
5

Fast and Perfect Sampling of Subgraphs and Polymer
Systems

ANTONIO BLANCA, Pennsylvania State University, USA
SARAH CANNON, Claremont McKenna College, USA
WILL PERKINS, Georgia Institute of Technology, USA

We give an e!cient perfect sampling algorithm for weighted, connected induced subgraphs (or graphlets) of
rooted, bounded degree graphs. Our algorithm utilizes a vertex-percolation process with a carefully chosen
rejection "lter and works under a percolation subcriticality condition. We show that this condition is optimal
in the sense that the task of (approximately) sampling weighted rooted graphlets becomes impossible in
"nite expected time for in"nite graphs and intractable for "nite graphs when the condition does not hold.
We apply our sampling algorithm as a subroutine to give near linear-time perfect sampling algorithms for
polymer models and weighted non-rooted graphlets in "nite graphs, two widely studied yet very di#erent
problems. This new perfect sampling algorithm for polymer models gives improved sampling algorithms
for spin systems at low temperatures on expander graphs and unbalanced bipartite graphs, among other
applications.
CCS Concepts: • Theory of computation → Random walks and Markov chains; Generating ran-
dom combinatorial structures; • Mathematics of computing→ Probabilistic algorithms; Stochastic
processes;
Additional Key Words and Phrases: Sampling algorithms, subgraphs, polymer models, spin systems, approx-
imate counting
ACM Reference format:
Antonio Blanca, Sarah Cannon, and Will Perkins. 2024. Fast and Perfect Sampling of Subgraphs and Polymer
Systems. ACM Trans. Algor. 20, 1, Article 5 (January 2024), 30 pages.
https://doi.org/10.1145/3632294

1 INTRODUCTION
Sampling is a fundamental computational task: given a speci"cation of a probability distribution
on a (large) set of combinatorial objects, output a random object with the speci"ed distribution
or with a distribution close to the speci"ed distribution. This task becomes challenging when the
speci"cation of the distribution is much more succinct than the set of objects, and one wants to
sample using time and space commensurate with the speci"cation. Fundamental examples include

WP is supported in part by NSF grant DMS-2309958 and CCF-2309708. SC is supported in part by NSF grants DMS-1803325
and CCF-2104795. AB is supported in part by NSF grant CCF-2143762.
Authors’ addresses: A. Blanca, Pennsylvania State University, Computer Science and Engineering Department, Westgate
Building, University Park, PA 16801 USA; e-mail: ablanca@cse.psu.edu; S. Cannon, Claremont McKenna College, Mathemat-
ical Sciences Department, 888 Columbia Avenue, Claremont, CA 91711 USA; e-mail: scannon@cmc.edu; W. Perkins, School
of Computer Science, Georgia Institute of Technology, 266 Ferst Dr, Atlanta, GA 30332 USA; e-mail: wperkins3@gatech.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro"t or commercial advantage and that copies bear this notice and
the full citation on the "rst page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior speci"c permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1549-6325/2024/01-ART5 $15.00
https://doi.org/10.1145/3632294

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 5. Publication date: January 2024.

https://orcid.org/0000-0002-4675-2596
https://orcid.org/0000-0001-6510-4669
https://orcid.org/0000-0002-7937-7016
https://doi.org/10.1145/3632294
mailto:permissions@acm.org
https://doi.org/10.1145/3632294
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3632294&domain=pdf&date_stamp=2024-01-22

5:2 A. Blanca et al.

sampling from Markov random "elds and probabilistic graphical models and sampling substruc-
tures of graphs. We will address both of these examples here and connect them in a new way.

We consider a natural sampling problem: given a bounded-degree graphG, sample a graphlet (a
connected, vertex-induced subgraph) ofG containing a "xed vertex r with probability proportional
to an exponential in the size of the subgraph. That is, sample a graphlet S containing vertex r with
probability proportional to λ |S | , where λ > 0 is a distribution parameter and |S | denotes the number
of vertices in S . In the article, we are concerned with small values of λ, where the expected size of
a sampled graphlet is much smaller than the size of the graph.

Sampling graphlets is an important task in data science, network analysis, bioinformatics, and
sociology, as it allows us to gain information about massive graphs from small sections of it; see,
e.g., References [5, 29, 42, 46]. A number of variants of the problem have consequently been studied,
including sampling graphlets of a given size uniformly at random or sampling weighted graphlets
of all sizes [1, 6, 10–13, 16, 40, 47, 48, 50, 51]. The variant we consider here, i.e., sample a graphlet S
with probability proportional to λ |S | , arises as a key subroutine in recent sampling algorithms for
spin systems (hard-core model, Ising model, Potts model, etc.) in the regime of strong interactions
via polymer models described below in Section 1.2; see References [7, 14, 15, 18, 26, 35, 38, 39, 45].

One major limitation of previous sampling algorithms for graphlets and polymer models (those
in, e.g., [17, 25, 35, 45, 50], among others) is the use of exhaustive enumeration of graphlets of a
given size; this requires restrictive parameter regimes or large polynomial running times, with the
logarithm of the maximum degree ∆ of the graph appearing in the exponent of the polynomial.
Here, we design a fast perfect sampling algorithm for weighted graphlets based on a vertex per-
colation process combined with a rejection "lter. This method bypasses the enumeration barrier
and allows us to design perfect sampling algorithms for a number of applications, substantially
improving upon existing algorithms in three ways: (1) our algorithms have considerably faster
running times, with no dependence on ∆ in the exponent; (2) our algorithms return perfect, rather
than approximate, samples from the desired distributions; and (3) our algorithms are conceptually
simple and practical to implement.

Our algorithm proceeds as follows. First, run a vertex percolation process on the graphG begin-
ning at vertex r in a breadth-!rst search (BFS) manner, repeatedly adding each adjacent vertex
to the graphlet with a carefully-chosen probability p. Once the percolation process terminates, the
graphlet is accepted as the random sample with a certain probability that depends on the graphlet
and rejected otherwise; if the graphlet is rejected, the algorithm restarts another percolation pro-
cess from r . Because of the careful way we choose the percolation and rejection probabilities, we
can prove the "nal accepted sample is drawn exactly from the desired distribution and the expected
running time is bounded by a constant that depends only on λ and the maximum degree ∆.

For our applications to polymer models, we use this graphlet sampling algorithm as a subroutine
to implement a Markov chain on polymer con"gurations. We then use this Markov chain to devise
a perfect sampling algorithm for polymer models based on the coupling from the past (CFTP)
method from Reference [49] and the notion of bounding chains from Reference [36].

1.1 Sampling Rooted Graphlets
Our key contribution is a new algorithm for perfectly sampling weighted graphlets containing a
given vertex r . We start by "xing the model of computation we work with throughout the article.
We assume a model that allows for querying the adjacency list of a given vertex in a bounded
degree graph in constant time, including in a rooted in"nite graph. We also assume that, in a "nite
graph, we can query a uniformly random vertex in constant time. This is a standard model used in
the study of sublinear algorithms [28]. We also assume access to a stream of perfectly random real
numbers in [0, 1]. The model of computation is "xed for consistency; in particular, our methods

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 5. Publication date: January 2024.

Fast and Perfect Sampling of Subgraphs and Polymer Systems 5:3

extend to other models, only requiring to adjust the running time to account for any additional
computational overhead.

Let G = (V ,E) be a "nite or in"nite graph of maximum degree ∆. For r ∈ V , let S (G, r) be the
set of all connected, vertex-induced subgraphs ofG containing r . (The subgraph induced byU ⊆ V
has vertex set U and includes all the edges of G with both endpoints in U .) We call r the root of
G and the elements of S (G, r) graphlets rooted at r . For λ > 0 de"ne the probability distribution
νG,r,λ on S (G, r) by

νG,r,λ (S) =
λ |S |

ZG,r,λ
, where ZG,r,λ =

∑

Ŝ ∈S (G,r)

λ |Ŝ | . (1)

The distribution is well de"ned when the normalizing constant ZG,r,λ , known as the partition
function, is "nite. This is the case for every graph of maximum degree ∆ and every r when λ is
below the critical threshold:

λ∗ (∆) =
(∆ − 2)∆−2

(∆ − 1)∆−1 ; (2)

see Lemma 1.3 below. This threshold was already considered in Reference [50], who gave an ε-
approximate sampling algorithm for νG,r,λ for the class of maximum-degree ∆ graphs when λ <
λ∗ (∆) with running time poly(ε−1). We give a perfect sampling algorithm for νG,r,λ for λ < λ∗ (∆)
with constant expected running time.

Theorem 1.1. Fix ∆ ≥ 3 and let λ < λ∗ (∆). There is a randomized algorithm that for any graph
G = (V ,E) of maximum degree ∆ and any r ∈ V outputs a graphlet distributed according to νG,r,λ
with expected running time bounded by a constant that depends only on ∆ and λ.

Previous algorithms to generate ε-approximate samples from νG,r,λ (e.g., those in References [17,
25, 35, 50]) exhaustively enumerate all graphlets of size ≤ k , for some k that depends on the
error parameter ε that describes how accurate the sample must be. This results in algorithms with
(1/ε)O (log ∆) running times. Applications such as sampling from polymer models require multiple
samples from νG,r,λ and have small error tolerance per sample; in particular, they require ε (
1/n, which results in ine!cient algorithms with overall running time nO (log ∆) . The algorithm in
Theorem 1.1, on the other hand, is an exact sampler whose expected running time depends only
on ∆ and λ and thus provides a signi"cant advantage in applications as we detail below.

We also show that Theorem 1.1 is sharp in two ways. First, we establish that there is no
polynomial-time approximate sampling algorithm for νG,r,λ when λ ∈ (λ∗ (∆), 1) for the class of
"nite graphs of maximum degree at most ∆ unless RP = NP; see De"nition 5.3 for the precise de"ni-
tion of a polynomial-time approximate sampler. (We note that a similar hardness result was proved
in Reference [50] for the related problem of sampling “unrooted graphlets”; we provide more de-
tails about this in Section 1.4.) Second, in the in"nite setting, the normalizing constant ZG,r,λ may
diverge (and consequently, the distribution νG,r,λ is not be well-de"ned) when λ > λ∗ (∆); con-
versely, we prove that ZG,r,λ is "nite on every graph of maximum degree ∆ when λ ≤ λ∗ (∆).

Lemma 1.2. Fix ∆ ≥ 3 and λ ∈ (λ∗ (∆), 1). If there is a polynomial-time approximate sampler for
νG,r,λ for !nite graphs G = (V ,E) of maximum degree ∆ and each r ∈ V , then RP = NP.

Lemma 1.3. The partition function ZG,r,λ is !nite for every (possibly in!nite) graph G = (V ,E) of
maximum degree ∆ and every r ∈ V if and only if λ ≤ λ∗ (∆).

Finally, we mention that the algorithmic result in Theorem 1.1 cannot be extended even to the
case λ = λ∗ (∆): for the in"nite ∆-regular tree, we can show that the expected size of a graphlet
sampled from νG,r,λ is in"nite when λ = λ∗ (∆), and so it is impossible to have sampling algorithms

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 5. Publication date: January 2024.

5:4 A. Blanca et al.

with "nite expected running time. In summary, the algorithm in Theorem 1.1 for λ < λ∗ (∆), com-
bined with the hardness/impossibility results in Lemmas 1.2 and 1.3 for λ > λ∗ (∆), provide a
resolution to the computational problem of sampling from νG,r,λ on graphs of maximum degree at
most ∆.

As mentioned, our sampling algorithm is based on exploring the connected component of r in
a vertex-percolation process. We carefully choose a speci"c percolation parameter p ∈ (0, 1) as
a function of λ and ∆ (see Lemma 2.2). We then perform BFS from r , labeling each new vertex
encountered “active” with probability p and “inactive” with probability 1 − p independently over
all vertices; we continue the BFS exploring only unexplored neighbors of active vertices. In this
way, we uncover the “active” component of r , call it γ . We then accept γ with a given probability
depending on λ, ∆, |γ | and |∂γ |, where ∂γ denotes the set of vertices outside ofγ that are adjacent to
γ . If we rejectγ , we begin again with a new percolation process. We note that only when λ < λ∗ (∆)
there exists a suitable percolation probability p that results in a subcritical percolation process, so
that the size of the active component has "nite expectation and exponential tails. The weighted
model we sample from is particularly well suited to this type of exploration algorithm because of
the direct connection to a subcritical percolation process.

Random exploration and rejection sampling have been used previously to sample graphlets and
other structures, most notably in the recent work of Bressan [10], who uses a novel bucketing
scheme in combination with rejection sampling to perfectly sample uniformly random graphlets
of size k from a graph, as well as studying the mixing time of the random walk on the set of all
such graphlets. See also Reference [3], in which a random growth process and rejection sampling
are used to perfectly sample spin con"gurations.

We prove a more general version of Theorem 1.1 in Section 2, allowing for vertex-labeled
graphlets and modi"cations of the weights by multiplication by a non-negative function bounded
by 1. These generalizations are needed for the application to polymer models in Section 1.2.

1.2 Sampling from Polymer Models
We use our algorithm for sampling weighted rooted graphlets to design fast and perfect samplers
for polymer models. Polymer models are systems of interacting geometric objects representing
defects from pure ground states (i.e., most likely con"gurations) in spin systems on graphs in clas-
sical statistical physics [23, 30, 43]. These geometric objects are most often represented by vertex-
labeled graphlets from a given host graph. Recently, polymer models have found application as an
algorithmic tool to sample from spin systems on various classes of graphs in strong interaction
regimes; see, e.g., References [7, 14, 15, 17, 18, 21, 25, 26, 34, 35, 38, 39, 45]. In these applications,
the problem of sampling weighted vertex-labeled rooted graphlets emerged as a signi"cant com-
putational barrier.

We will work with subset polymer models in which all polymers are vertex-labeled graphlets
from a host graph G = (V ,E). These models were de"ned in Reference [30] and generalized in
Reference [43]. Such a polymer model consists of:

— A set C = C (G) of polymers, each of which is a graphlet inG with the vertices of the graphlet
labeled with colors from a set Σ of size q.

— Weightswγ ≥ 0 for each γ ∈ C. We assume without loss of generality that all vertex-labeled
graphlets of G, including each individual vertex v ∈ V , are elements of C, by setting wγ = 0
when necessary.

— An incompatibility relation ! de"ned by connectivity. We say two polymersγ ,γ ′ ∈ C are in-
compatible and write γ ! γ ′ if the union of their corresponding vertices induces a connected
subgraph in G. Otherwis,e they are compatible and we write γ ∼ γ ′.

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 5. Publication date: January 2024.

Fast and Perfect Sampling of Subgraphs and Polymer Systems 5:5

Table 1. Comparison of Conditions and Running Times of Known Polymer Sampling Algorithms

Condition Bound on exponential Running Time Type of Sampler
decay of weights

Koteckỳ–Preiss [14, 35, 38] wγ ≤ (e2q∆)− |γ | nO (log ∆) approximate
Polymer Sampling [17, 25] wγ ≤ (e5q3∆3)− |γ | O (n logn) approximate

Clique dynamics [24] wγ ≤ (eq∆)− |γ | nO (log ∆) approximate
This work (Theorem 1.4) wγ ≤ (eq∆)− |γ | O (n logn) perfect

Let Ω(C) denote the set of all sets of pairwise compatible polymers from C. The polymer model
is the Gibbs distribution µ on Ω(C) de"ned by

µ (X) =

∏
γ ∈X wγ

Z (C)
, where Z (C) =

∑

X ∈Ω(C)

∏

γ ∈X
wγ

is the polymer model partition function. The size |γ | of a polymer γ is the number of vertices in
the corresponding graphlet. We let Cv be all polymers containing vertex v .

We will often work with a family of polymer models corresponding to an in"nite family of host
graphsG. We say the weights of a family of polymer models are computationally feasible ifwγ can
be computed in time polynomial in |γ | uniformly over the polymer models in the family.

Algorithms for sampling polymer models fall into two classes: those based on truncating
the cluster expansion of a polymer model to approximate a partition function and using self-
reducibility to sample, and those based on Markov chains on the set of collections of compatible
polymers. The cluster expansion approach, while giving polynomial-time algorithms, is relatively
ine!cient in general, with the degree of the polynomial bound on the running time growing with
the degree of the underlying graph; e.g., running time nO (log ∆) for n-vertex graph of maximum
degree ∆. A Markov chain approach based on adding and remove polymers from a polymer con-
"guration in principle can be much faster (near linear time in the size of the graph) but runs into
one hitch: a much stricter condition on the parameters of the model is needed to perform one up-
date step of the Markov chain e!ciently (the “polymer sampling condition” in References [17, 25]).
We solve this problem by adapting our rooted graphlet sampler to sample polymers models, lead-
ing to a near linear-time perfect sampling algorithm for polymer models under the least restrictive
conditions known (see Table 1).

Theorem 1.4. Fix ∆ ≥ 3, q ≥ 1, θ ∈ (0, 1), and λ < λ∗ (∆,q) := (∆−2)∆−2

q (∆−1)∆−1 . There is a perfect
sampling algorithm for µ with expected running timeO (|V | log |V |) for any family of subset polymer
models on maximum degree ∆ graphs G = (V ,E) with computationally feasible weights satisfying:

wγ ≤ λ |γ | for all γ ∈ C; and (3)
∑

γ !v
|γ |wγ ≤ θ for all v ∈ V . (4)

The threshold de"ned in Equation (3) is the generalization of the critical threshold for rooted
graphlet sampling to the labeled case (taking q = 1 recovers the de"nition in Equation (2)).
Theorem 1.4 improves upon the known results for sampling from polymer models in two ways. For
a very general class of polymer models, our algorithm simultaneously provides perfect sampling
with near-linear running time under weak conditions on the polymer weights. We now review
previous works to illustrate these improvements; see the accompanying Table 1.

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 5. Publication date: January 2024.

5:6 A. Blanca et al.

A number of conditions on polymer weights have been used to provide e!cient sampling algo-
rithms. The "rst papers in this direction (including References [14, 35, 38]) used the Koteckỳ–Preiss
condition for convergence of the cluster expansion of the polymer model partition function [43]:∑

γ ′!γ wγ ′e |γ
′ | ≤ |γ | ∀γ ∈ C. This condition is typically veri"ed by ensuring that:

∑
γ !v

wγ e
|γ | ≤ 1 ∀v ∈ V . (5)

Since the number of vertex-labeled rooted graphlets of size k in a maximum degree ∆ graph grows
roughly like (eq∆)k−1 (see Reference [8]), weights of polymers of size k must decay roughly like
(e2q∆)−k for the polymer model to satisfy Equation (5), with the extra factor of e coming from the
exponential in the left hand side of the condition Equation (5).

The major downside to the algorithms based on the cluster expansion, i.e., those using
Equation (5) or the Koteckỳ–Preiss condition, is that the running times obtained are of the form
nO (log ∆) . Subsequent works, namely [17, 25], addressed this downside but at the cost of a signi"-
cantly stricter condition on the polymer weights.

In Reference [17], the authors devised a new Markov chain algorithm for sampling from polymer
models. The condition on the polymer weights for rapid mixing of this chain is somewhat less
restrictive than the Koteckỳ–Preiss condition; it is the Polymer Mixing condition:

∑
γ ′!γ
|γ ′ |wγ ′ ≤ θ |γ | ∀γ ∈ C for some θ ∈ (0, 1) . (6)

This requires weights of polymers of size k to decay like (eq∆)−k , a savings of factor e in the base
of the exponent over (5). However, to implement a single step of this Markov chain in constant
expected time, a stronger condition (the Polymer Sampling condition) was required:

wγ ≤
(
e5∆3q3)− |γ | . (7)

This is a signi"cant loss of a factor e3∆2q2 in the base of the exponent compared with Equation (5),
but the resulting sampling algorithm does run in near linear time.

In Reference [24], the authors use a di#erent Markov chain condition, the Clique Dynamics con-
dition, similar to Equation (6), which requires weights of polymers of size k to decay like (eq∆)−k ,
saving the same factor e over (5). Their running times, though, are again of the form nO (log ∆)

since implementing one step of their Markov chain involves enumerating rooted polymers of size
O (logn).

Our results are a “best-of-both-worlds” for polymer sampling: under the conditions
Equations (3) and (4) that both require polymer weights to decay like (eq∆)−k (this is shown later;
see, e.g., the proof of Corollary 1.6), we obtain a near linear time algorithm. Moreover, unlike any
of the previous results, our algorithm is a perfect sampler.

To conclude this section, we comment brie*y on the algorithm we design to sample from µ. Our
starting point is the polymer dynamics Markov chain from Reference [17]. We use it to implement
a CFTP) algorithm (see Reference [49]). To do so e!ciently (in terms of the number of steps of the
Markov chain), we design a new “bounding Markov chain” for the polymer dynamics, a method
pioneered in References [31, 36], and to implement each step of the Markov chain e!ciently, we
turn to our sampler for weighted rooted graphlets from Theorem 1.1.

1.3 Applications to Spin Systems
Our new algorithm for sampling subset polymer models can be used as a subroutine in essentially
all previous applications of polymer models for spin system sampling at low temperatures, includ-
ing those in [14, 15, 17, 18, 21, 25, 26, 34, 38, 45]. This results in faster sampling algorithms under

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 5. Publication date: January 2024.

Fast and Perfect Sampling of Subgraphs and Polymer Systems 5:7

less restrictive conditions on model parameters in all those settings. As examples, we *eshed out
here the details in two of these applications; more details are provided in Section 4.
Hard-core model on bipartite graphs. The hard-core model on a graph G is the probability
distribution µhc

G on I (G), the set of all independent sets of G, with

µhc
G (I) =

λ |I |

Zhc
G (λ)

, where Zhc
G (λ) =

∑

I ∈I (G)

λ |I | . (8)

The complexity of approximate counting and sampling from µhc
G on bounded-degree graphs is

well understood: there is a computational threshold at some λc (∆), with e!cient algorithms for
λ < λc (∆) [4, 19, 20, 54] and hardness above the threshold (no polynomial-time algorithms unless
NP = RP) [27, 52, 53]. However, on bipartite graphs, the complexity of these problems is unresolved
and is captured by the class #BIS (approximately counting independent sets in bipartite graphs)
de"ned by Dyer, Goldberg, Greenhill, and Jerrum [22].

Theorem 1.4 implies the existence of a fast perfect sampling algorithm for the hard-core model
in a certain class of bipartite graphs called unbalanced bipartite graphs, considered in References
[14, 24].

Corollary 1.5. There is a perfect sampling algorithm for µhc
G running in expected timeO (n logn)

for n-vertex bipartite graphs G with bipartition (L,R), with maximum degree ∆L in L, maximum
degree ∆R in R, and minimum degree δR in R if

λ(1 + (1 + e) (∆L − 1)∆R) < (1 + λ)δR /∆L . (9)
Approximate sampling algorithms with large polynomial run times were previously given

for this problem when 6λ∆L∆R < (1 + λ)δR /∆L in Reference [14] and when 3.3353λ∆L∆R <
(1 + λ)δR /∆L in [24]. Our result applies to a comparable parameter range: inequality (9) holds,
for instance, when (1 + e)λ∆L∆R < (1 + λ)δR /∆L , or when 3λ∆L∆R < (1 + λ)δR /∆L and ∆L < 6.
More importantly, our algorithm is the "rst to achieve perfect sampling and near-linear running
time.
Potts model on expander graphs. TheQ-color ferromagnetic Potts model on a graphG = (V ,E)
is the probability distribution µPotts

G on the set of Q-colorings of the vertices of G; i.e., {1, . . . ,Q }V .
Each Q-coloring σ is assigned probability µPotts

G (σ) ∝ eβm (G,σ) , where m(G,σ) is the number of
monochromatic edges of G under the coloring σ and β > 0 is a model parameter. When the
parameter β is large, andG has some structure (e.g.,G is an expander graph), typical con"gurations
drawn from µPotts

G are dominated by one of the Q colors; that is, there is phase coexistence in the
model. This enables sampling using subset polymer models.

Recall that an n-vertex graphG = (V ,E) is an α-expander if for all subsets S ⊆ V with |S | ≤ n/2,
the number of edges in E with exactly one endpoint in S is at least α |S |.

Corollary 1.6. Consider the Q-color ferromagnetic Potts model on an α-expander n-vertex graph
of maximum degree ∆. Suppose

β ≥
1 + log

(
∆+1
e∆ + 1

)
+ log((Q − 1)∆)

α
. (10)

Then, there is a sampling algorithm with expected running time O (n logn) that outputs a sample σ
with distribution µ̂ so that ‖µ̂ − µPotts

G ‖tv ≤ e−Ω(n) .

Previously, Reference [17] provided a ε-approximate sample for µPotts
G in time

O (n log(n/ε) log(1/ε)) whenever β ≥ 5+3 log((Q−1)∆)
α . Condition (10) holds when β ≥ 1.2+log((Q−1)∆)

α ,

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 5. Publication date: January 2024.

5:8 A. Blanca et al.

so our algorithm applies to a larger range of parameters and removes the dependence on ε from
the running time. We do not achieve perfect sampling in this application only because the subset
polymer models used give approximations of µPotts

G rather than describing µPotts
G exactly.

1.4 Sampling Unrooted Graphlets in Finite Graphs
As another application of our algorithm for sampling weighted rooted graphlets, we consider next
the problem of sampling weighted unrooted graphlets in a "nite graph. Given a "nite graph G, let
S (G) be the set of all graphlets of G. De"ne the distribution νG,λ on S (G) by

νG,λ (γ) =
λ |γ |

ZG,λ
, where ZG,λ =

∑
γ ∈S (G)

λ |γ | .

Read-McFarland and Štefankovič [50] gave a polynomial-time approximate sampling algorithm
for νG,λ for the class of maximum-degree ∆ graphs when λ < λ∗ (∆) and prove that there is no
such algorithm for λ ∈ (λ∗ (∆), 1) unless NP = RP.1 We give a new algorithm for this problem,
covering the entire λ < λ∗ (∆) regime, and improving on the result of Reference [50] in two ways:
(i) our running time is constant in expectation (with no dependence on n), while the running time
of the ε-approximate sampler in Reference [50] is n · (1/ε)O (log ∆) ; and (ii) our algorithm outputs a
perfect sample instead of an approximate one (and thus, the running time has no dependence on
any approximation parameter).

Theorem 1.7. Fix ∆ ≥ 3 and let λ < λ∗ (∆). Then for the class of !nite graphs of maximum degree
∆ there is a randomized algorithm running in constant expected time that outputs a perfect sample
from νG,λ . The expected running time is bounded as a function of ∆ and λ.

The algorithm we use for this theorem is a modi"cation of the one for sampling rooted graphlets.
We pick a uniformly random v ∈ V , run the same BFS percolation exploration, and accept the
connected component ofv with an adjusted probability (to account for the fact that a graphlet can
be generated from any of its vertices). The acceptance probability is bounded away from 0 and so
the algorithm runs in constant expected time. As mentioned earlier, the ε-approximate sampling
algorithm from Reference [50] is based on the exhaustive enumeration of all subgraphs of size ≤ k ,
for some k that depends on ε . Our new algorithm entirely bypasses this enumeration barrier.

2 GRAPHLET SAMPLING: ALGORITHMS
In this section, we present our e!cient perfect sampling algorithm for weighted, vertex-labeled
graphlets containing a "xed vertex r from a maximum degree ∆ graph; in particular, in Section 2.1,
we prove a generalized version of Theorem 1.1 from the introduction. We also provide in
Section 2.2, our algorithm for sampling weighted graphlets (i.e., the unrooted, unlabeled case)
and establish Theorem 1.7. Our hardness results, that is, Lemmas 1.2 and 1.3, are proved later in
Section 5.

2.1 Sampling Rooted Vertex-Labeled Graphlets
Let G = (V ,E) be a (possibly in"nite) graph of maximum degree ∆. For U ⊆ V , let G[U] denote
the corresponding vertex-induced subgraph of G; speci"cally, G[U] = (U ,E (U)), where E (U) ⊆ E
is the set of edges of G with both endpoints in U . A vertex-induced subgraph is a graphlet if it is
connected. For r ∈ V , let S (G, r) be the set of all graphlets of G that contain vertex r . We call the
graphlets in S (G, r) the graphlets rooted at r .

1In Reference [50], the threshold is incorrectly stated as λ < λ∗ (∆ + 1); this is due to a minor error interchanging the
in"nite ∆-regular tree with the in"nite ∆-ary tree; with this small correction their analysis goes through with the bound
on λ as stated here.

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 5. Publication date: January 2024.

Fast and Perfect Sampling of Subgraphs and Polymer Systems 5:9

Let Σ = {1, . . . ,q} be a set of vertex labels or colors, and letS (G, r ,q) =
⋃

(S,E (S))∈S (G,r) ΣS be the
set of all vertex-labeled graphlets rooted at r . Given a real parameter λ > 0, we assign to each rooted
vertex-labeled graphlet γ ∈ S (G, r ,q) ∪ {∅} with |γ | vertices the weight wγ = λ |γ | f (γ), where
f : S (G, r ,q) ∪ {∅} → [0, 1]. Note that 0 ≤ wγ ≤ λ |γ | , which will be important for later analysis.

De"ne the probability distribution νG,r,λ on S (G, r ,q) ∪ {∅} by setting

νG,r,λ (γ) =
wγ

Z (G, r , λ)
, (11)

where Z (G, r , λ) =
∑

γ ′ ∈S (G,r,q)∪{∅}wγ ′ . We assume that G, f , q and λ are such that Z (G, r , λ) is
"nite, so that this distribution is well de"ned. When q = 1 and f (γ) = 1(γ " ∅), νG,r,λ corresponds
exactly to the distribution de"ned in Equation (1) over the unlabeled graphlets of G rooted at r .

We consider the problem of sampling from νG,r,λ ; this more general version of the sampling
problem is later used as a subroutine for sampling polymer systems in Section 3. Let

λ∗ (∆,q) := (∆ − 2)∆−2

q(∆ − 1)∆−1 ;

cf., (2). Our main algorithmic result for sampling colored rooted graphlets is the following.
Theorem 2.1. Fix ∆ ≥ 3, q ≥ 1, and suppose 0 < λ < λ∗ (∆,q). There is a randomized algorithm to

exactly sample from νG,r,λ for graphs G of maximum degree ∆ and functions f : S (G, r ,q) ∪ {∅} →
[0, 1] where f (γ) is computable in time polynomial in |γ |; this randomized algorithm has expected
running time O (Z−1

G,r,λ).

Theorem 1.1 from the introduction corresponds to the special case whenq = 1 and f (γ) = 1(γ "
∅) (in this case ZG,r,λ ≥ λ). Other mild assumptions on the function f , e.g., f (∅) = 1 or f (r) = 1,
ensure that ZG,r,λ is bounded away from 0 and, consequently, that the sampling algorithm in the
theorem also has constant expected running time in those cases.

As a warm-up, let us consider "rst our algorithm for sampling labeled rooted graphlets on a
"nite graph G = (V ,E) with f = 1, and purposely omit certain non-essential implementation
details for clarity. First, we "nd p ∈ (0, 1) such that p

q (1 − p)∆−2 = λ; this choice of p will be
justi"ed in what follows. The algorithm then repeats the following process until a vertex-labeled
graphlet is accepted:

(1) Each vertex of the graph is independently assigned with probability p a uniform random
color from {1, . . . ,q}, or it is marked as “not colored” with the probability 1 − p.

(2) Let γ̃ be the vertex-labeled graphlet from S (G, r ,q) ∪ {∅} corresponding the colored con-
nected component of r ; i.e., the set of vertices connected to r by at least one path of colored
vertices.

(3) Observe that the probability that γ̃ = γ is (p/q) |γ | (1 − p) |∂γ | , where ∂γ denotes to set of
vertices inG that are not inγ but are adjacent to a vertex inγ (with a slight abuse of notation,
we let |∂∅| = 1). When γ̃ = γ , our aim is to output γ with probability ∝ λ |γ | which has no
dependence on ∂γ . Therefore, we use a “rejection "lter” and only accept γ with probability
(1 − p) (∆−2) |γ |+2− |∂γ |, so that the probability that γ is the output becomes:

(
p

q

) |γ |
(1 − p) |∂γ | (1 − p) (∆−2) |γ |+2− |∂γ | = (1 − p)2

(
p

q
(1 − p)∆−2

) |γ |
= (1 − p)2λ |γ | . (12)

From Equation (12), the choice ofp such that p
q (1−p)∆−2 = λ is apparent. We will prove that only

when λ < λ∗ (∆,q) there exists p ∈ (0, 1) such that p
q (1 − p)∆−2 = λ. In the actual implementation

of the algorithm, it will in fact su!ce to "nd an approximation for p.

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 5. Publication date: January 2024.

5:10 A. Blanca et al.

We comment brie*y on the intuition for the rejection "lter. The acceptance probability must
include a factor of (1 − p)− |∂γ | , so that the "nal acceptance probability depends on |γ | but not on
|∂γ |. However, (1 − p)− |∂γ | > 1 is not a valid probability, so we use instead (1 − p) (∆−2) |γ |+2− |∂γ | ,
which is at most 1 since (∆ − 2) |γ | + 2 ≥ |∂γ |. This bound on |∂γ | is best possible since it is tight
for the ∆-regular tree. We note that using looser bounds for |∂γ | a#ects the range of the parameter
λ for which we can "nd p ∈ (0, 1) so that p

q (1 − p)∆−2 = λ.
Finally, we mention that the algorithm as described requires Ω(|V |) time per iteration and cannot

be extended to in"nite graphs. This is easily corrected by assigning colors starting from r and
revealing only the colored component of r in a breadth-"rst fashion. The threshold λ∗ (∆,q) is sharp
in the sense that only when λ < λ∗ (∆,q) is the value of p such that the revealing process is a sub-
critical process that creates a small component with high probability. This ensures the algorithm
can be implemented e!ciently. In particular, we stress that our algorithm avoids exhaustively
enumerating labeled graphlets, as done in previous methods [17].

Before giving the implementation details of our algorithm and proving Theorem 2.1, we consider
the problem of "nding p ∈ (0, 1) such that p

q (1 − p)∆−2 = λ. For ∆ ≥ 3 and q ≥ 1, consider the
real function д(x) = x

q (1 − x)∆−2. It can be readily checked that the function д is continuous and
di#erentiable in [0, 1], has a unique maximum at x = 1

∆−1 with д(1
∆−1) = λ∗ (∆,q), is increasing in

[0, 1
∆−1], and decreasing in [1

∆−1 , 1]. This implies that only when λ < λ∗ (∆,q), there exists a value
of p ∈ [0, 1

∆−1) such that д(p) = λ. In particular, when λ > λ∗ (∆,q), there is no value of p for which
д(p) = λ and when λ = λ∗ (∆,q), the only possible value is p = 1

∆−1 . The latter case would result in
a critical percolation process, corresponding to the fact that the expected size of a graphlet from
νG,r,λ has no uniform upper bound in the class of graphs of maximum degree ∆; in fact, it is in"nite
on the ∆-regular tree. We can "nd a suitable approximation for p when λ < λ∗ (∆,q) via a simple
(binary search) procedure.

Lemma 2.2. For any λ ∈ [0, λ∗ (∆,q)) we can !nd rational numbers p̂ ∈ [0, 1
∆−1) and λ̂ ∈

[λ, λ∗ (∆,q)] such that д(p̂) = λ̂ in O (| log 1
∆q (λ∗−λ) |) time.

The proof of this lemma appears after the proof of Theorem 2.1. We now prove Theorem 2.1, in-
cluding giving a more detailed version of the algorithm outlined above that includes the previously
omitted implementation details and allows for general functions f : S (G, r ,q) ∪ {∅} → [0, 1].

Proof of Theorem 2.1. For ease of notation, let λ∗ = λ∗ (∆,q). Our algorithm to sample from
νG,r,λ when λ < λ∗ explores from r in a breadth-"rst manner and stops once it has revealed the
colored connected component of r . It proceeds as follows:

(1) Find p̂ ∈ [0, 1
∆−1) and λ̂ ∈ [λ, λ∗) such that д(p̂) = λ̂. This can be done in time

O (| log 1
∆q (λ∗−λ) |) per Lemma 2.2.

(2) Let Q be a queue. With probability 1 − p̂ do not add r to Q ; otherwise, assign r a color
uniformly at random from {1, . . . ,q} and add r to Q . Mark r as explored.

(3) While Q " ∅, repeat the following:
3.1) Pop a vertex v from Q .
3.2) For each unexplored neighborw of v , with probability 1− p̂ do not addw to Q ; otherwise,

assignw a color uniformly at random from {1, . . . ,q} and addw to Q . Markw as explored
(regardless of whether it was added to Q or not).

(4) Let γ be the vertex-labeled graphlet from S (G, r ,q) ∪ {∅} corresponding the colored con-
nected component of r . Accept γ with probability:

f (γ) · (1 − p̂) (∆−2) |γ |+2− |∂γ |
(
λ

λ̂

) |γ |
.

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 5. Publication date: January 2024.

Fast and Perfect Sampling of Subgraphs and Polymer Systems 5:11

(5) If γ is rejected, go to Step 2 and repeat.
The probability of obtaining γ ∈ S (G, r ,q) ∪ {∅} in an iteration of the algorithm is

(
p̂

q

) |γ |
(1 − p̂) |∂γ | · f (γ) (1 − p̂) (∆−2) |γ |+2− |∂γ |

(
λ

λ̂

) |γ |
= (1 − p̂)2 f (γ) λ |γ | = (1 − p̂)2wγ ,

and thus the overall acceptance probability in an iteration is

ρ := (1 − p̂)2
∑

γ ∈S (G,r,q)∪{∅}
wγ = (1 − p̂)2ZG,r,λ .

Then,

Pr[γ ∈ S (G, r ,q) ∪ {∅} is the output] =
∑

t ≥1
(1 − p̂)2wγ (1 − ρ)t−1 =

(1 − p̂)2wγ

ρ
= νG,r,λ (γ).

We next bound the expected running time of the algorithm. We claim "rst that expected running
per iteration is, at most, a constant that depends only on a, ∆ and q. If γ is the con"guration
generated in an iteration, it is discovered in O (|γ | + |∂γ |) = O (|γ |) time and, by assumption, f (γ)
can be computed in at mostO (|γ |a) time, for suitable a constant a > 0. Let µ̂ the output distribution
of Step 3 of the algorithm. Then, there exists a constant C = C (q,∆) > 0 such that the expected
running time of each iteration is at most:

C
∑

γ ∈S (G,r,q)∪∅
|γ |max{a,1} Prµ̂ [γ] = C · Eµ̂ [|γ |max{1,a }]. (13)

We show next that |γ | (under µ̂) is stochastically dominated by a random variable W = X +
Y (i.e., |γ | ≺ W), where X and Y are i.i.d. random variables corresponding to the cluster size
of a homogeneous Galton–Watson process with o#spring distribution Bin(∆ − 1, p̂). We recall
that this is the branching process that starting from a single vertex (or individual) N0, adds Z1 ∼
Bin(∆−1, p̂) descendants to N0. The process is then repeated for each new descendant. The process
can either die out or go on forever; the cluster size is the number of descendants of N0. When
di#erent o#spring of N0 use di#erent distributions to generate its descendants, the process is called
heterogeneous (see, e.g., Reference [37] for additional background).

To see that |γ | ≺ W = X + Y , "rst note that |γ | ≺ L, where L is the cluster size of a heteroge-
neous Galton–Watson process, in which the root vertex has o#spring distribution Bin(∆, p̂) and
every other vertex has o#spring distribution Bin(∆ − 1, p̂). This is because the branching process
generating γ includes the root only with probability p̂ (the root is always present in the Galton–
Watson process), and, in addition, it considers at most ∆ (from the root) or ∆ − 1 (from any other
vertex) potential branches (or descendants). In turn, we can bound the cluster size L by L ≺ X +Y ,
since, in the branching process corresponding to L, we can couple the "rst ∆ − 1 branches of the
root N0 with X (starting at the root) and the remaining branch with Y (starting at the child of the
root not coupled with X).

It is well-known that X and Y have "nite moments when (∆− 1)p̂ < 1 (see, e.g., Reference [37]).
In particular, there exists a constant A = A(a,∆, p̂) > 0 such that

Eµ̂ [|γ |a] ≤ E[La] ≤ E[(X + Y)a] ≤ 2a (E[X a] + E[Y a]) ≤ A. (14)

This, together with Equation (13), shows that the expected running time in each iteration of the
algorithm is bounded by C · A.

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 5. Publication date: January 2024.

5:12 A. Blanca et al.

Now, let R be the number of times Steps 2–5 are repeated, let T be the overall running time of
the algorithm. Then:

E[T] =
∑

t ≥1
E[T | R = t] Pr[R = t] ≤ C · A ·

∑

t ≥1
t (1 − ρ)t−1ρ ≤ CA

ρ
, (15)

and the result follows. !

We conclude this section with the proof of Lemma 2.2.

Proof of Lemma 2.2. It su!ces to "nd p̂ ∈ [p, 1
∆−1]. This can be done via binary search in t

steps, provided t ≥ 0 is such that 1
∆−1 · 1

2t ≤ 1
∆−1 − p. Since д′ ≤ 1

q , it follows from the mean
value theorem that q(λ∗ − λ) ≤ 1

∆−1 −p. Thus, for the binary search to require at most t steps, it is
su!cient to pick t so that 1

∆−1 · 1
2t ≤ q(λ∗ − λ), and the result follows. !

2.2 Sampling Unrooted Graphlets
We consider next the problem of sampling weighted graphlets from a "nite graph G = (V ,E) of
maximum degree ∆; speci"cally, in this variant of the sampling problem, we consider unrooted, un-
labeled, weighted graphlets ofG. LetS (G) be the set of all graphlets ofG. We de"ne the probability
distribution νG,λ on S (G) by setting

νG,λ (S) =
λ |S |

ZG,λ
,

where ZG,λ =
∑

S ′ ∈S (G)∪{∅} λ
|S ′ | . The problem of (approximately) sampling from νG,λ is quite

natural. In Reference [50], it was established that this problem is computationally hard when
λ > λ∗ (∆) = (∆−2)∆−2

(∆−1)∆−1 ; an ε-approximate sampling algorithm was also given in Reference [50]
for the case when λ < λ∗ (∆) with running time n · (1/ε)O (log ∆) . We establish the following:

Theorem 2.3. Suppose ∆ ≥ 3 and λ > 0 are such that λ < λ∗ (∆). There is a randomized algo-
rithm to exactly sample from νG,λ with O (1) expected running time for !nite graphs G of maximum
degree ∆.

Proof. For ease of notation, we set λ∗ = λ∗ (∆) throughout this proof. Our algorithm to sample
from νG,λ is based on the algorithm to sample from νG,r,λ (the rooted, vertex-labeled, weighted
case). The idea is to pick a root uniformly at random and run the algorithm for the rooted case
from this random vertex with the rejection "lter adjusted to account for the fact that a graphlet
can be generated from any of its vertices. It proceeds as follows:

(1) Find p̂ ∈ [0, 1
∆−1) and λ̂ ∈ [λ, λ∗) such that д(p̂) = λ̂ using the method from Lemma 2.2.

(2) Pick a vertex r ∈ V uniformly at random.
(3) Let Q be a queue. With probability p̂ add r to Q and mark it as colored. Mark r as explored.
(4) While Q " ∅, repeat the following:
3.1) Pop a vertex v from Q .
3.2) For each unexplored neighborw ofv , with probability p̂ addw toQ and markw as colored.

Mark w as explored.
(5) Let S ∈ S (G) be the graphlet corresponding to the colored connected component ofv . Accept

S with probability:
1
|S | · (1 − p̂) (∆−2) |S |+2− |∂S |

(
λ

λ̂

) |S |
.

(6) If S is rejected, go back to Step 2 and repeat.

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 5. Publication date: January 2024.

Fast and Perfect Sampling of Subgraphs and Polymer Systems 5:13

The analysis of this algorithm is similar to that in the proof of Theorem 2.1. Let n = |V |. The
probability that the algorithm outputs S in an iteration is

∑

v ∈S

1
n
· p̂ |S | (1 − p̂) |∂S | · 1

|S | · (1 − p̂) (∆−2) |S |+2− |∂S |
(
λ

λ̂

) |S |
=

(1 − p̂)2λ |S |

n
. (16)

Hence, conditioned on acceptance, the probability of obtaining S ∈ S (G) is thus νG,λ (S), and so
the output distribution of the algorithm is νG,λ .

For the running time of the algorithm, we note that Step 4 of the algorithm is analogous to Step
3 of the algorithm in the proof of Theorem 2.1, and so the expected running time of each round is
also bounded by a constantC = C (∆, p̂) > 0. LetT be the overall the running time of the algorithm.
From Equation (16), we have that the overall acceptance probability in a round is ρ = (1−p̂)2Z (G,λ)

n .
Then, as in Equation (15), we deduce that E[T] = O (nZ (G, λ)−1). Since Z (G, λ) ≥ nλ, we have
E[T] = O (1). !

3 APPLICATIONS TO POLYMER MODELS
In this section, we show how to use our algorithm for sampling rooted vertex-labeled graphlets
from Section 2 to sample from subset polymer models and prove Theorem 1.4.

Consider a subset polymer model on an n-vertex graph G = (V ,E); see Section 1.2 for the
de"nition. Recall that we use Cv for the set of all polymers containing vertex v ∈ V , and let γ∅
denote the empty polymer. De"ne the distribution νv on Cv ∪ {γ∅} where νv (γ) =

wγ
40 and

νv (γ∅) = 1 − 1
40

∑

γ̂ ∈Cv∪{γ∅ }
wγ̂ .

We note that νv is well-de"ned when condition (3) holds, since under this condition we have∑
γ̂ ∈Cv∪{γ∅ }wγ̂ ≤ 40; this is proved later in Lemma 5.1. The following Markov chain on Ω(C) is

similar to the one introduced in Reference [17].

Polymer dynamics. Given a con"guration Xt ∈ Ω(C), form Xt+1 as follows:
(1) Pick v ∈ V uniformly at random and let Sv = {γ ∈ Xt : v ∈ γ } (note that Sv is either empty

or contains 1 polymer).
(2) With probability 1/41, let Xt+1 = Xt \ Sv .
(3) Otherwise, with the remaining probability 40/41, sample γ from νv . Let Xt+1 = Xt ∪ {γ } if

Xt ∪ {γ } ∈ Ω(C) and let Xt+1 = Xt otherwise.
We "rst note that this Markov chain is irreducible (every con"guration can reach and can be

reached from the empty set of polymers with positive probability), and aperiodic (there is positive
probability of remaining on the same state). It is also reversible with respect to µ: letting P be the
transition matrix for this chain, Γ ∈ Ω(C), and a polymer γ # Γ be such that Γ ∪ {γ } ∈ Ω(C), we
have µ (Γ ∪ {γ })/µ (Γ) = wγ and for γ " γ∅:

P (Γ, Γ ∪ {γ })
P (Γ ∪ {γ }, Γ)

=

∑
v ∈γ

40
41nνv (γ)
|γ |
41n

= wγ .

Now, to implement a single update step of the polymer dynamics, one must sample from νv in
Step 3. We give a fast perfect sampler for νv .

Theorem 3.1. Fix ∆ ≥ 3,q ≥ 1, and let λ < λ∗ (∆,q). Consider a family of subset polymer models
de!ned on graphs of maximum degree ∆ with computationally feasible weights that satisfywγ ≤ λ |γ | .

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 5. Publication date: January 2024.

5:14 A. Blanca et al.

There is a randomized algorithm to sample perfectly from νv for any v ∈ V (G) with a constant
expected running time.

Proof. For each vertex v , let ν̂v be the distribution over Cv ∪ {γ∅} where ν̂v (γ) = wγ /Zv with
Zv =

∑
γ̂ ∈Cv∪{γ∅ }wγ̂ and wγ∅ = 1. By Theorem 2.1, we can perfectly from ν̂v in constant expected

time, with the constant depending λ,∆, and q. Our algorithm to sample from νv draws a perfect
sample from ν̂v "rst and then outputs the sample with probability Zv/40; otherwise, it outputs the
empty polymerγ∅. The output distribution of this algorithm is exactly νv , and so all that remains is
for us to show how to sample exactly from a Bernoulli distribution with parameter Zv/40, denoted
Ber(Zv/40).

We can sample exactly from Ber(1/Zv) in constant expected time by drawing an exact sample
from ν̂v (using the algorithm from Theorem 2.1) and outputting 1 if the sample is γ∅ and 0 other-
wise. With this, we can then use a “Bernoulli factory” to obtain a perfect sample from Ber(Zv/40).
Speci"cally, we know how to simulate a Bernoulli coin with parameter p = 1/Zv and would like
to obtain a Bernoulli coin with parameter f (p) = 1/(40p) = Zv/40. This is possible in constant
expected time (independent of p) since 1 + λ ≤ Zv ≤ 40, and the function f (p) = 1/(40p) is real
analytic in the closed interval [1/40, 1 + λ]; see Theorem 2 from Reference [55]. !

Note that Bernoulli factories have been used in a similar fashion to design perfect sampling
algorithms for CSP solutions and spin models in References [2, 32, 33].

Using this theorem, we give next a perfect sampling algorithm that works whenever a new
condition (4) is satis"ed (our algorithm also requires the assumptions in Theorem 3.1).

3.1 Perfect Sampling for Polymer Systems: Proof of Theorem 1.4
We propose here an algorithm to output a perfect sample from µ. Our algorithm is based on the
polymer dynamics and the CFTP method [49], using the notion of bounding Markov chains [31, 36]
to e!ciently implement it.

We proceed with the proof of Theorem 1.4. We start with the description of a grand coupling
for the polymer dynamics, which is then used to implement a CFTP algorithm. For an n-vertex
graph G = (V ,E), let {X Γ

t } denote an instance of the polymer dynamics started from the polymer
con"guration Γ ∈ Ω(C). For all Γ ∈ Ω(C), the chains {X Γ

t } are coupled by choosing the same
uniform random random vertexv ∈ V , the same polymerγ sampled from νv , and the same uniform
random number in [0, 1] to decide whether to remove Sv (Step 2) or to add γ (Step 3). A CFTP
algorithm will "nd a time −T such the grand coupling started from all possible states at time −T
coalesces to a single state by time 0. This guarantees that the output of the algorithm, that is, the
state at time 0, has distribution µ (see Theorem 1 from Reference [49]). Such a T can be found
with a binary search procedure. Unfortunately, implementing the CFTP algorithm in this manner
for the polymer dynamics Markov chain is infeasible, since it requires simulating an exponential
number of copies of the polymer dynamics, one from each Γ ∈ Ω(C).

To work around this, we consider a bounding Markov chain for the polymer dynamics rather
than the polymer dynamics chain itself. Bounding Markov chains were pioneered in References [31,
36] as a method for e!ciently implementing CFTP. The bounding chain for the polymer dynamics
has state space Ω(C) × 2C and will be denoted by {Bt ,Dt }, where Bt ∈ Ω(C) and Dt ⊆ C are sets
of polymers. The chain will maintain throughout that all polymers in Bt are compatible and that
every polymer in Bt is compatible with every polymer in Dt . The polymers in Dt do not need to
be compatible with each other. A step of the bounding Markov chain is de"ned next.

Polymer Dynamics Bounding Chain. Given {Bt ,Dt }, the chain generates {Bt+1,Dt+1} by:
(1) Uniformly at random, select v ∈ V .

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 5. Publication date: January 2024.

Fast and Perfect Sampling of Subgraphs and Polymer Systems 5:15

(2) With probability 1/41, remove all polymers containing v by setting Bt+1 = Bt \ Cv and
Dt+1 = Dt \ Cv .

(3) With the remaining probability 40/41, draw a sample γ according to νv and:
(a) If γ is compatible with Bt and γ is compatible with Dt \ {γ }, let Bt+1 = Bt ∪ {γ } and let

Dt+1 = Dt \ {γ }.
(b) Else if γ is compatible with Bt but γ is not compatible with Dt , let Bt+1 = Bt and let

Dt+1 = Dt ∪ {γ }.
(c) If γ is incompatible with Bt , do nothing: Bt+1 = Bt and Dt+1 = Dt .

Observe that polymers are only added to Bt if they are compatible with all other polymers in Bt ;
hence, if B0 is a valid polymer con"guration, so is Bt for all t ≥ 0.

To implement a step of the polymer dynamics bounding chain it su!ces to pick a vertex v ∈ V
uniformly at random, a uniform random number in [0, 1], and a polymer γ from νv , just like for
the polymer dynamics. Hence, we can couple the evolution of {Bt ,Dt } with the grand coupling of
the polymer dynamics described earlier. If we set B0 = ∅ and D0 = C, it can be checked that for all
Γ ∈ Ω(C) and all t ≥ 0 :

Bt ⊆ X Γ
t ⊆ Bt ∪ Dt .

Indeed, this holds initially for t = 0, and the grand coupling ensures that whenever a polymer is
removed fromX Γ

t it is also removed from Bt , and whenever a polymer is added toX Γ
t it is also added

to Bt or Dt . Consequently, {Bt ,Dt } is a bounding chain for the polymer dynamics. In particular,
the "rst time Bt = Bt ∪ Dt , all instances X Γ

t have necessarily coalesced to the same con"guration.
This bounding chain allows us to implement the CFTP algorithm e!ciently, as follows.

Coupling from the Past. Set k = 1.
(A) For t = −2k ,−2k + 1, . . . ,−2k−1 generate ρt = (vt ,γt , rt) by choosing vt ∈ V uniformly at

random, rt ∈ [0, 1] uniformly at random, and by sampling γt ∈ Cvt from νvt .
(B) Set B−2k = ∅ and D−2k = C.
(C) Simulate the polymer dynamics bounding chain from time −2k to time 0 using ρ−2k , . . . , ρ−1.
(D) If B0 = B0 ∪D0, then output B0; otherwise, set k → 2k and repeat the process from Step (A).
This implementation of the CFTP algorithm provides a perfect sample from µ; see

Reference [49]. It remains for us to show that it is e!cient. For this, we show "rst that the ex-
pected number of steps of the polymer dynamics bounding chain throughout the execution of
the algorithm is O (n logn). Afterward, we will show how to implement steps so that they can be
executed in amortized constant expected time.

Lemma 3.2. Suppose a subset polymer model on an n-vertex graph satis!es condition (4). Then, the
expected number of steps of the polymer dynamics bounding chain in the coupling from past algorithm
is O (n logn).

Proof. Let us "rst consider an evolution of the bounding chain {Bt ,Dt } from initial state
{B0,D0} = {∅,C}. Let T be the "rst time Bt = Bt ∪ Dt ; that is, the time until Dt = ∅. We
bound "rst the expected value of T . Let ϕt = |(∪γ ∈Dtγ) ∩ V |, the number of vertices of G that
are included in at least one polymer of Dt . Note that ϕt ≤ n. We analyze the expected value of
ϕt+1 − ϕt .

With probability ϕt/(41n), a vertex in a polymer of Dt is picked and all polymers in Dt contain-
ing that vertex are removed, in which case ϕt+1 ≤ ϕt − 1. (A polymer may also be removed from
Dt in Step 3(a), but this case is omitted from our calculations as it never increases ϕt .)

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 5. Publication date: January 2024.

5:16 A. Blanca et al.

The potential ϕt may increase in Step 3(b), when a polymer γ may be added to Dt . Such a
polymer is only added if it is incompatible with Dt . The probability this occurs is at most:

∑

v ∈Dt

40
41n

∑

γ !v
νv (γ)

For each such polymer, the expected increase in the size of ϕt is at most |γ |. We can calculate:

E[ϕt+1 − ϕt | Bt ,Dt] ≤ − ϕt

41n +
∑

v ∈Dt

40
41n

∑

γ !v
|γ |νv (γ) = − ϕt

41n +
ϕt

41n
∑

γ !v
|γ |wγ .

By Equation (4), there exists a constant θ < 1 such that ∑
γ !v |γ |wγ ≤ θ . It follows that

E[ϕt+1 − ϕt | Bt ,Dt] ≤ − ϕt

41n (1 − θ).

This shows that {ϕt } is a stochastic process with variable multiplicative drift. Since T is also the
"rst time ϕt < 1, using standard hitting time estimates (see, e.g., Theorem 10 in Reference [44]),
we get:

E[T] ≤ 41n
1 − θ +

41n
1 − θ

∫ n

1

1
z
dz = O (n logn).

Now, let −M be the "rst time in past such that, after setting B−M = ∅ and D−M = C, we have
B0 = B0 ∪D0. The CFTP algorithm simulates at most 2M +M +M/2+ · · · + 1 = O (M) steps of the
bounding chain. The result follows by noting that E[M] = E[T] = O (n logn). !

It remains to consider how to e!ciently implement the steps of the polymer dynamics bounding
chain. This is subtle because Dt may initially contain an exponentially large number of polymers,
and care is thus needed in how Dt is represented and stored. We describe and analyze e!cient
data structures for Bt and Dt in the following lemma.

Lemma 3.3. Suppose a subset polymer model on an n-vertex graph of maximum degree ∆ ≥ 3 with
computationally feasible weights that satisfywγ ≤ λ |γ | for some λ < λ∗ (∆,q). There exists a compact
representation of Bt and Dt that uses O (n + t) space in expectation. Using this representation, each
iteration of the Polymer Dynamics Bounding Chain can be executed in amortized constant expected
time, and the termination condition Bt = Bt ∪ Dt can be checked in constant time.

Proof. First, by Lemma 3.1, there is a randomized algorithm to sample perfectly from νv for
any v ∈ V with constant expected running time. Therefore, the expected size of the polymer
γ produced by the sampling procedure is constant. This will imply many of our data structure
operations, which take (amortized) timeO (|γ |) for someγ sampled from νv , take constant expected
time.

For simplicity, we assume time begins at t = 0 and at some point in the future we wish to check
whether Bt = Bt ∪Dt . Shifting the indices appropriately, this data structure can be applied in each
round of CFTP from each negative starting time. Note because all polymers in Bt are compatible
with all polymers in Dt , the condition Bt = Bt ∪ Dt is equivalent to the condition Dt = ∅.

Data Structure for Bt : Note Bt is a collection of compatible polymers. The operations to be per-
formed on Bt include addition of a polymer (Step 3a), deletion of any polymer containing a partic-
ular vertex (Step 2), and comparison of a polymer to Bt to determine whether it is compatible with
Bt (Step 3). Bt will be stored as a length n array, and we use Bt to denote the state of the array at
time t . Initially, B0 has only 0 entries. Each entry may also have a pointer to a node of a doubly
linked list. Each polymer in Bt is stored as a doubly linked list. This requires O (n) space.

When γ is added to Bt , for each v ∈ γ we set Bt (v) = 1. We also create a doubly linked list Lγ ,
which has a node for each v ∈ γ that notes the color v is assigned in γ and contains a forward

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 5. Publication date: January 2024.

Fast and Perfect Sampling of Subgraphs and Polymer Systems 5:17

pointer, a backward pointer, and a pointer back to Bt (v). Each entry of Bt for v ∈ γ also points to
the corresponding node of Lγ . Doing these updates to the data structure for Bt takes time O (|γ |).

The polymer removal step only occurs in Step 2 when any polymers containing v are removed
from Bt . There is at most one such polymerγ in Bt containingv . The other vertices inγ can quickly
be found using the doubly linked list Lγ and its pointers back to Bt . We can set Bt (w) = 0 for each
w ∈ γ and remove Lγ . This removal of γ from Bt occurs in time O (|γ |).

To compare a polymer γ to Bt to determine whether it is compatible with Bt , one looks up every
vertex w that is in or adjacent to γ in Bt to see if it is part of a polymer of Bt , that is, if Bt (w) = 1.
If at least one of these vertices w has Bt (w) = 1, γ is incompatible with Bt ; if all these w have
Bt (w) = 0, then γ is compatible with Bt . This takes time O (∆|γ |), which because we assume ∆ is
constant is O (|γ |).

Note each of these operations can be performed in time O (|γ |), where γ is a polymer that was
at some (possibly earlier) time step drawn from νv for some v . When each polymer γ is sampled
in Step 3 in some iteration of the Polymer Dynamics Bounding Chain, all O (|γ |) operations that
can potentially be performed on it in the future are immediately charged to it. As argued in the
"rst paragraph above, the expected size of a polymer γ drawn in Step 3 is constant, so the amount
O (|γ |) charged to each sampled polymer γ is constant in expectation. We conclude updating Bt
takes expected amortized constant time. This data structure requires O (n) space.

Data Structure for Dt : Much more care is needed with how Dt is stored and accessed. Initially
D0 = C, which contains an exponential number of polymers. The operations we need to perform
on Dt include deleting all polymers containing a single vertex v (Step 2), checking whether a
polymer is compatible with Dt (Step 3b), adding a polymer to Dt (Step 3b), and checking whether
a polymer γ is compatible with Dt \ {γ } and if so deleting γ from Dt (Step 3b).

The key observation is that once a particular vertex v of G is selected in Step1 and the coin *ip
is such that Step 2 is performed, no polymers containingv remain in C and the size of Dt has been
reduced dramatically. Because of this, it makes sense to keep track of which vertices in Dt have
been the subject of a deletion in Step 2 at least once. We let D∗t be (the state at time t) of an array
of length n with an entry corresponding to each vertex v of G, where D∗t (v) = 0 if Step 2, deleting
Cv from Dt , has been performed for v at least once, and D∗t (v) = 1 if it has not. We also let N ∗t
be the number of 1’s in D∗t . Initially, D∗0 (v) = 1 for all v and N ∗0 = n. At any time step, we know
any polymer γ where D∗t (v) = 1 for all v ∈ γ is in Dt . Because of this, initially D∗0 completely
describes D0.

Amidst these deletions, polymers are also added to Dt , and a polymer may contain both ver-
tices where D∗t (v) = 0 and vertices where D∗t (v) = 1. All polymers added to Dt in Step 3b will
be stored separately from D∗t . The data structure used here will have the same idea as that for Bt .
There will be an array Dt with an entry for each vertex where Dt (v) gives the number of polymers
containing v that are currently stored in Dt . We also keep track of N t , the total number of poly-
mers that are currently in Dt . Adding a polymer γ to Dt involves incrementing Nt , incrementing
the corresponding entries in Dt , and adding a doubly linked list Lγ connecting the vertices of
the polymer together. However, because polymers in Dt need not be compatible, there may be
more than one polymer in Dt containing a given vertex v . Because of this, instead of each vertex
being in at most one doubly linked listLγ , it may be in many such doubly linked lists. To maintain
all such pointers for vertex v (two for each Lγ where v ∈ γ), these pointers are themselves stored
in another doubly linked list Lv .

The necessary operations that must be performed on Dt can be implemented as follows. Note
that initially D∗0 (v) = 1 for all v , N ∗0 = n, D0 (v) = 0 for all v , N 0 = 0, there are no doubly
linked lists Lγ , and each doubly linked list Lv is empty. These steps are presented in a logical

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 5. Publication date: January 2024.

5:18 A. Blanca et al.

order for explaining the data structures for Dt , rather than in the order in which they occur in the
description of the Polymer Dynamics Bounding Chain.

— Adding polymer γ to Dt (Step 3b): For each v in γ , increment Dt (v). Increment N t . Create a
doubly linked list Lγ , which has a node for eachv ∈ γ that notes the colorv is assigned in γ
and containing a forward pointer and a backward pointer. For each v , this node containing
the pointers ofLγ is inserted at the front of the doubly linked list Lv . This takes timeO (|γ |).

— Deleting all polymers containing v from Dt (Step 2): If D∗t (v) = 1, decrement N ∗t and set
D∗t (v) = 0. If Dt (v) > 0, set N t ← N t − Dt (v) and set Dt (v) = 0. Additionally, for each
node in Lv , we explore the corresponding linked list Lγ using the pointers in the node. We
delete every other node of Lγ , possible in time O (|γ |) because for list Lw also containing
a node of Lγ , the nodes before and after this node in Lw can easily be connected to each
other because Lw is doubly linked. For each node in Lw that is deleted, we also decrement
Dt (w). This takes time O (

∑
γ 4v |γ |).

— Checking if polymer γ is compatible with Dt (Step 3b): For each w that is in or adjacent to γ ,
check whether D∗t (w) = 0 and Dt (w) = 0. If both are 0 for all such w , then γ is compatible
with Dt . If at least one is nonzero, then γ is not compatible with Dt . This takes timeO (∆|γ |).

— Checking whether a polymerγ is compatible withDt \{γ } and if so, deletingγ fromDt (Step 3a):
We only need to check this case when γ is compatible with Bt . We "rst check whether γ is
compatible with Dt , as described above. If it is, we add γ to Bt . If γ is compatible with Dt
then it cannot be in Dt , so Dt and Dt \ {γ } are the same and no further steps are needed.
If γ is incompatible with Dt , the next step is to check if it is also incompatible with Dt \ {γ }.
We check if D∗ (v) = 0 for all v in or adjacent to γ , Dt (v) = 0 for all v adjacent to γ , and
Dt (v) = 1 for all v ∈ γ ; if at least one of these does not hold, γ cannot be compatible with
Dt \ {γ } and so we are not in Step 3a and we proceed to Step 3b. If all these hold, we check
further to see whether all Dt (v) = 1 for v ∈ γ because of the presence of the single polymer
γ or due to the presence of other polymers, which we can detect by looking at the doubly
linked list(s) connecting the vertices in γ , including the colors assigned to each vertex. If
there are polymers other than γ here, either multiple smaller polymers or a polymer with
the same vertices as γ but di#erently assigned colors, then γ is incompatible with Dt \ {γ }
and we are not in Step 3a. If instead, we "nd exactly polymer γ , then γ is compatible with
Dt \ {γ } and we add γ to Bt and delete it from Dt as previously described. This takes time
O (∆|γ |).

Because any polymer added to Dt was drawn from the distribution νv for some v , as argued
above its expected size is constant. Therefore all of the implementations above, with the possible
exception of deleting all polymers containing a single vertex, takes expected constant time. Setting
D∗t (v) = 0 takes constant time, but it may take longer to remove any polymers that were added as
linked lists Lγ . However, we can amortize the cost of deletion if we pay for the cost of deleting a
polymer when we add it, as all doubly linked listsLγ must be added before they are deleted. Doing
this amortization makes the cost of adding a polymer to Dt be O (|γ |) +O (|γ |) = O (|γ |), while the
amortized cost of deleting all polymers containing a vertex v is now O (1). Thus, all necessary
operations for Dt can be performed in amortized expected constant time.

Finally, we note that the termination condition Bt = Bt ∪ Dt , equivalent to Dt = ∅, can be
checked in constant time by verifying N ∗t = 0 and N t = 0. The "rst condition N ∗t = 0 veri"es that
every vertex v has had all polymers containing v deleted at least once, and the second condition
N t = 0 veri"es that there are currently no additional polymers in Dt .

The total space used for these data structures after t steps of the algorithm is in expectation at
mostO (n+t):O (n) for Bt ,D∗t andDt , andO (|γ |) for each polymerγ added toDt , which is constant

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 5. Publication date: January 2024.

Fast and Perfect Sampling of Subgraphs and Polymer Systems 5:19

in expectation. There are at most t polymers in Dt , one added each step, so this is O (t) space at
most in expectation. !

Together, Theorem 3.1, Lemma 3.2, and Lemma 3.3 imply Theorem 1.4.

4 APPLICATIONS TO LOW-TEMPERATURE SPIN SYSTEMS
We present in this section the details of the applications of spin system sampling given in
Section 1.3.

4.1 The Hard-Core Model on Unbalanced Bipartite Graphs
We start by proving Corollary 1.5 for which we use Theorem 1.4.

Proof of Corollary 1.5. LetG be ann-vertex bipartite graph with partite setsL andR. Suppose
that the vertices in L have maximum degree ∆L , and that the vertices in R have maximum degree
∆R and minimum degree δR .

We can sample from the hardcore model distribution µhc
G (see Equation (8) for its the de"nition)

by considering an auxiliary distribution µ, which is a distribution on subsets S ⊆ R. For a subset
S ⊆ R with neighbors N (S) in L, this distribution is given by

µ (S) =
(1 + λ) |L\N (S) | · λ |S |

Z
,

whereZ = ∑
S ⊆R (1+λ) |L\N (S) | ·λ |S | . One can sample from µhc

G by "rst sampling S ⊆ R according to
µ, adding S to the independent set, and then for each vertex v ∈ L \N (S) include v in the indepen-
dent set with probability λ/(1 + λ) independently. This results in exactly the desired distribution
µhc

G .
To sample from µ, we use a polymer model, which we de"ne next. Let R2 be the graph whose

vertices are the vertices of R, where two vertices are adjacent if they are at distance two inG. Note
the maximum degree in R2 is ∆R (∆L − 1). We de"ne a polymer γ to be a connected subset of R2,
its neighborhood N (γ) to be all vertices in L adjacent to a vertex in γ , and its weight as

wγ =
λ |γ |

(1 + λ) |N (γ) | ≤
(

λ

(1 + λ)δR /∆L

) |γ |
.

Polymers will not be labeled; that is, q = 1. Compatible polymer con"gurations in R2 correspond
exactly to subsets S ⊆ R, and the weights wγ mean a compatible polymer con"guration corre-
sponding to subset S has probability exactly µ (S).

To sample from this subset polymer model in R2, we show that when condition (9) holds, the
conditions Equations (3) and (4) of Theorem 1.4 hold, implying the existence of a perfect sampling
algorithm with expected running time O (n logn).

First, when Equation (9) holds, it follows that eλ(∆L − 1)∆R ≤ (1 + λ)δR /∆L . Then

wγ ≤
(

λ

(1 + λ)δR /∆L

) |γ |
≤

(
1

e (∆L − 1)∆R

) |γ |
,

and since ∆R (∆L − 1) is the maximum degree in the host graph R2, condition (3) holds.
From Equation (9), it also follows that

eλ∆R (∆L − 1)

(1 + λ)δR /∆L
<

e∆R (∆L − 1)

1 + (1 + e)∆R (∆L − 1)
.

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 5. Publication date: January 2024.

5:20 A. Blanca et al.

Because all quantities in this equation are constants that do not depend on the size of the graph,
we conclude there exists θ ∈ (0, 1) such that

eλ∆R (∆L − 1)

(1 + λ)δR /∆L
≤ θ

e∆R (∆L − 1)

1 + (1 + e)∆R (∆L − 1)
. (17)

Using Lemma 5.2 (which precisely counts the number of rooted subtrees of size k of the ∆-regular
tree), the number of polymers of size k that are incompatible with v is at most (∆R (∆L − 1) +
1) (e∆R (∆L −1))k−1/k ; recall that ∆R (∆L −1) is the maximum degree of R2. It follows from this and
Equation (17) that

∑

γ !v
|γ |wγ ≤

∞∑

k=1
k · (∆R (∆L − 1) + 1) (e∆R (∆L − 1))k−1

k
·
(

λ

(1 + λ)δR /∆L

)k

=
∆R (∆L − 1) + 1
e∆R (∆L − 1)

∞∑

k=1

(
eλ∆R (∆L − 1)

(1 + λ)δR /∆L

)k

≤ ∆R (∆L − 1) + 1
e∆R (∆L − 1)

∞∑

k=1
θ

(
e∆R (∆L − 1)

1 + (1 + e)∆R (∆L − 1)

)k

= θ · ∆R (∆L − 1) + 1
e∆R (∆L − 1)

e∆R (∆L−1)
1+(1+e)∆R (∆L−1)

1 − e∆R (∆L−1)
1+(1+e)∆R (∆L−1)

= θ .

Thus, condition Equation (4) also holds, and Theorem 1.4 supplies the perfect sampling algorithm
with the desired running time. !

4.2 Po!s Model on Expander Graphs
The Q-color Potts model on G at inverse temperature β is a distribution over all (not necessarily
proper) Q-colorings of V . Let ΩG,Q be all colorings ω : V → [Q]. For a coloring ω ∈ ΩG,Q with
m(G,ω) monochromatic edges, this distribution has

µPotts
G (ω) =

eβm (G,ω)

Z
,

where Z = ∑
ΩG,q e

βm (G,ω) .
For j ∈ [Q], let ΩG,Q, j be all colorings in ΩG,Q such that strictly more than n/2 vertices are

assigned color j. Let ΩG,Q := ⋃
j ∈[Q] ΩG,Q, j and consider the distribution µPotts given by

µPotts (ω) =
eβm (G,ω)

Ẑ
1(ω ∈ ΩG,Q), where Ẑ =

∑

ω ∈ΩG,Q

eβm (G,ω) .

It follows from Reference [38] that, under suitable conditions, (as we detail next) a perfect sample
from µPotts is an e−n-approximate sample from µPotts.

Let µPotts
j be the distribution µPotts conditioned on being close to the ground state that is entirely

color j, that is, conditioned on being in ΩG,Q, j . Because all Q ground states are symmetric, one
can sample from µPotts by "rst picking a uniformly random j ∈ [Q], and then sampling from µPotts

j .
Sampling from µPotts

j can be done using the polymer model we de"ne next.
For ω ∈ ΩG,Q, j , let Γ(ω) = {v ∈ V : ω (v) " j}. Consider a subset polymer model whose host

graph isG where a polymer is a graphlet ofG whose vertices have colors other than j (there are thus
Q−1 colors available to color the vertices of a polymer). For a polymerγ , we letwγ = exp(−βB (γ))

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 5. Publication date: January 2024.

Fast and Perfect Sampling of Subgraphs and Polymer Systems 5:21

where B (γ) is the number of bichromatic edges of the colored subgraph γ plus the number of
boundary edges of γ .

There is a bijection between Potts con"gurations in ΩG,Q, j and compatible polymer con"gu-
rations consisting of at most n/2 total vertices, where vertices assigned a color other than j are
identi"ed. A sampling algorithm for this polymer model can give a sampling algorithm for µPotts

j ,
where if the polymer con"guration produced has more than n/2 total vertices, that con"guration
is rejected and resampling occurs. As we will see, the probability of needing to resample is small.

Using this polymer model representation, Reference [38] gives an e!cient ε-approximate sam-
pling algorithm with for µPotts

G , derived from an approximate sampling algorithm for µPotts
j . This

algorithm applies to all α-expanding graphs G with maximum degree ∆ whenever α > 0, ∆ ≥ 3,
Q ≥ 2, and β > 4 log((Q − 1)∆)/α . However, it involves a polymer enumeration step, and so its
runtime is (omitting the dependence on other parameters) of the form nO (log ∆) .

In Reference [17], the authors take a Markov chain approach and give an ε-approximate
sampling algorithm for µPotts, again via approximate sampling from µPotts

j , on α-expanding
graphs G with maximum degree ∆ whenever β ≥ 5+3 log((Q−1)∆)

α . This has running time
O (n log(n/ε) log(1/ε)). In both of these prior works, it must hold that ε ≥ Qe−n .

Our algorithm gives an even larger range of β in which O (n logn) sampling is possible, and
removes the dependence on ε . It produces an exact sample for µPotts rather than an approximate
sample, although this sample is still only an e−n-approximate sample for µPotts

G .

Proof of Corollary 1.6. From the discussion above, it su!ces to generate a perfect sample
from µPotts

j for any j ∈ [Q] using the subset polymer model described above. We will show that
conditions Equations (3) and (4) of Theorem 1.4 hold, implying the existence of a perfect sampling
algorithm for µPotts

j with expected running time O (n logn).
When β ≥ 1+log((Q−1)∆)

α , since G is an α expander, wγ = exp(−βB (γ)) ≤ (1
e∆(Q−1)) |γ | ≤ λ |γ |

for a suitable λ < λ∗ (∆,Q − 1), and thus condition (3) is met. Moreover, when (10) holds, then
rearranging terms shows

e (Q − 1)∆e−α β <
e∆

e∆ + ∆ + 1 .

Because all quantities in this equation are constants that do not depend on the size of the graph,
we conclude there exists θ ∈ (0, 1) such that

e (Q − 1)∆e−α β ≤ θ · e∆

e∆ + ∆ + 1 .

Using the bound (e∆)k−1/k for the number of graphlets of size k containing a given vertex, we
deduce that the number of polymers incompatible with v of size k is at most (∆ + 1) (e∆)k−1 (Q −
1)k/k . (This bound for the number of graphlets appears in Reference [9] but can also be deduced
by direct computation from Lemma 5.2 below, which provides a tighter bound.) Therefore, we get

∑

γ !v
|γ |wγ ≤

∞∑

k=1
k · (∆ + 1) (e∆)k−1 (Q − 1)k

k
e−βαk =

∆ + 1
e∆

∞∑

k=1

(
e∆(Q − 1)e−βα

)k

≤ ∆ + 1
e∆

∞∑

k=1
θ ·

(e∆

e∆ + ∆ + 1

)k
= θ · ∆ + 1

e∆
!
"

e∆
e∆+∆+1

1 − e∆
e∆+∆+1

#
$ = θ .

Thus, condition Equation (4) holds, and Theorem 1.4 provides a perfect sampling algorithm with
the desired running time. !

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 5. Publication date: January 2024.

5:22 A. Blanca et al.

5 GRAPHLET SAMPLING: HARDNESS
In this section, we establish the sharpness of the threshold λ∗ (∆,q). In particular, we prove
Lemmas 1.2 and 1.3 from the introduction. We "rst prove the following more general variant of
Lemma 1.3, which corresponds to the q = 1 case.

Lemma 5.1. The partition function ZG,r,λ is !nite for every (possibly in!nite) graph G = (V ,E)
of maximum degree ∆ and every r ∈ V if and only if λ ≤ λ∗ (∆,q). Moreover, ZG,r,λ ≤ 40 when
λ ≤ λ∗ (∆,q).

The following combinatorial fact will be used in the proof of Lemma 5.1.
Lemma 5.2. Consider the in!nite ∆-regular tree rooted at ρ, and letTk denote the number of subtrees

of size k rooted at ρ. Then for k ≥ 1:

Tk =
∆

(∆ − 1)k + 1

(
(∆ − 1)k + 1

k − 1

)
.

Proof. For positive integers a and b, let

Ak (a,b) =
a

bk + a

(
bk + a

k

)
.

The numbers Ak (a,b) are a generalization of the Catalan numbers and satisfy the recurrence

Ak (a + c,b) =
k∑

i=0
Ai (a,b)Ak−i (c,b); (18)

see Reference [41]. It is known (see, e.g., Lemma 1 in Reference [50]) that the number of subtrees
of size k containing the root of the in"nite (∆ − 1)-ary tree is

1
(∆ − 2)k + 1

(
(∆ − 1)k

k

)
=

1
(∆ − 1)k + 1

(
(∆ − 1)k + 1

k

)
,

which is also equal to Ak (1,∆ − 1). Hence, for k ≥ 2, we have

Tk =

k−1∑

k1=0

k−1−k1∑

k2=0
· · ·

k−1−(k1+· · ·+k∆−2)∑

k∆−1=0
Ak−1−(k1+· · ·+k∆−1) (1,∆ − 1) ·

∆−1∏

i=1
Aki (1,∆ − 1).

Using Equation (18), we see that
k−1−(k1+· · ·+k∆−2)∑

k∆−1=0
Ak−1−(k1+· · ·+k∆−1) (1,∆ − 1)Ak∆−1 (1,∆ − 1) = Ak−1−(k1+· · ·+k∆−2) (2,∆ − 1),

and using Equation (18) repeatedly, we get for k ≥ 2

Tk = Ak−1 (∆,∆ − 1) =
∆

(∆ − 1) (k − 1) + ∆

(
(∆ − 1) (k − 1) + ∆

k − 1

)
=

∆

(∆ − 1)k + 1

(
(∆ − 1)k + 1

k − 1

)
.

The claim also holds trivially for k = 1 and the result follows. !

We are now ready to provide the proof of Lemma 5.1.

Proof of Lemma 5.1. Let Cv,k be the number of graphlets of G with k vertices that contain v .
Then, since f ≤ 1 by assumption, we have

ZG,r,λ =
∑

γ ∈S (G,r,q)∪{∅}
λ |γ | f (γ) ≤

∑

k≥0

∑

γ ∈S (G,r,q)∪{∅}: |γ |=k

λk =
∑

k≥0
Cv,k · λkqk .

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 5. Publication date: January 2024.

Fast and Perfect Sampling of Subgraphs and Polymer Systems 5:23

Consider the in"nite ∆-regular tree rooted at ρ, and let Tk be the number of subtrees of size k
rooted at ρ so that Cv,k ≤ Tk . (The latter bound captures the key idea in the proof: the in"nite ∆-
regular tree is the worst case among graphs of maximum degree ∆ and the threshold λ∗ (∆,q) arises
as the threshold at which there is a change in the number of "xed points of the corresponding tree
recurrence.)

Then, it follows from Lemma 5.2 that

ZG,r,λ ≤ 1 +
∑

k≥1

∆

(∆ − 1)k + 1

(
(∆ − 1)k + 1

k − 1

)
λkqk .

We apply the ratio test for the summation on the right hand side and consider the limit:

L := lim
k→∞

∆
(∆−1)(k+1)+1

(
(∆−1)(k+1)+1

k

)
qk+1λk+1

∆
(∆−1)k+1

(
(∆−1)k+1

k−1
)
qkλk

= qλ lim
k→∞

(∆ − 1)k + 1
(∆ − 1) (k + 1) + 1

(
(∆−1)(k+1)+1

k

)

(
(∆−1)k+1

k−1
) .

We have that

Ak :=

(
(∆−1)(k+1)+1

k

)

(
(∆−1)k+1

k−1
) =

1
k
· [(∆ − 1) (k + 1) + 1]! [(∆ − 2)k + 2]!

[(∆ − 2)k + ∆]! [(∆ − 1)k + 1]! .

Using the inequality h(n)e1/(12n+1) ≤ n! ≤ h(n)e1/12n where h(n) =
√

2πnn+1/2e−n , and setting

Bk =
h((∆ − 1) (k + 1) + 1)h((∆ − 2)k + 2)

h((∆ − 2)k + ∆)h((∆ − 1)k + 1)

we get

Bk

k

e
1

12[(∆−1)(k+1)+1]+1+
1

12[(∆−2)k+2]+1

e
1

12[(∆−2)k+∆]+
1

12[(∆−1)k+1]
≤ Ak ≤

Bk

k
· e

1
12[(∆−1)(k+1)+1]+

1
12[(∆−2)k+2]

e
1

12[(∆−2)k+∆]+1+
1

12[(∆−1)k+1]+1
. (19)

From a direct calculation, it can be checked that

Bk =
1
e

(
1 + ∆ − 1

(∆ − 1)k + 1

) (∆−1)k+1 (
1 − ∆ − 2

(∆ − 2)k + ∆

) (∆−2)k+∆

× [(∆ − 1) (k + 1) + 1]∆−1

[(∆ − 2)k + 2]∆−2
[(∆ − 2)k + 2]1/2

[(∆ − 1)k + 1]1/2
[(∆ − 1) (k + 1) + 1]1/2

[(∆ − 2)k + ∆]1/2 .

Hence,

lim
k→∞

Bk

k
=

1
e
e∆−1 1

e∆−2
(∆ − 1)∆−1

(∆ − 2)∆−2 =
(∆ − 1)∆−1

(∆ − 2)∆−2 .

From this and Equation (19) we deduce that limk→∞Ak =
(∆−1)∆−1

(∆−2)∆−2 , which implies that

L = qλ
(∆ − 1)∆−1

(∆ − 2)∆−2 .

From the ratio test, we can then conclude that the series converges when λ < λ∗ (∆,q) and diverges
when λ > λ∗ (∆,q).

It remains for us to consider the λ = λ∗ (∆,q) case, where

ZG,r,λ ≤ A +
∑

k≥2

∆

(∆ − 1)k + 1

(
(∆ − 1)k + 1

k − 1

)
(∆ − 2) (∆−2)k

(∆ − 1) (∆−1)k

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 5. Publication date: January 2024.

5:24 A. Blanca et al.

with A = 1 + (∆−2)(∆−2)

(∆−1)(∆−1) ≤ 5/4. We also have for k ≥ 2 that
(
(∆ − 1)k + 1

k − 1

)
≤ h((∆ − 1)k + 1)

h(k − 1)h((∆ − 2)k + 2)
× e

1
12((∆−1)k+1)

e
1

12(k−1)+1 e
1

12((∆−2)k+2)+1
≤ h((∆ − 1)k + 1)

h(k − 1)h((∆ − 2)k + 2)
.

Therefore,

ZG,r,λ ≤
5
4 +

∑

k≥2

∆

(∆ − 1)k + 1
h((∆ − 1)k + 1)

h(k − 1)h((∆ − 2)k + 2)

(∆ − 2) (∆−2)k

(∆ − 1) (∆−1)k

=
5
4 +

1√
2π

∑

k≥2

∆

(∆ − 1)k + 1
[(∆ − 1)k + 1](∆−1)k+3/2

(k − 1)k−1/2[(∆ − 2)k + 2](∆−2)k+2+1/2
(∆ − 2) (∆−2)k

(∆ − 1) (∆−1)k

=
5
4 +

1√
2π

∑

k≥2

∆[(∆ − 1)k + 1]1/2 (k − 1)1/2

[(∆ − 2)k + 2]5/2

[
((∆ − 1)k + 1)∆−1 (∆ − 2)∆−2

(k − 1) ((∆ − 2)k + 2)∆−2 (∆ − 1)∆−1

]k

.

Now, letting L1 (∆,k) = ∆[(∆−1)k+1]1/2 (k−1)1/2

[(∆−2)k+2]5/2 , L2 (∆,k) = ((∆−1)k+1)∆−1 (∆−2)∆−2

(k−1)((∆−2)k+2)∆−2 (∆−1)∆−1 , and noting that
L1 is a decreasing function of ∆, we have

L1 (∆,k) ≤ 3(2k + 1)1/2 (k − 1)1/2

(k + 2)5/2 ≤ 3
√

2(k + 2)1/2 (k + 2)1/2

(k + 2)5/2 ≤ 3
√

2
(k + 2)3/2 ,

and,

L2 (∆,k) =

(
1 − ∆

(∆ − 1) (∆ − 2)k + 2(∆ − 1)

)∆−2 (
1 + ∆

(∆ − 1) (k − 1)

)

≤ exp
[

∆

∆ − 1

(
− ∆ − 2

(∆ − 2)k + 2 +
1

k − 1

)]
≤ exp

[
∆

(∆ − 1) (k − 1)

]
≤ exp

[
3

2(k − 1)

]
.

Hence,

ZG,r,λ ≤
5
4 +

3√
π

∑

k≥2

1
(k + 2)3/2 exp

[
3k

2(k − 1)

]
≤ 5

4 +
3e3
√
π

∑

k≥2

1
(k + 2)3/2 ≤ 40

when λ = λ∗ (∆,q). !

We proceed next with the proof of Lemma 1.2. Let us "rst formally de"ne the notion of a
polynomial-time approximate sampler.

De!nition 5.3. An algorithm A that takes as input a graph G = (V ,E), λ > 0, a vertex r ∈ V ,
and an accuracy parameter ε ∈ (0, 1] is a polynomial-time approximate sampler for νG,r,λ if it
returns a sample from a distribution µA such that ‖µA − νG,r,λ ‖tv ≤ ε and has a running time
that is polynomial in |V | and 1/ε . A polynomial-time approximate sampler for νG,λ is de"ned
analogously.

We will require the following result.

Lemma 5.4. Fix λ < 1, and letq = 1 and f = 1. There is an algorithm with the following guarantees.
The algorithm takes as input a !nite graph G = (V ,E), a vertex v ∈ V , and parameters ϵ,δ ∈ (0, 1).
The algorithm has access to an exact sampling algorithm for νG,v,λ . With probability at least 1−δ the
algorithm outputs a value Z̃G,v,λ such that (1 − ε)Z̃G,v,λ ≤ ZG,v,λ ≤ (1 + ε)Z̃G,v,λ . The algorithm’s
sample complexity (queries to νG,v,λ) and running time are poly(|V |, ε, log(1/δ)).

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 5. Publication date: January 2024.

Fast and Perfect Sampling of Subgraphs and Polymer Systems 5:25

Proof. Let u1, u2, . . . ,un−1 be the vertices in V \ {v} in a "xed order we de"ne later. Let Gi
be the graph that results from removing vertices u1, . . . ,ui from G and let Zi = ZGi ,v,λ . We let
Z0 = ZG,v,λ and note that Zn−1 = 1 + λ. Then:

1 + λ
Z0
=

n−2∏

i=0

Zi+1
Zi
.

Let pi =
Zi+1
Zi

. For each pi , we will "nd p̃i such that with probability at least 1 − δ/n:
(
1 − ε

4n

)
p̃i ≤ pi ≤

(
1 + ε

4n

)
p̃i . (20)

This implies that (
1 − ε

2n

) 1
p̃i
≤ 1

pi
≤

(
1 + ε

2n

) 1
p̃i
,

and so letting Z̃G,v,λ = (1 + λ)
∏n−2

i=0
1

p̃i
, we get that

(1 − ε)Z̃G,v,λ ≤
(
1 − ε

2n

)n
Z̃G,v,λ ≤ Z0 ≤

(
1 + ε

2n

)n
Z̃G,v,λ ≤ (1 + ε)Z̃G,v,λ ,

with probability at least 1 − δ by a union bound.
To obtain Equation (20), we de"ne the sequence of vertices u1,u2, . . . ,un−1 such that ui is a leaf

in the BFS tree of Gi−1 rooted at v . This way, we can conveniently claim that 1 ≥ pi ≥ 1
2 . To see

this, note that S ∈ S (Gi+1) if and only if S ∈ S (Gi) : ui+1 # S , so

Zi+1 =
∑

S ∈S (Gi+1)

λ |S | =
∑

S ∈S (Gi):ui+1#S

λ |S | . (21)

Now, if S ∈ S (Gi) and S containsui+1, then, sinceui+1 is a leaf in the BFS tree rooted atv , S \ {ui+1}
is a connected subgraph that containsv . That is, every S ∈ S (Gi) that containsui+1 can be mapped
to a unique subgraph in S (Gi) that does not contain ui+1 of size |S | − 1. Hence, since λ < 1,

∑

S ∈S (Gi):ui+1∈S
λ |S | ≤

∑

S ∈S (Gi):ui+1#S

λ |S |,

and so
Zi =

∑

S ∈S (Gi):ui+1∈S
λ |S | +

∑

S ∈S (Gi):ui+1#S

λ |S | ≤ 2
∑

S ∈S (Gi):ui+1#S

λ |S | .

Combined with Equation (21), this gives pi =
Zi+1
Zi
≥ 1

2 . Therefore, to deduce Equation (20), it
su!ces to "nd p̃i such that

p̃i −
ε

16n ≤ pi ≤ p̃i +
ε

16n .
For this, we draw L samples from νGi ,v,λ and let X j be the indicator random variable for the event
that the jth sample contains ui+1. Letting p̃i =

1
L
∑L

i=1 X j , we get from a Cherno# bound that

Pr[|p̃i − pi | ≥ ρpi] ≤ 2e−
Lρ2pi

3

and setting ρ = ε
16npi

and L = 384 n2

ε2 log(2n/δ):

Pr
[
|p̃i − pi | ≥

ε

16n

]
≤ 2e−

Lρε
24n ≤ 2e−

Lε2
384n2 =

δ

n
.

In summary, we have provided an algorithm that computes p̃i such that Equation (20) holds
with probability at least 1 − δ/n. The algorithm has sample complexity and running time
poly(n, 1/ε, log(1/δ)). !

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 5. Publication date: January 2024.

5:26 A. Blanca et al.

We can now provide the proof of Lemma 1.2.

Proof of Lemma 1.2. It su!ces to prove the result for f = 1. Let G = (V ,E) be a "nite graph
of maximum degree ∆, and for ease of notation let λ∗ = λ∗ (∆, 1). We show that if there is a
polynomial-time approximate sampler for νG,v,λ for each v ∈ V (see De"nition 5.3), then there
is also a polynomial-time approximate sampler for for νG,λ . In Reference [50], it was shown that
there is no polynomial-time approximate sampler for for νG,λ when λ ∈ (λ∗, 1) unless NP = RP,
and thus our result follows.2

First, given exact sampling algorithms for νG,v,λ for each v ∈ V with poly(n) running times,
and a desired accuracy parameter ε̂ ∈ (0, 1), we provide a sampling algorithm whose output dis-
tribution is within ε̂ total variation distance from νG,λ . The running time of the algorithm will
be poly(n, 1/ε̂). We then modify the algorithm to use instead the polynomial-time approximate
samplers for νG,v,λ (instead of the exact samplers) and show that this has a negligible e#ect on its
running time and output distribution.

The algorithm is the following:
(1) Let ε = min{ 18 , ε̂

6 − 1
4n }. For eachv ∈ V , using the exact sampler for νG,v,λ and the algorithm

from Lemma 5.4, obtain Z̃G,v,λ such that, with probability at least 1 − 1
n22n ,

(1 − ε)Z̃G,v,λ ≤ ZG,v,λ ≤ (1 + ε)Z̃G,v,λ (22)

(2) Set t = 0 and choose a vertex v ∈ V with probability Z̃G,v,λ∑
w Z̃G,w,λ

;
(3) Using the exact sampler for νG,v,λ , draw a sample S from νG,v,λ ;
(4) Accept and output S with probability 1/|S |;
(5) If S is rejected, increase t , and if t ≤ 2n2 go to Step 2 and repeat; otherwise output ∅.
First, we note that by Lemma 5.4, Step 1 can be implemented in poly(n, 1/ε). Steps 2 to 5 of the

algorithm are repeated at most O (n2) times, and each of those step takes poly(n) time. Therefore,
the overall running time of the algorithm is poly(n, 1/ε) = poly(n, 1/ε̂). Moreover, (22) holds for
every v ∈ V with probability at least 1 − 1

n2n by a union bound.
Let µalg be the output distribution of the algorithm, and let µ∗alg be the output distribution when

(i) Step 1 succeeds in "nding the required approximations and (ii) a subgraph is accepted in Step 4
before t > 2n2. We show next that ‖µ∗alg−νG,λ ‖tv ≤ ε̂ . Let Z̃ = ∑

v ∈V Z̃G,v,λ and letS = S (G)∪{∅}.
The probability that the algorithm outputs S ∈ S in Step 4 in a give iteration is

∑

v ∈S

Z̃G,v,λ

Z̃
νG,v,λ (S)

1
|S | =: ϕ (S)

Z̃
. (23)

Then, µ∗alg (S) = ϕ (S)
∑

Ŝ∈S ϕ (Ŝ)
, and

‖µ∗alg − νG,λ ‖tv =
1
2

∑

S ∈S

)))))
ϕ (S)

∑
W ∈S ϕ (W)

− λ |S |

ZG,λ

))))) =
1
2

∑

S ∈S

))))))
∑

v ∈S νG,v,λ (S)Z̃G,v,λ

|S |∑W ∈S ϕ (W)
− λ |S |

ZG,λ

))))))
≤ 1

2
∑

S ∈S

∑

v ∈S

))))))
νG,v,λ (S)Z̃G,v,λ

|S |∑W ∈S ϕ (W)
− λ |S |

|S |ZG,λ

))))))
2We note that the hardness result in Reference [50] is stated for the harder problem of producing approximate samples
with a running time depending polynomially on log(1/ε), but the proofs in Reference [50] extend to our setting without
modi"cation.

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 5. Publication date: January 2024.

Fast and Perfect Sampling of Subgraphs and Polymer Systems 5:27

=
1
2

∑

S ∈S

∑

v ∈S

ZG,v,λ

|S |ZG,λ

))))))
νG,v,λ (S) · Z̃G,v,λ

ZG,v,λ
· ZG,λ∑

W ∈S ϕ (W)
− λ |S |

ZG,v,λ

))))))
=

1
2

∑

S ∈S

∑

v ∈S

νG,v,λ (S) · ZG,v,λ

|S |ZG,λ

))))))
Z̃G,v,λ

ZG,v,λ
· ZG,λ∑

W ∈S ϕ (W)
− 1

)))))) . (24)

From Equation (22) we get

1 − 2ε ≤ 1
1 + ε ≤

Z̃G,v,λ

ZG,v,λ
≤ 1

1 − ε ≤ 1 + 2ε,

since ε ≤ 1/8. Moreover,
∑

W ∈S
ϕ (W) =

∑

W ∈S

∑

v ∈W

νG,v,λ (W)Z̃G,v,λ

|W | ≤ (1 + 2ε)
∑

W ∈S

∑

v ∈W

λ |W |

|W | = (1 + 2ε)ZG,λ ,

and similarly we can obtain that ∑
W ∈S ϕ (W) ≥ (1 − 2ε)ZG,λ . Combining these bounds we get:

))))))
Z̃G,v,λ

ZG,v,λ
· ZG,λ∑

W ∈S ϕ (W)
− 1

)))))) ≤
4ε

1 − 2ε ≤ 8ε

Plugging this into Equation (24) we deduce that:

‖µ∗alg − νG,λ ‖tv ≤ 4ε
∑

S ∈S

∑

v ∈S

νG,v,λ (S) · ZG,v,λ

|S |ZG,λ
=

4ε
ZG,λ

∑

S ∈S

∑

v ∈S

λ |S |

|S | ≤ 4ε . (25)

Let E1 be the event that Step 1 succeeds in "nding the approximations, let E2 the event that the
algorithm accepts and outputs a graphlet in Step 4, and let E be the event that both E1 and E2
occur. Then, the triangle inequality and Equation (25) imply:

‖µalg − νG,λ ‖tv ≤ ‖µ∗alg − νG,λ ‖tv + ‖µ∗alg − µalg‖tv ≤ 4ε + ‖µ∗alg − µalg‖tv. (26)
We proceed to bound ‖µ∗alg − µalg‖tv.

‖µ∗alg − µalg‖tv = ‖µalg − µalg (· | E)‖tv ≤ µalg (¬E)

≤ µalg (¬E1) + µalg (¬E2 | E1) ≤ 1
2n + µalg (¬E2 | E1). (27)

So it remains for us to bound µalg (¬E2 | E1). For this, note that the probability that a subgraph is
accepted in Step 4 in an iteration is

∑

S ∈S

∑

v ∈S

Z̃G,v,λ

Z̃
νG,v,λ (S)

1
|S | ≥

1 − 2ε
Z̃

∑

S ∈S

∑

v ∈S

λ |S |

|S | ≥
(1 − 2ε)ZG,λ

Z̃
.

Since
Z̃ =

∑

v ∈V
Z̃G,v,λ ≤ (1 + 2ε)

∑

v ∈V
ZG,v,λ ≤ (1 + 2ε)nZG,λ ,

we get the acceptance probability in Step 4 in an iteration is at least
1 − 2ε

(1 + 2ε)n
≥ 1 − 4ε

n
≥ 1

2n ,

provided E1 occurs. Therefore, if X is geometric random variable with parameter 1/(2n), we have

µalg (¬E2 | E1) ≤ Pr[X ≥ 2n2] ≤
(
1 − 1

2n

)2n2

≤ 1
en ,

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 5. Publication date: January 2024.

5:28 A. Blanca et al.

and plugging this bound into Equations (27) and (26) we obtain:

‖µalg − νG,λ ‖tv ≤ 4ε + 3
2n .

We have established so far the hardness of exactly sampling from νG,v,λ for λ ∈ (λ∗, 1). The same
reduction (i.e., algorithm) with minor adjustments works for approximate sampling. Suppose that
in Step 3 of the algorithm, we instead generate T = 2n2 samples from a distribution µv such
that ‖µv − νG,v,λ ‖tv ≤ ε

n2 . Let µ⊗T
v and ν ⊗T

G,v,λ be the product distributions corresponding to T
independent samples from µv and νG,v,λ respectively. We have

‖µ⊗T
v − ν ⊗T

G,v,λ ‖tv ≤ T ‖µv − νG,v,λ ‖tv ≤
T ε

n2 ≤ 2ε . (28)

Let µ̃alg be the output distribution of the algorithm when using samples from µv in Step 3. Then:

‖µ̃alg − νG,λ ‖tv ≤ ‖µ̃alg − µalg‖tv + ‖µalg − νG,λ ‖tv ≤ ‖µ̃alg − µalg‖tv + 4ε + 3
2n .

Consider the following coupling between µ̃alg and µalg: use the same randomness for Steps 1, 2
and 5 and the optimal coupling for µ⊗T

v and ν ⊗T
G,v,λ for Step 3. Then, from Equation (28), we get

‖µ̃alg − νG,λ ‖tv ≤ 6ε + 3
2n ≤ ε̂ .

That is, we obtain a polynomial-time approximate sampler for νG,λ which completes the
reduction. !

ACKNOWLEDGEMENTS
This work was carried out as part of the AIM SQuaRE workshop ‘Connections between computa-
tional and physical phase transitions.’ We thank Tyler Helmuth, Alexandre Stau#er, and Izabella
Stuhl for many helpful conversations. We also thank the anonymous referees for their many in-
sightful corrections and suggestions.

REFERENCES
[1] Matteo Agostini, Marco Bressan, and Shahrzad Haddadan. 2019. Mixing time bounds for graphlet random walks.

Inform. Process. Lett. 152 (2019), 105851.
[2] Konrad Anand, Andreas Göbel, Marcus Pappik, and Will Perkins. 2023. Perfect sampling for hard spheres from

strong spatial mixing. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM’23), Vol. 275. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, 38:1–38:18.

[3] Konrad Anand and Mark Jerrum. 2022. Perfect sampling in in"nite spin systems via strong spatial mixing. SIAM J.
Comput. 51, 4 (2022), 1280–1295.

[4] Nima Anari, Kuikui Liu, and Shayan Oveis Gharan. 2021. Spectral independence in high-dimensional expanders and
applications to the hardcore model. SIAM J. Comput. 0 (2021), FOCS20–1.

[5] Kim Baskerville, Peter Grassberger, and Maya Paczuski. 2007. Graph animals, subgraph sampling, and motif search
in large networks. Physical Review E 76, 3 (2007), 036107.

[6] Mansurul A. Bhuiyan, Mahmudur Rahman, Mahmuda Rahman, and Mohammad Al Hasan. 2012. Guise: Uniform
sampling of graphlets for large graph analysis. In Proceedings of the 2012 IEEE 12th International Conference on Data
Mining. IEEE, 91–100.

[7] Christian Borgs, Jennifer Chayes, Tyler Helmuth, Will Perkins, and Prasad Tetali. 2020. E!cient sampling and count-
ing algorithms for the Potts model on Zd at all temperatures. In Proceedings of the 52nd Annual ACM SIGACT Sympo-
sium on Theory of Computing (STOC’20). 738–751.

[8] Christian Borgs, Jennifer Chayes, Je# Kahn, and László Lovász. 2013. Left and right convergence of graphs with
bounded degree. Random Structures & Algorithms 42, 1 (2013), 1–28.

[9] Christian Borgs and John Z. Imbrie. 1989. A uni"ed approach to phase diagrams in "eld theory and statistical me-
chanics. Communications in Mathematical Physics 123, 2 (1989), 305–328.

[10] Marco Bressan. 2021. E!cient and near-optimal algorithms for sampling connected subgraphs. In Proceedings of the
53rd Annual ACM SIGACT Symposium on Theory of Computing (STOC’21). 1132–1143.

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 5. Publication date: January 2024.

Fast and Perfect Sampling of Subgraphs and Polymer Systems 5:29

[11] Marco Bressan, Flavio Chierichetti, Ravi Kumar, Stefano Leucci, and Alessandro Panconesi. 2017. Counting graphlets:
Space vs time. In Proceedings of the 10th ACM International Conference on Web Search and Data Mining (WSDM’17).
557–566.

[12] Marco Bressan, Flavio Chierichetti, Ravi Kumar, Stefano Leucci, and Alessandro Panconesi. 2018. Motif counting
beyond "ve nodes. ACM Transactions on Knowledge Discovery from Data (TKDD) 12, 4 (2018), 1–25.

[13] Marco Bressan, Stefano Leucci, and Alessandro Panconesi. 2021. Faster motif counting via succinct color coding and
adaptive sampling. ACM Transactions on Knowledge Discovery from Data (TKDD) 15, 6 (2021), 1–27.

[14] Sarah Cannon and Will Perkins. 2020. Counting independent sets in unbalanced bipartite graphs. In Proceedings of
the Thirty-First Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’20). 1456–1466.

[15] Charles Carlson, Ewan Davies, and Alexandra Kolla. 2020. E!cient algorithms for the Potts model on small-set ex-
panders. arXiv:2003.01154. Retrieved from https://arxiv.org/abs/2003.01154

[16] Xiaowei Chen, Yongkun Li, Pinghui Wang, and John C. S. Lui. 2016. A general framework for estimating graphlet
statistics via random walk. Proceedings of the VLDB Endowment 10, 3 (2016), 253–264.

[17] Zongchen Chen, Andreas Galanis, Leslie A Goldberg, Will Perkins, James Stewart, and Eric Vigoda. 2021. Fast algo-
rithms at low temperatures via Markov chains. Random Structures & Algorithms 58, 2 (2021), 294–321.

[18] Zongchen Chen, Andreas Galanis, Daniel Štefankovič, and Eric Vigoda. 2022. Sampling colorings and independent
sets of random regular bipartite graphs in the non-uniqueness region. In Proceedings of the 2022 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’22). SIAM, 2198–2207.

[19] Zongchen Chen, Kuikui Liu, and Eric Vigoda. 2020. Rapid mixing of Glauber dynamics up to uniqueness via contrac-
tion. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS’20). IEEE, 1307–1318.

[20] Zongchen Chen, Kuikui Liu, and Eric Vigoda. 2021. Optimal mixing of Glauber dynamics: Entropy factorization via
high-dimensional expansion. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing
(STOC’21). 1537–1550.

[21] Matthew Coulson, Ewan Davies, Alexandra Kolla, Viresh Patel, and Guus Regts. 2020. Statistical physics approaches
to unique games. In Proceedings of the 35th Computational Complexity Conference (CCC’20).

[22] Martin Dyer, Leslie Ann Goldberg, Catherine Greenhill, and Mark Jerrum. 2004. The relative complexity of approxi-
mate counting problems. Algorithmica 38, 3 (2004), 471–500.

[23] Sacha Friedli and Yvan Velenik. 2017. Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction.
Cambridge University Press.

[24] Tobias Friedrich, Andreas Göbel, Martin S Krejca, and Marcus Pappik. 2020. Polymer dynamics via cliques: New
conditions for approximations. arXiv:2007.08293. Retrieved from https://arxiv.org/abs/2007.08293

[25] Andreas Galanis, Leslie Ann Goldberg, and James Stewart. 2021. Fast algorithms for general spin systems on bipartite
expanders. ACM Transactions on Computation Theory (TOCT) 13, 4 (2021), 1–18.

[26] Andreas Galanis, Leslie Ann Goldberg, and James Stewart. 2022. Fast mixing via polymers for random graphs with
unbounded degree. Information and Computation 285, Part B (2022), 104894.

[27] Andreas Galanis, Daniel Štefankovič, and Eric Vigoda. 2016. Inapproximability of the partition function for the anti-
ferromagnetic Ising and hard-core models. Combinatorics, Probability and Computing 25, 4 (2016), 500–559.

[28] Oded Goldreich and Dana Ron. 1997. Property testing in bounded degree graphs. In Proceedings of the 29th Annual
ACM Symposium on Theory of Computing (STOC’97). 406–415.

[29] Joshua A. Grochow and Manolis Kellis. 2007. Network motif discovery using subgraph enumeration and symmetry-
breaking. In Annual International Conference on Research in Computational Molecular Biology. Springer, 92–106.

[30] Christian Gruber and Hervé Kunz. 1971. General properties of polymer systems. Communications in Mathematical
Physics 22, 2 (1971), 133–161.

[31] Olle Haggstrom and Karin Nelander. 1999. On exact simulation of Markov random "elds using coupling from the past.
Scandinavian Journal of Statistics 26, 3 (1999), 395–411.

[32] Kun He, Chunyang Wang, and Yitong Yin. 2022. Sampling Lovász local lemma for general constraint satisfaction
solutions in near-linear time. In Proceedings of the 2022 IEEE 63rd Annual Symposium on Foundations of Computer
Science (FOCS’22). IEEE, 147–158.

[33] Kun He, Kewen Wu, and Kuan Yang. 2023. Improved bounds for sampling solutions of random CNF formulas. In
Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’23). SIAM, 3330–3361.

[34] Tyler Helmuth, Matthew Jenssen, and Will Perkins. 2023. Finite-size scaling, phase coexistence, and algorithms for the
random cluster model on random graphs. In Annales de l’Institut Henri Poincare (B) Probabilites et statistiques, Vol. 59.
Institut Henri Poincaré, 817–848.

[35] Tyler Helmuth, Will Perkins, and Guus Regts. 2020. Algorithmic Pirogov–Sinai theory. Probability Theory and Related
Fields 176, 3 (2020), 851–895.

[36] Mark Huber. 2004. Perfect sampling using bounding chains. The Annals of Applied Probability 14, 2 (2004), 734–753.
[37] Svante Janson, Andrzej Rucinski, and Tomasz Luczak. 2011. Random Graphs. John Wiley & Sons.

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 5. Publication date: January 2024.

https://arxiv.org/abs/2003.01154
https://arxiv.org/abs/2007.08293

5:30 A. Blanca et al.

[38] Matthew Jenssen, Peter Keevash, and Will Perkins. 2020. Algorithms for #BIS-hard problems on expander graphs.
SIAM J. Comput. 49, 4 (2020), 681–710.

[39] Matthew Jenssen, Aditya Potukuchi, and Will Perkins. 2022. Approximately counting independent sets in bipar-
tite graphs via graph containers. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’22). SIAM, 499–516.

[40] Madhav Jha, C. Seshadhri, and Ali Pinar. 2015. Path sampling: A fast and provable method for estimating 4-vertex
subgraph counts. In Proceedings of the 24th International Conference on World Wide Web (WWW’15). 495–505.

[41] Reza Kahkeshani. 2013. A generalization of the Catalan numbers. Journal of Integer Sequences 16, 2 (2013), 3.
[42] Nadav Kashtan, Shalev Itzkovitz, Ron Milo, and Uri Alon. 2004. E!cient sampling algorithm for estimating subgraph

concentrations and detecting network motifs. Bioinformatics 20, 11 (2004), 1746–1758.
[43] Roman Koteckỳ and David Preiss. 1986. Cluster expansion for abstract polymer models. Communications in Mathe-

matical Physics 103, 3 (1986), 491–498.
[44] Timo Kötzing and Martin S. Krejca. 2019. First-hitting times under drift. Theoretical Computer Science 796 (2019),

51–69.
[45] Chao Liao, Jiabao Lin, Pinyan Lu, and Zhenyu Mao. 2019. Counting independent sets and colorings on random regular

bipartite graphs. In Proceedings of the Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques (APPROX/RANDOM’19). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[46] Xuesong Lu and Stéphane Bressan. 2012. Sampling connected induced subgraphs uniformly at random. In Proceedings
of the International Conference on Scienti!c and Statistical Database Management. Springer, 195–212.

[47] Ryuta Matsuno and Aristides Gionis. 2020. Improved mixing time for k-subgraph sampling. In Proceedings of the 2020
SIAM International Conference on Data Mining. SIAM, 568–576.

[48] Kirill Paramonov, Dmitry Shemetov, and James Sharpnack. 2019. Estimating graphlet statistics via lifting. In Proceed-
ings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 587–595.

[49] James Gary Propp and David Bruce Wilson. 1996. Exact sampling with coupled Markov chains and applications to
statistical mechanics. Random Structures & Algorithms 9, 1-2 (1996), 223–252.

[50] Andrew Read-McFarland and Daniel Štefankovič. 2021. The hardness of sampling connected subgraphs. In Proceedings
of the Latin American Symposium on Theoretical Informatics. Springer, 464–475.

[51] Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt. 2009. E!cient graphlet
kernels for large graph comparison. In Proceedings of the Arti!cial Intelligence and Statistics. PMLR, 488–495.

[52] Allan Sly. 2010. Computational transition at the uniqueness threshold. In Proceedings of the 2010 IEEE 51st Annual
Symposium on Foundations of Computer Science (FOCS’10). IEEE, 287–296.

[53] Allan Sly and Nike Sun. 2012. The computational hardness of counting in two-spin models on d-regular graphs. In
Proceedings of the 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science. IEEE, 361–369.

[54] Dror Weitz. 2006. Counting independent sets up to the tree threshold. In Proceedings of the 38th Annual ACM Sympo-
sium on Theory of Computing. 140–149.

[55] Nacu Şerban and Peres Yuval. 2005. Fast simulation of new coins from old. The Annals of Applied Probability 15, 1A
(2005), 93–115.

Received 1 June 2022; revised 15 May 2023; accepted 23 October 2023

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 5. Publication date: January 2024.

