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We consider the problem of sampling from the ferromagnetic Potts
and random-cluster models on a general family of random graphs via the
Glauber dynamics for the random-cluster model. The random-cluster model
is parametrized by an edge probability p ∈ (0,1) and a cluster weight q > 0.
We establish that for every q ≥ 1, the random-cluster Glauber dynamics
mixes in optimal !(n logn) steps on n-vertex random graphs having a pre-
scribed degree sequence with bounded average branching γ throughout the
full high-temperature uniqueness regime p < pu(q,γ ).

The family of random graph models we consider includes the Erdős–
Rényi random graph G(n,γ /n), and so we provide the first polynomial-time
sampling algorithm for the ferromagnetic Potts model on Erdős–Rényi ran-
dom graphs for the full tree uniqueness regime. We accompany our results
with mixing time lower bounds (exponential in the largest degree) for the
Potts Glauber dynamics, in the same settings where our !(n logn) bounds
for the random-cluster Glauber dynamics apply. This reveals a novel and
significant computational advantage of random-cluster based algorithms for
sampling from the Potts model at high temperatures.
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1. Introduction. The ferromagnetic Potts model is a classical spin system model in sta-
tistical physics and computer science. It is defined on a finite graph G = (V ,E), by a set of
spins (or colors) [q] = {1, . . . , q} and an edge weight or inverse temperature parameter β > 0.
A configuration σ ∈ {1, . . . , q}V of the model is an assignment of spins to the vertices of V .
The probability of σ is given by the Gibbs distribution:

(1.1) µG,β,q(σ ) = 1
ZG,β,q

exp
(−βD(σ )

)
,

where D(σ ) = |{{v,w} ∈ E : σ (v) $= σ (w)}| is the number of edges whose endpoints have
different spins in σ , and ZG,β,q is a normalizing factor known as the partition function. The
Ising model of ferromagnetism corresponds to the case where q = 2.

Sampling from the Potts–Gibbs distribution (1.1) is one of the most frequently encoun-
tered problems when running simulations in statistical physics or when solving a variety of
inference tasks in computer science; see, for example, [25, 26, 33, 34, 51, 54, 56] and the
references therein for a sample of these applications. There is a family of powerful sampling
algorithms for the Potts model that are based on its random-cluster representation, defined
subsequently. Such algorithms, which include the Glauber dynamics of the random-cluster
model and the widely-used Swendsen–Wang dynamics, are an attractive option computation-
ally since they are often efficient at “low-temperatures” (large β), a parameter regime where
standard Markov chains for the Potts model (including the canonical Glauber dynamics) often
converge exponentially slowly; see, for example, [11, 13, 14, 19].

To be more precise, the random-cluster model on a finite graph G = (V ,E), is defined by
an edge probability parameter p ∈ (0,1) and a cluster weight q > 0. The set of configurations
of the model is the set of all subsets of edges ω ⊆ E. The probability of each configuration ω
is given by the Gibbs distribution:

(1.2) πG,p,q(ω) = 1
ZG,p,q

p|ω|(1 − p)|E|−|ω|qc(ω),

where c(ω) is the number of connected components (also called clusters) in the subgraph
(V ,ω), and ZG,p,q is the corresponding partition function. The random-cluster model was in-
troduced by Fortuin and Kasteleyn [27] as a unifying framework for studying random graphs,
spin systems, and electrical networks, and it is also known as the FK-representation of the
Ising and Potts model.
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For integer q ≥ 2, a sample ω ⊆ E from the random-cluster Gibbs distribution πG,p,q can
be easily transformed into one for the ferromagnetic q-state Potts model with inverse tem-
perature β(p) = − ln(1 − p), by independently assigning a random spin from {1, . . . , q} to
(all vertices in) each connected component of (V ,ω); see, for example, [24, 27, 38]. As such,
any sampling algorithm for the random-cluster model yields one for the ferromagnetic Potts
model with essentially no computational overhead. This has led to significantly improved
sampling algorithms for the Potts model in various low-temperature settings [12, 30, 43, 49,
58, 60] and more generally, to a broad interest in dynamics for the random-cluster model
[4–8, 15, 39].

In this paper, we focus on the Glauber dynamics of the random-cluster model, which for
easy distinction we will henceforth call the FK-dynamics. From a configuration ωt ⊆ E, one
step of this Markov chain transitions to a new configuration ωt+1 ⊆ E as follows:

1. Choose an edge et ∈ E uniformly at random;
2. Set ωt+1 = ωt ∪ {et } with probability





p̂ := p

q(1 − p) + p
if et is a “cut-edge” in (V ,ωt ),

p otherwise;
3. Otherwise set ωt+1 = ωt \ {et }.

Here, we say e is a cut-edge in (V ,ωt ) if changing the state of et changes the number of
connected components c(ωt ) in (V ,ωt ). The probabilities in step (2) are exactly the condi-
tional probabilities of et being in the configuration ωt given the remainder of ωt . As such, this
Markov chain is reversible with respect to πG,p,q and converges to it. We are interested in its
mixing time tMIX; that is, the number of steps until the dynamics is within variation distance
1/4 of πG,p,q , starting from the worst possible initial configuration.

As mentioned, the FK-dynamics is by now well-studied in its own right, though sharp
analyses of its mixing time are only available on certain structured graphs like the complete
graph [6, 8, 37], boxes in the infinite integer lattice graph Zd [5, 7, 14, 32, 35, 36, 41], and
trees [2]. Recently, in [4], the authors studied the FK-dynamics on random regular graphs
and established optimal !(n logn) mixing time for the FK-dynamics throughout the entire
high-temperature tree uniqueness regime.

Our aim in this paper is to study the FK-dynamics in settings in which the maximum
degree of the underlying graph is much larger than its average degree. In such settings,
high-degree vertices are an obstruction to the fast convergence of the Ising/Potts Glauber
dynamics. For instance, we later prove (see Section 1.2) that on a general class of random
graphs on n vertices with maximum degree dMAX, the Ising/Potts Glauber dynamics requires
n · exp('(dMAX)) steps to converge at high temperatures.

We reveal here that, for the same general family of random graphs, random-cluster based
algorithms are not affected by the presence of high-degree vertices; both their mixing times
and fast mixing parameter regimes are determined instead by the average degree of the graph.
This reveals a novel and significant computational advantage of random-cluster based algo-
rithms for sampling from the ferromagnetic Potts model at high temperatures. Indeed, prior
to this work, random-cluster based sampling algorithms were only found to be more efficient
than Ising/Potts Glauber dynamics at low temperatures.

More precisely, we study the mixing time of the FK-dynamics on random graphs of av-
erage branching γ > 0 in the full uniqueness (high-temperature) regime p < pu(q,γ ). At
integer γ , the threshold pu(q,γ ), formally defined in (2.1), was identified in [40] as a unique-
ness/nonuniqueness phase transition point of the random-cluster model on the wired γ -ary
tree, that is, where the leaves are externally wired to be in the same connected component.
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For us, pu(q,γ ) is the natural extension of that function to noninteger γ , which we show
corresponds to the high-temperature uniqueness threshold of the random-cluster model on
general trees of average branching γ for all q ≥ 1 (see Corollary 3.4 in Section 3).

Before we describe our general results for random graph models with fixed degree se-
quence (which we define in the next subsection) we present a special case of our main result
of particular interest concerning the FK-dynamics on sparse Erdős–Rényi random graphs.

THEOREM 1.1. Fix q ≥ 1, γ > 0 and p < pu(q,γ ). If G is an Erdős–Rényi random
graph G ∼ G(n,γ /n), then with probability 1 − o(1), G is such that the FK-dynamics on G
satisfies tMIX = !(n logn).

This yields a sampler for the Potts distribution on Erdős–Rényi random graphs with near-
optimal running time. Let βu(q,γ ) = − ln(1 − pu(q,γ )) be the corresponding uniqueness
point for the Potts model.

COROLLARY 1.2. Fix q ≥ 2, γ > 0, and β < βu(q,γ ). There is an MCMC sampling
algorithm that, with probability 1 − o(1) over the choice of an Erdős–Rényi random graph
G ∼ G(n,γ /n), outputs a configuration whose distribution is within total-variation distance
δ > 0 of µG,β,q in time O(n(logn)3 log(1/δ)).

Corollary 1.2 is a direct consequence of Theorem 1.1 and the aforementioned connec-
tion between the random-cluster model and the Potts model. The extra O((logn)2) factor in
the running time of the algorithm comes from the (amortized) cost of checking whether the
chosen edge is a cut-edge in each step of the FK-dynamics (see, e.g., [44, 59]).

To the best of our knowledge, this is the first polynomial-time sampling algorithm for the
Potts model on Erdős–Rényi random graphs for q ≥ 3 and β = '(1). Even for the better
understood q = 2 case (i.e., the Ising model), Corollary 1.2 provides the fastest known sam-
pling algorithm, improving upon the running time of samplers based on the Glauber dynamics

which, for the Ising model, is known to converge in n
1+!( 1

log logn ) steps for all β < βu(2,γ )
[53].

We mention that the thresholds pu(q,γ ) and βu(q,γ ) should be sharp, in the sense that the
FK-dynamics is conjectured to undergo polynomial or exponential slowdowns (depending on
q) at the point pu(q,γ ) (and when q > 2 in a whole critical window (pu,p

′
u)). This is by

analogy with the FK-dynamics on the complete graph [37] and on random regular graphs
[18]; see also [20, 31, 43].

1.1. Results on random graphs with general degree sequences. We next provide our main
results on random graph models with a fixed degree sequence. Let dn = (d1, . . . , dn) be the
degree sequence giving the degree of each vertex v ∈ {1, . . . , n}. Our results will hold for
uniform random graphs with degree sequence dn under certain mild conditions on this degree
sequence. The first condition we make on dn is that the sequence is graphical: that is, that
there exists at least one simple graph having degree sequence dn.

Given a graphical sequence dn, we define PRG(dn) as the uniform distribution over all
simple graphs on n vertices having degree sequence dn. The governing quantity in this degree
sequence, in terms of the uniqueness thresholds for the Potts and random-cluster models on
G ∼ PRG(dn), will be what we call the effective offspring distribution Pdn , which is defined as
the distribution over the set M(dn) = {dv − 1 : v ∈ {1, . . . , n}} where x ∈ M(dn) is assigned
probability:

Pdn(x) =
∑

v(x + 1)1{dv=x+1}∑
v dv

.(1.3)
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In words, the distribution Pdn corresponds to choosing dv − 1 with probability proportional
to the total degree of vertices having degree dv . This distribution governs the offspring distri-
bution corresponding to the random trees one obtains when looking at balls of small radius
around a vertex of a random graph G ∼ PRG(dn). Specifically, a vertex of degree d is selected
to be the next vertex added to the random tree with probability proportional to the total degree
of all such vertices, and once it is selected and connected to its parent, it has d − 1 available
edges to connect to other randomly chosen vertices.

Our results will apply to graphical degree sequences whose effective offspring distribution
has a certain mean, and has bounded finite moments, as we detail next.

DEFINITION 1.3. Let Dγ ,κ be the set of graphical degree sequences (dn)n such that D ∼
Pdn has mean that is uniformly bounded away from γ and uniformly bounded κ th moment.
Formally,

lim sup
n

Edn[D] < γ and lim sup
n

Edn

[
Dκ ]

< ∞.

Let us finally assume that
∑

1≤v≤n dv = '(n); this is not strictly necessary, but will simplify
presentation.

This framework is fairly standard in the random graphs literature [10] and is similar to for
example, the setting of [29] for studying sampling from Potts on random graphs with fixed
degree sequences at sufficiently low temperatures. While Definition 1.3 yields a fairly general
family of random graphs, we draw attention to some well-studied examples which fall under
its umbrella.

EXAMPLE 1.4. *-regular random graph. In this case, dn = (*, . . . ,*) and the effective
offspring distribution simply assigns probability 1 to * − 1; thus (dn)n ∈ Dγ ,κ for every
γ > * − 1 and every κ .

EXAMPLE 1.5. Erdős–Rényi random graph G(n,λ/n). It was shown in [47] that if dn is
drawn as an i.i.d. sequence of Poisson random variables of mean λ, then PRG(dn) is contiguous
with respect to G(n,λ/n). (Two random graph models are contiguous when any sequence of
events that has a probability of 1 − o(1) in one has a probability of 1 − o(1) in the other
model as well.) Hence, it suffices to prove the desired results with high probability over such
dn (see Lemma 4.8). Standard concentration estimates for Poisson random variables (see
Lemma 4.9) then give that for every γ > λ and every κ , with high probability, (dn)n ∈ Dγ ,κ .

Our main result is an optimal mixing time bound for the FK-dynamics on G ∼ PRG(dn),
which applies to all the examples above and more generally to random graphs with degree
sequences in Dγ ,κ .

THEOREM 1.6. Fix q ≥ 1, γ > 0, and p < pu(q,γ ). There exists κ such that if
(dn)n ∈ Dγ ,κ , then with probability 1 − o(1), the FK-dynamics on G ∼ PRG(dn) satisfies
tMIX = !(n logn).

This parameter regime in Theorem 1.6 is tight as FK-dynamics have been very recently
shown [18] to exponentially slow down as soon as p > pu(q,γ ) for random regular graphs
(Example 1.4) at integer q > 2.

The proof of the upper bound in Theorem 1.6 is the main content of this paper. As men-
tioned, the special case of the *-regular random graph (i.e., dn = (*, . . . ,*)) was the con-
tent of an earlier paper [4]. However, as soon as the degree sequence is not homogeneous,
substantial further obstacles arise.
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First, even the uniqueness threshold for the random-cluster model on wired heterogeneous
trees (specifically, with offspring distribution Pdn ) had not been established. In our proof of
Theorem 1.6 we require something much stronger; namely, an exponential decay of connec-
tivities with the correct rate (see Lemma 2.7). In the regular case, the fact that pu(q,γ ) is
the uniqueness threshold goes back to the work of Häggström [40] (see also [3, 46]), and the
exponential decay rate was established in [4]. To establish analogous results for the heteroge-
neous case, we combine the approach of [50] (which considered the special case of the Ising
model q = 2) with ideas from [3], so as to recurse, not on the marginal of an edge of the tree,
but rather on a nice functional of its probability of downwards connection to infinity.

The second technical obstacle concerns establishing that the FK-dynamics on G ∼ PRG(dn)

shatters, that is, that its components have size at most O(nε) after O(n) steps of the dy-
namics. This is proved using a delicate revealing procedure for the random graph with the
FK-dynamics configuration on top of it, a technique introduced in [4] for the case of random
regular graphs. The heterogeneity of the degrees in the current setting, however, introduces
extra correlations between the underlying graph and the FK-dynamics configuration, neces-
sitating substantial modifications to the revealing procedure from [4].

The changes we make to deal with the above-described dependencies include: (i) mod-
ifications to the revealing process so that it is based on half-edges rather than vertices and
the dynamics is run in continuous time, and (ii) a new criteria to truncate potentially un-
bounded increments in the revealing procedure. The more robust procedure yields a notable
further improvement: we show that the shattering time is O(n) (as opposed to O(n logn) in
[4]). Though this improvement has no impact on the eventual mixing time bound, the more
precise understanding of the shattering phase may be useful in other settings.

A more detailed proof sketch of this theorem and the new complications that arise is pro-
vided in Section 2 and Remark 5.11.

1.2. Slowdown for the corresponding Potts–Glauber dynamics. Returning to the advan-
tage of FK-dynamics in the presence of high-degree vertices, the following theorem estab-
lishes that in the same setting as Theorem 1.6 the Ising/Potts Glauber dynamics slows down
exponentially in the maximum degree.

THEOREM 1.7. Fix q ≥ 1, γ > 0, and β < βu(q,γ ). Then there exists κ such that if
(dn)n ∈ Dγ ,κ , then with probability 1 − o(1), G ∼ PRG(dn) is such that the Glauber dynamics
for the Potts model on G has tMIX = n · exp('(‖dn‖∞)).

Intuitively, the slowdown comes from the fact that the neighborhood of a vertex of degree
‖dn‖∞ is a star graph, in which the Ising/Potts Glauber dynamics mixes slowly when β ,

1
‖dn‖∞

. In a random graph at high temperatures (i.e., when β < βu(q,γ )) there is essentially
no interference with this effect from the remainder of the graph. Note that the FK-dynamics
in the star graph is fast mixing at all temperatures, so this obstruction is not present.

REMARK 1.8. We remark that under various decay of correlation conditions (see, e.g.,
[16, 22, 23, 42]) the mixing time of this chain is known to be poly(n) when (roughly) β ≤
1/‖dn‖∞. This does not contradict Theorem 1.7, which holds when β = '(1). In fact, if one
tracks the dependence on β in our proof, it gives tMIX = n · exp('(β2‖dn‖∞)).

The known n
1+'( 1

log logn ) slowdown of the Ising/Potts Glauber dynamics on the Erdős–
Rényi random graph [52, 53] is a special case of Theorem 1.7 where ‖dn‖∞ = !(

logn
log logn).

Below are a few examples where this slowdown can be even more dramatic, indeed stretched
exponential in the total number of vertices.
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EXAMPLE 1.9. Power-law degree distributions. Consider graphical sequences (dn)n sat-
isfying item (1) in Definition 1.3, and for which the fraction of degrees of size - is !(-−ζ ).
For every κ , if ζ > κ +2, one would have (dn)n ∈ Dγ ,κ . In such situations, ‖dn‖∞ = !(n1/ζ )

and tMIX = exp('(n1/ζ )).

EXAMPLE 1.10. Planted high-degree vertices. Consider a random *-regular random
graph and change the degree of one vertex to !(nε). If ε < 1/(κ + 1) and γ > * − 1, then
(dn) ∈ Dγ ,κ and tMIX = exp('(nε).

In the above instances where the maximum degree is polynomial in n, there is an exponen-
tial vs. polynomial difference in the high-temperature mixing times of the Ising/Potts Glauber
dynamics and of the FK-dynamics. At this level, the computational benefits of random-cluster
based sampling methods also extend to the often implemented Swendsen–Wang dynamics
[58]. In particular, using the comparison inequalities from [60] the upper bounds of Theorems
1.1 and 1.6 translate into O(n2 logn) upper bounds on the mixing time of the Swendsen–
Wang dynamics in those settings.

2. Proof outline. In this section, we present the main technical contributions in our pa-
per, and describe how they combine to yield the mixing time upper bound of Theorem 1.6.

Notational disclaimers. Throughout the paper, a subset ω ⊂ E is naturally identified with
an assignment of {0,1}, or closed and open, to E, via ω(e) = 1 if and only if e ∈ ω. The
parameters p, q , γ will always be fixed quantities, and all constants in little-o, big-O, etc.
notations may depend on these. As such, we also drop p, q from subscripts when understood
from context, for example, πG = πG,p,q . All our results should be understood to hold uni-
formly over all sufficiently large n. We use C to generally denote the existence of a constant
(possibly depending on fixed parameters such as p, q , γ ) such that the relevant statement
holds for all large n; for ease of notation, this constant C may change from line to line.

2.1. Random graphs. We start by describing the locally treelike structure and exponen-
tial rate of volume growth of random graphs with fixed degree sequence (dn)n ∈ Dγ ,κ . It will
be convenient to work with the configuration model, a useful and standard tool for studying
random graphs with fixed degree sequence. The configuration model PCM(dn) is a distribution
over multigraphs on n vertices with degree sequence dn. It is defined by giving dv half-
edges to every vertex v and drawing a uniform at random perfect matching on the

∑
v dv

many half-edges to form the 1
2

∑
v dv edges of the graph [9]. It is a standard fact that for any

(dn)n ∈ Dγ ,κ , and any sequence of sets An of simple graphs on n vertices, we have

PRG(dn)(G ∈ An) = o(1) if and only if PCM(dn)(G ∈ An) = o(1) :
see [9, 28]. It thus suffices to prove Theorems 1.6–1.7 for G ∼ PCM(dn).

For a graph G = (V ,E) and a vertex v ∈ V , we define the ball of radius R around v as:

BR(v) := {
w ∈ V : d(w,v) ≤ R

}
,

where d(·, ·) is the graph distance. For a set B ⊂ V define E(B) = {{v,w} ∈ E : v,w ∈ B}.

DEFINITION 2.1. We say that a graph G = (V ,E) is L-Treelike if there is a set H ⊂ E
with |H | ≤ L such that the graph (V ,E \ H) is a tree. We say that G is (L,R)-Treelike if for
every v ∈ V the subgraph (BR(v),E(BR(v)) is L-Treelike.

The following lemma says that small balls of the random graph G ∼ PCM(dn) are close
to trees. Indeed, for R/ logγ n uniformly less than 1/2, the ball BR(v) in G ∼ PCM(dn) is
typically a random tree with offspring distribution approximately Pdn , defined in (1.3).
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LEMMA 2.2. There exists κ such that if (dn)n ∈ Dγ ,κ the following holds. For every
δ > 0, there exists L = L(δ) such that if 1 ≤ R ≤ (1

2 − δ) logγ n, we have

PCM(dn)
(
G is (L,R)-Treelike

) = 1 − o
(
n−10)

.

Using standard concentration estimates for the volume of Galton–Watson trees (see
Lemma 3.6), we establish that if (dn)n ∈ Dγ ,κ , then G ∼ PCM(dn) has average exponential
rate γ of volume growth.

DEFINITION 2.3. A graph G = (V ,E) on n vertices is said to have (γ , ε)-volume growth
if for every v ∈ V and every integer r ∈ [ε logγ n, 1

2 logγ n] the graph has |Br(v)| ≤ γ r .

LEMMA 2.4. Fix ε ∈ (0, 1
2). There exists κ(ε) such that if (dn)n ∈ Dγ ,κ , then

PCM(dn)
(
G has (γ , ε)-growth

) ≥ 1 − o
(
n−10)

.

2.2. Exponential decay and uniqueness on general trees and treelike graphs. Given the
local tree structure of the random graphs from PCM(dn), to control the decay rate of connec-
tivities of the random-cluster model on G ∼ PCM(dn), we need to first understand how these
connectivities decay on heterogeneous (i.e., nonregular) trees. The relevant random-cluster
measure on the tree requires the addition of boundary conditions mimicking the possible
presence of open edges in the random graph outside of the treelike ball. Towards this, let us
formally define boundary conditions.

DEFINITION 2.5. A random-cluster boundary condition ξ on G = (V ,E) is a partition
of V , such that the vertices in each element of the partition are identified with one another.
The random-cluster measure with boundary conditions ξ , denoted π

ξ
G,p,q , is the same as in

(1.2) except the number of connected components c(ω) = c(ω; ξ) would be counted with this
vertex identification, that is, if v, w are in the same element of ξ , they are always counted as
being in the same connected component of ω in (1.2). The boundary condition can alterna-
tively be seen as external “wirings” of the vertices in the same element of ξ .

REMARK 2.6. The free boundary condition, ξ = 0, corresponds to the case of no external
wirings; that is, its partition is the one consisting of only of singletons. For a subset ∂V ⊂ V ,
the wired boundary condition on ∂V , denoted ξ = 1, is the one whose partition has all vertices
of ∂V in the same element (and all vertices of V \∂V as singletons); that is, ξ = {∂V }∪⋃{v :
v ∈ V \ ∂V }. For boundary conditions ξ , ξ ′ we say ξ ≤ ξ ′ if ξ is a finer partition than ξ ′.
When q ≥ 1, the random-cluster model has the following monotonicity property: for any two
boundary conditions ξ ≥ ξ ′, π

ξ
G,p,q ! π

ξ ′
G,p,q where ! denotes stochastic domination [38].

Now define the threshold

pu(q,γ ) := 1 − 1
1 + infy>1 h(y)

where h(y) := (y − 1)(yγ + q − 1)

yγ − y
.(2.1)

The work [40] studied the random-cluster measure on homogeneous, d-ary trees, with wired
boundary conditions and identified pu(q, d) as the uniqueness threshold such that whenever
p < pu(q, d), the probability that the root is connected to a distance h in the wired d-ary tree
goes to zero as h → ∞; a different proof was given in [3]. In [4], it was shown that this decay
is in fact exponential with rate p̂ = p/(p + q(1 − p)). However, the methods of those pa-
pers do not easily extend to the nonregular setting, where there may be vertices of unbounded
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degree, but one would expect the threshold for connectivity decay to only depend on the aver-
age branching rate. In [50], it was shown that the analogue βu(2,γ ) of (2.1) gives the correct
uniqueness threshold in the case of the Ising model q = 2, for general (nonhomogenous)
trees of average branching γ . However, the argument there recursed over the single-site spin
marginals, and relied on the fact that it was an Ising model whose interactions are nearest-
neighbor. In the case of the random-cluster model, interactions between edge-marginals are
nonlocal, and we therefore have to work with a more complicated functional encoding the
probability of an edge being downward connected to the wired boundary. Combining ideas
from [50] and [3], we are then able to establish uniqueness, and that connectivities decay
exponentially with rate p̂ on general heterogenous trees of average branching factor γ for all
q ≥ 1 and all p < pu(q,γ ). When p < pu(q,γ ), we have p̂ < 1/γ (see, e.g., [40], Theo-
rem 1.5); this indicates by a union bound why there will typically be no connections to the
boundary in a tree of average branching γ .

More formally, let Th = (V (Th),E(Th)) be an arbitrary finite tree, rooted at ρ, and of
height h. Let ∂Th ⊂ V (Th) be the set of vertices of Th at distance exactly h from ρ. For
v ∈ V (Th), let Tv be the subtree of Th rooted at v, let h(v) denote the height of Tv , and let
∂Tv = ∂Th ∩ Tv . For a random-cluster configuration ω on Th, let Cρ(ω) denote the connected
component of ω that contains the root ρ of Th. Finally, let (1,") denote the boundary condi-
tion that wires all vertices of ∂Th together, and also wires them up to the root, and let π

(1,")
Th

be the random-cluster measure with this boundary condition.

LEMMA 2.7. Fix q ≥ 1, γ > 1, p < pu(q,γ ), and ε ∈ [0,1). Suppose that |∂Tv| ≤ γ h(v)

for every v ∈ V (Th) with h(v) > εh. Then, there exists a constant C = C(p,q,γ ) such that
for any u ∈ ∂Th

π
(1,")
Th

(
ω : u ∈ Cρ(ω)

) ≤ Cp̂(1−ε)h.

We note that the condition that |∂Tv| ≤ γ h(v) for every v ∈ V (Th) with h(v) > εh in the
lemma holds with high probability for random trees with averaging branching γ : see Corol-
lary 3.8. In addition, the exponential decay rate in Lemma 2.7 is essentially optimal, and to-
gether with Lemmas 2.2–2.4, allows us to derive precise estimates on the exponential decay
of connectivities on the treelike balls around each vertex of the random graph G ∼ PCM(dn).
We will actually need a sharp bound on the rate of influence decay between the boundary and
the center of the ball BR(v); we find that this is the square of the rate of connectivity decay on
a corresponding tree of depth R. (Intuitively, this is because two disjoint paths are required
to reach the center of the ball in order for the boundary to have any effect on it.) To be more
precise, let G = (V ,E) be a graph and for v ∈ V , let Ev ⊆ E denote the set of edges incident
to v.

DEFINITION 2.8. A random-cluster boundary condition ξ on a graph H is said to be
K-Sparse if the number of vertices in nontrivial (nonsingleton) boundary components of ξ
is at most K .

THEOREM 2.9. Fix γ > 0, q ≥ 1, and p < pu(q,γ ). Suppose G is (L,R)-Treelike for
some L and some R ≤ 1

2 logγ n. Also suppose G has (γ , ε)-volume growth for some ε > 0
sufficiently small. There exists a constant C > 0 such that for every v ∈ G, and any two
K-Sparse boundary conditions ξ and τ on BR(v):

∥∥πξ
BR(v)

(
ω(Ev) ∈ ·) − πτ

BR(v)

(
ω(Ev) ∈ ·)∥∥TV ≤ Cp̂(2−CL

√
ε)R.

A similar influence decay bound was proven for the regular case in [4], Section 5.2.
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2.3. Shattering of the FK-dynamics. With Theorem 2.9 in hand, the core of our argument
becomes establishing that the boundary conditions induced by the FK-dynamics chains from
all possible initializations, on balls of radius R ≤ 1

2 logγ n are K-Sparse. This will follow
from shattering of the FK-dynamics, by which we mean the time at which the connected
components of the FK-dynamics configuration are all small, say of size no(1).

REMARK 2.10. It will be technically convenient to prove our results in continuous time
instead of discrete time. In the continuous-time FK-dynamics, each edge of the graph has a
rate-1 Poisson clock and every time a clock rings, the corresponding edge is updated as in the
discrete-time version of the FK-dynamics; that is, according to the conditional distribution
given the configuration off of this edge. It is a standard fact (see, e.g., [48], Theorem 20.3)
that the discrete-time mixing time is comparable to |E(G)| times the continuous-time mixing
time. It therefore suffices for us to establish the mixing time bounds of Theorems 1.1 and
1.6 as !(logn) bounds for the continuous-time version of the FK-dynamics. From this point
on, we let X

x0
t denote the continuous-time FK-dynamics on G initialized from the configura-

tion x0, and use the superscripts 1 and 0 to denote the full (all-open) and empty (all-closed)
configurations, respectively.

We now formalize what we mean by a shattered random-cluster configuration, and estab-
lish that the FK-dynamics shatters after an O(1) continuous-time burn in period.

DEFINITION 2.11. A random-cluster configuration ω on G = (V (G),E(G)) is (K,R)-
Sparse if, for every v ∈ V (G), the boundary conditions induced on BR(v) by ω(E(G) \
E(Br(v))) are K-Sparse.

THEOREM 2.12. Fix q ≥ 1, γ > 0 and p < pu(q,γ ). For every δ > 0, there exists κ
such that if (dn)n ∈ Dγ ,κ , there exists T = T (p, q,γ ) and K = K(p,q,γ , δ) such that for
any t ≥ T , and every 1 ≤ R ≤ (1

2 − δ) logγ n, with probability 1 − o(1), G ∼ PCM(dn) is such
that

P
(
X1

t is (K,R)-Sparse
) ≥ 1 − o

(
n−5)

.(2.2)

Our starting point for the proof of Theorem 2.12 is a proof of shattering for the FK-
dynamics on *-regular random graphs from [4]. Hence, as in [4], our proof relies on a
delicate simultaneous revealing procedure for the random graph, along with the connected
component of a vertex v in X1

t , showing that after a burn-in period, the configuration X1
t is

shattered. The revealing scheme for the component of a vertex v in the FK-dynamics chain
X1

t roughly proceeds as follows (see the accompanying Figure 1). First “expose” the starting
vertex v, and iteratively, for each exposed vertex u do the following:

1. Reveal the ball Br(u) in the random graph for a large r = O(1);
2. Reveal a configuration ω̃(Br(u)) that dominates the configuration of the FK-dynamics

at time t on Br(u). This configuration will come from simulating FK-dynamics that ignores
all updates outside of Br(u) (effectively inducing the wired boundary condition on Br(u))
and thus can be obtained independently of the dynamics on the rest of the graph;

3. Add to the set of exposed vertices all vertices of ∂Br(u) that get connected to u in
ω̃(Br(u)).

The key point of the argument is then to stochastically dominate the exposed vertices by a
branching process, which can be shown to be subcritical (see Lemma 2.7). In our setting,
the heterogeneity of the degrees causes substantial complications to the argument from [4],
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FIG. 1. Three “generations” of the revealing procedure. In each figure, the purple vertices are the current
generation of exposed vertices; the revealing procedure reveals the ball of radius r around such a vertex v, and a
dominating localized FK-dynamics configuration ω̃(Br (v)) on that ball. The next generation of exposed vertices
(blue) consists of those on the boundary Br(v) that are in the connected component of v in the configuration
ω̃(Br (v)). Exposed vertices from previous generations are then colored black.

because in balls where the branching rate is locally larger than γ , the overlayed FK-dynamics
configuration will actually be highly connected. The presence of high degrees also destroys
the O(1) bounds on the maximum number of new vertices that could possibly get exposed in
step (3) above; this complicates relevant concentration arguments, as our branching process
martingale will no longer have bounded increments.

2.4. Organization of the remainder of the paper. In Section 3, we prove that whenever
p < pu(q,γ ), the random-cluster model on trees of average branching γ is in its uniqueness
regime, and deduce Lemma 2.7. In Section 4, we prove key properties of the random-graph
model PCM(dn), including Lemmas 2.2–2.4. Section 5 contains the proof of shattering of the
FK-dynamics, and in particular Theorem 2.12. In Section 6, we bound the rate of influence
decay (Theorem 2.9) and mixing time (Lemma 6.7) in treelike graphs with sparse boundary
conditions. Section 7 combines these ingredients to conclude the !(n logn) bound on the
FK-dynamics for Theorem 1.6. Finally, Section 8 proves the exponential (in ‖dn‖∞) lower
bound on the Potts–Glauber dynamics of Theorem 1.7.

3. Uniqueness and exponential decay on general trees. Our main result in this section
is to prove Lemma 2.7. We also use this section to deduce some corollaries about uniqueness
of infinite-volume random-cluster and Potts measures on general trees of average branching
γ , and apply these results to super-critical Galton–Watson trees.

3.1. Exponential decay of connectivities on general trees. We begin by considering the
probability ϕ(ρ) that the root ρ is connected to ∂Th in ω ∼ π1

Th
, and show that ϕ(ρ) =

ϕp,q,Th(ρ) decays exponentially with h for all trees of average branching γ , whenever p <
pu(q,γ ).

LEMMA 3.1. Fix γ ≥ 1 and q ≥ 1 and let p < pu(q,γ ). There exists θ = θ(p, q,γ ) ∈
(0,1) and C = C(p,q,γ ) such that if |∂Th| ≤ γ h, then ϕ(ρ) ≤ Cθh.

PROOF. Fix h and fix Th having |∂Th| ≤ γ h. Recall that for v ∈ V (Th), Tv denotes the
subtree of Th rooted at v. Let Z(v) = ZTv,p,q denote the partition function corresponding to
π1

Tv
(the random-cluster measure on Tv with all its vertices in ∂Th wired together). Let Z1(v)

be the contribution to Z(v) from the configurations on Tv that contain an open path between
v and ∂Th. Similarly, let Z0(v) denote the contribution from the configurations that do not
have such a path. Note that Z(v) = Z0(v) + Z1(v) and ϕ(ρ) = Z1(ρ)

Z0(ρ)+Z1(ρ) .
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For v ∈ V (Th), let Nv denote the set of children of v. Using tree recurrences, and the
definition of (1.2), the following identities can be checked; the proof is similar to that in [3],
Lemma 33, and is provided later.

FACT 3.2. Let t = p/q + 1 − p. For any v ∈ V (Th),

Z1(v) = q
∏

w∈Nv

(
Z1(w)

q
+ tZ0(w)

q

)
− q

∏

w∈Nv

(
(1 − p)Z1(w)

q
+ tZ0(w)

q

)
,

Z0(v) = q2
∏

w∈Nv

(
(1 − p)Z1(w)

q
+ tZ0(w)

q

)
.

Now consider the function f : V (Th) → R defined as

f (v) := q
Z1(v)

Z0(v)
+ 1.

Using the identities in Fact 3.2, one easily sees that

f (v) =
∏

w∈Nv

g
(
f (w)

)
for g(x) := x + (q − 1)(1 − p)

(1 − p)x + p + (q − 1)(1 − p)
.

The following calculus bound, which is proved later, holds for the function g.

FACT 3.3. Fix q,γ ≥ 1 and p < pu(q,γ ). There exists ξ ∈ (0,1/γ ) such that g(x) ≤
x1/γ−ξ for all x ≥ 1.

Now, let Dk ⊂ V (Th) denote the set of vertices at distance k from the root ρ and let
Lk ⊆ Dk be the set of leaves at distance k from ρ. Setting ζ = 1/γ − ξ , and using the
facts that g(1) = 1, and that if w is a leaf that does not belong to ∂Th then Z1(w) = 0 and
g(f (w)) = 1, we obtain

f (ρ) =
∏

w∈D1

g
(
f (w)

) =
∏

w∈D1\L1

g
(
f (w)

) ≤
∏

w∈D1\L1

f (w)ζ .

Iterating, and using the fact that g(x) ≤ (1 − p)−1 for all x ≥ 1, we have

f (ρ) ≤
∏

w∈Dh−1\Lh−1

f (w)ζ
h−1 ≤ (1 − p)−ζh−1|∂Th|.

Then, recalling ϕ(ρ) = Z1(ρ)/(Z0(ρ) + Z1(ρ)), we get

ϕ(ρ) ≤ Z1(ρ)

Z0(ρ)
= f (ρ) − 1

q
≤ 1

q

( 1
1 − p

)ζh−1·|∂Th|
− 1

q
≤ ζ h · |∂Th|

q(1 − p)1/ζ
,

where the last inequality follows from the fact that ax ≤ 1 + ax when a ≥ 1 and x ∈ [0,1]
since ζ h · |∂Th| ≤ 1 when |∂Th| ≤ γ h. The proof is complete by setting θ = 1 − γ ξ . #

With Lemma 3.1 on hand, we can now provide the proof of Lemma 2.7, which gives a
precise bound on the rate of decay under stronger assumptions for the growth of Th.

PROOF OF LEMMA 2.7. Let u be a vertex in ∂Th and for v ∈ V (Th) let ϑ(v,u) be the
probability that v is connected to u in Tv under π1

Tv
. Let ϑ"(v, u) be the probability of the

same event under π
(1,")
Tv

.
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By monotonicity we have ϑ(ρ, u) ≤ ϑ"(ρ, u) and by a standard comparison between
boundary conditions (see, e.g., Lemma 6.4), we have ϑ"(ρ, u) ≤ qϑ(ρ, u). Hence, it suffices
to bound ϑ(ρ, u). Consider the unique path P = (ρ = v0, v1, . . . , u = vh) between ρ and u.
Let Nv denote the set of children of v. For w ∈ Nv0 , let Iw be the indicator function of the
event that there is a path from v0 to ∂Th going through w; set I = ∑

w∈Nρ :w $=v1
Iw . Then, we

can write

ϑ(ρ, u) ≤ p · π1
Th

(I ≥ 1) · ϑ"(v1, u) + p̂ϑ(v1, u) ≤ ϑ(v1, u)
[
pq2 · π1

Th
(I ≥ 1) + p̂

]
.

In the first inequality, we used the fact that in order for the root to be connected to the vertex
u, it is required that the root is connected to v1, and that v1 is connected to u in its subtree.
The former event occurs with probability p or p̂, depending on whether or not the root is
connected to ∂Th through any child besides v1.

Let ϕ(w) denote the probability that w is connected to ∂Tw under π1
Tw

. Then, π1
Th

(I ≥ 1) ≤
ϕ(v0) and since |∂Tv0 | ≤ γ h(v0) by assumption, Lemma 3.1 implies that for suitable constants
θ = θ(p, q,γ ) ∈ (0,1) and C = C(p,q,γ ) > 0, we have π1

Th
(I ≥ 1) ≤ Cθh(v0) Thus, setting

a = Cpq2

p̂
, and continuing the recursion we obtain

ϑ(ρ, u) ≤ p̂ · ϑ(v1, u)
[
1 + a · θh(v0)

] ≤ p̂(1−ε)h
(1−ε)h∏

i=0

[
1 + a · θh(vi)

]

≤ p̂(1−ε)h exp

[

a

(1−ε)h∑

i=0

θh(vi)

]

≤ Ap̂(1−ε)h,

for a suitable constant A = A(p,q,γ ) > 0. Hence, ϑ"(ρ, u) ≤ Aq2p̂(1−ε)h and the result
follows. #

3.2. Proofs of auxiliary facts. We now provide the deferred proofs of Facts 3.2 and 3.3.

PROOF OF FACT 3.2. For v ∈ V (Th), let Nv denote the set of children of v and let
∂Tv ⊆ ∂Th be the set of vertices of Tv ∩∂Th. We compute Z1(v) and Z0(v) by partitioning the
space of configurations according to which subtrees of v among {Tu : u ∈ Nv} are connected
to the ∂Tv . For each configuration ω, the connectivity of the children of v to their respective
boundaries is encoded by a vector aω ∈ {0,1}Nv , where for u ∈ Nv we have aω(u) = 1 when
u is connected to ∂Tu by a path in Tu.

We start by proving the identity for Z1(v). In this case, we only consider configurations
such that ‖aω‖1 ≥ 1. For a fixed vector aω such that ‖aω‖1 = k, let u1, . . . , uk ∈ Nv be the
neighbors of v for which aω(ui) = 1, and let û1, . . . , ûl ∈ Nv be the neighbors of v for which
aω(ûi) = 0; hence l = |Nv|−k. Any random-cluster configuration ω of Tv , can be partitioned
into the configuration on E({v} ∪ ⋃

ui
Tui ) and the configuration on E({v} ∪ ⋃

ûi
Tûi

).
Given a vector a, let W1(v, a,1) denote the total weight under the wired boundary condi-

tion of the random-cluster configurations on E({v} ∪ ⋃
ui

Tui ) that contain a v to ∂Tv con-
nection and a ui to ∂Tui path in Tui for every i ∈ {1, . . . , k}. Similarly, let W1(v, a,0) denote
the total weight of the configurations on E(v ∪ ⋃

ûi
Tûi

) in which there is no path between
ûi and ∂Tûi

in Tûi
for i ∈ {1, . . . , l}. Since conditioning on a disconnected configuration on

E({v} ∪ ⋃
ûi

Tûi
) has no effect on the weight of the configuration on E({v} ∪ ⋃

ui
Tui ), we

have the identity

(3.1) Z1(v) = 1
q

∑

a∈{0,1}Nv :‖a‖1≥1

W1(v, a,1)W1(v, a,0).
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Here, the 1/q factor comes from merging the two wired boundary components when ‖a‖1 <
|Nv|; if ‖a‖1 = |Nv|, we set W1(v, a,0) = q .

We compute W1(v, a,1) first. We use '1(Tx) (resp., '0(Tx)) for the set of all random-
cluster configurations on the subtree Tx in which there is (resp., there is not) an open path
between x and ∂Th in Tx . For a configuration ηi ∈ '0(Tui ) ∪ '1(Tui ), we use wgt(ηi) =
p|ηi |(1 − p)|E(Tui

)|−|ηi |qc1(ηi ) for the weight of the random-cluster configuration on Tui un-
der the wired boundary condition; that is, c1(ηi) corresponds to the number of connected
components on ηi taking into consideration the wired boundary condition. Then, accounting
also for the configuration in the edges between v and the ui’s, we have

W1(v, a,1) =
∑

η1∈'1(Tu1 )

· · ·
∑

ηk∈'1(Tuk
)

(
k∏

i=1

wgt(ηi )

)
1

qk−1




k∑

i=1

(
k
i

)
pi(1 − p)k−i



(3.2)

= 1 − (1 − p)k

qk−1

k∏

i=1

Z1(ui).(3.3)

The re-scaling in (3.2) by 1
qk−1 comes from the fact that the k boundary components in each

subtree are all merged into a single component. By similar reasoning, when ‖a‖1 < |Nv|

W1(v, a,0) =
∑

η1∈'0(Tû1
)

· · ·
∑

ηl∈'0(Tûl
)

(
l∏

i=1

wgt(ηi)

)
1

ql−1




l∑

i=0

(
l
i

)(
p

q

)i

(1 − p)l−i



(3.4)

= (1 − p + p/q)l

ql−1

l∏

i=1

Z0(ui).(3.5)

Note that in (3.4), in addition to the re-scaling by 1
ql−1 from merging the boundary compo-

nents, any edge between v and one of its children decreases the number of components by 1;
hence the q−i in the term (p

q )i .
Recall that t = 1 − p + p/q . Plugging (3.3) and (3.5) into (3.1) we obtain

Z1(v) = q
∑

a∈{0,1}Nv :‖a‖1≥1

(
1 − (1 − p)‖a‖1

) ∏

w∈Nv :a(w)=1

Z1(w)

q

∏

w∈Nv :a(w)=0

tZ0(w)

q
.

Observe next that
∑

a∈{0,1}Nv :‖a‖1≥1

∏

w∈Nv :a(w)=1

Z1(w)

q

∏

w∈Nv :a(w)=0

t · Z0(w)

q

=
∏

w∈Nv

(
Z1(w)

q
+ t · Z0(w)

q

)
−

∏

w∈Nv

t · Z0(w)

q
,

and
∑

a∈{0,1}Nv :‖a‖1≥1

(1 − p)‖a‖1
∏

w∈Nv :a(w)=1

Z1(w)

q

∏

w∈Nv :a(w)=0

t · Z0(w)

q

=
∏

w∈Nv

(
(1 − p)Z1(w)

q
+ t · Z0(w)

q

)
−

∏

w∈Nv

t · Z0(w)

q
.

Hence,

Z1(v) = q
∏

w∈Nv

(
Z1(w)

q
+ t · Z0(w)

q

)
− q

∏

w∈Nv

(
(1 − p)Z1(w)

q
+ t · Z0(w)

q

)
,
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as claimed. The expression for Z0(v) can be derived from an analogous and slightly simpler
argument and is thus omitted. #

PROOF OF FACT 3.3. We first consider the interval x ∈ [1,1 + η] for some η > 0 small.
It can be checked that

g′(x) = p(p + q − pq)

(−1 + q + x − p(−2 + q + x))2 ,

g′′(x) = −2p(1 − p)(q + (1 − p)p)

((1 − p)x + p + (1 − p)(q − 1))3 .

Hence, g′(1) = p̂ and |g′′| is decreasing for x ≥ 1. Then, from the Taylor expansion of g at
1, we get

g(x) ≤ 1 + p̂(x − 1) + cη2,(3.6)

where c = c(p, q) > 0 is suitable constant. Similarly, using the Taylor expansion of x1/γ−ξ

at 1, we obtain

x1/γ−ξ ≥ 1 + (1/γ − ξ)(x − 1) − c′η2

for a suitable constant c′ = c′(γ , ξ) > 0. Since p̂ < 1/γ when p < pu(q,γ ), then for suffi-
ciently small ξ and η (depending on p, q , γ ) we have g(x) ≤ x1/γ−ξ as desired.

We next observe that since g(x) ≤ 1
1−p , we have g(x) ≤ x1/γ−ξ for all x ≥ K for K

sufficiently large (depending on p, q , γ ), importantly independent of ξ as long as ξ < 1/(2γ ),
say.

It remains to consider the case when x ∈ (1 + η,K). For this, let us give an auxiliary form
of pu(q,γ ):

pu(q,γ ) = sup
{
p : sup

x>1

{
gp(x) − x1/γ } ≤ 0

}
(3.7)

(where we have added the p subscript to g to emphasize the p dependence there). Let us first
conclude the proof assuming the equality of (3.7). By direct computation, it can be checked
that ∂g(x)

∂p > 0 whenever x > 1. Hence, fixing p′ ∈ (p,pu(q,γ )) for every x > 1 we have
gp(x) < gp′(x), and by continuity gp(x) ≤ gp′(x) − δ for a sufficiently small δ > 0. By
continuity, in fact there exists a uniform choice of δ > 0 such that

gp(x) < gp′(x) − δ for all x ∈ [1 + η,K].
At the same time, for ξ sufficiently small, depending on δ, γ , K , we have

∣∣x1/γ − x1/γ−ξ
∣∣ ≤ δ for all x ∈ [1 + η,K].

Combining these two, and using (3.7), we see that for all x ∈ [1 + η,K],
gp(x) ≤ gp′(x) − x1/γ + x1/γ−ξ ≤ x1/γ−ξ for all x ∈ [1 + η,K].

It remains to establish the equality (3.7). We first rewrite the definition of pu(q,γ ) from
(2.1) as

pu(q,γ ) = sup
{
p : sup

y>1

{
p − 1 + 1

1 + h(y)

}
≤ 0

}
.

It therefore suffices to establish that

sup
y>1

{
p − 1 + 1

1 + h(y)

}
≤ 0 ⇐⇒ sup

x>1

{
g(x) − x1/γ } ≤ 0.
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By substituting y = x1/γ , and calculating, this reduces to showing that for every y > 1,

−(1 − p)yγ+1 + yγ − [p + (q − 1)(1 − p)]y + (q − 1)(1 − p)

yγ − y + (y − 1)(yγ + q − 1)
≤ 0

if and only if

−(1 − p)yγ+1 + yγ − [p + (q − 1)(1 − p)]y + (q − 1)(1 − p)

(1 − p)yγ + p + (q − 1)(1 − p)
≤ 0.

This equivalence follows because the numerators are the same, and the denominators are both
positive whenever γ > 1, q ≥ 1, and y > 1. #

3.2.1. Uniqueness in general trees. As a consequence of the decay of the root-to-leaf
connectivity we have established, it follows that there is a unique infinite wired random-
cluster measure whenever p < pu(q,γ ) on infinite trees with average branching γ . The
random-cluster measure on the infinite wired tree is defined using the Dobrushin–Lanford–
Ruelle (DLR) formalism (see, e.g., [38, 40]); in particular, the wired boundary condition
corresponds to counting all infinite connected components as one.

Let T be an infinite tree, let Dh ⊂ V (T ) denote the set of vertices at distance h from the
root of T and define the branching rate Br(T ) per [50] as:

Br(T ) = inf
{
λ > 0 : inf

h
|Dh|λ−h = 0

}
.

Observe that if Br(T ) < γ , then |Dh| < γ h for all sufficiently large h. We prove the follow-
ing.

COROLLARY 3.4. Fix q ≥ 1, γ > 1, and p < pu(q,γ ). Suppose T is an infinite tree with
Br(T ) < γ . Then, there is a unique infinite-volume random-cluster measure on T under the
wired boundary condition.

PROOF. Let Th denote the subtree of T that includes all vertices at distance at most h
from the root ρ of T . Let π1

T = limh→∞ π1
Th

. It was established in [40], Lemma 3.1, that
the limiting measure π1

T is a random-cluster measure with parameters p and q and, more-
over, that any other random-cluster measure on T with the same parameters is stochastically
dominated by π1

T . (We note that Lemma 3.1 from [40] is stated for the case when T is a
homogeneous tree, but the proof there does not use this assumption, and the result clearly ex-
tends to general trees.) Now, since Br(T ) < γ we have that |Dh| < γ h for sufficiently large
h, and so Lemma 3.1 implies that π1

T (ρ ↔ ∞) = limh→∞ π1
Th

(ρ ↔ ∂Th) = 0. This implies
that the conditional probability that any edge e is present, given the configuration outside of e,
is p̂ with probability 1 (see, e.g., the proof of Theorem 1.8 in [40]). Hence, π1

T corresponds to
the i.i.d. distribution on {0,1}E(T ) with edge probability p̂. By the same argument, the same
is true for any other random-cluster µ since µ 4 π1

T , and the result follows. #

COROLLARY 3.5. Fix q ≥ 2 integer, γ > 1, and p < pu(q,γ ). Suppose T is an infinite
tree with Br(γ ) < γ . Then there is a unique infinite-volume Potts measure on T .

3.3. Galton–Watson trees: Volume and uniqueness. As corollaries of our results on gen-
eral trees, we can obtain exponential decay and uniqueness results for the random-cluster
model on a Galton–Watson random tree. Let ν denote the progeny distribution for a Galton–
Watson tree. For - ≥ 0 let Z- be the number of vertices in -th generation so that Z0 = 1 and
Z1 ∼ ν. Our first result provides a tail bound for Z- (under mild moment assumptions on ν).
This bound will allow us to argue that the Galton–Watson tree satisfies the volume assump-
tions of Lemma 2.7, and deduce uniqueness of the random-cluster measure on super-critical
Galton–Watson trees when p < pu(q,γ ).
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LEMMA 3.6. Let N ∼ ν, κ ≥ 1 and suppose E[N ] ≥ 1 and E[Nκ ] < mκ for some con-
stant mκ . If κ is a power of 2, there exists C = C(κ,E[N ],mκ) such that for every γ > 0 and
every 1 ≤ - ≤ h,

P
(
Z- ≥ γ h) ≤ Ch2κ

(E[N ]
γ

)κh

.

PROOF. Let E[N ] = m and W- = Z-/m-. From the definition of the Galton–Watson tree
we have that Z-+1 = ∑Z-

i=1 N-,i for all - ≥ 1, where the N-,i are independent copies of N ∼ ν.
Then,

(3.8) W-+1 − W- = 1
m-

Z-∑

i=1

(W1,i − 1),

where the W1,i ’s are i.i.d.’s instances of W1 = N/m. From (3.8) we deduce that

E
[|W-+1 − W-|κ | Z- = L

] = 1
mκ-

E
[∣∣∣∣∣

L∑

i=1

(W1,i − 1)

∣∣∣∣∣

κ]

.

Since the W1,i ’s are i.i.d.’s with E[W1,i − 1] = 0, and E[|W1,i − 1|κ ] ≤ 2κ( 1
mκ E[Nκ ] + 1) is

finite, it follows from the Marcinkiewicz–Zygmund inequality that

E
[∣∣∣∣∣

L∑

i=1

(W1,i − 1)

∣∣∣∣∣

κ]

≤ Bκ · E
[(

L∑

i=1

(W1,i − 1)2

)κ/2]

,

where Bκ = (25κ/26)1/2)κ (see Section 10.3 in [17]). For κ > 2, Jensen’s inequality then
provides the bound

(3.9) E
[(

L∑

i=1

(W1,i − 1)2

)κ/2]

≤ Lκ/2−1
L∑

i=1

E
[|W1,i − 1|κ ]

.

Combining these inequalities and taking expectations we obtain

E
[|W-+1 − W-|κ

] ≤ Bκ

mκ-
E

[
Z

κ/2
-

]
E

[|W1 − 1|κ ] = Bκ

mκ-/2 E
[
W

κ/2
-

]
E

[|W1 − 1|κ ]
,

and since E[|W1 − 1|κ ] ≤ 2κ( 1
mκ E[Nκ ] + 1), for a suitable constant C = C(m,κ,mκ) we

have

(3.10) E
[|W-+1 − W-|κ

] ≤ C

mκ-/2 E
[
W

κ/2
-

]
.

Now, let Y1 = W1 and for i ≥ 2 let Yi = Wi − Wi−1, so that W- = ∑-
i=1 Yi . Using the

triangle and Jensen’s inequalities (as in (3.9)) we deduce that

E
[|W-|κ

] ≤ E
[(

-∑

i=1

|Yi |
)κ]

≤ -κ−1
-∑

i=1

E
[|Yi |κ

]
,

and from the bound in (3.10) we get

E
[
W κ

-

] ≤ C-κ−1
-∑

i=1

E[W κ/2
i ]

mκi/2 .
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From this, letting ρ(h,κ) = maxi≤h E[W κ
i ], we obtain the recurrence

ρ(h,κ) ≤ Chκ−1ρ(h,κ/2)
h∑

i=1

1
mκi/2 ≤ C · hκ · ρ(h,κ/2),

since m ≥ 1 by assumption. Since κ is a power of two, iteratively, for a suitable constant
C1 = C1(κ,m,mκ),

ρ(h,κ) ≤ C1 · ρ(h,1) ·
log2 κ∏

i=0

hκ/2i ≤ C1 · h2κ .(3.11)

Finally, we note that by Markov’s inequality, for any - ≤ h

P
(
Z- ≥ γ h) = P

(
W κ

- ≥
(

γ

m

)hκ)
≤ C1h

2κ
(m

γ

)κh

,

as claimed. #

We show next that Galton–Watson trees satisfy (with high probability) a certain growth
condition that would allow us to apply the sharp decay of connectivities in random-cluster
configurations from Lemma 2.7. We define the following volume growth condition for the
random tree, which is stronger than the assumption of Lemma 2.7, and will also reappear
later in the paper.

DEFINITION 3.7. We say a tree Th = (V (Th),E(Th)) satisfies the (γ , ε)-tree-growth
condition if for every v ∈ V (Th) with h(v) > εh, and every k such that εh < k ≤ h(v), we
have |V (Tv(k))| ≤ γ k , where Tv(k) denotes the subtree of Th of height k rooted at v.

COROLLARY 3.8. Let N ∼ ν and κ ≥ 1. Suppose 1 ≤ E[N ] < γ and that there exists a
constant mκ such that E[Nκ ] < mκ . Then, if κ is a sufficiently large power of 2, there exists a
constant θ = θ(γ ,κ,E[N ],mκ) ∈ (0,1) such that the Galton–Watson tree truncated at height
h with progeny distribution ν has (γ , ε)-tree-growth with probability at least 1 − θεκh for h
sufficiently large.

PROOF. Let {X(j)
k }j≥1 be i.i.d. random variables corresponding to the total number of

vertices in a Galton–Watson tree of height k. By a union bound, the probability that the
Galton–Watson tree does not satisfy the (γ , ε)-tree-growth condition is at most:

(1−ε)h∑

l=0

P
( Zl⋃

j=1

⋃

εh≤k≤h−l

{
X

(j)
k ≥ γ k}

)

≤ (2γ )h
(1−ε)h∑

l=0

∑

εh≤k≤h−l

P
(
X

(1)
k ≥ γ k) +

(1−ε)h∑

l=0

P
(
Zl ≥ (2γ )h

)
.

(3.12)

From Lemma 3.6, we know that there exists a constant C = C(κ,E[N ],mκ) such that

(3.13)
(1−ε)h∑

l=0

P
(
Zl ≥ (2γ )h

) ≤ Ch2κ+1

2κh
.

Now, observe that X
(1)
k has the same distribution as

∑k
j=0 Zj . Hence, Lemma 3.6 and a union

bound imply that there exists γ̂ ∈ (E[N ],γ ) such that

P
(
X

(1)
k ≥ γ k) = P

(
k∑

j=0

Zj ≥ γ k

)

≤
k∑

j=0

P
(
Zj ≥ γ̂ k) ≤ C1k

2r+1
(E[N ]

γ̂

)κk
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for a suitable constant C1 = C1(κ,E[N ],mκ) > 0 and k large enough. Then,
(1−ε)h∑

l=0

∑

εh≤k≤h−l

P
(
X

(1)
k ≥ γ k) ≤ C1

(1−ε)h∑

l=0

∑

εh≤k≤h−l

k2r+1
(E[N ]

γ̂

)rk

≤ C2h
2κ+2

(E[N ]
γ̂

)εκh

,

for a suitable constant C2 > 0. Plugging this bound and (3.13) into (3.12), we obtain that the
probability that the Galton–Watson tree does not satisfy the (γ , ε)-tree-growth condition is at
most 1 − θεκh for a suitable θ = θ(γ ,κ,E[N ],mκ) ∈ (0,1) as claimed. #

3.3.1. Uniqueness in Galton–Watson trees. Let T be a Galton–Watson tree with progeny
distribution ν and let N ∼ ν. By Lemma 3.6 and the Borel–Cantelli lemma, with probability
one over T , for any γ > E[N ], we have Zh ≤ γ h for all sufficiently large h. In particular,
with probability one, Br(T ) < γ for any γ > E[N ]. As such, Corollary 3.4 implies that
there is a unique random-cluster measure on T under the wired boundary condition when
p < pu(q,γ ).

COROLLARY 3.9. Fix q ≥ 1, γ > 1, and p < pu(q,γ ) Let N ∼ ν, κ ≥ 1 and suppose
1 ≤ E[N ] < γ and that there exist a constant mκ such that E[Nκ ] < mκ . With probability one
over T , there is a unique random-cluster distribution on T under the wired boundary condi-
tion. Similarly, at integer q , with probability one over T , there is a unique Potts distribution
on T .

4. Random-graph estimates. In this section, we describe the standard revealing scheme
for the configuration model with degree sequence dn. We also formalize the mechanism to
translate probability 1 − o(1) events for PCM(dn) to 1 − o(1) events for PRG(dn) and for the
Erdős–Rényi random graph model; we use this to provide a proof of Theorem 1.1 given
Theorem 1.6. We then use the revealing scheme for the configuration model to prove the
random graph estimates of Lemmas 2.2 and 2.4.

4.1. Configuration model with general degree sequence. We begin by describing a re-
vealing procedure for the configuration model with degree sequence dn. To do so, we begin
with an important definition providing the state space for our revealing procedures of the
configuration model. Recall that a matching on a graph is an edge-subset such that no vertex
belongs to more than one edge. A perfect matching is an edge-subset in which every vertex
belongs to exactly one edge.

DEFINITION 4.1. Given a degree sequence dn = (dv)1≤v≤n, to each vertex v ∈
{1, . . . , n}, assign dv half-edges. Consider an auxiliary complete graph K‖dn‖1 whose ‖dn‖1
vertices are identified with these half-edges. Let Mdn be the set of all matchings (not neces-
sarily perfect) on K‖dn‖1 , and let Mn(dn) be the set of all perfect matchings on K‖dn‖1 .

We are now in position to formally define the configuration model of random graphs.

DEFINITION 4.2. Given a degree sequence dn, the configuration model PCM(dn) is the
uniform distribution over Mn(dn), that is, it is a uniform perfect matching of the ‖dn‖1 half-
edges assigned to the vertices {1, . . . , n}. This is naturally identified with a multigraph on
{1, . . . , n} by identifying all half-edges with the vertex they come from, so that the edges in
the matching become edges of the graph between the corresponding vertices. In this man-
ner, with a slight abuse of notation, elements E ∈ Mn(dn) are simply the edge-sets of the
multigraph G = (V ,E).
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REMARK 4.3. The definitions of the random-cluster model (1.2), and the FK-dynamics
extend naturally to multigraphs, where G = (V ,E) is such that V is identified with {1, . . . , n}
and E ∈ Mn is a multiset. The random-cluster model and FK-dynamics then live over subsets
of E, identified with ω : E → {0,1}, and connected components of a configuration ω are
understood naturally.

4.2. Revealing procedure for the configuration model. We now describe a simple reveal-
ing procedure for generating a sample from the configuration model distribution given fixed
degree sequence dn.

PROCESS 4.4. Fix a degree sequence dn with
∑

v dv even. Suppose f is a (possibly
random) function from matchings A ∈ Mn, to a half-edge not matched in A.

1. Initialize the set A0 = ∅.
2. For every t ≥ 0, if At /∈ Mn (i.e., there exist un-matched half-edges), construct At+1 as

follows:

(a) Let êt+1 be the half-edge f (At).
(b) Pick another un-matched half-edge in At uniformly at random, and match it with

êt+1 in At+1.

For natural choices of the function f , we can reveal, for example, a ball in the random
graph without revealing any information about the remainder of the random graph. The next
definitions give an example of such an f that we will use repeatedly.

DEFINITION 4.5. Given a matching A ∈ Mn, the set of exposed half-edges of A is the
set of un-matched half-edges that belong to the same vertex (among V = {1, . . . , n}) as some
half-edge that is matched in A. Denote this set by Ê(A).

PROCESS 4.6. The breadth-first exploration of a ball Br(v) ⊂ E(G) is constructed using
Process 4.4 with the following choice of f . For each A, f (A) is an arbitrarily chosen exposed
half-edge among Ê(A) whose distance in (V ,A) to v is at most r .

4.3. Contiguity with simple random graphs. The configuration model described above
gives a uniform at random multigraph with prescribed degree sequence dn. In the sparse
regime of bounded average degree, this happens to be a very useful model for studying ran-
dom simple graphs (i.e., has no self-loops or multi-edges), most notably *-regular random
graphs, but also a uniformly chosen random simple graph with degree sequence dn (as long
as the sequence is graphical).

4.3.1. General degree sequence. It is well established that in the sparse regime of
bounded average degree, the configuration model will have probability uniformly bounded
away from zero of being simple, and on that event it is exactly a uniform simple graph with
degree sequence dn. This contiguity can be summarized as follows (see, e.g., [45]).

LEMMA 4.7. Fix any γ and κ . Suppose (dn)n ∈ Dγ ,κ and ‖dn‖1 = '(n). Then for any
sequence of sets An of simple graphs on n vertices, we have

PCM(dn)(G ∈ A) = o(1) if and only if PRG(dn)(G ∈ A) = o(1).
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4.3.2. Erdős–Rényi random graph. In the case of the Erdős–Rényi random graph
G(n,d/n), the degree of a vertex v is not fixed, but rather is distributed as Bin(n − 1, d/n).
Nonetheless, there is a way to first randomly sample dn then draw a configuration model
on dn, such that the resulting random graph is contiguous to the Erdős–Rényi distribution.
Let PPoi(d) be the distribution over dn = (d1, . . . , dn) where di are i.i.d. Poisson(d) random
variables. The following was established in [47].

LEMMA 4.8. For any d = !(1), for every sequence of sets An of simple graphs on n
vertices, we have

EPoi(d)
[
PCM(dn)(G ∈ A)

] = o(1) if and only if PG(n,d/n)(G ∈ A) = o(1).

In the above lemma, on the event that dn does not have ‖dn‖1 even, as a matter of conven-
tion, we take the probability in the expectation to be zero. Overloading notation slightly, let
PPoi(d) be the product distribution over dn ∼ PPoi(d) for each n.

LEMMA 4.9. For every 0 < d < γ and every κ ≥ 1,

PPoi(d)
(
(dn)n ∈ Dγ ,κ

) = 1.

PROOF. Recall by definition of Pdn , Edn , that

Edn[D] = 1
‖dn‖1

∑

v

dv(dv − 1) =
∑

v d2
v

‖dn‖1
− 1.

Let 0 < ε < γ − d . Then for every n large, we have

PPoi(d)
(
Edn[D] < γ − ε

) ≤ PPoi(d)

( 1
‖dn‖1

∑

v

d2
v ≥ γ − ε + 1

)

≤ P
(1

n

∑

v

d2
v > d(d + 1) + n− 1

2 +δ
)

+ P
(1

n

∑

v

dv < d − n− 1
2 +δ

)
.

(4.1)

To bound either of these terms, notice by Markov’s inequality, that

P
(∣∣∣∣

∑

v

dk
v − E

[∑
dk
v

]∣∣∣∣ > λ

)
≤ E[|∑v(d

k
v − E[dk

v ])|l]
λl

.

The numerator on the right-hand side is a sum of i.i.d. mean-zero random variables, each of
which have all finite moments. As such, for any fixed l, the right-hand side above is at most

Cnl/2λ−l ≤ Cn−lδ.

Taking l > 5δ−1, the right-hand side above is O(n−5). Therefore, the sum over n of the prob-
abilities of the left-hand side of (4.1) is finite, and by Borel–Cantelli, with probability one,
eventually almost surely, Edn[D] < γ − ε, so that lim sup Edn[D] < γ . A similar argument
yields the uniform boundedness of the κ th moments Edn[Dκ ] for any κ , yielding the desired
and concluding the proof. #

Given Lemmas 4.8–4.9, our Theorem 1.1 becomes a corollary of Theorem 1.6.

PROOF OF THEOREM 1.1 GIVEN THEOREM 1.6. Fix q ≥ 1, γ > 0 and p < pu(q,γ ).
Suppose G ∼ G(n,γ /n). Fix a large constant K and let A be the set of simple graphs G such
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that the mixing time of FK-dynamics on G at parameters p, q satisfies K−1 logn ≤ tMIX ≤
K logn. By Lemma 4.8, it suffices to show that

EPoi(γ )
[
PCM(dn)(G /∈ A)

] = o(1).

Considering this quantity, for any γ ′,

lim sup
n

EPoi(γ )
[
PCM(dn)(G /∈ A)

]

≤ PPoi(γ )
(
(dn)n /∈ Dγ ′,κ

) + sup
(dn)∈Dγ ′,κ

lim sup
n

PCM(dn)(G /∈ A).

The first term on the right-hand side is zero for all γ ′ > γ and all κ by Lemma 4.9. By
Theorem 1.6 and Lemma 4.7, the second term is zero if γ ′ > γ is such that p < pu(q,γ ′),
and if κ and K are sufficiently large (depending on p, q , γ ′). By continuity of pu(q,γ ), if
p < pu(q,γ ), there also exists γ ′ > γ such that p < pu(q,γ ′), concluding the proof. #

4.4. Local domination of the configuration model by random trees. We now dominate
balls of volume o(n1/2) of the random graph G ∼ PCM(dn) by branching processes whose
progeny are approximately given by Pdn . To be more precise, we define the following.

DEFINITION 4.10. Define the truncated empirical distribution by letting dn = dn \Adn ,
where Adn are the smallest 2

√
n elements of dn, and the set subtraction is done in the multi-

set sense. Then let Pdn be the corresponding effective offspring distribution of dn, that is, for
x ∈ {dv − 1 : dv ∈ dn},

Pdn(x) =
∑

v:dv∈dn
(x + 1)1{dv=x+1}
‖dn‖1

.

Let D ∼ Pdn , and let Edn be the corresponding expectation.

LEMMA 4.11. If (dn)n ∈ Dγ ,κ , then (dn)n ∈ Dγ ,κ .

PROOF. Let Adn be the set of 2n1/2 smallest degrees of dn. We first of all claim that
‖dn‖1 ≤ (1 + o(1))‖dn‖1. Indeed this follows from the calculation

‖dn‖1 − ‖dn‖1
‖dn‖1

≤
∑

v:dv∈Adn
dv

∑
v:dv /∈Adn

dv
≤ 2

√
nmax{dv : dv ∈ Adn}

(n − 2
√

n)min{dv : dv /∈ Adn}
≤ O

(
n−1/2)

.

We then can observe that

Edn[D] = ‖dn‖1

‖dn‖1

1
‖dn‖1

∑

v:dv /∈Adn

dv(dv − 1) ≤ (
1 + o(1)

)
Edn[D].

We now wish to prove the desired moment conditions. Those follow by analogous reasoning:

Edn

[
Dk] ≤ ‖dn‖1

‖dn‖1

1
‖dn‖1

∑

v:dv /∈Adn

dv(dv − 1)k ≤ (
1 + o(1)

)
Edn

[
Dk].

Altogether, these give the desired implications of the lemma. #

We now wish to show that the balls of the random graph G ∼ PCM(dn) are stochastically
dominated by random trees with offspring distribution Pdn , even conditionally on an already
revealed portion H ∈ Mn of the random graph. However, this will only hold if |H | ≤ n1/2

and the ball does not intersect H . We now formalize this notion.
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PROCESS 4.12. For a subgraph H = (V (H),E(H)), let Ê(H) be the set of half-edges
incident to H but not matched in H . (Notice that this definition aligns with the use of Ê(A)
for the exposed half-edges of A ∈ Mn when taking H = (V (A),A).) For a half-edge ê in
Ê(H), define Br(ê;Hc) as the ball of radius r “out of H ”. More formally, Br(ê;Hc) is
obtained by:

1. Matching ê to a vertex w.
2. Running the breadth-first revealing of Br−1(w) from Process 4.6 but where f (A) can-

not be in Ê(H) (i.e., it will be an arbitrarily chosen half-edge of Ê(A) \ Ê(H) at distance at
most r from w in A).

Due to the extra edge from matching ê, let us say a single-source Galton–Watson tree is a
Galton–Watson tree whose first generation deterministically has exactly one child.

PROPOSITION 4.13. Consider any degree sequence dn. Let dn be as per Definition 4.10.
Let T̂h(dn) be a single-source Galton–Watson tree of at depth h (meaning it is truncated at
depth h) with offspring distribution Pdn . Fix an arbitrary H = (V (H),E(H)) ∈ Mn, and
consider ê ∈ Ê(H). Then, conditionally on {E(H) ⊂ E(G)}, we have the stochastic domina-
tion

∣∣Br
(
ê;Hc)∣∣1{|E(H)∪E(Br(ê;Hc))|≤n1/2} 4 ∣∣T̂r (dn)

∣∣.

On the event that Br(ê;Hc) is a tree, there is an isometry between the graphs such that
Br(ê;Hc) is a subset of T̂r (dn).

PROOF. We appeal to the revealing procedure of Process 4.4 with the choice of breadth-
first revealing described in Processes 4.6 and 4.12. Begin the single-source Galton–Watson
tree with a root vertex and a single child, corresponding to ê. Iteratively, when a half-edge
f̂ , corresponding to a vertex x in the single-source Galton–Watson tree, gets matched in the
revealing procedure to a vertex w:

1. If w had not been exposed yet, identify the other dw − 1 half-edges of w with the
children of x in the single-source Galton–Watson tree.

2. If w is an exposed vertex, do nothing.

(We say a vertex is exposed if one of its half-edges has already been matched, whether in H
or in the revealing.) Uniformly over any subset of at most 2n1/2 matched half-edges (forming
n1/2 edges), the distribution dw − 1 is easily seen to be stochastically below Pdn (in which
the smallest 2n1/2 half-edges have been removed). Notice then that on the indicator

1{|E(H)∪E(Br(ê;Hc))|≤n1/2},

throughout the breadth-first revealing process, the number of matched half-edges will always
be at most 2n1/2. Thus, we see that this process maintains the desired stochastic domination
relation as compared to the single-source Galton–Watson tree until the number of matched
half-edges exceeds n1/2.

When Br(ê;Hc) is a tree, item (2) above never happens, and the isometry goes by iden-
tifying the edge containing f̂ in E(G) with the edge connecting the corresponding vertex in
T̂r (dn) to its parent. #

With Proposition 4.13, we can translate the volume growth bounds of Lemma 3.6 into
the desired volume growth estimate for the random graph G ∼ PCM(dn). In this proof, and
other proofs relying on the random graph revealing procedure, it will be useful to have an
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-∞ bound on the degrees. For this, note that (dn)n ∈ Dγ ,κ implicitly places a constraint on
‖dn‖∞, since Pdn chooses ‖dn‖∞ − 1 with probability '(‖dn‖∞/n). More precisely, we
have the following.

FACT 4.14. If (dn)n ∈ Dγ ,κ , then ‖dn‖∞ ≤ nε∗ for ε∗(κ) = 2/(κ + 1).

PROOF OF LEMMA 2.4. We will take a union bound over the probabilities that for a
fixed vertex v ∈ {1, . . . , n}, and a fixed r ≥ ε logγ n, the graph G has |Br(v)| ≤ Cγ r . Fix any
such v, r and take H = ({v},∅), so that Ê(H) are exactly the half-edges of v. Evidently, for
ê ∈ Ê(H)

P
(∣∣Br(v)

∣∣ ≥ γ r) ≤ dvP
(∣∣Br−1(ê)

∣∣ ≥ d−1
v γ r).

Consider the probability on the right. For each ê ∈ Ê(H), by Proposition 4.13,
∣∣Br−1(ê)

∣∣1{|Br−1(ê)|≤n1/2} 4 Zr,

where Zr ∼ |T̂r−1(dn)|, where we recall this is the single-source Galton–Watson tree of depth
r − 1 whose offspring distribution is Pdn . Now using a union bound,

PCM(dn)
(
G does not have (γ , ε)-volume growth

) ≤
∑

v

dv

1
2 logγ n∑

r=ε logγ n

P
(|Zr | ≥ d−1

v γ r).

Since (dn)n ∈ Dγ ,κ , there exists η > 0 such that it also is in Dγ−η,κ . Fix such an η.
Let κ(γ ,η, ε) be large, to be chosen later, and let ε∗(κ) be such that ‖dn‖∞ ≤ nε∗ per

Fact 4.14. Then the right-hand side is at most

n1+ε∗

1
2 logγ n∑

r=ε logn

P
(|Zr | ≥ n−ε∗γ r) = n1+ε∗

1
2 logγ n∑

r=ε logn

P
(|Zr | ≥

(
γ 1−ε∗ logγ /ε)r).

Let γ̃ = γ 1−ε∗ logγ /ε and take κ to be sufficiently large (so that ε∗ is sufficiently small) that
γ̃ > γ − η/2. By Lemma 3.6, then, the right-hand side above is at most

Cn1+ε∗

1
2 logγ n∑

r=ε logn

rκ
(

γ − η

γ − η/2

)rκ

.

One then sees that if κ is large enough, the right-hand side will be o(n−10) as desired. #

4.5. Treelike nature of the configuration model. We can also use the breadth-first reveal-
ing procedures together with the volume growth estimates, to establish that the random graph
given by the configuration model is typically (L,R)-Treelike for L = O(1) and R ≤ 1

2 logγ n.

PROOF OF LEMMA 2.2. By Lemma 2.4, with probability 1 − o(n−10) the random graph
G has (γ , ε) volume growth, say for ε = 1/4, as long as κ is sufficiently large. Let us work
on that event, so that |BR(v)| ≤ n1/2−δ for all v ∈ {1, . . . , n}.

Now fix any v and perform the breadth-first revealing of BR(v) per Process 4.6. In order
for BR(v) to not be L-Treelike, it must be the case that for more than L different steps m in
the first n1/2−δ steps, the half-edge f (Am−1) is being matched to a half-edge of Ê(Am−1).
Call such a step bad. (If there were at most L bad steps, then the removal of the at-most L
edges formed by those at-most L matchings in the revealing scheme, evidently leaves a tree.)
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Uniformly over Am−1, the probability of the mth step being bad is at most
(
m‖dn‖∞

)
/
(‖dn‖1 − m

)
.

We thus find that for every - ≥ 1,

PCM(dn)
(
BR(v) is not --Treelike

) ≤ P
(

Bin
(
n1/2−δ,

n1/2−δ‖dn‖∞
‖dn‖1 − n1/2−δ

)
> -

)
.(4.2)

Recall that the standard Chernoff bound applied to a binomial distribution with mean µ = Np

says that for every s ≥ µ,

P
(
Bin(N,p) ≥ s

) ≤ es−µ
(

s

µ

)−s

.(4.3)

Using the assumption that ‖dn‖1 = '(n) and recalling from Fact 4.14 that ‖dn‖∞ ≤ nε∗(κ),
(4.3) implies that the right-hand side of (4.2) is at most (Cn−2δ+ε∗)-. As a consequence, tak-
ing κ large enough that ε∗ < δ, and choosing L > 11δ−1, we would find that the probability
of BR(v) not being L-Treelike is o(n−11) for all v, and a union bound over v ∈ {1, . . . , n}
implies the desired result. #

5. The FK-dynamics shatters quickly on random graphs. Our first goal in this section
is to prove the following theorem establishing the existence of T = O(1) (in continuous-
time) such that for t ≥ T , the FK-dynamics chain on the random graph G initialized from
the all-wired configuration (i.e., all edges are open), denoted X1

G,t , is shattered, that is, all the
connected components of the FK-dynamics configuration are small; recall Definition 2.11 for
a precise formulation.

THEOREM 5.1. Fix q ≥ 1, γ > 1, and p < pu(q,γ ). For every ε > 0, there exists κ such
that if (dn)n ∈ Dγ ,κ , the following holds. There exists T = O(1) such that for every t ≥ T

and every v, with probability 1 − o(n−10), G ∼ PCM(dn) is such that

P
(∣∣Cv

(
X1

G,t

)∣∣ ≥ nε) ≤ o
(
n−10)

.

We will then use this to conclude Theorem 2.12, demonstrating that if t ≥ T , the boundary
condition X1

G,t induces on any ball of volume o(
√

n) is O(1)-sparse.
By monotonicity of the FK-dynamics, for every G, we have that X1

G,t 8 πG , from which it
follows that Theorem 5.1 holds under πG .

COROLLARY 5.2. Fix q ≥ 1, γ > 1, and p < pu(q,γ ). For every ε > 0, there exists κ

such that if (dn)n ∈ Dγ ,κ , then for every v, with probability 1 − o(n−10), G ∼ PCM(dn) is such
that

πG
(∣∣Cv

(
X1

G,t

)∣∣ ≥ nε) ≤ o
(
n−10)

.

While we do not use this corollary here, it may find applications elsewhere.

5.1. Couplings and revealing schemes for the FK-dynamics on random graphs. In this
section, we define our central revealing procedure for exposing the random graph together
with a family of coupled FK-dynamics on subsets of the random graph G, which together
stochastically dominate X1

G,t . This revealing procedure is essential to the proof of shattering
for X1

G,t in the uniqueness region after O(1) continuous-time.
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A similar revealing scheme of random graphs with an FK-dynamics chain on top of it was
introduced in [4]. The revealing scheme we use here builds on that, but makes some key mod-
ifications to deal with the nonuniformity of the degrees and the lack of deterministic control
on the volume of small balls of G. These changes are explicitly laid out in Remark 5.11.

5.1.1. Grand coupling of localized FK-dynamics. In this section, we define a grand cou-
pling of FK-dynamics on all possible edge subsets of the random graph G in such a way that
all monotonicities of the model are maintained.

Recall from Definition 4.1 that we use Mn as the set of all (not necessarily perfect) match-
ings of the complete graph on the ‖dn‖1 many half-edges. The matching A is naturally iden-
tified with a set of edges on the original vertex set {1, . . . , n}, each pairing of two half-edges
becoming an edge between the vertices they belong to. Abusing notation, we will understand
A both as a matching element of Mn and as a multiset of edges on {1, . . . , n}.

DEFINITION 5.3. For an element A ∈ Mn, let ∂A be the set of vertices in {1, . . . , n}
having half-edges that are not matched in A. Let π1

A be the random-cluster measure on the
edge set A with wired boundary conditions wiring all vertices of ∂A. Let (X1

A,t )t≥0 be the
continuous-time FK-dynamics initialized from the all wired configuration on A (as well as
outside A), and making updates in A according to π1

A.

We next place all the chains (X 1
t )t≥0 = {(X1

A,t )t≥0}A∈Mn on all possible matchings A ∈
Mn, in the same probability space, and construct an explicit coupling of them.

DEFINITION 5.4. The probability space we consider will consist of the following
sources of randomness:

1. Independently assign each possible edge e (i.e., each possible pairing of two half-
edges), a sequence of times Te = (T e

1 , T e
2 , . . .) given by the rings of a rate-1 Poisson clock;

and
2. Independently assign each possible e a sequence of Unif[0,1] random-variables Ue =

(Ue
1 ,Ue

2 , . . .).

We denote by Ft the σ -algebra generated by the processes (Te)e up to time t , as well as the
corresponding set of random variables in (Ue)e.

DEFINITION 5.5. From (T,U) construct the processes (X1
A,t )t≥1 for all A ∈ Mn as fol-

lows:

1. Let 0 < t1 < t2 < · · · be the (almost surely distinct) times in
⋃

i

⋃
e{T e

i } in increasing
order.

2. Initialize X1
A,0(e) = 1 for all e; that is, the all wired configuration.

3. For each i ≥ 1, let

X1
A,t = X1

A,ti−1
for all t ∈ [ti−1, ti).

Then, let (ei, ki) be the unique pair for which ti = T
ei
ki

and define X1
A,ti

by setting

X1
A,ti

(e) = X1
A,ti−1

(e) for all e ∈ A \ {ei}
and

X1
A,ti

(ei) =
{

1 if ei ∈ A and Uei,ki ≤ 8,

0 if ei ∈ A and Uet ,ki > 8,
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for

8 = π1
A

(
ω(ei) = 1 | ω(

A \ {ei}
) = X1

A,ti−1

(
A \ {ei}

));
that is, if ei ∈ A, we resample ei given the remainder of the configuration on A, together with
the wired boundary condition on ∂A, using the same Uei,ki for every X1

A,ti
such that ei ∈ A.

The following two observations are elementary to observe, but of central importance to
our analysis.

OBSERVATION 5.6. The coupling defined in Definition 5.5 is a monotone coupling. In
particular, we have X1

A′,t ≤ X1
A,t for any two matchings A,A′ ∈ Mn with A ⊂ A′. As such,

we have for every G that

X1
G,t (e) ≤ min

A∈Mn:A⊂E(G)
X1

A,t (e) for all e ∈ E(G) and all t ≥ 0.

OBSERVATION 5.7. For every A, the configuration X1
A,t depends only on (Te,Ue)e∈A,

and in fact only on their restriction to Ft (the σ -algebra generated by elements of T, U before
time t).

We now use the coupling of Definition 5.5 to design a coupling of FK-dynamics chains on
random graphs.

DEFINITION 5.8. Let P1
t be the distribution over pairs (G,ωt ) where ωt is a random-

cluster configuration on G that results by first drawing G ∼ PCM(dn), then drawing ωt ∼
P(X1

G,t ∈ ·). Likewise, for every set A ∈ Mn, let P1
A,t be the distribution over pairs

(G,ωA∩E(G),t ) where ωA,t ∼ P(X1
A,t ∈ ·). Couple, under the distribution P, the family of dis-

tributions (P1
A,t )A∈Mn,t≥0 by selecting the same random graph G ∼ PCM(dn) for all of them,

then using the coupling of Definition 5.5 for the family of FK-dynamics (X1
A,t )A⊂E(G),t≥0

on G.

In this manner, we have constructed a monotone coupling of (G, (X1
A,t )t≥1)A⊂E(G). Note

that we use this coupling for A which we know have A ⊂ E(G), so that the randomness of the
graph is only over the edges of E(G) \A, which we note X1

A,t is independent of; thus the role
of this coupling is only to put the random graphs with their random-cluster configurations on
the same probability space. We emphasize that by Observation 5.7, if A ∩ B = ∅, then X1

A,t

and X1
B,t are independent.

5.1.2. The joint revealing procedure. We now construct a revealing procedure for G and
a configuration ω̃t on G that stochastically dominates X1

G,t . This will be inspired by the si-
multaneous revealing procedure first introduced in [4], with significant modifications that
streamline that argument, and deal with the heterogeneity of degrees and volumes of balls in
G ∼ PCM(dn).

DEFINITION 5.9. Given a degree sequence dn, a vertex set V ⊂ {1, . . . , n}, and a match-
ing A ∈ Mn, let Ê(V,A) be the set of half-edges incident to V , and not matched in A.

We note that Ê(V (A),A) = Ê(A) from Definition 4.5.
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FIG. 2. Left: We initialize the revealing process with r = 6 from V0 = {v}, A0 = ∅, and the half-edge
ê = ê1 = Ê0 (purple). The process begins by revealing A1 = Br(ê;Ac

0), depicted in gray. Right: The process
then reveals the configuration X1

A1,t
(open edges shown in red/pink). Half-edges belonging to vertices in ∂A1

that are in the X1
A1,t

-connected component of v (red) are added to form Ê1 (purple).

For a matching on half-edges, A0 ∈ Mn, so that A0 ⊂ E(G), and a subset of vertices
V0 ⊂ V (G), we construct a procedure to expose (a set containing) the connected components
CV0(X

1
G,t (E(G) \ A0)), that is, the union of all the connected components of the vertices in

V0 in the configuration X1
G,t (E(G) \ A0). The two examples to have in mind are:

1. A0 =∅ and V0 = {v}, used to prove Theorem 5.1;
2. A0 = E(BR(v)), and V0 = ∂BR(v), used to prove Theorem 2.12.

In this revealing procedure, the index m will count the number of “steps”, and k will
track the number of “generations”. We will keep track of the following variables through our
revealing process:

• Am: the element of Mn that has been shown to be a subset of E(G) through step m;
• ω̃m: the random-cluster configuration revealed through step m;
• Êk : the set of half-edges we want to explore out of in the kth generation.

For A ∈ Mn, recall from Process 4.12 that Br(ê;Ac) is revealed in a breadth-first manner,
with the breadth-first exploration rejecting branches through vertices in V (A).

The revealing process, with parameters (p, q,γ , r, t), and input (V0,A0) is defined as
follows: see Figure 2–3 for a depiction to accompany the below.

FIG. 3. Left: Proceeding from above, in the next generation, starting from ê2 ∈ Ê1, the process reveals the
edges of A1 = Br(ê2,Ac

1) in G; in this case, this is not a tree as it contains a single cycle. The FK-dynamics
configuration X1

A2,t
is then generated and concatenated with ω̃1 to form ω̃2. Right: The process continues with

ê3, revealing Br(ê3;Ac
2) with the FK-dynamics configuration X1

A3,t
on top of it.
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PROCESS 5.10.
Inputs: (p, q,γ ); t ≥ 0; r ≥ 1; V0 ⊂ {1, . . . , n}; A0 ∈ Mn;
Initialize: k = 0; m = 1; Ê0 = Ê(V0,A0); ω̃0 = ∅;

for each k ≥ 0 while Êk $= ∅
for each ê ∈ Êk :

1. Reveal the ball of radius r out from ê in the random graph G:

(a) Set êm = ê. Conditionally on Am−1, reveal Br(êm;Ac
m−1) per Process 4.12.

(b) Set Am = Am−1 ∪ Br(êm;Ac
m−1).

(c) Let Am := Am \ Am−1 be the set of new edges revealed to belong to E(G).

2. Simulate the FK-dynamics up to time t on the newly revealed edge set Am:

(a) Reveal FAm,t := {(Te)e∈Am, (Ue)e∈Am} ∩ Ft (as defined in Definition 5.4).
(b) Generate X1

Am,t from FAm,t per Definition 5.5.

3. Update the configuration ω̃m, the boundary half-edges Êk , and the step count m:

(a) Concatenate X1
Am,t with ω̃m−1 to obtain a new configuration ω̃m on Am.

(b) Add to Êk+1 all un-matched half-edges of vertices in ∂Am that are in the component
of V0 in ω̃m(Am) and are not in Êj for any j ≤ k.

(c) Increase m by 1.

REMARK 5.11. Before proceeding, let us describe the specific differences between the
current revealing scheme and that of [4], as well as why these changes are needed to overcome
difficulties arising from heterogeneity of the underlying degree sequence. The main changes
are as follows:

1. The revealing process is based on half-edges rather than vertices: this ensures that the
revealing of the ball Br(êm;Ac

m−1) does not reveal the degrees of the vertices from which the
exploration proceeds (which could potentially have high-degree and introduce correlations
between generations).

2. The revealing of the ball Br(êm;Ac
m−1) does not continue exploring if it encounters

any vertex of V (Ac
m−1). This is important because if Br(êm) intersects a dense region of

Ac
m−1 that has already been revealed, then the volume of Br(êm) would not be independent

of Ac
m−1.

3. The FK-dynamics is simulated in continuous time, rather than discrete time. This intro-
duces additional independence so that the number of updates taken by each of the localized
FK-dynamics chains X1

Am,t are truly independent of one another.

For ease of notation, let k∅ be the first k such that Êk = ∅, that is, the total number of
generations of the revealing procedure. Let

mk =
∑

0≤j≤k

|Êj |,

be the total number of half-edges for which Br(êm;Ac
m−1) was revealed in step 1.a) of Pro-

cess 5.10, so that mk∅ counts the total number of half-edges out of which a ball is ever
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revealed. Let

ω̃ = ω̃mk∅ (Amκ∅ \ A0)

be the random-cluster configuration revealed when the process terminates. The following key
observation is a direct consequence of Observation 5.6 and the construction of Process 5.10.

OBSERVATION 5.12. Under the procedure of Process 5.10, we have

ω̃(Amk∅ \ A0) ≥ X1
G,t (Amk∅ \ A0).

In particular, the connected component of each vertex in V0 in X1
G,t (E(G) \ A0) is a subset

of a connected component of a vertex in V0 in ω̃.
Thus, if Nω(A) denotes the number of vertices in nontrivial (i.e., nonsingleton) compo-

nents of the boundary condition induced by ω(E(G) \ A) on A, then

NX1
G,t

(A0) ≤ Nω̃(A0).

With Observation 5.12 in hand, we focus on obtaining the stretched exponential tail bound
of Theorem 5.1 for the size of Cv(ω̃) (the component of v in ω̃) and likewise, the sparsity
bound of Theorem 2.12.

5.1.3. Constructing a dominating branching process. Towards proving Theorem 5.1 and
2.12, we construct a branching process (ours will be a size-dependent one but we use the
terminology nonetheless) which we will show stochastically dominates the sequence (Êk)k≥0
of our joint revealing process. This process (Zk)k≥0 will then be shown to be subcritical, with
good tail bounds.

DEFINITION 5.13. Initialize Z0 = |Ê0|. Let (Zk)k≥0 be the branching process, which for
each k ≥ 0, has progeny (χi,k)i≤Zk , that is,

Zk+1 =
∑

i≤Zk

χi,k.

The progeny χi,k are distributed as follows. First, let (T̂ i,k
r )i,k be i.i.d. single-source Galton–

Watson trees of depth r , with offspring distribution Pdn (from Definition 4.10); recall the
single-source here refers to the fact that this is a tree of depth r whose first generation deter-
ministically has one offspring; beyond that first edge, it is simply a Galton–Watson tree of
depth r − 1 with offspring distribution Pdn . Then the offspring distribution (parametrized by
p, q , γ , ε and r , t), is as follows:

1. With probability n−1/2, let χi,k = ‖dn‖r
∞(

∑
j<k Zj + ∑

j<i χj,k);
2. Otherwise,

(a) If T̂ i,k
r does not satisfy the (γ , ε)-tree-growth condition (Definition 3.7), let Nt =

|E(T̂ i,k
r )| and let χi,k be a sum of Nt independent random variables drawn from Pdn .

(b) If T̂ i,k
r does satisfy the (γ , ε)-tree-growth condition, first generate a configuration

on T̂ i,k
r by running FK-dynamics with (1,") boundary conditions, initialized from ω0 ≡ 1

for time t . Let Nt be the number of vertices of ∂T̂ i,k
r that are connected to the root, and

let χi,k be a sum of Nt independent random variables drawn from Pdn .

Let us motivate the above construction. Item (1) in the definition of χi,k corresponds to
cases when either:
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• The ball Br(êm;Ac
m−1) is not a tree, or

• The ball Br(êm;Ac
m−1) \ {êm} intersects some already exposed vertex in Am−1.

The n−1/2 probability of item (1) is because we will need to take A0 possibly as large as
n− 1

2 −o(1). On the latter of these two events, the connected component of V0 may, in one step,
incorporate many edges of Am−1, by virtue of an already revealed large connected component
of Am−1. In this case, the best a priori bound we can place on the progeny is the total number
of edges revealed up to that point.

In case (2), the newly revealed ball is indeed a tree and does not intersect any already ex-
posed vertex of Am−1. On the indicator of this event, by Proposition 4.13, the ball is stochasti-
cally below T̂ i,k

r ; cases (2a)–(2b) then distinguish whether or not the dominating tree satisfies
the (γ , ε)-tree-growth condition. This is important because if the tree does not satisfy the con-
dition, p < pu(q,γ ) will not be subcritical for the (1,") random-cluster model on T̂ i,k

r , and
we can only take the full boundary of the tree as our bound on the size of the component of
the tree’s root.

5.1.4. Dominating the revealing process by the branching process. We are now in posi-
tion to state the main two lemmas of this section, comparing the revealing procedure to the
branching process of Definition 5.13, and then establishing its subcriticality.

Recall that m0 = |Ê0| and for each k ≥ 1, mk+1 = mk + |Êk+1|, that is, in each generation
k, mk is the number of half-edges we explore out from. This will be the quantity which we
compare to the population of the branching process (Zk)k of Definition 5.13. For notational
simplicity, write A∞ = Amk∅ .

LEMMA 5.14. For every A0, V0 such that |A0|, |V0| ≤ n
1
2 −δ for δ > 0, and every - ≥ 1,

(|Êj |1{mj≤n1/2−δ/2}
)
j≤- 4 (Zj )j≤-.

Furthermore, we have

|A∞ \ A0|1{m∞≤n1/2−δ/2} 4 γ r
∞∑

j=0

Zj .

The proof of Lemma 5.14 is briefly deferred to the next subsection; before that proof,
we observe that the lemma reduces the analysis of the set of exposed vertices through the
revealing process of (G, ω̃), and thus, the clusters of X1

G,t , to the analysis of the process
(Zk), which for most steps is a simple branching process with progeny distribution typically
dictated by connectivity probabilities in the wired measure on trees satisfying a (γ , ε)-tree-
growth condition, but occasionally makes large state-dependent jumps.

Our claim is that if r and t are chosen to be sufficiently large, but O(1), the dominating
branching process will be subcritical. To formalize this claim, let

τ̄MIX := max
Tr of (γ ,ε)-tree-growth

tMIX

(
Tr , (1,")

)
,(5.1)

that is, the maximum over all possible trees of depth r satisfying the (γ , ε)-tree-growth con-
dition, of the (continuous-time) mixing time with (1,") boundary conditions. Now define
the burn-in time

TBURN = TBURN(C0, r) := C0γ
r τ̄MIX.(5.2)
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LEMMA 5.15. Fix q ≥ 1, γ > 1, and p < pu(q,γ ). For ε sufficiently small and C0,
r and κ sufficiently large, if t ≥ TBURN(C0, r) and (dn)n ∈ Dγ ,κ , the branching process of

Definition 5.13 satisfies the following tail bound: if Z0 ≤ n
1
2 −δ , then for every M ≥ 1, and

every λ : λZ0 ≤ n
1
2 − δ

2 ,

P
(∑

j≥0

Zj ≥ (1 + λ)Z0

)
≤ CM exp

(
λ1/MZ0

C‖dn‖(2+M)r
∞

)
+ Cn−δM/2.

Roughly, the constant M can be thought of as the number of times the “bad” offspring
distribution of item (1) in Definition 5.13 is selected, allowing the total population to double,
and away from such “bad” updates, we will show that the branching process indeed satisfies
exponential tails.

5.2. Coupling the revealing process to the branching process. We next prove the desired
stochastic domination relation between the revealing process (Êk)k and Zk by constructing a
coupling between the two such that the former is below the latter while the total population
is at most n1/2−δ/2.

PROOF OF LEMMA 5.14. We proceed by induction over - ≥ 0. The base case, Z0 =
|Ê0|, is by construction. Now fix - ≥ 1 and suppose by way of induction that the following
stochastic domination holds:

(|Êj |1{mj≤n1/2−δ/2}
)
j≤-−1 $ (Zj )j≤-−1.

Thus, there exists a monotone coupling of the sequence on the left-hand side, such that it is
below the sequence (Zj )j≤-−1 in the natural element-wise ordering on the sequence. Work-
ing on that coupling, it suffices for us to then show that on the event {m-−1 ≤ n1/2−δ/2},
for every m ∈ {m-−1 + 1, . . . ,m-}, the distribution of the children of êm is stochastically be-
low the progeny distribution of Definition 5.13. Here, by children of êm, we mean the set of
half-edges added in step 3.(b) of Process 5.10. In what follows, denote that set by :(̂em).

Define the event ;good on the revealed ball Br (̂em;Ac
m−1) as the event that

V
(
Br

(
êm;Ac

m−1
) \ {̂em}) ∩ V (Am−1) =∅ and Br

(
êm;Ac

m−1
)

is a tree.

On the bad event ;c
good, we take the a priori bound of Ê(Am) on the set :(̂em), namely

assuming that in the worst-case all exposed half-edges of Am, both those in Br (̂em;Ac
m−1),

and those of Am−1 become connected up to V0 in ω̃m. By the inductive hypothesis, the
number of such half-edges is at most ‖dn‖r

∞ times the population of the branching process
up to that step, given by

∑
j<k Zj + ∑

j<i χj,k , where the ‖dn‖r
∞ comes from assuming that

in each of these steps the corresponding ball we revealed in the graph has maximal size. We
claim that the probability of ;c

good is at most n−1/2. To see this, notice that in the breadth-
first revealing of Br(êm;Ac

m−1), the probability that the next half-edge that gets matched
is matched either with a vertex having an edge in Am−1, or an already exposed vertex of
Br(êm;Ac

m−1) is at most

|Ê(Am)|
‖dn‖1 − |Ê(Am)| ≤ m-‖dn‖∞

‖dn‖1 − m-
.

Assuming that (dn)n ∈ Dγ ,κ (for κ to be chosen sufficiently large later), by Fact 4.14,
‖dn‖∞ ≤ nε∗(κ). Using this upper bound, the bound m- ≤ n1/2−δ/2 (as otherwise the indi-
cator on the left-hand side of the desired stochastic domination would be zero), and the lower
bound of ‖dn‖1 ≥ '(n), we see that this probability is at most n1/2+δ/2−ε∗r . Through the
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revealing of Br(êm,Ac
m−1) we make at most ‖dn‖r

∞ attempts at such a bad matching, and
thus a union bound implies that

P
(
Br

(
êm;Ac

m−1
) ∈ ;c

good | Fm−1,m- ≤ n1/2−δ/2) ≤ n−1/2−δ/2+2ε∗r ,

where Fm−1 is the filtration generated by the randomness of the revealing procedure through
the (m − 1)th step. The right-hand side above is at most n−1/2 as long as κ is large enough
that ε∗(κ) < 1

2δ(2r)−1.
Now work on the event that Br(êm;Ac

m−1) ∈ ;good, and recall from Proposition 4.13 that
in this case the ball is stochastically dominated by (and in particular there exists a coupling
such that it can be be embedded as a subset of) a Galton–Watson tree of depth r with offspring
distribution Pdn . This is the law of T̂ i,-−1

r .
Evidently, on the event that T̂ i,-−1

r does not satisfy the (γ , ε)-tree-growth condition,
the number of children |:(êm)| is at most the number of half-edges emanating from
∂Br(êm;Ac

m−1), which is at most |∂T̂ i,-−1
r+1 |, or a sum of |∂T̂ i,-−1

r | ≤ Nt independent draws
from Pdn .

Finally, suppose we are on the event that T̂ i,-−1
r does satisfy the (γ , ε)-tree-growth condi-

tion, so that Br(êm;Ac
m−1) does as well. In that case, by Proposition 4.13, there is a coupling

such that the graph Br(êm;Ac
m−1) is a subgraph of T̂ i,-−1

r . One can then couple the FK-
dynamics chain X1

Am,t to Y 1
t , the FK-dynamics chain on T̂ i,-−1

r with its (1,") boundary
conditions run for time t initialized from Y0 ≡ 1 such that X1

Am,t is below Y 1
t with probability

one. In particular, the vertices of ∂Am which are in the open cluster of êm in X1
Am,t , are a

subset of the vertices of ∂T̂ i,-−1
r which are in the open cluster of the root in Y 1

t , so that the
number of them, call it N(X1

Am,t ) is less than Nt = N(Yt ). Since the law of X1
Am,t is inde-

pendent of the choice of boundary vertices, and thus degree sequence at ∂Am, the number of
half-edges added in step 3.(b) of Process 5.10 is a sum of N(X1

Am,t ) independent draws from
the empirical degree distribution at that point, which is stochastically below Pdn . Therefore,
this establishes the domination on this event of the number of children of êm by item (2b) of
the dominating branching process.

In order to then deduce the domination of |A∞ \ A0| by γ r times the total population of
the dominating branching process, we make the following observation. On the event ;c

good,
we were already bounding :(̂em) by |Am \ A0|, and that in turn by χi,k , even without the
factor of γ r . Similarly in the case of (2a). In the event of (2b), we notice that by the (γ , ε)-
tree-growth condition, the number of edges in Br(êm;Ac

m−1) is at most γ r . #

5.3. Subcriticality of an auxiliary branching process. The branching process of Defini-
tion 5.13 is not a branching process in a traditional sense, as when it follows item (1) in
the definition, its offspring count is state-dependent. Such offspring can create large jumps
in the total population, and lead to difficulties in the analysis. We analyze the process by
means of an auxiliary branching process that captures the behavior of (Zj )j in between its
rare state-dependent steps. More formally, we say an offspring of the branching process of
Definition 5.13 is bad if item (1) of Definition 5.13 is taken.

DEFINITION 5.16. Consider the auxiliary branching process (Z̃j )j which is defined ex-
actly as in Definition 5.13, except its offspring are conditioned to never be bad. Namely, let
(χ̃i,k)i,k be a sequence of i.i.d. draws from item (2) of Definition 5.13, and for a fixed Z̃0,
construct (Z̃j )j iteratively by Z̃j = ∑

i≤Zj−1
χ̃i,j .

The following lemma establishes subcriticality and tail bounds for the auxiliary branching
process—in other words, the branching process during the epochs between the bad updates
of (Zj )j .
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LEMMA 5.17. Fix q ≥ 1, γ > 1, and p < pu(q,γ ). For ε sufficiently small and C0,
r and κ sufficiently large, if t ≥ TBURN(C0, r) and (dn)n ∈ Dγ ,κ , the auxiliary branching
process (Z̃j )j is uniformly subcritical, that is, lim supn E[χ̃] < 1. Furthermore, it satisfies
the following tail bound: for all λ sufficiently large,

P
(∑

j≥0

Z̃j ≥ λZ̃0

)
≤ C exp

(
− λZ̃0

C‖dn‖2r
∞

)
.

PROOF OF LEMMA 5.17: SUBCRITICALITY. Let us begin by calculating the mean of the
offspring distribution of the auxiliary branching process, which corresponds to the offspring
distribution of Definition 5.13 conditional on being from item (2). By construction,

E[χ̃i,k] = E
[
1
{
T̂ i,k

r /∈ (γ , ε)-tree-growth
}∣∣T̂ i,k

r

∣∣]Edn[D]

+ E
[
1
{
T̂ i,k

r ∈ (γ , ε)-tree-growth
}∣∣Cρ

(
Y 1

t

) ∩ ∂T̂ i,k
r

∣∣]Edn[D].
We can bound the first term by Cauchy–Schwarz as

E
[
1
{
T̂ i,k

r /∈ (γ , ε)-tree-growth
}∣∣T̂ i,k

r

∣∣]Edn[D]

< γ · P
(
T̂ i,k

r /∈ (γ , ε)-tree-growth
)1/2E

[∣∣T̂ i,k
r

∣∣2]1/2
.

The probability on the right-hand side is at most η−κεr for some η small, by Corollary 3.8 if
(dn) ∈ Dγ ,κ . The expectation above is at most Cγ r using the moment bound of (3.11). Thus
taking κ large depending on ε, we see that this product is exponentially small in r , and can
be taken as close to 0 as desired by taking r sufficiently large.

Turning to the second term in the expansion of E[χ̃i,k], we can first bound it by

Edn[D]E[
1
{
T̂ i,k

r ∈ (γ , ε)-tree-growth
}∣∣Cρ

(
Y 1

t

) ∩ ∂T̂ i,k
r

∣∣]

< γ · sup
Tr∈(γ ,ε)-tree-growth

E
[∣∣Cρ

(
Y 1

T(1,!)
r ,t

) ∩ ∂Tr

∣∣],

where (Y 1
T(1,!)

r ,t
)t≥0 is a continuous-time FK-dynamics on the tree Tr with (1,") bound-

ary conditions, initialized from the all-wired configuration. Now recall that the stationary
measure of Y 1

T(1,!)
r ,t

is π
(1,")
Tr

. By the (γ , ε)-tree-growth condition, |Tr | ≤ γ r . As such, there

exists some Cr,γ > 0 such that the mixing time of Y 1
T(1,!)

r ,t
, that is, τ̄MIX as defined in (5.1),

is at most Cr,γ . By submultiplicativity of total-variation distance (see e.g., [48]), then, if
t ≥ TBURN(C0, r) = C0γ

r τ̄MIX as defined in (5.2), we have

sup
Tr∈(γ ,ε)-tree-growth

∥∥P
(
Y 1

T(1,!)
r ,t

∈ ·) − π
(1,")
Tr

∥∥
TV ≤ C exp

(−C0γ
r/C

)
.

Using this, for every Tr ∈ (γ , ε)-tree-growth, we can bound the expectation

E
[∣∣Cρ

(
Y 1

T(1,!)
r ,t

) ∩ ∂Tr

∣∣] ≤ E
π

(1,!)
Tr

[∣∣Cρ(ω) ∩ ∂Tr

∣∣] + |∂Tr |
∥∥P

(
Y 1

T(1,!)
r ,t

∈ ·) − π
(1,")
Tr

∥∥
TV

≤ |∂Tr | max
v∈∂Tr

π
(1,")
Tr

(
v ∈ Cρ(ω)

) + C|∂Tr |e−C0γ
r /C.

Using the fact that Tr has (γ , ε)-tree-growth and using the bound of Corollary 2.7 to bound
the probability of a leaf being in the component of the root, we bound the above by

Cγ r p̂(1−ε)r + Cγ re−C0γ
r /C.

Recall that when p < pu(q,γ ), we have p̂ < 1/γ , from which it follows that for sufficiently
small δ, ε and sufficiently large C0, uniformly over large r the above quantity is strictly less
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than 1/γ , so that when multiplied by Edn[D] < γ , it is strictly less than 1. Combining this
with the bound on the first term in the expectation, we find that there exist ε(p, q,γ ) and
C0(γ ) such that for all r sufficiently large, we have lim supn E[χ̃i,k] < 1 as desired. #

PROOF OF LEMMA 5.17: TAIL BOUNDS. Having established subcriticality of the domi-
nating branching process, we now wish to boost this to tail bounds on the number of genera-
tions, and total population of the branching process. For this, we use the traditional random-
walk exploration of a branching process. Namely, the population beyond Z̃0 can be expressed
as a sum of i.i.d.’s and we can write the active population in the branching process beyond
the first generation as the killed random walk

Z̃0 +
∑

i≤N0

(χ̃i − 1) where N0 = inf
{
j : Z̃0 +

∑

i≤j

(χ̃i − 1) = 0
}
,

where (χ̃i )i are i.i.d. copies from the offspring distribution of Definition 5.13. Observe that
with this representation, the total population of the branching process is exactly N0. Then,
we can express tail bounds for this branching process’s total population as

P
( ∑

0≤j<∞
Z̃j ≥ λZ̃0

)
≤ P(N0 > λZ̃0) ≤ P

(
Z̃0 +

∑

i≤λZ̃0

(χ̃i − 1) > 0
)
.

Consider the random variable χ̃i − 1; its mean satisfies E[χ̃1 − 1] ≤ −η for some η > 0,
by the subcriticality established in the previous proof. Thus this is a sum of λZ̃0-many i.i.d.
random variables, the sum has mean smaller than −ηλZ̃0, and the increments are bounded in
-∞ by ‖dn‖r

∞. Thus,

P
( ∑

i≤λZ̃0

(χ̃i − 1) > −Z̃0

)
≤ P

(∣∣∣∣
∑

i≤λZ̃0

(χ̃i − 1) − E[χ̃1 − 1]
∣∣∣∣ > η

(
λ − η−1)

Z̃0

)
.

As long as λ > 2η−1, by Hoeffding’s inequality, this gives

P
( ∑

i≤λZ̃0

(χ̃i − 1) > −Z̃0

)
≤ C exp

(
λZ̃0

C‖dn‖2r
∞

)

as desired. #

5.4. Controlling the original branching process by a sum of auxiliary branching pro-
cesses. Given the subcriticality and tail bounds for the auxiliary branching process, we can
now obtain tail bounds on the original dominating branching process (Zj )j as required by
Lemma 5.15. Let us now construct a process out of i.i.d. copies of the auxiliary branch-
ing process, that stochastically dominates the original branching process. Let (Z̃

(i)
j )j be

i.i.d. copies of the branching process of Definition 5.16, with initializations Z̃
(1)
0 = Z0 and

Z̃
(i)
0 = ‖dn‖r

∞
∑

j≥0 Z̃
(i−1)
j given by the total population of the previous auxiliary branching

process.
In what follows, for fixed λ, consider the stopping generation

κλ = min
{
k :

∑

0≤j≤k

Zj > λZ0

}
.

Let ;bad,M be the event that there are at most M many bad offspring in the first κλ many
generations of the branching process (Zj )j . The following stochastic domination is self-
evident by construction.
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CLAIM 5.18. Given the above construction, (
∑

j≥0 Zj)1;bad,M 4 ∑
1≤i≤M

∑
j≥0 Z̃

(i)
j .

Given this stochastic domination, we can now establish Lemma 5.15.

PROOF OF LEMMA 5.15. By a union bound, we have

P
(∑

j≥0

Zj ≥ λZ0

)
≤ P

(
;c

bad,M

) + P
( ∑

1≤i≤M

∑

j≥0

Z̃
(i)
j ≥ λZ0

)
.

The first probability is bounded as follows: for every λ : λZ0 ≤ n
1
2 − δ

2 , we have

P
(
;c

bad,M

) ≤ P
(
Bin

(
λZ0, n

−1/2) ≥ M
) ≤ Cn−δM/2.

The second probability above can be bounded as

P
( ∑

1≤i≤M

∑

j≥0

Z̃
(i)
j ≥ λZ0

)
≤

∑

1≤i≤M

P
(∑

j≥0

Z̃
(i)
j ≥ 1

M1/M‖dn‖ri∞
λ1/MZ̃

(i)
0

)
.

Indeed, if for every i,
∑

j≥0 Z̃
(i)
j ≤ M−1/Mλ1/M‖dn‖−ri

∞ Z̃
(i)
0 , then

∑
1≤i≤M

∑
j≥0 Z̃

(i)
j ≤

λZ0. In order to now bound the right-hand side, we use the tail bounds of Lemma 5.17 to
deduce that

P
( ∑

1≤i≤M

∑

j≥0

Z̃
(i)
j ≥ λZ0

)
≤ CM exp

(
− λ1/MZ0

CM1/M‖dn‖(2+M)r
∞

)
.

Combined with the bound on P(;c
bad,M), we obtain the desired result. #

5.5. Tail bounds on cluster sizes, and shattering of the dynamics. We are now in a posi-
tion to conclude the proof of the tail bounds on clusters of X1

G,t , and use that to deduce that
X1

G,t is (K,R)-Sparse, except with probability o(n−5). We begin by using Lemmas 5.14–
5.15 to prove the following tail bound on |A∞|, which we recall counts the number of edges
exposed through the revealing process of Process 5.10.

LEMMA 5.19. Fix δ > 0 and consider the revealing procedure for any initial pair
(V0,A0) having |A0|, |V0| and |Ê0| all at most n

1
2 −δ . There exist C0(p, q,γ ), r(p, q,γ )

in the definition of TBURN in (5.2) and κ(p, q,γ ) such that for all t ≥ TBURN the following
holds. For all (dn)n ∈ Dγ ,κ , M ≥ 1 and λ : λ|Ê0| ≤ n

1
2 −δ ,

P
(|A∞| ≥ |A0| + γ r(λ|Ê0|

)) ≤ CM exp
(

λ1/MZ0

C‖dn‖(M+2)r
∞

)
+ Cn−δM/2.

PROOF. Define the following stopping generation

ς = inf
{
- : m-−1 > λ|Ê0|

}
.

Similarly define ςZ as the first - : ∑
j≤-−1 Zj > λZ0. Under the monotone coupling of

Lemma 5.14, if ςZ = ∞, then ς = ∞, the indicators in the lemma are both 1, and both

(|Êj |
)
j ≤ (Zj )j and |A∞ \ A0| ≤ γ r

∞∑

j=0

Zj ,

hold. Therefore, we obtain

P
(|A∞ \ A0| ≥ γ r(λ|Ê0|

)) ≤ P
(∑

k≥0

Zk ≥ λZ0

)
.

Lemma 5.15 then implies the desired result. #
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We next use Lemma 5.19 and Observation 5.12 to deduce tail estimates on the volume and
radius of the cluster in X1

G,t containing v, when t ≥ TBURN.

PROOF OF THEOREM 5.1. Fix some v ∈ {1, . . . , n}, let A0 = ∅ and let V0 = {v} in
Process 5.10. In this case Ê0 is the set of half-edges out from v, and thus |Ê0| = dv . By
Observation 5.12, for each G ∼ PCM(dn), the cluster of v in the configuration X1

G,t , denoted
Cv(X

1
G,t ) is a subset of Cv(ω̃), which in turn is a subset of V (Am∅ \ A0). Let C0, r be

sufficiently large constants and take t ≥ T = TBURN(C0, r). Then, we have
∣∣Cv

(
X1

G,t

)∣∣ ≤ ∣∣Cv(ω̃)
∣∣ ≤ ∣∣V (Am∅ \ A0)

∣∣ ≤ 2|Am∅ \ A0|.
By Lemma 5.19 and the above, if (dn)n ∈ Dγ ,κ , there exists C(p,q,γ ) such that

P
((

G,X1
G,t

) : ∣∣Cv
(
X1

G,t

)∣∣ ≥ γ r (λdv)
) ≤ CM exp

(
λ1/Mdv

C‖dn‖(M+2)r
∞

)
+ Cn−δM/2.

Let δ = 1/4 and let M = 200, for instance. For any fixed small ε > 0, by taking κ sufficiently
large, by Fact 4.14, ‖dn‖(M+2)r

∞ < nε/4rM ; then taking λ = n(M−1)ε/4M , we satisfy that λdv ≤
n

1
2 −δ . Then we see that

γ r (λdv) < nε and
λ1/Mdv

C‖dn‖(M+2)r
∞

> nε/4M/C.

In turn, the probability above is at most o(n−24). Observing that P((G,X1
G,t ) : X1

G,t ∈ ·) =
ECM(dn)[P(X1

G,t ∈ ·)], we can use Markov’s inequality to write

PCM(dn)
(
G : P

(
X1

G,t : ∣∣Cv
(
X1

G,t

)∣∣ ≥ nε) ≥ n−12) ≤ n−12,

implying the desired result. #

We next establish that the (K,R)-Sparse property for the random-cluster configuration
on G ∼ PCM(dn) holds with high probability for all t ≥ TBURN. Towards this, we introduce the
following notation.

DEFINITION 5.20. Given a graph G, a vertex subset V0, an edge subset A0, and a con-
figuration ω on E(G), define V(V0,A0)(ω) as the subset of vertices in V0 in nonsingleton
components in the boundary condition induced by ω(E(G) \ A0).

LEMMA 5.21. Fix q ≥ 1, γ > 1, p < pu(q,γ ), and δ > 0. Let R ≤ (1
2 − δ) logγ n. There

exist κ , K as well as C0 and r , such that for every v ∈ {1, . . . , n} for all t ≥ TBURN(C0, r) and
all (dn)n ∈ Dγ ,κ the following holds for A0 = BR(v) and V0 = ∂BR(v):

P
((

G,X1
G,t

) : ∣∣V(V0,A0)
(
X1

G,t

)∣∣ > K
) ≤ o

(
n−10)

.

We use Theorem 5.1 to bound the number of chances the revealing process of Process 5.10
has to reconnect to the vertices of V0 = ∂BR(v). Intuitively, since the components of ω̃ have
(stretched) exponential tail bounds, the number of chances at reconnecting is of the same or-
der as |V0|; since R is such that |V0| ≤ n1/2−δ , the number of such connections (each possibly
inducing a nontrivial boundary component) will be dominated by an Bin(n1/2+δ, n−1/2−δ)

random variable, yielding the desired tail bound on the probability of this exceeding some
large K .
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PROOF OF LEMMA 5.21. Fix v ∈ {1, . . . , n} and δ > 0, and any R ≤ (1
2 − δ) logγ n. First

of all, we recall from Lemma 2.4, that if we let ; be the event that G has the (γ , ε)-volume-
growth property, then

PCM(dn)
(
;c) ≤ o

(
n−10)

.

We will henceforth work on the event ;. Reveal the subgraph BR(v) on the event ; (such
that its volume is at most γ R) and initialize V0 = ∂BR(v) and A0 = E(BR(v)). We apply
the revealing procedure of Process 5.10 with this initialization. Recall from Observation 5.12
that the FK-clusters of V0 induced by ω̃(E(G) \ A0) are a subset of Amk∅ \ A0, and the

configuration ω̃ satisfies ω̃(Amk∅ \ A0) ≥ X1
G,t (Amk∅ \ A0). Thus, the sets V(V0,A0)(ω̃) and

V(V0,A0)(X
1
G,t ), are subsets of V(V0,A0)(Amk∅ \ A0).

Through the revealing process of Process 5.10, for each m, the edges of Br(êm;Ac
m−1) are

revealed one at a time via the breadth-first revealing per Processes 4.4 and 4.12. Therefore,
|V(V0,A0)(Amk∅ \ A0)| is at most the number of times during the revealing of Amk∅ , that a
half-edge is matched up to a half-edge belonging to a vertex that had already been discov-
ered. For a fixed m, consider the revealing of Br(êm;Ac

m−1). Conditionally on a discovered
edge set A the law of the next half-edge to be matched is uniform among all un-matched
half-edges. Thus, uniformly over the history of the revealing process up to that point, the
probability that the next half-edge to be matched is matched up to a vertex of V (A) is at most

|Amk∅ |‖dn‖∞
‖dn‖1 − |Vmk∅ |‖dn‖∞

.

We thus obtain for a sufficiently large constant = (depending on p, q , γ , r), for all L ≥ 1,

P
(
(G, ω̃) : G ∈ ;,

∣∣V(V0,A0)
(
X1

G,t

)∣∣ > L
)

≤ P
(
;, |Amk∅ | > n

1
2 − δ

2
) + P

(
Bin

(
n

1
2 − δ

2 ‖dn‖∞,2n− δ
2 − 1

2 ‖dn‖∞
)
> L

)
.

By the bound |Ê0| ≤ ‖dn‖∞γ R ≤ n
1
2 − 2δ

3 as long as ‖dn‖∞ ≤ nε∗ for a sufficiently small ε∗
(which holds as long as κ is sufficiently large in δ, M by Fact 4.14), we can apply Lemma 5.19
with a sufficiently large choice of M to deduce that the first term is at most

P
(
;, |A∞| > n

1
2 − δ

2
) ≤ P

(|A∞| ≥ |A0| + γ r‖dn‖∞n
δ

10
) ≤ o

(
n−10)

.

For the second term, notice that the mean of the binomial is 2n−δ‖dn‖2
∞. As long as κ is

sufficiently large so that ‖dn‖∞ ≤ nε∗ for sufficiently small ε∗ < δ/4, this is o(n−δ/2). Thus,
by the Chernoff bound for the binomial (4.3), for every fixed L ≥ 1,

P
((

G,X1
G,t

) : ∣∣V(V0,A0)
(
X1

G,t

)∣∣ > L
) ≤ o

(
n− δL

2 ∧10)
.(5.3)

Choosing L sufficiently large (depending on δ), we can make the right-hand side here o(n−10)
as well. #

PROOF OF THEOREM 2.12. Given Lemma 5.21, it is straightforward to deduce Theo-
rem 2.12. Specifically, take K sufficiently large so that the right-hand side of Lemma 5.21 is
o(n−10). By a union bound,

P
((

G,X1
G,t

) : X1
G,t is not (K,R)-Sparse

)

≤
∑

v

P
((

G,X1
G,t

) : ∣∣V(V0,A0)
(
X1

G,t

)∣∣ > K
) ≤ o

(
n−9)

.
(5.4)
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By Markov’s inequality,

PCM(dn)
(
G : P

(
X1

G,t is not (K,R)-Sparse
)
> n−6)

≤ n6ECM(dn)
[
P

(
X1

G,t is not (K,R)-Sparse
)]

,

and the conclusion follows from the fact that the expectation on the right-hand side is exactly
the probability on the left-hand side of (5.4). #

Let us conclude with a better bound in the special case of R = 0 from Theorem 2.12;
this will be applied to establish our mixing time lower bounds for the Ising/Potts Glauber
dynamics.

LEMMA 5.22. Fix q , γ and suppose p < pu(q,γ ). There exists κ such that for all
(dn)n ∈ Dγ ,κ , with probability 1 − o(1) over G ∼ PCM(dn), for every v ∈ {1, . . . , n} and every
η > 0,

πG
(
ω

(
Ec

v

)
is not ηdv-Sparse

) ≤ C exp(−ηdv/C).

(Here ω(Ec
v) is viewed as a boundary condition induced by ω on Ev = {e : e ; v}.)

PROOF. Fix a small ε > 0 and consider the following modification of the revealing pro-
cess of Process 5.10.

1. Label the half-edges of the vertex v ê
(1)
v , . . . , ê

(dv)
v .

2. Perform the process of Process 5.10 with V0 = v A0 = A(1)
0 := ∅, and Ê0 = ê

(1)
v ,

stopped if either |A(1)
m | ≥ nε or in step 1.(a) a bad step is taken, that is, some previously

exposed vertex gets matched with.
3. For i = 1, . . . , dv , if ê

(i)
v is hitherto un-matched, set A(i)

0 to be the set of all matched
edges to that point, and run the process of Process 5.10 with V0 = v, A0 = A(i)

0 , and Ê0 = e
(i)
v ,

stopped if |A(i)
m | ≥ nε or a bad step is taken.

Observe that in order for ω(Ec
v) to not be ηdv-Sparse, there must have been more than ηdv/2

many i’s for which the revealing process gets stopped (each such i adds at most two vertices
to the set V(v,∅)(ω) for ω ∼ πG). Throughout the entire procedure described above, at most
dvn

ε many edges are revealed, which for ε small and κ large is at most n1/4. By Lemma 5.19
with M taken sufficiently large, for any fixed i, the probability of reaching |A(i)

m | ≥ nε is at
most o(n−10) uniformly over the history of the process up to that point. At the same time, for
any fixed i, the probability of a bad step being taken for that revealing is at most

nε · n1/4‖dn‖∞
‖dn‖1 − n1/4‖dn‖∞

≤ o
(
n−1/2)

.

Putting the above together, the probability of more than ηdv/2 many of the i’s being stopped
is at most

P
(
Bin

(
dv, n

−1/2) ≥ ηdv/2
) ≤ C exp(−ηdv/C).

This in turn bounds the probability that ω(Ec
v) is ηdv-Sparse as desired. #

6. Correlation decay and mixing time on treelike graphs. Theorem 2.12 together with
Lemma 2.2 reduce our analysis to treelike balls of radius (1

2 − o(1)) logγ n with K-Sparse
boundary conditions. In this section, we establish sharp bounds on the rate of correlation
decay on such treelike graphs (Theorem 2.9) and bound the mixing time at these local scales
(Lemma 6.7).
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6.1. Rate of correlation decay in treelike graphs. To prove Theorem 2.9 we will closely
follow the approach from [4], where an analogous result was proved for regular graphs
(specifically see Proposition 3.3 in [4]). The key part of the extension is the use of the (γ , ε)-
volume growth condition to enable the application of Lemma 2.7 to all sufficiently large
subsets of the graph that are trees.

Let us fix an arbitrary vertex v ∈ V and for ease of notation set B := BR(v) and for each
1 ≤ - ≤ R, let Q- = {u ∈ B : d(u, v) ≥ -}. For a boundary condition ξ on ∂B , similar to
Definition 5.20 denote by VB,ξ the set of vertices in nontrivial components of ξ (a component
is nontrivial when it has at least two vertices). For any u ∈ B such that d(u, v) = -, let

u
Q-←→ VB,ξ denote the event that u is connected to VB,ξ by a path of open edges fully

contained in Q-. Define the event

ϒB,ξ := {
ω ∈ {0,1}E(B) : ∣∣{u ∈ B : d(u, v) = -, u

Q-←→ VB,ξ
}∣∣ ≥ 2 for all 1 ≤ - ≤ R

}
.

It was proved in [4] that on general graphs, the event ϒB,ξ controls the propagation of influ-
ence from ∂B to the vertex v.

Recall that Ev denotes the set of edges incident to the vertex v.

LEMMA 6.1 (Lemma 5.3 in [4]). Fix a graph G = (V ,E), a vertex v ∈ V , and con-
sider the ball BR(v); let ξ ≥ τ denote two boundary conditions on ∂BR(v) = {w ∈ BR(v) :
d(v,w) = R}. Then,

∥∥πξ
BR(v)

(
ω(Ev) ∈ ·) − πτ

BR(v)

(
ω(Ev) ∈ ·)∥∥TV ≤ π

ξ
BR(v)(ϒBR(v),ξ ).

With this lemma in hand, we are able to provide the proof of Theorem 2.9.

PROOF OF THEOREM 2.9. By the triangle inequality and Lemma 6.1, we have
∥∥πξ

BR(v)

(
ω(Ev) ∈ ·) − πτ

BR(v)

(
ω(Ev) ∈ ·)∥∥TV

≤ ∥∥πξ
BR(v)

(
ω(Ev) ∈ ·) − π0

BR(v)

(
ω(Ev) ∈ ·)∥∥TV

+ ∥∥πτ
BR(v)

(
ω(Ev) ∈ ·) − π0

BR(v)

(
ω(Ev) ∈ ·)∥∥TV

≤ π
ξ
BR(v)(ϒBR(v),ξ ) + πτ

BR(v)(ϒBR(v),τ ).

Hence, it suffices to bound π
ξ
B(ϒB,ξ ) for an arbitrary vertex v of G and any K-Sparse bound-

ary condition ξ . Fix any such v and let B = BR(v). Let H ⊂ E(B) be a set of at most L edges
such that the subgraph (B,E(B) \ H) is a tree; the existence of such a set is guaranteed by
the fact that BR(v) is L-Treelike. Let Z = {d1, . . . , dk} be the subset of distances (from v)
at which H contains at least one vertex. Observe that each edge of H intersects either one
or two consecutive depths (distances from v) in Z and thus |Z| ≤ 2L since B is L-Treelike.
Letting d0 = 0 and dk+1 = R, for i = 0, . . . , k we define

Fi := {
u ∈ B : di < d(u, v) < di+1

}
.

For each 0 ≤ i ≤ k, the graph Fi = (Fi ,E(Fi)) is a forest; observe that some Fi’s might
be empty. For each i, let Tij = (Tij ,E(Tij )) for j = 0,1, . . . denote the distinct connected
components (subtrees) of Fi so that Fi = ⋃

j≥0 Tij .
For ϒB,ξ to hold, there must exist two sequences of simple paths ; = γ0, . . . ,γk and

;′ = γ ′
0, . . . ,γ

′
k such that γi ⊂ E(Tij ) and γ ′

i ⊂ E(Tij ′) with j $= j ′ such that γi (resp., γ ′
i )

connects the root of Tij (resp., Tij ′ ) to one of its leaves.
Observe that any simple path P between v and VB,ξ is completely determined by an

ordered sequence of vertices from V (H) it uses and its endpoint in VB,ξ . Moreover, it is
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associated to a unique sequence ;, and each sequence ; can in turn correspond to at most
2|V (H)|k ≤ 4L2

simple paths because there are at most 2L vertices in V (H). Since ξ is K-
Sparse, there are at most K choices for the endpoint of the path between v and VB,ξ . In total,
we get that there are at most 4L2

K(2L + 1)! possible simple paths ; (this is a crude upper
bound, but it suffices for our purposes). A union bound then implies

π
ξ
B(ϒB,ξ ) ≤ [

4L2
K(2L + 1)!]2 · sup

;,;′:V (;)∩V (;′)=∅
π

ξ
B

(
ω

(
; ∪ ;′) = 1

)
.(6.1)

Fix any two such paths ;, ;′, and consider the probability that ω(; ∪;′) = 1. The paths ;
and ;′ are vertex-disjoint by construction, but the events that ; and ;′ are open (i.e., that all
of their paths are open) in ω need not be independent. To make them so, we wire all vertices
at depths in the set

k+1⋃

i=0

{di − 1, di, di + 1} ∩ [0,R].

Let π̃B be the resulting random-cluster distribution. The monotonicity of the random-cluster
measure implies that

π
ξ
B

(
ω

(
; ∪ ;′) = 1

) ≤ π̃B
(
ω

(
; ∪ ;′) = 1

)
.(6.2)

The distribution π̃B is a product measure over the Tij ’s with boundary condition (1,") in
each Tij . Hence, since ; and ;′ are such that for each i ≥ 0, γi and γ ′

i belong to distinct
subtrees Tγi , Tγ ′

i
of the forest Fi , and we have

π̃B
(
ω

(
; ∪ ;′) = 1

) =
k∏

i=0

π
(1,")
Tγi

(γi)
k∏

i=0

π
(1,")
Tγ ′

i

(
γ ′
i

)
.

Let hi = di+1 − di be the height of the trees in Fi . Then,

π̃B
(
ω

(
; ∪ ;′) = 1

) ≤
∏

i:hi>
√

εR

π
(1,")
Tγi

(γi )π
(1,")
Tγ ′

i

(
γ ′
i

)
.

Since G satisfies the (γ , ε)-volume-growth condition of Definition 2.3, for each subtree Tγi of
height at least

√
εR, for every vertex of Tγi at distance at least εR from ∂Tγi , we have |∂Tγi | ≤

γ hi . Hence, Lemma 2.7 implies that there exists a constant A > 0 such that, uniformly over
;, ;′,

π̃B
(
ω

(
; ∪ ;′) = 1

) ≤ A2L
∏

i:hi>
√

εR

p̂2(1−√
ε)hi

= A2Lp̂
2(1−√

ε)
∑

i:hi>
√

εR hi

≤ A2Lp̂2(1−√
ε)(R−4L−2L

√
εR) = A′p̂2(1−(2L+1)

√
ε)R,

for a suitable constant A′ = A′(A,L,K). Plugging this bound into (6.1)–(6.2), we obtain

π
ξ
B(ϒB,ξ ) ≤ A′[K(2L + 1)!]2

p̂2(1−(2L+1)
√

ε)R,

and the result follows taking C = 2A′[4L2
K(2L + 1)!]2. #

6.2. Local mixing of the FK-dynamics. In this section, we prove the mixing time bound
of Lemma 6.7 for treelike graphs with sparse boundary conditions. We start by recalling some
standard background concerning mixing times, log-Sobolev inequalities, and the effects of
random-cluster boundary conditions on these quantities.
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Log-Sobolev inequalities. For a Markov chain on a finite state space ' with transition ma-
trix P , reversible with respect to a distribution µ, the Dirichlet form is defined for any func-
tion f : ' → R by

E(f, f ) := 1
2

∑

ω,ω′∈'

µ(ω)P
(
ω,ω′)(f (ω) − f

(
ω′))2

,(6.3)

and its log-Sobolev constant is given by

α(P ) := min
f :Entµ[f 2]$=0

E(f, f )

Entµ[f 2] where Entµ
[
f 2] = Eµ

[
f 2 log

f 2

Eµ[f 2]
]
.(6.4)

A log-Sobolev inequality takes the form E(f, f ) ≥ α Entµ[f 2] for all functions f . It is a stan-
dard fact that this inequality implies exponential convergence with rate α in total-variation
distance to the stationary distribution (see, [21], eq. (3.3)).

FACT 6.2. Consider an ergodic Markov chain on a finite state space ' with transition
matrix P reversible with respect to the distribution µ. If the chain has a log-Sobolev constant
α = α(P ),

max
x0∈'

∥∥P
(
X

x0
t ∈ ·) − µ

∥∥
TV ≤ 1√

2
e−αt

(
log

1
minx∈' µ(x)

)1/2
,

where X
x0
t is the chain after time t , started from initial state x0.

Boundary conditions and the FK-dynamics. Two “similar” random-cluster boundary condi-
tions (in terms of the wiring they induce) have similar effects on the underlying random-
cluster distribution and on the behavior of the corresponding FK-dynamics. In turn, the
Dirichlet form, and log-Sobolev constants of their corresponding dynamics should be “close”
to one another. We compile here a number of definitions and results that formalize this idea.

DEFINITION 6.3 (Definition 2.1 from [5]). For two boundary conditions (partitions) φ ≤
φ′, define D(φ,φ′) := c(φ) − c(φ′) where c(φ) is the number of components in φ. For two
partitions φ, φ′ that are not comparable, let φ′′ be the smallest partition such that φ′′ ≥ φ and
φ′′ ≥ φ′ and set D(φ,φ′) = c(φ) − c(φ′′) + c(φ′) − c(φ′′).

The following lemma is then straightforward from the definition of the random-cluster
measure (1.2).

LEMMA 6.4 (Lemma 2.2 from [5]). Let G = (V ,E) be an arbitrary graph, p ∈ (0,1)
and q > 0. Let φ and φ′ be any two partitions of V , that is, boundary conditions on G. Then,
for all random-cluster configurations ω ∈ {0,1}E , we have

q−2D(φ,φ′)π
φ′
G (ω) ≤ π

φ
G(ω) ≤ q2D(φ,φ′)π

φ′
G (ω).

The following corollary follows immediately from Lemma 6.4, the definition of the tran-
sition matrix of the FK-dynamics, and Theorem 4.1.1 in [57].

COROLLARY 6.5. Let G = (V ,E) be an arbitrary graph, p ∈ (0,1) and q > 0. Consider
the FK-dynamics on G with boundary conditions φ and φ′, and let α, α′ denote their log-
Sobolev constants, respectively. Then,

q−5D(φ,φ′)α′ ≤ α ≤ q5D(φ,φ′)α′.
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We now use the above to bound the rate of convergence to equilibrium on L-treelike balls
of radius (1

2 − δ) logγ n.

LEMMA 6.6. Suppose G = (V ,E) is L-Treelike. Let ξ be a K-Sparse boundary con-
dition on G. For every p ∈ (0,1) and q > 0, there exists α0(p, q,L,K) > 0 (importantly,
independent of G) such that the log-Sobolev constant of the FK-dynamics on G with bound-
ary condition ξ is at least α0.

PROOF. Observe first that the FK-dynamics on any tree with free boundary condition
has log-Sobolev constant cp,q = '(1). This follows from the observation that the random-
cluster model on a tree with free boundary condition is simply the product measure, where
every edge is open independently with probability p̂, and the standard fact that the entropy
tensorizes over product spaces; see, for example, [1].

Now, let H ⊂ E be a set of at most L edges such that (V ,E \ H) is a tree. Consider the
tree T = (V ,E \ H) and let φ be the boundary condition that includes all the connections
from ξ and adds wirings between w and w′ for every edge {w,w′} ∈ H . By Corollary 6.5,
the log-Sobolev constant for the FK-dynamics on T with boundary condition φ is at least
cp,q · q−5(K+L).

The FK-dynamics on G with boundary condition φ is a product Markov chain on
{0,1}E\H × {0,1}H with stationary distribution π

φ
T ⊗∏|H |

i=1 νi , where the νi ’s are independent
Ber(p) distributions. Hence, it follows that the log-Sobolev constant of the FK-dynamics on
G with boundary condition φ is at least ĉp,q · q−5(K+L) for a suitable constant ĉp,q > 0. Fi-
nally, we note that by Corollary 6.5, the log-Sobolev constant on G with boundary conditions
ξ (instead of φ) is at least ĉp,qq

−5(K+L)−5L. #

Combining the above, we arrive at the following bound on the rate of convergence of the
FK-dynamics on treelike graphs with sparse boundary conditions.

LEMMA 6.7. Consider an L-Treelike graph G = (V ,E) with a K-Sparse boundary
condition ξ . For every p ∈ (0,1) and q > 0, there exists α0 = α0(p, q,L,K) > 0 such that

max
x0∈'

∥∥P
(
X

x0
t ∈ ·) − π

ξ
G

∥∥
TV ≤ 1√

2
e−α0t

(
log

1

minx∈' π
ξ
G(x)

)1/2
.

PROOF OF LEMMA 6.7. This follows by combining Lemma 6.6 and Fact 6.2. #

7. Proof of main theorem. Given the estimates proven in the preceding sections, we
can now prove our main result, Theorem 1.6.

7.1. Proof of main theorem: Upper bound. We begin with the proof of the upper bound.

PROOF OF THEOREM 1.6: UPPER BOUND. Fix q > 1, γ > 1, and p < pu(q,γ ). (It suf-
fices to consider γ > 1 since limγ↓1 pu(q,γ ) = 1, and if γ ≥ γ ′, then Dγ ′,κ ⊂ Dγ ,κ .) Let
R = (1

2 − δ) logγ n, where δ > 0 is a small constant we choose later. For K and L fixed posi-
tive constants, ε ∈ (0,1/2) and t ≥ 0, let ;t = ;t (L,K, δ, ε,γ ) be the subset of (multi)graphs
on n vertices with degree sequence dn given by:

;t = {
G : G is (L,R)-Treelike,has (γ , ε)-volume growth

and P
(
X1

G,t is (K,R)-Sparse
) ≥ 1 − n−5}

.
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By Lemmas 2.2 and 2.4, as well as Theorem 2.12, for every δ ∈ (0,1/2) and ε ∈ (0,1/2),
there exist constants κ(p, q,γ , δ), L(δ), K(p,q,γ , δ), and T (p, q,γ ) such that if (dn)n ∈
Dγ ,κ then PCM(dn)(;

c
T ) = o(1). Hence, it suffices for us to prove that the mixing time of the

FK-dynamics on any G ∈ ;T is O(logn).
Fix any G ∈ ;T . Let ((X

x0
t )t≥0)x0 be the family of FK-dynamics initialized from all possi-

ble configurations x0, coupled via the standard grand coupling for the FK-dynamics; that is,
using the same clock rings and the same uniform random variables to make the edge updates
while running the chain from different initializations. Recall that this coupling is monotone
when q ≥ 1 so that for every t ≥ 0, if X

x0
t ≤ X

y0
t , then X

x0
t ′ ≤ X

y0
t ′ for all t ′ ≥ t . Using the

standard fact that the coupling time provides a bound on the mixing time (see, e.g., [48]), by
a union bound over the edges, it suffices to show that under this grand coupling,

P
(
X1

T̂
(e) $= X0

T̂
(e)

) ≤ o
(
1/

∣∣E(G)
∣∣) for every e ∈ E(G).(7.1)

Now fix any such e = {u, v} and for ease of notation, set Bv = E(BR(v)) and Bc
v = E(G)\

Bv . Consider two auxiliary copies of the FK-dynamics Y 1
t and Y 0

t that censor (ignore) all
updates on edges of Bc

v after time T . The censoring inequality from [55] applied to the FK-
dynamics [36], Theorem 2.5, implies that Y 1

t ! X1
t and Y 0

t $X0
t for all t ≥ 0 and thus

P
(
X1

t (e) $= X0
t (e)

) ≤ P
(
X1

t (e) = 1
) − P

(
X0

t (e) = 1
) ≤ P

(
Y 1

t (e) = 1
) − P

(
Y 0

t (e) = 1
)
.

Let Hv be the set of configurations on Bc
v such that the boundary conditions they induce

on Bv are K-Sparse. (Here and throughout the paper, the boundary condition induced by
a configuration ω(Bc) on a set B wires two vertices w,w′ ∈ V (B) if they are in the same
connected component of ω(Bc).) By definition of ;T and monotonicity of the FK-dynamics,
we have for every G ∈ ;T ,

P
(
Y 0

T

(
Bc

v

)
/∈ Hv

) ≤ P
(
Y 1

T

(
Bc

v

)
/∈ Hv

) ≤ n−5.

Therefore, P(Y 1
t (e) = 1) − P(Y 0

t (e) = 1) is bounded by

max
φ1,φ0∈Hv

[
P

(
Y 1

t (e) = 1 | Y 1
T

(
Bc

v

) = φ1) − P
(
Y 0

t (e) = 1 | Y 0
T

(
Bc

v

) = φ0)] + 2n−5.

Now fix any φ1,φ0 ∈ Hv . From the triangle inequality, we have

P
(
Y 1

T +s(e) = 1 | Y 1
T

(
Bc

v

) = φ1) − P
(
Y 0

T +s(e) = 1 | Y 0
T

(
Bc

v

) = φ0)

≤ ∣∣P
(
Y 1

T +s(e) = 1 | Y 1
T

(
Bc

v

) = φ1) − πG
(
ω(e) = 1 | ω(

Bc
v

) = φ1)∣∣(7.2)

+ ∣∣πG
(
ω(e) = 1 | ω(

Bc
v

) = φ1) − πG
(
ω(e) = 1 | ω(

Bc
v

) = φ0)∣∣(7.3)

+ ∣∣P
(
Y 0

T +s(e) = 1 | Y 0
T

(
Bc

v

) = φ0) − πG
(
ω(e) = 1 | ω(

Bc
v

) = φ0)∣∣.(7.4)

Observe that the chain (Y 1
T +s)s≥0 may be viewed as an FK-dynamics on Bv with the bound-

ary condition induced by φ1, initialized from the (random) configuration Y 1
T (Bv) and with

stationary distribution πG(ω(Bv) ∈ · | ω(Bc
v) = φ1) = π

φ1

Bv
; the analogous statement is true

for (Y 0
T +s)s≥0 and π

φ0

Bv
.

Setting T̂ = T + Ŝn where Ŝn = Ĉ logn for a constant Ĉ(p, q,γ ,L,K) sufficiently large,
since Bv is L-Treelike and φ1 is K-Sparse, we obtain from Lemma 6.7 that

∣∣P
(
Y 1

T̂
(e) = 1 | Y 1

T

(
Bc

v

) = φ1) − πG
(
ω(e) = 1 | ω(

Bc
v

) = φ1)∣∣ ≤ n−5;
the same bound holds for (7.4).
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Finally, since both φ1 and φ0 induce K-Sparse boundary conditions on Bv and G is
(L,R)-Treelike with (γ , ε)-volume growth, by Theorem 2.9 there exists C = C(p,q,L,
K,γ ) > 0 such that (7.3) is at most

∥∥πφ1

Bv

(
ω(Ev) ∈ ·) − π

φ0

Bv

(
ω(Ev) ∈ ·)∥∥TV ≤ Cp̂2(1−C

√
ε)R ≤ Cp̂(1−2δ)(1−C

√
ε) logγ n,

where Ev is the set of edges incident to v, and we used R = (1
2 − δ) logγ n. Setting θ =

(1 − 2δ)(1 − C
√

ε),

(7.5)
∥∥πφ1

Bv

(
ω(Ev) ∈ ·) − π

φ0

Bv

(
ω(Ev) ∈ ·)∥∥TV ≤ Cp̂θ logγ n = Cn

−θ(1− 1
logp̂γ γ )

.

Since p̂ < 1/γ , logp̂γ γ < 0, there is some cp,γ > 0 such that the right-hand side is
Cn−θ(1+cp,γ ). By taking ε, δ sufficiently small, θ can be made arbitrarily close to 1, so that
(7.5) is o(1/n).

Now notice that |E(G)| = O(n). To see this, observe that by Jensen’s inequality
( 1
n

∑
v dv)

2 ≤ 1
n

∑
v d2

v , and since (dn) ∈ Dγ ,κ , we also have
∑

v d2
v ≤ (1 + γ )

∑
v dv . Com-

bining these two inequalities we find that |E(G)| ≤ (1+γ )n
2 . Therefore, each of (7.2)–(7.4) are

o(1/|E(G)|), implying (7.1) as desired. #

7.2. Lower bound on the mixing time of FK-dynamics. We now turn to proving the mix-
ing time lower bound of Theorem 1.6. Though the argument is a straightforward adaptation
of the proof of the lower bound in [4], given our results on (γ , ε)-growth of the random graph,
and the exponential decay rate on random trees from Lemma 2.7, we include the proof for
completeness, demonstrating that our new results give the requisite inputs to adapt the proof
of [4].

CLAIM 7.1. Fix ε small. Suppose κ is sufficiently large and (dn)n ∈ Dγ ,κ . With PCM(dn)-
probability 1 − o(1), G satisfies (γ , ε)-volume growth, and there exist n1/5 vertices whose
balls of radius 1

5 logγ n are disjoint, and are trees.

PROOF. On the one hand, by Lemma 2.4, with probability 1 − o(1), G satisfies (γ , ε)-
volume growth, as long as κ is sufficienlty large (depending on ε). We prove the rest of
the events have probability 1 − o(1) by repeated application of the breadth-first revealing of
Process 4.6. Namely, consider the procedure where we repeatedly take an arbitrary vertex v
that has not been discovered yet, and reveal its ball of radius R = 1

5 logγ n via Process 4.6.
Let vi be the ith vertex to be selected in this procedure, and let Ai be

⋃
j≤i E(BR(vj )). Then,

for integer m ≤ n the probability that one of (BR(v1), . . . ,BR(vm)) is not disjoint trees, is at
most

PCM(dn)

(
m⋃

i=1

{
BR(vi) ∩ Ai−1 =∅ or BR(vi) is not a tree

}
,

G ∈ (γ , ε)-volume growth
∣∣∣∣ Ai−1

)

.

Using the fact that G is of γ , ε-volume growth that we are intersecting with, the event can be
rewritten as in its first γ R many matching attempts, none match with anything in Ai or any
half-edge belonging to a newly discovered half-edge of BR(vi). In any one edge matching,
uniformly over what has already been revealed, this probability is bounded by

‖dn‖∞mn1/5

‖dn‖1 − ‖dn‖∞mn1/5 ,
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which, for m = n1/5, is at most n−1/2 as long as κ is sufficiently large, so that ε∗(κ) <
1/10. As there are at most n2/5 edges to match, the probability that no edge gets matched
to an already discovered vertex, and thus all the revealed balls form disjoint trees, is at most
P(Bin(n2/5, n−1/2) > 0) which is o(1) simply by a Markov inequality. #

Fix η ∈ (0,1/5) to be taken sufficiently small later. For every G having n1/5 many vertices
whose balls of radius 1

5 logγ n are disjoint trees, choose arbitrarily some nη vertices amongst
the n1/5 of Claim 7.1, and for each vertex collect a representative edge incident to it to form
the set C = Cη(G). Our proof will rely on a coupling of the restrictions of Xt,G and πG to C to
Ber(p̂) product chains. For this, let:

• Xt = Xt,G be a realization of the FK-dynamics;
• Yt = Yt,G be a realization of the FK-dynamics that censors all updates in E(G) \ C;
• ν as the product measure over |C| many Ber(p̂) random variables.

As before, let Y 0
t be the chain Yt initialized from the all-0 configuration.

LEMMA 7.2. Let G be any graph satisfying (γ , ε)-volume growth for ε < 1/6, and hav-
ing at least n1/5 vertices whose balls of radius 1

5 logγ n are disjoint trees. For every q > 1,
and p < pu(q,γ ), there exists η > 0 sufficiently small such that we have the following for
C = Cη(G):

1. For all T = O(logn), for all t ≤ T ,
∥∥P

(
X0

t (C) ∈ ·) − P
(
Y 0

t (C) ∈ ·)∥∥TV ≤ o(1).

2. ‖πG(ω(C) ∈ ·) − ν‖TV ≤ o(1).

PROOF. We start with part (1). Our aim is to show that under the grand coupling of X0
t

and Y 0
t , for every t ≤ T = O(logn), we have P(X0

t $= Y 0
t ) ≤ o(1). Under the grand coupling,

let TT = (t1, t2, . . . , ts(T )) denote the sequence of times on which the updated edge is in C,
so that s(T ) counts the number of updates in C by time T . We can then bound

P
(
X0

t $= Y 0
t

) ≤ P
(
s(T ) > n2η) + P

(
X0

t $= Y 0
t , s(T ) ≤ n2η)

.

The first term on the right-hand side is at most the probability that Pois(T |C|) ≥ n2η which
is o(1) by standard tail estimates for Poisson variables. It thus suffices to work on the event
s(T ) ≤ n2η.

Let R := 1
6 logγ n and let Zt be the FK-dynamics chain (coupled to Xt , Yt through the

grand coupling) that freezes the configuration on C ∪ (E(G) \ ⋃
e∈C E(BR(e))) to be all-1.

Let Z0
t be the chain Zt initialized from the configuration that is all-0 on

⋃
e∈C E(BR(e)) \ {e}

(but all-1 on the frozen edges). Observe, trivially, that X0
t ≤ Z0

t for all t ≥ 0. Also, observe
that the updates of Z0

t are stochastically dominated by Glauber updates on the union of 2|C|
many d-ary trees (Te,1,Te,2)e∈C of depth R, rooted at the endpoints of the edges of C, and
each having (1,") boundary conditions. By monotonicity of the FK-dynamics, for every
t ≥ 0,

P
(
Z0

t

(⋃

e∈C

{
E

(
BR(e)

) \ {e}}
)

∈ ·
)

4
⊗

e∈C

⊗

i∈{1,2}
π

(1,")
Te,i

.(7.6)

For each time ti ∈ TT , when an edge eti ∈ C is updated, Y 0
ti
(eti ) is drawn from an indepen-

dent Ber(p̂). At the same time, X0
ti
(eti ) is drawn from Ber(p̂) if the endpoints of eti are not

connected in X0
ti

, which in turn must occur if none of (Te,1,Te,2)e∈C have an open root-to-leaf
path in Z0

t . We thus consider the probability of this event.
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Since G has (γ , ε)-volume growth for ε < 1/6, every tree among (Te,1,Te,2)e∈C has at most
γ R many leaves. Thus, by the stochastic domination of (7.6), and Lemma 2.7, the probability
that the endpoints of eti are connected in Z0

ti
is at most 2C(p̂γ )R , which for η sufficiently

small is O(n−3η). On the event that {s(T ) ≤ n2η}, we can union bound the above probability
over the s(T ) times in TT , to find that P(X0

t $= Y 0
t , s(T ) ≤ n2η) is at most O(n−η) = o(1) as

desired.
For part (2), consider the 2|C| many d-ary trees (Te,1,Te,2)e∈C emanating from the end-

points of the edges of C. Notice that if none of (Te,1,Te,2)e∈C have an open root-to-leaf path,
then the values ω(C) are conditionally distributed as a product of Ber(p̂) random variables,
that is, ω(C) would conditionally be distributed as ν(A).

As such, the total-variation distance ‖πG(ω(C) ∈ ·) − ν‖TV is bounded by the πG-
probability that one of (Te,1,Te,2)e∈C has an open root-to-leaf path. By the stochastic domi-
nation

πG

(
ω

(⋃

e∈C
Te,1 ∪ Te,2

)
∈ ·

)
4

⊗

e∈C

⊗

i∈{1,2}
π

(1,")
Te,i

.

By a union bound, the left-hand side above is then at most
∑

e∈C

∑

i∈{1,2}
π

(1,")
Te,i

(e ↔ ∂Te,i),

which the (γ , ε)-volume growth condition and Lemma 2.7 together show is at most 2nη ·
C(p̂γ )R . For ε sufficiently small (depending on p, q , γ ) this is o(1). #

PROOF OF THEOREM 1.6: LOWER BOUND. Take any n-vertex graph G having (γ , ε)-
volume growth for ε < 1/6 and with n1/5 many vertices whose balls of radius 1

5 logγ n are
disjoint trees. Note that by Claim 7.1, such graphs have PCM(dn)-probability 1 − o(1). Take η

sufficiently small per Lemma 7.2. Consider the event A+ ⊂ {0,1}C that at least p̂nη −n2η/3 of
the edges in C are open. Let (Y s) be the (discrete-time) product Markov chain over |C| = nη

many i.i.d. Ber(p̂) random variables, coupled to Yt (C) via Y s(t) = Yt (C) for all t , where
s(t) counts the number of updates in C by time t . By item (1) of Lemma 7.2, for every
T = O(logn),

P
(
X0

T (C) ∈ A+) ≤ P
(
s(T ) > cnη logn

) + P
(
Y 0

T ∈ A+, s(T ) ≤ cnη logn
) + o(1)

≤ P
(
s(T ) > cnη logn

) + max
s≤cnη logn

P
(
Y

0
s ∈ A+) + o(1).

(In the latter equation, we used the fact that the law of Y
0
s only depends on the sequence of

times (t1, . . . , ts(T )) through the number of total updates s(T ).) Taking T := c2 logn for c > 0
sufficiently small, the probability that s(T ) is more than cnη logn is o(1) by tail bounds of a
Poisson random variable with rate T |C| = c2nη logn. Turning to the middle term above, by
the standard coupon collector bound, for every c > 0 sufficiently small, sups≤cnη logn P(Y

0
s ∈

A+) ≤ o(1).
Combining the above, we obtain

P
(
X0

T (C) ∈ A+) = o(1).

At the same time, by a Chernoff bound, ν(A+) = 1 − o(1) and by item (2) of Lemma 7.2,
then, πG(A+) = 1 − o(1). These two together imply that the (continuous-time) mixing time
is at least T = '(logn) as claimed. #



5044 A. BLANCA AND R. GHEISSARI

8. High-degree vertices slow down mixing for Potts–Glauber dynamics. Our lower
bound on the mixing time of the Glauber dynamics for the Potts model in a random graph is
derived from a bottleneck argument. For the special case of the Erdős–Rényi random graph,
the slow down can be attributed to isolated stars whose central vertex has degree !(

logn
log logn).

Such a star appears in the random graph with high probability, and since it disconnected from
the rest of G, the mixing time on the star serves as a lower bound for the mixing time on the

full graph. This straightforwardly gives a lower bound of n
1+!( 1

log logn ) on the discrete-time
mixing time of the Glauber dynamics; see [53], Proposition 1.8.

For more general degree sequences, especially when there exist vertices of degree
ω(logn), the neighborhoods of the high-degree vertices will not be isolated from the re-
mainder of the graph, and in fact will correspond to the denser parts of the random graph.
We use the exponential decay of random-cluster connectivities when p < pu(q,γ ) to still
leverage this star structure to give a lower bound on the mixing time of the Potts–Glauber
dynamics on a random graph that are exponential in its largest degree.

We will work with the discrete-time Potts–Glauber dynamics, which at each step selects
a vertex v ∈ V uniformly at random, and resamples its spin σv according to the following
conditional distribution:

µG,β,q
(
σv = i | σ (

V \ {v})) = eβ
∑

(v,w)∈E 1{σw=i}
∑q

i=1 eβ
∑

(v,w)∈E 1{σw=i} for i = 1, . . . , q.

PROOF OF THEOREM 1.7. Let vA be a vertex in G of maximum degree, and let mi(σ )

denote the number of vertices adjacent to vA that are assigned spin i in configuration σ . Define
the following bottleneck set:

Aε :=
{
σ : σvA = 1,m1(σ ) − max

j $=1
mj(σ ) ≥ @εdvAA

}
.

Our aim is to show that Aε is a set of small conductance. Namely, we wish to show that there
exists ε > 0 such that

B(Aε) = Q(Aε,Ac
ε)

µ(Aε)µ(Ac
ε)

≤ e−'(dvA ),

where Q(Aε,Ac
ε) = ∑

σ∈Aε,σ ′∈Ac
ε
µ(σ )P (σ,σ ′) with P denoting the transition matrix of the

discrete-time Glauber dynamics.
For this, notice that we can expand Q(Aε,Ac

ε) into its contribution from transitions that
exit Aε by flipping the spin of σvA , and those that exit Aε by flipping the spin of a neighbor
of vA in the configuration. Hence, let

Âε :=
{
σ ∈ Aε : m1(σ ) − max

j $=1
mj(σ ) = @εdvAA

}
.

Namely, we can bound

B(Aε) ≤
∑

σ∈Aε

∑q
j=2 µ(σ )P (σ,σ vA→j )

µ(Aε)µ(Ac
ε)

+
∑

σ∈Âε,σ ′∈Ac
ε
µ(σ )P (σ,σ ′)

µ(Aε)µ(Ac
ε)

≤ maxσ∈Aε,j $=1 P(σ,σ vA→j )

µ(Ac
ε)

+ µ(Âε)maxσ∈Âε
P(σ,Ac

ε)

µ(Aε)µ(Ac
ε)

,

(8.1)

where σ vA→j is the configuration which agrees with σ everywhere except on vA where it takes
spin j . Observe first of all, that by the spin symmetry of the model Potts model, µ(Aε) ≤
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1/q and thus µ(Ac
ε) ≥ q−1

q ≥ 1
2 . Moreover, by the definition of the Glauber dynamics, the

transition matrix P satisfies

max
σ∈Aε

P
(
σ,σ vA→j ) = 1

n
· eβmj (σ )

∑
j eβmj (σ )

≤ eβ(mj (σ )−m1(σ ))

n
≤ e−βεdvA

n
.

Also, for every σ ∈ Âε , it satisfies

max
σ∈Âε

P
(
σ,Ac

ε

) ≤ dvA

n
,

as one needs to select a neighbor of vA to update in order to move from σ ∈ Âε to Ac
ε . As

such,

B(Aε) ≤ 2
n
e−βεdvA + 2dvA

n

µ(Âε)

µ(Aε)
.(8.2)

It remains to bound the ratio of the probabilities of the events Âε to Aε . It will be convenient
to work with the random-cluster representation of the Potts model. Let

ARC
ε := {

ω ∈ {0,1}E(G) : ∣∣{e ∈ EvA : ω(e) = 1
}∣∣ ≥ εdvA and

∣∣VEvA
(ω)

∣∣ ≤ εdvA/2
}
,

where we recall that EvA is the set of edges incident to vA and VEvA
(ω) is the set of neighbors

of vA in nontrivial connected components in the configuration induced by ω(E(G) \ EvA). In
words this is the event that an ε fraction of the edges incident to vA are open, and at most
εdvA/2 of the neighbors of vA are connected to one another in the configuration outside the
immediate neighborhood of vA.

We first note that for some ε(p, q,γ ) > 0, with high probability under the random graph,
the event ARC

ε has high probability under the random-cluster measure π . For this, observe
that since π stochastically dominates the independent edge percolation measure with edge
probability p̂, and by a Chernoff bound, for any G ∼ PCM(dn)

πG
(∣∣{e ∈ EvA : ω(e) = 1

}∣∣ < εdvA

) ≤ P
(
Bin(dvA, p̂) < εdvA

) ≤ e−'(p̂dvA ),

for ε sufficiently small (say, less than p̂/2). By Lemma 5.22, if κ is sufficiently large and
(dn)n ∈ Dγ ,κ , for every ε > 0, we have with probability 1 − o(1) over the graph G ∼ PCM(dn),

πG
(∣∣VEvA

(ω)
∣∣ > εdvA/2

) ≤ e−'(εdvA ).

Hence, it follows from a union bound that there exists ε(p, q,γ ) small, such that with prob-
ability 1 − o(1), G ∼ PCM(dn) is such that

πG
(
ARC

ε

) ≥ 1 − e−'(εdvA ).

As such, as long as ε > 0 is sufficiently small, we can bound

µ(Âε)

µ(Aε)
≤ P(µ,π)(Âε | ARC

4ε ) + e−'(εdvA )

P(µ,π)(Aε | ARC
4ε )(1 − e−'(εdvA ))

,

where P(µ,π) denotes the joint Edwards–Sokal distribution over spin-edge configurations; see
[24, 38].

Now, consider a random-cluster configuration in ARC
4ε . Fixing a random-cluster configura-

tion ω in ARC
4ε , we claim that the probability of Aε given ω is at least the probability of the

following event ;ε , that

1. the component CvA(ω) is given state 1; and
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2. amongst the vertices of

Vc
A := V (EvA) \ (

CvA(ω) ∪ VEvA
(ω)

)
,

the number of vertices in each state in [q] is within εdvA/2 of |Vc
A|/q .

To see this, note that on ;ε , since CvA(ω) has size at least 4εdvA and |VEvA
(ω)| ≤ 2εdvA , no

matter which state the vertices of VEvA
(ω) take, σ will be such that

m1(σ ) − max
j $=1

mj(σ ) > (4ε − 2ε − ε)dvA = εdvA .

(Here, the 4ε comes from the sites in CvA(ω), the −2ε comes from a worst-possible assign-
ment of states to sites of VEvA

(ω), and the −ε comes from the maximal bias on the sites in
Vc

A.)
The probability of the event ;ε , when coloring the components of ω independently, uni-

formly at random, is at least 1/q (for the probability of coloring CvA(ω) in state 1) times

1 − qP
(∣∣Bin

(∣∣Vc
A

∣∣,1/q
)−∣∣Vc

A|/q| > εdvA/2
) ≥ 1 − e−'(εdvA ).

(Here, we used a union bound over the q different states, and a Chernoff bound.) In particular,
we find that for ε(p, q,γ ) > 0 sufficiently small,

P(µ,π)
(
Aε | ARC

4ε

) ≥ min
ω∈ARC

4ε

P(;ε | ω) ≥ 1
q

(
1 − e−'(εdvA )).

On the other hand, the probability of Âε , conditionally on ARC
4ε is bounded by the probability

of the colorings of Vc
A assigning at least 2εdvA + |Vc

A|/q many of its vertices to some state
j $= 1. By a union bound over the q states, and a Chernoff bound, this has probability at most

qP
(∣∣Bin

(∣∣Vc
A

∣∣,1/q
)−∣∣Vc

A|/q| > 2εdvA

) ≤ e−'(εdvA ).

At this point, we can plug the above bounds into (8.2) to deduce that for all ε(p, q,γ ) > 0
sufficiently small,

B(Aε) ≤ 1
n
e−'(βεdvA ).

(Notice that ε sufficiently small, needed to scale as !(1/p), so that this is n−1e−'(β2dvA ) for
small β .) Relying on the classical Cheeger bound (see, e.g., [48], Theorem 7.4), the inverse
of B(Aε) serves as a lower bound on the mixing time of the Glauber dynamics for the Potts
model. #
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