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Abstract
Sampling from the q-state ferromagnetic Potts model is a fundamental question in
statistical physics, probability theory, and theoretical computer science. On general
graphs, this problem may be computationally hard, and this hardness holds at arbi-
trarily low temperatures. At the same time, in recent years, there has been significant
progress showing the existence of low-temperature sampling algorithms in various
specific families of graphs. Our aim in this paper is to understand the minimal struc-
tural properties of general graphs that enable polynomial-time sampling from the
q-state ferromagnetic Potts model at low temperatures. We study this problem from
the perspective of random-cluster dynamics. These are non-local Markov chains that
have long been believed to converge rapidly to equilibrium at low temperatures in
many graphs. However, the hardness of the sampling problem likely indicates that this
is not even the case for all bounded degree graphs. Our results demonstrate that a key
graph property behind fast or slow convergence time for these dynamics is whether the
independent edge-percolation on the graph admits a strongly supercritical phase. By
this, we mean that at large p < 1, it has a large linear-sized component, and the graph
complement of that component is comprised of only small components. Specifically,
we prove that such a condition implies fast mixing of the random-cluster Glauber
and Swendsen–Wang dynamics on two general families of bounded-degree graphs:
(a) graphs of at most stretched-exponential volume growth and (b) locally treelike
graphs. In the other direction, we show that, even among graphs in those families,
these Markov chains can converge exponentially slowly at arbitrarily low tempera-
tures if the edge-percolation condition does not hold. In the process, we develop new
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tools for the analysis of non-local Markov chains, including a framework to bound
the speed of disagreement propagation in the presence of long-range correlations, an
understanding of spatial mixing properties on trees with random boundary conditions,
and an analysis of burn-in phases at low temperatures.

Keywords Swendsen–Wang dynamics · Potts model · Random-cluster model ·
Low-temperatures ·Mixing times · Disagreement percolation

Mathematics Subject Classification 60J10 · 60K35 · 82C20

1 Introduction

The q-state ferromagnetic Potts model is a classical spin system model central to
probability theory and with applications in statistical physics, theoretical computer
science, and other fields. It is defined on a graph G = (V (G), E(G)) as a prob-
ability distribution over configurations in !p = {1, . . . , q}V (G), with a parameter
β > 0, corresponding to the inverse temperature in physical applications, controlling
the strength of the interaction between the edges of G. Formally, the probability of
each configuration σ ∈ !p is given by:

µG,β,q(σ ) =
1

Z p
G,β,q

exp
(
β

∑

{u,v}∈E(G)

1{σ (u) = σ (v)}
)
. (1)

The factor Z p
G,β,q is a normalization constant and is known as the partition function;

σ (u) denotes the color or spin value of the configuration σ at vertex u. The classical
Ising model corresponds to the q = 2 case.

The question of sampling from the ferromagnetic Potts model is an important one
and has been extensively studied on a variety of graphs and temperature regimes (i.e.,
different values ofβ). In general, it is known that the problem of approximate sampling
from (1) for q ≥ 3 and β large is #BIS-hard, in the sense that there exist graphs,
including bounded degree ones, for which the approximate sampling problem is as
hard as approximately counting the number of independent sets on bipartite graphs
[29, 33]. This latter task is a well-studied computational problem that is believed
not to have a polynomial time approximation algorithm. This sharply contrasts with
the ferromagnetic Ising case (q = 2), where polynomial-time samplers have been
known since the 1990s [46, 53]. At the same time, for some families of graphs,
notably includingZd and expander graphs, the existence of polynomial-time sampling
algorithms has recently been shown for the Potts model at low temperatures: see, e.g.,
[16, 18–20, 32, 40, 41, 43, 45]. This raises the question of what are the underlying
graph structures and temperatures that cause tractability or hardness of approximately
sampling from (1). We study this from the perspective of widely-used Markov chain-
based algorithms.

One fundamental approach to sampling from Gibbs distributions of the form of (1)
is via Markov chains whose stationary distribution is exactly µG,β,q . The simplest
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such Markov chain is the Glauber dynamics for the Potts model (also known as the
Gibbs sampler), which updates the state of a randomly chosen vertex at each step.
Its simplicity makes it quite appealing to practitioners, but it is known to take expo-
nentially (in poly(|V |)) many steps to equilibrate at low temperatures (β large). In
lieu of this, in order to sample from (1), an oft-used approach is a different family
of Markov chains based on the Edwards–Sokal coupling of the ferromagnetic Potts
model to a graphical model called the random-cluster model [26]: see (3) for its defini-
tion. This family of Markov chains includes the extensively studied Swendsen–Wang
(SW) dynamics, and its close relative, the Glauber dynamics for the random-cluster
model.

These Markov chains make non-local updates, and are often used to bypass the
bottlenecks that slow down the convergence of the Potts Glauber dynamics at low
temperatures when q ≥ 3. At the same time, the aforementioned #BIS-hardness of the
sampling problem at low temperatures suggests that these Markov chains could not
have a polynomial speed of convergence on all graphs. For the sake of completeness,
wemention that at high temperatures (small β), theseMarkov chains converge quickly
but have a larger computational overhead per step than the Potts Glauber dynamics [6];
there are also “intermediate” temperature regimes corresponding to first-order phase
transitions where these Markov chains are known to converge exponentially slowly to
equilibrium [17, 21, 30, 31, 34].

In this paper, we systematically analyze these Edwards–Sokal basedMarkov chains
on general graphs at low temperatures. In the process, we develop new tools for
the analysis of non-local chains and arrive at an explanation, in terms of geometric
properties of the graph, that dictate whether these Markov chains converge quickly
or slowly at low temperatures (i.e., large, but independent of the system size, values
of β).

Let us define theMarkov chains of interest. For a unified discussion, it is convenient
to reparametrizeβ by p = 1−e−β .Notice that low-temperature settings corresponding
toβ large correspond to p close to 1. TheSWdynamics transitions froma configuration
σt ∈ !p to σt+1 ∈ !p as follows:

1. Independently, for every e = {u, v} ∈ E(G) if σt (u) = σt (v) include e in Et with
probability p;

2. Independently, for every connected component C in (V (G), Et ), draw a color c ∈
{1, . . . , q} uniformly at random, and set σt+1(v) = c for all v ∈ C.

It can be checked that the SW dynamics is reversible with respect to µG,β,q and
thus converges to it. In effect, the SW dynamics moves on the larger probability
space of Potts model configurations together with random-cluster configurations. The
configurations of this model consist of edge subsets, i.e., !rc = {0, 1}E(G), and the
SW dynamics can be interpreted as alternating steps of sampling a random-cluster
configuration Et conditionally on the Potts configuration σt , then sampling the Potts
configuration σt+1 conditionally on Et .

A closely related Markov chain is the Glauber dynamics that moves in the space of
random-cluster configurations; for brevity, we call thisMarkov chain the FK dynamics
since the random-cluster model is also known as the FK model. Here, given an edge
subset Et ∈ !rc, we generate Et+1 by:
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1. Pick an edge e ∈ E(G) uniformly at random;
2. Set Et+1 = Et ∪ {e} with probability:

{
p if eis not a cut-edge in Et ;
p̂ := p

p+(1−p)q if eis a cut-edge in Et ;
(2)

and Et+1 = Et\{e} otherwise.

A cut-edge is an edge whose state affects the number of connected components of the
configuration. It can be checked that the FK dynamics converges to the random-cluster
distribution (3). After convergence, onemay produce a sample from the corresponding
q-state Potts measure (the one with β so that p = 1 − e−β ) with little overhead
by independently assigning states uniformly amongst {1, . . . , q} to each connected
component of the random-cluster configuration, as in step (2) of the SW dynamics
above. As such, the FK dynamics provides an alternative Markov chain that can be
used to sample from (1).

To formalize convergence rates of these Markov chains, recall that the mixing time
of a Markov chain is the number of steps required to reach a distribution close to
the stationary distribution (in total variation distance), assuming the worst possible
starting state: see (4) for the formal definition. It is known that the mixing times of the
SW and FK dynamics can differ only up to a O(|E(G)|) factor (see [56]).

Both the SWandFKdynamics are conjectured to overcome someof the key difficul-
ties associated with sampling from the Potts distribution quickly at low temperatures.
They are, therefore, quite popular, but their non-locality makes the rigorous analysis of
their mixing times significantly more challenging than their Potts Glauber dynamics
counterparts. In recent years, significant progress has been made in establishing opti-
mal mixing time bounds for the SW and FK dynamics in high-temperature regimes
where the corresponding Potts Glauber dynamics is also known to be fast mixing;
see, e.g., [6–8, 32]. These works have resulted in optimal (or nearly optimal) mix-
ing time bounds for SW and FK dynamics that hold under various correlation decay
conditions (e.g., strong spatial mixing, tree uniqueness, Dobrushin uniqueness, spec-
tral independence, etc.). In particular, p ! 1/$ implies fast mixing for all graphs of
maximum degree $. By contrast, in the low-temperature setting, where correlations
do not decay, the Potts Glauber dynamics converges slowly, and alternative efficient
sampling algorithms are most needed, there is no generic criterion guaranteeing that
the SW and FK dynamics mix quickly.

In fact, rigorous bounds for the mixing time of the SW and FK dynamics at low
temperatures are rare and can be summarized as follows. In the Ising case of q = 2,
[37] showed that these Markov chains mix in O(n10) time on all n-vertex graphs
and all p. On the complete graph, [13, 15, 28] establish nearly-optimal mixing time
bounds throughout the low-temperature regime. On more sophisticated geometries,
progress has been limited to the special case of the integer lattice Zd . In particular,
in [14, 55], fast mixing was shown in the low-temperature regime on subsets of Z2

via planar duality to high-temperatures (see also [50] for sharper bounds for the SW
dynamics at low temperatures in the Ising case). Recently [32] showed fast mixing
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at low temperatures in cubes in Zd . For general graphs, the only low-temperature
criterion known to ensure fast mixing is p > 1− O(1/|E(G)|) [42].

This leaves a wealth of questions to explore on general families of graphs, notably
including the mixing times of the SW and FK dynamics at values of p close to 1, but
importantly, independent of the graph size. We consider this question for two broad
families of bounded-degree graphs: graphs of at most stretched-exponential volume
growth, and locally treelike graphs (which allow for exponential volume growth). We
show that for all such graphs, fast mixing of the SW and FK dynamics at low enough
temperatures is ensured if the independent edge-percolation process on the graph,
where an edge-set ω̃ ⊂ E(G) is obtained by keeping each edge with probability
p̃, independently, has a strongly supercritical phase (i.e., for p̃ close to 1, all large
connected sets in G intersect the giant component of ω̃; see Definition 2 and 3 for
precise definitions). To illustrate the necessity of this condition, for any arbitrarily
large p < 1, we construct explicit graphs—both ones of polynomial volume growth,
and ones that are locally treelike—on which the edge-percolation is not in a strongly
supercritical phase, and, in turn, the SW and FK dynamics mix slowly.

The class of graphs that have strongly supercritical phases for their edge-percolation
is an area of extensive study, and it is closely connected to whether the graph has
isoperimetric dimension strictly larger than 1. The key takeaway from our results is
thus a purely geometric mechanism underlying fast or slow mixing of the SW and FK
dynamics at large p < 1 on two large families of bounded degree graphs.

1.1 Graphs of at most stretched-exponential growth

The first general class of graphs for which we establish fast mixing of the SW and
FK dynamics at low temperatures under the percolation condition are bounded-degree
graphs that have at most stretched-exponential volume growth. Let us introduce some
notation: in what follows, we think of G = (V (G), E(G)) as a connected graph on n
vertices, with maximum degree $ ≥ 3, and we fix any q ≥ 2. For a vertex v ∈ V (G),
let BR(v) = {w : dG(v,w) ≤ R} be the set of vertices at graph distance at most R
from v. For a subset A ⊂ V (G), let ∂e A ⊂ E(G) denote the edge boundary of A, i.e.,
the set of edges in E(G) with exactly one endpoint in A.

Definition 1 The graph G has η-stretched-exponential volume growth if |BR(v)| ≤
eR

η
for all v ∈ V (G) and all R sufficiently large (i.e., R ≥ R0 for some R0 independent

of n; for convenience, take R0 = 1/η1).

Natural graph families with at most stretched-exponential volume growth include
bounded-degree lattices in Rd ; e.g., finite subsets of Zd , the triangular and hexagonal
lattices, etc., and Cayley graphs of polynomial growth groups. This notion is closely
related to a quantitative version of amenability.

We show that the SWand FK dynamics on these graphs are rapidlymixingwhen the
independent edge-percolation process on the underlying graph G has a “strong super-
critical phase” which we define next. For p̃ ∈ (0, 1), let π̃G =⊗e∈E(G) Bernoulli( p̃)

1 At the level of quantification of our bounds, this choice does not affect our main statements; allowing for
general R0 would simply add R0 to the set of constants on which the bounds depend.
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denote the independent edge-percolation distribution forG. We note that if ω̃ is drawn
from π̃G (i.e., ω̃ ∼ π̃G ), then we can think of ω̃ as, both, a vector in {0, 1}E(G) or as
a subset of edges of E(G). For B ⊂ E(G), let ω̃(B) ∈ {0, 1}B denote the state of the
edges from B in ω̃(B).

Definition 2 Let ω̃ ∼ π̃G . We say that G has a strong supercritical phase (with
parameters δ, p̃) if there exists p̃ < 1 and δ > 0 such that for every v ∈ V (G),
the probability that there exists a connected set A ( v having * ≤ |A| ≤ n/2 with
ω̃(∂e A) ≡ 0 is at most exp(−*δ/(1+δ)), for all * sufficiently large (again, meaning
* ≥ *0 for some *0 independent of n, for instance for convenience *0 = 1/δ).

Roughly the definition says that the probability that there exists a set A ⊂ V (G)

that is connected in G, contains v, and has size at least *, but does not intersect
the largest component in ω̃, is stretched-exponentially small in * (with the exponent
governed by the parameter δ > 0, which as we will comment on shortly is related to
the isoperimetric dimension of the underlying graph). Notice that the existence of a
p̃ in Definition 2 implies it for all p̃′ > p̃ by monotonicity of the strong supercritical
property in ω̃.

Theorem 1 There exists η0(δ) > 0 and p0($, q, δ, p̃) < 1, such that for every graph
G with a strong supercritical phase (with parameters δ, p̃) andη-stretched-exponential
volume growth for some η ≤ η0:

1. The mixing time of SW dynamics on G is O(n2 log n) for every p ≥ p0.
2. The mixing time of the FK dynamics on G is O(n log n) for every p ≥ p0.

It is natural to wonder what families of graphs have a strong supercritical phase.
The nature of the supercritical phase for edge-percolation on a graph is known to be
closely related to the geometric, namely isoperimetric, properties of the graph: see
e.g., [1]. One would expect that general graph families with isoperimetric dimension
at least 1 + δ (meaning that |∂e A| ≥ |A|δ/(1+δ) for all subsets A ⊂ V (G) with
|A| ≤ n/2) have a strong supercritical phase in the sense of Definition 2. Often
at sufficiently large p̃, a strong supercritical phase can be proven using perturbative
Peierls-type arguments; by suchmeans, subsets ofZd andother lattices (e.g., hexagonal
and triangular) that are uniformly at least (1+ δ)-dimensional, and planar graphs with
a bounded-degree planar dual serve as concrete examples of graphs that have a strong
supercritical phase. More generally, the structure of the supercritical phase in vertex-
transitive graphs of polynomial growth is the subject of deep study (see e.g., [22, 25,
44] which tackle the harder problem of understanding the supercritical phase down to a
sharp threshold).Natural graphs of super-polynomial but atmost stretched-exponential
growth are rarer, but one such family are the well-known construction of Grigorchuk
groups; in these, the precise η in the stretched-exponential growth, and the nature of
the graphs’ supercritical phase are subjects of active research: see e.g., [35].

Our proof of Theorem1 relies on a novel framework for controlling the rate at which
discrepancies spread between two coupled low-temperature FK dynamics chains that
agree inside, say, a ball of radius R around a vertex, but that may disagree outside
it. This is sometimes called disagreement percolation, and we use it, after a burn-in
period for the chain (a short period of time after which we can ensure that the certain
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“typical”properties of random-cluster configurations are achieved, even though the
chain has not equilibrated), to perform space-time recursions to derive ourmixing time
bounds. To the best of our knowledge, this is the first time disagreement percolation has
been analyzed in a low-temperature setting for non-localMarkov chains like the SWor
FK dynamics, where the giant component could hypothetically spread disagreements
instantaneously (except in the special case of Z2 where low and high temperatures
are dual to one another). We say more about the obstacles to proving Theorem 1
using existing tools and the technical novelties in our low-temperature disagreement
percolation framework in Sect. 1.4.

Since [57], bounds on the rate of disagreement percolation have been a tool used
to prove a variety of other results for spin systems, including bounds on uniqueness
thresholds, equivalences of spatial and temporal mixing [24], and tight lower bounds
for the mixing time of the Glauber dynamics [39]. We do not explore these directions
here, but our low-temperature disagreement percolation, which is self-contained to
Sect. 3, opens up those same arguments for the low-temperature random-cluster model
and its dynamics. For example, extending the lower bounds of [39] would show that
the O(n log n) in (2) in Theorem 1 is tight; by contrast, the resulting lower bound for
SW dynamics would be !(log n).

1.2 Locally treelike graphs

We consider next the SW and FK dynamics on locally treelike graphs. In this setting,
we establish fast mixing on graphs that have a strong supercritical phase with “δ = ∞”
in Definition 2. That is to say that we assume true exponential tails on the boundaries
of non-giant components, with a rate that goes to ∞ as p̃ ↑ 1, to compete with the
exponential volume growth.

Definition 3 We say that G has an exponentially strong supercritical phase if there
exists p̃0 < 1 such that for every p̃ > p̃0 and every v ∈ V (G), the probability that
there exists a connected set A ( v having * ≤ |A| ≤ n/2 with ω̃(∂e A) ≡ 0 is at most
exp(−cp̃ *) for some cp̃ going to∞ as p̃ to 1.

While the notion of an exponentially strong supercritical phase is a property of inde-
pendent edge-percolation on the graph, a simple geometric criterion of expansion, for
instance, ensures that this property holds. In particular, if G is an α-edge-expander
graph, in the sense that for all A ⊂ V (G) such that |A| ≤ n/2, we have |∂e A| ≥ α|A|,
then the assumption holds for a cp̃(α,$) > 0.

In this regime where exponential volume growth is permitted, we restrict to locally
treelike graphs.

Definition 4 We say a graph G is (K , L)-locally treelike if for every v ∈ V (G), the
removal of at most K edges from E(BL(V )) induces a tree on BL(v).

Our main result for locally treelike graphs is the following near-optimal fast mixing
bound.
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Theorem 2 Fix any ε, η > 0. There exists p0($, q, K , p̃0, cp̃, η, ε) < 1 such that
if G has an exponentially strong supercritical phase (with parameter p̃0), minimum
degree 3, and is (K , η log n)-locally treelike:

1. The mixing time of SW dynamics on G is O(n2+ε) for every p ≥ p0.
2. The mixing time of FK dynamics on G is O(n1+ε) for every p ≥ p0.

The most canonical example of a graph that satisfies all the conditions in this
theorem is a $-regular random graph (i.e., a graph drawn uniformly at random from
the set of all $-regular graphs on n-vertices). This is a setting that has attracted plenty
of attention (see, e.g., [9, 10, 21, 27, 40]), and Theorem 2 provides fast mixing bounds
for the SW and FK dynamics on these graphs at low temperatures. (Note that the
bounds will hold with probability 1− o(1) over the choice of the random graph.)

Unlike the sub-exponential growth setting, alternative sampling algorithms were
known to exist for the Potts model on expander graphs at low temperatures using
the cluster expansion and polymer dynamics (see, e.g., [5, 19, 20, 45]). Still, to our
knowledge, ours is the first proof of sub-exponential mixing times for the SW and FK
dynamics at low temperatures (even just for random graphs).

Regarding the proof techniques, on graphs of exponential growth, the low-
temperature disagreement percolation framework used to establish Theorem 1 breaks
down. Even in ideal situations like the Ising model, the optimal recursion obtained
from the disagreement percolation framework would not yield rapid mixing on graphs
of exponential growth. We, therefore, resort to a vastly different approach, where
we utilize a burn-in phase, the censoring technique of [52], and new spatial mixing
results for the random-cluster model on trees amongst a (random) class of sufficiently
wired boundary conditions. The latter bound applies in settings where spatial mixing
between the wired and free boundary conditions does not hold.

Remark 1 The bounds of Theorems 1 and 2 are stated for any integer q ≥ 2 so that
statements apply both to the SW and FK dynamics. The random-cluster model also
makes sense for non-integer q ≥ 1 and our fast mixing results for the FK dynamics
apply in this level of generality. In fact, the random-cluster model is defined for q > 0
but has very different features (negative vs. positive correlations) when q ∈ (0, 1). It
was shown in [2] that the FK dynamics mixes in polynomial time on all graphs when
q ∈ (0, 1).

1.3 Slowmixing in worst-case graphs

We complement our fast mixing result by establishing the existence of graphs for
which, even at arbitrarily low temperatures, the SW and FK dynamics slow down
exponentially. This is already suggested, though not guaranteed, by the #BIS-hardness
of the sampling problem at low temperatures, and our constructions will illuminate
the relationship between the notion of a strong supercritical phase for the underlying
edge-percolation and the slow mixing of the dynamics.

Theorem 3 Fix any q ≥ 3 and any p0 < 1. There exists p ∈ (p0, 1) and a sequence
of graphs Gn on n vertices and maximum degree $ such that the mixing time of the
SW and FK dynamics on Gn is exp(!(n)).
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The constructions for Theorem 3 are simple and explicit. In particular, any family
of graphs Hn that have slow mixing at some parameter value ps ∈ (0, 1)—typically
the location of its order/disorder phase transition—can be used as a gadget to construct
augmented graphs Gn (depending on ps and p0) with many of the same properties
as Hn (in terms of degree, rate of volume growth, etc.), and a comparable number of
edges, for which the SW and FK dynamics are slowlymixing at some p ∈ (p0, 1). The
graph augmentation leverages the series law of the random-clustermodel to repeatedly
split the edges of Hn , effectively inducing the behavior at ps in Hn to occur in Gn at
p ∈ (p0, 1). Using the slow mixing of SW and FK dynamics at the critical point on
random regular graphs from [21] as the gadget, Theorem 3 holds even if we impose
that the graph is locally treelike and has exponential volume growth. Using the slow
mixing at the critical point on (Z/nZ)2 from [30], a variant of this theorem also holds
for graphs of polynomial growth, but the lower bound there is of the form exp(!(

√
n)):

see Theorem 25.

Remark 2 Let us comment on the relationship of Theorems 3 to 1 and 2, given the
slow mixing constructions can either have stretched-exponential growth or be locally
treelike. Even if Hn has a strongly supercritical phase for its edge-percolation, when
we perform the graph augmentation with the series law, the p̃ for which the edge-
percolation onGn has a strongly supercritical phase is pushed closer to 1. In geometric
language, this is because the isoperimetric dimension is decreasing to 1, or the edge
expansion is decreasing to 0, as the edges are split in series. In turn, this makes the
p0 in Theorems 1 and 2 (above which we can prove fast mixing) larger than the p for
which Theorem 3 gives slow mixing.

1.4 Proof ideas

We now discuss our proof ideas for the fast mixing results, which are the more techni-
cally involved. (Our bounds on the SW dynamics follow from the bounds on the FK
dynamics by [56], so we focus on the FK dynamics.) We begin by describing some of
the issues one runs into when applying standard proof approaches to general families
of graphs at large p.

1.4.1 Difficulty with classical arguments

The first tool one might try is path coupling, arguing that the number of discrepancies
between two configurations that differ on one edge contracts in expectation. The non-
locality of the FK dynamics, however, and the presence of!(log n) sized components
at equilibrium means that a single discrepancy at an edge e can cause discrepancies at
some!(log n)many nearby edges, whereas the discrepancy only decreases if the edge
e is selected to be updated. A smarter path coupling was used in [23, 42] to deduce fast
mixing for the SWdynamics at high enough (but constant) temperatures, but in the low-
temperature regime, their argument for fast mixing requires p > 1− O(1/|E(G)|).

Many of the early fast mixing bounds on, say, the high-temperature Isingmodel, are
basedon space-time recursions, i.e., arguments that compare the distance to stationarity
across balls of time-dependent radii. When translated to the FK dynamics, this type
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of argument runs into the problem that the updates in a small portion of the graph
(say, a small ball around a vertex) could depend on the configuration in the entire
remainder rather than a local neighborhood. The one exception to this is the approach
of [49] for the torus in Zd , which gave an implication from the weak-spatial mixing
(WSM) condition to fast mixing of theGlauber dynamics. This implicationwas seen to
generalize to the FK dynamics in [38] (see also [32] where finite boxes with boundary
conditions were allowed). WSM is known to hold for the random-cluster model at
large p on Zd (see e.g., [36]); however, this is a delicate property whose proofs are
very geometry specific. It is the case, for example, that on locally treelike graphs like
the random regular graph, WSM fails at arbitrarily large p.

At high temperatures (small p), some of the difficulties with non-locality can be
handled using the fact that in the random-cluster model, all connected components are
small, and information is only propagated through these connected components. For
instance, such an argumentwas used in [14] to implement the disagreement percolation
space-time recursion for the high-temperature regime on Z2. (In Z2, the high and low-
temperature regimes are dual to one another, so the same argument could be performed
using the dual model at low temperatures; that would be similar to the work of [50]
on the Ising SW dynamics.)

1.4.2 Low-temperature disagreement percolation bounds

On graphs where the low-temperature random-cluster model does not have a natural
high-temperature dual model, however, even at equilibrium, the non-locality of the
dynamics is hypothetically not confined since the giant component percolates through
the entire graph. The starting point for many of our observations is that a (well-
connected) giant component does not create non-local dependencies on its own. In
particular, if two configurations that agree at distance R away from an edge e induce
different marginals on e, it must be the case that in one of the two configurations, either
e is incident to a non-giant component of size at least R, or it disconnects a portion of
the giant of size at least R from the 2-connected core of the giant. Whereas the giant
component percolates throughout the whole graph, we show that under the assumption
of a strong supercritical phase (Definition 2), these non-giant, or non-2-connected core
connections have (stretched) exponential tails in FK dynamics configurations after an
O(n) burn-in period. (In the first O(n) steps, disagreements can spread arbitrarily
quickly.)

There are various other delicate points in implementing this argument, both combi-
natorial and probabilistic in nature, that we describe in greater detail in Sects. 3 and 4.
These include having to carefully approach various counting arguments and union
bounds due to the non-localities and possible stretched exponential volume growth:
see Remark 3 and the proof strategy described in Sect. 4.2. In all, we are able to obtain
a space-time recursion on the probability of a disagreement at an edge after time t ; the
large value of p is used as a crude initial bound on this probability, which the recursion
boosts into exponential decay, leading to the optimal O(n log n) mixing time bound
of Theorem 1.
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1.4.3 Mixing after a burn-in phase on locally treelike graphs

When the volume growth is exponentially fast, the bounds and resulting space-time
recursions from disagreement percolation break. Our approach here is therefore closer
in inspiration to high-temperature arguments from [10, 11] (also [51] in the Ising set-
ting). Those papers localized the dynamics to the treelike balls BR(v) of the underlying
graph using the censoring technique of [52] and used the high-temperature unique-
ness on trees to reason that if two censored dynamics chains mix in BR(v) with their
respective boundary conditions, then they are coupled at the root of the ball with high
probability. The mixing time on the local balls was relatively simple to deduce since
the trees would have nearly free boundary conditions, which induce product chains.

In our low-temperature setting, the key intuition is that after a burn-in period, the
boundary conditions induced on balls of radius η log n are “sufficiently wired”, i.e.,
that they have one (random) linear-sized wired component, and only O(1)many other
O(1)-sized components. Given this, to get Theorem 2, we show that FK dynamics on
trees with such boundary conditions mix in polynomial time, and that although there
is no WSM between the free and wired boundary conditions on trees, two sufficiently
wired boundary conditions do induce similar marginals on the root. This latter step
requires a careful revealing scheme to prove spatial mixing on trees with randomly
wired boundary conditions; that is the content of Sect. 5.1.

1.4.4 On the strong supercritical phase condition

We conclude by remarking on whether the notions of strong supercritical phase in
Definitions 2 and 3 could be relaxed. One attempt at such a relaxation would be to
only ask that the independent p̂-edge percolation have a unique giant component
(of arbitrarily small linear size) and exponential, or stretched-exponential, tails on
all its non-giant components. For technical reasons related to the fact that this is a
non-monotone criterion, our proofs do not go through with this weaker notion of
supercriticality. Nonetheless, we expect that such a condition could be sufficient for
the fast mixing of the FK and SW dynamics.

2 Notation and preliminaries

In this section, we outline our global notation and describe some preliminaries on
the random-cluster model and the FK dynamics. Throughout the paper, n will be
assumed to be sufficiently large. We also use C to denote a generic constant C > 0,
not depending on n, which may vary from line to line. Our underlying graph will be
G = (V (G), E(G)) and will have n vertices and maximum degree $.

For an edge-subset A ⊂ E(G), we write V (A) for the set of vertices contained
in edges in A, though we sometimes abuse notation and write v ∈ A for v ∈ V (A).
Its vertex boundary ∂A is the set of vertices in A with neighbors in Ac = E(G)\A.
Its (outer) edge-boundary ∂e A is the set of edges in E(G)\A that have one end-point
in V (A) and one endpoint in V (G)\V (A). We use Cv(A) to denote the connected
component of v in the subgraph (V (G), A). An edge e is a cut-edge in A if there is
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1132 A. Blanca, R. Gheissari

a vertex v for which Cv(A ∪ {e}) .= Cv(A\{e}). We use C1(A) to denote the largest
component in ω (chosen arbitrarily if two have the same size).

2.1 The random-cluster model

The random-cluster model with parameters p ∈ (0, 1) and q > 0 is a probability
distribution over edge-subsetsω ⊆ E(G), equivalently identifiedwithω ∈ {0, 1}E(G),
given by

πG,p,q(ω) ∝ p|ω|(1− p)|E(G)|−|ω|qk(ω), (3)

where k(ω) denotes the number of connected components in (V (G),ω). When clear
from context, we drop p and q and sometimesG from the notation. The random-cluster
model satisfies the following domain Markov property: for A ⊂ E(G), conditional
on ω(E(G)\A), the distribution of ω(A) is a random-cluster model with the same
parameters,withboundary conditions on ∂A induced byω(E(G)\A). Random-cluster
boundary conditions are defined in generality as follows.

Definition 5 Given a graph G and a vertex subset ∂B, a boundary condition ξ on
∂B is a partition of ∂B. The random-cluster model on G with boundary conditions
ξ , denoted π

ξ
G is defined as in (3), except that all components intersecting the same

element of ξ are identified (“wired”) when counting the number of components k(ω).

Certain important boundary conditions are the wired one, denoted 1, where all
vertices of ∂A are in the same component of ξ ; the free, denoted 0, where all vertices
of ∂A are in distinct components of ξ , and if A is a subgraph of G, those induced by
ω(E(G)\E(A)), meaning vertices of ∂A are in the same component of ξ if and only
if they are connected through ω(E(G)\E(A)). In this paper, we restrict our attention
to the case of q ≥ 1 where the model exhibits positive correlations. As a consequence,
given two boundary conditions ξ and ξ ′ on G, where ξ ≥ ξ ′ (meaning ξ is a coarser
partition than ξ ′), we have π

ξ
G 1 π

ξ ′
G .

2.2 Mixing times

For aMarkov chain (Xk)k on a finite state space!with transition matrix P , reversible
with respect to a distribution µ, its mixing time is defined as:

tmix = tmix(1/4), where tmix(ε) = min{k : max
x0∈!

‖P(Xx0
k ∈ ·)− µ‖tv ≤ ε},

(4)

where Xx0
k indicates that Xk is initialized from x0, and where ‖ · ‖tv denotes total-

variation distance. The total-variation distance to µ satisfies a sub-multiplicativity
property, whereby tmix(ε) ≤ tmix · log2(2/ε).
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2.3 FK dynamics

Recall the definition of (discrete-time) FK dynamics from the introduction. It will be
preferable in our proofs to work with the continuous-time FK dynamics (Xt )t>0. In
this variant, the edges of E(G) are assigned rate-1 Poisson clocks, and if the clock
at an edge e rings at time t , we make an update according to (2). It is a standard fact
that the mixing time of the discrete-time chain is comparable, up to constants, with
|E(G)| times the mixing time of the continuous-time process. In particular, it suffices
to show an O(log n) bound for Theorem 1 and an nε bound for Theorem 2 for the
continuous-time FK dynamics. FK dynamics updates with boundary conditions ξ are
like (2), except that the cut-edge status of e is determined taking into account the
wirings of the components of ξ .

The FK dynamics is monotone, meaning that if x0 ≥ y0 (under the natural partial
order on subsets) then Xx0

t 1 X y0
t for all t ≥ 0,where1denotes stochastic domination.

I.e., there exists a grand coupling of all the Markov chains {(Xx0
t )t }x0∈!rc (generated

by independent Poisson clocks and independent sequences of i.i.d. Unif[0, 1] random
variables at every edge) such that Xx0

t ≥ X y0
t for all x0 ≥ y0 and t ≥ 0.

A further monotonicity property we use is with respect to the independent edge-
percolation (the random-cluster model with q = 1). Recall p̂ from (2); it is standard
fact that πG,p,q 1 πG, p̂,1 (see (3.23) in [36]).

3 Low-temperature disagreement percolation

In this section, we develop the FK dynamics disagreement percolation framework
that works at sufficiently low temperatures, in particular in the presence of a giant
component. In reality, this new disagreement percolation bound works simultaneously
at high and low temperatures and localizes the spread of disagreements even in the
presence of a large giant component, so long as all other components (and portions
of the giant dangling off of its 2-connected core) are small. Moreover, it can work on
graphs that have volume growth up to a stretched exponential, which requires new
ideas: see Remark 3.

In this section, G can be an arbitrary graph of maximum degree $. We fix an
arbitrary o ∈ V (G) and R > 0, and let BR = BR(o). The dependencies on o will be
kept implicit. The fundamental building blocks of our disagreement set will be finite-
connectivity clusters; these will disentangle the non-locality of the giant component,
which percolates at low temperature, from the edges through which disagreements
arise.

Definition 6 Define the finite (or non-giant) component of a vertex v in a random-
cluster configuration ω as Cv(ω\E(C1(ω))), and denote it by C .=1

v (ω).

Since the FK dynamics updates at edge e = {u, v} are oblivious to the state of e in
the configuration, and only care about the connectivity of u and v in ω\e = ω\{e}, we
consider the finite component of a vertex with respect to the configuration ω\e rather
than ω itself. Specifically, we often consider C .=1

v (ω\e) for an edge e that is incident
to Cv(ω).
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Fig. 1 For a vertex v (dark green) and edge e (purple), the sets C .=1
v (ω\e) (edges in red) and CE.=1

v (ω)
(edges highlighted in green) are shown in three different cases. Left: v is not part of the giant (blue edges)
in ω (blue and black edges). Middle: v is part of the giant component but not of its 2-connected core. Right:
v in the 2-connected core of the giant

Definition 7 Let CE .=1
v (ω) be the set of cut-edges in ω that are in BR and incident to

C .=1
v (ω\e); i.e.,

CE .=1
v (ω) := {e ∈ E(BR) : e ∈ Cutedge(ω), e ∼ C .=1

v (ω\e)},

where Cutedge(ω) denotes the set of cut-edges in ω. Here we are using the notation
e ∼ H for a subset H ⊂ E if V (e) ∩ V (H) .= ∅.

We refer to Fig. 1 for some illustrative depictions of such sets in Z2 (this is easiest
for visualization, but it is key that our definitions do not rely on properties of Z2

like its dual graph, and thus work on general graphs). We also refer to the proof of
Proposition 4 which yields additional insight into these constructions.

Suppose (Xt ) and (Yt ) are two instances of the FK dynamics on G coupled via the
grand coupling introduced in Sect. 2.3; suppose also that X0(E(BR)) = Y0(E(BR)).

Definition 8 Iteratively construct what we call the disagreement set as follows. Let
(ti )i≥1 be the times of the clock rings in E(BR), let t0 = 0, and let Ii = [ti−1, ti ).
Then

1. Initialize Dt = E(G)\E(BR) for t ∈ I1.
2. Suppose ei is the edge whose clock rings at time ti . If ei is in E(BR)\Dt−i

and ei

is in CE.=1
v (Z) for some v ∈ ∂Dt−i

and Z ∈ {Xt−i
, Yt−i }, let

Dt = Dt−i
∪ {ei } for all t ∈ Ii+1;

else, let Dt = Dt−i
for all t ∈ Ii+1. (We use the standard notation At− to denote

lims↑t As .)

The role of Dt is that it confines the set of edges on which a disagreement can
possibly exist at time t .

Proposition 4 For all t ≥ 0, we have Xt (e) = Yt (e) for all e /∈ Dt .
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Proof Weprove the claim inductively. It holds for all t ∈ I1 sincewe assumed Xt (e) =
Yt (e) for e ∈ E(BR), and no clock rings occur in the interval I1. Supposing it holds
for Ii , the only way it can not hold for t ∈ Ii+1 is if the disagreement arises at the edge
ei = {ui , vi } when the clock rings at time ti . If ei ∈ Dt−i

, then since Dt−i
⊂ Dt , we

have the claim. Per (2), if ei /∈ Dt−i
, in order for a disagreement to arise at ei , it must

be the case that ei is a cut-edge in one of Xt−i
, Yt−i but not in the other; that is, that

ei ∈ Cutedge(Z) for a Z ∈ {Xt−i
, Yt−i }, but ei /∈ Cutedge(Ẑ) for Ẑ = {Xt−i

, Yt−i }\{Z}.
In Ẑ\{ei }, the two endpoints of ei must be connected. Since Xt−i

(Dc
t−i
) = Yt−i (D

c
t−i
),

this can only happen via a pair of paths from ui and vi that reach ∂Dt−i
in Dc

t−i
. One

of these paths must be in Z\E(C1(Z\{ei })), since if both are in E(C1(Z\{ei })), then
ui and vi are in the same connected component of Z\ei , contradicting the claim that
ei was a cutedge in Z . As such, it must be that ei ∈ CE .=1

v (Z) for some v ∈ ∂Dt−i
. 56

We now define an event on the realizations of the coupling (Xt , Yt )t≥0 that guaran-
tees that disagreements are unlikely to spread rapidly. This will be a bound on the size
of finite connections in E(BR), as well as a bound on the number of cut-edges in a finite
component, which we will later show holds with high probability for the FK dynamics
after a burn-in for G satisfying the conditions of Theorem 1: see Proposition 7

Definition 9 A random-cluster configuration ω is in E*,α,γ if:

(1) max
v∈BR

max
e∈E(BR)

diam(C .=1
v (ω\e)) ≤ *α, and (2) max

v∈BR
|CE.=1

v (ω)| ≤ $*γ .

In the applications in Sect. 4, we will take α = γ (depending on the δ for which
Definition 2 holds); however, we write this section for general α, γ in case there are
better choices in specific situations.

Proposition 5 Suppose (Xt )t , (Yt )t are FK dynamics chains, coupled by the grand
coupling, and such that X0(E(BR)) = Y0(E(BR)). There exists ε0($) > 0 such that
for all ε < ε0 and all t ≤ εR/*α+γ ,

P
(
Xt (BR/2) .= Yt (BR/2),

t⋂

s=0

{Xs, Ys ∈ E*,α,γ }
)
≤ C |∂BR | exp(−R/(2*α)).

Proof By Proposition 4, the probability of the event under consideration is at most that
of the event {Dt ∩BR/2 .= ∅}∩E*,t where for ease of notation, E*,t :=

⋂t
s=0{Xs,Ys ∈

E*,α,γ }.We construct a witness to that pair of events as follows.
Let f0 be the edge whose clock rang at time t j0 := inf{s : BR/2 ∩ Ds .= ∅} (note

that f0 ∈ E(BR/2)). Let w0 be the vertex in ∂Dt−j0
for which f0 ∈ CE.=1

w0 (Z0) for

Z0 ∈ {Xt−j0
, Yt−j0

} (if there are multiple choices for w0 or Z , we choose arbitrarily).

Given ( f j , w j , Z j ) j<i , we construct the witness iteratively as follows:
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Fig. 2 Three steps of the construction of the witness are shown. The ball BR/2 is the highlighted region.
For each i , the edges of the finite-connectivity cluster of wi (green) to fi (purple) in Zi (blue and black
edges) are depicted in red. Note that the configuration changes from left to right, depicting the evolution of
the dynamics (backwards in time)

• Let fi be the first edge incident to wi−1 to be included in (Ds)s≥0; i.e., fi ’s clock
rang at time

t ji := inf{s : wi−1 ∈ Ds}

• Let wi be the vertex in ∂Dt−ji
and Zi ∈ {Xt−ji

, Yt−ji
} for which fi ∈ CE .=1

wi (Zi ).

(Again, ambiguities are resolved arbitrarily.) Under this construction, the event
Xt (BR/2) .= Yt (BR/2) implies the existence of a witness ( fi , wi , Zi )

K
i=0 for some

K such that

1. f0 ∈ E(BR/2) and wK ∈ ∂BR ;
2. fi ∈ CE .=1

wi (Zi ) for all i ;
3. wi−1 ∈ fi for all i ;
4. the clock ring at time t ji is at edge fi .

Notice that this construction is done backwards in time, i.e., t j0 > t j1 > · · · > t jK .
See Fig. 2 for a depiction.

We will show that the probability that there exists such a witness and the event E*,t
occurs satisfies the claimed bound. On the event E*,t , it must be the case that K ≥
R/(2*α) since the distances between fi and fi−1 are bounded by *α . Furthermore,
for any witness ( fi , wi , Zi )

K
i=0, there is a projection, which we also call a witness,

( fi , wi , Li )
K
i=0 where the label Li ∈ {X , Y } indicates whether Zi = X−

t ji
or Zi = Yt−ji

.

The total number of clock rings in G in [0, t] has a Poisson(t |E(G)|) distribution;
let M denote this quantity. Note that by standard Poisson concentration, we have
P(M ≥ 4t |E(G)|) ≤ exp(−t |E(G)|). Let us work on the event that M ≤ 4t |E(G)|.
Let T = {t1, . . . , tM } be the sequence of clock ring times in |E(G)|. We start by
bounding P(Xt (BR/2) .= Yt (BR/2), E*,t ) by

e−t |E(G)| + max
M≤4t |E(G)|

max
T

∑

K≥R/(2*α)

2K max
L∈{X ,Y }K

P
(
∃( fi , wi )

K
i=0 : ( fi , wi , Li )

K
i=0 is witness, E*,t |T ),
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where the conditioning on T indicates conditioning on the clock ring times in E(G)

in [0, t] being T (but importantly not revealing their location yet).
Fix any M ≤ 4t |E(G)| and any realization T and consider the probability on the

right. For any subset of times J = { jK , . . . , j0}, given T , we denote by WJ ,L the
event that there exist ( fi , wi )

K
i=0 such that the triple ( fi , wi , Li )

K
i=0 is a witness and

the clock ring at fi is at time t ji for i = 0, . . . , K . There being
(M
K

)
choices of J , for

any L ∈ {X ,Y }K :

P
(
∃( fi , wi )

K
i=0 : ( fi , wi , Li )

K
i=0 is witness, E*,t | T ) ≤ max

J

(
M
K

)
P
(
WJ ,L , E*,t | T

)
.

For s ≥ 0, let Fs be the σ -algebra generated by the grand coupling up to time s.
We will now sequentially condition on Ft−ji

, and enumerate over the possible choices

for the edge fi (of which there will be at most $*γ per item (2) of Definition 9), and
then ask that the clock ring at time t ji be at fi .

More precisely, if for an edge g, Ag
l is the event that in the witness fl = g, then

we have for every i < K ,

max
gi+1,...,gK

P
(
WJ ,L , E*,t | T ,Ft−ji

, (Agl
l )l>i

)

≤ max
gi+1,...,gK

∑

wi∈gi+1

∑

gi∈CE .=1
wi (Zi )

P(Agi
i | T ,Ft−ji

, (Agl
l )l>i )

P(WJ ,L , E*,t | T ,Ft−ji
, (Agl

l )l≥i )

≤ 2$*γ

|E(G)| · max
gi ,...,gK

P
(
WJ ,L , E*,t | T ,Ft−ji

, (Agl
l )l≥i

)
. (5)

In the above, and in what follows in this proof, when conditioning on a σ -algebra, we
mean the inequalities to hold almost surely, i.e., for almost surely every realization
of the random variables generating the σ -algebra. Here, the first inequality is a union
bound over the potential choices of wi and then the potential choices of gi in the
witness. (Notice that conditional onFt−jK

, the configuration ZK can be read-off from its

label LK .) For the second inequality, we used the definition of E*,t to bound the number
of summands in the second line by 2$*γ , and we used the fact that conditionally on
T , the locations of the clock rings are independent and uniform on E(G), so given T
andFt−ji

, the probability that the clock ring at time t ji is at a fixed edge gi is 1/|E(G)|.
We can condition the right-hand side of (5) further on Ft−ji−1

(recalling that t ji <

t ji−1 ) to arrive at the following relation between the probabilities for index i and index
i − 1:

max
gi+1,...,gK

P
(
WJ ,L , E*,t | T ,Ft−ji

, (Agl
l )l>i

)
≤ 2$*γ

|E(G)| · max
gi ,...,gK

P
(
WJ ,L , E*,t | T ,Ft−ji−1

, (Agl
l )l≥i

)
.
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The same inequality holds for i = K with an extra multiplicative factor of |∂BR | for
the initial choice of wK . Iterating this over all i , we arrive at the following bound on
P(Xt (BR/2) .= Yt (BR/2), E*,t ):

|∂BR |
∑

K≥R/(2*α)

2K max
M≤4t |E(G)|

(
M
K

)( 2$*γ

|E(G)|
)K

+ e−t |E(G)| ≤ |∂BR |

∑

K≥R/(2*α)

(8$*γ et
K

)K
+ e−t |E(G)|.

At this stage, we see that if t ≤ εR/(16$e*α+γ ) for ε < 1/e, then this is at most

|∂BR |εR/(2*
α)
∑

j≥0

ε j + e−t |E(G)| ≤ C |∂BR|e−R/(2*α) + e−t |E(G)|.

The term e−t |E(G)| is absorbed since we have R ≤ diam(G) ≤ E(G) trivially. 56

Remark 3 Beyond the low-temperature construction of the disagreement region, we
point out a subtlety in the above that may have gone unnoticed. In disagreement per-
colation bounds for high-temperature FK dynamics (e.g., in [14]), the typical analog
of E*,α,γ is simply that the largest cluster in BR has volume at most *. When counting
the number of possible witnesses, one takes |B*(wi )| as a worst-case bound for the
number of locations of the next disagreement along the chain in the witness. If the
volume growth is stretched exponential, however, this does not work. The careful con-
ditioning in (5) was essential to only count those edges CE .=1

wi that could be vulnerable
to be the next edge in the witness, rather than the entire volume of a ball, keeping the
count to a polynomial even in the presence of exponential volume growth.

4 Fast mixing of FK dynamics on graphs of sub-exponential growth

With the bound on the speed of information propagation at low temperatures from the
previous section on hand, we proceed to establish Theorem 1. The event E*,α,γ from
Definition 9 was crucial to controlling the speed of disagreement propagation, and
our first aim (Sect. 4.2) is to establish that after an O(1) time burn-in period, E*,α,γ

holds for a further O(1) amount of time. Then in Sect. 4.3, we will build a space-time
recursion to establish the desired mixing time bound.

4.1 Dominating edge-percolation after a burn-in period

We start with a simple estimate showing that after an O(1) (continuous-time) burn-in
period, the FK dynamics started from any initialization stochastically dominates the
edge-percolation at a parameter arbitrarily close to p̂ = p

q(1−p)+p . This will be crucial
to many of our arguments throughout the paper.
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Lemma 6 Fix p, q, δ. There exists T0(δ) such that X0
t stochastically dominates π p̂−δ,1

for all t ≥ T0. This also holds conditioned on T[T0,∞) (the σ -algebra generated by
the clock rings from time T0 on).

Proof Consider any edge e. Uniformly over all the possible randomness (Poisson
clocks and uniform random variables) on edges of E(G)\{e}, as well as all clock rings
at e after time T0 (a to be determined constant depending only on δ), on the event
that the clock at e has rung by time t , its distribution stochastically dominates Ber( p̂)
per (2). The result follows if we let T0 be large enough that the probability that the
clock at e has not rung by time T0 is less than δ (this is independent of the clock rings
at e after T0). 56

We consistently use the notation ω̃ for independent edge-percolation processes on
E(G) with parameter p̃, i.e., ω̃ ∼ πG, p̃,1. For ease of notation, we simply write π̃G
for the law of ω̃ on G.

4.2 Burnt-in FK dynamics are in E!

Ournext aim is to show that burnt-inFKdynamics configurations are inE*,α,γ withhigh
probability. Recall the main assumption on our underlying graphs for Theorem 1, that
the independent percolation on them has a strongly supercritical phase: Definition 2.

Recall the event E*,α,γ from Definition 9 that governed the size of regions through
which disagreements could possibly spread. In what follows, we fix δ > 0 given to us
by Definition 2, and let

E* := E*,(1+δ)/δ,(1+δ)/δ, i.e., α = γ = (1+ δ)/δ. (6)

For ease of notation, we use α = (1 + δ)/δ in the below. We continue to imagine
a fixed vertex o ∈ V (G), and fixed R large, but independent of the graph, and let
BR = BR(o); events and sets from the previous section are all defined with respect
to this ball. Finally, *, R can be assumed to be sufficiently large (depending on η, δ).
Our main result in this subsection is the following.

Proposition 7 SupposeG satisfiesDefinition 2 and hasη-stretched exponential growth
for η less than some η0(δ). There exists T0(δ, η, q) such that for every initial configu-
ration ω0 and every t ≥ T0,

P
( 2t⋃

s=t

{Xω0
s /∈ E*}

)
≤ CteR

η
e−*.

Proof strategy. Establishing Proposition 7 is quite a bit more involved than it would
be in a high-temperature setting (i.e., for small p). This is due both to the delicate
graph-theoretic aspects of the event E*, its non-monotonicity, and its non-locality. In
particular, the last onemeans that in the time interval [t, 2t] the number of edge updates
that could hypothetically cause the FK dynamics to leave E* are t |E(G)|, rather than
t |BR|; a naive union bound over this number would fail. We outline our strategy as
follows:

123



1140 A. Blanca, R. Gheissari

1. In Definition 10 below, we define a proxy event G* which is monotone, ensures
that E* occurs, and is more “local" than E*. The relationship to E* under minimal
assumptions on G is in Lemma 8.

2. Using Definition 2, we will show in Lemma 10 that G* holds with high probability
for independent edge-percolation on G with a large enough parameter p̃. Since G*

is monotone, we can translate this bound to the FK dynamics after an O(1) burn-in
time per Lemma 6.

3. We then perform a careful “union bound”over the update times between s ∈ [t, 2t].
This could be a problem since there are order |E(G)| many updates in this time
interval, whereas the probability of Gc

* is only exponentially small in the local
quantity *. Importantly, though, we use that the event G* is “localized”to reason
that far away edge updates are unlikely to induce a change in Gc

* , in a summable
manner. This argument is executed via Lemma 9 in the proof of Proposition 7.

Let us begin by defining the proxy event G* and its variant Ḡm for m ≥ *.

Definition 10 Define the event G* as the event that there does not exist a connected
set A intersecting BR having *α ≤ |A| ≤ n/2, and an edge e ∈ ∂e A such that
ω(∂e A\{e}) ≡ 0.

Define the event Ḡm as the event that there does not exist a connected set A inter-
secting BR , of size mα ≤ |A| ≤ n/2, and a pair of edges e1, e2 ∈ ∂e A such that
ω(∂e A\{e1, e2}) ≡ 0.

Notice that, unlike Ec
* , the event G

c
* is a monotone decreasing event, since it is the

union (over A, e) of decreasing events. Similarly, the event Ḡc
m is a decreasing event.

The following graph theoretic lemma demonstrates that G* controls E*. It is impor-
tant here to relate the number of cut-edges in the carefully constructed set of vulnerable
edges in the disagreement percolation CE .=1

v to an easier quantity: the volume of a set
of size smaller than n/2 with closed boundary.

Lemma 8 The event Ec
* is a subset of the event Gc

* .

Proof On the complement of item (1) in Definition 9, there exists v ∈ BR and e ∈
E(BR) such that diam(C .=1

v (ω\e)) ≥ *α . Letting A = C .=1
v (ω\e), we notice that

|A| ≥ diam(A) ≥ *α . At the same time, |A| ≤ n/2 since if |A| ≥ n/2 then Cv(ω\e) =
C1(ω\e) andC .=1

v (ω\e)wouldbe the trivial {v}. Finally A intersects BR since it contains
v ∈ BR , and under ω, all of ∂e A\{e}must be closed since A is a connected component
of ω\e.

We now show that the complement of item (2) in Definition 9 also implies Gc
* . The

essence of the argument is thatCE .=1
v lower bounds the size of C .=1

v (ω\e) for some e, but
a little caremust be taken due to the definition of CE .=1

v .We begin by constructing a tree
from the set of all e ∈ Cutedge(ω) that are incident to Cv(ω\e); note this is a larger
set than those e ∈ Cutedge(ω) that have e ∼ C .=1

v (ω\e), but we will subsequently
restrict to this latter set. Suppose e is the set of all edges e in Cutedge(ω) such that
e ∼ Cv(ω\e). We iteratively associate a tree Tv = Tv(ω) to {v} ∪ e in the following
natural way.

1. Identify the root of the tree with the vertex v;
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2. All cut-edges in e are associated to descendants of the root.
3. For a vertex w of the tree (asssociated to a cut-edge ew in e), a cut-edge f ∈ e is

associated to a descendant of w if and only if it is disconnected from v by ew in ω.

This process uniquely determines the tree since the children of wi, j are those descen-
dants ofwi, j that are not descendants of any ofwi, j ’s other descendants. The fact that
all of these are cut-edges also ensures that no cycles arise in the construction. Notice
that the leaves of Tv are exactly ∂eCv(ω).

We next claim that the edges in

e′ = {e ∈ e : |Cv(ω\e)| ≤ n/2},

are a sub-tree of Tv . By definition, an edge e can only be in e but not in e′ if the
component |Cv(ω \ e)| > n/2. If this occurs for an edge e associated to vertex w in
the tree, any edge f associated to a descendant of w will also have |Cv(ω\ f )| > n/2
and not be in e′ since the difference in the component structures of ω\e and ω\ f is
that the latter has a larger Cv and one other component is correspondingly smaller.
Therefore, the event that an edge is in e but not in e′ is a decreasing event on the tree
Tv . As such the restriction of Tv to {v} ∪ e′ is itself a tree, which we can call T ′

v .
Select an arbitrary vertex in ∂T ′

v , i.e., its descendants are all in Tv but not in T
′
v , and

call its corresponding cut-edge e/; also define ω/ = ω\e/. Note that the tree Tv(ω/)

is exactly Tv(ω)\S/ where S/ are all descendants of e/. If we let A = Cv(ω/), then
evidently ω(∂e A\e/) ≡ 0 since ω/(∂e A) ≡ 0. Also, |A| ≤ n/2 since otherwise e/

would not belong to T ′
v . All edges of e

′ belong to Tv(ω/) so they are all incident to A;
therefore

$|A| ≥ |e′| ≥ |CE.=1
v | ≥ $*α,

using the fact that e′ ⊃ CE .=1
v . Lastly, A contains v ∈ BR since v ∈ Tv(ω/). Thus, A

violates G*. 56

The following lemma relates the vulnerability of a configuration to leaving G* by
means of an edge-update at distancem from BR to the event Ḡc

m , allowing us to control
the probability that far away updates (of which there are many in order-one continuous
time) induce the dynamics to leave G*.

Lemma 9 For any m ≥ *, in order for an edge e /∈ BR+mα to be pivotal to ω ∈ G*,
i.e., for ω ⊕ {e} ∈ Gc

* while ω ∈ G*, it must be that ω ∈ Ḡc
m.

Proof Suppose ω ∈ G*, e /∈ E(BR+mα ) such that e /∈ ω and ω ∪ {e} ∈ Gc
* or e ∈ ω

and ω\{e} ∈ Gc
* .

Since G* is an increasing event, the first case is not possible. In the second case, the
removal of an edge e ∈ ω outside BR+mα causes a component A to become part of
Gc

* . Call A the set in ω\e that violates G*. Then the edge e must be in ∂e A, meaning
that the set A is a set of size at most n/2, intersecting BR and with one other edge
e1 ∈ ∂e A such that ω(∂e A\{e, e1}) ≡ 0. Since the distance of e to BR is at least mα ,
it must be that |A| ≥ diam(A) ≥ mα . 56
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We now turn to the probabilistic estimates. The following lemma utilizes Defi-
nition 2 to bound the probability of Gc

* (as well as of Ḡc
m) under the independent

edge-percolation measure π̃ = πG, p̃,1.

Lemma 10 If G satisfies Definition 2 and has η-stretched exponential volume growth
for η < η0(δ), for all p̃ sufficiently large,

π̃(ω̃ /∈ G*) ≤ C |BR | exp(−*),

for some C( p̃, η, δ). Similarly,

π̃(ω̃ /∈ Ḡm) ≤ C |BR | exp(−m).

Proof The lemma is almost a union bound together with Definition 2, the only dis-
tinction being that we allow one or two of the edges in ∂e A to be open. Fix a vertex v,
and for every configuration ω̃ in Gc

* by means of a set A = Av(ω̃) containing v, such
that ω̃(∂e A\e) ≡ 0, let φe(ω̃) = ω\e. Evidently,

π̃(ω̃)

π̃(φe(ω̃))
≤ p̃

1− p̃
.

For every ω̃, the configuration φe(ω̃) has a set A intersecting v such that *α ≤ |A| ≤
n/2 and such that (φe(ω̃))(∂e A) ≡ 0, the probability of which is governed by Defini-
tion 2. Furthermore, if this A has size exactly r , the set of all pre-images of a single
ω̃ under the map φe is bounded by the set of all e such that d(v, e) ≤ r , which is at
most er

η
per the η-stretched exponential growth assumption. Putting this all together,

we get

π̃(ω̃ /∈ G*) ≤
∑

v∈BR

n/2∑

r=*α

∑

ω̃∈Gc
* :|Av(ω̃)|=r

π̃(ω̃) ≤ p̃
1− p̃

∑

v∈BR

n/2∑

r=*α

er
η
e−rδ/(1+δ)

. (7)

As long as η is smaller than α = (1+ δ)/δ, the above quantity is at most some constant
(depending on η, δ, p̃) times |BR |e−*.

The argument for Ḡm is essentially identical, with the only differences being that
in (7), the pre-factor p̃/(1 − p̃) is squared, and the number of choices of two edges
that could be closed contributes a factor of e2r

η
instead of er

η
. 56

The last lemma we need towards proving Proposition 7 is one for bounding the
number of clock rings in BR+mα . This follows from a standard Poisson tail bound
together with a union bound.

Lemma 11 For a set A, let N [t,2t]
A be the number of clock rings in A in the time interval

[t, 2t]. We have

P
( ⋃

m≥1

{N [t,2t]
BR+mα

≥ 4t |BR+mα |}
)
≤ exp(−t |BR |).
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Proof The number of clock rings in a set A in an interval of length t > 0 is distributed
as a Poisson with rate |A|t . Therefore,

P
(
N [t,2t]
A ≥ 4t |A|

)
≤ exp(−2t |A|).

By a union bound, we then get

P
(⋃

m

{N [t,2t]
BR+mα

≥ 4t |BR+mα |}
)
≤
∑

m

e−2t |BR+mα |.

Using that |BR+mα | is at least |BR |+mα by the fact thatm only ranges until expanding
the radius doesn’t add any vertices, and using that t > 0, this sums out to give
Ce−2t |BR |, whence we absorb the constant C by changing the 2 in the exponent. 56

Proof of Proposition 7 By Lemma 8 it suffices to bound the probability of
⋃2t

s=t {Xs /∈
G*}. Condition on the clock rings between times t and 2t ; this set of clock rings
generates a σ -algebra we denote by T[t,2t]. Let

E[t,2t] :=
⋂

m≥*

{
N [t,2t]
BR+mα

≤ 4t |BR+mα |
}
,

measurable with respect toT[t,2t]. Lemma 11 showed that P(Ec
[t,2t]) ≤ exp(−t |BR |).

We can then write

P
( 2t⋃

s=t

{Xs /∈ G*}
)
≤ max

(ei ,si )i∈E[t,2t]
P
(⋃

i

{Xsi /∈ G*} | (ei , si )i
)
+ e−t |BR |,

where (ei , si )i denotes the sequence of pairs of edges and corresponding clock rings
between times t and 2t . For ease of notation, let s0 = t and let Gc

*,s be the event
{Xs /∈ G*}. We now write the union above as

⋃

i≥1

Gc
*,si ⊂ Gc

*,s0 ∪
⋃

i≥1

(G*,si−1 ∩ Gc
*,si ).

Furthermore, given the clock ring times and locations (ei , si )i , we can let I0 = BR+*α

and for m ≥ *, let Im be the set of i’s for which ei is in BR+(m+1)α\BR+mα . Then,

⋃

i≥1

Gc
*,si ⊂ Gc

*,s0 ∪
⋃

i∈I0
(G*,si−1 ∩ Gc

*,si ) ∪
⋃

m≥*

⋃

i∈Im
(G*,si−1 ∩ Gc

*,si ).

By Lemma 9, for i ∈ Im for m ≥ *, we have

(
G*,si−1 ∩ Gc

*,si

)
⊂ {Xsi−1 /∈ Ḡm}.

Using this bound for i ∈ Im , and the obvious bound (G*,si−1 ∩Gc
*,si

) ⊂ Gc
*,si

for i ∈ I0,
we obtain
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⋃

i≥1

Gc
*,si ⊂ {Gc

*,t } ∪
⋃

i∈I0
{Gc

*,si } ∪
⋃

m≥*

⋃

i∈Im
{Xsi−1 /∈ Ḡm}.

Taking the probability on either side, conditioning onT[t,2t] and using a union bound,
we get

P
( 2t⋃

s=t

{Xs /∈ G*}
)
≤ max

(ei ,si )i∈E[t,2t]
P
(
Xt /∈ G* | (ei , si )i

)

+ max
(ei ,si )i∈E[t,2t]

∑

i∈I0
P(Xsi /∈ G* | (ei , si )i )

+ max
(ei ,si )i∈E[t,2t]

∑

m≥*

∑

i∈Im
P
(
Xsi−1 /∈ Ḡm | (ei , si )i

)
+ e−t |BR |.

By Lemma 6, conditionally on any (ei , si )i ∈ T[t,2t], the law of Xsi 1 ω̃ where ω̃

is drawn from a Ber( p̃) distribution, so long as t ≥ T0 from that lemma. Since the
events Gc

* and Ḡc
m are decreasing events, each of the probabilities above is bounded

above by their analogs for ω̃. Finally, the number of summands |Ik | ≤ 4t |BR+mα |
since (ei , si )i ∈ E[t,2t]. Together, this means

P
( 2t⋃

s=t

{Xs /∈ G*}
)
≤(1+ 4t |BR+*α |)P(ω̃ /∈ G*)

+
∑

m≥*

4t |BR+(m+1)α |P(ω̃ /∈ Ḡm)+ e−t |BR |.

By Lemma 10, this is at most

(1+ 4t |BR+*α |)e−* + 4Ct
∑

m≥*

|BR+(m+1)α |e−m + e−t |BR |.

Using the stretched-exponential volume growth bound |BR+mα | ≤ e(R+mα)η ≤
eR

η+mαη
, the first two terms above are summable and yield 4teR

η
e−* as long as η is

small enough depending on δ, and *, R are large enough. The additional term e−t |BR |

is absorbed since t |BR | ≥ R for t ≥ 1. 56

4.3 Exponential relaxation to equilibrium after burn-in

Our aim is to now combine the above ingredients to establish that after a burn-in
period that keeps our configuration in the set E* per Proposition 7, the disagreement
propagation bounds of Sect. 3 can be implemented to guarantee exponential relaxation
to equilibrium as long as p is sufficiently close to 1 to kickstart the spacetime recursion.
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Proposition 12 Fix q,$, δ. There exists η0(δ) > 0 and p0(q,$, δ, η) < 1 and
C(p, q,$, δ, η) such that for every η < η0 and p ≥ p0 we have the following.
For any G satisfying Definition 2 and η-stretched-exponential volume growth, the FK
dynamics satisfies

max
e∈E(G)

(
P(X1

s (e) = 1)− P(X0
s (e) = 1)

)
≤ e−s/C , for all s ≤ (log n)2.

Proof Abusing notation slightly, let (Xs)s≥0 = (X0
s )s≥0 and (Ys)s≥0 = (X1

s )s≥0.
Define

ρ(t) := max
e∈E

P(Xt (e) .= Yt (e)),

under the grand coupling (whence the probability is exactly the difference of the
probabilities of e taking value 1). Recall the definition of E* = E*,α,α for α = (1+δ)/δ

fromDefinition 9 and (6). Our first aim is to establish the following recurrence relation,

ρ(2t) ≤ e
√
tρ(t)2 + e−t . (8)

for all t ≥ T0 for a large enough T0, Toward this aim, let

At,R,e = {Xt (BR(e)) .= Yt (BR(e))}.

Then, for any fixed e ∈ E(G), we have

P(X2t (e) .= Y2t (e)) ≤ P(X2t (e) .= Y2t (e) | Ac
t,R,e)P(A

c
t,R,e) (9)

+ P
(
X2t (e) .= Y2t (e), At,R,e,

2t⋂

s=t

{Xs,Ys ∈ E*}
)

(10)

+ P
(⋃2t

s=t
{Xs /∈ E*}

)
+ P
(⋃2t

s=t
{Ys /∈ E*}

)
. (11)

First notice that

P(X2t (e) .= Y2t (e) | Ac
t,R,e) ≤ ρ(t),

sincewecan condition on Xt , Yt ,w.r.t.which At,R,e ismeasurable, anduse the property
of the grand coupling that

max
ω0,ω

′
0

P(Xω0
t (e) .= X

ω′
0

t (e)) ≤ P(X0
t (e) .= X1

t (e)).

At the same time, by a union bound over e ∈ E(BR), we can bound P(Ac
t,R,e) ≤

|E(BR)|ρ(t). These give the bound on (9) of
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P(X2t (e) .= Y2t (e) | Ac
t,R,e)P(A

c
t,R,e) ≤ |E(BR)|ρ(t)2.

The quantity in (10) is controlled by Proposition 5, whence as long as t ≤ εR/*2α ,

P
(
X2t (e) .= Y2t (e), At,R,e,

2t⋂

s=t

{Xs, Ys ∈ E*}
)
≤ C |∂BR | exp(−R/(2*α)).

Finally, we control each of the terms in (11) by Proposition 7 giving

P
( 2t⋃

s=t

{Xs /∈ E*}
)
+ P
( 2t⋃

s=t

{Ys /∈ E*}
)
≤ CteR

η
e−*.

as long as t ≥ T0(δ, η, q) and η < η0(δ). Putting the above together, and using the
bounds on |E(BR)| and |∂BR | from the fact thatG has η-stretched-exponential volume
growth, for all T0(δ, η, q) ≤ t ≤ εR/*2α ,

ρ(2t) ≤ eR
η
ρ(t)2 + CeR

η
e−R/(2*α) + CteR

η
e−*.

If we make the choices

* = 2R2η, and t = */2 = R2η.

we find that as long as η < η0(δ) and t, *, R are sufficiently large (as a function of
δ, η, ε), wemaintain t ≤ εR/*2α andwe can absorb the pre-factors above to obtain the
claimed (8). That recurrence will hold for all t ≥ T0(q, δ, η) and as an upper bound,
for all t ≤ (log n)2 since our arguments are all valid as long as R ≤ diam(G) which
for G of η-subexponential volume growth is for all R ≤ (log n)1/η, which translates
to t ≤ (log n)2.

It remains to deduce the exponential decay on ρ(t) from (8); consider the function

φ(t) = e
√
t(ρ(t)+ e−t/2)1/2.

Then by (8), and the fact that
√
a + b ≤ √

a +
√
b,

φ(2t) ≤ e
√
2
√
t(e

√
tρ(t)2 + e−t + e−t)1/2 ≤ e(

√
2+.5)

√
tρ(t)+

√
2e

√
2t e−t/2.

Since 2 ≥
√
2+ .5 and

√
2e

√
2t ≤ e2

√
t for all t ≥ 1, this is at most φ(t)2. Therefore,

for any t0 ≥ 1, we have

φ(2k t0) ≤ φ(t0)2
k
,

whence if φ(t0) < 1/e, then for r = 2k , we have φ(r t0) ≤ e−r . From there, using the
definition of φ(t) in terms of ρ(t), we see that ρ(r t0) ≤ e−2r , whence ρ(t) ≤ e−2t/t0
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for t = 2k t0. The fact that ρ(t) is monotone decreasing in time implies the bound
ρ(t) ≤ e−t/t0 for all t ≥ t0.

The last step is to show thatφ(t0) < 1/e for some t0 larger thanmax{6, T0(q,$, δ, η)}.
Towards this purpose, notice that by the update rule (2),

ρ(s) ≤ (1− p̂)+ P(Pois(s) = 0) = (1− p̂)+ e−s .

There exists s0 independent of everything else such that e
√
s(2e−s + e−s/2)1/2 is less

than 1/e for all s > s0 because e
√
t (2e−t + e−t/2)1/2 is at most 3e−t/4+√

t , say. Let
p0(q) be large enough that (1 − p̂) ≤ e−s0 for all p ≥ p0. Then for all p ≥ p0 and
t0 ≥ s0, ρ(t0) ≤ 2e−t0 and we obtain the claimed φ(t0) < 1/e. 56

Proof of Theorem 1 Under themonotone grand coupling, we have for every initial state
ω0,

max
ω0

‖P(Xω0
t ∈ ·)− π‖tv ≤

∑

e∈E(G)

P(Xω0
t (e) .= Xπ

t (e)) ≤
∑

e∈E(G)

P(X1
t (e) .= X0

t (e)).

In turn, by monotonicity, the right-hand side is at most

max
ω0

‖P(Xω0
t ∈ ·)− π‖tv ≤

∑

e∈E(G)

(
P(X1

t (e) = 1)− P(X0
t (e) = 1)

)
.

Let t = C1 log n for C1 a large enough constant (depending on q,$, δ, η). Then by
Proposition 12, each term in the right-hand side is bounded by n−4 for large enough
n. Since there are at most $n ≤ n2 many summands, the sum above is o(1), implying
mixing in O(log n) time. This gives O(n log n) mixing time for the discrete-time FK
dynamics as described in the preliminaries.

The result for the SW dynamics follows from the comparison result of [56]. 56

5 Spatial and temporal mixing on trees with r-wired boundary

Our next goal in the paper is to establish Theorem 2 concerning FK dynamics on tree-
like expanders. Recursive mixing time arguments based on disagreement percolation,
like those in the previous section, are known to fail on graphs with exponential volume
growth. At the same time, localizing the dynamics can be difficult in treelike graphs
because there is no weak spatial mixing when p is close to 1; see the discussion at the
beginning of Sect. 5.1 for more details. In this section, we define a class of boundary
conditions that are sufficiently “wired”to support a notion of weak spatial mixing with
respect to the wired boundary conditions. This class of boundary conditions captures
the boundary conditions induced by the FK dynamics configuration on a treelike ball
centered at a vertex of an expander graph after a short burn-in.

This section focuses on general rooted trees Th = (V (Th), E(Th)) having depth h,
minimum internal degree 3 and maximum degree $. For any m ≤ h, Tm will denote
the tree given by truncating Th at depth m. The boundary ∂Tm is the set of vertices of
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Tm at depth m. For any vertex w ∈ V (Th), we use Th,w to denote the sub-tree of Th
rooted at w, with boundary ∂Th,w = ∂Th ∩ Th,w.

Definition 11 A boundary condition ξ of Th is single-component if the boundary
partition corresponding to ξ has at most one non-singleton element; we call this its
wired component.

Definition 12 A distribution P over boundary conditions ξ on Th is r -wired if it is
supported on single-component boundary conditions, and the distribution of the wired
component of ξ stochastically dominates the distribution over random subsets A ⊂
∂Th in which each vertex of ∂Th is included in A with probability r independently
(the partial order being the natural one on vertex subsets).

The following shows that except with double-exponentially small probability, the
random-cluster model on Th with r -wired boundary conditions satisfies weak spatial
mixing with respect to the all-wired boundary condition (the TV distance between the
two decays exponentially in the distance from the boundary).

Lemma 13 Let P be r-wired and let ξ ∼ P. Then, with P-probability 1− e−cp,r (1.1)h ,
we have

‖πξ
Th (ω(Th/2) ∈ ·)− π1

Th (ω(Th/2) ∈ ·)‖tv ≤ e−cp,r h,

for some cp,r = cp,r (q,$), which is positive as long as p > p0(q,$) and r >

r0(q,$) for suitable p0(q,$), r0(q,$) ∈ (0, 1), and which goes to∞ as p, r → 1.

Remark 4 The double exponential concentration under P in Lemma 13 is not strictly
needed for the results in this paper. A single-exponential concentration under Pwould
suffice and would be easier to establish by averaging over ξ ∼ P and then applying
Markov’s inequality. However, we include this stronger form since it provides insight
into the good qualities of r -wired boundary conditions and could be used to get an
improved mixing time bound for the FK dynamics on trees with r -wired boundary.
Unfortunately, with our current methods in Sect. 6, this improvement would not trans-
late into better bounds for the FK dynamics on treelike graphs, so we do not pursue
them.

5.1 Spatial mixing on trees with r-wired boundary conditions

Our first aim in this section is to establish Lemma 13. Spatial mixing in the traditional
sense, where one takes a maximum over the boundary conditions on the tree, does
not hold for large p, even if it is very close to 1. This can be seen by considering Th
with wired vs. free boundary conditions, and noticing that the marginal of any edge
in the tree with the free boundary condition is Ber( p̂), whereas the marginal of an
edge in the wired tree gives at least constant probability to that edge being distributed
as Ber(p), and otherwise, as Ber( p̂), so the total-variation distance on that edge does
not go to zero as h → ∞. Our solution to this issue is to restrict attention to r -wired
boundary conditions and establish that, at least among these boundary conditions, the
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random-cluster model exhibits spatial mixing on Th . Considering only such boundary
conditions will suffice for us, since these are the boundary conditions that appear
after a burn-in period of the FK dynamics on treelike expander graphs. We note that
with fully wired boundary conditions on trees, [47] showed decay of correlations to
establish uniqueness at p close to 1.

Themechanism for coupling random-cluster configurations with r -wired andwired
boundary conditions is based on what we call wired separating sets. These will be a
set of vertices that are all connected down to the wired component of ξ in ∂Th and
thereforewired together; as such, they separate the influence of the boundary condition
of ∂Th from, say, ∂Th/2.

Definition 13 A separating set in Th is a set of vertices S ⊂ V (Th)\V (Th/2) such that
every path from ∂Th/2 to ∂Th must intersect S. A configuration ω ⊂ E(Th) has a
wired separating set if there exists a separating set S such that every vertex v ∈ S is
connected in ω(Th,v) to a vertex u ∈ ∂Th,v belonging to the wired component of ξ .
Let Sh,ξ be the event thatω has a wired separating set in Th with boundary condition ξ .

The following lemma shows how the event of having a wired separating set governs
the probability of coupling random-cluster configurations to ω ∼ π1

Th in Th/2.

Lemma 14 For any single-component boundary condition ξ on Th,

‖πξ
Th (ω(Th/2) ∈ ·)− π1

Th (ω(Th/2) ∈ ·)‖tv ≤ π
ξ
Th (S

c
h,ξ ).

Proof We construct a monotone coupling for π
ξ
Th and π1

Th such that if (ωξ ,ω1) is

sampled from this coupling, then ωξ ∼ π
ξ
Th , ω1 ∼ π1

Th and

{ωξ ∈ Sh,ξ } ;⇒ {ωξ (Th/2) = ω1(Th/2)}.

Our construction relies on revealing the values of (ωξ ,ω1) on an edge set R under a
monotone coupling, where crucially, R will be designed to be the set of edges in the
“lowest” wired separating set (if one exists). We construct ωξ and ω1 as follows (and
refer to Fig. 3 for a depiction):

1. Initialize P0 as the parents of ∂Th , and R0 = ∅.
2. Starting with i = 1, pick a vertex wi ∈ Pi−1, and sample the configurations

(ωξ (Th,wi ),ω1(Th,wi )) from the monotone coupling between the marginals

π
ξ
Th (ωξ (Th,wi ) ∈ · | ωξ (Ri−1)), and π1

Th (ω1(Th,wi ) ∈ · | ω1(Ri−1)).

3. Let Ri = Ri−1 ∪ E(Th,wi ) and form ωξ (Ri ) and ω1(Ri ) by adding the configu-
rations ωξ (Th,wi ) and ω1(Th,wi ), respectively.

4. If wi is connected to the wired component of ξ in ωξ (Th,wi ), then let Pi =
Pi−1\Th(wi ); else, let Pi = (Pi−1\Th(wi )) ∪ {w′

i } where w′
i is the parent of

wi .
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1150 A. Blanca, R. Gheissari

Fig. 3 Two steps of the revealing process used in Lemma 14. Left: the configurations on the sub-tree of
wi ∈ Pi−1 are revealed, and in the configuration with ξ -boundary conditions, wi is not wired down to
ξ . Thus, its parent w′

i is added to Pi . In the next step, this vertex is wi+1, and when the remainder of its
sub-tree is revealed to indeed include a wiring to ξ , the vertex is removed fromPi but its parent is no longer
added

While i is such thatPi−1 is non-empty,Ri\Ri−1 .= ∅. This is because the edges from
wi to its children will be in Ri but not in Ri−1 (if they were in Ri−1 then wi ∈ Tw j

for some j < i and wi would have been removed from P j ). Therefore, the revealing
process will terminate after a finite number of steps, and we can call R = R f if f is
the first index for which P f = ∅.

Now, consider the subset ∂topR of vertices of R whose parents are not in R. As
long as the process terminates with R ∩ E(Th/2) = ∅, the vertices in ∂topR will be
connected to the wired component of ξ in ωξ (Th,w), and so they will form a wired
separating set. Conversely, if there exists a wired separating set S in ωξ (Th,w), no
parent of any vertex in S will ever be added to P , and therefore, the vertices from ∂top
will form exactly the lowest wired separating set.

Upon termination of the iterative procedure above,we can then sampleωξ (Th\R) =
ω1(Th\R), since both ωξ (R) and ω1(R) induce wired boundary conditions on
E(Th)\R. Therefore, under this coupling, we always have ωξ (Th\R) = ω1(Th\R).
Since the process terminates at the lowest wired separating set of ωξ , on the event
ωξ ∈ Sh,ξ , necessarily Th\R contains all of Th/2. As such, using P to denote the
probability under the coupling we just designed,

‖πξ
Th/2 − π1

Th/2‖tv ≤ P(R ∩ Th/2 .= ∅) ≤ P(ωξ ∈ Sc
h,ξ ) = π

ξ
Th (S

c
h,ξ ),

as claimed. 56

5.1.1 Good boundary conditions

Our aim is now to control the probability of Sc
h,ξ under a random r -wired boundary

condition ξ ∼ P. Recalling the definition of Sh,ξ , notice that it is an increasing event in
the random-cluster configuration. Since the random-clustermeasurewith parameters p
and q stochastically dominates independent percolationwith parameter p̂ = p

q(1−p)+p
configuration (i.e., the random-cluster measure with parameters q = 1 and p̂), it will
suffice for us to consider the probability of Sh,ξ under the product measure π̃Th =
π

ξ
Th , p̃,1 for some p̃ ≤ p̂ still going to 1 with p (e.g., p̃ = 2 p̂ − 1).
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Definition 14 A boundary condition ξ on Th is called c-good if

π̃Th (ω̃ ∈ Sc
h,ξ ) ≤ exp(−ch).

Notice that if ξ is c-good, then any single-component boundary condition ξ ′ ≥ ξ

will also be c-good, since any ω̃ ∈ Sh,ξ will also be in Sh,ξ ′ . Therefore, the event
{ξ is c− good} is itself increasing in the partial order on subsets of ∂Th . In particular,
if P is r -wired, then

P(ξ is c-good) ≥ PBer(r)(ξ is c-good)

where PBer(r) is the distribution over boundary conditions on ∂Th where the wired
component contains each vertex independently with probability r . Given this, the
following lemma implies Lemma 13.

Lemma 15 Suppose ξ ∼ PBer(r). There exists c = c(p, q, r) going to∞ as p, r → 1,
such that

P(ξ is not c-good) ≤ exp(−c(1.1)h).

Proof For some γ = γ (p, q, r) > 0 to be chosen later, going to 1 as p, r → 1,
consider the event Eγ that ξ belongs to the set of boundary conditions on Th that
satisfy the following property:

(P1) for each downward path from ∂Th/2 to ∂Th : v0, v1, . . . , vh/2, for each i =
1, . . . , h/4, if we draw a configuration ω̃(Tvi \Tvi+1) from π̃Tvi \Tvi+1

, the proba-
bility that the component of vi in ω̃(Tvi \Tvi+1) intersects the wired component
of ξ ∩ ∂(Tvi \Tvi+1) is at least γ .

We first show that ξ ∈ Eγ implies ξ is c-good for a suitable c > 0. Fix any ξ ∈ Eγ .
In order for Sc

h,ξ to occur, there must exist a path from ∂Th/2 to ∂Th such that no vi is
connected to ξ through ω̃(Tvi ). For any fixed path, that probability is upper bounded
by

π̃Th




h/4⋂

i=1

{ω̃(Tvi \Tvi+1) ∩ ξ = ∅}



 =
h/4∏

i=1

π̃Th (ω̃(Tvi \Tvi+1) ∩ ξ = ∅) ≤ (1− γ )h/4.

Here we have abused notation slightly to identify ξ with the subset of ∂Th that is its
wired component. (The change from the intersection to the product comes from the
fact that π̃Th is a product measure and that the sets Tvi \Tvi+1 are disjoint for different
i .) A union bound over the $h many paths implies that the probability that ω /∈ Sh,ξ
is at most $h/2(1− γ )h/4 which is at most exp(−ch) for some c > 0 going to ∞ as
γ → 1, which happens as p, r → 1.

It now suffices to find such a γ > 0, and a ĉ = ĉ(p, q, r) > 0 such that

PBer(r)
(
ξ /∈ Eγ

)
≤ exp(−ĉ(1.1)h). (12)
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Fix a downward path v0, . . . , vh/2 from ∂Th/2 to ∂Th and an i ∈ {1, . . . , h/4} (these
will subsequently be union bounded over), and consider the probability that ξ is such
that (P1) above holds for that path and that i .

Define the event F i that the connected component of vi in ω̃(Tvi \Tvi+1) intersects
∂(Tvi \Tvi+1) in at least (2 p̃ − ε)h(vi )−1 many sites, where h(vi ) denotes the height
of Tvi . Note that h(vi ) = i − h/2 ≥ h/4, and ε will be chosen later. For intuition,
the component of vi in ω̃(Tvi \Tvi+1) is a branching process which (besides its first
level) has 2 p̃ expected number of children since we assumed that in Th all internal
vertices have degree at least 3. By a standard branching process argument (see Fact 16
below from which this follows after asking that the first level have an open edge with
probability at least p̃), we know there exists δ going to 0 as p̃ → 1 (equivalently as
p → 1) such that

π̃Th (ω̃(Tvi \Tvi+1) /∈ F i ) ≤ δ.

By the independence of ω̃(Tvi \Tvi+1) from ξ , we have

PBer(r) ⊗ π̃Th

(
ω̃(Tvi \Tvi+1) ∩ ξ = ∅, ω̃(Tvi \Tvi+1) ∈ F i

)
≤ (1− r)(2 p̃−ε)h(vi )−1

.

The left-hand side above is exactly the expected value over ξ ∼ PBer(r) of the π̃Th
probability of an event depending on ξ . Thus by Markov’s inequality and the fact that
h(vi ) ≥ h/4,

PBer(r)
(
ξ : π̃Th

(
ω̃(Tvi \Tvi+1) ∩ ξ = ∅, ω̃(Tvi \Tvi+1) ∈ F i ) > (1− r)(2 p̃−ε)h/4/2

)

≤
Eξ∼Ber(r)

[
π̃Th

(
ω̃(Tvi \Tvi+1) ∩ ξ = ∅, ω̃(Tvi \Tvi+1) ∈ F i

)]

(1− r)(2 p̃−ε)h/4/2

=
PBer(r) ⊗ π̃Th

(
ω̃(Tvi \Tvi+1) ∩ ξ = ∅, ω̃(Tvi \Tvi+1) ∈ F i

)

(1− r)(2 p̃−ε)h/4/2

≤ exp((2 p̃ − ε)h/4 log(1− r)/2).

At the same time, for any fixed ξ ,

π̃Th (ω̃(Tvi \Tvi+1) ∩ ξ = ∅) ≤ π̃Th (ω̃(Tvi \Tvi+1) ∩ ξ = ∅, ω̃(Tvi \Tvi+1) ∈ F i )

+ π̃Th (ω̃(Tvi \Tvi+1) /∈ F i ).

If the first of these terms is at most (1− r)(2 p̃−εp)
h/4/2 and the second is at most δ, we

set γ = 1 − δ − (1 − r)(2 p̃−ε)h/4/2. Then, γ goes to 1 as p → 1 and by the above,
π̃Th (ω̃(Tvi \Tvi+1) ∩ ξ .= ∅) ≥ γ . Thus,

PBer(r)
(
ξ : π̃Th (ω̃(Tvi \Tvi+1) ∩ ξ = ∅) > 1− γ

)
≤ exp((2 p̃ − ε)h/4 log(1− r)/2).

123



On the tractability of sampling from the Potts model at… 1153

We now upgrade this into the probability that ξ is in Eγ by a union bound over all$h/2

many paths in Th and the h/4 many possible i’s; both these terms are absorbed by
the double exponential above. As long as ε is sufficiently small, and p is sufficiently
large, (2 p̃ − ε)1/4 is greater than 1.1, and the prefactor evidently blows up as r → 1
as claimed. 56

For completeness, we have included the following simple branching process con-
centration estimate.

Fact 16 In a branching process with progeny distribution stochastically dominating
Bin(2, p̃), let Zk be the population size at level k. Then for every ε > 0, there exists
δ > 0 going to 0 as p → 1 such that

P
(⋂

k≥1

{Zk ≥ (2 p̃ − ε)k}
)
≥ 1− δ.

Proof Since the event in question is an increasing event, it suffices to show the above
for the branching process with progeny distribution exactly Bin(2, p̃). If we letAk be
the event {Zk ≥ (2 p̃ − ε)k}, then we can write

P
(⋃

k≥1

Ac
k

)
≤ P(Ac

1)+
∑

k≥2

P
(
Ac

k,
⋂

j<k

A j

)
≤ P(Ac

1)+
∑

k≥2

P
(
Ac

k |
⋂

j<k

A j

)
.

Since Z1 = 1, the probability ofA1 is 1. For any k ≥ 2, since Zk is Markov, it suffices
to condition on Zk−1 : Zk−1 ∈ Ak−1; given Zk−1, the distribution of Ak−1 is

Zk−1∑

i=1

Xi where Xiare i.i.d. Bin(2, p̃).

Thus, P(Ac
k | Zk−1,Ak−1) is at most the probability of a sum of Zk−1 ≥ (2 p̃ −

ε)k−1 i.i.d. Bin(2, p̃) random variables, being at least εZk−1 below its mean. By
Hoeffding’s inequality (the Xi ’s being bounded by 2), this has probability at most
exp(− 1

2ε
2(2 p̃−ε)k−1) for every k. Let K equal log2 p̃−ε(2/(ε

2
√
1− p̃)). For the first

K generations, we can use the simpler union bound over the probability that one of
the first (2 p̃ − ε)k many Xi ’s is not equal to 2. Putting these together, we get

P
(⋃

k≥1

Ac
k

)
≤ 4

ε2
(1− p̃)1/2 +

∑

k>K

e
− 1√

1− p̃
(k−K )

.

For any fixed ε, this is then seen to be at most some δ going to zero as p̃ → 1, which
happens as p → 1. 56

5.2 Mixing time for trees with single-component boundary conditions

In this section, we provide a bound on the mixing time of the FK dynamics on trees
with single-component boundary conditions. In view of its application in the following
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section for treelike balls of expanders (possibly having a finite number of cycles), it
will be helpful for us to recall certain standard definitions that will allow us to relate
the convergence rate of various Markov chains.

For aMarkov chain on a finite state space!with transition matrix P and stationary
distribution µ, the Dirichlet form of the chain is defined for any function f : ! → R
by

E( f , f ) := 1
2

∑

ω,ω′∈!

µ(ω)P(ω,ω′)( f (ω)− f (ω′))2, (13)

and its spectral gap is given by

λP := min
f :Varµ[ f ].=0

E( f , f )
Varµ[ f ]

, (14)

where Varµ[ f ] = Eµ[ f 2]− Eµ[ f ]2 with Eµ[ f ] =
∑

ω∈! µ(ω) f (ω).
The inverse of the spectral gap is closely connected to the mixing time of a Markov

chain. In particular,

(λ−1
P − 1) log

( 1
2ε

)
≤ tmix(ε) ≤ λ−1

P log
( 1

εµmin

)
, (15)

where µmin = minω∈! µ(ω). (We refer the reader to e.g., [48, Chapter 12.2] for more
details.)

We establish the following bounds for the mixing time and inverse spectral gap of
the FK dynamics on a tree with any single-component boundary condition.

Lemma 17 Consider any tree Th of maximum degree $ and depth h with single-
component boundary condition ξ . There exist constants a = a($, q) > 0 and C =
C(p, q) > 0 such that the inverse spectral gapof theFKdynamics onTh with boundary
condition ξ are at most C exp(ah).

Proof We use the classical bound on the spectral gap obtained from the cut-width of a
graph via the canonical paths method, though a little care is needed for the purpose of
handling the random-cluster boundary condition. The edge-cut-width of Th (in other
words, the cut-width of its line graph) is defined as follows: enumerate the edges of
Th as 1, . . . , |E(Th)| and define

CW(Th) = min
σ

max
i

|V ({eσ ( j) : j ≤ i}) ∩ V ({eσ ( j) : j > i})|

where the minimum is over permutations σ on {1, . . . , |E(Th)|}. We claim that there
exists a constant K ($) such that uniformly over all trees of degree at most $, their
edge-cut-width is at most Kh; this follows e.g., from [3, Lemma 2.1] and the fact
that the edge-cut-width is within a factor of $ of the (vertex) cut-width. Let σ be the
permutation that attains this edge-cut-width bound for Th .

For any two random-cluster configurations I , F ∈ ! on Th , define the canonical
pathγI ,F as the path ofFKdynamics transitionswhich sequentially processes the edges
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of E(Th) according to the ordering induced by σ , i.e., eσ (1), eσ (2), . . . , eσ (|E(Th)|, and
whenever there is a discrepancy I (eσ (i)) .= F(eσ (i)), the transition is the one that
changes the state of eσ (i) from I (eσ (i)) to F(eσ (i)).

For an FK dynamics transition (η, ηi ) where ηi := η ⊕ eσ (i), construct a bijection
from the set of {I , F : (η, ηi ) ∈ γI ,F } to ! by setting

ωη(I , F) = {I (eσ ( j)) : j ≤ i} ∪ {F(eσ ( j)) : j > i}.

This is a bijection because I is recovered via I = {ωη(eσ ( j)) : j ≤ i}∪{η(eσ ( j)) : j >
i} and F is analogously recovered via F = {η(eσ ( j)) : j ≤ i} ∪ {ωη(eσ ( j)) : j > i}.

For ease of notation, let π = π
ξ
Th . The standard canonical paths bound (see [48,

Corollary 13.20]) then ensures the inverse gap satisfies

λ−1
P ≤ max

i
max

η

1
π(η)P(η, ηi )

∑

I ,F :(η,ηi )∈γI ,F

π(I )π(F)|γI ,F |

≤ |E(Th)|max
η,i

max
I ,F :(η,ηi )∈γI ,F

1
P(η, ηi )

π(I )π(F)
π(η)π(ωη(I , F))

.

The probability P(η, ηi ) is at least the probability of picking the edge eσ (i) to update
(1/|E(Th)|) times the minimal probability of flipping an edge, which is some C =
C(p, q) > 0. The ratio of probabilities is bounded by noticing that the number of
edges present in the multisets {I , F} and {η,ωη(I , F)} are the same, leaving only the
factor of q to contribute. Without the boundary conditions on Th , we claim that

|k(I )+ k(F)− k(η)− k(ωη(I , F))| ≤ 2|V (eσ ( j): j≤i ) ∩ V (eσ ( j): j>i )|, (16)

where we recall that k(ω) is the number of connected components in the subgraph
(V (G),ω) (3). To see (16), note that the only component counts that can differ between
k(I ) + k(F) and k(η) + k(ωη(I , F)) are from components that intersect the vertex
boundary between {eσ ( j) : j ≤ i} and {eσ ( j) : j > i}.

The addition of the boundary conditions can only change the bound on the left-hand
side of (16) additively by at most 2. This is because up to a change of the number of
components by at most 1, we can split the boundary condition ξ into two parts, one
being its part that intersects vertices of {eσ ( j) : j ≤ i} and one being its part that
intersects vertices of {eσ ( j) : j > i}. With this modification, the same reasoning as in
the no boundary condition case holds, that the component counts only differ through
components that hit the vertex boundary, and this number of components is evidently
bounded above by the size of the vertex boundary. Altogether, we get that the spectral
gap satisfies

λ−1
P ≤ C |E(Th)|2 exp

(
2(CW(Th)+ 1) log q

)
≤ C$he2Kh log q ,

which implies the claimed bound up to a change of constants. 56
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6 Mixing time on locally treelike graphs

We now use the understanding from Sect. 5 on the random-cluster model on trees with
r -wired boundary conditions to control their mixing time on treelike graphs having
exponentially strong supercritical phases for the edge-percolation: namely, to prove
Theorem 2. As mentioned in the introduction, the prototypical example to have in
mind in this section is a treelike expander like the random $-regular graph.

The proof strategy of Theorem 2 consists of the following three steps, which will
organize the section:

1. An O(1) burn-in period to obtain (nearly) r -wired boundary conditions on the
locally treelike O(log n)-radius balls of the graph;

2. Censoring of the dynamics after burn-in to localize to a treelike ball (and an estimate
on how long themixing timewill be on the local ball with (nearly) r -wired boundary
conditions);

3. A spatial mixing property with (nearly) r -wired boundary conditions to couple the
two censored copies after they have each respectively reached equilibrium.

6.1 Burn-in to induce (r, L)-wired boundary conditions on treelike balls

In this subsection, we demonstrate that FK dynamics after an O(1) burn-in period
will be such that the boundary conditions it induces on η

2 log n sized balls are (almost)
r -wired. This will be essential to the application of the spatial mixing results of the
previous section. Since the property of being r -wired is amonotone increasing property
on the distribution over single-component boundary conditions, it will essentially
suffice to establish it for the Ber( p̃) edge percolation ω̃, and use Lemma 6. (In reality,
there are some added complications by the possible O(1) many extra wirings outside
the single-component, as a bound on those extra wirings is no longer an increasing
event.)

In what follows, suppose G is a graph of minimum degree 3. Let Bh = Bh(o) be
the ball of radius h about a fixed vertex o and suppose it is K -treelike, meaning the
removal of at most K edges from E(Bh) leaves a tree. By taking the breadth-first
exploration of Bh , any vertexw can be assigned a height via h− d(w, o) and children
which are all vertices adjacent to w having smaller height. Let the descendant graph
of w, denoted Dw (in analogy with Th,w), be the set of all descendants of w, together
with their descendants, etc.

Definition 15 A distribution P over boundary conditions on a K -treelike ball Bh is
called (r , L)-wired if it is generated as follows:

• Some arbitrary L vertices in ∂Bh are chosen and an arbitrary wiring is placed on
them;

• On the remainder, a subset stochastically dominating the product Ber(r) subset is
wired together into one large component.

The main result of this subsection is that the boundary conditions induced on a
treelike ball by the FK dynamics after an O(1) burn-in time are (p, L)-wired. This will
follow from the following.
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Lemma 18 Suppose G has an exponentially strong supercritical phase per Defini-
tion 3, and for h = η log n, the graph G is (K , h)-treelike. For every r , there exists
p̃(η, r , cp̃, p̃0) such that if ω 1 ω̃, then for every o ∈ V (G), the distrbituion over
boundary conditions induced by ω(E(G)\E(Bh/2)) on ∂Bh/2 is within TV-distance
n−5 of a (r , K )-wired boundary condition.

The complications for establishing the above lemma are that the class of (r , L)-
wired boundary conditions are not amonotone family, and that thewirings of boundary
vertices of Bh are dictated by events of connectivity to a giant which are not inde-
pendent even under ω̃. We develop an auxiliary set of events on the random-cluster
configuration which provide the necessary monotonicity and independence. For this,
we note that all cycles in Bh have either 1 or 2 vertices of minimal height; for a vertex
w ∈ ∂Bh/2, we say the descendant graph Dw in Bh is a simple subtree if it does not
contain any vertices of minimal height of a cycle of Bh .

• Define E1 as the event that every component of ω of size at least η
2 log n coincides

(i.e., ω has at most one component of size greater than η
2 log n).

• For vertices w ∈ ∂Bh/2 whose descendant graph Dw in Bh is a simple subtree, let
Ew be the event that the configuration ω(Dw) has size greater than

η
2 log n. (For

other w, let Ew be vacuous.)

On the event E1, the subset of w ∈ ∂Bh/2 such that Ew holds will all be wired
together through the giant, and the set of additional wirings of boundary vertices must
be confined to those w for which its descendant graph in Bh is not a simple subtree,
which is deterministically at most 2K since G is (K , h)-treelike. It therefore suffices
for us to establish that for all p̃ sufficiently large, if ω 1 ω̃,

P(ω /∈ E1) ≤ n−5 and {w : ω ∈ Ew} 1
⊗

w

Ber(p),

whence on the event E1, the boundary conditions induced by ω(E(G)\E(Bh/2) on
∂Bh/2 would be (r , K )-wired. In particular, Lemma 18 is an immediate consequence
of the following two lemmas.

Lemma 19 Suppose G satisfies Definition 3 with some cp̃, p̃0. For every η > 0, there
exists p̃′0 such that if p̃ ≥ p̃′0, and ω 1 ω̃, then

P(ω /∈ E1) ≤ n−5.

Proof In order for ω /∈ E1, there must exist a component of size between η
2 log$ n

and n/2 (two components both of size at least n/2 evidently coincide). Thus, by a
union bound the probability of ω /∈ E1 is bounded by the probability that there exists
some connected set A of size between η

2 log$ n and n/2 with ω(∂e A) ≡ 0; this being
a decreasing event, it suffices to upper bound its probability under ω̃, whence we can
apply Definition 3 with * = η

2 log$ n to get

π̃(ω̃ /∈ E1) ≤ ne−cp̃η log n .
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Since cp̃ goes to ∞ as p̃ → 1, as long as p̃ is larger than some p̃0(η) the right-hand
side will be at most n−5. 56

Lemma 20 Suppose G is (K , h)-treelike For every r < 1, there exists p̃ such that if
ω 1 ω̃ then the distribution of {w : ω ∈ Ew} stochastically dominates a Ber(r) subset
of ∂Bh/2.

Proof Since the Ew are increasing events, {w : ω ∈ Ew} stochastically dominates {w :
ω̃ ∈ Ew}, it suffices to establish the above for ω̃. Since the descendant graphs Dw are
disjoint for the w ∈ ∂Bh/2 for which Dw are subtrees (and hence Ew is not vacuous),
the events Ew are independent under ω̃. It remains to argue that P(ω̃ ∈ Ew) ≥ r as
long as p̃ is sufficiently large. Since the descendant graphs Dw contain full binary
trees as subgraphs, the probability of ω̃ ∈ Ew is larger than the probability that the
branching process with offspring distribution Bin(2, p̃) survives η

2 log n generations,
which happens with probability going to 1 as p̃ → 1: see e.g., Fact 16. In particular,
for every r , the probability of ω̃ ∈ Ew is greater than r as long as p̃ is large enough
(depending only on r ). 56

6.2 Spatial mixing on treelike balls with (r, L)-wired boundary

We now describe howminor adjustments to Sect. 5.1 lead to spatial mixing on treelike
graphs with boundary conditions that are (r , L)-wired.

Lemma 21 Suppose Bh is K -treelike, and suppose P is (r , L)-wired. Then except with
P-probability e−cr (1.1)h/(2K )

(with cr > 0 for r large), ξ is such that

‖πξ
Bh
(ω(Bh/2) ∈ ·)− π1

Bh (ω(Bh/2) ∈ ·)‖tv ≤ Ce−cp(h/(2K )−K−L).

for some constant cp going to∞ as p → 1.

Proof Since Bh is K -treelike, there is an edge-set H of size at most K such that Bh\H
is a tree. Following the breadth-first search of Bh , there is a stretch of at least h/(2K )

consecutive levels between depth h/2 and h such that the restriction of Bh to those
levels is a forest and every tree in that forest contains a full binary tree as a subgraph
(using the minimum degree 3 condition). There exists m ≥ h/2 + h/(2K ) such that
this forest is Bm\Bm−h/(2K ).

Let S̃h,ξ be the event that there is a wired separating surface in every one of the
constituent trees of height h/(2K ) in the configuration ω(Bh\H). (Notice that since
the boundary conditions are at depth h, this depends on the full configuration, not
just the restriction to the stretch of h/(2K ) heights; moreover by definition of wired
separating surface, if ω(Bh\H) has a wired separating surface then so does ω(Bh).)

The first claim is that under this definition, there is a minor modification of the
revealing procedure of Lemma 14 such that the probability of ωξ ∈ S̃ch,ξ upper
bounds the total-variation distance. This is done by first revealing the entire con-
figurations ωξ and ω1 on (Bh\H)\Bm+h/(2K ) under the monotone coupling. In this
manner, the revealed part of ωξ induces some single-component boundary conditions
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ξ̃ on Bm+h/(2K ). We can then apply Lemma 14 to each of the constituent trees of
Bm\Bm−h/(2K ) and it follows that on the event that they all have wired separating
surfaces in ωξ , then ωξ is coupled to ω1 above those wired separating surfaces and in
particular on all of Bm . As such, we have the analogous

‖πξ
Bh
(ω(Bh/2) ∈ ·)− π1

Bh (ω(Bh/2) ∈ ·)‖tv ≤ πBξ
h
(ω(Bh\H) ∈ S̃ch,ξ ).

To control the probability of S̃ch,ξ , we follow the reasoning of Lemma 15, with the
modifications being minimal. The only difference that arises is that when considering
the probability of the event in item (2) in that proof, the sub-tree from a vertex vi ∈
Bm+h/(2K )\Bm in Bh\H no longer necessarily contains a full binary tree: for up to
K many vertices, it could be the pruning of a binary tree with up to K many subtrees
of depth at least h/2K deleted from it. The easiest thing to do is to simply disregard
these vertices which leads to a change from h to h − K in the concentration quality.
Similarly, at most L of the subtrees contain at their boundary one of the L vertices
where the (r , L) boundary conditions are arbitrarily rewired, and we can disregard
these L vertices as well. Nothing else will be affected in the proof. 56

6.3 Local mixing time on treelike balls with (r, L)-wired boundary

We now show that the η log n-radius balls in the treelike expander, with the boundary
conditions induced on them by the remainder of the FK dynamics configuration, have
a polynomial mixing time. By Lemma 18, after a burn-in, these will look like treelike
balls with boundary conditions that have an O(1) number of distinct components, one
of them being macroscopic, and the rest all being O(1) sized. At this point we can
appeal to comparison estimates for Markov chains together with the bound on the
inverse spectral gap on trees with single-component mixing times from Lemma 17.

Remark 5 We do not use any further information on the boundary conditions (like
the r -wired property or the randomness), only the fact that there is at most 1 large
component and O(1) many vertices in the union of all other components. In theory,
it is likely that we could use the r -wired property to get a significantly better bound
on the mixing time of a tree. However, the extra O(1) wirings and the O(1) many
non-tree edges force us to at some point perform a comparison through a spectral gap,
and getting back a mixing time bound from this will anyways end up costing a factor
of the volume per (15).

To perform comparisons, we formalize a notion of distance between boundary
conditions. Two “similar” random-cluster boundary conditions (in terms of the wiring
they induce) have similar effects on the underlying random-cluster distribution and
on the behavior of the corresponding FK dynamics. In turn, the Dirichlet form, and
spectral gaps of their corresponding dynamics should be “close”to one another. We
compile a few definitions and results that formalize this idea.

Definition 16 For two boundary conditions φ ≤ φ′, define D(φ,φ′) := k(φ)− k(φ′)
where k(φ) is the number of components in φ. For two partitions φ,φ′ that are not
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comparable, let φ′′ be the smallest partition such that φ′′ ≥ φ and φ′′ ≥ φ′ and set
D(φ,φ′) = k(φ)− k(φ′′)+ k(φ′)− k(φ′′).

The following lemma is then straightforward from the definition of the random-
cluster measure (3).

Lemma 22 (E.g., Lemma 2.2 from [12]) Let G be arbitrary, p ∈ (0, 1) and q > 0. Let
φ and φ′ be any two partitions of V (G). Then, for all random-cluster configurations
ω ∈ {0, 1}E , we have

q−2D(φ,φ′)π
φ′
G (ω) ≤ π

φ
G(ω) ≤ q2D(φ,φ′)π

φ′
G (ω).

The following corollary is a standard comparison of spectral gaps, and follows from
Lemma 22, the definition of the transition matrix of the FK dynamics, and Theorem
4.1.1 in [54].

Corollary 23 Let G = (V , E) be an arbitrary graph, p ∈ (0, 1) and q > 0. Consider
the FK dynamics on G with boundary conditions φ and φ′, and let λ, λ′ denote their
respective spectral gaps. Then,

q−5D(φ,φ′)λ′ ≤ λ ≤ q5D(φ,φ′)λ′.

Using the above, we are able to deduce the following bound.

Lemma 24 Consider a K -treelike ball Bh with boundary conditions ξ that have one
component of arbitrary size togetherwith atmost L many additional boundarywirings.
There exists a($, q) such that the inverse spectral gap on Bξ

h is at most Cp,q exp(a(h+
K + L)).

Proof Consider the modification of Bξ
h where all endpoints of the set H are wired up

to one another via a boundary condition, and denote it by B̃ξ
h . By Corollary 23, their

spectral gaps are within a factor of q10|H | of one another. The FK dynamics on B̃ξ
h are

a product of the FK dynamics on Bh\H with boundary conditions ξ and the wirings
of the edges of H (call this (B̃h\H)ξ ), and |H | independent FK dynamics chains on
single edges with wired boundary. By tensorization of the spectral gap (see e.g., [54])
the spectral gap of the FK dynamics on Bh is then the minimum of the gap on those
individual edges, and the gap of the FK dynamics on (B̃h\H)ξ .

The spectral gaps of the individual edges are clearly some constant depending on p,
so it suffices to bound the spectral gap of FK dynamics on (B̃h\H)ξ . For this purpose,
notice that with a cost of q5(|H |+L) we can perform a further boundary modification
and remove the wirings of the edges in H as well as those L additional wirings in ξ

to end up with the tree Bh\H with a single-component boundary condition. At this
point, we can bound the spectral gap of this resulting single-component tree of depth
h using Lemma 17. Putting together the costs from the various comparisons we obtain
the desired. 56
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6.4 Mixing times on locally treelike graphs

In this section, we combine the above parts to establish the near-linear mixing time
bound of Theorem 2 for FK dynamics on locally treelike graphs, as long as they have
an exponentially strong supercritical phase for edge-percolation.

Proof of Theorem 2 Recall that we use Xω0
t to denote the FK dynamics at time t from

initialization ω0. By monotonicity, under the grand coupling, we have

max
ω,ω′

P(Xω
t .= Xω′

t ) ≤
∑

e∈E(G)

P(Xω
t (e) .= Xω′

t (e))

≤
∑

e∈E(G)

P(X0
t (e) .= X1

t (e)) =
∑

e∈E(G)

E[X1
t (e)]− E[X0

t (e)].

(17)

Fix an edge e ∈ E(G) and consider the difference in expectations on the right. Set X̄0
t

to be the censored FK dynamics that agrees with X0
t for all times until some T0 but

that then censors (ignores) all updates after time T0 outside of Bh = Bh(o) for some
o ∈ e and for h = η

2 log n. Let X̄
1
t be the Markov chain that censors all updates of X1

t
outside of Bh (regardless of t). Then, by the censoring inequality of [52],

E[X1
t (e)]− E[X0

t (e)] ≤ E[X̄1
t (e)]− E[X̄0

t (e)]. (18)

By Lemma 6 and Lemma 18, for every r , there exist T0(r , q) and p0 large enough that
for all p ≥ p0, the FK dynamics X0

T0
, X1

T0
induce (r , K )-wired boundary conditions

on ∂Bh/2.
Let Aγ = Aγ (Bh) be the set of boundary conditions ξ on Bh that are single-

component together with at most K additional wirings, and furthermore that are such
that the inequality of Lemma 21 holds with constant cp = γ . Since X0

T0
, X1

T0
induce

(r , K )-wired boundary conditions on ∂Bh/2, by Lemma 21,

P(X0
T0(B

c
h/2) /∈ Ac

γ ) ≤ e−cr (1.1)h/2K . (19)

At the same time, by definition of Aγ , we have

max
ξ∈Aγ

(
π1
Bh (ωe)− π

ξ
Bh
(ωe)
)
≤ Ce−γ h/(3K ). (20)

so long as n is large enough that h/(2K ) − K − K ≥ h/(3K ). Since the event
{X̄0

T0
(Bc

h) ∈ Aγ } = {X0
T0
(Bc

h) ∈ Aγ } is measurable w.r.t. FT0 (the filtration generated
by the grand coupling up to time T0),

E[X̄1
T0+S(e)]− E[X̄0

T0+S(e)]
≤ P(X̄0

T0(B
c
h) /∈ Aγ )+ P(X̄1

T0+S(e) .= X̄0
T0+S(e) | X̄0

T0(B
c
h) ∈ Aγ )
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≤ P(X0
T0(B

c
h) /∈ Aγ )+ max

ξ∈Aγ (Bh)
(E[Y 1

S,B1
h
(e)]− E[Z0

S,Bξ
h
(e)]),

where Y 1
s,B1

h
and Z0

s,Bξ
h
are Glauber chains on Bh with boundary conditions 1 and ξ

respectively, initialized from 1 and 0 respectively. We have used here the definition of
censored dynamics and monotonicity. The first term is at most e−cr (1.1)h/2K by (19).

For the second term, fix any ξ ∈ Aγ (Bh), let Ys = Y 1
s,B1

h
and Zs = Z0

s,Bξ
h
, and write

E[YS(e)]− E[ZS(e)] =
(
E[Y 1

S (e)]− πB1
h
(ωe)
)

+
(
πB1

h
(ωe)− πBξ

h
(ωe)
)
+
(
πBξ

h
(ωe)− E[Z0

S(e)]
)
.

The middle term is at most Ce−γ h/(3K ) by (20). For the first and third, suppose

S ≥ C0 log n · max
ξ∈Aγ (Bh)

log
( 1

minω π
ξ
Bh
(ω)

)
· λ−1

Bξ
h
,

where λ−1
Bξ
h
is the inverse spectral gap of the FK dynamics on Bh with boundary

conditions ξ . Then by (15) and sub-multiplicativity of TV-distance to stationarity, for
a universal constant C0, both the first and third terms will be at most n−5. Combining,
we get

E[X̄1
T0+S(e)]− E[X̄0

T0+S(e)] ≤ C(e−cr (1.1)h/(2K ) + e−γ h/(3K ) + n−5). (21)

At this point we make the following choices for η, γ , T0, S:

1. h = η
2 log n for η > 0 sufficiently small that for every ξ ∈ Aγ (Bh),

log
( 1

minω π
ξ
Bh
(ω)

)
· λ−1

Bξ
h
≤ $

η
2 log nλ−1

Bξ
h
log(1− p) is at most nε/2 log(1− p);

2. S = C1nε/2 log n where C1 = C0 log(1− p);
3. γ large enough that e−γ h/(2K ) is at most n−5;
4. r large enough that cr > 0
5. T0 and p large enough that X0

T0
induces (r , K )-wired boundary on ∂Bh/2.

The existence of such an η($, q, K ) follows from Lemma 24 and the fact that a only
depends on $, q. Furthermore, by taking r large, we can make γ and cr arbitrarily
large, to satisfy items (3)–(4). Finally, Lemma 18 ensures we can take T0, p0 large
enough that for all p ≥ p0, item (5) is satisfied.

With these choices, for n sufficiently large, the right-hand side of (21) is at most
n−4. Combining these with (17)–(18), we get that there exists p0(cp̃, p̃0,$, η, q, K )

such that for all p ≥ p0,

max
ω

‖P(Xω
T0+S ∈ ·)− π‖tv ≤ max

ω,ω′
P(Xω

T0+S .= Xω′
T0+S) = o(1),
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which concludes the proof since evidently T0 + S = O(nε/2 log n) = O(nε). 56

7 Graphs with slowmixing at arbitrarily low temperatures

In this section, we establish the following slow mixing result for the FK dynamics.
Theorem 3 is the special case where we have restricted to integer q and used the
comparison results of [56].

Theorem 25 Fix $ ≥ 3 and p0 < 1.

1. For any q ≥ 3, there exists p > p0 and a sequence of locally treelike graphs (Gn)n
of maximum degree $ such that the FK dynamics on Gn have tmix ≥ exp(!(n)).

2. For any q > 4 (possibly non-integer), there exists p > p0 and a sequence (Gn)n
of polynomial volume growth and maximum degree $ such that the FK dynamics
of Gn have tmix ≥ exp(!(

√
n)).

The key tool for this proof will be the so-called “series law” for the random-cluster
model. That is, splitting any edge e into two edges, and changing the edge probability
parameter for e from pe to approximately

√
pe for each of the two new resulting edges

preserves the random-cluster measure when one re-identifies the edges and takes the
status of e as being open if the two new edges are open. This gives a mechanism for
boosting any fixed p into a p′ which gets closer and closer to 1, while only increasing
the number of edges and vertices in the graph by a constant factor. In this manner, if a
graph H has slowmixing for its FKdynamics at some value of p (nomatter how small),
then its modification G (obtained by multiple applications of the series law) can be
made to have slow mixing at p′, for p′ that can be arbitrarily close to 1. Moreover, the
graph modifications do not distort the maximum degree and volume growth (though
they importantly do distort the isoperimetric dimension, and expansion rates, which
we recall were fundamental to the presence of a strongly supercritical phase for the
edge-percolation on the graph).

Remark 6 Both items (1)–(2) of Theorem 25 should hold for all q > 2. The gap for
q non-integer in item (1) and q ∈ (2, 4] in item (2) come from the present lack of
proof (to our knowledge) of a slowdown for FK dynamics on bounded degree graphs
(satisfying the corresponding graph condition) at those values of q. Such a slowdown
is widely expected at the critical points both for the random regular graph and on
(Z/mZ)d for large d. The values of q for which we can establish our lower bound
come from the slowdowns of the random regular graph at integer q ≥ 3 [21], and the
torus (Z/

√
nZ)2 at q > 4 [30].

Let us precisely recall the series lawof the random-clustermodel from [36, Theorem
3.89].

Lemma 26 Two edges e, f of a graph G = (V , E) are in series if e = {u, v} and
f = {v,w} and v has no other incident edges. Let

σ (x, y, q) = xy
1+ (q − 1)(1− x)(1− y)

. (22)
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Let G ′ = (V \{v}, (E\{e, f }) ∪ {u, w}). For a random-cluster configuration ω on
G, define ω′ on G ′ by setting ω′(a) = ω(a) for a ∈ E\{e, f } and ω′({u, w}) =
ω(e) · ω( f ). Then, if ω is sampled from the random-cluster distribution on G with
parameters (pa)a∈E and q > 0, ω′ is distributed according to the random-cluster
distribution on G ′ with parameters (pa)a∈E\{e, f } and p{u,w} = σ (pe, p f , q).

Proof of Theorem 25 For item (1), let (Hn)n be a locally treelike sequence of n-vertex
graphs of degree at most $ such that the mixing time of FK dynamics at some fixed
value of p ∈ (0, 1) is exp(!(n)). From Theorem 1.2 of [21], we know that a randomly
drawn sequence of$-regular graphs satisfies this bound with high probability if q ≥ 3
is an integer and p = pc(q,$). For item (2), let (Hn)n be the torii (Z/

√
nZ)2. We

then know from Theorem 2 of [30] that at fixed p = pc(q) ∈ (0, 1) the mixing time
of FK dynamics on Hn is exp(!(

√
n)) for all real q > 4.

LetGn be themodification of Hn in which every edge of Hn is split into 2K edges in
series, for K determined as follows. Let ζq(p) be the inverse of σ (x, x, q) from (22),
i.e.,

σ (ζq(p), ζq(p), q) = p.

Such an inverse exists and is increasing for p ∈ (0, 1) by virtue of the fact that
σ (x, x, q) is continuously increasing from 0 to 1 as x ranges from [0, 1]. Since x2/q ≤
σ (x, x, q) ≤ x2 it must be the case that ζq(p)2/q ≤ σ (ζq(p), ζq(p), q) ≤ ζq(p)2. In
order for this to be equal to p, it must be that

√
p ≤ ζq(p) ≤ √

pq .
Take K such that

ζ ◦K
q (p) := ζq( ζq( · · · ζq︸ ︷︷ ︸

K

(p) · · · )) ≥ p0.

The inequality
√
p ≤ ζq(p) ensures that for any

K ≥ log2
( log p
log p0

)
,

we have ζ ◦K
q (p) ≥ p0. By Lemma 26, if ω′ is a random-cluster configuration on Gn

with parameters p′ = ζ ◦K
q (p) and q, and ωe = ∏ei ω′

ei for every edge e ∈ E(Hn),

where (ei )2
K

i=1 are the edges in Gn derived from splitting e, then ω is a sampled from
the random-cluster measure on Hn with parameters p and q.

Wenowclaim that theFKdynamics onGn with parameters p′ andq have exp(!(n))
mixing if Hn has exp(!(n)) mixing at parameters (p, q) (the reasoning that it has
exp(!(

√
n))mixing if Hn has exp(!(

√
n)mixing is identical, so we omit it). This is

achieved by lifting a bottleneck set from Hn to Gn . In what follows, it is convenient
to work with the discrete-time Glauber dynamics (though the same proof would work
in the continuous-time setting as well). Let PH denote the transition matrix of the
discrete-time FK dynamics on Hn at parameter p and PG the transition matrix of the
discrete-time FK dynamics on Gn at parameter p′. Similarly, πHn is at parameter p
while πGn is at parameter p′.
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By assumption, the mixing time of FK dynamics on Hn is exponential in n. As
such, there exists a subset of configurations A ⊂ {0, 1}E(Hn) of exponentially small
conductance. More precisely, there must exist A ⊂ {0, 1}E(Hn) such that πHn (A) ≤
1/2 and

4H (A) :=
∑

x∈A,y∈Ac πHn (x)PH (x, y)

πHn (A)
= exp(−!(n)) ; (23)

see, e.g., [48, Theorem 13.10]. Let ∂PH A = {x ∈ A : PH (x, y) > 0 for some y ∈ Ac}.
Since for each x ∈ ∂PH A, each entry of PHn is at least

1
n p̂, we see that there exists a

constant c > 0 such that

πHn (∂PH A)
πHn (A)

=
∑

x∈∂PH A πHn (x)

πHn (A)
≤ n p̂−14H (A) ≤ exp(−cn). (24)

Let TA be the subset of {0, 1}E(Gn) defined by TA = {ω′ : ω ∈ A} where the
relationship between ω and ω′ is defined per the operation described above. By
Lemma 26, πGn (TA) = πHn (A). Every configuration in ∂TA must be in T∂A because
if PG(ω′, σ ′) > 0, for σ ′ /∈ TA, then σ ′ projects down to a configuration in Ac,
so ω′ must project into ∂A. Therefore, by Lemma 26, πGn (∂PG TA) ≤ πHn (∂PH A).
Altogether, it follows from (24) that

πGn (∂PG TA)
πGn (TA)

≤ exp(−cn).

Using the facts that for every x , the number of y ∈ TAc for which PG(x, y) is positive
is at most E(Gn),

∑
x∈TA,y∈T c

A
πGn (x)PG(x, y)

πGn (TA)
≤ |E(Gn)|

πGn (∂PG TA)
πGn (TA)

,

implies that TA is a set of exponentially small conductance for the FK dynamics on
Gn . This then implies the inverse gap and mixing time of FK dynamics on Gn are
both exponential in n.

It remains to reason that the number of vertices and edges of Gn are of the same
order as the number of vertices and edges of Hn , so that the resulting bounds are indeed
exponential in |V (Gn)|. Notice that as long as p = !(1) and 1 − p0 = !(1), then
K = O(1). As such, Gn will have |V (Gn)| ≤ |V (Hn)|+2K |E(Hn)| = O(|V (Hn)|),
and |E(Gh)| ≤ 2K |E(Hn)|. This yields the claimed bound. 56
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