, set k — 2k and repeat the process from Step (A).

This implementation of the CFTP algorithm provides a perfect sample from p; see
Reference [49]. It remains for us to show that it is efficient. For this, we show first that the ex-
pected number of steps of the polymer dynamics bounding chain throughout the execution of
the algorithm is O(nlogn). Afterward, we will show how to implement steps so that they can be
executed in amortized constant expected time.

LEmMMA 3.2. Suppose a subset polymer model on an n-vertex graph satisfies condition (4). Then, the
expected number of steps of the polymer dynamics bounding chain in the coupling from past algorithm
is O(nlogn).

Proor. Let us first consider an evolution of the bounding chain {B;,D;} from initial state
{By, Do} = {0,C}. Let T be the first time B, = B; U Dy; that is, the time until D, = 0. We
bound first the expected value of T. Let ¢; = [(Uyep,y) N V|, the number of vertices of G that
are included in at least one polymer of D,. Note that ¢, < n. We analyze the expected value of
brer — .

With probability ¢;/(41n), a vertex in a polymer of D; is picked and all polymers in D, contain-
ing that vertex are removed, in which case ¢;.; < ¢; — 1. (A polymer may also be removed from
Dy in Step 3(a), but this case is omitted from our calculations as it never increases ¢;.)
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The potential ¢, may increase in Step 3(b), when a polymer y may be added to D,. Such a
polymer is only added if it is incompatible with D,. The probability this occurs is at most:

For each such polymer, the expected increase in the size of ¢, is at most |y| We can calculate:

¢
E[¢t+1 - ¢t | B;,D ] < _ﬁ Z 41 Z |}’| U(Y) 41n Z |Y|

veD, y+v

By Equation (4), there exists a constant 0 < 1 such that 3, ., |y|w, < 0.1t follows that

Blgrr e 1B1D) <~ (1-0).
This shows that {¢;} is a stochastic process with variable multiplicative drift. Since T is also the
first time ¢, < 1, using standard hitting time estimates (see, e.g., Theorem 10 in Reference [44]),
we get:
41n 41n "1
_—t — —dz =0(nl .
1-0 1-6 zz (nlogn)
Now, let —M be the first time in past such that, after setting B_y; = @ and D_j; = C, we have
By = By U Dy. The CFTP algorithm simulates at most 2M + M + M/2 + - - - + 1 = O(M) steps of the
bounding chain. The result follows by noting that E[M] = E[T] = O(nlogn). O

E[T] <

It remains to consider how to efficiently implement the steps of the polymer dynamics bounding
chain. This is subtle because D; may initially contain an exponentially large number of polymers,
and care is thus needed in how D; is represented and stored. We describe and analyze efficient
data structures for B; and D; in the following lemma.

LEMMA 3.3. Suppose a subset polymer model on an n-vertex graph of maximum degree A > 3 with
computationally feasible weights that satisfy w), < A1 for some A < A.(A, q). There exists a compact
representation of B; and D, that uses O(n + t) space in expectation. Using this representation, each
iteration of the Polymer Dynamics Bounding Chain can be executed in amortized constant expected
time, and the termination condition B; = B; U D; can be checked in constant time.

Proor. First, by Lemma 3.1, there is a randomized algorithm to sample perfectly from v,, for
any v € V with constant expected running time. Therefore, the expected size of the polymer
y produced by the sampling procedure is constant. This will imply many of our data structure
operations, which take (amortized) time O(|y|) for some y sampled from v,,, take constant expected
time.

For simplicity, we assume time begins at t = 0 and at some point in the future we wish to check
whether B; = B; U D;. Shifting the indices appropriately, this data structure can be applied in each
round of CFTP from each negative starting time. Note because all polymers in B; are compatible
with all polymers in Dy, the condition B; = B; U D; is equivalent to the condition D; = 0.

Data Structure for B;: Note B, is a collection of compatible polymers. The operations to be per-
formed on B; include addition of a polymer (Step 3a), deletion of any polymer containing a partic-
ular vertex (Step 2), and comparison of a polymer to B; to determine whether it is compatible with
B; (Step 3). B; will be stored as a length n array, and we use B; to denote the state of the array at
time t. Initially, By has only 0 entries. Each entry may also have a pointer to a node of a doubly
linked list. Each polymer in B; is stored as a doubly linked list. This requires O(n) space.

When y is added to By, for each v € y we set Et(v) = 1. We also create a doubly linked list LY,
which has a node for each v € y that notes the color v is assigned in y and contains a forward
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pointer, a backward pointer, and a pointer back to B;(v). Each entry of B; for v € y also points to
the corresponding node of LY. Doing these updates to the data structure for B, takes time O(|y|).

The polymer removal step only occurs in Step 2 when any polymers containing v are removed
from B;. There is at most one such polymer y in B; containing v. The other vertices in y can quickly
be found using the doubly linked list £ and its pointers back to B,. We can set B; (w) = 0 for each
w € y and remove LY. This removal of y from B; occurs in time O(|y]).

To compare a polymer y to B, to determine whether it is compatible with B, one looks up every
vertex w that is in or adjacent to y in B; to see if it is part of a polymer of By, that is, if B;(w) = 1.
If at least one of these vertices w has Et(w) = 1, y is incompatible with B;; if all these w have
B;(w) = 0, then Y is compatible with B;. This takes time O(Aly|), which because we assume A is
constant is O(|y|).

Note each of these operations can be performed in time O(|y|), where y is a polymer that was
at some (possibly earlier) time step drawn from v,, for some v. When each polymer y is sampled
in Step 3 in some iteration of the Polymer Dynamics Bounding Chain, all O(|y|) operations that
can potentially be performed on it in the future are immediately charged to it. As argued in the
first paragraph above, the expected size of a polymer y drawn in Step 3 is constant, so the amount
O(lyl) charged to each sampled polymer y is constant in expectation. We conclude updating B,
takes expected amortized constant time. This data structure requires O(n) space.

Data Structure for D;: Much more care is needed with how D; is stored and accessed. Initially
D, = C, which contains an exponential number of polymers. The operations we need to perform
on D; include deleting all polymers containing a single vertex v (Step 2), checking whether a
polymer is compatible with D, (Step 3b), adding a polymer to D, (Step 3b), and checking whether
a polymer y is compatible with D; \ {y} and if so deleting y from D, (Step 3b).

The key observation is that once a particular vertex v of G is selected in Step1 and the coin flip
is such that Step 2 is performed, no polymers containing v remain in C and the size of D; has been
reduced dramatically. Because of this, it makes sense to keep track of which vertices in D; have
been the subject of a deletion in Step 2 at least once. We let Dj be (the state at time t) of an array
of length n with an entry corresponding to each vertex v of G, where Dj(v) = 0 if Step 2, deleting
C, from Dy, has been performed for v at least once, and Dj(v) = 1 if it has not. We also let N}
be the number of 1’s in Dj. Initially, Dj(v) = 1 for all v and Nj = n. At any time step, we know
any polymer y where Dj(v) = 1 for all v € y is in D;. Because of this, initially Dj completely
describes Dy.

Amidst these deletions, polymers are also added to D;, and a polymer may contain both ver-
tices where Dj(v) = 0 and vertices where D;(v) = 1. All polymers added to D, in Step 3b will
be stored separately from Dj. The data structure used here will have the same idea as that for B,.
There will be an array D, with an entry for each vertex where D, (v) gives the number of polymers
containing v that are currently stored in D;. We also keep track of N, the total number of poly-
mers that are currently in D;. Adding a polymer y to D; involves incrementing N;, incrementing
the corresponding entries in D;, and adding a doubly linked list £? connecting the vertices of
the polymer together. However, because polymers in D; need not be compatible, there may be
more than one polymer in D, containing a given vertex v. Because of this, instead of each vertex
being in at most one doubly linked list L7, it may be in many such doubly linked lists. To maintain
all such pointers for vertex v (two for each LY where v € y), these pointers are themselves stored
in another doubly linked list L°.

The necessary operations that must be performed on D; can be implemented as follows. Note
that initially Dj(v) = 1 for all v, N; = n, Eo(v) = 0 for all v, Ny = 0, there are no doubly
linked lists LY, and each doubly linked list £? is empty. These steps are presented in a logical
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order for explaining the data structures for D;, rather than in the order in which they occur in the
description of the Polymer Dynamics Bounding Chain.

— Adding polymery to D; (Step 3b): For each v in y, increment D, (v). Increment N,. Create a
doubly linked list £Y, which has a node for each v € y that notes the color v is assigned in y
and containing a forward pointer and a backward pointer. For each v, this node containing
the pointers of LV is inserted at the front of the doubly linked list £°. This takes time O(]y]|).

— Deleting all polymers containing v from D, (Step 2): If Dj(v) = 1, decrement N; and set
Di(v) = 0. If D;(v) > 0, set N; « N, — D,(v) and set D,(v) = 0. Additionally, for each
node in L%, we explore the corresponding linked list £ using the pointers in the node. We
delete every other node of LV, possible in time O(|y|) because for list L* also containing
a node of LY, the nodes before and after this node in £" can easily be connected to each
other because £ is doubly linked. For each node in £ that is deleted, we also decrement
D, (w). This takes time O(Xys0 lYD-

— Checking if polymer y is compatible with D; (Step 3b): For each w that is in or adjacent to y,
check whether Dj(w) = 0 and D, (w) = 0. If both are 0 for all such w, then y is compatible
with D;. If at least one is nonzero, then y is not compatible with D;. This takes time O(Aly|).

— Checking whether a polymery is compatible with D; \{y} and if so, deleting y from D, (Step 3a):

We only need to check this case when y is compatible with B;. We first check whether y is
compatible with D, as described above. If it is, we add y to B;. If y is compatible with D,
then it cannot be in D;, so D; and D, \ {y} are the same and no further steps are needed.
If y is incompatible with D,, the next step is to check if it is also incompatible with D, \ {y}.
We check if D*(v) = 0 for all v in or adjacent to y, D;(v) = 0 for all v adjacent to y, and
5,(0) = 1for all v € y; if at least one of these does not hold, y cannot be compatible with
D; \ {y} and so we are not in Step 3a and we proceed to Step 3b. If all these hold, we check
further to see whether all D, (v) = 1 for v € y because of the presence of the single polymer
y or due to the presence of other polymers, which we can detect by looking at the doubly
linked list(s) connecting the vertices in y, including the colors assigned to each vertex. If
there are polymers other than y here, either multiple smaller polymers or a polymer with
the same vertices as y but differently assigned colors, then y is incompatible with D; \ {y}
and we are not in Step 3a. If instead, we find exactly polymer y, then y is compatible with
Dy \ {y} and we add y to B; and delete it from D, as previously described. This takes time
O(Alyl).

Because any polymer added to D; was drawn from the distribution v, for some v, as argued
above its expected size is constant. Therefore all of the implementations above, with the possible
exception of deleting all polymers containing a single vertex, takes expected constant time. Setting
Dj(v) = 0 takes constant time, but it may take longer to remove any polymers that were added as
linked lists LY. However, we can amortize the cost of deletion if we pay for the cost of deleting a
polymer when we add it, as all doubly linked lists £¥ must be added before they are deleted. Doing
this amortization makes the cost of adding a polymer to D; be O(]y|) + O(ly|) = O(|yl), while the
amortized cost of deleting all polymers containing a vertex v is now O(1). Thus, all necessary
operations for D, can be performed in amortized expected constant time.

Finally, we note that the termination condition B; = B; U Dy, equivalent to D; = 0, can be
checked in constant time by verifying N; = 0 and N, = 0. The first condition N} = 0 verifies that
every vertex v has had all polymers containing v deleted at least once, and the second condition
N = 0 verifies that there are currently no additional polymers in D;.

The total space used for these data structures after ¢ steps of the algorithm is in expectation at
most O(n+t): O(n) for By, Dj and Dy, and O(|y|) for each polymer y added to D,, which is constant
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in expectation. There are at most ¢ polymers in D, one added each step, so this is O(t) space at
most in expectation. O

Together, Theorem 3.1, Lemma 3.2, and Lemma 3.3 imply Theorem 1.4.

4 APPLICATIONS TO LOW-TEMPERATURE SPIN SYSTEMS

We present in this section the details of the applications of spin system sampling given in
Section 1.3.

4.1 The Hard-Core Model on Unbalanced Bipartite Graphs
We start by proving Corollary 1.5 for which we use Theorem 1.4.

Proor oF COROLLARY 1.5. Let G be an n-vertex bipartite graph with partite sets L and R. Suppose
that the vertices in L have maximum degree Ay, and that the vertices in R have maximum degree
Agr and minimum degree .

We can sample from the hardcore model distribution ,ugc (see Equation (8) for its the definition)
by considering an auxiliary distribution g, which is a distribution on subsets S C R. For a subset
S C R with neighbors N(S) in L, this distribution is given by

(1 + A)IL\NG)I.AISI

H(s) = 7 ;

where Z = ¥ g (1+2)/F\NS)IL ST One can sample from yé‘f by first sampling S C R according to
11, adding S to the independent set, and then for each vertex v € L\ N(S) include v in the indepen-
dent set with probability /(1 + 1) independently. This results in exactly the desired distribution
Hes.

To sample from 7, we use a polymer model, which we define next. Let R? be the graph whose
vertices are the vertices of R, where two vertices are adjacent if they are at distance two in G. Note
the maximum degree in R? is Ag(Ar — 1). We define a polymer y to be a connected subset of R?,
its neighborhood N(y) to be all vertices in L adjacent to a vertex in y, and its weight as

Alvl 1 vl
Yy = (14 )N = ((1 +,1)6R/AL) ’

Polymers will not be labeled; that is, ¢ = 1. Compatible polymer configurations in R? correspond
exactly to subsets S C R, and the weights w, mean a compatible polymer configuration corre-
sponding to subset S has probability exactly p(S).

To sample from this subset polymer model in R?, we show that when condition (9) holds, the
conditions Equations (3) and (4) of Theorem 1.4 hold, implying the existence of a perfect sampling
algorithm with expected running time O(nlogn).

First, when Equation (9) holds, it follows that eA(A; — 1)Ag < (1 + A)%%/A_ Then

2 Iyl 1 |yl
WYg((HA)éR/AL) S(e(AL—nAR) :

and since Ag(Ay — 1) is the maximum degree in the host graph R?, condition (3) holds.
From Equation (9), it also follows that
e/lAR(AL—l) eAR(AL—l)
(1+ A)%r/AL 1+ (1+e)Ar(AL - 1)
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Because all quantities in this equation are constants that do not depend on the size of the graph,
we conclude there exists 0 € (0, 1) such that
AAR(AL — 1 Ar(Ap -1
eAAr(AL )S eAr(Ar—1) (17)
(1 + A)%r/AL 1+ (1+e)Agr(AL —1)
Using Lemma 5.2 (which precisely counts the number of rooted subtrees of size k of the A-regular

tree), the number of polymers of size k that are incompatible with v is at most (Ag(AL — 1) +

1)(eAr(Ar —1))*~1/k; recall that A (A — 1) is the maximum degree of R?. It follows from this and
Equation (17) that

(AR(AL — 1) + 1) (eAr(Af — 1))*! A k
Sy = S Qe ()

)/'F'U

_ARAL—1)+1 EAARAL—l)
~ eAr(AL—1) (1 + A)9r/AL

_ AR -1 +1 Ze eAr(AL — 1) k

T eAr(AL -1) 1+ (1+e)Agr(AL —1)
Ar(AL-1)

CAR(AL=1) 41 THOAGLT

— eAR(ApL—1)
eAr(AL—1) 1- TR e)AR (BT

=0.

Thus, condition Equation (4) also holds, and Theorem 1.4 supplies the perfect sampling algorithm
with the desired running time. O

4.2 Potts Model on Expander Graphs

The Q-color Potts model on G at inverse temperature f is a distribution over all (not necessarily
proper) Q-colorings of V. Let Qg o be all colorings w : V — [Q]. For a coloring w € Qg o with
m(G, w) monochromatic edges, this distribution has
pm(G,w)
Potts _ e
luG ((x)) - 7z ’
where Z = 206, efm(G o)
For j € [Q], let Qg,,; be all colorings in Qg o such that strictly more than n/2 vertices are

assigned color j. Let Qg, 0 = Ujero) Q6. 0. and consider the distribution 1O given by
pm(G,w)
—Potts ¢ — pm(G,w)
(w) = ————1(w € Qi,0), Where 7= e .
7 3 0 2

w Ea(;v [e]

It follows from Reference [38] that, under suitable conditions, (as we detail next) a perfect sample
from *°" is an e "-approximate sample from PO,

Let pP °Us he the distribution 7*°" conditioned on being close to the ground state that is entirely
color j, that is, conditioned on being in Qg ¢ ;. Because all Q ground states are symmetric, one

can sample from 72*°" by first picking a uniformly random j € [Q], and then sampling from yPOtts.

Sampling from pPOtts can be done using the polymer model we define next.

For w € Qg 0., let T(w) = {v € V : w(v) # j}. Consider a subset polymer model whose host
graph is G where a polymer is a graphlet of G whose vertices have colors other than j (there are thus
Q~1 colors available to color the vertices of a polymer). For a polymer y, we let w, = exp(—fB(y))
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where B(y) is the number of bichromatic edges of the colored subgraph y plus the number of
boundary edges of y.

There is a bijection between Potts configurations in Qg o,; and compatible polymer configu-
rations consisting of at most n/2 total vertices, where vertices assigned a color other than j are
identified. A sampling algorithm for this polymer model can give a sampling algorithm for ﬁf(’tts,
where if the polymer configuration produced has more than n/2 total vertices, that configuration
is rejected and resampling occurs. As we will see, the probability of needing to resample is small.

Using this polymer model representation, Reference [38] gives an efficient ¢-approximate sam-
pling algorithm with for pg"”s , derived from an approximate sampling algorithm for ﬁ?ous. This
algorithm applies to all a-expanding graphs G with maximum degree A whenever a > 0, A > 3,
Q > 2,and f > 4log((Q — 1)A)/a. However, it involves a polymer enumeration step, and so its
runtime is (omitting the dependence on other parameters) of the form n®1°84),

In Reference [17], the authors take a Markov chain approach and give an e-approximate

Polts * again via approximate sampling from ﬁ?om, on a-expanding

graphs G with maximum degree A whenever f > w. This has running time
O(nlog(n/e)log(1/¢)). In both of these prior works, it must hold that ¢ > Qe™.

Our algorithm gives an even larger range of f in which O(nlogn) sampling is possible, and

removes the dependence on ¢. It produces an exact sample for 7*°" rather than an approximate

Potts

o

sample, although this sample is still only an e™"-approximate sample for y

sampling algorithm for y

Proor oF COROLLARY 1.6. From the discussion above, it suffices to generate a perfect sample
from ﬁfms for any j € [Q] using the subset polymer model described above. We will show that
conditions Equations (3) and (4) of Theorem 1.4 hold, implying the existence of a perfect sampling

algorithm for ﬁf oS with expected running time O(nlog n).

1+1 DA .

When f > M, since G is an « expander, w, = exp(—fB(y)) < (eA(é—l))M < Al

for a suitable A < A.(A,Q — 1), and thus condition (3) is met. Moreover, when (10) holds, then
rearranging terms shows

e
eA+A+1°

Because all quantities in this equation are constants that do not depend on the size of the graph,
we conclude there exists 6 € (0, 1) such that

e(Q — 1)Ae %P <

eA

~DAe P <. ———
e(Q JAe - eA+A+1

Using the bound (eA)*~!/k for the number of graphlets of size k containing a given vertex, we
deduce that the number of polymers incompatible with v of size k is at most (A + 1)(eA)*"1(Q —
1)K /k. (This bound for the number of graphlets appears in Reference [9] but can also be deduced
by direct computation from Lemma 5.2 below, which provides a tighter bound.) Therefore, we get

S, (A D) QDR g A+ )
ZlylwySZk~ ’ e —TZ(eA(Q—l)e )
y+v k=1 k=1

o eA
<A+1ZG'( eA )k:01A+1 AT | _ g
T eA eA+A+1 eA \1-— —<b ’

k=1 eA+A+1

Thus, condition Equation (4) holds, and Theorem 1.4 provides a perfect sampling algorithm with
the desired running time. O
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5 GRAPHLET SAMPLING: HARDNESS

In this section, we establish the sharpness of the threshold A.(A,q). In particular, we prove
Lemmas 1.2 and 1.3 from the introduction. We first prove the following more general variant of
Lemma 1.3, which corresponds to the g = 1 case.

LEmMMA 5.1. The partition function Zg,,  is finite for every (possibly infinite) graph G = (V,E)
of maximum degree A and every r € V if and only if A < A.(A,q). Moreover, Zg, , ) < 40 when
A< A(A g).

The following combinatorial fact will be used in the proof of Lemma 5.1.

LEMMA 5.2. Consider the infinite A-regular tree rooted at p, and let Ty, denote the number of subtrees

of size k rooted at p. Then fork > 1:
A A-1)k+1
T, (( )k + )

TA-Dk+1\ k-1
Proor. For positive integers a and b, let
a (bk+a
Ar(a,b) = —— .
K@) =g a( k )

The numbers A (a, b) are a generalization of the Catalan numbers and satisfy the recurrence

k
A(a+e,b) = > Ai(a,b)Ari(c,b); (18)

i=0
see Reference [41]. It is known (see, e.g., Lemma 1 in Reference [50]) that the number of subtrees
of size k containing the root of the infinite (A — 1)-ary tree is

1 (A -1)k 1 (A-1k+1
(A—z)k+1( k ):(A—l)k+1( k )
which is also equal to Ag (1, A — 1). Hence, for k > 2, we have
k-1 k—1-k; k—1—(ki+---+kp-2) A-1
Ty = Z Z Z Ap—1=(ky 4 kp) (LA = 1) - l_[Ak,»(LA -1).
k1=0 ky=0 ka-1=0 i=1

Using Equation (18), we see that
k—1—(k1+---+ka—2)

A1k trky ) (LA = DAk, (LA = 1) = Apor (k) (2.4 = 1),
kpa_1=0

and using Equation (18) repeatedly, we get for k > 2

A (A-1)(k-1)+A A (A-1k+1
T = A1 (AA-1) = = .
k= A (A ) (A—l)(k—1)+A( k-1 A-1k+1\ k-1
The claim also holds trivially for k = 1 and the result follows. |

We are now ready to provide the proof of Lemma 5.1.

Proor oF LEMMA 5.1. Let C,,  be the number of graphlets of G with k vertices that contain v.
Then, since f < 1 by assumption, we have

ZGra = Z lly‘f(y) < Z Z P ch,k -Aqu.

y€S(G,r,q)U{0} k>0 yeS(G,r,q)u{0}:|y|=k k>0
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Consider the infinite A-regular tree rooted at p, and let Ty be the number of subtrees of size k
rooted at p so that C,, < Tg. (The latter bound captures the key idea in the proof: the infinite A-
regular tree is the worst case among graphs of maximum degree A and the threshold A..(A, q) arises
as the threshold at which there is a change in the number of fixed points of the corresponding tree
recurrence.)

Then, it follows from Lemma 5.2 that

A (A-1Dk+1\ ;&
Zara = 1+I;(A—1)k+1( k-1 )’1 7

We apply the ratio test for the summation on the right hand side and consider the limit:

A (A-1)(k+1)+1) _k+19k (A=1)(k+1)+1
L= lim (A—l)(k+1)+1( k )q ok _ g lim (A-1Dk+1 ( k )
T koo A (A-1)k+1 - oo (A — (A—1)k+1
k (A—l)k+1( e )qk/lk koo (A=1)(k+1)+1 ( M )

We have that

. ((A—l)(ll:+1)+l) [(A-1)(k+1)+1]'[(A - 2)k + 2]!
1 A

(e Tk (A =2)k +A][(A - Dk +1]!

Using the inequality h(n)e!/ (12" < n! < h(n)e'/?" where h(n) = V2zn™*'/2¢™", and setting
R((A - 1)(k + 1) + DA((A - 2)k +2)

Br h((A = 2)k + M)R((A - Dk + 1)
we get
ﬂ612[(/\71)(11<+1)+1]+1*12[(/\721)1“2]“ - Ak < & ) e12[(/\71)1(k+1>+1]+12[(/\712>k+2] (19)
k e 12[(A—12)k+A] + 12[(A—11)k+1] k e 12[(A—2;k+A]+1 + 12[(A—11)k+1]+1
From a direct calculation, it can be checked that
1 A—1 (A-1)k+1 A—2 (A-2)k+A
B":Z(H(A—l)kﬂ) (1_(A—2)k+A)

[(A=1)(k+1)+ 1] [(A=2)k +2]Y2 [(A=1)(k + 1) + 1]'/?
[(A=2)k+2]22 [(A-Dk+1]/2 [(A-2)k + A]V/2

Hence,
o Be 1o 1 (A-DM@a-pt
im — = - —_— = .
koo k e EA_Z (A — 2)A—2 (A - z)A—Z

From this and Equation (19) we deduce that limj_,., Ax = %, which implies that

(A _ 1)A—1
(A —2)A2"
From the ratio test, we can then conclude that the series converges when A < A,(A, q) and diverges

when A > A,(A, q).

It remains for us to consider the A = A, (A, q) case, where

A (A = 1)k + 1\ (A — 2)(A-2)k
Zera <A _— = %
A +kZ>Z(A—1)k+1( k-1 )(A—1)<A1>k

L=gA
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withA=1+ % < 5/4. We also have for k > 2 that
((A -1k + 1) - h((A -1k +1) " ¢ EA-DFTD - h((A-1k+1)
k-1 - h(k—l) ((A—Z)k+2) emem - h(k—l)h((A—Z)k-i-Z)'
Therefore,
h(A-1)k+1)  (A—2)A-2k
ZG,r,A = Z —
= (A - l)k + 1 h(k — 1)h((A = 2)k +2) (A —1)d-Dk
5 [(A _ l)k + 1](A71)k+3/2 (A _ 2)(A72)k
Ta \/ﬂ Z (A - 1)k +1 (k= 1)F-12[(A = 2)k + 2](A-2k+2+1/2 (A — 1)(A-DK
N Z [(A-Dk+ 2k =DV [ (A-Dk+ DA -2 "
T4 [(A - 2)k + 2]5/2 (k= 1)((A = 2)k + 2)2-2(A — 1)A-1

k>2

A k 1/2 k 1/2 A1)k A-1 A— A-2 .
Now, letting L (A, k) = Al [(1A) 2)1]1”](5/2 D) ,Ly(Ak) = (kfg)((i)—g;li{rz)ﬂ(-z(i)—l)A‘l’ and noting that

L, is a decreasing function of A, we have

32k + D)k = D' 3Va(k +2) 2 (k +2)' . 3V2
(k +2)5/2 B (k +2)5/2 (k +2)3/2°

Li(AK) <

and,

A A-2 A
Ly (A k) = (1 T D) —2)k+2(A— 1)) (1 * M)

< ex A (— A-2 + ! < ex ; < ex 5
SN T T k2 k1) TPk T2 |

Hence,

5 3 1 3k 5
ZG,r,A§—+_Z exp[ - Z <
4 reh(k+ 2)3/2 2(k - 4 (k + 2)3/2

when A = 1. (A, q). O

We proceed next with the proof of Lemma 1.2. Let us first formally define the notion of a
polynomial-time approximate sampler.

Definition 5.3. An algorithm A that takes as input a graph G = (V,E), A > 0, a vertex r € V,
and an accuracy parameter ¢ € (0, 1] is a polynomial-time approximate sampler for vg , ; if it
returns a sample from a distribution p 4 such that ||pa — v, allev < € and has a running time
that is polynomial in |V| and 1/e. A polynomial-time approximate sampler for vg, ; is defined
analogously.

We will require the following result.

LEMMA 5.4. FixA < 1,andletq = 1 and f = 1. There is an algorithm with the following guarantees.
The algorithm takes as input a finite graph G = (V, E), a vertex v € V, and parameters €,6 € (0, 1).
The algorithm has access to an exact sampling algorithm for v ., 5. With probability at least 1 -5 the
algorithm outputs a value Z~G,U,A such that (1 — g)ZNG,U,,l <Zgoar<(1+ £)Z~G,U,A. The algorithm’s
sample complexity (queries to v ,, 1) and running time are poly(|V1, ¢,log(1/9)).
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PROOF. Let uy, uy, ..., u,—; be the vertices in V \ {v} in a fixed order we define later. Let G;
be the graph that results from removing vertices uy,...,u; from G and let Z; = Zg, ,, 1. We let
Zy = Zg,», 2 and note that Z,_; = 1+ A. Then:

1+ A =z Z,’+1

Let p; = % For each p;, we will find p; such that with probability at least 1 — §/n:

(1_£)~.< .<(1+i)~. (20)
4n Pispi= 4n pi
This implies that

e\ 1 1 e\ 1
(-5)Lelofaf)l,
2n Pi Pi 2n Pi

and so letting Z~G,v, A= T+ )14 pi we get that

~ e\" - e\" . ~
(1-8)Zgua < (1 - %) ZG0 £ Zy < (1 + %) Z6,0,0 £ (1+6)Zg, 0,2,

with probability at least 1 — § by a union bound.

To obtain Equation (20), we define the sequence of vertices uy, us, . . ., up—1 such that u; is a leaf
in the BFS tree of G;_; rooted at v. This way, we can conveniently claim that 1 > p; > % To see
this, note that S € S(G;41) if and only if S € S(G;) : w11 € S, so

Zw= 3 =S @n
S€S(Gis1) SeS(Gi)uiv &S
Now, if S € S(G;) and S contains u;, 1, then, since u; is a leaf in the BFS tree rooted at v, S\ {u;4+1}
is a connected subgraph that contains v. That is, every S € S(G;) that contains u;41 can be mapped
to a unique subgraph in S(G;) that does not contain u;4; of size |S| — 1. Hence, since A < 1,

pIEIPS 281
2 < ),

SeS(Gi)uir €S SeS(Gi)ui1¢S

and so
R D Y LS D LS 2D DR L
SeS(G;):uj1 €S SeS(G;):ui1€S SeS(G;)ui1€S

Combined with Equation (21), this gives p; = Zé—’:l > 1. Therefore, to deduce Equation (20), it

5
suffices to find p; such that
. e . €
= —— <P < pit —.
P Tgn SPISPIT T
For this, we draw L samples from vg, ., 1 and let X; be the indicator random variable for the event
that the jth sample contains u;.;. Letting p; = % Zle Xj, we get from a Chernoff bound that

Lp?p;

Prllp; — pil = ppi] <2773

and setting p = 16:5113,» and L = 384;‘—5 log(2n/6):

. £ Lpe _ L2 o)

Pr |pl _Pi| > — | < 2e 2n < 2e 38an? = —,

16n n
In summary, we have provided an algorithm that computes p; such that Equation (20) holds
with probability at least 1 — §/n. The algorithm has sample complexity and running time

poly(n, 1/¢,log(1/6)). O
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We can now provide the proof of Lemma 1.2.

Proor oF LEmMa 1.2. It suffices to prove the result for f = 1. Let G = (V, E) be a finite graph
of maximum degree A, and for ease of notation let 1. = A.(A,1). We show that if there is a
polynomial-time approximate sampler for vg ., 3 for each v € V (see Definition 5.3), then there
is also a polynomial-time approximate sampler for for v ;. In Reference [50], it was shown that
there is no polynomial-time approximate sampler for for v 3 when A € (A,,1) unless NP = RP,
and thus our result follows.?

First, given exact sampling algorithms for vg ., ) for each v € V with poly(n) running times,
and a desired accuracy parameter ¢ € (0, 1), we provide a sampling algorithm whose output dis-
tribution is within ¢ total variation distance from v ;. The running time of the algorithm will
be poly(n, 1/€). We then modify the algorithm to use instead the polynomial-time approximate
samplers for v o, 1 (instead of the exact samplers) and show that this has a negligible effect on its
running time and output distribution.

The algorithm is the following:

(1) Let ¢ = min{g, 1 g - —} For each v € V, using the exact sampler for v, o, ,1 and the algorithm

from Lemma 5.4, obtain ZG .2 such that, with probability at least 1 — 22,1 ,

(1- E)ZNG,v,/'l < ZG,v,A <1+ E)ZNG,ZJ,A (22)

G v, A
ZG w,A ’
3) Using the exact sampler for v 1, draw a sample S from v o, 1;

4) Accept and output S with probability 1/S|;
5) If S is rejected, increase ¢, and if ¢ < 2n® go to Step 2 and repeat; otherwise output 0.

2) Set t = 0 and choose a vertex v € V with probability 5

S~~~ o~

First, we note that by Lemma 5.4, Step 1 can be implemented in poly(n, 1/¢). Steps 2 to 5 of the
algorithm are repeated at most O(n?) times, and each of those step takes poly(n) time. Therefore,
the overall running time of the algorithm is poly(n, 1/¢) = poly(n, 1/€). Moreover, (22) holds for
every v € V with probability at least 1 — 2,, by a union bound.

Let piz.c be the output distribution of the algorithm, and let y}, . be the output distribution when
(i) Step 1 succeeds in finding the required approximations and (ii) a subgraph is accepted in Step 4
before t > 2n?. We show next that ||y, —vG.allev < . Let Z = Yoev ZG,v,A andlet S = S(G)U{0}.
The probability that the algorithm outputs S € S in Step 4 in a give iteration is

26,02 1 ()
LAy () = B (23)
;S VA N z
* oS
Then’ I’[ALG(S) 255545(5) and
1 A(S) AlS! 1 Yoes V6,08 26,00 A
laee = Ve alloy = = - == 32 oA
v SZS Swes$W)  Zoa zsze;g S Swes $W)  Zoa
Z Z VGUA(S)ZGUA AlS
2 LIS Bwes 9( W) 1S1Zc,x

2We note that the hardness result in Reference [50] is stated for the harder problem of producing approximate samples
with a running time depending polynomially on log(1/¢), but the proofs in Reference [50] extend to our setting without
modification.
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_ Z Z éf;,/l VG,v,AZ(S) - 26,02  Zga AP
2 {56 Plaa G,v,1 2wes 9W)  Zg o2

_ ZZVGvTSf; Z6,0,1 ;Gv/l Zoa | 4)
2§50 G,A God Zwes P(W)

From Equation (22) we get

1 V4 1
1-2¢ < < 2Gul o <1+ 2

1+e  Zgoua 1—¢

since ¢ < 1/8. Moreover,

diswy= > > %s(um > %:(1+25)ZG,,1,

WeS wWeSveW WeSvew

and similarly we can obtain that } s #(W) = (1 — 2¢)Z, 5. Combining these bounds we get:

Z Z
Gud  __2GA__ 4l ¥ g
26,00 2wes (W) 1-2¢

Plugging this into Equation (24) we deduce that:

. VG,0,A(8) * ZG 0.0 /USl
”:UALG - VG,/1||TV < 4¢ Z Z < |S|ZG . z Z Z (25)

SeSveS ZGA SeSveS

Let &; be the event that Step 1 succeeds in finding the approximations, let &; the event that the
algorithm accepts and outputs a graphlet in Step 4, and let & be the event that both &; and &;
occur. Then, the triangle inequality and Equation (25) imply:

”ﬂALG - VG,/\”TV < ”,U:]_G - VG,)L”TV + ”,U:LG - ,UALG”TV <de+ ”PZLG - ,uALG”TV' (26)

We proceed to bound ||}, — parcllrv-
”ﬂ:LG - ,UALG”TV = ”,UALG _ﬂALG(' | S)HTV < ,UALG(_‘S)
1
< ﬂALG(_‘al) + ,UALG(_‘82 I 81) < % + ;uALG(_'SZ | 81) (27)

So it remains for us to bound p1,6(—E; | E1). For this, note that the probability that a subgraph is
accepted in Step 4 in an iteration is

Zv |5| (1-2¢)Z
30 g 2 5 Y Y G

SeSveS SeSveS

Since
7= Z Z6oa < (1+2¢) Z Z.oa < (1+26)nZg, .,

veV veV

we get the acceptance probability in Step 4 in an iteration is at least
1-2¢ 1—4¢ 1

> > —

(1+2¢e)n n 2n

>

provided &; occurs. Therefore, if X is geometric random variable with parameter 1/(2n), we have

1 2n? 1
ﬂALG(_‘az | 81) < Pr[X > 2n ] (1 — _) <

—_ )
2n en
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and plugging this bound into Equations (27) and (26) we obtain:

3
ltare = vealley < 4e+ %

We have established so far the hardness of exactly sampling from v, 1 for A € (4., 1). The same
reduction (i.e., algorithm) with minor adjustments works for approximate sampling. Suppose that
in Step 3 of the algorithm, we instead generate T = 2n® samples from a distribution p,, such
that [[py, — vG,o.allv < % Let u®T and vg’Tv, , be the product distributions corresponding to T
independent samples from y,, and vg_,, 2 respectively. We have

Te
T T
||IIS’ - Vg’v’A”TV < T”,Uv - VG,v,)L”TV < ﬁ < 2e¢. (28)

Let finc be the output distribution of the algorithm when using samples from y,, in Step 3. Then:

. N . 3
”,uALG - VG,11||TV < ||/1ALG - ﬂALG”TV + ||/1ALG - VG,A”TV < ||,UALG - ,UALG”TV +4e + %

Consider the following coupling between i ;¢ and pis;6: use the same randomness for Steps 1, 2
and 5 and the optimal coupling for &7 and ng; , for Step 3. Then, from Equation (28), we get

. 3 N
lfiare — vo,alley < 66+ — <&
2n

That is, we obtain a polynomial-time approximate sampler for vs ) which completes the
reduction. O
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