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9.1 Overview

Modeling of multicomponent hydrogels has the potential to predict
novel properties and biomedical applications while describing their complex
response from the nanoscopic to the macroscopic scale. Typically multi-
component hydrogels use networks with contrasting properties, such as
brittle/ductile," and combine various functions, such as stiffness, with bio-
functionality. Another advantage of multicomponent hydrogels stems from
the fact that they can show large enhancements related to their elastic range
(range of stresses from which materials recover their initial structure) and
toughness (ability to absorb energy and withstand shock before fracture), as
one network can act as support and another as sacrificial.”

Modeling and simulation studies of multicomponent hydrogels typically
follow their experimental implementations and aim to further optimize
their function and better understand their response. There are four main
classes of multicomponent hydrogels which will be the subject of this chapter:
(i) polymer-polymer, (ii) polymer—protein, (iii) polymer-inclusion and (iv) void
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(i) polymer-polymer (i) polymer-protein (iii) polymer-inclusions (iv) polymer-void

Figure 9.1 Types of multicomponent hydrogels discussed in this chapter.

(i) Polymer-polymer hydrogels use synergistic properties from their
individual components to improve various properties; (ii) polymer—
protein biomaterials combine natural proteins with man-made poly-
mers; (iii) polymer-inclusions use non-dissolvable particles inside a
polymer matrix; (iv) polymer-void double networks have one of the
networks removed after synthesis.

double-network (DN) hydrogels (Figure 9.1). While experimentally there have
been reports of multicomponent hydrogels with more than two percolating
networks,” the vast majority are double network (DN) hydrogels, which will be
the main focus here.

()

(i)

Polymer-polymer hydrogels are the most common implementation of
multicomponent materials. They typically show synergetic properties
from their individual components, and in some cases the overall re-
sponse exceeds the sum of their components. Polymer-polymer
hydrogels can provide a hydrated environment for cells and have
been used for cell growth as well as for filtration and biosensing.*
Furthermore, polymer-based composite hydrogels use a secondary
filler network to enhance their mechanical strength or maintain high
elasticity while also displaying high porosity.” The secondary network
can not only act as a reinforcer, but also provide self-healing cap-
abilities to the hydrogel.® Among the numerous implementations,
hydrogels synthesized with poly(2-acrylamido-2-methylpropane-
sulfonic acid) (PAMPS)/polyacrylamide (PAM) stand out due to their
exceptional mechanical properties. PAMPS is a negatively charged
polyelectrolyte, while PAM is a neutral polymer.”® At an optimal ratio,
the PAMPS/PPM mixture shows a tearing energy greater than the
summation of its individual components and compression fracture
comparable to cartilage.”®

Polymer-protein and protein—polymer multicomponent hydrogels
can harvest from the biodiversity of proteins and the large availability
of polymers.” They easily enable controlled drug release'® and can
provide an ideal matrix for cell growth.'"'* Experimentally, there are
many implementations of such materials, with unique properties. For
example, a peptide amphiphile and a 1,3:2,4-dibenzylidene-d-sorbitol
(DBS) gelator were shown both experimentally and through modeling
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to self-assemble into nano-fibers."”> Also naturally-occurring
polysaccharides like chitosan, alginate or cellulose have been exten-
sively used to retain proteins.'*'> The vast majority of hydrogels that
have proteins and polymers as components have the polymer mol-
ecules forming the primary network and adsorbed proteins as their
secondary network. The reasoning behind this approach comes from
the fact that polymers are both cheaper and easier to produce than
proteins.

Back in 2010, a photochemical crosslinking approach was im-
plemented by Li and collaborators that allowed most proteins with
exposed tyrosine amino acids to form covalent carbon-carbon
bonds, while maintaining their folded structures.'® This approach
enabled proteins to become part of the primary network of multi-
component hydrogels. The protein molecules can be either in
monomeric form or engineered with several repeats (typically up to
eight repeating domains, limited by the used bacterial expression
system). Modeling and simulations of the cross-linking of protein
hydrogels captured the intrinsic random arrangement of molecules,
as well as their orientation and unfolding under a force vector.'”"®
Recently, experimental demonstrations of multicomponent hydro-
gels with proteins as their primary network were reported in con-
jugation with other proteins,'®' polyelectrolytes®® or small
ions.”"*> Unlike purely polymeric hydrogels, protein-based ma-
terials have an added level of complexity coming from the unfolding
and refolding of protein domains, which can be driven by force,
temperature, or chemical denaturants. This property can be used to
induce shape memory'**° or influence the energy dissipation of the
material.'®>?

Polymer-inclusion or polymer-particle hydrogels use insoluble
structures that have often spherical or cylindrical geometry to pro-
duce composites with enhanced properties. They are relatively easy to
produce and require a good adhesion between the inclusion and the
polymeric matrix. Examples of such approaches use nanocrystals,***
carbon nanotubes,”®?” metal nanoparticles,”®*° magnetic beads,
and silica particles.’*** Nanoclays have been used in composite
hydrogels as reinforcers and as initiators for cross-linking.***?

Void hydrogels use a dissolvable secondary network, which is re-
moved after cross-linking. These multicomponent hydrogels can
show reinforced mechanical strength and toughness, and enhanced
permeability, and can accommodate cells.>**” Furthermore, they
provide an ideal medium for the understanding of the mesoscale
fracture mechanism in DN systems.' In one such approach, silica
beads of varying sizes and densities were added into solution before
cross-linking the primary network.*® The beads were then dissolved
using hydrofluoric acid, leaving behind hollow void structures. Both
the fracture energy and elasticity of these void-DN gels depend on the

30,31
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size and density of the voids, and were assigned to partial concen-
tration of stress near the void structure.*® Another approach used a
spiropyran-based light-responsive polymer (EPS) in combination with
alginate-polyacrylamide (ALG-PAAm) interpenetrating hydrogels.*®
Following crosslinking of the three components, EPS was converted
from gel to sol under UV light, leaving vacancies in the material
network. In another implementation, alginate was used as the poro-
gen for bovine serum albumin (BSA)-based hydrogels.’” In this case,
BSA cross-linking was initiated via a light activated reaction while
immersed in alginate solution. Following a short exposure and while
still under light, the biomaterial was immersed in Ca®", which led to
the competitive formation of alginate aggregates. Removal of Ca>*
left behind pores of ~5 pum diameter throughout the biomaterial.*®

9.2 Overview of Modeling Approaches for
Multicomponent Hydrogels

Modeling techniques aim to present a detailed picture of multicomponent
materials that matches their experimentally measured characteristics.
Among these characteristics, the mechanical response of hydrogels is most
informative, and it is typically obtained under tensile or compressive stress.
Arguably, tensile or tearing tests are more representative of the true tough-
ness of a material." Experimentally, it is easier to study the mechanical re-
sponse of materials by applying a constant or linearly increasing strain,
which simply requires the movement of one of the tethered ends and
measurement of the developed stress by the material. This approach, where
the stress of a material is measured over time at a controlled displacement,
is known as length-clamp or stress-relaxation test. However, most multi-
component hydrogels show a viscoelastic response related to a molecular
change, such as sliding of network components, breaking of local inter-
actions or even phase transitions.*® This time-dependent response makes it
challenging to separate the change in internal force, due to molecular
movements, from hydrogel extension with time, and does not constitute an
ideal scenario for developing and testing theoretical models. Hence, from a
modeling perspective, it is very important to control the applied stress rather
than the applied strain. Such a feat can be achieved if the measuring device
has an active feedback mechanism, which measures the stress exerted on the
material and continuously adjusts the strain to match a specific set-
point.>>*! This approach, where the strain experienced by the material is
measured over time at a constant force, is known as constant force-clamp or
creep-relaxation test.

Modeling and simulations of multicomponent hydrogels require a mul-
tiscale approach (Figure 9.2). When implementing a model of a material,
improvements in resolution and accuracy come at the expense of compu-
tational time. Hence, when scale is of the essence, more approximations are
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Figure 9.2 Modeling of biomaterials on different scales. Continuum models and
coarse-grained approaches can describe the behavior of multicompo-
nent amorphous materials, while all-atom and quantum-mechanics
based models are better suited for multicomponent crystalline
materials.

needed to maintain reasonable computational times. Based on their level of
detail, the modeling techniques can be classified from continuum dynamics
all the way to quantum mechanics. Here we will only reference a few of these
models, and for a more in-depth description we refer the reader to other
excellent reviews.*>*

Continuum dynamics models use process time-dependent and in-
dependent variables to describe a macroscopic behavior as a function of a
constant or varying perturbation. Such processes take place on a time scale
of seconds to minutes and on physical dimensions of microns to millimeters
(or more). Several continuum models have been developed and successfully
applied to characterize the response of multicomponent hydrogels to an
applied strain.*>** They typically rely on combinations of purely elastic
elements, such as springs, and visco-elastic components that can incorpor-
ate the time-dependent response, such as dashpots. More complex models
allow investigation of the effects of molecular orientation and end-to-end
distance distribution on the mechanical properties of a material.*>*® Finally,
macroscopic models have also been developed to explain the irreversible
softening during cyclic loading-unloading stress-strain cycles by con-
sidering structural alterations, where the primary and/or secondary network
can break and reform.*’~*°

Coarse-grained models divide molecules and molecular structures into
abstracted components, without retaining their atomic details. These
methods map the arrangement and dynamics of the molecules, agglomer-
ates and aggregates forming a multicomponent material.’*>* Typically
molecules are represented as hard or soft spheres. The simulations use
Newtonian dynamics and potential energy to describe the motion of the
grains over large time steps, of nano- to picoseconds. These models bridge
the molecular scale to the macroscale and can capture large-scale behaviors,
by using force-fields or Langevin dynamics.>>> Force fields can generally
provide a more in-depth view, as they assign specific parameters to grains,
such as polarity, charge, or hydrogen-bonding ability, but they do so at the
expense of computational time. The main challenge when transitioning
from a material to its coarse-grained representation arises from the large
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number of molecules (10'°~10*° molecules per gram) and the intrinsically
slow time scales (typically seconds to minutes) required for synthesis and
characterization of biomaterials, which are at odds with molecular modeling
and simulations that typically investigate few molecules (10>~10° molecules)
over short time scales (nanoseconds to microseconds). While these studies
are more challenging to perform and make predictions over smaller time
scales, they are important because of the mechanistic view provided and
from the potential predictions on how the properties of materials can be
altered as a function of the nature and ratio of their components and re-
sponse to a specific stimulus.

Further details at the atomic and electronic levels can be obtained via
molecular dynamics (MD) simulations of atoms. MD simulations of atoms
use fields to represent the interaction energy between atoms and can ac-
count for both intra- and intermolecular interfaces.”®*’ These methods
provide molecular details related to the rotation, vibration and translation of
bonds forming a network. MD simulations operate on the nano-to-
microsecond time scale, over nanometer distances, and can have even 10'°
number of atoms.>*>*

All-atom and quantum mechanics simulations are essential for studying
chemical reactions and energetically excited states, but they are typically
limited to less than 10° atoms on timescales of picoseconds.’”® Multi-
component hydrogels are many orders of magnitude larger, are anisotropic,
and respond on timescales of minutes to hours. Hence, these approaches are
more appropriate for multicomponent materials with repeating unit struc-
tures, such as crystalline materials, and are less common when character-
izing randomly structured materials (Figure 9.2).

In this chapter we will focus our discussion on the use of macroscopic
continuum and nanoscopic coarse-grained models to describe multi-
component hydrogels with different network compositions.

9.3 Macroscopic Continuum Dynamics Models

Macroscopic continuum models use the physics of springs and dashpots to
represent the elastic and visco-elastic responses of materials. The placement
of these elements in series, parallel, or various series-parallel combinations
results in specific behaviors and can be related to various parts of multi-
component hydrogels.®® Several such models are depicted in Figure 9.3,
together with their expected strain response over time, when experiencing a
constant force (or stress).

The Maxwell model considers a spring in series with a dashpot
(Figure 9.3A, top-left), and, at constant stress, o, the strain, ¢, will first show a
fast change due to the spring element, which quickly reaches equilibrium,
followed by the slower extension due to viscoelasticity:

6(t) = <2+;) > (0.1)
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Figure 9.3 Viscoelasticity models representative of biomaterials. (A) (top) Two-
element models of spring and dashpot in series (Maxwell) and parallel
(Kelvin-Voigt); (bottom) three- (Jeffreys) and four- (Burgers) element
models. (B) Predicted creep (strain vs. time) by the models in (A) for a
constant stress. Inset: Zoom-in of the initial creep part.

where E is Young’s modulus, u is the material coefficient of viscosity, and ¢
is time.

The Kevin-Voigt model predicts the mechanical response of a spring in
parallel to a dashpot (Figure 9.3A, top-right). In this case, the dynamics of
the overall extension are regulated by the slow response of the dashpot and

given by
6(6) = [1 — exp <—it>] 2 (9.2)

Three-component representations can have either two springs and one
dashpot (Zener model), or two dashpots and one spring (Jeffreys model).
When a dashpot is placed in series with a spring/dashpot in parallel, the
Jeffreys representation (Figure 9.3A, bottom-left) predicts a change in strain
with time at a constant stress as

a(t):[;Jrlfl—;exp(—Ztﬂ ¥ (9.3)

where p; is the coefficient of viscosity for the dashpot in series and pu, the
coefficient of viscosity for the dashpot in parallel with a spring.

Finally, four-component models have springs and dashpots in various
serial-parallel configurations. For example, the Burgers models extend the
Maxwell and Kevin-Voight representations. For multicomponent hydrogels,
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the Kelvin representation of this model is shown above (Figure 9.3A, bottom-
right). In this representation, a serial spring—dashpot is placed in series with
a parallel spring/dashpot. Given distinctive Young’s moduli, E; and E,, and
coefficients of viscosity, p; and p,, the expected change in strain at a con-

stant stress is
E E E o
s(t):{1+—1~t+—1{1—exp<——2t)”-— (9.4)
Hq Ey Ky Ey

When plotting the creep, the Kelvin-Voigt model (spring-dashpot in
parallel) shows an exponential increase in strain with time at constant stress,
dominated by the viscous element (Figure 9.3B). When the spring and
dashpot are in series (Maxwell), the response is dominated initially by the
spring. As more elements are added, the response becomes more complex.
As typically double-network materials have a response originating from their
single-network components, models with three (Jeffreys) or four elements
(Burgers or Kelvin-Voigt for four elements) are better suited to describe their
response from a macroscopic perspective.

An interesting aspect of current macroscopic models originates from the
fact that the spring element is typically treated as having a linear response of
extension as a function of force over the entire force range (Hookean spring).
It is well-known from polymer physics that the extension of a macromolecule
under a force is only linear in the low force regime (typically less than 10 pN
per molecule). At high forces, the extension becomes non-linear, due to the
high entropic cost required to extend a polymeric chain, as well as the ri-
gidity of the covalent bonds forming the molecular backbone. Hence, the
behavior of a macromolecule under force can be described by polymer
elasticity models, such as the freely jointed chain (FJC):**

x Fl kT

where x is the extension, L. the contour length, Fthe force, [ the bond (Khun) length
and kT the thermal energy (Figure 9.4A, black trace). For low forces, the first

1
term can be Taylor-expanded as coth(a) = B + g + ..., and eqn (9.5) becomes
X [
x L 9.6
L. 3kT (9-6)

which resembles the behavior of a Hookean spring (Figure 9.4A, red vs. blue
traces).

The fact that a polymer molecule cannot extend beyond its contour length
without breaking its backbone may become important at high forces-per-
molecules, as the extension is plateauing asymptotically toward the contour
length. These high forces are typically not attainable with a single network
material, but are measured experimentally for DN hydrogels. Hence, if one
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Figure 9.4 Moving beyond Hookean springs to represent continuum models.

(A) Change in extension of a macromolecule x normalized by contour
length L. as a function of force, calculated using a freely-jointed chain
(FJC) model for the elasticity of a polymeric chain (blue curve) and the
low-force approximation (red line, which resembles a Hookean spring).
Schematics show extension of a spring and a molecule. (B) Stress-
vs.-strain for the Maxwell representation, assuming a Hookean spring
(red trace) and a polymer chain (blue trace), with maximum strain of
Omax- Arrows indicate the change with time.

considers the non-linear response of macromolecules at medium to high
forces, the strain will plateau with stress (Figure 9.4B). As covalent bonds are
inelastic, after alignment to a force vector, the molecules inside the material
can no longer extend without breaking. Such an asymptotic change of stress
with strain, also known as densification or orientational hardening, has
been reported experimentally for DN gels made from cellulose/gelatin,®”
poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS)/polyacrylamide
(PAAm),** or from poly(ethylene glycol) (PEG)/poly(acrylic acid) (PAA).**
Interestingly, they have not been interpreted as arising from polymer-
extensibility limitations.

(i) Polymer-polymer multicomponent hydrogels have been often char-

acterized with continuum models. One effort, where macroscopic
continuum models were lucratively applied to describe multi-
component hydrogels, involved the synthesis of artificial extracellular
matrix (ECM) proxies.'” The ECM is a multicomponent environment
made from insoluble proteins and sugar molecules secreted by cells,
and it provides both structural and chemical support. More import-
antly, the stiffness of the ECM is critically important for the survival
and proliferation of specialized cells, which signal cells to divide,
function normally, or undergo apoptosis.®®> Using covalent coupling
between PEG spacers and alginate molecules and changes in the
molecular size of alginate, Mooney and collaborators managed, in the
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presence of Ca®" ions, to produce hydrogels with adjustable stress-
relaxation rates.'> These materials showed stress-relaxation behavior
that was well described by a two-element Maxwell-Weichert linear
viscoelastic model (two serial spring-dashpot elements in parallel)
and could not be fitted with a simple Maxwell model (single serial
spring-dashpot). The multi-characteristic relaxation timescales were
attributed to different molecular interactions and correlated with the
size distribution of the building blocks.

(ii) Protein-polymer and protein-protein based materials have been often
modeled with continuum approaches. Most biological tissues are
naturally-occurring multicomponent networks and their behavior was
described using all of the models mentioned above.®®™*® Continuum
models were also used to report material nonlinearity measured for
fibrous structures, such as those based on fibrin and collagen.”®”? In a
study focusing on collagen, which is the most abundant protein in the
human body, the authors determined the importance of different
parameters of the fibrous network on their mechanical response.”’

(iii) Biomaterials made with polymer-inclusions, such as nanoparticles,
can show high stretchability and toughness. A constitutive model
having nanoparticle crosslinkers was proposed considering the
varying lengths of the polymer molecules attached between par-
ticles.”®> While this model only considers the elasticity of the polymer-
particle crosslinks and ignores interactions between entangled
polymer chains, it manages to capture the effects of chain detach-
ment from particles and the influence of the particle size on the cyclic
mechanical response of nanocomposite hydrogels. In a different ap-
proach, a model titled ‘“the polymer reference interaction site model”
uses density correlation functions to predict the structure of polymer-
nanoparticle mixtures.”*

(iv) Void-double network materials have also been studied using macro-
scopic modeling. For example, the poro-viscoelastic behavior of agar-
ose gels was investigated using a generalized Maxwell model.”®> Agarose
gels can be formulated to have precise and homogenous pore sizes,
which in turn allow for diffusion of large molecules, such as DNA or
proteins.”® Not only do different formulations produce different pore
sizes, but the viscoelasticity of agarose gels changes significantly with
pore size. This feature was used experimentally to match the elasticity
of biological tissues and induce cellular differentiation based on sub-
strate mechanics.”””® The authors described the behavior of agar gels
when having only solvent-percolated pores and when a drug was loaded
throughout the material.”> In another study, a macroscopic modeling
approach was developed to describe the swelling of a multi-phasic
material undergoing mass transfer.”” The multi-phasic porous hydro-
gel was modified with a material made from superabsorbent polymers
and a three-phase model was developed to account for absorption and
desorption processes and swelling-dependent permeability.
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9.4 Nanoscopic Models of Multicomponent
Hydrogels

Unlike continuum macroscopic network models, discrete nanoscopic mod-
els can capture specific features, such as network disorder, heterogeneities
and anisotropy. The large majority of nanoscopic models for multi-
component hydrogels use coarse-grained approaches, which can represent
the system on longer length and time scales than atomistic and quantum
mechanics-based approaches. These methods can have various degrees of
coarse-graining depending on the number of atoms represented by a grain.
Most coarse-grained methods consider the Brownian motion of particles,
which can be described using the Langevin equation:

27"' I
mi% = —n% +fit+ I(0) (97)
where m; and r; are the mass and position of a particle i, ¢ is time, and f; is
the sum of the forces exerted on the particle. The friction coefficient 1 can
be related to the diffusion coefficient D as n=D/kT. The random force
inducing the Brownian motion I'(¢) is characterized by a Gaussian distri-
bution with (I'(¢)) =0, which satisfies the fluctuation-dissipation relation
(P(O(¢)) =2nkTo(t — t'), where 6(¢t — t') is the Dirac delta function. Typically
the inertia term on the left-hand side of eqn (9.7) is negligible in comparison
to the dumping force, and the force term f; is estimated using an underlying
free-energy landscape.®

Classical MD simulations use force fields expressed in terms of energy
functions U(r) in order to reproduce molecular geometries and the time
evolution of bond lengths, Uyong, and angles, Uypgie, as well as non-bonding

interactions, such as van der Waals, Uyqw and electrostatic Uep:>*%"

U(r) = Upona + Uangle + Uyaw + Uel (9.8)

In the examples below both Langevin dynamics and force-field approaches
were used. In contrast to the large number of studies reporting the experi-
mental development of interpenetrating multi-network materials, or those
using macroscopic models to characterize their response, there are very few
reports investigating their synthesis and dynamics from a molecular coarse-
grained perspective.

(i) Polymer-polymer hydrogels have been modeled at the MD level in
small simulation volumes. Using a ‘“random walk reactive polymer-
ization” modeling method, the molecular structure of DN hydrogels
made from a primary agar network and a secondary polyacrylamide
(PAM) network was constructed in silico®® (see Figure 9.5). The
method consisted in simulating the formation of the physical primary
network by self-assembling agar molecules into helical bundles, which
were stabilized through hydrogen bonds. The secondary chemical
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agar bundle

Figure 9.5 Simulations of the polymerization of an agar/polyacrylamide (PAM)

double-network hydrogel. (A) Snapshot of the DN using a two-stage
chain-growth polymerization. (B) Individual representations of the two
networks (left) and details relevant to the two networks (right). Repro-
duced from ref. 82, https://doi.org/10.1038/s41524-021-00509-5, under
the terms of the CC BY 4.0 license, https://creativecommons.org/licenses/
by/4.0/.

network was later constructed in the presence of the primary agar
network. Chain-growth polymerization of acrylamide was achieved
using a random-walking reaction. N,N’-Methylenebisacrylamide (MBA)
cross-linker molecules were added at random locations on the PAM
network, followed by optimization for 100 ns at room temperature.
This approach allowed for determination of the molecular structure of
interpenetrating polymer-polymer DNs. These structures were also
later used for structural analysis and to determine mechanical prop-
erties such as strain response, energy dissipation within the network
and fracture.®

Another study used MD simulations to determine the mechanical
and transport properties of poly(ethylene oxide)-poly(acrylic acid)
(PEO-PAA) chemically cross-linked materials.®® In this study, the
authors used a force field that accounts for the effects of electrostatic,
van der Waals, angle bending, bond-stretching, torsion and inversion
components. The DN gels were built from PEO3, and PAAg, homo-
polymers. The 3-dimensional (3D) network structure was then pro-
duced by allowing the reactive ends of the two homopolymers to
interact with each other (see Figure 9.6). Following cross-linking
in silico, PEO-PAA hydrogels were exposed to uniaxial stress. Interest-
ingly, the authors report that DN hydrogels have a sudden increase of
stress above ~100% strain, which was higher than the summation of
the stresses of the two respective single-networks (SN) at the same
strain. This behavior resulted from the fact that PEO chains had to
adopt more extended conformations in the DN compared to SN, as
they must react with the PAA molecules during cross-linking. This
expansion also led to a slightly higher water content in DN hydrogels,
when compared to both SN PEO and PAA.

Other studies have also investigated in silico how individual com-
ponents contribute to the overall properties of a multicomponent
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polymeric hydrogel,®” or how fracture propagates through a DN

hydrogel,®**® or managed to predict elastic constants and material
density from equilibrated structures.®” For example, the effects of the
composition and mechanical response of the individual networks on
the overall fracture of a DN polymer-polymer material were investi-
gated using coarse-grained molecular dynamics simulations®” (see
Figure 9.7). The authors determined the mechanical response of DN
hydrogels made from a primary polymer network which is highly
cross-linked and a secondary polymeric network which was cross-
linked only slightly. By varying the ratio between these two networks,
the authors determined that the primary network has a greater
impact on Young’s modulus, while the secondary network increased
the peak stress and ductility. The simulations also revealed the
sequence of events during network failure, with the highly cross-
linked network extending and breaking first, followed by the dis-
entanglement of the two networks and formation of void structures,
connected together through the slightly connected secondary
network.

(ii) Simulations of protein-polymer hydrogels have been used to ration-
ally design synthetic materials with novel applications. These ma-
terials are important, as they can harvest from the broad spectrum of
applications of proteins, and can also produce biocompatible ma-
terials. The most common approach for protein-polymer hydrogels
uses polymer networks with proteins embedded inside.*® Generally,
proteins are either mixed with the monomers and cross-linker and
fixated inside the network during polymerization, or adsorbed after
the formation of the primary network. Polyacrylamide (PAM) gels
imprinted with two model proteins, cytochrome complex and lyso-
zyme, were studied using a coarse-grained approach.®® The authors
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Figure 9.7 Fracture of the DN polymer-polymer gel made from interpenetrating
networks. (A) Snapshots of the cross-sections of a DN gel made from a
highly cross-linked primary network (blue) and a slightly cross-linked
secondary network (orange) at various strains. (B) Stress and number of
bond-breaking events as a function of strain determined from MD
simulations. Adapted from ref. 85 with permission from American
Chemical Society, Copyright 2018.
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introduced a continuum simulation approach to describe molecular
dynamics and the diffusion of proteins from the gel and to find how
the diffusion mechanism of the two proteins differs with respect to
their specific substrate-interactions.

A coarse-grained molecular dynamics modeling-based design was
recently implemented to engineer self-assembled polymeric struc-
tures with active enzymes for hydrogel synthesis®® (see Figure 9.8).
The authors used PETase with styrene/2-vinylpyridine (2VP) random
copolymers, which contain polar and charged groups, respectively.
The challenge in this system is to limit the polymer-polymer aggre-
gation, favoring polymer-protein non-bonded interactions. By con-
trolling the copolymer fraction, simulations predicted the optimal
ratio between charged and polar groups needed for the copolymer to
encapsulate cytochrome redox-active protein. This study also showed
that the assemblies between proteins and polymers are first pro-
moted through hydrophobic interactions.

Multicomponent hydrogels in which the primary network is made
out of proteins are less common. Such approaches were reported for
proteins cross-linked chemically at specific exposed amino acids and
reacting with other proteins, polyelectrolytes, small ions or peptides

. Membrane like
. : J encapsulation
Single protein
encapsulation

Weak protein
encapsulation

10 15 20 25 40
fc [%]

Figure 9.8 Phase diagram of polymer-P450 enzyme complexes obtained with MD

simulations. Adjustment in the polar (fp) and charged (fc) fractions of
the copolymer structure results in three co-assembly modes: a
membrane-like co-assembly (dark green dots and top-left structure), a
single-protein encapsulation (light green dots and bottom-left structure)
and a weak protein encapsulation (yellow dots and right structure).
Reproduced from ref. 90 with permission from American Chemical
Society, Copyright 2021.



Modeling and Simulations of Multicomponent Hydrogels for Biomedical Applications 303

of opposite charge.>”**°"> Due to the large number of different
atoms forming the structure of a protein domain, the models de-
veloped thus far use a coarse-grained approach, with each protein
domain represented as an individual entity.'”*>°>°* Proteins can be
formed by single or multiple domains, which are typically globular
and produce well-defined maximum connections-per-domain. For
example, gelation of protein hydrogels made from octameric repeats
was studied using a coarse-grained approach'’ (see Figure 9.9). In
this case, protein molecules, represented as beads-on-a-string, were
placed in a unit volume and left to diffuse and cross-link. An inter-
esting aspect of hydrogels with globular proteins as their primary
network comes from their response to force. The tertiary structure of
proteins is formed by alpha-helices and beta-strands, which can
break under force. When the hydrogen bonds holding the tertiary
folded structure of a domain break, the protein transitions from a
globular structure into an extended polypeptide chain, in a process
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Figure 9.9 Model of the response of polyprotein hydrogels, as they unfold under a
force vector. (A) Representation of a protein hydrogel before application
of force (left) and of a single polyprotein (right). The color code repre-
sents the experienced force for each molecule, which depends on their
orientation. (B) Projection of the free energy landscape on the pulling
coordinate for a polyprotein with eight repeats at various forces along
the N-to-C coordinate, showing an accordionlike shape. Dotted lines
follow local energy minima. (C) Snapshots of the same gel at three
different time points, showing the orientation of molecules and un-
folding of protein domains along an axial coordinate. Adapted from
ref. 17 with permission from APS, Copyright 2018.



304

(iif)

Chapter 9

known as unfolding. Hence under force, the molecules first align to
the pulling direction and then domains inside the molecule can
unfold and release “hidden” lengths. This process happens faster as
force is increased, while the extension of the unfolded polypeptide
chain follows polymer elasticity principles, as shown in Figure 9.4A.
The unfolding and refolding processes under a force vector may play
an important role in vivo® and can be efficiently modeled using
energy landscapes'”*>°® (Figure 9.9B). As proteins typically require
higher forces to unfold than to refold, and the unfolding extension is
larger than the refolding contraction, a hysteresis is measured both
experimentally and from simulations in stress-strain curves.” Inter-
estingly for protein-based hydrogels, the hysteresis can be removed
when the material is immersed in a solution that can chemically
denature the folded domains, making the material response purely
elastic.?® Using this simple modeling approach, the single molecule
unfolding and alignment of proteins to a force vector was scaled
to the macroscopic response of the protein-based biomaterial
(Figure 9.9C).

Polymer-inclusion hydrogels are typically easier to model, as the in-
clusions have a well-defined structure, such as a crystalline arrange-
ment or a small inelastic sphere/cylinder. These components are
usually static during the simulation. For example, MD simulations
were used to describe graphene-based composites.”” Graphene makes
ordered crystalline sheets that are functionalized by macromolecules,
which simplifies the simulation environment. The glass transition
temperature”® and molecular mobility of the components®® were es-
timated from coarse-grained simulations of polyethylene (PE)/gra-
phene composites. Similarly, the structural and dynamical properties
of polymethyl methacrylate (PMMA)/graphene composites were de-
scribed using coarse-grained approaches.'

Other nanoscale approaches involve polymer nanocomposites,
such as epoxy/alumina nanoparticles (see Figure 9.10A)."°" In this
study, the authors used MD simulations to investigate the effect of
the size of alumina nanoparticles on the overall mechanical prop-
erties of an epoxy-based composite. A spherical alumina bead of
desired size was placed in the center of the simulation volume, and
then cross-linking was done by independently modeling the epoxy
resin and curing agents. The mechanical properties were then calcu-
lated using the Parrinello-Rahman fluctuation method'®> and
showed a strong dependency of Young’s and shear moduli on the
particle radius and degree of cross-linking (see Figure 9.10B).

Polymer-nanoclay composites have also been simulated at various
scales.'® ™% Instead of particles imbedded in polymeric matrices,
clays have nanometer-scaled sheets. These sheets give rigidity to the
multicomponent material, while the sandwiched polymer gives
flexibility.'® One study used a multi-scale approach to describe the
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Elsevier, Copyright 2009.

dynamics of intercalation between poly(ethylene glycol) (PEG) and
poly(vinyl alcohol) (PVA) and clay nanoparticles arranged in sheets'**
(see Figure 9.11). The authors produced coarse-grained represen-
tations that maintained specific chemical interactions. These chem-
ical interactions were determined using quantum and atomistic
approaches. Interestingly, the authors found that while the polymer
molecules intercalate with the clay sheet, they are forced from their
naturally collapsed conformation into an extended state, and some-
times bridge between non-consecutive clay layers (see Figure 9.11).

Void-double network hydrogels deserve consideration due to their
capacity to generate porous homogeneous materials, with appli-
cations in cell growth and separation of larger molecules. A recent
study investigated the formation of aggregation centers for the sec-
ondary network, which compete with the cross-linking of a protein-
based primary network (see Figure 9.12).>° Such a system was
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Figure 9.11 Clay-PVA polymer composites. Side view from simulation of a tactoid

showing some bending of clay sheet and extension of PVA polymer
molecules while the system has been equilibrated. Two PVA molecules
that connect non-adjacent clay layers, preventing intercalation in the
middle layer, are shown in yellow and purple. Reproduced from
ref. 104, https://doi.org/10.1002/adma.201403361, under the terms of
the CC BY 4.0 license, https://creativecommons.org/licenses/by/4.0/.
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Figure 9.12 Simulations of the formation of BSA void-DN hydrogels. (A) Schematics of

the approach, where Ca**-induced alginate aggregation centers compete
with the formation of the primary BSA protein network (top) and resulting
pores after alginate clusters are dissolved (bottom). (B) Sliced of snapshots
of two hydrogels with the same concentration of BSA but different aggre-
gation rates for a central alginate aggregate. (C) Quantification of the pore
size as a function of the alginate aggregation rate for various simulation
box sizes using (top): the cumulative probability distribution function
(CPDF) and (bottom): largest inoculated sphere methods. Adapted from
ref. 39 with permission from American Chemical Society, Copyright 2022.
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developed experimentally using the aggregation of alginate in the
presence of Ca>" ions in parallel with the cross-linking of BSA, a
globular monomeric protein.*® The formation of the primary protein
network was simulated using a coarse-grained approach, where
spheres with radii equal to that of BSA protein were placed in a
simulation volume at concentrations similar to those used experi-
mentally. While the spheres were left to diffuse and connect to
form the primary hydrogel network, a repulsive force field was
activated in the center of the simulation volume. The intensity of
this repulsive field was varied and represented the aggregation rate
of the secondary alginate network. The formed pore was then
estimated from the largest sphere that could be inoculated inside
the gel structure. The porosity was then estimated from both the
cumulative probability distribution function (CPDF) of protein
molecules and the largest inoculated sphere. These simulations
demonstrate that the nucleation growth rate of alginate drives the
pore-formation process and a fast aggregation rate is required to
generate pores throughout the material using this competitive
crosslinking approach.

9.5 Conclusions and Outlook

In this chapter, we reviewed the main classes of multicomponent hydrogels
from the perspective of macroscopic and nanoscopic modeling approaches.
Among these classes, polymer-polymer hydrogels are the most experi-
mentally and theoretically developed. Modeling of protein-polymer ma-
terials requires the use of knowledge related to the folded tertiary structure
of proteins, as well as implementation of their unfolding response. Polymer—
inclusion multi-materials have also been extensively modeled with MD
simulations. Inclusions typically have crystalline structures, which makes it
easier to model them. Finally, the synthesis and viscoelastic response of
void-polymer hydrogels were discussed.

Modeling and simulations of multicomponent hydrogels require a mul-
tiscale approach and improvements in resolution and accuracy come at the
expense of computational time. One of the most challenging aspects of
modeling multicomponent materials is transitioning between different
scales.'”” This transitioning needs to take into account phenomena that are
specific for a given scale and to balance accuracy with efficiency. One typical
approach is to sequentially transition from a small to a large scale.'**"%®
Concurrent scaling approaches have also been developed, mainly when
studying crack propagation in materials. In these methods, the interface of
the crack was analyzed at finer resolution than the rest of the material."**"*°
Adaptive resolution approaches combine all-atomistic and coarse-grained
descriptions of subregions, separated by smooth transition bound-
aries."' '™ More recently, with the advent of artificial intelligence and big
data science, machine learning is becoming an increasingly important tool
to integrate data over several scales.''® Machine learning can reveal
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correlations identified by multiscale modeling and assign uncertainty to
mechanisms identified through simulations.

With the continuous improvements in computational technology and the
growing database of multicomponent hydrogels, modeling approaches are
becoming increasingly more accurate and reliable. They are an invaluable
tool for designing novel materials with unique properties and to investigate
scaling in networks and biological tissues.
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