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Abstract

Sampling from the g-state ferromagnetic Potts model is a fundamental question in
statistical physics, probability theory, and theoretical computer science. On general
graphs, this problem may be computationally hard, and this hardness holds at arbi-
trarily low temperatures. At the same time, in recent years, there has been significant
progress showing the existence of low-temperature sampling algorithms in various
specific families of graphs. Our aim in this paper is to understand the minimal struc-
tural properties of general graphs that enable polynomial-time sampling from the
g-state ferromagnetic Potts model at low temperatures. We study this problem from
the perspective of random-cluster dynamics. These are non-local Markov chains that
have long been believed to converge rapidly to equilibrium at low temperatures in
many graphs. However, the hardness of the sampling problem likely indicates that this
is not even the case for all bounded degree graphs. Our results demonstrate that a key
graph property behind fast or slow convergence time for these dynamics is whether the
independent edge-percolation on the graph admits a strongly supercritical phase. By
this, we mean that at large p < 1, it has a large linear-sized component, and the graph
complement of that component is comprised of only small components. Specifically,
we prove that such a condition implies fast mixing of the random-cluster Glauber
and Swendsen—Wang dynamics on two general families of bounded-degree graphs:
(a) graphs of at most stretched-exponential volume growth and (b) locally treelike
graphs. In the other direction, we show that, even among graphs in those families,
these Markov chains can converge exponentially slowly at arbitrarily low tempera-
tures if the edge-percolation condition does not hold. In the process, we develop new
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tools for the analysis of non-local Markov chains, including a framework to bound
the speed of disagreement propagation in the presence of long-range correlations, an
understanding of spatial mixing properties on trees with random boundary conditions,
and an analysis of burn-in phases at low temperatures.

Keywords Swendsen—Wang dynamics - Potts model - Random-cluster model -
Low-temperatures - Mixing times - Disagreement percolation
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1 Introduction

The g-state ferromagnetic Potts model is a classical spin system model central to
probability theory and with applications in statistical physics, theoretical computer
science, and other fields. It is defined on a graph G = (V(G), E(G)) as a prob-
ability distribution over configurations in Qp = {1,...,q}"©, with a parameter
B > 0, corresponding to the inverse temperature in physical applications, controlling
the strength of the interaction between the edges of G. Formally, the probability of
each configuration o € p is given by:

1

Hopa(©@) = Zm—ep (B Y Lo =ow)). M
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The factor ZZ) ’ is a normalization constant and is known as the partition function;
o (u) denotes the color or spin value of the configuration o at vertex u. The classical
Ising model corresponds to the g = 2 case.

The question of sampling from the ferromagnetic Potts model is an important one
and has been extensively studied on a variety of graphs and temperature regimes (i.e.,
different values of 8). In general, it is known that the problem of approximate sampling
from (1) for ¢ > 3 and B large is #BIS-hard, in the sense that there exist graphs,
including bounded degree ones, for which the approximate sampling problem is as
hard as approximately counting the number of independent sets on bipartite graphs
[29, 33]. This latter task is a well-studied computational problem that is believed
not to have a polynomial time approximation algorithm. This sharply contrasts with
the ferromagnetic Ising case (¢ = 2), where polynomial-time samplers have been
known since the 1990s [46, 53]. At the same time, for some families of graphs,
notably including Z¢ and expander graphs, the existence of polynomial-time sampling
algorithms has recently been shown for the Potts model at low temperatures: see, e.g.,
[16, 18-20, 32, 40, 41, 43, 45]. This raises the question of what are the underlying
graph structures and temperatures that cause tractability or hardness of approximately
sampling from (1). We study this from the perspective of widely-used Markov chain-
based algorithms.

One fundamental approach to sampling from Gibbs distributions of the form of (1)
is via Markov chains whose stationary distribution is exactly g, g,4. The simplest
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such Markov chain is the Glauber dynamics for the Potts model (also known as the
Gibbs sampler), which updates the state of a randomly chosen vertex at each step.
Its simplicity makes it quite appealing to practitioners, but it is known to take expo-
nentially (in poly(]V|)) many steps to equilibrate at low temperatures (S large). In
lieu of this, in order to sample from (1), an oft-used approach is a different family
of Markov chains based on the Edwards—Sokal coupling of the ferromagnetic Potts
model to a graphical model called the random-cluster model [26]: see (3) for its defini-
tion. This family of Markov chains includes the extensively studied Swendsen—Wang
(SW) dynamics, and its close relative, the Glauber dynamics for the random-cluster
model.

These Markov chains make non-local updates, and are often used to bypass the
bottlenecks that slow down the convergence of the Potts Glauber dynamics at low
temperatures when g > 3. At the same time, the aforementioned #BIS-hardness of the
sampling problem at low temperatures suggests that these Markov chains could not
have a polynomial speed of convergence on all graphs. For the sake of completeness,
we mention that at high temperatures (small §), these Markov chains converge quickly
but have a larger computational overhead per step than the Potts Glauber dynamics [6];
there are also “intermediate” temperature regimes corresponding to first-order phase
transitions where these Markov chains are known to converge exponentially slowly to
equilibrium [17, 21, 30, 31, 34].

In this paper, we systematically analyze these Edwards—Sokal based Markov chains
on general graphs at low temperatures. In the process, we develop new tools for
the analysis of non-local chains and arrive at an explanation, in terms of geometric
properties of the graph, that dictate whether these Markov chains converge quickly
or slowly at low temperatures (i.e., large, but independent of the system size, values
of B).

Let us define the Markov chains of interest. For a unified discussion, it is convenient
toreparametrize 8 by p = 1—e# . Notice that low-temperature settings corresponding
to B large correspond to p close to 1. The SW dynamics transitions from a configuration
or € Qp to 0141 € Q2p as follows:

1. Independently, for every e = {u, v} € E(G) if o, (u) = o4(v) include e in E; with

probability p;
2. Independently, for every connected component C in (V(G), E;), draw a color ¢ €
{1, ..., g} uniformly at random, and set 0,41 (v) = c forall v € C.

It can be checked that the SW dynamics is reversible with respect to ug,g,4 and
thus converges to it. In effect, the SW dynamics moves on the larger probability
space of Potts model configurations together with random-cluster configurations. The
configurations of this model consist of edge subsets, i.e., Qrc = {0, 1}E(G), and the
SW dynamics can be interpreted as alternating steps of sampling a random-cluster
configuration E,; conditionally on the Potts configuration oy, then sampling the Potts
configuration o;4 conditionally on E;.

A closely related Markov chain is the Glauber dynamics that moves in the space of
random-cluster configurations; for brevity, we call this Markov chain the FK dynamics
since the random-cluster model is also known as the FK model. Here, given an edge
subset E; € Qgc, we generate E; 11 by:
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1. Pick an edge e € E(G) uniformly at random;
2. Set E;+1 = E; U {e} with probability:

p if eis not a cut-edge in E;

2

A

— P e s : . .
P = = if eis a cut-edge in E;;

and E;+1 = E;\{e} otherwise.

A cut-edge is an edge whose state affects the number of connected components of the
configuration. It can be checked that the FK dynamics converges to the random-cluster
distribution (3). After convergence, one may produce a sample from the corresponding
g-state Potts measure (the one with 8 so that p = 1 — ¢~ #) with little overhead
by independently assigning states uniformly amongst {1, ..., g} to each connected
component of the random-cluster configuration, as in step (2) of the SW dynamics
above. As such, the FK dynamics provides an alternative Markov chain that can be
used to sample from (1).

To formalize convergence rates of these Markov chains, recall that the mixing time
of a Markov chain is the number of steps required to reach a distribution close to
the stationary distribution (in total variation distance), assuming the worst possible
starting state: see (4) for the formal definition. It is known that the mixing times of the
SW and FK dynamics can differ only up to a O (] E(G)|) factor (see [56]).

Both the SW and FK dynamics are conjectured to overcome some of the key difficul-
ties associated with sampling from the Potts distribution quickly at low temperatures.
They are, therefore, quite popular, but their non-locality makes the rigorous analysis of
their mixing times significantly more challenging than their Potts Glauber dynamics
counterparts. In recent years, significant progress has been made in establishing opti-
mal mixing time bounds for the SW and FK dynamics in high-temperature regimes
where the corresponding Potts Glauber dynamics is also known to be fast mixing;
see, e.g., [6-8, 32]. These works have resulted in optimal (or nearly optimal) mix-
ing time bounds for SW and FK dynamics that hold under various correlation decay
conditions (e.g., strong spatial mixing, tree uniqueness, Dobrushin uniqueness, spec-
tral independence, etc.). In particular, p < 1/A implies fast mixing for all graphs of
maximum degree A. By contrast, in the low-temperature setting, where correlations
do not decay, the Potts Glauber dynamics converges slowly, and alternative efficient
sampling algorithms are most needed, there is no generic criterion guaranteeing that
the SW and FK dynamics mix quickly.

In fact, rigorous bounds for the mixing time of the SW and FK dynamics at low
temperatures are rare and can be summarized as follows. In the Ising case of g = 2,
[37] showed that these Markov chains mix in O (n'°) time on all n-vertex graphs
and all p. On the complete graph, [13, 15, 28] establish nearly-optimal mixing time
bounds throughout the low-temperature regime. On more sophisticated geometries,
progress has been limited to the special case of the integer lattice Z¢. In particular,
in [14, 55], fast mixing was shown in the low-temperature regime on subsets of Z?
via planar duality to high-temperatures (see also [50] for sharper bounds for the SW
dynamics at low temperatures in the Ising case). Recently [32] showed fast mixing
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at low temperatures in cubes in Z?. For general graphs, the only low-temperature
criterion known to ensure fast mixingis p > 1 — O(1/|E(G)]) [42].

This leaves a wealth of questions to explore on general families of graphs, notably
including the mixing times of the SW and FK dynamics at values of p close to 1, but
importantly, independent of the graph size. We consider this question for two broad
families of bounded-degree graphs: graphs of at most stretched-exponential volume
growth, and locally treelike graphs (which allow for exponential volume growth). We
show that for all such graphs, fast mixing of the SW and FK dynamics at low enough
temperatures is ensured if the independent edge-percolation process on the graph,
where an edge-set @ C E(G) is obtained by keeping each edge with probability
P, independently, has a strongly supercritical phase (i.e., for p close to 1, all large
connected sets in G intersect the giant component of @; see Definition 2 and 3 for
precise definitions). To illustrate the necessity of this condition, for any arbitrarily
large p < 1, we construct explicit graphs—both ones of polynomial volume growth,
and ones that are locally treelike—on which the edge-percolation is not in a strongly
supercritical phase, and, in turn, the SW and FK dynamics mix slowly.

The class of graphs that have strongly supercritical phases for their edge-percolation
is an area of extensive study, and it is closely connected to whether the graph has
isoperimetric dimension strictly larger than 1. The key takeaway from our results is
thus a purely geometric mechanism underlying fast or slow mixing of the SW and FK
dynamics at large p < 1 on two large families of bounded degree graphs.

1.1 Graphs of at most stretched-exponential growth

The first general class of graphs for which we establish fast mixing of the SW and
FK dynamics at low temperatures under the percolation condition are bounded-degree
graphs that have at most stretched-exponential volume growth. Let us introduce some
notation: in what follows, we think of G = (V(G), E(G)) as a connected graph on n
vertices, with maximum degree A > 3, and we fix any ¢ > 2. For a vertex v € V(G),
let BR(v) = {w : dg(v, w) < R} be the set of vertices at graph distance at most R
from v. For a subset A C V(G), let 9,A C E(G) denote the edge boundary of A, i.e.,
the set of edges in E(G) with exactly one endpoint in A.

Definition 1 The graph G has n-stretched-exponential volume growth if |Bg(v)| <
e forallv € V(G) and all R sufficiently large (i.e., R > Ry for some R independent
of n; for convenience, take Ry = 1/ 171).

Natural graph families with at most stretched-exponential volume growth include
bounded-degree lattices in RY; e.g., finite subsets of 74 the triangular and hexagonal
lattices, etc., and Cayley graphs of polynomial growth groups. This notion is closely
related to a quantitative version of amenability.

We show that the SW and FK dynamics on these graphs are rapidly mixing when the
independent edge-percolation process on the underlying graph G has a “strong super-
critical phase” which we define next. For p € (0, 1), let 7 = ®66E(G) Bernoulli(p)

1 At the level of quantification of our bounds, this choice does not affect our main statements; allowing for
general Ry would simply add Ry to the set of constants on which the bounds depend.
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denote the independent edge-percolation distribution for G. We note that if @ is drawn
from 7 (i.e., @ ~ %), then we can think of & as, both, a vector in {0, 1}(%) or as
a subset of edges of E(G). For B C E(G), letw(B) € {0, I}B denote the state of the
edges from B in @(B).

Definition2 Let @ ~ 7g. We say that G has a strong supercritical phase (with
parameters §, p) if there exists p < 1 and § > O such that for every v € V(G),
the probability that there exists a connected set A > v having £ < |A| < n/2 with
@(9.A) = 0 is at most exp(—£%/1+%)) for all ¢ sufficiently large (again, meaning
£ > £ for some £ independent of n, for instance for convenience £o = 1/4).

Roughly the definition says that the probability that there exists a set A C V(G)
that is connected in G, contains v, and has size at least ¢, but does not intersect
the largest component in @, is stretched-exponentially small in ¢ (with the exponent
governed by the parameter § > 0, which as we will comment on shortly is related to
the isoperimetric dimension of the underlying graph). Notice that the existence of a
p in Definition 2 implies it for all 5’ > p by monotonicity of the strong supercritical
property in @.

Theorem 1 There exists no(8) > 0 and po(A, q, 8, p) < 1, such that for every graph
G with a strong supercritical phase (with parameters §, p) and n-stretched-exponential
volume growth for some n < no:

1. The mixing time of SW dynamics on G is O (n*logn) for every p > p.
2. The mixing time of the FK dynamics on G is O (nlogn) for every p > po.

It is natural to wonder what families of graphs have a strong supercritical phase.
The nature of the supercritical phase for edge-percolation on a graph is known to be
closely related to the geometric, namely isoperimetric, properties of the graph: see
e.g., [1]. One would expect that general graph families with isoperimetric dimension
at least 1 + § (meaning that [3,A] > |A|¥0+9 for all subsets A C V(G) with
|A] < n/2) have a strong supercritical phase in the sense of Definition 2. Often
at sufficiently large p, a strong supercritical phase can be proven using perturbative
Peierls-type arguments; by such means, subsets of Z¢ and other lattices (e.g., hexagonal
and triangular) that are uniformly at least (1 + §)-dimensional, and planar graphs with
a bounded-degree planar dual serve as concrete examples of graphs that have a strong
supercritical phase. More generally, the structure of the supercritical phase in vertex-
transitive graphs of polynomial growth is the subject of deep study (see e.g., [22, 25,
44] which tackle the harder problem of understanding the supercritical phase down to a
sharp threshold). Natural graphs of super-polynomial but at most stretched-exponential
growth are rarer, but one such family are the well-known construction of Grigorchuk
groups; in these, the precise 1 in the stretched-exponential growth, and the nature of
the graphs’ supercritical phase are subjects of active research: see e.g., [35].

Our proof of Theorem 1 relies on a novel framework for controlling the rate at which
discrepancies spread between two coupled low-temperature FK dynamics chains that
agree inside, say, a ball of radius R around a vertex, but that may disagree outside
it. This is sometimes called disagreement percolation, and we use it, after a burn-in
period for the chain (a short period of time after which we can ensure that the certain
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“typical”’properties of random-cluster configurations are achieved, even though the
chain has not equilibrated), to perform space-time recursions to derive our mixing time
bounds. To the best of our knowledge, this is the first time disagreement percolation has
been analyzed in a low-temperature setting for non-local Markov chains like the SW or
FK dynamics, where the giant component could hypothetically spread disagreements
instantaneously (except in the special case of Z> where low and high temperatures
are dual to one another). We say more about the obstacles to proving Theorem 1
using existing tools and the technical novelties in our low-temperature disagreement
percolation framework in Sect. 1.4.

Since [57], bounds on the rate of disagreement percolation have been a tool used
to prove a variety of other results for spin systems, including bounds on uniqueness
thresholds, equivalences of spatial and temporal mixing [24], and tight lower bounds
for the mixing time of the Glauber dynamics [39]. We do not explore these directions
here, but our low-temperature disagreement percolation, which is self-contained to
Sect. 3, opens up those same arguments for the low-temperature random-cluster model
and its dynamics. For example, extending the lower bounds of [39] would show that
the O (nlogn) in (2) in Theorem 1 is tight; by contrast, the resulting lower bound for
SW dynamics would be 2 (logn).

1.2 Locally treelike graphs

We consider next the SW and FK dynamics on locally treelike graphs. In this setting,
we establish fast mixing on graphs that have a strong supercritical phase with “6 = c0”
in Definition 2. That is to say that we assume true exponential tails on the boundaries
of non-giant components, with a rate that goes to co as p 1 1, to compete with the
exponential volume growth.

Definition 3 We say that G has an exponentially strong supercritical phase if there
exists po < 1 such that for every p > po and every v € V(G), the probability that
there exists a connected set A > v having £ < |A| < n/2 with @(3,A) = 0 is at most
exp(—cj £) for some c; going to 0o as p to 1.

While the notion of an exponentially strong supercritical phase is a property of inde-
pendent edge-percolation on the graph, a simple geometric criterion of expansion, for
instance, ensures that this property holds. In particular, if G is an «-edge-expander
graph, in the sense that for all A C V(G) such that |A| < n/2, we have |0,A| > «|A|,
then the assumption holds for a ¢5(ar, A) > 0.

In this regime where exponential volume growth is permitted, we restrict to locally
treelike graphs.

Definition 4 We say a graph G is (K, L)-locally treelike if for every v € V(G), the
removal of at most K edges from E (B (V)) induces a tree on By (v).

Our main result for locally treelike graphs is the following near-optimal fast mixing
bound.
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Theorem 2 Fix any &, > 0. There exists po(A, q, K, po, cp.m€e) < 1 such that
if G has an exponentially strong supercritical phase (with parameter pg), minimum
degree 3, and is (K, nlogn)-locally treelike:

1. The mixing time of SW dynamics on G is O (n**®) for every p > po.
2. The mixing time of FK dynamics on G is O (n' %) for every p > po.

The most canonical example of a graph that satisfies all the conditions in this
theorem is a A-regular random graph (i.e., a graph drawn uniformly at random from
the set of all A-regular graphs on n-vertices). This is a setting that has attracted plenty
of attention (see, e.g., [9, 10, 21, 27, 40]), and Theorem 2 provides fast mixing bounds
for the SW and FK dynamics on these graphs at low temperatures. (Note that the
bounds will hold with probability 1 — o(1) over the choice of the random graph.)

Unlike the sub-exponential growth setting, alternative sampling algorithms were
known to exist for the Potts model on expander graphs at low temperatures using
the cluster expansion and polymer dynamics (see, e.g., [5, 19, 20, 45]). Still, to our
knowledge, ours is the first proof of sub-exponential mixing times for the SW and FK
dynamics at low temperatures (even just for random graphs).

Regarding the proof techniques, on graphs of exponential growth, the low-
temperature disagreement percolation framework used to establish Theorem 1 breaks
down. Even in ideal situations like the Ising model, the optimal recursion obtained
from the disagreement percolation framework would not yield rapid mixing on graphs
of exponential growth. We, therefore, resort to a vastly different approach, where
we utilize a burn-in phase, the censoring technique of [52], and new spatial mixing
results for the random-cluster model on trees amongst a (random) class of sufficiently
wired boundary conditions. The latter bound applies in settings where spatial mixing
between the wired and free boundary conditions does not hold.

Remark 1 The bounds of Theorems 1 and 2 are stated for any integer ¢ > 2 so that
statements apply both to the SW and FK dynamics. The random-cluster model also
makes sense for non-integer ¢ > 1 and our fast mixing results for the FK dynamics
apply in this level of generality. In fact, the random-cluster model is defined for g > 0
but has very different features (negative vs. positive correlations) when ¢ € (0, 1). It
was shown in [2] that the FK dynamics mixes in polynomial time on all graphs when
q € (0, 1).

1.3 Slow mixing in worst-case graphs

We complement our fast mixing result by establishing the existence of graphs for
which, even at arbitrarily low temperatures, the SW and FK dynamics slow down
exponentially. This is already suggested, though not guaranteed, by the #BIS-hardness
of the sampling problem at low temperatures, and our constructions will illuminate
the relationship between the notion of a strong supercritical phase for the underlying
edge-percolation and the slow mixing of the dynamics.

Theorem 3 Fix any g > 3 and any po < 1. There exists p € (po, 1) and a sequence
of graphs G, on n vertices and maximum degree A such that the mixing time of the
SW and FK dynamics on G, is exp(2(n)).
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The constructions for Theorem 3 are simple and explicit. In particular, any family
of graphs H,, that have slow mixing at some parameter value p; € (0, 1)—typically
the location of its order/disorder phase transition—can be used as a gadget to construct
augmented graphs G, (depending on pg and po) with many of the same properties
as H, (in terms of degree, rate of volume growth, etc.), and a comparable number of
edges, for which the SW and FK dynamics are slowly mixing at some p € (po, 1). The
graph augmentation leverages the series law of the random-cluster model to repeatedly
split the edges of H,, effectively inducing the behavior at ps in H, to occur in G, at
p € (po, 1). Using the slow mixing of SW and FK dynamics at the critical point on
random regular graphs from [21] as the gadget, Theorem 3 holds even if we impose
that the graph is locally treelike and has exponential volume growth. Using the slow
mixing at the critical point on (Z/ nZ)? from [30], a variant of this theorem also holds
for graphs of polynomial growth, but the lower bound there is of the form exp (2 (1/n)):
see Theorem 25.

Remark 2 Let us comment on the relationship of Theorems 3 to 1 and 2, given the
slow mixing constructions can either have stretched-exponential growth or be locally
treelike. Even if H, has a strongly supercritical phase for its edge-percolation, when
we perform the graph augmentation with the series law, the p for which the edge-
percolation on G, has a strongly supercritical phase is pushed closer to 1. In geometric
language, this is because the isoperimetric dimension is decreasing to 1, or the edge
expansion is decreasing to 0, as the edges are split in series. In turn, this makes the
po in Theorems 1 and 2 (above which we can prove fast mixing) larger than the p for
which Theorem 3 gives slow mixing.

1.4 Proof ideas

We now discuss our proof ideas for the fast mixing results, which are the more techni-
cally involved. (Our bounds on the SW dynamics follow from the bounds on the FK
dynamics by [56], so we focus on the FK dynamics.) We begin by describing some of
the issues one runs into when applying standard proof approaches to general families
of graphs at large p.

1.4.1 Difficulty with classical arguments

The first tool one might try is path coupling, arguing that the number of discrepancies
between two configurations that differ on one edge contracts in expectation. The non-
locality of the FK dynamics, however, and the presence of €2 (log ) sized components
at equilibrium means that a single discrepancy at an edge e can cause discrepancies at
some €2 (log n) many nearby edges, whereas the discrepancy only decreases if the edge
e is selected to be updated. A smarter path coupling was used in [23, 42] to deduce fast
mixing for the SW dynamics at high enough (but constant) temperatures, but in the low-
temperature regime, their argument for fast mixing requires p > 1 — O(1/|E(G))).
Many of the early fast mixing bounds on, say, the high-temperature Ising model, are
based on space-time recursions, i.e., arguments that compare the distance to stationarity
across balls of time-dependent radii. When translated to the FK dynamics, this type
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of argument runs into the problem that the updates in a small portion of the graph
(say, a small ball around a vertex) could depend on the configuration in the entire
remainder rather than a local neighborhood. The one exception to this is the approach
of [49] for the torus in Z¢, which gave an implication from the weak-spatial mixing
(WSM) condition to fast mixing of the Glauber dynamics. This implication was seen to
generalize to the FK dynamics in [38] (see also [32] where finite boxes with boundary
conditions were allowed). WSM is known to hold for the random-cluster model at
large p on Z< (see e.g., [36]); however, this is a delicate property whose proofs are
very geometry specific. It is the case, for example, that on locally treelike graphs like
the random regular graph, WSM fails at arbitrarily large p.

At high temperatures (small p), some of the difficulties with non-locality can be
handled using the fact that in the random-cluster model, all connected components are
small, and information is only propagated through these connected components. For
instance, such an argument was used in [ 14] to implement the disagreement percolation
space-time recursion for the high-temperature regime on Z2. (In Z?2, the high and low-
temperature regimes are dual to one another, so the same argument could be performed
using the dual model at low temperatures; that would be similar to the work of [50]
on the Ising SW dynamics.)

1.4.2 Low-temperature disagreement percolation bounds

On graphs where the low-temperature random-cluster model does not have a natural
high-temperature dual model, however, even at equilibrium, the non-locality of the
dynamics is hypothetically not confined since the giant component percolates through
the entire graph. The starting point for many of our observations is that a (well-
connected) giant component does not create non-local dependencies on its own. In
particular, if two configurations that agree at distance R away from an edge e induce
different marginals on e, it must be the case that in one of the two configurations, either
e is incident to a non-giant component of size at least R, or it disconnects a portion of
the giant of size at least R from the 2-connected core of the giant. Whereas the giant
component percolates throughout the whole graph, we show that under the assumption
of a strong supercritical phase (Definition 2), these non-giant, or non-2-connected core
connections have (stretched) exponential tails in FK dynamics configurations after an
O (n) burn-in period. (In the first O (n) steps, disagreements can spread arbitrarily
quickly.)

There are various other delicate points in implementing this argument, both combi-
natorial and probabilistic in nature, that we describe in greater detail in Sects.3 and 4.
These include having to carefully approach various counting arguments and union
bounds due to the non-localities and possible stretched exponential volume growth:
see Remark 3 and the proof strategy described in Sect. 4.2. In all, we are able to obtain
a space-time recursion on the probability of a disagreement at an edge after time ¢; the
large value of p is used as a crude initial bound on this probability, which the recursion
boosts into exponential decay, leading to the optimal O (nlogn) mixing time bound
of Theorem 1.
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1.4.3 Mixing after a burn-in phase on locally treelike graphs

When the volume growth is exponentially fast, the bounds and resulting space-time
recursions from disagreement percolation break. Our approach here is therefore closer
in inspiration to high-temperature arguments from [10, 11] (also [51] in the Ising set-
ting). Those papers localized the dynamics to the treelike balls Bg (v) of the underlying
graph using the censoring technique of [52] and used the high-temperature unique-
ness on trees to reason that if two censored dynamics chains mix in Bg(v) with their
respective boundary conditions, then they are coupled at the root of the ball with high
probability. The mixing time on the local balls was relatively simple to deduce since
the trees would have nearly free boundary conditions, which induce product chains.

In our low-temperature setting, the key intuition is that after a burn-in period, the
boundary conditions induced on balls of radius nlogn are “sufficiently wired”, i.e.,
that they have one (random) linear-sized wired component, and only O (1) many other
O (1)-sized components. Given this, to get Theorem 2, we show that FK dynamics on
trees with such boundary conditions mix in polynomial time, and that although there
is no WSM between the free and wired boundary conditions on trees, two sufficiently
wired boundary conditions do induce similar marginals on the root. This latter step
requires a careful revealing scheme to prove spatial mixing on trees with randomly
wired boundary conditions; that is the content of Sect.5.1.

1.4.4 On the strong supercritical phase condition

We conclude by remarking on whether the notions of strong supercritical phase in
Definitions 2 and 3 could be relaxed. One attempt at such a relaxation would be to
only ask that the independent p-edge percolation have a unique giant component
(of arbitrarily small linear size) and exponential, or stretched-exponential, tails on
all its non-giant components. For technical reasons related to the fact that this is a
non-monotone criterion, our proofs do not go through with this weaker notion of
supercriticality. Nonetheless, we expect that such a condition could be sufficient for
the fast mixing of the FK and SW dynamics.

2 Notation and preliminaries

In this section, we outline our global notation and describe some preliminaries on
the random-cluster model and the FK dynamics. Throughout the paper, n will be
assumed to be sufficiently large. We also use C to denote a generic constant C > 0,
not depending on n, which may vary from line to line. Our underlying graph will be
G = (V(G), E(G)) and will have n vertices and maximum degree A.

For an edge-subset A C E(G), we write V(A) for the set of vertices contained
in edges in A, though we sometimes abuse notation and write v € A for v € V(A).
Its vertex boundary d A is the set of vertices in A with neighbors in A = E(G)\A.
Its (outer) edge-boundary 9, A is the set of edges in £(G)\ A that have one end-point
in V(A) and one endpoint in V(G)\V (A). We use Cy(A) to denote the connected
component of v in the subgraph (V(G), A). An edge e is a cut-edge in A if there is
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a vertex v for which C,(A U {e}) # Cy(A\{e}). We use C;(A) to denote the largest
component in @ (chosen arbitrarily if two have the same size).

2.1 The random-cluster model

The random-cluster model with parameters p € (0, 1) and ¢ > 0 is a probability
distribution over edge-subsets w € E(G), equivalently identified with w € {0, l}E @),
given by

p)E@I=lel

G, p,qg (@) X p"‘"(l _ qk(w)’ 3)

where k(w) denotes the number of connected components in (V (G), w). When clear
from context, we drop p and ¢ and sometimes G from the notation. The random-cluster
model satisfies the following domain Markov property: for A C E(G), conditional
on w(E(G)\A), the distribution of w(A) is a random-cluster model with the same

parameters, with boundary conditions on d A induced by w (E (G)\ A). Random-cluster
boundary conditions are defined in generality as follows.

Definition 5 Given a graph G and a vertex subset d B, a boundary condition & on
dB is a partition of d B. The random-cluster model on G with boundary conditions
&, denoted né is defined as in (3), except that all components intersecting the same

element of £ are identified (“wired”’) when counting the number of components k (w).

Certain important boundary conditions are the wired one, denoted 1, where all
vertices of d A are in the same component of &; the free, denoted 0, where all vertices
of dA are in distinct components of &, and if A is a subgraph of G, those induced by
w(E(G)\E(A)), meaning vertices of dA are in the same component of £ if and only
if they are connected through w (E(G)\E(A)). In this paper, we restrict our attention
to the case of ¢ > 1 where the model exhibits positive correlations. As a consequence,
given two boundary conditions & and & on G, where & > &’ (meaning & is a coarser

!
partition than £’), we have né > né.

2.2 Mixing times

For a Markov chain (X ), on a finite state space €2 with transition matrix P, reversible
with respect to a distribution p, its mixing time is defined as:

twix = tuix (1/4), where  fyix(¢) = min{k : )rcngé ||P(X])§O € ) — ullyy < &},
0
4)
where X,f" indicates that X} is initialized from xo, and where || - ||, denotes total-

variation distance. The total-variation distance to w satisfies a sub-multiplicativity
property, whereby fyix(¢) < fuix - log,(2/¢).
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2.3 FK dynamics

Recall the definition of (discrete-time) FK dynamics from the introduction. It will be
preferable in our proofs to work with the continuous-time FK dynamics (X;);~0. In
this variant, the edges of E(G) are assigned rate-1 Poisson clocks, and if the clock
at an edge e rings at time ¢, we make an update according to (2). It is a standard fact
that the mixing time of the discrete-time chain is comparable, up to constants, with
|E(G)| times the mixing time of the continuous-time process. In particular, it suffices
to show an O (logn) bound for Theorem 1 and an n® bound for Theorem 2 for the
continuous-time FK dynamics. FK dynamics updates with boundary conditions & are
like (2), except that the cut-edge status of e is determined taking into account the
wirings of the components of &.

The FK dynamics is monotone, meaning that if xo > yo (under the natural partial
order on subsets) then X f" > X ty O forallt > 0, where > denotes stochastic domination.
Le., there exists a grand coupling of all the Markov chains {(Xfo)t}xoegRC (generated
by independent Poisson clocks and independent sequences of i.i.d. Unif[0, 1] random
variables at every edge) such that X;° > X;° for all xg > yp and ¢t > 0.

A further monotonicity property we use is with respect to the independent edge-
percolation (the random-cluster model with ¢ = 1). Recall p from (2); it is standard
fact that 7G4 > 7g, 5.1 (see (3.23) in [36]).

3 Low-temperature disagreement percolation

In this section, we develop the FK dynamics disagreement percolation framework
that works at sufficiently low temperatures, in particular in the presence of a giant
component. In reality, this new disagreement percolation bound works simultaneously
at high and low temperatures and localizes the spread of disagreements even in the
presence of a large giant component, so long as all other components (and portions
of the giant dangling off of its 2-connected core) are small. Moreover, it can work on
graphs that have volume growth up to a stretched exponential, which requires new
ideas: see Remark 3.

In this section, G can be an arbitrary graph of maximum degree A. We fix an
arbitrary o € V(G) and R > 0, and let Bg = Bg(0). The dependencies on o will be
kept implicit. The fundamental building blocks of our disagreement set will be finite-
connectivity clusters; these will disentangle the non-locality of the giant component,
which percolates at low temperature, from the edges through which disagreements
arise.

Definition 6 Define the finite (or non-giant) component of a vertex v in a random-
cluster configuration w as Cy(w\ E(C1(w))), and denote it by Cff ! (w).

Since the FK dynamics updates at edge e = {u, v} are oblivious to the state of e in
the configuration, and only care about the connectivity of # and v in w\e = w\{e}, we
consider the finite component of a vertex with respect to the configuration w\e rather
than w itself. Specifically, we often consider CZ& 1(w\e) for an edge e that is incident
to Cp(w).
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Fig. 1 For a vertex v (dark green) and edge e (purple), the sets CZE ! (w\e) (edges in red) and CEZJél (w)
(edges highlighted in green) are shown in three different cases. Left: v is not part of the giant (blue edges)
in w (blue and black edges). Middle: v is part of the giant component but not of its 2-connected core. Right:
v in the 2-connected core of the giant

Definition 7 Let CEZE ! (w) be the set of cut-edges in w that are in Bg and incident to
el w\e) e,

CE7!(w) := {e € E(BR) : e € Cutedge(w), e ~ C] ' (w\e)},

where Cutedge(w) denotes the set of cut-edges in w. Here we are using the notation
e~ Hforasubset H C Eif V(e)NV(H) # @.

We refer to Fig. 1 for some illustrative depictions of such sets in Z? (this is easiest
for visualization, but it is key that our definitions do not rely on properties of Z>
like its dual graph, and thus work on general graphs). We also refer to the proof of
Proposition 4 which yields additional insight into these constructions.

Suppose (X;) and (Y;) are two instances of the FK dynamics on G coupled via the
grand coupling introduced in Sect.2.3; suppose also that Xo(E(Bg)) = Yo(E(BR)).

Definition 8 Iteratively construct what we call the disagreement set as follows. Let
(t;)i>1 be the times of the clock rings in E(Bg), lettp = 0, and let [; = [t;_1, t;).
Then

1. Initialize D; = E(G)\E(Bg) fort € I.
2. Suppose ¢; is the edge whose clock rings at time #;. If ¢; is in E(Bg)\D,- and ¢;

is in CEU#(Z) for some v € 9D,- and Z € {X,-, Y,-}, let
D, = Df U e} forallt € Ii41;

else, let D; = D,- for all t € I;;1. (We use the standard notation A,- to denote
limsTt AS)

The role of D; is that it confines the set of edges on which a disagreement can
possibly exist at time 7.

Proposition4 Forallt > 0, we have X;(e) = Y;(e) for all e ¢ D;.
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Proof We prove the claim inductively. It holds forall 7 € I since we assumed X, (e) =
Y:(e) for e € E(BR), and no clock rings occur in the interval /1. Supposing it holds
for I;, the only way it can not hold for ¢ € ;1 is if the disagreement arises at the edge
e; = {u;, v;} when the clock rings at time #;. If ¢; € D,-, then since D,- C Dy, we
have the claim. Per (2), if ¢; ¢ D,-, in order for a disagr'eement to arise zllt e;, it must
be the case that ¢; is a cut-edge iln one of X = Y I~ but not in the other; that is, that

¢; € Cutedge(Z) foraZ € {X,-, Y,-},bute; ¢ Cutedge(Z) for Z = {X,-, Y-\ {Z}.
InZ \{e;}, the two endpoints olf e rlnust be connected. Since X - (DC,) l: Y, l— (DZ,),
this can only happen via a pair of paths from u; and v; that reach 8D - in D‘ One
of these paths must be in Z\ E(C;(Z\{e;})), since if both are in E(C; (Z\{e, })) then

u; and v; are in the same connected component of Z\e;, contradicting the claim that
e; was a cutedge in Z. As such, it must be that ¢; € CEZél (Z) forsome v € 9D,-. O

We now define an event on the realizations of the coupling (X, Y;),>0 that guaran-
tees that disagreements are unlikely to spread rapidly. This will be a bound on the size
of finite connections in £ (BR), as well as a bound on the number of cut-edges in a finite
component, which we will later show holds with high probability for the FK dynamics
after a burn-in for G satisfying the conditions of Theorem 1: see Proposition 7

Definition 9 A random-cluster configuration w is in & o, if:

() max max diam(C7'(w\e)) < €% and (2) max |CE] ! (w)] < AL”.
vEBR e€E(BR) vEBR

In the applications in Sect.4, we will take « = y (depending on the § for which
Definition 2 holds); however, we write this section for general «, y in case there are
better choices in specific situations.

Proposition 5 Suppose (X;):, (Y;): are FK dynamics chains, coupled by the grand
coupling, and such that Xo(E(BRr)) = Yo(E(BR)). There exists eo(A) > 0 such that
foralle < syandallt < eR/E%TY,

t
P(X:(Bry2) # Yi(Brp2), (X5, ¥s € Evay}) = CloBrlexp(—R/CLY)).
s=0

Proof By Proposition 4, the probability of the event under consideration is at most that
of the event {D; N Bg 2> # ¥} N &y ; where for ease of notation, & ; := ﬂtyzo{Xs, Y, €
Eo.a,y}. We construct a witness to that pair of events as follows.

Let fo be the edge whose clock rang at time ¢, := inf{s : Bg/> N Dy # @} (note

that fo € E(Bgj2)). Let wg be the vertex in 9D, for which fy € CEj, (Zo) for
‘o
Zo € {X , Y,-} (if there are multiple choices for wo or Z, we choose arbitrarily).
0

Given ( f W), Zj)j<i, we construct the witness iteratively as follows:
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Fig. 2 Three steps of the construction of the witness are shown. The ball Bg  is the highlighted region.
For each i, the edges of the finite-connectivity cluster of w; (green) to f; (purple) in Z; (blue and black
edges) are depicted in red. Note that the configuration changes from left to right, depicting the evolution of
the dynamics (backwards in time)

e Let f; be the first edge incident to w;_; to be included in (Dy)s>0; i.€., f;’s clock
rang at time

tj, ==1inf{s : w;—1 € Dy}

e Let w; be the vertex in 0D,- and Z; € {X Y } for which f; € CE (Z ).
Ji
(Again, ambiguities are resolved arbitrarily.) Under this construction, the event
X;(Bryp2) # Yi(Bgr,2) implies the existence of a witness (fi, w;, Zi)l.K:O for some
K such that

1. f() € E(BR/z) and WK € aBR;

2. f € CE}'(Z;) forall i;

3. wj—1 € fj foralli;

4. the clock ring at time 7}; is at edge f;.

Notice that this construction is done backwards in time, i.e., tjy > tj; > -+ > tj;.
See Fig. 2 for a depiction.

We will show that the probability that there exists such a witness and the event & ;
occurs satisfies the claimed bound. On the event & ;, it must be the case that K >
R/(2¢%) since the distances between f; and f;_| are bounded by £%. Furthermore,
for any witness (f;, w;, Z; )ZK o- there is a projection, which we also call a witness,
(fi, wi, L)X i—o Where the label L; € {X, Y} indicates whether Z; = X orZ; = Y -

The total number of clock rings in G in [0, 7] has a Poisson(¢|E (G)|) dlstrlbutlon
let M denote this quantity. Note that by standard Poisson concentration, we have
P(M > 4t|E(G)|) < exp(—t|E(G)]). Let us work on the event that M < 4¢t|E(G)|.
Let 7 = {f1,...,ty} be the sequence of clock ring times in |E(G)|. We start by
bounding P(X;(Bg/2) # Y;(Br/2). Ee.1) by

eft‘E(G)l—i— max  max Z 2K maxK
M<4t|E(G)| T K>R/26%) Le{X,Y}

PEfr, w) Ky (fiy wi, L) is witness, &, | T),
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where the conditioning on 7 indicates conditioning on the clock ring times in E(G)
in [0, 7] being 7 (but importantly not revealing their location yet).

Fix any M < 4¢|E(G)| and any realization 7 and consider the probability on the
right. For any subset of times J = {jk, ..., jo}, given 7, we denote by W, | the
event that there exist ( f;, wi)iK: o such that the triple (f;, w;, Li)iK: 0 is a witness and
the clock ring at f; is at time ¢, fori =0, ..., K. There being (11121) choices of J, for
any L € {X, Y}K:

. . M
]P’(El(f,-, wi),-Kzo 2 (fi, wi, Li)iK=o is witness, & ; | T) < mjax (K)P(WI’L’ Eur | T).

For s > 0, let F be the o-algebra generated by the grand coupling up to time s.
We will now sequentially condition on F, -, and enumerate over the possible choices

for the edge f; (of which there will be at rjrllost ALY per item (2) of Definition 9), and
then ask that the clock ring at time ¢;, be at f;.

More precisely, if for an edge g, Af is the event that in the witness f; = g, then
we have forevery i < K,

max P(WJ‘L, 6€,l‘ | T7 ft-_’ (Alg])l>l)
8i+1,----8K Ji
<, max Z Z P(AS | T, ‘7:,_[ (A=)
" wicsin g ccef 2z
PWy L, T, 7:;, (AF)1=i)

- max W s 71 , J s i)
- |E(G)| 8iseees 8K J.L e’t tji ! i

In the above, and in what follows in this proof, when conditioning on a o -algebra, we
mean the inequalities to hold almost surely, i.e., for almost surely every realization
of the random variables generating the o -algebra. Here, the first inequality is a union
bound over the potential choices of w; and then the potential choices of g; in the
witness. (Notice that conditional on ftj— , the configuration Zk can be read-off from its

label L g .) For the second inequality, Wfll( used the definition of & ; to bound the number
of summands in the second line by 2A¢Y, and we used the fact that conditionally on
T, the locations of the clock rings are independent and uniform on E(G), so given 7
and .7-',—, the probability that the clock ring at time 7, is at a fixed edge g; is 1/|E(G)].

We can condition the right-hand side of (5) further on .7-' (recalling that ¢, <

tj;_,) to arrive at the following relation between the probablhtles for index i and index
i— 1

2ALY
max P(W & 7, .7: , Ag’ max
Girt o8k (Wr.r, & | o A = |E(G)| gtk

P(Wyr. €| T, -E; g (Af')lzi)-
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The same inequality holds for i = K with an extra multiplicative factor of |d Bg| for
the initial choice of wg. Iterating this over all i, we arrive at the following bound on

P(Xt(BR/2) #* Yt(BR/2), Eor):

M\ / 2407 \K
9Brl Y 25 max ( ) + e EGI < 5By
k=fow MSHEG@I\K/AEG)]

ALY et \ K .
—t|E(G)]
Z ( K ) +e .
K>R/(2L%)

At this stage, we see that if t < eR/(16Aet**7) for ¢ < 1/e, then this is at most

9 Bg|e R/ Zgj + e 1E@] < €9 Brle R/ 4 (IEG)]
j=0

The term e ~1E(@1 is absorbed since we have R < diam(G) < E(G) trivially. m]

Remark 3 Beyond the low-temperature construction of the disagreement region, we
point out a subtlety in the above that may have gone unnoticed. In disagreement per-
colation bounds for high-temperature FK dynamics (e.g., in [14]), the typical analog
of £y, is simply that the largest cluster in Bg has volume at most £. When counting
the number of possible witnesses, one takes |By(w;)| as a worst-case bound for the
number of locations of the next disagreement along the chain in the witness. If the
volume growth is stretched exponential, however, this does not work. The careful con-
ditioning in (5) was essential to only count those edges CEfl.1 that could be vulnerable
to be the next edge in the witness, rather than the entire volume of a ball, keeping the
count to a polynomial even in the presence of exponential volume growth.

4 Fast mixing of FK dynamics on graphs of sub-exponential growth

With the bound on the speed of information propagation at low temperatures from the
previous section on hand, we proceed to establish Theorem 1. The event & 4 ,, from
Definition 9 was crucial to controlling the speed of disagreement propagation, and
our first aim (Sect.4.2) is to establish that after an O (1) time burn-in period, & 4,y
holds for a further O (1) amount of time. Then in Sect. 4.3, we will build a space-time
recursion to establish the desired mixing time bound.

4.1 Dominating edge-percolation after a burn-in period

We start with a simple estimate showing that after an O (1) (continuous-time) burn-in
period, the FK dynamics started from any initialization stochastically dominates the
edge-percolation at a parameter arbitrarily close to p = This will be crucial

__pr__
q(=p)+p-
to many of our arguments throughout the paper.
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Lemma 6 Fix p, q,§. There exists To(5) such that X? stochastically dominates 7w5_s |
forall t > Ty. This also holds conditioned on 1, ) (the o-algebra generated by
the clock rings from time Ty on).

Proof Consider any edge e. Uniformly over all the possible randomness (Poisson
clocks and uniform random variables) on edges of E(G)\{e}, as well as all clock rings
at e after time 7p (a to be determined constant depending only on §), on the event
that the clock at e has rung by time ¢, its distribution stochastically dominates Ber(p)
per (2). The result follows if we let Ty be large enough that the probability that the
clock at e has not rung by time 7y is less than § (this is independent of the clock rings
at e after Tp). O

We consistently use the notation @ for independent edge-percolation processes on
E(G) with parameter p, i.e., @ ~ 7¢ j 1. For ease of notation, we simply write 7¢
for the law of @ on G.

4.2 Burnt-in FK dynamics arein &,

Ournext aim s to show that burnt-in FK dynamics configurations are in £ o, with high
probability. Recall the main assumption on our underlying graphs for Theorem 1, that
the independent percolation on them has a strongly supercritical phase: Definition 2.

Recall the event & 4 ,, from Definition 9 that governed the size of regions through
which disagreements could possibly spread. In what follows, we fix § > 0 given to us
by Definition 2, and let

Eo =& aws)5,040)8, e, a=y = (1408)/s. (6)

For ease of notation, we use « = (1 + §)/8 in the below. We continue to imagine
a fixed vertex o € V(G), and fixed R large, but independent of the graph, and let
Br = Bpr(0); events and sets from the previous section are all defined with respect
to this ball. Finally, £, R can be assumed to be sufficiently large (depending on 7, §).
Our main result in this subsection is the following.

Proposition 7 Suppose G satisfies Definition 2 and has n-stretched exponential growth
for n less than some no(5). There exists To(8, n, q) such that for every initial configu-
ration wo and every t > T,

]P’(O{X;“O ¢ &}) < CteR"e ™t

s=t

Proof strategy. Establishing Proposition 7 is quite a bit more involved than it would
be in a high-temperature setting (i.e., for small p). This is due both to the delicate
graph-theoretic aspects of the event &, its non-monotonicity, and its non-locality. In
particular, the last one means that in the time interval [, 2¢] the number of edge updates
that could hypothetically cause the FK dynamics to leave & are f| E(G)|, rather than
t|Br|; a naive union bound over this number would fail. We outline our strategy as
follows:
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1. In Definition 10 below, we define a proxy event G, which is monotone, ensures
that & occurs, and is more “local" than &,. The relationship to £ under minimal
assumptions on G is in Lemma 8.

2. Using Definition 2, we will show in Lemma 10 that G, holds with high probability
for independent edge-percolation on G with a large enough parameter p. Since G,
is monotone, we can translate this bound to the FK dynamics after an O (1) burn-in
time per Lemma 6.

3. We then perform a careful “union bound”over the update times between s € [z, 2¢].
This could be a problem since there are order |E(G)| many updates in this time
interval, whereas the probability of G; is only exponentially small in the local
quantity £. Importantly, though, we use that the event G, is “localized”to reason
that far away edge updates are unlikely to induce a change in G, in a summable
manner. This argument is executed via Lemma 9 in the proof of Proposition 7.

Let us begin by defining the proxy event G and its variant G, for m > £.

Definition 10 Define the event G, as the event that there does not exist a connected
set A intersecting Br having £* < |A| < n/2, and an edge ¢ € 9.A such that
w@A\le) =0.

Define the event G,, as the event that there does not exist a connected set A inter-
secting Bpg, of size m* < |A| < n/2, and a pair of edges e1,ex € 9.A such that
w(9.A\le1, e2}) = 0.

Notice that, unlike &7, the event Gj is a monotone decreasing event, since it is the
union (over A, e) of decreasing events. Similarly, the event C;; is a decreasing event.

The following graph theoretic lemma demonstrates that G, controls &. It is impor-
tant here to relate the number of cut-edges in the carefully constructed set of vulnerable
edges in the disagreement percolation CE?}él to an easier quantity: the volume of a set
of size smaller than n/2 with closed boundary.

Lemma 8 The event Eg is a subset of the event gg.

Proof On the complement of item (1) in Definition 9, there exists v € Bg and e €
E(Bg) such that diam(C] ' (w\e)) > ¢*. Letting A = C] ' (w\e), we notice that
|A] > diam(A) > ¢*. Atthe same time, |A| < n/2sinceif |A| > n/2thenCy(w\e) =
Ci(w\e)and CZ"E ! (w\e) would be the trivial {v}. Finally A intersects By since it contains
v € Bpg, and under w, all of 9, A\ {e} must be closed since A is a connected component
of w\e.

We now show that the complement of item (2) in Definition 9 also implies Gj. The
essence of the argument is that CEZ'é ! lower bounds the size of CZ'é ! (w\e) for some e, but
alittle care must be taken due to the definition of CEZé ' We begin by constructing a tree
from the set of all e € Cutedge(w) that are incident to Cy(w\e); note this is a larger
set than those e € Cutedge(w) that have e ~ CZE 1(a)\e), but we will subsequently
restrict to this latter set. Suppose e is the set of all edges e in Cutedge(w) such that
e ~ Cy(w\e). We iteratively associate a tree T, = T,(w) to {v} U e in the following
natural way.

1. Identify the root of the tree with the vertex v;
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2. All cut-edges in e are associated to descendants of the root.
3. For a vertex w of the tree (asssociated to a cut-edge e,, in e), a cut-edge f € e is
associated to a descendant of w if and only if it is disconnected from v by e, in w.

This process uniquely determines the tree since the children of w; ; are those descen-
dants of w; ; that are not descendants of any of w; ;’s other descendants. The fact that
all of these are cut-edges also ensures that no cycles arise in the construction. Notice
that the leaves of T), are exactly 9,C(w).

We next claim that the edges in

e ={eece:|Cyw\e)| <n/2},

are a sub-tree of Ty. By definition, an edge e can only be in e but not in €’ if the
component |Cy(w \ e)| > n/2. If this occurs for an edge e associated to vertex w in
the tree, any edge f associated to a descendant of w will also have |Cy(w\ f)| > n/2
and not be in €’ since the difference in the component structures of w\e and w\ f is
that the latter has a larger C, and one other component is correspondingly smaller.
Therefore, the event that an edge is in e but not in €’ is a decreasing event on the tree
T,. As such the restriction of T, to {v} U €’ is itself a tree, which we can call 7},.

Select an arbitrary vertex in BTU’ , 1.e., its descendants are all in 7}, but not in Tv’ ,and
call its corresponding cut-edge e,; also define w, = w\e,. Note that the tree T (wy)
is exactly T, (w)\S, where S, are all descendants of e,. If we let A = C,(w,), then
evidently w(d,A\e,) = 0 since w,(3,A) = 0. Also, |A| < n/2 since otherwise e,
would not belong to 7). All edges of ¢’ belong to 7, (w,) so they are all incident to A;
therefore

AlA| > |€| > |CEZY > Ae*,

using the fact that ¢ D CEU#. Lastly, A contains v € Bg since v € Ty(w,). Thus, A
violates Gy. O

The following lemma relates the vulnerability of a configuration to leaving G, by
means of an edge-update at distance m from Bp to the event g’;,;, allowing us to control
the probability that far away updates (of which there are many in order-one continuous
time) induce the dynamics to leave G,.

Lemma9 For any m > £, in order for an edge e ¢ BRr4me to be pivotal to w € Gy,
i.e., forw @ {e} € gg while w € Gy, it must be that w € G,.

Proof Suppose w € Gy, e ¢ E(Bryme) suchthate ¢ w and w U {e} € Gj ore € o
and w\{e} € Gj.

Since Gy is an increasing event, the first case is not possible. In the second case, the
removal of an edge e € w outside Bg4,« causes a component A to become part of
gg. Call A the set in w\e that violates G,. Then the edge ¢ must be in 9, A, meaning
that the set A is a set of size at most n/2, intersecting Bg and with one other edge
e1 € 0.A such that w(d,A\{e, e1}) = 0. Since the distance of e to B is at least m®,
it must be that |[A| > diam(A) > m®. O
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We now turn to the probabilistic estimates. The following lemma utilizes Defi-
nition 2 to bound the probability of Gj (as well as of G;,) under the independent
edge-percolation measure 7 = 7 j. ;-

Lemma 10 If G satisfies Definition 2 and has n-stretched exponential volume growth
forn < no(8), for all p sufficiently large,

(@ ¢ Go) < C|Bg|exp(—10),
for some C(p, n, 8). Similarly,
T(@ ¢ Gm) < C|Brlexp(—m).

Proof The lemma is almost a union bound together with Definition 2, the only dis-
tinction being that we allow one or two of the edges in d, A to be open. Fix a vertex v,
and for every configuration & in Gj by means of a set A = A, (&) containing v, such
that @(d,A\e) = 0, let ¢, (@) = w\e. Evidently,

T@ P

T(Pe(@) ~ 1—=p

For every w, the configuration ¢, (@) has a set A intersecting v such that £¢ < |A| <
n/2 and such that (¢, ())(9.A) = 0, the probability of which is governed by Defini-
tion 2. Furthermore, if this A has size exactly r, the set of all pre-images of a single
@ under the map ¢, is bounded by the set of all e such that d(v, ¢) < r, which is at
most e’ per the n-stretched exponential growth assumption. Putting this all together,
we get

n/2 ~ n/2
~ ~ ~ ~ p P18/ (148)
(o ¢ Ge) < g E ) E ] ﬂ(w)flTﬁ E E e e . (D
VEBR r=L* &eGy:|Ay(@)|=r VEBR r=£%

Aslong as i is smaller than @ = (1 + §) /48, the above quantity is at most some constant
(depending on 7, 8, j) times | Bg|e ™.

The argument for G, is essentially identical, with the only differences being that
in (7), the pre-factor p/(1 — p) is squared, and the number of choices of rwo edges
that could be closed contributes a factor of 2" instead of " . O

The last lemma we need towards proving Proposition 7 is one for bounding the
number of clock rings in Bg4e. This follows from a standard Poisson tail bound
together with a union bound.

Lemma 11 Foraset A, let NX’ZI] be the number of clock rings in A in the time interval
[, 2t]. We have

PG, = 411Brinsl}) < exp(—1]Br).

BRime
m>1
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Proof The number of clock rings in a set A in an interval of length r > 0 is distributed
as a Poisson with rate | A|¢. Therefore,

P(NY? > 411A]) < exp(—21]A)).

By a union bound, we then get

,2 - @
PG, = 411Brimel) = 30 721 Brmel,
m

m

Using that | Bg,«| is at least | Bg|+m® by the fact that m only ranges until expanding
the radius doesn’t add any vertices, and using that ¢ > 0, this sums out to give
Ce~?IBrl whence we absorb the constant C by changing the 2 in the exponent. O

Proof of Proposition 7 By Lemma 8 it suffices to bound the probability of U?t:t{ X ¢
G¢}. Condition on the clock rings between times ¢ and 2t; this set of clock rings
generates a o-algebra we denote by J}; 2;1. Let

Epon =) (N5, < 4tIBrymel},

m=>{

measurable with respect to .7}; 2;1. Lemma 11 showed that ]P’(E[ct 2tl) < exp(—t|BRr|).
We can then write

T (e, si)i€Ep

P(CJ{X.&‘ ¢ g@}) <  max P(U{Xs[ ¢ Gl (ei,Si)i> 4o !Bl

i

where (e;, s;); denotes the sequence of pairs of edges and corresponding clock rings
between times ¢ and 2¢. For ease of notation, let so = ¢ and let QE P be the event
{Xs ¢ G¢}. We now write the union above as

gt < 66, uUJWGus NGE ).

i>1 i1

Furthermore, given the clock ring times and locations (e;, s;);, we can let Ip = Br ¢«
and for m > ¢, let I, be the set of i’s for which ¢; is in Bgy(u+1)« \Br+me. Then,

ng,si c gg,so U U(gessi—l n QZs,-> U U U (Ge,si N gg,si)'

i>1 i€l m>ti€l,
By Lemma 9, fori € I,,, form > £, we have
(gﬁ,si,l N gle-) - {XSFI ¢ g_m}

Using this bound for i € I, and the obvious bound (G ; , mgg)sl_) - stl_ fori € Iy,
we obtain
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U, c vl Jgi vl X, ¢ Gul

i>1 iel m>tiely,

Taking the probability on either side, conditioning on .7} 2, and using a union bound,
we get

2t

P(UX 260) = max  P(Xi ¢ Gl (ernsii)

s—t (e, Yt)tEEz‘Zt]

+  max ZP(XS‘ ¢ G| (eirsi)i)

(€i,5i)i €Efr 1] i

max P(Xy Gm | (i, si)i) + e BRI,
Z D P(X, ¢ )+

e;,s;)i€E
(t i)i [¢,2] m>Licly,

By Lemma 6, conditionally on any (e;, s;);i € ;2. the law of X, > @ where @
is drawn from a Ber(p) distribution, so long as ¢t > Ty from that lemma. Since the
events G; and g',g, are decreasing events, each of the probabilities above is bounded
above by their analogs for @. Finally, the number of summands |I;| < 4¢|Brime|
since (e;, 5;); € E[;,2:). Together, this means

2t
P(LJIX, ¢ G)) =1 + 411 Bry DPG ¢ Go)

s=t

+ ) MIBrini1e | P@ ¢ Gp) + 1P

m>{

By Lemma 10, this is at most

(1+41|Bryee™ +4Ct " |Brigninele ™ + e 1P,

m>0

Using the stretched-exponential volume growth bound |Bgipne| < eREMOT <

eR"+m™ the first two terms above are summable and yield 47¢R"e~¢ as long as 7 is
small enough depending on 8, and £, R are large enough. The additional term e ~*IB|
is absorbed since |Bg| > R fort > 1. O

4.3 Exponential relaxation to equilibrium after burn-in

Our aim is to now combine the above ingredients to establish that after a burn-in
period that keeps our configuration in the set & per Proposition 7, the disagreement
propagation bounds of Sect. 3 can be implemented to guarantee exponential relaxation
to equilibrium as long as p is sufficiently close to 1 to kickstart the spacetime recursion.
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Proposition 12 Fix g, A, 5. There exists n9(8) > 0 and po(g, A,5,n) < 1 and
C(p,q,A,8,n) such that for every n < no and p > po we have the following.
For any G satisfying Definition 2 and n-stretched-exponential volume growth, the FK
dynamics satisfies

max (P(X}(e) =1)— P(X?(e) = 1)) <e ¥ foralls < (logn)®.
ecE(G)

Proof Abusing notation slightly, let (X)s>0 = (X?)SZ() and (Yy)s>0 = (Xg)szo.
Define

p(t) == max P(X;(e) # Y:(e)),
ecE

under the grand coupling (whence the probability is exactly the difference of the
probabilities of e taking value 1). Recall the definition of &, = &£ ¢ o fora = (14+6)/6
from Definition 9 and (6). Our first aim is to establish the following recurrence relation,

pC) = eVip)? +e. ®)
for all + > Ty for a large enough Ty, Toward this aim, let
ArRe = {Xi(Br(e)) # Yi(Br(e))}.
Then, for any fixed e € E(G), we have
P(Xa(e) # Yar(e)) < P(Xai(e) # Yar(e) | Af g JP(Af g ) ©)

2t
+P(X2(0) # Yor(e), Avres [ JXs Vs €E))  (10)

s=t

+e(U o een)vr(U mgen).  an
First notice that
P(Xo(€) # Yae) | A .0) < p(0),

since we can conditionon X;, ¥;, w.r.t. which A; g . is measurable, and use the property
of the grand coupling that

max P(X () # X;0(e)) < P(X(e) # X (e).

@0,

At the same time, by a union bound over ¢ € E(Bg), we can bound IP(A;"R’E) <
|E(BR)|p(t). These give the bound on (9) of
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P(Xa:(e) # Yar(€) | AS p JP(AS ¢ ) < |EBR)Ip(1).

The quantity in (10) is controlled by Proposition 5, whence as long as t < R /{>*,

2t
P(X(e) # Y2(@). Arre: [ (Xs. Ys € £0)) = CloBrlexp(=R/(26).

s=t

Finally, we control each of the terms in (11) by Proposition 7 giving
2 2

P(LUx, ¢ &) + (Ui ¢ ) = crefe .
s=t s=t

as long as t > To(8, n, q) and n < no(8). Putting the above together, and using the
bounds on | E(Bg)| and |0 Bg| from the fact that G has n-stretched-exponential volume
growth, for all Tp(8,n,q) <t < 8R/22°‘,

pQ2t) < eRn,o(t)2 + CeR"e™RICE) 4 CreR"et.

If we make the choices

¢=2R*, and t=4¢/2=R.

we find that as long as n < no(8) and 7, £, R are sufficiently large (as a function of
8,n, &), wemaintaint < eR/ £2% and we can absorb the pre-factors above to obtain the
claimed (8). That recurrence will hold for all + > Ty(q, 8§, n) and as an upper bound,
for all + < (log n)? since our arguments are all valid as long as R < diam(G) which
for G of n-subexponential volume growth is for all R < (log n)l/ " which translates
tot < (log n)2.

It remains to deduce the exponential decay on p(¢) from (8); consider the function

(1) =V (p(0) +e7'?) 2,

Then by (8), and the fact that a + b < /a + /b,
1) = eV (Vo) + e ) = eVIEIVIp (1) 4 V26V,

Since 2 > V24 .5and ﬁeﬁ < eV for all t > 1, this is at most ¢(t)2. Therefore,
for any 79 > 1, we have

o (2¢10) < ¢ (1)

whence if ¢ (fp) < 1/e, then forr = 2% we have ¢ (rty) < e~". From there, using the
definition of ¢ (¢) in terms of p (1), we see that p(rtg) < e~2", whence p(r) < e~ 2!/%0
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for t = 2Kt. The fact that p(r) is monotone decreasing in time implies the bound
p(t) < e '/ forall t > 1.

The last stepis to show that ¢ (f9) < 1/e for some ¢ larger than max{6, To(gq, A, §, n)}.
Towards this purpose, notice that by the update rule (2),

o(s) < (1 — p) +P(Pois(s) =0) = (1 — p) +e*.

There exists so independent of everything else such that eVS(2e™5 4+ e5/2)1/2 is Jess
than 1/e for all s > s because eVi(2e™ + e71/2)1/2 ig at most 3e/4+V1, say. Let
po(q) be large enough that (1 — p) < e™* for all p > pg. Then for all p > pg and
to > S0, p(to) < 2e¢~"0 and we obtain the claimed ¢ (ty) < 1/e. O

Proof of Theorem 1 Under the monotone grand coupling, we have for every initial state
wo 9

max [PX[? € ) —xlhy = ) PO #XT(e) = ) PXj(e) # X[ ().

ecE(G) ecE(G)

In turn, by monotonicity, the right-hand side is at most

max [P € ) —wlhy = ) (PX[(e) = 1) —P(X{(e) = ).
ecE(G)

Lett = Cjlogn for C; a large enough constant (depending on ¢, A, 8, n). Then by
Proposition 12, each term in the right-hand side is bounded by n~* for large enough
n. Since there are at most An < n? many summands, the sum above is o(1), implying
mixing in O (logn) time. This gives O (n log n) mixing time for the discrete-time FK
dynamics as described in the preliminaries.

The result for the SW dynamics follows from the comparison result of [56]. O

5 Spatial and temporal mixing on trees with r-wired boundary

Our next goal in the paper is to establish Theorem 2 concerning FK dynamics on tree-
like expanders. Recursive mixing time arguments based on disagreement percolation,
like those in the previous section, are known to fail on graphs with exponential volume
growth. At the same time, localizing the dynamics can be difficult in treelike graphs
because there is no weak spatial mixing when p is close to 1; see the discussion at the
beginning of Sect.5.1 for more details. In this section, we define a class of boundary
conditions that are sufficiently “wired”to support a notion of weak spatial mixing with
respect to the wired boundary conditions. This class of boundary conditions captures
the boundary conditions induced by the FK dynamics configuration on a treelike ball
centered at a vertex of an expander graph after a short burn-in.

This section focuses on general rooted trees 7y, = (V(7Z},), E(Z;)) having depth A,
minimum internal degree 3 and maximum degree A. For any m < h, 7, will denote
the tree given by truncating 7, at depth m. The boundary 97, is the set of vertices of
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T at depth m. For any vertex w € V(7;), we use 7j,, to denote the sub-tree of 7j,
rooted at w, with boundary 07y, = 07, N Tp, .

Definition 11 A boundary condition & of 7, is single-component if the boundary
partition corresponding to £ has at most one non-singleton element; we call this its
wired component.

Definition 12 A distribution P over boundary conditions & on 7}, is r-wired if it is
supported on single-component boundary conditions, and the distribution of the wired
component of & stochastically dominates the distribution over random subsets A C
97, in which each vertex of 97}, is included in A with probability r independently
(the partial order being the natural one on vertex subsets).

The following shows that except with double-exponentially small probability, the
random-cluster model on 7j, with r-wired boundary conditions satisfies weak spatial
mixing with respect to the all-wired boundary condition (the TV distance between the
two decays exponentially in the distance from the boundary).

Lemma 13 Let P be r-wired and let & ~ P. Then, with P-probability 1 — e‘"P=’(1'1)h,
we have

—cprh
s

I3, (@ (Thj2) € ) = g, (@ (Taj2) € ey <€

for some ¢, = cp (g, AN), which is positive as long as p > po(q, A) and r >
ro(q, A) for suitable po(q, A), ro(q, A) € (0, 1), and which goes to co as p,r — 1.

Remark 4 The double exponential concentration under P in Lemma 13 is not strictly
needed for the results in this paper. A single-exponential concentration under P would
suffice and would be easier to establish by averaging over £ ~ P and then applying
Markov’s inequality. However, we include this stronger form since it provides insight
into the good qualities of r-wired boundary conditions and could be used to get an
improved mixing time bound for the FK dynamics on trees with r-wired boundary.
Unfortunately, with our current methods in Sect. 6, this improvement would not trans-
late into better bounds for the FK dynamics on treelike graphs, so we do not pursue
them.

5.1 Spatial mixing on trees with r-wired boundary conditions

Our first aim in this section is to establish Lemma 13. Spatial mixing in the traditional
sense, where one takes a maximum over the boundary conditions on the tree, does
not hold for large p, even if it is very close to 1. This can be seen by considering 7,
with wired vs. free boundary conditions, and noticing that the marginal of any edge
in the tree with the free boundary condition is Ber(p), whereas the marginal of an
edge in the wired tree gives at least constant probability to that edge being distributed
as Ber(p), and otherwise, as Ber(p), so the total-variation distance on that edge does
not go to zero as h — oo. Our solution to this issue is to restrict attention to r-wired
boundary conditions and establish that, at least among these boundary conditions, the
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random-cluster model exhibits spatial mixing on 7j,. Considering only such boundary
conditions will suffice for us, since these are the boundary conditions that appear
after a burn-in period of the FK dynamics on treelike expander graphs. We note that
with fully wired boundary conditions on trees, [47] showed decay of correlations to
establish uniqueness at p close to 1.

The mechanism for coupling random-cluster configurations with r-wired and wired
boundary conditions is based on what we call wired separating sets. These will be a
set of vertices that are all connected down to the wired component of & in 97), and
therefore wired together; as such, they separate the influence of the boundary condition
of 07y, from, say, 37y >.

Definition 13 A separating set in 7, is a set of vertices S C V (7;,)\V (7j,/2) such that
every path from 97> to 97, must intersect S. A configuration w C E(7;) has a
wired separating set if there exists a separating set S such that every vertex v € § is
connected in @ (7}, ,) to a vertex u € 37, belonging to the wired component of &.
Let Sp, ¢ be the event that @ has a wired separating set in 7;, with boundary condition .

The following lemma shows how the event of having a wired separating set governs
the probability of coupling random-cluster configurations to @ ~ anx in Ty 2.

Lemma 14 For any single-component boundary condition & on Ty,

I3, (@ (Thy2) € ) = 7, @(Tng2) € ey < 77 (S )

Proof We construct a monotone coupling for 71% and ”717. such that if (wg, wy) is

sampled from this coupling, then wg ~ 71% , W1 ~ zr%l and

{wg € Spe} = {we(Tp) = 01(Thp2)).

Our construction relies on revealing the values of (wg, w1) on an edge set R under a
monotone coupling, where crucially, R will be designed to be the set of edges in the
“lowest” wired separating set (if one exists). We construct wg and wy as follows (and
refer to Fig. 3 for a depiction):

1. Initialize Py as the parents of 97, and R = .
2. Starting with i = 1, pick a vertex w; € P;_1, and sample the configurations
(wg (T, w;), @1(Th,w,;)) from the monotone coupling between the marginals

73 (@ (Tow) € | 0s(Ri—1)).  and 7y (@1(Thw,) € - | 01(Ri1)).

3. Let R; = Ri—1 U E(7j,4,;) and form wg (R;) and w1(R;) by adding the configu-
rations wg (7j,w;) and w1(7p,w,; ), respectively.

4. If w; is connected to the wired component of & in wg (7} ,), then let P; =

Pi 1\ Tn(w;); else, let P; = (P;—1\Tp(w;)) U {w;} where w; is the parent of

w;j.
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Fig. 3 Two steps of the revealing process used in Lemma 14. Left: the configurations on the sub-tree of
w; € P;j_1 are revealed, and in the configuration with £-boundary conditions, w; is not wired down to
&. Thus, its parent wlf is added to P;. In the next step, this vertex is w; 4, and when the remainder of its
sub-tree is revealed to indeed include a wiring to &, the vertex is removed from 7P; but its parent is no longer
added

While i is such that P;_1 is non-empty, R;\R;—1 # @. This is because the edges from
w; to its children will be in R; but not in R;_; (if they were in R;_; then w; € 7y, i
for some j < i and w; would have been removed from P;). Therefore, the revealing
process will terminate after a finite number of steps, and we can call R = R if f is
the first index for which Py = .

Now, consider the subset d;,p R of vertices of R whose parents are not in R. As
long as the process terminates with R N E(7;,/2) = @, the vertices in d;opR will be
connected to the wired component of £ in wg (7j,,,), and so they will form a wired
separating set. Conversely, if there exists a wired separating set S in wg (7p,,4), NO
parent of any vertex in S will ever be added to P, and therefore, the vertices from d;qp
will form exactly the lowest wired separating set.

Upon termination of the iterative procedure above, we can then sample we (7, \R) =
w1(Tp\'R), since both wg(R) and wi(R) induce wired boundary conditions on
E(7)\'R. Therefore, under this coupling, we always have wg (7,\R) = w1(7;\R).
Since the process terminates at the lowest wired separating set of wg, on the event
wg € Sp g, necessarily 7, \R contains all of 7, /2. As such, using IP to denote the
probability under the coupling we just designed,

175, = 75l S BRN T2 # 9) < Plog € Sf ) = 77, (S0,
as claimed. ]
5.1.1 Good boundary conditions

Our aim is now to control the probability of S £ under a random r-wired boundary
condition & ~ P. Recalling the definition of S}, ¢, notice that it is an increasing event in
the random-cluster configuration. Since the random-cluster measure with parameters p
and g stochastically dominates independent percolation with parameter p = m
configuration (i.e., the random-cluster measure with parameters ¢ = 1 and p), it will
suffice for us to consider the probability of Sy ¢ under the product measure 77; =

”%,5,1 for some p < p still going to 1 with p (e.g., p =2p — 1).
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Definition 14 A boundary condition & on 7}, is called c-good if
77, (@ € Sf,’g) < exp(—ch).

Notice that if £ is c-good, then any single-component boundary condition &’ > &
will also be c-good, since any @ € S, ¢ will also be in Sy, ¢/. Therefore, the event
{& is ¢ — good} is itself increasing in the partial order on subsets of 37j. In particular,
if P is r-wired, then

P(§ is c-good) > Pger(r) (& is c-good)

where Pper(r) is the distribution over boundary conditions on 97;, where the wired
component contains each vertex independently with probability r. Given this, the
following lemma implies Lemma 13.

Lemma 15 Suppose & ~ Pger(r). There exists c = c¢(p, q, r) goingtooo as p,r — 1,
such that

P(& is not c-good) < exp(—c(l.l)h).

Proof For some y = y(p,q,r) > 0 to be chosen later, going to 1 as p,r — 1,
consider the event &, that & belongs to the set of boundary conditions on 7;, that
satisfy the following property:

(P1) for each downward path from 972 to 97y: vo, V1, ..., vp/2, for each i =
1,..., h/4,if we draw a configuration &(7,,\7,,,,) from 7?7—%_ \Top the proba-
bility that the component of v; in &(7,,\ Ty, ,1) intersects the wired component
of £ N (T, \7Ty,,) is at least y.

We first show that £ € &£, implies & is c-good for a suitable ¢ > 0. Fixany & € &,,.
In order for 8,‘1" ¢ to occur, there must exist a path from 97> to 37 such that no v; is
connected to & through @&(7,,). For any fixed path, that probability is upper bounded
by

h/4 h/4

71, | (BTN, ) NE =0 | =[] 75, @ T\, ) NE=0) < (1— )M
i=1 i=1

Here we have abused notation slightly to identify & with the subset of 97}, that is its
wired component. (The change from the intersection to the product comes from the
fact that 777, is a product measure and that the sets 7,,\7,,,, are disjoint for different
i.) A union bound over the A" many paths implies that the probability that o ¢ Sh.g
is at most A"/2(1 — y)"/* which is at most exp(—ch) for some ¢ > 0 going to 0o as
y — 1, which happens as p,r — 1.

It now suffices to find suchay > 0,and a ¢ = ¢(p, g, r) > 0 such that

Pperr) (& ¢ &) < exp(—¢(1.D)M). (12)
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Fix a downward path vo, ..., vy/2 from 07,2 to 07, and ani € {1, ..., h/4} (these
will subsequently be union bounded over), and consider the probability that £ is such
that (P1) above holds for that path and that i.

Define the event F' that the connected component of v; in @ (7, \ 7y, +1) intersects
9(Ty, \Ty;+1) in at least 2p — g)hwi—1 many sites, where /(v;) denotes the height
of 7,,. Note that h(v;) =i — h/2 > h/4, and ¢ will be chosen later. For intuition,
the component of v; in &(7,,;\7y,+1) is a branching process which (besides its first
level) has 2p expected number of children since we assumed that in 75 all internal
vertices have degree at least 3. By a standard branching process argument (see Fact 16
below from which this follows after asking that the first level have an open edge with
probability at least p), we know there exists § going to 0 as p — 1 (equivalently as
p — 1) such that

77, (@(Ty \ Ty 41) & F') < 8.

By the independence of &(7Ty,\7y,+1) from &, we have
~ [~ ~ i = h(v)—1
Phertr) ® 77, (3T \Top1) N& = 0, BTNTy10) € F) < (1 = @™

The left-hand side above is exactly the expected value over & ~ Ppe() of the ?ffh
probability of an event depending on &. Thus by Markov’s inequality and the fact that
h(vi) = h/4,

Pher) (é g (T \ Ty ) NE =0, B(T,\Ty) € F') > (1= r)(zﬁfg)h/‘t/z)
Ec~excr | 773 (8T \ o) N6 = 0. BT\ Ty) € F) |
= (1 — r)@p=e4/2
PBer(r) ® 7T, (5(7;,-\77)#1) NE =0, &(Ty,\Ty+1) € ]:i)
- (1 — r)2i—el)2
< exp((2p — &)"*log(1 — 1) /2).

At the same time, for any fixed &,

73, ((Ty \ Ty 1) N & = B) < Fg, (B(Ty \Tyy11) NE = B, (T \Tyi41) € F')
+ 77, (@B(Toy \Ty1) ¢ F').

If the first of these terms is at most (1 — r)(zf’—“?p)m/2 and the second is at most 5, we
sety =1—68— (1 —r)2=""/2 Then, y goes to 1 as p — 1 and by the above,
77, (@(Ty\Ty;+1) N & # @) > y. Thus,

Pper(r) (& @ 77, (@(Ty,\Tyy11) NE =0) > 1 — ) < exp((2p — &)"*log(1 —r)/2).
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We now upgrade this into the probability that £ is in £, by a union bound over all AM2
many paths in 75, and the &/4 many possible i’s; both these terms are absorbed by
the double exponential above. As long as ¢ is sufficiently small, and p is sufficiently
large, (2pp — €)'/4 is greater than 1.1, and the prefactor evidently blows up as r — 1
as claimed. O

For completeness, we have included the following simple branching process con-
centration estimate.

Fact 16 In a branching process with progeny distribution stochastically dominating
Bin(2, p), let Zy be the population size at level k. Then for every ¢ > 0, there exists
6 > 0 going to 0 as p — 1 such that

P((1Zez @p o)) = 1-5.

k>1

Proof Since the event in question is an increasing event, it suffices to show the above
for the branching process with progeny distribution exactly Bin(2, p). If we let Ay be
the event {Z; > (2p — €)X}, then we can write

(UAC)<]P>(AC)+Z (Ak,ﬂA)<IP>(A”)+Z (41 A).

k>1 j<k

Since Z; = 1, the probability of A is 1. For any k > 2, since Z; is Markov, it suffices
to condition on Zy_; : Zx_1 € Ak_1; given Zj_1, the distribution of A;_1 is

Zi—1
Z X;  where X;are i.i.d. Bin(2, p).

Thus, P(A} | Zi—1, Ax—1) is at most the probability of a sum of Z; 1 > (2p —
k1 iid. Bin(2, p) random variables, being at least £Z;_; below its mean. By
Hoeffding’s inequality (the X;’s being bounded by 2), this has probability at most
exp —%82(2[5 —¢&)*=1) forevery k. Let K equal logy;_ (2/(g%\/1 — p)). For the first
K generations, we can use the simpler union bound over the probability that one of
the first (2p — &)X many X;’s is not equal to 2. Putting these together, we get

H(U) = - pee e d
k>1 k>K

For any fixed ¢, this is then seen to be at most some § going to zero as p — 1, which
happens as p — 1. O

5.2 Mixing time for trees with single-component boundary conditions

In this section, we provide a bound on the mixing time of the FK dynamics on trees
with single-component boundary conditions. In view of its application in the following
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section for treelike balls of expanders (possibly having a finite number of cycles), it
will be helpful for us to recall certain standard definitions that will allow us to relate
the convergence rate of various Markov chains.

For a Markov chain on a finite state space 2 with transition matrix P and stationary
distribution p, the Dirichlet form of the chain is defined for any function f : @ — R
by

1
EF =75 Y m@P@ o)~ f@)’. (13)
w,0' €Q
and its spectral gap is given by

. EfL 1)
= min s
f:Var,[f1#£0 Var,[ f]

Ap: (14)

where Var, [ f1=E,[f?] — E,[f1? with E,[f] =3, cq 1(®) f (@).
The inverse of the spectral gap is closely connected to the mixing time of a Markov
chain. In particular,

(p' = Dlog (5£) < twx(e) < Ap' log (57—), (15)
where fmin = ming,eq U (w). (We refer the reader to e.g., [48, Chapter 12.2] for more
details.)

We establish the following bounds for the mixing time and inverse spectral gap of
the FK dynamics on a tree with any single-component boundary condition.

Lemma 17 Consider any tree T;, of maximum degree A and depth h with single-
component boundary condition &. There exist constants a = a(A,q) > 0and C =
C(p, q) > Osuchthat the inverse spectral gap of the FK dynamics on Ty, with boundary
condition & are at most C exp(ah).

Proof We use the classical bound on the spectral gap obtained from the cut-width of a
graph via the canonical paths method, though a little care is needed for the purpose of
handling the random-cluster boundary condition. The edge-cut-width of 7;, (in other
words, the cut-width of its line graph) is defined as follows: enumerate the edges of
Thasl,...,|E(7)| and define

CW(T) = Irgnml?lle({ea(j) 2 <iPDN Ve 1 J > i}l

where the minimum is over permutations o on {1, ..., |E(7y)|}. We claim that there
exists a constant K (A) such that uniformly over all trees of degree at most A, their
edge-cut-width is at most K#4; this follows e.g., from [3, Lemma 2.1] and the fact
that the edge-cut-width is within a factor of A of the (vertex) cut-width. Let o be the
permutation that attains this edge-cut-width bound for 7j,.

For any two random-cluster configurations I, F € Q on 7}, define the canonical
path y;, r asthe path of FK dynamics transitions which sequentially processes the edges
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of E(7y) according to the ordering induced by o, i.e., ex (1), €5(2); - - - » s (|E(T;)|> and
whenever there is a discrepancy I(eq(;)) # F(es()), the transition is the one that
changes the state of e, (;) from I(eq(;)) to F(eq(;)).

For an FK dynamics transition (17, n') where n := n @ €4 (i)> construct a bijection
from the set of {1, F : (n, n') € y1.F} to Q2 by setting

wy(I, F) ={l(es(j)) 1 ] <i}U{F(es(j)) : J > i}.

This is a bijection because I istecovered via I = {wy (e (jy) : j < i}U{n(esjy) : j >
i} and F is analogously recovered via F' = {n(eq(j)) : j < i} U{wy(es(j)) 1 J > i}.

For ease of notation, let 7 = rr% . The standard canonical paths bound (see [48,
Corollary 13.20]) then ensures the inverse gap satisfies

Al < m'axmax;, Z m (D (F)lyr,Fl
i n wmPm,n) 1 F-ryert

1 x(l)m(F)
< |E(7)| max max , .
ni 1F:a)eyr PMm,n') wmm(oy(l, F))

The probability P(n, n') is at least the probability of picking the edge e, ;) to update
(1/|E(7p)]) times the minimal probability of flipping an edge, which is some C =
C(p,q) > 0. The ratio of probabilities is bounded by noticing that the number of
edges present in the multisets {/, F'} and {n, w, (I, F)} are the same, leaving only the
factor of ¢ to contribute. Without the boundary conditions on 73, we claim that

[k(I) + k(F) — k(n) — k(w,(I, F))| < 2|V(es(jyj<i) N Vies):j=i)l,  (16)

where we recall that k(w) is the number of connected components in the subgraph
(V(G), w) (3). To see (16), note that the only component counts that can differ between
k(1) 4+ k(F) and k() + k(w, (I, F)) are from components that intersect the vertex
boundary between {es(j) : j < i}and {es(j) : j > i}.

The addition of the boundary conditions can only change the bound on the left-hand
side of (16) additively by at most 2. This is because up to a change of the number of
components by at most 1, we can split the boundary condition £ into two parts, one
being its part that intersects vertices of {e;(;j) : j < i} and one being its part that
intersects vertices of {eq(jy : j > i}. With this modification, the same reasoning as in
the no boundary condition case holds, that the component counts only differ through
components that hit the vertex boundary, and this number of components is evidently
bounded above by the size of the vertex boundary. Altogether, we get that the spectral
gap satisfies

At < CIE(Ty)* exp (2(CW(Ty) + D logq) < CAMe?Ktogd,
which implies the claimed bound up to a change of constants. O
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6 Mixing time on locally treelike graphs

We now use the understanding from Sect. 5 on the random-cluster model on trees with
r-wired boundary conditions to control their mixing time on treelike graphs having
exponentially strong supercritical phases for the edge-percolation: namely, to prove
Theorem 2. As mentioned in the introduction, the prototypical example to have in
mind in this section is a treelike expander like the random A-regular graph.

The proof strategy of Theorem 2 consists of the following three steps, which will
organize the section:

1. An O(1) burn-in period to obtain (nearly) r-wired boundary conditions on the
locally treelike O (logn)-radius balls of the graph;

2. Censoring of the dynamics after burn-in to localize to a treelike ball (and an estimate
on how long the mixing time will be on the local ball with (nearly) r-wired boundary
conditions);

3. A spatial mixing property with (nearly) r-wired boundary conditions to couple the
two censored copies after they have each respectively reached equilibrium.

6.1 Burn-in to induce (r, L)-wired boundary conditions on treelike balls

In this subsection, we demonstrate that FK dynamics after an O(1) burn-in period
will be such that the boundary conditions it induces on % log n sized balls are (almost)
r-wired. This will be essential to the application of the spatial mixing results of the
previous section. Since the property of being r-wired is a monotone increasing property
on the distribution over single-component boundary conditions, it will essentially
suffice to establish it for the Ber(p) edge percolation @, and use Lemma 6. (In reality,
there are some added complications by the possible O (1) many extra wirings outside
the single-component, as a bound on those extra wirings is no longer an increasing
event.)

In what follows, suppose G is a graph of minimum degree 3. Let B, = Bj,(0) be
the ball of radius & about a fixed vertex o and suppose it is K -treelike, meaning the
removal of at most K edges from E(Bj) leaves a tree. By taking the breadth-first
exploration of By, any vertex w can be assigned a height via h — d(w, o) and children
which are all vertices adjacent to w having smaller height. Let the descendant graph
of w, denoted Dy, (in analogy with 7, ,,), be the set of all descendants of w, together
with their descendants, etc.

Definition 15 A distribution P over boundary conditions on a K -treelike ball By, is
called (r, L)-wired if it is generated as follows:

e Some arbitrary L vertices in d B, are chosen and an arbitrary wiring is placed on
them;

e On the remainder, a subset stochastically dominating the product Ber(r) subset is
wired together into one large component.

The main result of this subsection is that the boundary conditions induced on a
treelike ball by the FK dynamics after an O (1) burn-in time are (p, L)-wired. This will
follow from the following.
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Lemma 18 Suppose G has an exponentially strong supercritical phase per Defini-
tion 3, and for h = nlogn, the graph G is (K, h)-treelike. For every r, there exists
p(n,r,cp, po) such that if o > @, then for every o € V(G), the distrbituion over
boundary conditions induced by w(E(G)\E(Bp/2)) on 9By is within TV-distance
n=> of a (r, K)-wired boundary condition.

The complications for establishing the above lemma are that the class of (r, L)-
wired boundary conditions are not a monotone family, and that the wirings of boundary
vertices of Bj, are dictated by events of connectivity to a giant which are not inde-
pendent even under . We develop an auxiliary set of events on the random-cluster
configuration which provide the necessary monotonicity and independence. For this,
we note that all cycles in By, have either 1 or 2 vertices of minimal height; for a vertex
w € 0By, we say the descendant graph D,, in By, is a simple subtree if it does not
contain any vertices of minimal height of a cycle of Bj,.

e Define E| as the event that every component of  of size at least % log n coincides
(i.e., w has at most one component of size greater than '57 log n).

e For vertices w € 9By, whose descendant graph Dy, in By, is a simple subtree, let
E,, be the event that the configuration w(D,,) has size greater than % logn. (For
other w, let E,, be vacuous.)

On the event Eq, the subset of w € 9By, such that E,, holds will all be wired
together through the giant, and the set of additional wirings of boundary vertices must
be confined to those w for which its descendant graph in Bj, is not a simple subtree,
which is deterministically at most 2K since G is (K, h)-treelike. It therefore suffices
for us to establish that for all j sufficiently large, if w > @,

Pwé¢ E))<n> and {w:weEy,} > ®Ber(p),

whence on the event E7, the boundary conditions induced by w(E(G)\E(By/2) on
0By /2> would be (r, K)-wired. In particular, Lemma 18 is an immediate consequence
of the following two lemmas.

Lemma 19 Suppose G satisfies Definition 3 with some c, po. For every n > 0, there
exists py, such that if p > p;, and w > @, then

P(w ¢ E1) <n™>.

Proof In order for w ¢ Ej, there must exist a component of size between %log N
and n/2 (two components both of size at least n/2 evidently coincide). Thus, by a
union bound the probability of @ ¢ E; is bounded by the probability that there exists
some connected set A of size between % log, n and n/2 with w(9.A) = 0; this being
a decreasing event, it suffices to upper bound its probability under @, whence we can
apply Definition 3 with £ = % loga n to get

F(@ ¢ Ep) < necpnloen,
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Since cj5 goes to oo as p — 1, as long as p is larger than some po(n) the right-hand
side will be at most n7>. O

Lemma 20 Suppose G is (K, h)-treelike For every r < 1, there exists p such that if
w > @ then the distribution of {w : w € E} stochastically dominates a Ber(r) subset
of 0By 2.

Proof Since the E,, are increasing events, {w : w € E } stochastically dominates {w :
@ € E,}, it suffices to establish the above for @. Since the descendant graphs D,, are
disjoint for the w € 9By, for which D,, are subtrees (and hence E,, is not vacuous),
the events E,, are independent under @. It remains to argue that P(w € E,) > r as
long as p is sufficiently large. Since the descendant graphs D,, contain full binary
trees as subgraphs, the probability of @ € E,, is larger than the probability that the
branching process with offspring distribution Bin(2, p) survives % log n generations,
which happens with probability going to 1 as p — 1: see e.g., Fact 16. In particular,
for every r, the probability of @ € E,, is greater than r as long as p is large enough
(depending only on r). O

6.2 Spatial mixing on treelike balls with (r, L)-wired boundary

We now describe how minor adjustments to Sect. 5.1 lead to spatial mixing on treelike
graphs with boundary conditions that are (r, L)-wired.

Lemma 21 Suppose By, is K -treelike, and suppose P is (r, L)-wired. Then except with

P-probability eer(1L)MER) (with ¢, > 0 forr large), & is such that

|75, (@(Baj2) € ) — wh, (@(Bi2) € llpy < Ce™r@/CKIZK=D),

or some constant ¢, going to oo as p — 1.
p §oing p

Proof Since By, is K -treelike, there is an edge-set H of size at most K such that B,\ H
is a tree. Following the breadth-first search of By, there is a stretch of at least 1/ (2K)
consecutive levels between depth //2 and h such that the restriction of By, to those
levels is a forest and every tree in that forest contains a full binary tree as a subgraph
(using the minimum degree 3 condition). There exists m > h/2 + h/(2K) such that
this forest is By, \ Bp—n/kK)-

Let S‘hg be the event that there is a wired separating surface in every one of the
constituent trees of height /2/(2K) in the configuration w (B, \ H). (Notice that since
the boundary conditions are at depth A, this depends on the full configuration, not
just the restriction to the stretch of 2 /(2K) heights; moreover by definition of wired
separating surface, if w (B \ H) has a wired separating surface then so does w(Bp,).)

The first claim is that under this definition, there is a minor modification of the
revealing procedure of Lemma 14 such that the probability of wg € SZ,& upper
bounds the total-variation distance. This is done by first revealing the entire con-
figurations wg and wy on (B, \H)\By;+1/k) under the monotone coupling. In this
manner, the revealed part of w¢ induces some single-component boundary conditions
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§ on Biy1n/2k). We can then apply Lemma 14 to each of the constituent trees of
By \Bn—n/k) and it follows that on the event that they all have wired separating
surfaces in wg, then wg is coupled to wy above those wired separating surfaces and in
particular on all of B,. As such, we have the analogous

75, (@(Br2) € ) = 74, (@(Biy) € iy = 7y (@ (Bi\H) € ).

To control the probability of S'Z , we follow the reasoning of Lemma 15, with the
modifications being minimal. The only difference that arises is that when considering
the probability of the event in item (2) in that proof, the sub-tree from a vertex v; €
By rh/k)\Bm in B\ H no longer necessarily contains a full binary tree: for up to
K many vertices, it could be the pruning of a binary tree with up to K many subtrees
of depth at least #/2K deleted from it. The easiest thing to do is to simply disregard
these vertices which leads to a change from 4 to 7 — K in the concentration quality.
Similarly, at most L of the subtrees contain at their boundary one of the L vertices
where the (r, L) boundary conditions are arbitrarily rewired, and we can disregard
these L vertices as well. Nothing else will be affected in the proof. O

6.3 Local mixing time on treelike balls with (r, L)-wired boundary

We now show that the 7 log n-radius balls in the treelike expander, with the boundary
conditions induced on them by the remainder of the FK dynamics configuration, have
a polynomial mixing time. By Lemma 18, after a burn-in, these will look like treelike
balls with boundary conditions that have an O (1) number of distinct components, one
of them being macroscopic, and the rest all being O (1) sized. At this point we can
appeal to comparison estimates for Markov chains together with the bound on the
inverse spectral gap on trees with single-component mixing times from Lemma 17.

Remark5 We do not use any further information on the boundary conditions (like
the r-wired property or the randomness), only the fact that there is at most 1 large
component and O (1) many vertices in the union of all other components. In theory,
it is likely that we could use the r-wired property to get a significantly better bound
on the mixing time of a tree. However, the extra O (1) wirings and the O(1) many
non-tree edges force us to at some point perform a comparison through a spectral gap,
and getting back a mixing time bound from this will anyways end up costing a factor
of the volume per (15).

To perform comparisons, we formalize a notion of distance between boundary
conditions. Two “similar” random-cluster boundary conditions (in terms of the wiring
they induce) have similar effects on the underlying random-cluster distribution and
on the behavior of the corresponding FK dynamics. In turn, the Dirichlet form, and
spectral gaps of their corresponding dynamics should be “close”to one another. We
compile a few definitions and results that formalize this idea.

Definition 16 For two boundary conditions ¢ < ¢’, define D(¢, ¢') := k(¢) — k(¢’)
where k(¢) is the number of components in ¢. For two partitions ¢, ¢’ that are not
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comparable, let ¢” be the smallest partition such that ¢” > ¢ and ¢” > ¢’ and set
D(¢, ") = k() — k(9") + k(@) — k(9").

The following lemma is then straightforward from the definition of the random-
cluster measure (3).

Lemma 22 (E.g., Lemma 2.2 from [12]) Let G be arbitrary, p € (0, 1) and g > 0. Let
¢ and ¢’ be any two partitions of V (G). Then, for all random-cluster configurations
w € {0, 1}E, we have

g 2P@.e )ﬂg (w) < 712 (0) < g*P@? )”g ().

The following corollary is a standard comparison of spectral gaps, and follows from
Lemma 22, the definition of the transition matrix of the FK dynamics, and Theorem
4.1.1 in [54].

Corollary 23 Let G = (V, E) be an arbitrary graph, p € (0, 1) and g > 0. Consider
the FK dynamics on G with boundary conditions ¢ and ¢', and let ), )" denote their
respective spectral gaps. Then,

g 3P@3 < 5 < SP@Iy,

Using the above, we are able to deduce the following bound.

Lemma 24 Consider a K -treelike ball By, with boundary conditions & that have one
component of arbitrary size together with at most L many additional boundary wirings.
There exists a(A, q) such that the inverse spectral gap on BE isatmost C, 4 exp(a(h+
K +L)).

Proof Consider the modification of Bi where all endpoints of the set H are wired up
to one another via a boundary condition, and denote it by §g By Corollary 23, their

spectral gaps are within a factor of ¢ '°/#| of one another. The FK dynamics on Eg are
a product of the FK dynamics on B\ H with boundary conditions £ and the wirings

of the edges of H (call this (E;\T—I )¢), and |H| independent FK dynamics chains on
single edges with wired boundary. By tensorization of the spectral gap (see e.g., [54])
the spectral gap of the FK dynamics on By, is then the minimum of the gap on those

individual edges, and the gap of the FK dynamics on (l?h\\'lfl )E.
The spectral gaps of the individual edges are clearly some constant depending on p,

so it suffices to bound the spectral gap of FK dynamics on (l?;:\?l )¢. For this purpose,
notice that with a cost of ¢>(#1+1) we can perform a further boundary modification
and remove the wirings of the edges in H as well as those L additional wirings in &
to end up with the tree B;\ H with a single-component boundary condition. At this
point, we can bound the spectral gap of this resulting single-component tree of depth
h using Lemma 17. Putting together the costs from the various comparisons we obtain
the desired. O
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6.4 Mixing times on locally treelike graphs

In this section, we combine the above parts to establish the near-linear mixing time
bound of Theorem 2 for FK dynamics on locally treelike graphs, as long as they have
an exponentially strong supercritical phase for edge-percolation.

Proof of Theorem 2 Recall that we use X[ to denote the FK dynamics at time ¢ from
initialization wp. By monotonicity, under the grand coupling, we have

max PXP # X{) = ) POX(e) # X7 (@)

ecE(G)
< Y PX)(e) # X[(e) = Y E[X/(e)] — E[X](e)].
ecE(G) e€E(G)

a7)

Fix an edge ¢ € E(G) and consider the difference in expectations on the right. Set X ?
to be the censored FK dynamics that agrees with X ? for all times until some 7 but
that then censors (ignores) all updates after time 7y outside of B, = Bj (o) for some
o € eand for h = Zlogn. Let X} be the Markov chain that censors all updates of X}
outside of By, (regardless of 7). Then, by the censoring inequality of [52],

E[X}(e)] — E[XY(e)] < E[X}(e)] — E[XY(e)]. (18)

By Lemma 6 and Lemma 18, for every r, there exist To(r, g) and pg large enough that
for all p > pg, the FK dynamics X 00, X }0 induce (r, K)-wired boundary conditions
on dBp 2.

Let A, = A,(Bj) be the set of boundary conditions & on By, that are single-
component together with at most K additional wirings, and furthermore that are such
that the inequality of Lemma 21 holds with constant ¢, = y. Since X ‘}0, X %0 induce
(r, K)-wired boundary conditions on 9 By, /2, by Lemma 21,

_ h)2K
P(XY,(Bfp) ¢ AS) < e D7 (19)
At the same time, by definition of A, , we have
max (g, (@) - 75, (@) < Ce MGR), (20)

so long as n is large enough that /(2K) — K — K > h/(3K). Since the event
{X(}O(Bfl) €A} = {X‘}O(BZ) € A, }is measurable w.r.t. Fr, (the filtration generated
by the grand coupling up to time Ty),

E[X],s(e)] — E[X} , s(e)]
<P(X),(B}) ¢ Ay) + P(X7, , g(e) # X s(e) | XJ,(B}) € A,)
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< PXXR,(B)) ¢ Ay) +  max (BIY ()] ~ EIZQ e ()).

where Y1 5.5l and Z° Bt are Glauber chains on Bj; with boundary conditions 1 and &
h S,

respectively, 1n1t1ahzed from 1 and 0 respectively. We have used here the definition of

censored dynamics and monotonicity. The first term is at most e~ (1-1) " by (19).

For the second term, fix any § € A, (By),let Yy = YS1 51 and Z; = Z° 5 and write
By S,

E[Ys(e)] — E[Zs(e)] = (ELY5(e)] — 741 ()
(51 (@) = 714 (@) + (7 5t (we) — BIZ§(e)])-

The middle term is at most Ce™?"/GX) by (20). For the first and third, suppose

E€A, (By) min,, ﬂgh (w) B;’;

where A~ s is the inverse spectral gap of the FK dynamics on Bj with boundary

COHdlthl’lS &. Then by (15) and sub-multiplicativity of TV-distance to statlonarlty, for
a universal constant Co, both the first and third terms will be at most n ™. Comblnlng,
we get

E[X}, 4 5(0)] = BIXY, s(@)] = Ce D" ooy MGK) 1 y=5) a1

At this point we make the following choices for n, y, Tp, S:
1. h = llogn for n > 0 sufficiently small that for every & € A, (By),

1
log (—S> -k_gl < A%IOg”)L_El log(1 — p) isatmost n®/?log(l — p);
min,, 7 () By, By

2. S = Cn®/?logn where C; = Colog(l — p);
3. y large enough that e~ ¥"/K) is at most n=>;
4. r large enough that ¢, > 0

5. Tp and p large enough that X‘}O induces (r, K)-wired boundary on 9 By, 3.

The existence of such an (A, g, K) follows from Lemma 24 and the fact that a only
depends on A, g. Furthermore, by taking » large, we can make y and ¢, arbitrarily
large, to satisfy items (3)—(4). Finally, Lemma 18 ensures we can take Tp, po large
enough that for all p > po, item (5) is satisfied.

With these choices, for n sufficiently large, the right-hand side of (21) is at most
n—*. Combining these with (17)-(18), we get that there exists po(c3, po, A, 1, q, K)
such that for all p > po,

max ||]P)(XTO+5 )= 7ly < max IED(XT(H_S 7 XT0+S) = o(1),
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which concludes the proof since evidently Ty 4+ § = O (nf/?logn) = O (n®). O

7 Graphs with slow mixing at arbitrarily low temperatures

In this section, we establish the following slow mixing result for the FK dynamics.
Theorem 3 is the special case where we have restricted to integer ¢ and used the
comparison results of [56].

Theorem 25 Fix A > 3 and pg < 1.

1. Forany q > 3, there exists p > po and a sequence of locally treelike graphs (G ),
of maximum degree A such that the FK dynamics on G, have tyyx > exp(Q2(n)).

2. For any q > 4 (possibly non-integer), there exists p > po and a sequence (Gp)y
of polynomial volume growth and maximum degree A such that the FK dynamics

of G, have tyix > exp(R2(/n)).

The key tool for this proof will be the so-called “series law” for the random-cluster
model. That is, splitting any edge e into two edges, and changing the edge probability
parameter for e from p, to approximately ,/p. for each of the two new resulting edges
preserves the random-cluster measure when one re-identifies the edges and takes the
status of e as being open if the two new edges are open. This gives a mechanism for
boosting any fixed p into a p’ which gets closer and closer to 1, while only increasing
the number of edges and vertices in the graph by a constant factor. In this manner, if a
graph H has slow mixing for its FK dynamics at some value of p (no matter how small),
then its modification G (obtained by multiple applications of the series law) can be
made to have slow mixing at p’, for p’ that can be arbitrarily close to 1. Moreover, the
graph modifications do not distort the maximum degree and volume growth (though
they importantly do distort the isoperimetric dimension, and expansion rates, which
we recall were fundamental to the presence of a strongly supercritical phase for the
edge-percolation on the graph).

Remark 6 Both items (1)—(2) of Theorem 25 should hold for all ¢ > 2. The gap for
q non-integer in item (1) and ¢ € (2, 4] in item (2) come from the present lack of
proof (to our knowledge) of a slowdown for FK dynamics on bounded degree graphs
(satisfying the corresponding graph condition) at those values of ¢g. Such a slowdown
is widely expected at the critical points both for the random regular graph and on
(Z/mZ)* for large d. The values of g for which we can establish our lower bound
come from the slowdowns of the random regular graph at integer ¢ > 3 [21], and the
torus (Z//nZ)* at ¢ > 4 [30].

Letus precisely recall the series law of the random-cluster model from [36, Theorem
3.89].

Lemma 26 Two edges e, f of a graph G = (V, E) are in series if e = {u, v} and
f = {v, w} and v has no other incident edges. Let

Xy
I+ —Dd -0 -y

o(x,y,q) = (22)
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Let G' = (V\{v}, (E\{e, f}) U {u, w}). For a random-cluster configuration w on
G, define o' on G’ by setting o' (a) = w(a) for a € E\le, f} and o' ({u, w}) =
w(e) - w(f). Then, if w is sampled from the random-cluster distribution on G with
parameters (pg)acg and g > 0, o is distributed according to the random-cluster
distribution on G’ with parameters (Pa)acENe, £} and piuwy = 0 (Pe, Pf» q)-

Proof of Theorem 25 For item (1), let (H,), be a locally treelike sequence of n-vertex
graphs of degree at most A such that the mixing time of FK dynamics at some fixed
value of p € (0, 1) isexp(£2(n)). From Theorem 1.2 of [21], we know that a randomly
drawn sequence of A-regular graphs satisfies this bound with high probability if ¢ > 3
is an integer and p = p.(q, A). For item (2), let (H,,), be the torii (Z/ﬁZ)z. We
then know from Theorem 2 of [30] that at fixed p = p.(g) € (0, 1) the mixing time
of FK dynamics on H, is exp(2(y/n)) for all real g > 4.

Let G, be the modification of H,, in which every edge of H,, is split into 2X edges in
series, for K determined as follows. Let ¢, (p) be the inverse of o (x, x, ) from (22),
ie.,

0 (¢y(p)s ¢q(p)sq) = p.

Such an inverse exists and is increasing for p € (0, 1) by virtue of the fact that
o (x, x, q) is continuously increasing from 0 to 1 as x ranges from [0, 1]. Since x? /g <

o (x,x,q) < x?itmust be the case that £, (p)?/q < 0(5(p), &(P). @) < ¢g(p)*. In
order for this to be equal to p, it must be that ,/p < ¢,(p) < \/Pq.
Take K such that

05 (p) =24 (L4 (- ¢y (p) -+ ) = po.
—————,™ —

K

The inequality ,/p < ¢,(p) ensures that for any

bgp>7

Kz log; <log Po

we have ;;K (p) > po. By Lemma 26, if o’ is a random-cluster configuration on G,
with parameters p’ = ;;K (p) and g, and w, = [],, o], for every edge e € E(Hy),

where (ei)izi1 are the edges in G, derived from splitting e, then w is a sampled from
the random-cluster measure on H,, with parameters p and q.

We now claim that the FK dynamics on G, with parameters p’ and g have exp(2(n))
mixing if H, has exp(€2(n)) mixing at parameters (p, q) (the reasoning that it has
exp(Q2(y/n)) mixing if H, has exp(€2 (y/n) mixing is identical, so we omit it). This is
achieved by lifting a bottleneck set from H, to G,. In what follows, it is convenient
to work with the discrete-time Glauber dynamics (though the same proof would work
in the continuous-time setting as well). Let Py denote the transition matrix of the
discrete-time FK dynamics on H,, at parameter p and Pg the transition matrix of the
discrete-time FK dynamics on G, at parameter p’. Similarly, 7y, is at parameter p
while g, is at parameter p’.
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By assumption, the mixing time of FK dynamics on H, is exponential in n. As
such, there exists a subset of configurations A C {0, 1}£#») of exponentially small
conductance. More precisely, there must exist A C {0, 1}£2) such that wh,(A) <
1/2 and
erA,yeA" TTH, (x)Pg(x,y)

7h, (A)
see, e.g., [48, Theorem 13.10]. Let dp, A = {x € A : Py (x, y) > Ofor somey € A°}.

Since for each x € dp, A, each entry of Py, is at least % D, we see that there exists a
constant ¢ > 0 such that

Qp(A) = = exp(=£2(n)); (23)

7w, (0py A Dwedp, 4 TH, ()

/\_1 _
T T Dy(A) <exp(—cn). (24

Let T4 be the subset of {0, 1}£(C") defined by Ty = {0’ : w € A} where the
relationship between @ and @' is defined per the operation described above. By
Lemma 26, 7, (T4) = 7mn,(A). Every configuration in 74 must be in 74 because
if Pg(w',0’) > 0, for o' ¢ Ta, then o’ projects down to a configuration in A€,
so ' must project into dA. Therefore, by Lemma 26, 7g, (0p;Ta) < 7w, (dp, A).
Altogether, it follows from (24) that

76, (0pgTa)

26, (Tn) < exp(—cn).

Using the facts that for every x, the number of y € T4¢ for which Pg (x, y) is positive
is at most E(G,,),

)

ZXETA,yGTX TG, (x) PG (x, y) < |E(G))| TG, (aPG Ty)
76, (Ta) - G, (Ta)

implies that T4 is a set of exponentially small conductance for the FK dynamics on
G,,. This then implies the inverse gap and mixing time of FK dynamics on G, are
both exponential in n.

It remains to reason that the number of vertices and edges of G,, are of the same
order as the number of vertices and edges of Hj,, so that the resulting bounds are indeed
exponential in |V (G,,)|. Notice that as long as p = Q(1) and 1 — pg = Q(1), then
K = O(1). As such, G, will have |V (G,)| < |V (H,)|+2X|E(H,)| = O(|V(H,))),
and |E(Gp,)| < 2X|E(H,)|. This yields the claimed bound. O
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