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Abstract. Self-driving technology has become increasingly advanced
over the past decade due to the rapid development of deep neural net-
works (DNNs). In this paper, we evaluate the effects of transient faults in
DNNs and present a methodology to efficiently locate critical fault sites
in DNNs deployed within two cases of autonomous vehicle (AV) agents:
Learning by Cheating (LBC) and OpenPilot. We locate the DNN fault
sites using a modified Taylor criterion and strategically inject faults that
can affect the functioning of AVs in different road and weather scenarios.
Our fault injection methodology identifies corner cases of DNN vulnera-
bilities that can cause hazards and accidents and therefore dramatically
affect AV safety. Additionally, we evaluate mitigation mechanisms of such
vulnerabilities for both AV agents and discuss the insights of this study.

Keywords: Autonomous Vehicles + Fault Tolerance -+ DNNs

1 Introduction

Autonomous vehicles (AVs) are real-world safety-critical systems of increasing
importance. With the growing complexity of software and use of deep neural
networks (DNNs) for perception and control in AVs, many factors can threaten
their safe operation, such as software bugs [1] and transient faults in hardware [2],
leading to mis-classifications by DNNs and potential safety hazards.

Transient faults (i.e., soft errors) originating from cosmic radiation [3] or from
operating under low voltage [4] have been shown to threaten the functionality of
DNN hardware and software [5]. Transient faults in the main memory (DRAM)
can manifest as single- or multi-bit flips, specifically in neurons or weights of
DNN models [5] and may cause silent data corruption (SDC) where the output
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is faulty despite a seemingly “correct” execution. Since DRAM is used in AVs!,
this safety-critical application inherits the reliability challenges of DRAM faults.
Transient faults have already contributed to vehicle crashes [7].

Table 1. Fault Space for OpenPilot Supercombo and LBC.

LBC Supercombo
# CONYV Layers 40 70
# Weights 21,268,928 5,811,616

# Single-Bit Fault Sites | 680,605,696 185,971,712
# Double-Bit Fault Sites |21,098,776,576 |5,765,123,072
# Triple-Bit Fault Sites |632,963,297,280 | 172,953,692,160

Locating critical faults that cause safety hazards or accidents is necessary in
such safety-critical systems. A major challenge here is the vast fault site space,
often in the order of billions (see Table 1) which would require thousands of years
to exhaustively analyze. This makes identifying corner cases where faults may
affect the functional safety of a self-driving vehicle [8] similar to searching for
a needle in a haystack. Within the AV ecosystem, the classical statistical fault
injection [9], cannot discover the critical corner cases that could lead to safety
violations. Past works focus on specific DNN tasks (e.g., image classification)
and examine DNN resilience without the context of the entire AV system [10,
11]. Recent AV resilience assessment works have focused on input, models, or
outputs [12-14], but not on its DNN components that are at the core of AV
operation. OQur aim is to develop a method to efficiently locate these critical fault
sites in the DNN components of AVs. We evaluate these fault sites by injecting
transient faults in DNN weights and determining whether their effects propagate
to other AV components and eventually result in hazards or accidents.

We present a strategic fault injection method, called Taylor-Guided Fault
Ingection (TGFI), that identifies and targets the DNN weights that are of high
importance to reliable inference. This is done using a modified Taylor crite-
rion [15] which ranks all the DNN weights with respect to their relative impor-
tance to inference accuracy. We inject faults in those important weights and
show that our strategic fault injection method can efficiently discover safety-
critical vulnerabilities in AVs. We specifically focus on locating critical fault sites
within two AV systems: (i) Learning-by-Cheating (LBC), a fully autonomous
self-driving agent [16] that is widely used in academic studies [2], and (ii) Open-
Pilot, a popular driver-assistance system that is used in over 250 existing car
models on the road [17]. By using two systems with different levels of autonomy;,
we demonstrate the ability of TGFI to generalize to different AV DNNs.

! For example, the NVIDIA Jetson AGX Orin Series, which is used by NVIDIA
DRIVE, uses 32GB or 64GB of DRAM [6].
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We also characterize the effect of mitigation in the cases where these criti-
cal faults occur. For LBC, we consider a state-of-the-art fault tolerance method
based on neuron value range restriction for CNNs, called Ranger [11]. For Open-
Pilot, we examine the existing system safety checks which return control to the
human driver. Additionally, we examine the effects of considering contextual fac-
tors such as the location of faults and environmental conditions that impact the
input in order to offer insights into the practical reliability challenges of deploy-
ing AVs on the road. Both mitigation methods show improvement in resilience,
while TGFT is still able to find critical corner cases.

2 Autonomous Driving Frameworks

The Society of Automotive Engineers (SAE) defines 6 levels of driving automa-
tion for AVs, from Level 0 (L0, no driving automation) to Level 5 (L5, full driving
automation) [18]. LO to L2 assume that there is a human in the loop who controls
the automotive environment by supervising or taking over the autonomous fea-
tures. For higher levels, the car autonomously controls the driving environment
without human involvement. With DNN models incorporated, an L4 AV may use
end-to-end ML models for perception and planning without human intervention,
while LO-L2 levels use DNNs for driver assistance.

2.1 L4 System: LBC

Learning by Cheating (LBC) is a pretrained end-to-end agent for L4 autonomous
driving and is widely used in research studies [2,19,20]. Figure la shows the
model structure of LBC, which is built on a ResNet34 [21] backbone to pro-
cess input images from a front-facing camera on the vehicle. The model takes
two additional inputs: vehicle speed and a high-level command vector gener-
ated by the planner, instructing the vehicle to follow the lane, turn left/right
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or go straight at an intersection. After the ResNet34 backbone, the model splits
into four parallel branches that each corresponds to a high-level command. The
final output is a set of five waypoints of the AV path (see Fig. 1b), which are
passed to a low-level controller that produces the steering, throttle, and braking
commands.

2.2 L2 System: OpenPilot

OpenPilot is an L2 Autonomous Driving Assistance System (ADAS) that sup-
ports more than 250 popular makes and models of cars [17]. A high-level overview
of OpenPilot is shown in Fig. 2c. Car sensor data such as images and vehicle state
information are passed into the Supercombo model. The output of Supercombo
is sent to the planners. The PID Controller uses the results from the planner
to decide actuator actions. The generated commands (e.g., brake) are passed
through the Panda CAN interface to the actuators to perform the commands.
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The Supercombo model is at the core of the perception module and provides
fifteen output fields. As shown in Fig. 2a, Supercombo utilizes an EfficientNet-B2
[22] base CNN for processing the incoming images from the car sensors. Then
it uses additional inputs of the traffic convention, desire state, and recurrent
state to incorporate the state of the vehicle and environment. Once all inputs
have been tied in, Supercombo branches into separate general matrix multipli-
cation (GEMM) computations to generate the plan, lanelines, laneline probabil-
ities, road edges, lead vehicles, lead probabilities, desire state, meta information,
vehicle pose, and recurrent state. Figure 2b shows an example screenshot.
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2.3 Driving Simulator: CARLA

CARLA is an open-source simulator for autonomous driving research, design,
and testing [23]. It provides a realistic urban environment for a vehicle to nav-
igate with features such as variable road and weather conditions. CARLA pro-
vides a wealth of data at each simulation timestamp including whether a colli-
sion, lane invasion, or red light violation has occurred. CARLA is integrated to
Openpilot and LBC, see Fig. 2c and Fig. 1c, respectively.

3 Methodology

Fault Model. We use fault injection in a single 32-bit floating point weight of
the DNN to simulate commonly occurring transient faults in DRAM (Dynamic
Random Access Memory). DNN weights typically reside in DRAM. A fault site
in a neural network weight is defined by the weight id and the bit position(s) of
the weight to be flipped. The size of the fault site space for single-, double-, and
triple-bit faults for OpenPilot Supercombo and LBC is tremendous, see Table 1
and prevents its exhaustive exploration.

For the majority of the analysis (Sects.4 and 5) we focus on double-bit flips
that are detectable but not correctable by ECC. This is consistent with other
reliability studies [11,24] and also consistent with DRAM faults in the wild [25].
For a broader view of the effect of bit flips, we also do experiments with single-bit
flip (detectable and correctable) and triple-bit flips (undetectable, their safety
implications are similar to double-bit ones, see Sect. 6).

Fault Injection Method. Fault injection is implemented as a two-stage pro-
cess: Preparation and Injection. In the Preparation stage, before the actual sim-
ulation run, we load the (correct) neural network and select an injection site.
Portions of the network where faults may be injected are denoted by a lightning
bolt in Fig. la for LBC and Fig. 2a for OpenPilot Supercombo. We corrupt a
weight tensor of the neural network by altering the values of an individual weight
(depending on the type of experiment, we induce one single-bit, one double-bit,
or one triple-bit fault), and save the corrupted tensor.? In the Injection stage,
the corrupted model generated by the fault injector is used by the AV control
software while performing the driving task. The corrupted Pytorch or ONNX
files are loaded at the beginning of each LBC or OpenPilot experiment.

2 Once the weight is altered, the modified model is written to a file in the necessary
format (ONNX [26] or PyTorch [27], for OpenPilot and LBC, respectively). To cor-
rupt Pytorch models, we load the model, alter the state dictionary associated with
it and then save the new faulty model. For ONNX models, we read the model file
as bytes, locate the plain text layer ID, and modify the bits corresponding to the
target weight in the binary data.
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Fault Injection Outcomes. Throughout the simulation, we focus on events
that indicate abnormal behavior. A lane invasion occurs when the vehicle crosses
into a neighboring lane erroneously. Since a lane invasion can occur when the
car barely crosses the lane line, a lane invasion alone is not a hazard. We define
a hazard to be one of the following situations:
H1: The vehicle violates safe following-distance constraints with the lead vehicle:
Relative Distance | Speed < tsqfe and Speed > Lead Speed.
H2: The vehicle drives out of lane beyond a threshold (e.g., 0.1 m) while speed
is higher than 3, these are predetermined values given by the driving scenario.
We record all hazards that occur within the experiment as well as their time
stamps. These hazards can lead to the following accidents:
A1: Collision with the lead vehicle.
A2: Collision with road-side objects or other vehicles in the neighboring lane.
An accident terminates the simulation, at which point the time stamp and
the nature of the accident are recorded. The simulation also terminates if the
vehicle successfully reaches its goal location. These definitions are based on the
STPA [28] hazard analysis method, which has been utilized in other studies [12,
29]. The hazards considered here are indicative of failures of lane keep assist
(LKA) and adaptive cruise control (ACC), two main functionalities of L2 AVs.

3.1 Vulnerable Weights: Taylor Guided Fault Injection (TGFI)

In a fault space as vast as the one reported on Table 1, the odds that the
standard practice of 1,000 random fault injections [30] capture rare corner cases
that result in catastrophic driving scenarios are low. Since our target is the
identification of the aforementioned corner cases, we rank the importance of the
weights in the neural network using a modified Taylor criterion [15] which esti-
mates the first-order Taylor expansion of the contribution of each weight to the
accuracy of the neural network. The more a weight contributes to the accuracy
of the network, the more critical it is and the more it can affect accuracy if a
fault occurs there. We relatively rank all weights in the two target models using
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the importance scores generated by the Taylor criterion [15]. The importance of
a weight using this criterion can be estimated using the following equation:

W) = (gmwm)?, (1)

where [ is the importance, W is the set of network parameters, g, are elements
of the gradient, and w,, are the weight values.

We use the Comma2k19 data set [31] of real-world driving footage as input
to OpenPilot Supercombo and LBC, and compute the importance of their
weights [15]. Figure3 illustrates the location (layer, x-axis) and number (y-
axis logscale) of the most critical weights for OpenPilot Supercombo and LBC.
We make the following observations: 1) critical weights may be located in any
layer and 2) the few most critical weights are concentrated in the earlier lay-
ers of both models. We perform fault injection experiments on the most critical
weights as guided by Eq. 1, called Taylor-Guided Fault Injection (TGFI).

3.2 Experimental Campaigns

Every distinct fault site uses the same map for the AV to traverse, the same
starting location of the car(s) in the simulator, the same goal location, and the
same random seed, initial velocity, and weather. The fault sites are selected
according to the fault injection (FI) campaign: 1) Random: The weight where
the double bit flip occurs is chosen using a uniform distribution [30]: we select
1,000 random fault sites to obtain results with 95% confidence intervals and +3%
error margins. 2) TGFI-top500: We select the top 500 most critical weights.
3) TGFI-top50: We select the top 50 most critical weights.
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Fig. 4. LBC time to lane invasion and time to hazard. No time to driver intervention
because of L4 autonomy. Note that CDFs do not reach 1.0 since a portion of the
experiments do not experience a lane tnvaston or hazard.

4 Resilience Evaluation

Following the methodology laid out in Sect. 3, we perform three FI campaigns
for LBC and OpenPilot. These FI campaigns highlight different methods for
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selecting the target weight for fault injection (i.e., Random FI, TGFI-top500,
TGFI-top50) using a two-bit fault model. We perform golden runs (i.e., fault-
free) to capture normal behavior. The driving scenario is on a curved road in
cloudy weather, which represents ideal driving conditions (i.e., good visibility
with no glare). Variations of experimental setup are explored in Sect. 6.

4.1 Resilience of L4 LBC

Lane invasions are the least severe violation, since not every lane invasion leads to
a hazard. Only 1% of experiments have lane invasions in golden runs, indicating
that these are rare in fault-free cases. The time to lane invasion is shown in
Fig.4(a). Across all three fault injection campaigns, the lane invasion tends to
occur early in the simulation. Table 2 shows the percentage: TGFI experiments
double the percentage of lane invasions comparing to the random FI experiments.

Table 2. Percentage of various events. There is no front vehicle in LBC, hence H1 and
A1 cannot happen. Driver intervention: the L2 system returns control to the driver.

ADS Fault-Site Selection | H1 H2 Al A2 | Lane Inv. | Driver Int.

Golden run N/A| 0% |N/A| 0% 1% N/A

L4 (LBC) Random FI | N/A | 5.9% | N/A |5.9%| 6% N/A
TGFL-top500 | N/A | 12% |N/A | 12%  12% N/A

TGFLtop50 | N/A | 14% |N/A | 14% |  14% N/A

Golden run 0% 0% 0% | 0% 10% 0%
L2 (OpenPilot Random FI 2.0%| 0.6% | 0% |0.1% | 23.4% 21.4%
Supercombo) TGFI-top500 3.3% | 8.8% 10.1% |0.2% | 29.62% 21.0%
TGFI-top50 7.9% 16.3% | 0.2% | 0.3% 62.5% 18.3%

No hazards are detected in the golden fault-free runs, but Random FI and
TGFI cause H2 hazards. The time to hazard is shown in Fig.4. For both ran-
dom FI and TGFI, hazards are encountered between the one and two second
mark. There is a near-complete overlap between the experiments that have lane

Cellided: False
Invaded: False
Lights Ran: 0/1
Goal: 226.7
Time: 630

0.22

Fig. 5. Fault injection in left-turn control command branch in LBC. Four waypoints
(circled in green) are correct but one (circled in yellow) is incorrect. (Color figure
online)
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invasions and the experiments that have hazards, i.e., if the fault causes a lane
invasion, then the fault is also severe enough to cause a hazard shortly after.
Similar to the lane invasions, TGFI finds more hazards than Random FI.

Every hazard for Random FI and TGFI scenarios results in an accident,
indicating that LBC has a very limited ability to function under critical faults.
Indeed, LBC does not have alerts or safety checks. TGFI triggers more accidents
than Random FI.

We also evaluate the impact of faults in the convolution branches at the
end of the network (see Fig. 1a) corresponding to high-level control commands.
Figure 5 presents the results of a fault injected in the branch corresponding to the
left turn control command: four waypoints are correct, but one (yellow circle)
is clearly incorrect. When the car turns the corner, it tries to adhere to the
trajectory generated by fitting a curve to the points, but in doing so turns the
corner too widely and crashes into the wall on the side of the road.

4.2 Resilience of L2 OpenPilot

In OpenPilot, lane invasions occur often but do not always result in a hazard
or accident. 10% of golden runs and 23.4% of Random FI experiments have
lane invasions, see Table 2. TGFI-top500 shows slightly more lane invasions and
TGFI-top50 nearly triples the number of lane invasions compared to Random
FI. The time to lane invasion is shown in Fig.6(a): most of the lane invasions
occur between the 15 and 20s marks.

The golden runs never result in a hazard, but 2.6% of Random FI experi-
ments result in a hazard that typically occurs between the 5 and 10s marks, see
Fig.6(b). 10.8% of TGFI-top500 experiments and 22.7% of TGFI-top50 exper-
iments result in a hazard (1.3% and 1.5% of them experience both H1 & H2
hazards for TGFI-top500 and TGFI-top50, respectively). Hazards only occur
after second 15 in the simulation and show a steeper increase towards second
50. The H1 hazard that occurs when the vehicle follows another car too closely
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Fig. 6. OpenPilot Supercombo: Time to lane invasion, hazard, and driver intervention.
No hazards or driver interventions were observed in golden runs. CDFs do not reach
1.0 since some experiments do not have a lane tnvaston, hazard, or driver intervention.
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occurs in 7.9% of simulations for TGFI-top50 and the H2 hazard, which indi-
cates a significant lane invasion, occurs in 16.3% of experiments for TGFI-top50,
see Table 2. TGFI results in more hazards than Random FT.

Since OpenPilot requires the driver to resume control of the vehicle in the case
of dangerous situations, hazards are often masked and accidents rarely happen,
see Table 2. We will discuss this mitigation technique in detail in 5.2.

5 Mitigation

The effects of faults can be mitigated through several approaches, many of which
are orthogonal to one another [11,24,32]. In this section, we examine different
mitigation techniques for the two AV cases examined here.

5.1 L4 LBC: Ranger

Ranger [11] is a popular, state-of-the-art fault corrector which employs range
restriction on neuron activation values to protect ML models from faults with
negligible overhead. Here, we present a proof-of-concept mitigation of applying
Ranger to LBC. To implement Ranger, we insert range restriction into the model
following activation layers at crucial points in the network, such as after convolu-
tion layers. Each protection layer has a pair of minimum and maximum activation
values to use as bounds, which are set after profiling through golden runs under
cloudy (ideal) weather. This step is performed once, before the deployment of
the protected model with Ranger. When Ranger is active, any activation values
outside the ranges defined by Ranger are clipped to the bound.

We examine the effectiveness of Ranger using the TGFI-top500 experiments,
see Fig.7. We examine three CARLA driving scenarios: curved road, turn at
intersection, and straight road. A combination of clear and inclement weather
conditions (cloudy, rainy, sunset, wet) is also used to offer insight into how
well the fault mitigation functions in unseen conditions. Ranger improves the
resiliency of LBC across all three driving scenarios and all weather conditions.
Significant improvements are observed under cloudy (ideal) weather conditions.

5.2 L2 OpenPilot: Driver Intervention

As an L2 ADAS, OpenPilot raises driver alerts and returns control to the driver
when a problem is detected by its safety checker, i.e., driver intervention. We
record the time to driver intervention as a CDF in Fig.6(c). The golden runs
never require driver intervention and are therefore not plotted. Random FI
results in driver intervention in 21.4% of experiments, occurring close to the 10s
mark. The TGFI-top500 and TGFI-top50 experiments show an initial jump in
driver intervention early in the simulation. OpenPilot has 3 types of driver alerts
which may be displayed when control of the vehicle is returned to the driver, see
Table 3. In fault injection experiments, PlannerError /noEntry alerts are the most
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Fig. 7. Comparison of LBC without Ranger vs. LBC with Ranger for the TGFI-500
scenario.

common ones. These alerts indicate that the Model Predictive Control (MPC)
cannot find a feasible solution for lateral planning (steering) and longitudinal
planning (gas/brake) and releases control to the driver, successfully mitigating
the fault before any hazard is triggered. The CanError/ImmediateDisable alerts
indicate communication errors and occur the least frequently. The steerSaturat-
edWarning alerts also rarely occur and they indicate that the car is swerving
sharply in the presence of the fault. This indicates that TGFI finds faults that
are more rare and more challenging for OpenPilot safety checks to detect and
matigate.

Table 3. Experiments where the driver is alerted to a problem in OpenPilot.

Alert Golden Runs | Random | TGFI-top500 | TGFI-top50
plannerError /noEntry 0% 19.8% 10.88% 4.01%
canError /immediateDisable 0% 0.5% 0.1% 0.4%
steerSaturated /warning 0% 1.9% 2.98% 3.85%

6 Case Studies and Discussion

In this section, we use LBC as a case study to evaluate and discuss the impact
of different faults, layers of DNN and bit positions on AV resilience.

6.1 TImportance of Layer Depth for Resilience

Table 4 shows four distinct experiments with corrupted LBC models that iden-
tify the importance of the layer depth where the fault occurs. When Ranger is
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Table 4. Case study of four distinct corrupted LBC models.

Exp. | Layer | Lane Invasion | Accidents | Lane Invasion | Accidents
ID | ID | (No Ranger) | (No Ranger)| (Ranger) (Ranger)

1 10 100% 100% 0% 0%
2 30 100% 100% 0% 0%
3 37 92.5% 100% 91% 100%
4 38 53.3% 84.7% 32.7% 78.4%

not applied and if the fault is injected in the earlier DNN layers (experiments 1
and 2), resilience is severely affected: all faults result to accidents. Faults occur-
ring earlier in the network have more time to propagate horizontally across the
neurons, resulting in more severe corruption. This propagation still occurs even
if the fault site is relatively deep into the ResNet34 section of the network, as
experiment 2 with injection in layer 30 shows. The fault sites of experiments
3 and 4 are in a the final layers in the network, therefore error propagation is
minimal and the severity of corruption in the final output is lessened.

With Ranger, results for faults injected in layer 10 and 30 improve from 100%
accidents to 0% accidents. For faults in layer 37 and 38, applying Ranger still
results in a majority of accidents. Since these two layers are at the end of the
network, the clipped Ranger bound used as output, differs significantly from the
ideal one.

6.2 Sensitivity to Single and Multi-bit Faults

We analyze the sensitivity of LBC to single- and multi-bit faults [33]. We evalu-
ate how the bit position(s) and the number of bit flips affect hazards in the LBC
model under cloudy (“easy”) and rainy (“challenging”) weather conditions using
TGFI-500, as shown in Fig. 8. We compare fault injection outcomes using differ-
ent numbers and locations of bit flips: single-bit exponent, single-bit mantissa,
double-bit (the fault model majorly used in this paper), and triple-bit. These
experiments show that single-bit exponent causes the most hazards, followed by
triple-bit, double-bit, and finally single-bit mantissa. This experiment also shows
that lane invasions and hazards for non-detectable triple bit faults are prominent,
thus their mitigation for safety is of paramount importance.

6.3 Lessons Learned from L4 LBC and L2 OpenPilot

L4 LBC and the L2 OpenPilot have similarities: both ML models are structured
around a backbone CNN which is more vulnerable to faults in earlier layers
than later ones. Faults are commonly masked when they occur in weights of low
importance. Meanwhile, structural differences of the DNNs affect their resilience:
LBC has high-level command branches that activate or deactivate parts of the
network depending on the driving scenario, thus possibly masking faults during
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Fig. 8. Bit position analysis for LBC and the TGFI-top500 experimental campaign.

inference. OpenPilot uses all layers in every inference, meaning that faults can
only be masked by the network itself, rather than circumstances around its use.
Secondly, the format of the DNN output is different. LBC outputs waypoints
while OpenPilot’s Supercombo outputs information about lanelines, road edges,
lead vehicle position, and many other variables. The availability of these different
outputs in OpenPilot allows for the implementation of safety checks.

For OpenPilot, we find that many accidents are not mitigated by the system
safety checks. This speaks to both the need for the improvement of existing
checks, and for the implementation of new ones. Adding DNN-oriented error
detection/correction mechanisms would improve AV resilience. High-level checks,
like many of those employed in OpenPilot, cannot detect potential incorrect
outputs but while imperfect, they provide a blueprint for developing resilience
in L4 systems like LBC.

7 Related Work

Past studies have shown that faults [34] can cause hazardous behavior in AVs.
DeepTest [1] focuses on testing the reliability of autonomous driving systems
and safety engineering techniques for autonomous systems are investigated in
[35], but these works do not consider soft errors. Other works examine the fault
space for AVs through Bayesian fault injection [34] and rely on large amounts of
random fault injection experiments. [36] explores the problem of effective safety
checks for an ML-based AV.

[2] uses duplication of computation and temporal data diversity to improve
the resilience of AVs with LBC but requires additional hardware. On the Open-
Pilot side, [12] focuses on hazard coverage and fault injection, but does not study
its ML model. [37,38] present attacks on the CAN bus or camera input for a vehi-
cle using OpenPilot. Unlike these works, we focus on the effects of unintended
faults rather than attacks.
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Most importantly, both for LBC and Openpilot, we identify corner cases
that are otherwise hard to find: we identify which portions of their DNNs are
vulnerable to faults and result in AV safety violations, i.e., we do not simply
examine the accuracy of DNNs for classification but their holistic effect into the
AV operation.

8 Conclusions

We perform strategic resilience evaluation of the neural networks of two
autonomous vehicles against transient faults. We focus on an L4 system widely
used in academia and an L2 ADAS system which is widely deployed on the road.
We find that both systems are vulnerable to single- and multi-bit faults which
may induce hazards/accidents. We use the Taylor criterion to strategically iden-
tify the most important weights for reliability in the DNNs used in the L4 LBC
and L2 Openpilot and inject errors on those weights using TGFI. TGFI is effi-
cient in identifying vulnerabilities that result in hazards and accidents. We also
examine the effectiveness of mitigation in AVs. For L4 self-driving, mitigation
techniques such as Ranger can be effective at minimizing the impact of faults.
Driver intervention is a crucial contributing factor to the security of L2 systems.

Acknowledgments. This material is based upon work supported by two Common-
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Abstract. We propose a new framework to facilitate dynamic assur-
ance within a safety case approach by associating safety performance
measurement with the core assurance artifacts of a safety case. The
focus is mainly on the safety architecture, whose underlying risk assess-
ment model gives the concrete link from safety measurement to opera-
tional risk. Using an aviation domain example of autonomous taxiing,
we describe our approach to derive safety indicators and revise the risk
assessment based on safety measurement. We then outline a notion of
consistency between a collection of safety indicators and the safety case,
as a formal basis for implementing the proposed framework in our tool,
AdvoCATE.

Keywords: Dynamic assurance - Safety cases - Safety measurement -
Safety metrics - Safety performance + Safety risk assessment

1 Introduction

Software-based self-adaptation and machine learning (ML) technologies for
enabling autonomy in complex systems—such as those in civil aviation—may
induce new and unforeseen ways for operational safety performance to devi-
ate from an approved baseline of acceptable risk. This phenomenon, known as
practical drift [13], emerges from the inevitable variabilities in real-life opera-
tions to meet service expectations in an operating environment that is inher-
ently dynamic. Conceptually, it can be understood as progressively impercepti-
ble reductions in the safety margins built into a system in part due to initially
benign operational tradeoffs between safety and performance. A system there-
fore appears to be operating safely but, in fact, is operating at a higher level
of safety risk than what was originally considered acceptable, or approved for
service. Left unchecked, practical drift may suddenly manifest as a serious inci-
dent or accident. Assessing the change in operational safety risk is thus key to
identifying practical drift, its impact, and the mitigations needed.

Related Work. The conventional approach to operational safety assurance in
aviation largely relies upon hazard tracking and safety performance monitoring
and measurement, as part of a larger safety management system (SMS) [10].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Ceccarelli et al. (Eds.): SAFECOMP 2024, LNCS 14988, pp. 51-67, 2024.
https://doi.org/10.1007/978-3-031-68606-1_4
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The contemporary safety case approach to assurance has similarly employed
safety monitoring and measurement: for example, our earlier work on dynamic
safety cases [5] first suggested connecting safety monitoring to assurance argu-
ment modification actions. Subsequently, an approach to defining performance
metrics and monitors by identifying the defeaters and counterarguments to a
safety case has been developed in [12]. The concept has since also been applied
to safety assurance of self-adaptive software [4], and to detect operational expo-
sure to previously unknown hazardous conditions [18]. More recently, the use
of safety performance indicators (SPIs)—a concept with a well-established his-
tory of use in aviation safety [13]—has been proposed for evaluating safety cases
for autonomous vehicles [15]. These approaches all share a common motivation:
using measurement based assessment to confirm at deployment, and maintain in
operation, the validity of the assurance arguments of a safety case.

Although such an approach suggests which parts of an argument may have
been invalidated, and thus require changing, the nature and extent of the change
to operational safety risk levels is left implicit. Such analyses can also meaning-
fully inform what modifications may be needed to the system and its safety
case, especially when—due to practical drift—improved system performance is
observed without detrimental safety effects, even though parts of the safety argu-
ment have become invalid. Current safety case approaches that use safety per-
formance measurement to validate assurance arguments give limited guidance
on how to facilitate what this paper considers as dynamic assurance (see Fig. 3):
continued, justified confidence that a system is operating at a safety risk level
consistent with an approved risk baseline.

There are other variations of the dynamic assurance concept [17,21] that
aim to optimize operational system performance, and thus opt for situation-
specific runtime tradeoffs between safety and functional performance, instead of
designing for the worst case. However, such tradeoffs may result in the initiating
conditions for practical drift. Our proposed framework rather aims to identify
and contain practical drift, whilst considering that a safety case for a system is
always for a design that accounts for the worst credible safety effects. In [18],
dynamic assurance refers to the automated aspects of so-called continuous assur-
ance: a concept that, in effect, extends our prior work [5], by using monitors for
different kinds of uncertainty that then trigger modifications to the system and
its assurance case. The relationship of testing and operational metrics to safety
assurance has been explored in [19], similar to our work in this paper (see Sect. 4),
though there the focus is on providing confidence that a system meets its safety
target, given evidence of mishap-free operation. In contrast, our focus here is on
determining how safety risk has changed given similar measurement evidence.

Contributions and Paper Organization. To facilitate a framework for dynamic
assurance within a safety case approach, the focus of this paper is on associat-
ing safety performance measurement with the safety architecture of a system,
in addition to assurance arguments (Sect.2). Using an aviation domain system
(Sect. 3) as motivation, we present our approach to define safety metrics and
indicators, through a concept of safety measurement basis (SMB), then revise
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the operational safety risk assessment based on safety measurement, and charac-
terize the change to safety risk levels (Sect. 4). Additionally, we give illustrative
numerical examples. Then (Sect. 5) we formalize a notion of consistency between
the SMB for a system and the arguments of its safety case. We conclude (Sect. 6)
by describing a preliminary implementation in AdvoCATE, and with a discus-
sion of our future plans to further advance this work. The contributions above
differentiate our work from prior related research.

Operating
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Fig. 1. Fragment of AdvoCATE safety case metamodel (on the left) extended with
measurement concepts that are part of a safety measurement basis (shown on the
right), which is the interface between quantities in the system, its environment, its
development process, and the assurance artifacts comprising a safety case (solid arrows
denote consistency relations).

2 Conceptual Background

Safety Case Metamodel. Our safety case concept [1] communicates confi-
dence in safety through multiple viewpoints via a collection of core, interlinked
assurance artifacts, namely: hazard, requirement, and evidence logs, a safety
architecture, and an assurance rationale. Of those, the last two are particularly
relevant for this paper. Assurance rationale captured as structured arguments
expresses the reasoning why safety claims ought to be accepted on the basis of
the evidence supplied. A safety architecture [6,8] models the mitigations (and
their interrelations) to the events characterizing the operational risk scenarios
for a system, thereby offering a system-level viewpoint on how safety risk is
reduced.

Figure 1 shows a fragment of the metamodel associated with our safety case
concept (as unshaded class nodes), for which we have a model-based imple-
mentation in our tool, AdvoCATE [7]. We use the goal structuring notation
(GSN) [20] to represent structured arguments, and bow tie diagrams (BTDs)
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to represent views of a safety architecture. Those views capture a causal chain
(e.g., see Fig. 2) of threats (initiating events) causing a top event (a hazard) that
can lead to consequence events (undesired safety effects), along with the bar-
riers (mitigations) necessary to reduce the safety risk posed. Each such event
chain requires a combination of hazardous activity, environmental condition, and
system state (together representing the operating context!), and can admit an
arbitrary number of intermediate events between the initiating threat and termi-
nating consequence events. Each barrier is itself a system comprising underlying
controls; thus, it can have its own associated safety architecture, giving the over-
all model a layered structure that can mirror the system hierarchy.

A risk assessment model underlying a safety architecture gives the formal
basis to: (i) characterize the extent of risk reduction, and (ii) link safety metrics
and indicators to operational safety risk (see Sect.4). In brief, this model relates
the risk of consequence events, i.e., their probability and severity, to that of
the precursor events, and to the integrity? of the applicable barriers and their
constituent controls. Depending on the stage of system development, we can
interpret each of an event probability and barrier/control integrity both as a
design target and verification goal. For the rest of this paper, we mainly consider
the risk reduction contribution of barriers.

Safety Measurement. We extend the safety case metamodel in AdvoCATE-
with concepts for safety performance measurement (shown by the shaded class
nodes in Fig. 1) as follows: we link the indicators to the core assurance artifacts—
in particular, the event and barrier elements of a safety architecture, the claims
and assumptions in arguments, to requirements, and to evidence artifacts. An
indicator consists of a metric along with a threshold, representing the target
that a metric should (or should not) reach, over a specified exposure, expressed
either as a duration of continuous time or a specified number of occurrences of
a discrete event. Indicators that have a bearing on safety can be called safety
indicators (SIs) or safety performance indicators (SPIs). Metrics are computed
values based on measures—directly observable parameters of the system, its
environment, and its development process—and other metrics, which we repre-
sent using an expression language. Thus, they are arithmetic expressions over
measured variables drawn from the most recent mission—which we term as a
data run—or the missions conducted over the lifetime of the system. They can
also refer to values referenced in assurance artifacts.

As shown in Fig. 1, a safety case can be seen as comprising a dynamic por-
tion (indicators, metrics, and measures) and a static portion (safety arguments
and safety architecture), with links associating the two. We refer to the set of
interconnected indicators, metrics, and measures, along with their traceability
links to the assurance artifacts of a safety case as a safety measurement basis
(SMB). Roughly speaking, the connection between the dynamic and static por-

! Also known as an operational design domain (ODD) for systems integrating ML [14].
2 Integrity is the probability that a barrier or control is not breached, i.e., it delivers its
intended function for reducing risk in the specified operating context and scenario [8].
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tions is that the indicators represent the objectively quantifiable content of the
arguments and the safety architecture which, in turn, give the justification for
how those indicators collectively provide safety substantiation. Put another way,
we want the SMB to be consistent with the static portions of the safety case,
especially the arguments and the safety architecture (see Sect.5).

3 Motivating Example

We motivate this work using an aviation domain use case of autonomous aircraft
taxiing [1]. This system uses a runway centerline tracking function comprising a
classical controller coupled to a deep convolutional neural network that estimates
aircraft position from optical sensor data. The functional objective is to maintain
both the cross-track error (CTE) and the heading error (HE) within pre-defined
bounds. CTE is the horizontal distance between the runway centerline and the
aircraft body (or roll) axis; HE is the angle between the respective headings of
the runway centerline and the roll axis. The safety objective is to avoid a lateral
runway overrun (also known as a runway excursion), i.e., departing the sides of
the runway.

Figure2 shows a BTD fragment for this example (annotated to show its
graphical elements and their identifiers) as a view of its wider safety architecture
(not shown), which composes [8] similar such BT Ds, albeit for different operating
contexts, threats, top events, and consequences. Here, the operating context
involves a relatively low speed (25kn), low visibility taxi operation on a wet
runway, at dusk, under no crosswind conditions. The hazard to be controlled
(E3) is a violation of the allowed lateral offset from the runway centerline, failing
which a lateral runway overrun (E4) could occur. Two (out of many) initiating
causes for this hazard have been shown: a controller malfunction that steers the
aircraft away from the centerline when not required (E;); and runway centerline
markings that are not visible, or are obscured (Esz).

3.1 Baseline Safety

To characterize the safety risk level of an operating scenario, we use the risk
assessment model associated with the safety architecture to establish a baseline
level of operational safety risk for the identified safety effects.

For the scenario in Fig.2, the initial risk level (IRL) of the consequence
event E4 is labeled 4A(Medium). That is, E4 has a medium level of unmitigated
risk, and is assigned the risk classification category 4A. That refers to a region
of the overall risk space that has been discretized using a classical 5 x 5 risk
matrix of categories of consequence event probability, ranging from Frequent
(A) to Extremely Improbable (E), and consequence event severity, ranging from
Minimal (5) to Catastrophic (1). For a definition of those categories, see [10]. A
similar interpretation applies to residual risk level (RRL) which, for E4, is shown
as 4D(Low), representing the risk remaining after mitigation using the indicated
barriers and the associated controls. Specifically, By: Runtime Monitoring, Bo:



56

E1 B1

Controller steers the
aircraft when not
required

Prevention Barriers

E. Denney and G. Pai

B,

Likelihood: A (Frequent)

Runtime Monitoring

Controller Failover

Threat
(Initiating Event)

Compare commanded
heading with reference
heading and alert upon
deviation = h degrees

\

Barrier Integrity: 08\

Disengage PID controller
when deviation = d
meters or duration of
deviation = t seconds,
then command a speed
reduction

Barrier Integrity: 0.99

V&

Taxiing at 25
knots, at dusk,
low visibility, wet
runway, no
crosswinds

Aircraft deviation from
the runway centerline
exceeds allowed lateral
offset

' Hazardous Activity
’ (Operating Context)

E,

Lateral runway overrun

IL: A (Frequent)
1S: 4 (Minor)

RL: D (Extremely Remote)
RS: 4 (Minor)
RRL: 4D (Low)

E2 ~— \ Emergency Braking
N S —
————— Apply emergency Consequence
IRunway centerline ] ] brakes when lateral
markings not visible or B3 Controls B4 Top Event offset is exceeded for (Safety Effect)
lobscured . more than k seconds
/ (Hazard)

Likelihood: A (Frequent)

/ E3 Barrier Integrity: 0.99

Redundancy N Perception Failover

Use redundant /
localization as alternative
reference for heading,

Disengage ML-based
perception when deviation
from reference location = d

Recovery Barrier

meters or duration of
deviation = t seconds, then
command a speed reduction

and location

Barrier Integrity: 0.88

Barrier Integrity: 0.75

@@

Fig. 2. Annotated BTD fragment for an autonomous taxiing capability, showing how a
lateral runway overrun is mitigated under specific initiating events leading to centerline
tracking violation.

Controller Failover, Bs: Redundancy, and B4: Perception Failover, serve as pre-
vention barriers for exceeding the allowed CTE, while Bs: Emergency Braking
is a recovery barrier invoked after the top event occurs.

For aeronautical applications, civil aviation regulations and the associated
certification or approval processes generally establish what constitutes accept-
able and approved baseline risk levels respectively. The two can be the same
(though they need not be) and, typically, are given in terms of a so-called target
level of safety (TLOS), which specifies the (maximum acceptable) probability
of the undesired safety effect per unit of operational exposure, e.g., 1076 lateral
runway excursions per taxi operation. How TLOS is established and approved
is out of scope for this paper?; as such, in Fig. 2, either of the values of the IRL,
4A(Medium), or the RRL, 4D(Low), may plausibly meet the TLOS, and there-
fore could be an approved baseline level of safety risk. For the purposes of this
example, we assume that the RRL shown is the approved baseline that meets
the TLOS. Once a system is deployed, note that the RRL for an event is, in
fact, dynamic, i.e., as a sequence of values starting from the approved baseline,
it represents how the risk of that event evolves over the system lifetime (also see
Fig. 3).

3 Interested readers may refer to [3].



Reconciling Safety Measurement and Dynamic Assurance 57

3.2 Practical Drift

Some barriers or controls in the safety architecture of a system may be relaxed
in operation to improve the performance of system services and/or to make local
optimizations that address the operating context. In our running example, for
instance, to increase runway throughput whilst operating on large runways in
better environmental conditions (e.g., clear weather, and dry runway surface),
the time an aircraft spends on a runway could be reduced. For that purpose, sup-
pose that disengagement of the perception function or the controller is delayed
(see Fig. 2), or that more permissive CTE bounds are admitted. In those cases,
the system may enter certain states that would have been prohibited otherwise.
In particular, such states represent violations of the barrier /control requirements
that were stated as claims in the pre-deployment safety case.

However, when there is improved system performance without observed
safety consequences or mishaps, those states are not perceived as violations that
increase residual risk. This can lead to misplaced assurance in operational safety
when the system as operated deviates from its safety case. Practical drift can
then emerge when multiple safety mitigations may be progressively loosened,
and continued, incident-free system operations under such changes obscure the
increase in operational safety risk. It is important to emphasize that relaxing
mitigations to improve performance represents an operational tradeoff rather
than a deliberate attempt to subvert safety. An analogy, for example, is highway
driving at the speed of traffic that exceeds the posted speed limits—a practice
that is not always unsafe, but poses higher risk in general.

4 Framework

Risk Risk

+ Pre-deployment Assurance Dynamic Assurance
L iiL

R Practical drift
ISk Heductlb”

System (and Environment) Evolution

Fig. 3. Pre-deployment assurance gives justified confidence in the reduction of an initial
risk level (IRL) of the safety effects in a system concept, through system development,
to a baseline residual risk level (RRLo) that meets the TLOS at deployment. Dynamic
assurance provides confidence in operation that the approved baseline is maintained,
by identifying and managing practical drift.
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Dynamic assurance within a safety case approach gives a proactive means to
assess and contain practical drift through continued assurance that the opera-
tional safety risk level for the system is aligned with its approved baseline (see
Fig.3). A framework that enables this must at least: (i) characterize how oper-
ational safety risk levels have changed; (ii) determine which mitigations, if any,
may be legitimately relaxed without safety deteriorating; and (iii) identify the
necessary modifications to both the system and its safety case, so that the two
are mutually consistent during system operation. Next, we discuss how relating
safety performance measurement to the safety architecture in a safety case, in
addition to its arguments, gives the necessary elements and technical foundations
for the first of the preceding three requirements—the main focus in this paper.
The examples presented next are meant to be illustrative and not comprehensive.

4.1 Defining Safety Metrics and Indicators

A safety architecture and its associated risk assessment model [8] give a basis
to allocate safety targets to the safety functions, and subsequently confirm
them (analytically and empirically). TLOS is a system-level safety target always
assigned to consequence event probability. Decomposing and allocating the
TLOS across the elements of the safety architecture gives the safety integrity
targets for barriers and controls, along with precursor event probabilities that
we interpret as scenario-specific safety targets. Relating safety targets to safety
performance measurement in general, and safety indicators (SIs) in particular,
facilitates tracking and confirming that the mitigations are performing in oper-
ation as intended. One way to embed TLOS into an SI is by simply converting
the corresponding probability value into an event frequency threshold applied to
an appropriate safety metric used during development or in operation. In this
section we focus on the operational safety metrics, addressing the metrics used
during development in Sect. 4.2.

TLOS and the corresponding SIs can be generic, i.e., apply to all relevant
operating contexts of a safety architecture, or scenario-specific, i.e., applicable
to a particular operating context. For instance, let the TLOS for lateral run-
way overrun under all relevant operating conditions of the example system be
107% per taxi operation. We can then define a corresponding generic SI, Zigg:
opLatRwyEx < 1 in 10° taxi operations, where opLatRwyEx is an operational
safety metric* for the number of lateral runway overrun events in operation,
whose threshold value is 1, measured over an exposure of 10° taxi operations.
Another commonly used unit of exposure is flight hours [11], and the SI can be
given equivalently as Zize : opLatRwyEx < 1 in 10° x ¢ flight hours, where ¢ is
the average time in flight hours of a taxi operation.

Scenario-specific SI definition proceeds in the same way, but is applied to
specific operating contexts after first decomposing and allocating the TLOS of
a consequence event to its scenario-specific instance. For example, if 10% of all

4 Henceforth, identifiers with the prefix ‘dev’ refer to metrics used during system
development, and the prefix ‘op’ indicates an operational safety metric.
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taxi operations occur under the operating context of Fig. 2, then we can modify
the exposure of Z;gg to 10° taxi operations to get the scenario-specific SI for the
consequence event E,.

Similarly, we can define generic and scenario-specific SIs for the remaining
safety architecture elements by converting the associated event probability and
barrier integrity values as applicable. Moreover, recalling that a barrier can have
its own safety architecture (Sect.2), we can iteratively define Sls for the lower
layers of a system hierarchy. Thus, in Fig. 2, we can define the scenario-specific
SI for the barrier By: Perception Failover as Ippg: opPcpDisEngF < y in n taxi
operations. In Sect. 4.4, we illustrate one approach to instantiate y and n.

Here, opPcpDisEngF is a metric related to the integrity of By (itself a met-
ric) that counts the number of failed disengagements of ML-based perception in
operation; its threshold value is y, to be measured over an exposure of n taxi
operations conducted in the stated operating context for the specified scenario.
This metric relies upon a precise definition of a failed disengagement (not given
here), which may itself be given in terms of other metrics, e.g., those associated
with its functional deviations (i.e., violation of the requirements for the barrier,
its constituent controls, or their verification), and its failure modes (of the phys-
ical systems to which the barrier function is allocated). Additional operational
safety metrics related to barrier integrity include opTxLowVisW, counting the
number of taxi operations conducted at dusk under low visibility, no crosswind,
and wet runway conditions (i.e., the operating context of Fig. 2), from which we
may infer the number of successful disengagements of ML-based perception as
the metric opPcpDisEngS = opTxLowVisW — opPcpDisEngF.

4.2 Updating and Revising the Operational Risk Assessment

A pre-deployment safety case represents what (we believe) a system design
achieves at deployment, and will continue to achieve in operation. Some of the
metrics and SIs applicable during system development constitute measurement
evidence verifying safety performance, e.g., during pre-deployment system test-
ing or flight testing. Thus, by associating those metrics and SIs with the safety
architecture, we get the prior values of event probability and barrier integrity.
For the scenario and operating context of Fig. 2, some of the metrics used during
system development for the barrier B, are: devTxLowVisW: the number of tests
for By =t (say); devPcpDisEngS: the number of successful disengagements of
ML-based perception = s; and devPcpDisEngF: the number of failed disengage-
ments of ML-based perception = (t — s) = f.

If the test campaign during system development is designed as a Bernoulli
process [16] then we can model the sequence of test results as a binomial dis-
tribution, Binom ( : n,#), whose parameters are y: the number of successes,
7: the number of independent trials, and #: the probability of success in each
trial. Hence, we can assign the values of the metrics devPcpDisEngS and
devTxLowVisW, respectively, to the first two parameters as y := s, and n = t.
Let 6 := p, the unknown (fixed) probability that each test produces a success-
ful disengagement. We can model p as the conjugate prior beta distribution,
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m(p) ~ Beta(a, 3). The hyperparameters (i.e., the parameters of the prior dis-
tribution) represent our prior knowledge of the number of successful and failed
tests during development. Hence we assign to them the values of the metrics
devPcpDisEngS and devPcpDisEngF, respectively, as a := s, and 3 := f. The
beta distribution mean, p, = $/t, gives a point estimate of the prior barrier
integrity, and its variance, ag = sf/t?(t+1), gives the uncertainty in that esti-
mate.

In operation, safety performance measurement yields a sequence of obser-
vations of the state of the safety system. We can transform this data into a
likelihood function, i.e., a joint probability of the observations given as a func-
tion of the parameters of a model of the underlying data generation process.
In our example, a binomial probability density function (PDF) is a reasonable
initial model (i) assuming that the pre-deployment safety case provides the argu-
ment and evidence that testing is representative of actual operations (as would
likely be necessary), and (ii) since a binomial distribution models the sequence
of test results. Thus, supposing that over n taxi operations conducted in the
operating context of Fig. 2, there were z failures to disengage ML-based percep-
tion on demand. We now have the operational safety metrics opTxLowVisW = n,
and opPcpDisEngF = x, so that opPcpDisEngS = (n—x) = y, and the likelihood
function is £ (p|n,y) = (Z) pY(1 — p)*. As before, p is the unknown probability
of a successful disengagement of ML-based perception on a random demand,
representing a surrogate measure of barrier integrity.

Bayesian inference gives the formal procedure to update the priors into
posterior values of barrier integrity (and event probability), which represent
what the operational system currently achieves. Thus, for our running exam-
ple, the posterior integrity for By is given by (the proportional form of) Bayes’
theorem as w(ply) o« L (p|n,y) x m(p). Since the beta prior and the bino-
mial likelihood are a conjugate pair, the posterior has a closed form solution,
7(ply) ~ Beta (s +y, (t —s) +z). The distribution mean, fi,, = (s+¥)/(t+n), is
the updated point estimate of barrier integrity. To get a revised assessment of the
operational safety risk level for the system, we propagate the posterior barrier
integrity through the risk assessment model underlying the safety architecture.

4.3 Characterizing the Change to Safety Risk

We use risk ratio (RR), a metric of relative risk, to quantify the change in
operational safety risk. In operation, the RR for a consequence event is the ratio
of its current estimated probability of occurrence and the approved baseline.
More generally, we will (re)compute the RR for any event of interest in the safety
architecture, typically after the operational risk assessment has been revised (as
in Sect. 4.2) as the ratio of its updated (i.e., prior or posterior, as appropriate)
probability to its (scenario-specific) safety target. Denoting the RR for event E;
by RR(E;), RR(E;) > 1 indicates an increase in the safety risk of E;. Similarly,
RR(E;) < 1 indicates a decrease, while RR(E;) = 1 indicates no change. By itself,
RR reflects how effective the safety architecture is in reducing the risk of the
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identified safety effects.” By considering the trend of RR over time, we can
construct a powerful SI of practical drift, e.g., by fitting a linear trend line to a
temporally ordered sequence of RR values computed over some pre-determined
exposure, the sign and magnitude of the slope indicate, respectively, the direction
and the rate of the change in safety risk.

4.4 Numerical Examples
We now give some numerical examples to concretize the preceding discussion.

Ezxample 1 (Prior Barrier Integrity). During the development of our running
example system and its pre-deployment safety case, assume we have a total of
devTxLowVisW = 32 flight tests in which there are devPcpDisEngF = 8 failing
tests for the Perception Failover barrier. Thus a prior distribution for its integrity
is w(p) ~ Beta(24,8), whose mean is j, = 0.75, and variance is o2 = 0.0057.
The mean gives a point prior value of barrier integrity which we show in the
corresponding node in the BTD of Fig. 2.

Ezxzample 2 (Scenario-specific Barrier Safety Indicator). Recall that a scenario-
specific SI for the Perception Failover barrier is Zppg: opPcpDisEngF < y in n taxi
operations (Sect.4.1). As before, opPcpDisEngF measures the number of failed
disengagements of ML-based perception in operation. To determine a suitable
exposure n and threshold y, consider that a conservative range of values for p that
would provide the same, or better, risk reduction performance as its prior mean is
the closed interval [, + o), 1] = [0.8254, 1]. In other words, observing 8 or more
successful disengagements or, equivalently, 2 or fewer failed disengagements on
demand of ML-based perception over at least 10 taxi operations conducted in the
specified operating context would validate the safety performance of the barrier.
Thus, here, n = 10 and y = 2.

Ezxample 3 (Likelihood of Data and Posterior Integrity). After system deploy-
ment, suppose that to improve runway utilization, the control in By (see Fig. 2)
is relaxed such that ML-based perception is disengaged after a larger distance
(or duration) of position deviation than what was specified in the safety archi-
tecture. The metric that records the number of failed disengagements in opera-
tion, opPcpDisEngF (Sect.4.2), includes violations of the barrier requirement
as initially specified, which itself includes violations of the barrier require-
ment after operational modification. That is, the operational safety metric
should not be modified even though the barrier function has been operationally
changed. Supposing opPcpDisEngF = 4 violations have been observed over
opTxLowVisW = 10 taxi operations. Given this data, the likelihood function is
L(pl6) = (140)]96(1 —p)%, and the posterior distribution is 7(p|6) ~ Beta(30,12),
whose mean is p,6 = 0.7143 and variance is 02‘6 = 0.0047.

® RR has also been used as a development safety metric, e.g., in designing aircraft
collision avoidance systems [9].
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Ezample 4 (Operational Safety Risk Update). We assume prior data is avail-
able (from characterizing the ODD [14] for the autonomous taxiing function)
on how often runway markings are obscured during taxiing due to runway
surface and weather conditions. Hence we can give a prior distribution, say
m(E2) ~ Beta(10,190), whose mean is the prior point estimate Pr(Es) = 0.05.
Similarly, let Pr(E;) = 0.05. Given these priors and the barrier integrity values as
in Fig. 2, the prior probability of the consequence event is Pr(E;) = 1.5998 x 10~°
corresponding to an RRL of 4D(Low). We recall from Example 3 that 4 barrier
violations were observed in 10 taxi operations. Hence E5 must have occurred on
z = 4 occasions for B4 to have been invoked and have failed on demand. Thus,
we may reasonably model this event as a Bernoulli process with a binomial
PDF as the likelihood function for the observed data. Thus, the posterior dis-
tribution over Ey is m(Ez|z) ~ Beta(14,196) so that pg,). = 0.0667 is the point
posterior for Pr(Es). Propagating both the posteriors for E5 and B4 through
the risk assessment model of the safety architecture [8], we get the updated
prior Pr(E4) = 2.386 x 10™° for the consequence event. The corresponding RRL
remains unchanged suggesting that the operational modification to By may be
acceptably safe.

Ezxample 5 (Safety Risk Level Change and Practical Drift). The risk ratio for
the consequence event E4 given the change to barrier B, (as in Example 3) is
RR(E4) = 2:386/1.5998 &~ 1.49. Thus, despite an unchanged risk level (see Exam-
ple 4), the RR indicates increasing safety risk. Now, further suppose that to
improve runway utilization, a greater deviation in CTE from the stated bounds
is operationally admitted (see the top event Eg in Fig.2). Consequently barrier
Bs needs to be relaxed to be invoked after a longer duration than specified (see
Fig.2). Suppose that the posterior integrity computed from operational safety
metrics (omitted here due to space constraints) is Pr(Bs) ~ 0.96. In this case,
the revised prior for E4 is Pr(E4) ~ 2.4 x 107*, the revised RRL is 4C(Medium),
and RR(E4) ~ 10. The updated RRL now violates the TLOS even if no safety
effects may have been observed. Moreover, the modifications to the barriers By
and Bs are at least an order of magnitude more likely to result in a lateral
runway overrun, indicating an appreciable increase in safety risk relative to the
approved baseline, and suggests practical drift.

5 Towards Formal Foundations

As mentioned earlier (Sect.2), we want to formalize a notion of consistency
between the static portion of the safety case (i.e., its assurance artifacts, see
Fig. 1) and the collection of indicators that constitute the SMB. The safety met-
rics and indicators represent the objectively quantifiable content referenced in
the arguments and the safety architecture, which in turn provide the justifica-
tion for how the metrics and indicators collectively provide safety substantiation.
Although operational safety measurement entails updating and revising the risk



Reconciling Safety Measurement and Dynamic Assurance 63

assessment (Sect. 4), changing the SMB may not be necessary. However, in situa-
tions where replacing, modifying, or adding metrics and indicators is required—
e.g., to reflect new observable phenomena in the environment—the SMB will
change and so would the associated assurance artifacts to retain consistency.
Note that currently we are not considering changes that would entail modifica-
tion of the safety architecture (e.g., replacing a barrier). Hence we exclude that
from our notion of consistency for now and focus on consistency with arguments.

We can achieve this consistency if the argument structure reflects the risk
reduction rationale implicit in the safety architecture. That is, the form of the
argument structure proceeds from all terminating consequence events in the
safety architecture, working recursively backwards (i.e., leftwards) to all initiat-
ing (leftmost) threat events. Thus, each level of the argument has the following
form: all consequence events are acceptably mitigated (i.e., the residual risk level
meets the allocated TLOS), which is supported by the argument that: all their
identified precursor events (causes) are acceptably mitigated, which is supported
by the argument that: (a) all applicable barriers are operational and effective, and
(b) all causes have the stated probability of occurrence. In a GSN representa-
tion of this argument, the leaves are solution nodes [20] that have the following
evidence assertion: the initiating threat has the stated (assumed) probability.

Thus, the overall argument states that if the barriers are effective and oper-
ational, and the events have the assumed probabilities, then the consequences
have acceptable risk levels. Indicators map into the corresponding claims of bar-
rier effectiveness and event probabilities, serving to monitor that those values
are within the required limits.

Now we briefly outline how to place this consistency on a more rigorous
basis. Let Arg and SMB represent the sets of well-formed arguments and SMBs,
respectively, and define mappings F' : Arg — SMB and G : SMB — Arg, such
that F' extracts the associated indicators from an argument, and G embeds an
SMB into a skeleton argument of the form outlined above. Then we require that
F;G < I and G; F = I (where [ is the identity mapping), where arguments are
ordered by refinement. The first inequality ensures that the argument contains
the necessary rationale for the SMB, with the refinement allowing that the argu-
ment can contain additional reasoning; the second ensures that all quantifiable
components of the argument are represented in the SMB.

6 Concluding Remarks

We have a preliminary implementation of the SMB in AdvoCATE that currently
supports the following functionality: real-time import of data (i.e., measures)
from multiple data sources (simulations or feeds from external sensors); compu-
tation of derived metrics and indicators over multiple data runs; and tracing to
assurance artifacts (events and barriers in the safety architecture, and goals and
assumptions in the safety arguments). We display indicators and the associated
assurance artifacts in a dynamically updated table (Fig.4 shows an example)
that highlights when the conditions on the indicator thresholds have been met
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(in green) or have not been met (in red). A dashboard (not shown) allows selec-
tion between the various metrics of the SMB with charts displaying real-time
updates of their values as well as other dynamically updated risk status, such as
hazards ordered by risk level, and barriers ordered by integrity.

- ) BE @ic - Q im
5 z safecomp24 Dashboard &a El1 Bow Tie autoTaxi.simulation [ Performance Indicators X = (=] g
: =]
T Delete Data Run Create new Data Run Data Source:  LowVizSim ~ DataRun: D v Start Data Run
0
fal
Metric Definition Threshold Assurance Element Value Status —_
o= LatRwyEx: Number of lateral o
= opl g i . . .
runway overrun events in operation count (opLatRwyExIn = TRUE) in taxiOpExposure 1 E2: Lateral runway overrun 0 false 657

E1: Aircraft deviation from the

opCTEViolations: Number of CTE . : _ . . " 2
den : " é count (opCTE = TRUE) in (taxiO ¢/100) 2 runway centerline exceeds 0 false
violations during taxi in operation allowed lateral offset

opPcpDisEngF: Number of failed
disengagements of ML-based count (opPcpDisEngFIn = TRUE) in pfoDemandExposure 2 B3: Perception Failover
perception in operation

opTxLowVisW: Number of low
visibility wet runway no crosswind low count (opTxLowVisWIn = TRUE)
speed taxi operations

EC1: Wet runway, no crosswind, 10
low visibility, dusk

devTxLowVisW: Number of low
visibility wet runway no crosswind low count (devTxLowVisWIn = TRUE)
speed taxi tests

EC1: Wet runway, no crosswind, 10
low visibility, dusk

devPcpDisEngS: Number of
successful disengagements of count (devPcpDisEngSIn = TRUE) in taxiTestExposure 8 B3: Perception Failover 9 true
ML-based perception in test

count( [(opCTEViolationsin = TRUE) AND (opEmBrkFin =
FALSE)] OR [(opCTEViolationsin = FALSE) AND 1 B1: Emergency Braking 0 false
(opEmBrkin = TRUE)] ) in taxiOpExposure

opEmBrkF: Number of emergency
braking violations in operation

autoTaxiSim

Fig. 4. AdvoCATE screenshot: Table of safety indicators for the example system in
Sect. 3.

The goal of managing practical drift has mainly informed our choice of safety
metrics and indicators. We plan to leverage the Goal Question Metrics (GQM)
approach [2] to define additional metrics suitable for other dynamic assurance
goals, e.g., improving functional performance whilst maintaining safety.

A binomial likelihood may be only initially appropriate for certain kinds of
measurement data. Indeed, as more data is gathered, the preconditions for using
a binomial PDF need to be reconfirmed. As such, it may be necessary to use other
PDFs for the likelihood of the data, along with numerical methods for Bayesian
inference. Our choice of beta priors is motivated, in part, by computational
convenience, its flexibility to approximate a variety of distributions, and the
domain-specific interpretation of the distribution parameters in different safety
metrics. Although we represent the uncertainty in barrier integrity and event
probability by specifying their distributions in the theoretical framework, our
prototype implementation currently represents and propagates their point values
(i.e., the distribution means) for both the pre-deployment risk assessment, and
the revisions of the operational risk assessment. We plan to refine this approach
by also propagating the uncertainties through the risk assessment model so as to
quantify the corresponding uncertainty in the residual risk of the safety effects of
interest. By so doing, we aim to ground the quantification of assurance in safety
measurement.
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Since TLOS is typically assigned to rare events, legitimate concerns can arise
about the credibility of using quantitative methods as in this paper. Though we
have yet to explore how conservative Bayesian inference [19] could be used in
our approach, relative risk metrics such as risk ratio (RR) are a step towards
circumventing those concerns.

Practical drift is distinct from operating environment drift in that the for-
mer results from changes within the system boundary, whereas the latter occurs
outside that boundary. We reflect the assumptions about the operating environ-
ment in the pre-deployment safety case, for example, as the prior probabilities
(conditional on the operating context) associated with the threat events. We
can reflect environment drift via the posterior distributions of the correspond-
ing event probabilities updated by operational safety metrics associated with
the respective events (see Sect. 4.2, and Example 4). We additionally distinguish
runtime risk assessment [1], from the update and revision of operational risk
as described in this paper: the former occurs during the shorter time span of
a mission (e.g., during a taxi operation), whereas the latter occurs over longer
time intervals, between missions, and through the lifecycle of the system (e.g.,
over multiple taxiing operations, possibly involving an aircraft fleet).

The numerical examples (Sect.4.4) have described a scenario-specific appli-
cation of our approach, where the event probabilities and barrier integrities
are conditional on the operating context. For a system-level characterization
of how operational risk changes, we must consider the marginal probabilities
and integrities in the overall safety architecture that composes different risk sce-
narios. However, we have not considered it in this paper, and it is one avenue
for future work.

To further develop our proposed dynamic assurance framework we aim to
explore how by thresholding, ranking, and comparing RR under changes made
to individual mitigations or their combinations, we may infer: (i) which mitiga-
tions may be optimized for system performance whilst maintaining safety (pos-
sibly necessitating a change to the safety architecture itself); and, in turn, (ii)
which system and safety case changes may be necessary. Some changes may be
automated while will induce tasks requiring manual attention [5]. Additionally,
we aim to define a tool-supported methodology on top of the main components
of the framework. This will involve defining and formalizing the methods and
procedures to decompose and allocate safety targets, derive safety indicators,
and close the safety assurance loop, i.e., maintain consistency of the arguments
with the SMB) through targeted changes to the system and its safety case.

Observations of system operations constitute one specific form of evidence
that we can use to reason about system safety. We seek to systematize this
through a notion of evidence requirement that will also cover static data. We are
also extending the metrics expression language to express trends, although work
remains to integrate it into our methodology and to relate it to the concept of
safety objective. A need to update the SMB, e.g., modify indicators and possibly
their thresholds, accompanies operational safety measurement. We aim to better
understand the principles that underlie those modifications and, subsequently,
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implement the corresponding tool features. However, practically deploying this
framework will necessitate harmonizing with existing safety management sys-
tem (SMS) [10] infrastructure, whilst carefully considering the roles of different
stakeholders in safety performance monitoring, measurement, and assurance.
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