2407.04870v2 [cs.DM] 31 Oct 2024

.
.

arxiv

Flip Dynamics for Sampling Colorings: Improving (11/6 — €) Using
A Simple Metric

Charlie Carlson* Eric Vigoda*

Abstract

We present improved bounds for randomly sampling k-colorings of graphs with maximum
degree A; our results hold without any further assumptions on the graph. gl“he Glauber dynamics
is a simple single-site update Markov chain. Jerrum (1995) proved an optimal O(nlogn) mixing
time bound for Glauber dynamics whenever k£ > 2A where A is the maximum degree of the input
graph. This bound was improved by Vigoda (1999) to k > (11/6)A using a “flip” dynamics
which recolors (small) maximal 2-colored components in each step. Vigoda’s result was the
best known for general graphs for 20 years until Chen et al. (2019) established optimal mixing
of the flip dynamics for & > (11/6 — &)A where ¢ ~ 1075. We present the first substantial
improvement over these results. We prove an optimal mixing time bound of O(nlogn) for the
flip dynamics when k& > 1.809A. This yields, through recent spectral independence results,
an optimal O(nlogn) mixing time for the Glauber dynamics for the same range of k/A when
A = O(1). Our proof utilizes path coupling with a simple weighted Hamming distance for
“unblocked” neighbors.

1 Introduction

A problem of great interest and considerable study at the intersection of theoretical computer
science, discrete mathematics, and statistical physics is the random sampling of k-colorings of a
given input graph G. Given a graph G = (V| F) of maximum degree A and an integer k > 2, let
denote the collection of proper vertex k-colorings of G, that is §2 is the collection of assignments
X :V = {1,...,k} where for all (v,w) € E, X;(v) # Xy(w). Let 7 denote the uniform distribution
over Q. The colorings problem is a natural example of a non-binary graphical model [Murl2,
KF09] and, in statistical physics, it is the zero-temperature limit of the antiferromagnetic Potts
model [SS97].

We study algorithms for the approximate counting problem of estimating |€2|, the number of
k-colorings, and the approximate sampling problem of generating random k-colorings from a nearly
uniform distribution. In particular, given a graph G = (V, E)) and a § > 0, for the sampling problem,
our goal is to sample from a distribution g which is within total variation distance < € of the uniform
distribution 7 in time polynomial in n = |V| and log(1/¢). In the approximate counting problem,
a graph G = (V, E), an ¢, and a § > 0 are given, and the goal is to obtain a FPRAS to estimate ||,
which is an algorithm to estimate |©2| within a (1+¢) multiplicative factor with probability > 1—4 in
time poly(n, 1/e,log(1/d)). These approximate sampling/counting problems are polynomial-time
inter-reducible to each other. Relevant for our work, an O(nlog(n/c)) sampling algorithm yields
an O*(n?) time approximate counting algorithm [SVV09, Hub15, Kol18].

The Markov chain Monte Carlo (MCMC) method is a natural algorithmic approach to approx-
imate sampling. The Glauber dynamics (also known as the Gibbs sampler) is the simplest example

*Department  of Computer Science, University of  California, Santa  Barbara. Email:
{charlieannecarlson,vigoda}@ucsb.edu. Research supported in part by NSF grant CCF-2147094.



of the MCMC method. The Glauber dynamics is a Markov chain on the collection of k-colorings
and the transitions update the coloring at a randomly chosen vertex in each step as follows. From
a coloring X; € Q, choose a vertex v € V and a color ¢ € {1,...,k} uniformly at random. If no
neighbor of v has color ¢ in the current coloring X; then we recolor v to color ¢ in Xy;; and all
other vertices maintain the same color X;;1(w) = X¢(w) for all w # v; and if color ¢ is not available
for v then we set X;y1 = X;. The Glauber dynamics is ergodic whenever k > A + 2; hence, the
unique stationary distribution is the uniform distribution .

The mixing time Tiix is the number of steps from the worst initial state Xy to guarantee that
the total variation distance from the stationary distribution 7 is < 1/4. A mixing time of O(nlogn)
is referred to as an optimal mixing time as this matches the lower bound established by Hayes and
Sinclair [HS07] for any graph of constant maximum degree A.

Jerrum [Jer95] (see also Salas and Sokal [SS97]) established an optimal mixing time of O(nlogn)
for the Glauber dynamics whenever k > 2A. This was a seminal result in the development of cou-
pling techniques, including the path coupling method of Bubley and Dyer [BD97]. Vigoda [Vig99]
improved Jerrum’s result to k > (11/6)A by proving O(nlogn) mixing time of the following flip
dynamics, which implied O(n?) mixing time of the Glauber dynamics.

The flip dynamics is a generalization of the Glauber dynamics, which recolors maximal two-
colored components in each step. For a coloring X;, vertex v € V, and color ¢ € {1,...,k}, let
Sx, (v, c) denote the set of vertices w which have an alternating path on colors (X¢(v), ¢) between v
and w; we refer to the set Sy, (v, c) as a cluster. The flip dynamics is defined by a set of parameters
(P;)i>1 for the flip probabilities. The dynamics operates by choosing a random vertex v and color
¢, and then flipping the cluster Sx, (v, c) by interchanging the colors X;(v) and ¢ on the chosen
cluster with probability Py/¢ where ¢ = |Sx, (v, ¢)|.

More formally, for X; € Q, the transitions X; — X;11 for the flip dynamics, with flip probabil-
ities (P;)i>1, are defined as follows:

e Choose v € V uniformly at random.
e Choose ¢ € [k] = {1,..., k} uniformly at random.

o Let S = Sx,(v,c) be the cluster in X; defined by colors {X;(v),c} which contains v. Let
¢ =|S| denote the size of the cluster.

e With probability Py/¢, let X;+1 denote the coloring obtained by interchanging colors X;(v)
and ¢ in S, and for all w ¢ S set X;y1(w) = Xy(w). With the remaining probability, set
X1 = Xy

Observe that if P = 1 and P; = 0 for all ¢ > 1 then the flip dynamics only recolors the se-
lected vertex if no neighbor has the chosen color, and is equivalent to the Glauber dynamics (see
Jerrum [Jer95]). In Vigoda’s original work, the parameters satisfy the basic properties: P, = 1,
P; > Py foralli > 1, and P; = 0 for j > 7, see Section 3.1 for more details. All subsequent works
(including this paper) follow these broad settings but differ in the detailed setting.

Since Vigoda’s result, there was a myriad of improved results for various restricted classes of
graphs, including optimal mixing on triangle-free graphs when k& > o*A for A = O(1) where
o = 1.763 [CGSV21, FGYZ21, CLV21] (see also [JPV22, L.SS19, DFHV13] for related results),
optimal mixing on large girth graphs when k£ > A + 3 [CLMM23], and further improvements for
trees [MSWO04], planar graphs [HVV15], and sparse random graphs [EHSV18].

The first improvement on Vigoda’s result for general graphs was 20 years later by Chen, Del-
court, Moitra, Perarnau, and Postle [CDM"19] who proved the mixing of O(nlogn) of the flip
dynamics when k > (11/6 —&g)A where g9 ~ 107 is a fixed positive constant. Their result (as well



as Vigoda’s result [Vig99]) was obtained for a specific setting of the flip parameters. We present the
first substantial improvement over Vigoda’s result in obtaining optimal mixing of the flip dynamics
when k > 1.809A for any A.

Theorem 1.1. For all A > 125, for all k > 1.809A, there exists a setting of the parameters for
the flip dynamics with P; = 0 for all j > 7, so that for any graph G on n vertices with mazximum
degree A, the flip dynamics has mixing time O(nlog(n)).

The flip probabilities are presented in Section 3.1. Note we use a universal setting of the flip
probabilities for all 1.809 < k/A that differ from those used in [CDM™ 19, Vig99].

As in [Vig99, CDM™19] this implies polynomial mixing of the Glauber dynamics for the same
range of k/A. In particular, by comparison of the spectral gaps of the transition matrices, it
implies O(n?) mixing time of the Glauber dynamics where the hidden constant is polynomial in A
and k. Moreover, recent work of [BCC™22, Liu21] utilizing spectral independence [CT.V21, ALO20],
implies O(nlogn) mixing time of the Glauber dynamics when A is constant; the same result held
for the previous work of [CDM™19] for the corresponding range of parameters k and A.

Corollary 1.2. For all A > 125, all k > 1.809A, there exists a constant C = C(A, k) such that
for any and for any graph G on n vertices with mazimum degree A, the mizing time of the Glauber
dynamics is < Cnlogn.

A recent algorithm of Chen, Feng, Guo, Zhang, and Zou [CFG'24] uses our coupling proof
to obtain a deterministic approximate counting algorithm (FPTAS) when k£ and A are constant,
see Remark 4.13 for more details.

1.1 Proof Overview

Our proof of Theorem 1.1 utilizes a novel distance metric described here at a high level.

Jerrum’s bound of k£ > 2A can be proved using path coupling in which we consider a pair
of configurations Xi,Y; that differ at exactly one vertex, say v*. We then analyze the expected
Hamming distance of X;y1,Y;+1 after one step of a coupled transition (Xy,Y:) — (Xiy1, Yig1)-
The coupling in this setting is fairly simple as it is the identity coupling (i.e., both chains attempt
the same (vertex, color) pair (v,c)) for the Glauber update except when the updated vertex v is
a neighbor w of v*; in which case we couple trying to recolor w to color X;(v*) in one chain with
color Y;(v*) in the other chain. Under this coupling, there is at most one coupled transition per
neighbor which can increase the Hamming distance by at most one, and this yields the k > 2A
bound.

Vigoda’s result for k > (11/6)A uses the same path coupling framework to analyze the expected
Hamming distance for a pair Xy, Y; that differ at a single vertex v*. In flip dynamics, the coupling
is more complicated than in Jerrum’s analysis because of additional moves.

Recall that the transitions of the flip dynamics correspond to flipping maximal 2-colored com-
ponents, where flipping refers to interchanging the 2 colors. An alternative and equivalent view of
the transitions of the flip dynamics is as follows. For X; € 2, consider the collection of all clus-
ters (where a cluster is a maximal 2-colored component); note that there are at most nk clusters.
Choose a cluster S with probability Pg/(nk) and then flip S to obtain X1 (with the remaining
probability set X;11 = X¢).

We give a brief high-level overview of Vigoda’s coupling (X¢, ;) — (X¢41, Yi4+1) which is the one-
step coupling that for a Hamming distance one pair of cooringss minimizes the expected Hamming
distance at time ¢ + 1 and hence is called the greedy coupling in [CDM*19]. Consider a pair Xy, Y;
that differ at a single vertex v*, thus X;(w) = Y;(w) for all w # v*. The coupling uses the identity



coupling for all clusters S that are the same in chains X; and Y;. This means that the cluster S is
flipped in both chains or in neither chain. The only nontrivial couplings are for those clusters that
appear in only one chain (and not in the other chain).

What are these clusters that appear in exactly one chain? They are clusters that include a
neighbor w of v* and a color ¢’ which is X¢(v*) or Y;(v*). In other words, if we try to recolor some
w € N(v*) to a color ¢ € {X;(v*),Y;(v*)} then this yields a different cluster in the two chains, as
the cluster includes v* in one chain but not in the other chain. These are the clusters that use a
nontrivial coupling. Moreover, this coupling depends on the current color ¢ = X;(w) = Y;(w) of the
neighbor w of v*; we partition the clusters involving color c into a set D; . and clusters within Dy .
are coupled with other clusters in the same set D; .

Vigoda demonstrated a choice of the flip probabilities and a coupling so that the expected
increase in the Hamming distance is < 5/6 in an amortized cost per neighbor w of v*, which
yields the bound k > (11/6)A. Chen et al. [CDM"19] identified 6 extremal configurations in
Vigoda’s analysis (these are the configurations that maximize the expected increase in the Hamming
distance) and presented a slightly different setting of the flip probabilities with only two extremal
configurations. They considered a weighted Hamming distance where for every neighbor w € N (v*),
if the local configuration around w is different from the two extremal configurations, then the
definition of the distance (between X; and Y;) is decreased by n/A for a fixed constant 7 where
1/2 > n > 0. Using Vigoda’s greedy coupling with this new metric, they established that the
expected distance decreases when k > (11/6 — £9)A where g¢ &~ 107°.

We take a complementary approach. Whereas Chen et al. [CDM™19] reweight the worst con-
figurations (or equivalently all non-worst case configurations), we instead consider a particularly
“good” configuration. Namely, we consider the local configuration where the neighbor w is un-
blocked, which means that the colors X;(v*) and Y;(v*) do not appear in N(w) \ {v*}, see Fig. 1.
Unblocked neighborhoods are the best local configurations for the greedy coupling (with respect
to the Hamming distance). For unblocked neighbors w, the potentially problematic recolorings of
w € N(v*) with colors X;(v*) or Y;(v*) can be coupled with flips of clusters of size 2 (containing v*
and w). Consequently, the expected increase in the Hamming distance for w is 1 — P5, significantly
less than 5/6 for any setting of the flip probabilities considered.

We choose the flip probabilities to optimize for this new metric, which results in a setting for
the flip probabilities that are suboptimal (with respect to Hamming distance) for the extremal
configurations considered by Chen et al. [CDM"19]. However, for our choice of distance metric,
these extremal configurations improve as they have a reasonable probability of moving to the
unblocked configurations, yielding a decrease in the distance.

An essential aspect of our proof is that if a neighbor w is unblocked, then it may have a
considerable probability of becoming blocked (which increases the distance with respect to our
new metric); however, in this case, if w itself becomes a disagreement, then its neighbors will be
unblocked (and hence this new disagreement at w has a smaller weight in our new metric). This is
the crucial trade-off in our argument: For an unblocked neighbor w, either w is unlikely to become
blocked, or if it becomes a disagreement, it has many unblocked neighbors. Our overall proof is of
a similar technical level of difficulty as in [CDM™19] but yields a substantially improved bound of
k > 1.809A.

We present some basic definitions, including a more formal definition of the flip dynamics, and
the path coupling lemma in Section 2. In Section 3 we define our new metric. We then present
Vigoda’s greedy coupling, analyze our new metric, and prove Theorem 1.1 in Section 4.



2 Preliminaries

In this section we detail the basic definitions and concepts that are required background for our
proofs.

For a graph G = (V, E) with vertex set V and edge set E, for v € V, let N(v) denote the
neighbors of v, and let d(v) = |N(v)| denote the degree of v in G. Let A = max,cy d(v) be the
maximum degree.

2.1 List Colorings

We prove our results in the more general context of list colorings. Fix a graph G = (V, E) and a
list L(v) of colors for each v € V. A list labeling of G is a function o that maps each vertex v € V'
to a color o(v) € L(v). A list labeling is called a list coloring if for all (u,v) € E, o(u) # o(v).
For any positive integer k, let [k] = {1,...,k}. Observe that if L(v) = [k] for all v € V, then a list
labeling is a k-labeling and a list coloring is a k-coloring.

In the remainder of this paper we will work with the general concept of list colorings and list
labelings. Let £ = {J, ¢y L(v), let Q be the collection of all list labels of G, and let * C Q be the
collection of list colorings.

For a pair X;,Y; € Q, let H(X,Y;) = [{v eV : Xi(v) # Yi(v)}| denote the Hamming distance
between X; and Y;. For v € V, let Q2 C Q2 denote the pairs (X;,Y;) € Q2 where X;(v) # Yi(v)
and X;(u) = Y;(u) for all u # v; thus, Q2 is the set of pairs of labelings that only differ at vertex v.
Note, [ ey €22 is the set of all pairs that differ at exactly one vertex. We will refer to pairs (X, Y;)
that differ at exactly one vertex as neighboring colorings. For simplicity, we use the term coloring
throughout since the distinction between colorings and labelings is clear from the notation 2 vs. *.

2.2 Clusters, Flip Dynamics, and Mixing Time

For a coloring X; € , vertex v € V, and color ¢ € L, let §Xt (v,c) denote the set of vertices
reachable from v by a (X;(v), ¢)-alternating path in X;. Note that X; may not be a proper coloring,
but we still require that the colors alternate along the path. If for all w € S x, (v, ¢) it holds that
{c, X:(v)} C L(w) then we set Sx, (v, ¢) = Sx, (v, ¢), and otherwise we set Sx, (v,c) = 0. Note that
if the flip of the cluster Sy, (v, ¢) is invalid (namely, for some w € Sy, (v, ¢) the new color is not in
its list L(w)) then we have set the cluster to be the empty set. Hence, all clusters Sy, (v,¢) # () can
be flipped in X; (i.e., if X; € Q then X1 € Q where X;; is obtained from X; by interchanging
the colors X;(v) and ¢ on the set Sy, (v, c)).

For all v € V| note that Sx, (v, X¢(v)) = Sy, (v,Y:(v)) = {v} and if ¢ € L(v) then Sx,(v,c) =
Sy, (v,¢) = 0. For a coloring X; € Q and a cluster S = Sk, (v, ¢), we refer to flipping cluster S
with the operation of interchanging colors X;(v) and c on the set S; let X;y; denote the resulting
coloring. If X; is a proper coloring, then X, is a proper coloring. Moreover, if X;, Xy, are proper
colorings then by flipping S" = Sx,, (v, X;(v)) in X;41 we obtain X;, and hence the operation is
symmetric on Q*.

We can now define the flip dynamics for the more general setting of list colorings. Consider
probabilities (F;);>1. For X; € Q the transitions X; — X;y; of the flip dynamics are defined as
follows:

e Choose v € V uniformly at random.

e For each ¢ € L(v), let S = Sx,(v,c) with probability 1/k. Let ¢ = |S| denote the size of the
cluster.



e If / > 1 then with probability Py/¢, let X;y; denote the coloring obtained by interchanging
colors X;(v) and c in S (and for w ¢ S set Xi1+1(w) = Xi(w)).

e Otherwise, let Xy11 = Xi.

Note, that in the second step, if the flip of the cluster S x, (v, ¢) is invalid then the corresponding
set Sx, (v, ¢) = (0. Moreover, when P; > 0 and k > A + 2, then the unique stationary distribution
of the flip dynamics is the uniform distribution m over 2%, which is the set of proper list colorings;
note, the states in  \ Q* have zero probability in the stationary distribution.

Our interest is the mixing time Ti,ix, which measures the speed of convergence to the unique
stationary distribution 7 from the worst initial state Xy € (2. For a pair of distributions p, 7 on €2,
the total variation distance is defined as dyv(u, 7) = %ZXteQ |u(Xy) — m(Xy)|. For e > 0, define
the mixing time as:

Tix(¢) = max min{t : dry(P'(Xy,-), ) < e},
Xo€eQ
where 7 is the stationary distribution. We will often refer to Tinix = Tmix(1/4) as the mixing time
since Thix(€) < Tmix X [logy(1/e)] for any e > 0.

2.3 Path Coupling

We will utilize the coupling method to upper-bound the mixing time. For a pair of states X3, Y; € €,
a coupling for the flip dynamics is a joint evolution (Xy,Y;) — (Xiy1, Yi41) such that when the
individual transitions (X; — Xy41) and (Y; — Yi41) are viewed in isolation of each other then they
are identical to the flip dynamics, see [Jer03] for a more detailed introduction.

We will bound the mixing time using the path coupling framework of Bubley and Dyer [BD97].

Theorem 2.1. [BD97, DG99] Consider a Markov chain with transition matriz P, state space 2,
and unique stationary distribution w. Let ¥ C Q2 denote a subset of pairs of states such that the
graph (§2,X) is connected. Consider weights w(X,Y;) defined for all pairs (X, Y:) € . Assume
there exists a constant 1/2 < C < 1 where w(Xy,Y;) € [C,1] for all (Xy,Y;) € X. For arbitrary
pairs (Xii1, Y1) € Q2 define w(Xyy1, Yir1) by the length of the shortest path in the graph (2, %)
where edges (X,Y;) € ¥ have weight w(Xy, Yz).

If there exists a 6 > 0 and for all (X;,Y;) € X there exists a coupling (X, Y:) — (X1, Yit1)
where:

E [w(Xtt1, Yi41)] < (1 = 6)w(Xy, Y2),

then the mizing time is bounded as Tnix(¢) < O (log(n/e)/6).

3 New Metric Definition

This section introduces our new metric, which is the heart of the proof of Theorem 1.1. First, we
describe our flip probabilities and identify some of their key properties. Then, we introduce some
new notation. Finally, we define the new metric.

3.1 Cluster and Flip Dynamics

To prove Theorem 1.1, we use the following setting of flip probabilities, which we will refer to as
Parameter Setting 1:

Py :=1,P,:=0.324, Py := 0.154, Py := 0.088, Ps := 0.044, P := 0.011, and P, := 0 for i > 7. (1)



We also include the following variable which we will use when defining our new metric:

A
— (P Py) =
n:= (P 3)%

~—~
\)
~—

We will assume the following properties, which we will refer to as Parameter Properties 3.1:

Pi=1, P,<1/3, and P; =0 (FPO)

Py < (2/3)P;_y for all j > 3, (FP1)

(1= Py) > (Py— Py) > 2(Ps — Py) (FP2)
2(P3s — Py) > (j = 1)(Pj — Pjya) for j > 4 (FP3)
(Py — Ps) > (Ps — Ps) > (Ps — Pr) (FP4)
9P, <1 4P, (FP5)

2P < 4Py — Py (FP6)

n < (6/19)F, (FP7)

Note that these properties hold for Parameter Setting 1 when k& > 9/5 and the settings originally
considered by Vigoda. As we will see later in our analysis, this assumption allows us to quickly
identify those initial configurations with the worst expected change for our new metric (introduced
in the following sections). The relevant lemma statements include any further assumptions on the
flip probabilities.

Our setting for the flip probabilities also differs from those in previous works [Vig99, CDM*19].
One of the key differences is that the previous work sets P3 =~ 1/6. In particular, the setting
P3 =1/6 was critical in [Vig99] and any setting of P3 # 1/6 yields a worse bound of k > CA for a
constant C' > 11/6 using Vigoda’s analysis. In [CDM ™ 19] they also fix P; = 1/6 for their analysis
with a modified metric; the argument using a variable length coupling sets slightly above 1/6,
namely P3 = 0.166762 > 1/6. In contrast, our setting of P3 < 1/6 is somewhat counterintuitive at
first glance as it increases the expected change in Hamming distance for the extremal configurations
in Vigoda’s analysis, but the introduction of our new metric offsets this effect.

3.2 Our New Metric

Before we introduce our new metric, we need several new definitions. For an integer s > 0, consider
a pair of colorings X, Ys € ; note this pair X, Y; may differ at an arbitrary number of vertices.

For a vertex z € V such that X(z) # Ys(z), we partition the neighbors of z based on how many
occurrences of the colors X,(z),Y5(z) occur in their neighborhood (besides at z). For a vertex
y € N(z) and (0,7) € Q2, let

B*(y,0,7) :={w e N(y) \ {z} : {o(w), 7(w)} N{o(2),7(2)} # 0}

as the blocking neighbors of y with respect to z in ¢ and 7. For ease of notation, since we are often
considering a pair of chains (X;) and (Y};), we simplify the notation as follows. For integer s > 0,

Bi(y) == B*(y, X, Ys).

We say that a neighbor y € N(z) is unblocked with respect to z if it has no blocking neighbors
(i.e. |BZ(y)| = 0), singly blocked with respect to z if there is exactly one blocking neighbor (i.e.
|BZ(y)| = 1), and multiblocked otherwise (i.e. |BZ(y)| > 2).



Figure 1: A small graph showing how vertices can be unblocked, singly blocked, and multiblocked.
The vertex u; is singly blocked with respect to v* since it has a neighbor w; that is colored B.
The vertex wo is multiblocked with respect to v* since it has a B and R neighbor, w; and ws
respectively. Likewise, us is multiblocked since it has two R neighbors, w3 and wy. Finally, uy is
unblocked since it has no neighbors that are R or B.

For integer i > 0 and (o, 7) € Q2 let

F'(z,0,7) :={y € N(2) : |B*(y,0,7)| =i} and FZ'(2,0,7) := U Fi(z,0,T)

Ji

be the neighbors of z with exactly i (or at least ¢) blocking neighbors with respect to o and 7.
Moreover, if o(z) = 7(z) then let Fi(z,0,7) = (). Let

d'(z,0,7) := |F(2)| and d=%(z,0,7) := Zdj(z,a, T)
J=i

be the number of neighbors of z with exactly ¢ (or at least i) blocking neighbors with respect to
o and 7. For ease of notation, since we are often considering a pair of chains (X;) and (Y;) we
simplify the notation as follows. For integers i > 0 and s > 0, if Xs(2) # Y;s(2) then let

Fi(2) := F'(2,X,,Ys) and FZ¥(2) := FZ¥(2, X,, Y5).
Moreover, if Xs(z) = Y5(z) then let Fi(z) = (). Finally, let
di(z) = d(z, X,,Ys) and d=%(z) == d=(z, X, Ys).

Notice that FO(z) is the set of unblocked neighbors of z in (Xj,Y;), Fl(z) is the set of singly
blocked neighbors of z, and FZ2(z) is the set of multiblocked neighbors of z.
We can now formally define our new metric. Recall the definition of the constant 7 from Eq. (2).
Consider an arbitrary pair X;,Y; € (2. We first define for a vertex z € V,

1 if Xi(z) # Yi(2)

0 otherwise

H,(X1, V) == { (3)

and

otherwise.

{1 — AdY(2) i Xi(2) £ Yil2)
0



If (X;,Y;) € Q2. then we define the distance between these neighboring colorings as follows:

H(Xp,Y)) = Y H.(X0,Yy) = 1= 1d)(o"). (5)
zeV

Extend H to define a metric H over all pairs in Q2 by considering the path metric defined by
the shortest path distance in the graph (€,Y) where neighboring colorings have weight defined
by Eq. (5).

The following lemma upper bounds H by the Hamming metric H and the number of unblocked
neighbors. The bound is tight if the two states differ at exactly one vertex, v. Recall that if
X (u) = Yy(u) then F(u) = () and hence dY(u) = 0. This lemma has nothing to do with the
coupling; it means that the path metric H , which we implicitly defined for pairs (X, Y;) that differ
at more than one vertex, can be bounded naturally by the Hamming distance and the number of
unblocked neighbors of disagreements in X3, Y;.

Lemma 3.1. For any X;,Y; € Q,

H(Xp,Yy) <Y H.(X0, V).
zeV

Proof. Let U = {u €V :Yi(u) # Xi(u)} be the set of vertices that X; and Y; disagree on, and let
U = {u1,...,uy(} be an arbitrary ordering of U. Let po = Xy, pjy| = Y3, and for 1 <@ < |U] -1,
let p;(v) = Xy(v) for v € U, pi(uj) = pi—1(u;) for j # i, and p;(u;) = Yi(u;). It follows that
H(X.,Y;) <Y H(pi1,pi) (6)
i
since H (Xt,Y:) is defined to be the length of the shortest path between X; and Y; and the path
po, - - -, P|u7| 18 a particular path. We will prove that for all u; € U,
do(“fi?ﬂi—laﬂi) > dO(U/i,Xt,Y;g). (7)

Assuming Eq. (7) and making use of Eq. (6) we can conclude the lemma as follows:

H(X0, ;) <3 Hpicr, i) (by Eq. (6))
_ ZU (1= L 1) (by Eq. (5)
_ HX.7) 33 Pl (U] = H(X,,Y0)
< H(X. 1) - ZZU s X, V7). (by Ea. (7)

It remains to prove Eq. (7), for which it suffices to show that, for all u; € U,
Fo(ui) Pi—1, pl) 2 Fo(ui) Xt7 th)

Fix ¢ and suppose w € FO(u;, X¢,Y;). We will show that w € FY(u;, p;_1,p;). By the definition
of FO(u;, X4, Yy), if w € FO(u;, X4, Y;) then B% (w, Xy,Y;) = 0. Consider z € N(w) \ {u;}. By the



definition of B"i(w, X,Y;), since we know that B"i(w, X, Y;) = 0 and z € N(w) \ {u;} then we
have that:
{Xi(2), Yi(2)} N {Xe(wi), YVi(wi) } = 0.

Recall that by construction, we have the following:
pi—1(z) € {Xi(2),Yi(2)}, pi(2) € {Xi(2), Yi(2)}, pic1(us) = Xi(us), and p;(u;) = Yi(u;).

Thus, for all z € N(w) \ {u;},

{pi—1(2), pi(2)} N {pi—1(wi), pi(ui)} C {Xe(2),Ye(2)} N {X¢(us), Ye(ui)} = 0.

Since this holds for all z € N(w) \ {u;}, we have shown that w € F°(u;, p;—1, p;) as desired, which
completes the proof of the lemma. O

4 Coupling Analysis

We start our analysis by giving a brief description of the greedy coupling. The coupling is referred
to as the greedy coupling as it minimizes the expected (unweighted) Hamming distance after the
coupled move for initial pairs of configurations that differ at a single vertex.

To define the greedy coupling for the flip dynamics, let us first observe an alternative formulation
of the dynamics. For a state X; € (2, every cluster S in X; has an associated flip probability Pg. To
simulate the flip dynamics we choose a cluster S with probability Pg|/(nk) and then flip it to obtain
the new state X¢;1, and with the remaining probability, we stay in the same state X;11 = X;.

If a cluster S exists in both chains, the greedy coupling will flip .S in both chains or in neither
chain; this is referred to as the identity coupling. The only non-identity coupling is for clusters that
potentially differ in the two chains. These potential disagreeing clusters involve v* or neighbors
of v* and can be partitioned according to the current colors of the neighbors of v*.

We now partition the neighbors of a vertex z € V' on a per color basis. For any coloring X € €2,
color ¢ € L, and vertex z € V, let

Ne(z,Xs) :={w € N(z) : Xs(w) = ¢}

be the neighbors of z that are color ¢ in Xs. We extend this notation for an arbitrary pair X, Yy € Q
by letting
Ns.o(z) == Ne(z, Xs) U Ne(2,Y5).

Note that if (Xt,Y;) € Q2. then N;.(v*) = N.(v*, X;) = N(v*,Y;). Let
dy o (v") = [Nt e(v")]|

be the number of neighbors of v* that are colored ¢ in X; or Y;.
Now we will give a brief overview of the greedy coupling. Fix a pair (X, Y;) € Q2.. The clusters
involving color ¢ € £ that we need to couple (using the greedy coupling) are the following:

D= {Sx,(v", )} U{Syi(v" o} u | {8 (u Yi(v")), Syi(u, Xe(v*)) . (8)

UENy o (v*)

Let us digest this collection of clusters D;.. Consider the case when d,.(v*) = 0, then
Dy consists of two clusters Sx,(v*,c¢) and Sy, (v*,c¢), and both of these clusters are the same:

10



Sx, (v*,¢) = Sy, (v*, c¢) = {v*} since color ¢ does not appear in the neighborhood of v*. These clus-
ters are coupled with the identity coupling, which means that we flip the cluster in both chains or
neither chain. Note that if we flip these clusters Sx, (v, c) = Sy,(v*, ¢) when d, .(v*) = 0 then the
resulting colorings are the same X;11 = Y1 (as X1 (v*) = Yiqp1(v*) = ¢); these are the “good”
moves which decrease the Hamming distance by one.

The non-trivial case is where d; .(v*) > 1. The clusters of D;. which occur in X;, are the
Sx, (w,Y:(v*)) cluster for every w € N;.(v*) and the Sx,(v*, ¢) cluster; and in Y; we have the
Sy, (w, X¢(v*)) for w € Ny o(v*) and the Sy, (v*, ¢) cluster. Notice that these two (v*,c) clusters are
large clusters that consist of the union of the other small clusters plus v*, namely,

Sx,(v ) ={ U | Sn(w X)) and Sy(vte)={v"}u | Sx(w,Yi(v")).
wWEN¢, ¢ (v*) wWEN ¢ (v*)

The only non-identity coupling involves clusters in D; . for some ¢ where d, .(v*) > 1. The
clusters in Dy, are coupled with each other (or with nothing corresponding to a self-loop in the
other chain); the greedy coupling in these cases is detailed in Section 5.1.

We define the set of vertices besides v* that are contained in a cluster of Dy . as

Ape:={u e V\{v*}: there exists S € D.(X¢,Y:) such that u € S}.

That is, A¢ . is every vertex besides v* that can be reached from v* with a (¢, X¢(v*)) or (¢, Yi(v*))
alternating path. These are precisely the vertices where new disagreements can form after a single
step of the greedy coupling. Observe that Ny .(v*) C Ayp.

4.1 Relating Hto H
Fix a pair (X, Y;) € Q2.
Wi = E[H (X1, Yir1) — H(Xy, V)]

and . ~ B
Wy :=E |H(X¢q1, Y1) — H(Xy, V) 9)

denote the expected change over one step of the greedy coupling, (X¢,Y:) — (Xi¢q1,Yit1), for H
and H respectively. Note, the quantities W; and Wt are the expected change for the Hamming
and weighted Hamming distance, respectively, between the chains (X;) and (Y;) for the update at
time ¢; both of these quantities W; and WN/t are with respect to the same pair of chains (X;) and
(Y;). Moreover, the chains (X;) and (Y;) are coupled using the greedy coupling, which minimizes
the expectation of the unweighted Hamming distance H(Xyy1,Y;11); the greedy coupling is not
necessarily optimal for the weighted Hamming distance H (X41,Y;+1). The following subsections
aim to bound Wt by decomposing it with respect to each color.

4.2 Analysis by Color

We want to decompose the expected change in the Hamming distance W; and our metric Wt with
respect to each color c.

Recall H, is the Hamming distance at a vertex z, see Eq. (3). Fix colorings X, Ys € Q. We
define the Hamming distance with respect to an arbitrary subset R C V as

Hp(X,,Y,) =Y  H.(X,,Ys).
zZER

11



Similarly, we define the new metric distance with respect to an arbitrary subset R C V and vertex
z ¢ R as

. q(Xs, Ya) o= He(Xo, Yo = 3 [ [F2) N R+ Y IF W) | - (10)

yER

We will give some intuition for the definition of H 2 rR(Xs,Ys) in Eq. (10) after the statement of
Lemma 4.1 below.
We can now define for all pairs (X;,Y;) € Q2. and for all ¢ such that d, .(v*) > 1,

Wtc =E [HAt,c(Xt+1a }/t+1) - HAt,c (Xt> Y;f)]

and
We = B[ Hyep, o (Xei, Yign) = Hoe o, (X0, 0)| (11)

as the expected change concerning A; ., which are the vertices related to color c¢. Notice that both
terms for W (and also W) the set R = A; . which is defined for time ¢.

We will show that if we bound these new functions Wy and Wf for every color c such that
d; .(v*) > 1, then we obtain an upper bound on the total change as follows:

Lemma 4.1. For (X,Y;) € Q2.

W, <E [Hys (Xi41, Yig1) — Hy= (X4, V)] Z Wt

ceL:
dt’c(v*)ZI

In Lemma 4.1, the E [Hy« (X¢41, Yir1) — Hy (X3, Yy)] term is capturing the change in Hamming
distance at v*. For the change in the new metric at v* we also need to capture the change in
the number of unblocked neighbors of v*; these terms are considered based on the colors of the
neighbors of v* and are captured in the second term in Eq. (10), namely |F?(v*) N A¢.|. Finally,
the change in the new metric for all other vertices (besides v*) are also considered on a per color
basis and captured by the last summation in Eq. (10).

Proof of Lemma 4.1. Since (Xt,Y;) € Q2. and n < 1/2 we have that:

H(Xy,Yy) = Hy (X1, Yy)
= Hp (X1, Vi) + Y Hyen, (X0 Y0). (12)

ceL:
dt,c(v*>21

For a vertex u € V, observe that if u # v* then X;(u) = Y;(u), and if for all colors ¢ € L(()u) we
have u & A . then every cluster that contains u is in both X; and Y; and hence X;y1(u) = Yi41(u),
since the greedy coupling either flips a cluster containing « in both chains or neither (see Section 5.1).
Therefore, Hy,(Xyt1,Yir1) = 0 and Hy(Xi41,Yir1) = 0 by definition. In summary, we have the
following;:

> Hu(Xi41,Yi41) =0. (13)

ugU. At,c:
uFv*
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This yields the following decomposition of the new metric at time ¢ + 1:

H(Xp41,Yip1) < Z Hu(Xe41, Y1) (by Lemma 3.1)
ueV
< Hoe(Xern, Yer) + ) Y Hu(Xes1, Vi) (by Eq. (13))
ceL: UEAt,c
dt,c(v*)zl
= Hy(Xe41,Yer1) + Y Hyen, (Xig1,Y41)  (by Definition 10)  (14)
dtycc(evgt)Zl

where the second inequality is in fact an equality for a graph with sufficiently high girth.
We can now use Eqgs. (12) and (14) to finish the proof:

W, = E [H(Xes1, Yier) — H(X:, Y;)} (by Definition 9)
S E[Hy (Xiq1,Yig1) — Hoo (X3, Y3)] + Z E [ﬁv*,t,c(XtJrla Yit1) — ﬁv*,t,c(Xt,}/t)}
= E[Hy (X511, Yi41) — Hy- (X4, Y7)] Z w¢ (by Definition 11),
ceLl:
dt,c<v )>1

where the second line follows from Eqs. (12) and (14). This completes the proof of the lemma. [

4.3 Vertices Changing Between Blocked and Unblocked
Fix (Xy,Y;) € Q2.. Our goal now is to bound Wtc for all c. Recall d; .(v*) = [Nic(v*)|. Now let

dy o (v") = [Neo(v") 0 F (7))

be the number of neighbors of v* that are colored ¢ in X; or Y; and have exactly i blocking neighbors
with respect to v*. For ¢ > 1, let

Aj = Ay (v") == [{u € N(v) : d; x,(,)(v") =i and Xy¢(u) € L(v")}|

denote the number of neighbors whose color is in L(v*) and appears exactly ¢ times in the neigh-
borhood of v*. Finally, let A;(v*) = {c € L(v*) : d; .(v*) = 0} be the set of “available” colors for
v* in X; and Y;. .

The following function will serve as an upper bound on W¢ and is a function of W, dgc(v*),
and d%vc(v*). The quantities « and S will appear in later lemmas.

Definition 4.2. Let o = a(v*,t) := (kK — A —2), 8 = B(v*,t) := |L(v*)| — Po (A1 + Ag) + (1 +
Py)d(v*), and ¢ € L(v*). Then for (X, Y;) € Q2. let

nkZ¢ = nkW¢ + dgc(v*)% - d;c(v

v*
N
Observe that if L(u) = [k] for all u € V' (k-coloring case) then 5 < k— Po(A1+ Ag) + (14 P2)A.

The following lemma shows that it suffices to bound Zj instead of W directly. We will later
be able to show that Zf is maximized in just a few cases, which we can analyze individually.
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Lemma 4.3. For (X;,Y;) € Q% and c € L(v*),
Wy < Z¢.

To prove Lemma 4.3, we use the following two lemmas that bound the expected number of
vertices colored ¢ in X; and Y; that become blocked or unblocked after a single step of the greedy
coupling.

We first give a lower bound on the number of newly unblocked neighbors of v*. In particular,
for a color ¢, we lower bound the probability that for a neighbor w which is colored ¢ in X; and Y3,
that w becomes unblocked after a single step of the greedy coupling.

Lemma 4.4. For (X;,Y;) € Q2. and color ¢ € L(v*) such that d;.(v*) > 1,

(0%

B [[(F () \ B (W) N Ne(0)]] = dio(v7) —

Proof. Let u € F}(v*) N Neo(v*). Since u is a singly blocked neighbor of v* there must exist a
unique neighbor w € N(u) \ (N(v*) U{v*}) where X;(w) € {X:(v*),Y:(v*)}. There are at least
| A (w) \ {Xe(v*), Ye(v*)} > (|L(w)] — d(w) —2) > (k— A —2) = « colors (other than X(v*)
and Y;(v*)) that do not appear in the neighborhood of w in X; and Y;. Thus, for each color
d e Ay(w) \ {X;(v*), Yy (v*)}, there is a cluster of size 1 that contains just w and flipping such
a cluster results in X;11(w) = Yyy1(w) = ¢. Therefore, for each u € N} (v*) there are at least

= (k — A — 2) clusters of size 1 (and thus flip with probability P;/(nk) = 1/(nk)) for which
flipping one of these clusters results in u € Fp, (v*).

Summarizing the above calculations we have the following:

E [|(F )\ FY () N Niee(09)]] = B [[(Fry (v) 0 (09) 0 Ny e(v9)]] > di,c(v*)%-

O]

We now want to bound the probability that an unblocked neighbor u of v* is no longer unblocked
after a single step of the greedy coupling. Note that it does not suffice to only consider the
probability u becomes blocked because there may no longer be a disagreement at v* after a step of
the greedy coupling, which results in u being neither blocked or unblocked (by definition).

There is a subtle and important trade-off in the following lemma. There are some unblocked
neighbors u for which the probability u becomes blocked is relatively high; in these scenarios we
will argue that there is a reasonable probability of having new unblocked vertices, namely, when
becomes a disagreement it will have many unblocked neighbors.

To capture the above trade-off, we need to consider two terms together, namely:

E [(Fto(”*) \ thrl( ")) N Neol and Z t+1 (15)
u€Lly e

Note that (F(v*) \ F,(v*)) N Nic(v*) includes those neighbors w € FP(v*) N Ny o(v*) such that:
(i) w € Flyy(v*) if Xpp1(v*) # Yeg1(v*), or (i) w € FZ3(v*) if Xeg1(v*) = Yiga(v*). Hence, the
first term of Eq. (15) is the expected number of ¢ colored vertices in the neighborhood of v* that go
from unblocked in (X¢,Y;) to one of the two scenarios (i) or (ii). The summand E [d? ;(u)] in the
second term of Eq. (15) is the expected number of unblocked neighbors of a vertex u in (Xy41, Yi41)
assuming u is a disagreement at time ¢ + 1 since it equals 0 if X;11(u) = Yiy1(u) (by definition).
This trade-off is a key idea in our improved bound.
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Lemma 4.5. If Property FP5 and Property FP6 hold then for (Xy,Y;) € Q2. and color ¢ € L(v*)
such that dic(v*) > 1,

B(I(FP0") \ F(0) 0 Negw D] = 3 B [y ()] <, (0%)

€At ¢

Proof. Recall that Ny .(v*) C Ay Thus, it will suffice to show that for all u € FQ(v*) N Np(v*)
the following holds:
Pr(u g F) (v*) | u € F)(v*) N Nyo(v*)) — E [df ()] < % (16)
Consider u € F?(v*)N Nt (v*). Hence, u is an unblocked neighbor of v*, and X;(u) = Y;(u) = c.
We begin by focusing on Pr (u & FY,,(v*) | u € FP(v*) N Nge(v*)). If w is not an unblocked
neighbor of v* after a single step of the greedy coupling (i.e., u & F&l(v*)) then from the definition
of F2, (v*) it follows that v* was recolored in at least one of the chains or a neighbor w € N (u)\ {v*}
was recolored to Xy(v*) or Y;(v*) in one of the chains. Let £,« be the event that v* is recolored in
at least one chain (i.e., X;11(v*) # Xy (v*) or Yiy1(v*) # Yi(v*)) and let &+ be the event that v* is
not recolored in either chain (i.e., X;y1(v*) = X¢(v*) and Yiq1(v*) = Yy (v*)). Then, we can write

Pr (u ¢ Fl&l(v*) |ue F2(v*)N Nt,c(v*))

<Pr&)+ Y. Pr(Xui(w) e {X,("),Yi(v)} | &).
wEN (u)\{v*}

Therefore, to prove Eq. (16) it suffices to show the following:

Pr(&s)+ Y. Pr(Xpai(w) € {Xy(v),Y(v")} and &) — E [df,, (u)] <
weN (u)\{v*}

We now bound Pr (€,+) which is the probability that v* is recolored in at least one of the chains.
If Xip1(v*) # Xe(v*) or Yig(v*) # Yi(v*) then a cluster containing v* must have flipped in X; or
Y;. There are k clusters that contain v* in each chain, one for each color in L(v*). For every color ¢
that does not appear in the neighborhood of v*, there is a cluster in both chains that contains only
v*; the number of such colors is [A;(v*)| = [L(v*)|=[{c € L : d; .(v*) > 1}|. Each of these clusters is
of size 1 and thus flips with probability 1/(nk). For every color ¢ that appears in the neighborhood
of v* (i.e., d; .(v*) > 1), there are at most two clusters containing v* (and all neighbors of v* that
are colored c¢), Sx,(v*,c¢) and Sy, (v*,c). Note that Sx,(v*,c¢) and Sy, (v*,c) flip with probability
Bsy, (v-,0)/(nk) and Psy (= o)/ (nk) respectively. Also note that |Sx,(v*, ¢)| = d; .(v*) + 1 since it
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contains v* and Ny .(v*) and similarly |Sy,(v*, ¢)| > d; .(v*) + 1. Thus,

1 *
Pr(&) = — [ ()] + > (P\Sxt(v*,cﬂ +F)\Syt(v*,c)\>
4y Sz
1 *
= % ’L(U )| - Z (1 - P|SXt(v*,c)| - P\Syt(v*,c)|)
4, )21
1 *
<—Le)- Y (1-2P 00)
dt,;(f)£321
1 «
< e (IL(v*)| = (1 = 2Py) Ay — (1 — 2P3) A9 /2)
1
< (L] = Pa(Ar + Ag)). (18)

where the last inequality holds because P, < 1/3 by Property FPO and 1/2 > P, + P3 which is
obtained by summing Property FP5 and Property FP6 and dividing by 2.
We now want to show for all w € N(u) \ {v*}:

Pr (Xesa(w) € {X(07), Yi(v)} and &) — Pr (w € Ffyy(w) < 2.

(19)

If Eq. (19) holds then summing it over all w € N(u) \ {v*} and combining it with Eq. (18) proves
Eq. (17), which completes the proof of the lemma.

It remains to prove that Eq. (19) holds for all w € N(u) \ {v*}. Let w € N(u) \ {v*} and recall
that u € F2(v*) N Ny(v*). We consider two cases: case (i) is that w has at least one neighbor
besides u with color X;(v*) or Y;(v*) in X; or in Y}, and case (ii) is that w has no neighbors in X
with colors X;(v*) or Y;(v*) and w has no neighbors in Y; with colors X;(v*) or Y;(v*).

Suppose case (ii) occurs, hence no neighbors of w are colored X;(v*) or Y;(v*) in X; or Y.
Then Sx,(w, X¢(v*)) and Sy, (w, Y;(v*)) contain only the vertex w and flip in each chain with
probability 1/(nk). Thus, the probability of w recoloring to X;(v*) or Y;(v*) is 2/(nk). Notice
that if Sk, (w, X¢(v*)) and Sy, (w, Y;(v*)) flips then v* does not flip since w # v*. With probability
at least (1 — Pp)/(nk) the greedy coupling flips Sx, (u, Y;(v*)) in X; and flips Sy, (u, X;(v*)) in Y;
(see Section 5.1) and no other clusters flip at that time (hence no other vertices change colors).
Hence, with probability at least (1 — Py)/(nk), Xiy1(u) = Yi(v*), Yig1(u) = X;(v*) and for all
z # u, Xip1(2) = Xi(2) and Yiq1(2) = Yi(z). Thus, with probability at least (1 — P»)/(nk)
we have w € Fp,;(u) since w has no neighbor besides u that are colored X;41(v*) = X;(v*) or
Yit1(v*) = Yi(v*). Therefore, in this case,

2 1-P 1+ P

Pr (X 41(w) € {X¢(v*),Y2(v")} and &) — Pr (w € FtOH(u)) < vy = ok

and Eq. (19) holds in this case.

Now suppose that case (i) holds so there is at least one neighbor z € N(w) \ {u} such that
Xi(2) = Xe(v*) or Yi(z) = Yi(v*). Suppose without loss of generality that X:(z) = Xi(v*).
If Sx,(w,X¢(2)) = Sy,(w,X¢(z)) then it contains w and z and thus flips with probability at
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most Pa/(nk). If Sx,(w, X¢(2)) # Sy,(w, X¢(z)), then it must be the case that Sx,(w, X¢(2)) =
Sy, (w, X;(2)) U{v*} since (Xy,Y;) € Q2. Thus, flipping Sy, (w, X¢(2)) in X; will recolor v*. More-
over, Sy, (w, X¢(z)) must contain w and z and thus flip with probability at most P,/(nk). Hence,
the probability of recoloring w to X;(v*) conditioned on v* not being recolored is at most P»/(nk).
Likewise, if there exists 2’ € N(w) such that Y;(z) = Y;(v*) then the probability of recoloring w to
X;(v*) conditioned on v* not being recolored is at most P/(nk) < 1/(nk). Finally, if there exists
no z' € N(w) such that Y;(z') = Y;(v*) then the probability of recoloring w to X;(v*) is at most
1/(nk) since, similar to the previous case, Sy, (w,Y:(v*)) = Sx,(w,Y:(v*)) is a size 1 cluster and
flips with probability 1/(nk). Thus,

1+ P

Pr (Xi1(w) € {X¢(v*), Yy (v")} and &E,¢) < oy

Therefore, in this case, Eq. (19) holds since Pr (w € F2;(u)) > 0. O

We now have the tools to prove Lemma 4.3, which states that Wf < Ztc

Proof of Lemma 4.5. We start by observing:

[P (V") N Neeo(0*)] = di o (v") = [Fy (v) 0 Nio(05)] = [F (%) 0 Neo(v%)]
= |(Fa (0") \ F (")) N Nio(0™)] = [(F (v) \ F 1 (07) N Nee(v™)], - (20)

where the second line uses the basic fact that for any sets A and B then |A|—|B| = |A\ B|—|B\ A|.
We can now bound W¢ as follows:

We=E [E;*,At,c (X1, Yig1) — Hoe a, . (X, Yt)]

=E[Hy o(Xi11,Yi1)] (by definition)
* ’rl *
- *E Z |FP 1 (2) |+ F2 1 (0%) N N e(v)] | = Hoe o( X4, V7)) + ng,c(v )
ZGAt ,C
n * * *
< Wy — K E || Fy (2 2)|] - Z( | F (") N Ny (v )] +d7(f),c(v ) (Nie(v*) C Ave)
ZENc,t( )
n
:Wt_g [| t+1( )H
2E€Ne,t(v*)
n * * *
—AE [(F2 () \ (1)) 0 Ni e (0)] (by Eq. (20))
n %
+ ZE [|( O(v*) \ t+1( *)) N Ny e(v )H
<W; —d} (v*)% (by Lemma 4.4)
T, 77 * * *
S S B[R] +E [\ F 7)1 V()
ZGNC t( *)
< Wi+ dgc( )Aﬂnk %(v*)%:k (by Lemma 4.5)

e
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4.4 Bounding Wf and Zf

Fix a graph G = (V, E), a pair of states (X;,Y;) € Q2. and a color ¢ € £. The following two
lemmas significantly reduce the initial configurations we have to consider by showing it suffices to
consider the case where v* has at most 2 neighbors that are color ¢, and all those neighbors are of
the same type: unblocked (which is then considered in Lemma 4.9), singly blocked (Lemma 4.10),
or multiblocked (Lemma 4.11). The proofs of these lemmas are deferred to Section 5 but follow
from Lemma 4.3 and Parameter Properties 3.1.

This first lemma handles the case where d; . > 3. In the proof of this lemma, we observe that
as dy.(v*) grows, the expected change divided by d;.(v*) shrinks. This means that the gain from
having additional colors in A.(v*) (from having more neighbors colored ¢) quickly exceeds the cost
of having additional clusters that could flip and cause new disagreements.

Recall,

B=|L()| - Po(Ar + A) + (1 + P)d(v*)  and  a=(k—A—2)

from Lemmas 4.4 and 4.5 respectively. In the following lemma we will assume that n8/A < Py, we
will show that this holds in our parameter region in the upcoming proof of Theorem 1.1.

Lemma 4.6. If Parameter Properties 3.1 hold, ¢ € L(v*), nB/A < P, and d; .(v*) > 3 then

~ 4 4
nk;ZtC < -1+ dt,c(v*) <3 + P+ 3P4> .

The following lemma handles the case where ¢ ¢ L(v*). In this case, we prove a weaker bound
that will suffice in our proof of Theorem 1.1 because if ¢ ¢ L(v*) and d, .(v*) > 1, then there exists
an extra ¢’ € L(v*) such that d, .(v*) = 0.

Lemma 4.7. If Parameter Properties 3.1 hold and ¢ ¢ L(v*) then
nkW¢ < dy (v*)(1+ P).

This next lemma handles asymmetric cases: those cases where dj .(v*) > 0 and d{’c(v*) > 0 for

i # j. The proof follows from observing that the definition of Z¢ is linear in d? (v*), di ,(v*), and
die (v7).

Lemma 4.8. If Parameter Properties 3.1 hold, ¢ € L(v*), and d; .(v*) < 2 then the function Z¢ is

magzimized when d; ,(v*) = d} (v*), d; (v*) = d} .(v¥), or d; (v*) = dtzf(v*)

We now consider the case when ¢ € L(v*). Based on the above lemmas we can assume that
all neighbors with a specific color ¢ € L(v*) are all unblocked (i.e., d; .(v*) = df .(v*)), all singly
blocked (i.e., d; .(v*) = d} .(v*)), or all multiblocked (i.e., d; .(v*) = di¢(v*)). The following three
lemmas will handle each of these three cases.

This first lemma handles the case where all neighbors of color ¢ are unblocked. The critical
observation is that while these colors will be “charged” a lot since unblocked neighbors can become
blocked, their expected change in Hamming distance is relatively small because P; is so big.

Lemma 4.9. If Parameter Properties 3.1 hold, ¢ € L(v*), and dgc(v*) = d; .(v*) then

nkZ{ < —1+d, (v*) (2 - P+ nf) .
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The following lemma is similar to the previous one, but handles the case when all neighbors
colored ¢ are singly blocked. Without the new metric (i.e., setting 7 = 0) these bounds would not
satisfy the desired bound of nk:Zf < —1+d;.(v*) - 1.809. However, since 1 # 0 and each of these
cases has at least one singly blocked vertex, we get some benefit from the probability that a blocked
neighbor becomes unblocked.

Lemma 4.10. If Parameter Properties 3.1 hold, ¢ € L(v*), and df .(v*) = d; .(v*) then

nkZg < —1+d, (v*) (2 — Py %) .

Finally, the following lemma handles the case when all neighbors of color ¢ € L(v*) are multi-
blocked. Since none of these cases will be affected by the new metric, it will be enough to bound
the expected change in Hamming distance.

Lemma 4.11. If Parameter Properties 3.1 hold, ¢ € L(v*), and dgcz(v*) = dtﬁ(v*) then
nkZ¢ < —1+d, (v")(2 — Py + 2P5 — 2P).

Lemmas 4.8 to 4.11 are proved in Section 5. We now prove the main result Theorem 1.1.

4.5 Proof of Theorem 1.1

To prove Theorem 1.1, we will prove the following stronger statement that holds for list colorings.

Theorem 4.12. For all A > 125, for all k > 1.809A, for all lists such that k > |L(v)| >
d(v) + (/A =1)A for allv € V, there exists a setting of the parameters for the flip dynamics with
P; =0 for all j > 7, so that for any graph G on n vertices with mazimum degree A,

nkW, < —107°A.
We can now prove Theorem 1.1 as a direct corollary of Theorems 2.1 and 4.12.

Proof of Theorem 1.1. We apply Theorem 2.1 with § = 107°A/(nk) to get that Ty (¢) < O(nlog(n/e))),
which completes the proof of the theorem (See Eq. (9)). O

We now prove Theorem 4.12.

Proof of Theorem /.12. We will, in fact, prove that the mixing time is O(nlogn) when k >
1.8089A, which is slightly stronger than the k > 1.809A statement in Theorem 4.12.

We apply the Path Coupling Theorem (Theorem 2.1) with the metric H. We use the flip
probabilities defined in Parameter Setting 1. Recall n := A(Py — P3)/(2k). Observe that when
k>9/5 P, =0.324, and P3 = 0.154,

n=A(Py — Ps3)/(2k) < (6/19)Ps.

Let
Ai=max{2 — P+ np/A,2 — Ps —na/A,2 — P, +2P; — 2P, }.

Consider v* € V and (X;,Y;) € Q2.. Then for all ¢ € L(v*) where 1 < d, .(v*) < 2, it follows from
Lemmas 4.9 to 4.11 that B
nkZy < =14 Md, .(v"). (21)
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And for all ¢ € L(v*) where d, .(v*) > 3, it follows from Lemma 4.6 that

nkZ§ < —1+d, (v*) <§ + P+ §P4> < —1+ 1.775d, ,(v*) (22)
where we used that P, = 0.324 and P, = 0.088.

Recall that for i > 1, A; = [{u € N(v") : dx,() = i and Xy(u) € L(v*)}| denotes the num-
ber of neighbors of v* that are colored with a color in L(v*) and appears exactly i times in the
neighborhood of v*. Also, recall that A>3 = ",o3 A;. Let A" = [{u € N(v*) : X¢(u) & L(v*)}|.

When P, = 0.324, we can combine the above bounds as follows:

nkW, < —| A (v*)| + nk Z Wtc (by Lemma 4.1)

dt,cc(e")i:azl

< —|A(v)| + nk Z Z¢ +nk Z Wf (by Lemma 4.3)
ceL(v*): cEL\L(v*):
4, (v*)>1 dy o (v)>1

< —| A (v)] + nk Z Z¢ + 1.324A' (by Lemma 4.7 and since P = 0.324)
e

< —[A(v)] = {e € L(v?) s dy o(v7) = 1} + A(A1 + A)

+ 1.775A >3 + 1.324A' (by Eqgs. (21) and (22))

< —k+ MA1 + Ag) + 1.775A 55 + 1.324A".
We will show that
AMAT + Ag) + 1.775A 53 + 1.324A < (1 — 107°)k (23)
when k > 1.8089A and hence, this implies
nk‘Wt < —107°A

when k > 1.8089A as desired.

All that remains is to establish Eq. (23). Recall the definition of A\, and we will consider the
three corresponding cases.

Suppose A = 2 — Py 4+ 2P3 — 2P, then plugging in the settings of P» = 0.324, P3 = 0.154 and
P, = 0.088 from Parameter Setting 1 we see that A = 1.808 and hence Eq. (23) holds in this case.

Now suppose A\ = 2 — P3 — na/A. Plugging in « = (k — A —2), P3 = 0.154 and n =
A(Py — P3)/(2k) we have that for |L(v*)| = k > 1.8089A:

A=2—P3—na/A (24)
= 1.846 — (P> — P3)a/(2k)
< 1.846 — 0.17(0.5 — A/(2k) — 1/k)
< 1.846 — 0.17(0.223588 — 1/k)
< 1.808 4+ 0.17/k
< 1.8089 (25)

where the last inequality requires A > 104. This establishes Eq. (23) for this case of A when
A > 104.
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Finally, suppose A = 2 — P» +n3/A. Plugging in 8 = |L(v*)| — Po(A1 + Ag) + (1 + P)d(v*),
Py =0.324, n = A(Py — Py)/(2k), and k > 1.8089A,

A=2— P+ (P, — P3)B/(2k)
< 1.676 + 0.17 (L(v*) — Po(A1 + Ag) + 1.324d(v*)) /(2k)
< 1.676 + 0.17 (k — Po(Aq 4 Ag) + 1.324A) /(2k)
< 1.676 4 0.17 (0.5 — 0.324(A; + Ag)/(2k) + 1.324A/(2k))
< 1.823212 — 0.015223(A1 + Ag) /A. (26)

Note that A — A’ > d(v*) — A" > A; + Ay + Asgz. Let © = (A + Ag)/A and y = A’/A. Recall
that our goal is to establish Eq. (23). Plugging in Eq. (26) into Eq. (23) we have the following:

AMAL + Ag) + L.775A >3 + 1.324A" < NAz + 1.775A(1 — y — z) + 1.324Ay
< 1.823212Ax — 0.015223A22 + 1.775A(1 — & — y) + 1.324Ay.  (27)

The maximum of Eq. (27) is 1.80799, which occurs when x = 1 and y = 0. Thus, Eq. (23) holds in
all three cases. O

4.6 Proof of Corollary 1.2

Theorem 1.1 established a mixing time bound of O(nlog(n)) for the flip dynamics. By comparison
of the associated Dirichlet forms, Vigoda [Vig99] showed that O(nlogn) mixing time for the flip
dynamics (with constant sized flips) implies O(n?log n) mixing time for the Glauber dynamics. In
fact, since the dependence on ¢ in the mixing time is of the form O(nlog(n/e)) then one obtains
O(n?) mixing time of the Glauber dynamics, see [D.JV02, Corollary 2] or [LP17, Chapter 14 notes).

To obtain O(nlogn) mixing time of the Glauber dynamics for constant A, we utilize the work
of Chen, Liu, and Vigoda [CLV21], who showed optimal mixing via spectral independence. For an
introduction to spectral independence, see [SV22]. The following proof outlines how Corollary 1.2
follows from Theorem 4.12 using the method outlined in [BCC™22].

Proof of Corollary 1.2. To prove Corollary 1.2, we first observe that the flip dynamics is contractive
under any pinning when k > 1.809A where a pinning is a fixed assignment for an arbitrary subset
of vertices. To this end, we start with the assumption that L(v) = [k] for all v. Then for any
U C V and pinning 7 : U — [k], observe that

E>[Lw)\  |J  {r()} = dw) + (k/A - 1DA.
z€N (w)NU

Hence, it follows from Theorem 4.12 that flip dynamics are contractive for any pair X, Yy € €2, for
any pinning and with respect to a distance metric which is 2-equivalent to the Hamming distance
(in the terminology of [BCCT22]), it then follows from [BCC'22, Theorem 1.11] that for every
pinning, spectral independence holds. Thus, [BCCT22, Theorem 1.7] yields O(n logn) mixing time
for the Glauber dynamics for constant k and A as desired. O

Remark 4.13. As noted in the proof of Corollary 1.2, we show for list colorings under the conditions
in Theorem 4.12 that there is a contractive coupling with respect to a metric which is 2-equivalent
to the Hamming distance. Recent work of Chen, Feng, Guo, Zhang, and Zou [CFG'24] shows that
this implies a deterministic approximate counting algorithm (FPTAS) when k and A are constant.
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5 Greedy Coupling and Remaining Proofs

To complete the proof of Theorem 1.1 it remains to prove Lemma 4.6 through Lemma 4.11. Most
of these proofs are straightforward but require additional information about the greedy coupling or
the consideration of several specific cases. We first give additional details on the greedy coupling
in Section 5.1.

5.1 Greedy Coupling: Detailed Definition

In this section, we formally define the details of the greedy coupling and analyze its expected change
in Hamming distance. Recall the definition of the clusters in the set Dy, from Eq. (8). As stated
earlier, for each color ¢ € L, flips in D, . are coupled with other flips within the set (or coupled
with no flip corresponding to a self-loop). Consequently, we can consider each set D; . separately.

Fix a pair (X4, Y;) € Q?)* for some v* € V. Fix a color ¢ € £ and we will define the coupling for
the flips of clusters in the set Dy .

If ¢ ¢ Xi(N(v*)) and ¢ € L(v*) (and thus ¢ is an available color for v*) then D; . consists of two
clusters Sx, (v*,c) and Sy, (v*, ¢), and both of these clusters are simply the vertex v*: S, (v*,¢) =
Sy, (v*,¢) = {v*}. The coupling is the identity coupling for these clusters, and hence, we choose
the same (v*, ¢) in both chains and flip the cluster in both chains or in neither chain.

Now suppose ¢ € X;(N(v*)) and ¢ € L(v*). To define the coupling within Dy . let us begin with
the simpler case d; .(v*) = 1; let N. = {u}. In this case, within D; . we have 2 clusters for each chain;
in X; we have Sx, (v*,c) and Sy, (u,Y;(v*)), and in Y; we have Sy, (v*,c) and Sy, (u, X;(v*)). Let
a = |Sx,(u,Y:(v*))| and A = |Sy,(v*, ¢)|, and similarly b = |Sy, (u, X¢(v*))| and B = |Sx,(v*,c)|.
Note that Sy, (v*,c) = {v*} U Sx, (u, Y:(v*)), and hence, A =1+ ay; similarly, B =1+ b;.

With probability Pg, we couple the flip of Sx, (v*,¢) (of size B) in X; with Sy, (u, X¢(v*)) (of
size Pp) in Yy; this does not change the Hamming distance as the new chains Xy, 1, Y;41 only differ
at v*. Similarly, we couple the flip of Sy, (v,c) (of size A) in Y; with Sx, (u, Y:(v*)) (of size P,)
in Xy; again, this does not change the Hamming distance. There remains probability P, — P4 for
flipping Sx, (u, Y:(v*)) (of size a) in X; and probability P, — Pp for flipping Sy, (u, X¢(v*)) (of size b)
in Y;; we use the maximal coupling for these flips. Hence, with probability min{P, — P4, P, — P}
we flip both Sx, (u, Y(v*)) in X; and Sy, (u, X¢(v*)) in Y;; this increases the Hamming distance by
|Sx, (u, Yi(v*)) U Sy, (u, X¢(v*))| < a+b—1. With the remaining probability, the remaining cluster
flips by itself (self-loop in the other chain).

Summarizing, in the case d, .(v*) = 1, the expected change in Hamming distance is at most

CL(Pa — PA) + b(Pb — PB) — min{PA —P,,Pg — Pb}.

Now consider the general case duc(v*) > 1. Let N, = {uy,..., Ug, c(U*)}' Recall, Dy . consists of
the following clusters in Xj: 7

(Sx (0.0} U {8 (s V()

and in Y; we have:

{Sv.(v",0)j U U{Sn(uzv Xi(v%))}

For 1 <i < d,.(v"), let a; = |Sx,(ui, Y(v*))| and b; = |Sy, (ui, X¢(v*))| denote the sizes of the
(¢, Yy(v*)) and (¢, X¢(v*)), respectively, clusters containing w;. Moreover, if u; € Sx, (uj, Y;(v*)) for
some j < ¢ then redefine a; = 0 (this will avoid double-counting); similarly, if u; € Sy, (u;, X¢(v*))
for some j < 4 then b; = 0.
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Let amax = max; a; and by = max; b;. Let iy, be an index ¢ where a; = apmax and similarly
let il .. be an index i’ where by = byax. Moreover, if possible it sets iymax = . Finally, let
A = |Sy,(v*,¢)| and B = |Sx,(v*,¢)|. If ¢ # Yy(v*) then A = 1+ )", a; and if ¢ # X;(v*) then
B =1+),b;. Note that if ¢ ¢ L(v*) then A =0 and B = 0. For notational convenience, we will
define Py = 0.

We try to couple the flips of the large clusters of size A and B with the largest of the small clusters
of sizes amax and bmax, respectively. If ¢ # X;(v*) then with probability P4 we couple the flip of
Sx, (v*,c) in Xy with Sy, (ug _, X¢(v*)) in Y;; this changes the Hamming distance by A — amax — 1
if c £ Y (v*) and A — amax — 2 if ¢ = Y3 (v*) since X;y1(v*) = Yiq1(v*) in this case. Similarly, with
probability Pg we couple the flip of Sy, (v*,¢) in Y; with Sx, (u;,.., Y:(v*)) in X;; this changes the
Hamming distance by B — bpax — 1 if ¢ # X;(v*) and changes it by B — bypax — 2 if ¢ = X;(v*)
since Xy41(v*) = Yiy1(v™) in this case. For 1 <i < d, (v*), denote the remaining flip probabilities
as Q; = Py, — Pal(i = imax), and Q; = Py, — Pp1(i = iy, ). Then, for each 1 <i < d, .(v*), with
probability min{Q;, @} we flip both Sx, (u;, Y;(v*)) in X; and Sy, (u;, X¢(v*)) in Y;; this increases
the Hamming distance by a; + b; — m; where m; = |Sx,(u;, Yi(v*)) N Sy, (ui, X¢(v*))|. With the
remaining probability, the remaining cluster flips by itself (self-loop in the other chain).

Hence, for any c such that d, .(v*) > 1, observe that

nkWtc = (A — Amax — 1)PA + (B — bmax — 1)PB + Z (azQz + le; —my min{Qi, Q;}) .

Note that for all i, m; > 1 since u; € Sx,(ui, Yi(v*)) N Sy, (us, X¢(v*)). Moreover, larger
values of m; only decrease the expected change in Hamming distance. Omne can view the tree
as the worst case since if the graph considered is a tree (or has high girth), then m; = 1 since
Sx, (ui, Yi(v*)) N Sy, (wi, X¢(v*)) = {u;} for all i. We define the following function Zf, which is an
upper bound on W for all graphs.

Definition 5.1. For any c such that d; .(v*) > 1, let
nkZf = (A = amax — )P+ (B = bmax — )P+ Y _ (0:Q; + b;Q; — min{Q;, Q}}) .

When G has sufficiently large girth (namely, girth > 15 suffices) then W = Zf. Moreover, for
any G we have W < Zf. Recall, Definition 4.2 and thus
np

Z§ < Zf + do(v") T — dj o (v")

no
A .

— 28
" (28)
The proofs of Lemma 4.6 through Lemma 4.11 are provided in the full version of the paper.

5.2 Proof of Lemma 4.6: Color Appearing At Least 3 Times

In this section, we prove Lemma 4.6.

Proof of Lemma 4.6. Let Ny o(v*) = {u1,... , Ug, C(v*)} be the neighbors of v* that are colored ¢ in
Xy and Yy. Since d, (v*) > 3, it follows that A > 4 and B > 4. Hence, (A—amas—1)Pa < (A—2)P4
and then it follows from Property FP1 that (A — 2)Ps < max;{(j — 2)P;} < 2P, and similarly,
(B — byas — 1)Pg < 2P,.

Fix u; € Ni(v*) and suppose without loss of generality that b; > a;. If w; is unblocked then
a; =1, b; =1, and ¢;Q; + b;Q} — min{Q;, Q}} = Q; + Q; — min{Q;, Q;} = max{Q;,Q;} < 1. If v,
is not unblocked, then it must be the case that a; > 2 or b; > 2; thus a;Q; + b;Q; — min{Q;, Q}} =
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a;Qi+ (bi —1)Q} < 14 P, since a;Q; < 1 by Property FP0 and Property FP1, and (b; —1)Q; < P
by Property FP2 and Property FP3. Putting together these bounds and using Definition 5.1 we
have:

nkZi < 4Py +d; (v) + (dy (V") — dgc(v*))Pg.
Thus, using Definition 5.1 and Eq. (28) we get

ns

A
< dy0) + (dyo0) — Lo 07)) Po APy 4 (07)

nkZ§ < nkZg + df (v*)

3 3
where the last inequality holds because n8/A < P, and d, .(v*) > 3. O

4 4
S _1+dt7c(v*) <+P2+P4> .

5.3 Proof of Lemma 4.7: Color Not Available

Now we prove Lemma 4.7. The proof of this lemma follows almost immediately from our coupling
and Parameter Properties 3.1.

Proof of Lemma 4.7. Since ¢ ¢ L(v*) it follows that Sx, (v*,c) = Sy, (v*,¢) = (). Thus,
nkZ{ <> (aiPa, + biP,, — min{Py,, P, })

(3

< dy o (v7)(1 + )

where the last inequality follows since max{iP;} = 1 and max{(i — 1)P;} = P, by Paramecter
Properties 3.1. [

5.4 Proof of Lemma 4.9: All Unblocked

Now we prove Lemma 4.9. The key to this proof is the observation that since df .(v*) = d; .(v*)
(by Lemma 4.8), there is a unique configuration to consider for each value of d, .(v*), and hence
we can directly compute W for any value of d, .(v*).

Proof of Lemma 4.9. We first consider the case when d; .(v*) = 1. Since df .(v*) = d; .(v¥), it
follows that a; = 1 and b; = 1. Hence, A =2, B =2, and by Eq. (28),

nk:Zle—Pg—k%:—l—i-dt’c(v*) (2—P2+?7Aﬁ>.

We now consider the case when d; .(v*) = 2. Since df .(v*) = d; .(v*), it follows that a; = ay =
b1 = by = 1. Hence, A =3, B = 3, by Definition 5.1,

3
Zi = —1+4d; .(v) <2 + P3> .
Thus, by Eq. (28),

ns
A

nkZj < nkZ 4 dyo(07) 5 < 14 dy (07) @ + P+ "f) < —1+d, (v") <2 — P+ 77f>
where the last inequality follows since P» + P3 < 1/2 — P5/2 < 1/2 follows from summing Prop-

erty FP5 and Property FP6 and dividing by 2. O
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5.5 Proof of Lemma 4.10: All Singly Blocked

Next, we prove Lemma 4.10. With the help of Lemma 4.8, the proof of this lemma is very similar
to that of Lemma 4.9. However, unlike unblocked vertices, singly blocked vertices can be in clusters
of arbitrary size. We have to show that the worst case is when the clusters are relatively small.

Proof of Lemma 4.10. Using Lemma 5.3 we can assume a; = 1 and b; = 2 for 1 <i <d, .(v*).
We first consider the case when d, .(v*) = 1. In this case, A = 2 and B = 3. Hence, by Eq. (28),

7c na * no
nkz; Sl_P3_K:—1+dt,c(U )(Q_P?’_K)'

We now consider the d; .(v*) = 2 case. In this case, A =3, B =5, and by Definition 5.1,

3 P;
nka =—-1+ dt,c(v*) <2 + P+ 25) < -1+ dt’c(v*) (2 — Pg)

since Po + P53 < 1/2 — P5/2 < 1/2 follows from summing Property FP5 and Property FP6 and
dividing by 2. Hence, by Eq. (28),

nthC < nthC - dt,c(v*)% < -1+ dt,c(v*) (2 — P3 — %) .

5.6 Proof of Lemma 4.11: All Multiblocked

Finally, we prove Lemma 4.11. Again, this proof is similar to the proofs of Lemmas 4.9 and 4.10.

Proof of Lemma 4.11. Since dgc(v*) = d(v*) = 0 it follows from Eq. (28) that nkZ¢ < nkZ¢ and
it suffices to show nkZf < —1+d, .(v*)(2 — Pa + 2(Ps — Py)).

We first consider the case when d, .(v*) = 1. Using Lemma 5.2 we can assume a; = 1 and
b1 = 3. In this case, A = 2, B = 4, and by Definition 5.1:

nkZ¢ <1—Py+2(Py— Py) = —1+d, ,(v*)(2 — Py + 2(P3 — Py)).

We now consider the case where d, .(v*) = 2. It follows from Lemma 5.3 that we can assume
a; = 1 and b; = 3 for all 7. In this case, A =3, B =7, and by Definition 5.1,

3
nkZ; =2+ 4P; = —1+ dt,c(v*) (2 + 2P3> < -1+ dt’c(v*)(2 — Py +2(P3 — Py))
where the last inequality follows from the fact that 1/2 > P + 2P, by Property FP5. O

5.7 Proof of Lemma 4.8: Extremal Cases

In this section, we prove Lemma 4.8 using the following two lemmas; these two lemmas are analogous
to similar claims in previous works, namely [Vig99, Claim 6] and [CDM ' 19, Observation B.1].

Lemma 5.2. Assume Parameter Properties 5.1 hold. For ¢ € L where d; .(v*) = 1, then Zf is
mazimized when a; = 1 and by = 2. Moreover, if d, .(v*) = 1 and by > 3, then Zf is mavimized
when a1 = 1 and by = 3.
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Proof. Assume without loss of generality that b; > a;. Then
nthC = a’l(Pal - Pa1+1) + (bl - ]‘)(Pbl - Pb1+1)'

If a1 = 1 then we get
nk:Zf =1- P2 + (bl - 1)(Pb1 - Pb1+1). (29)

Observe that Eq. (29) is maximized when b; = 2 by Property FP2 and Property FP3. Moreover,
if by > 3 then Eq. (29) is maximized when b; = 3 by Property FP3.

Now let us consider the case where a; > 2. First, suppose by = 2. If by = 2 and a7 = 1, then
’I’Lk?Zle—Pg Ifb1:2and aj :2, thennk‘Zsz(Pg—Pg) §2P2 §2/3§ 1—P2 S 1—P3 by
Property FP0O and Property FP1. Thus, if b; = 2 then nkZ{ is maximized when a; = 1.

Now let us suppose by > 3. If by =3 and a; = 1 then nkZf =1 — P, +2(P3 — Py). If by > 3
and a; > 2 then (by — 1)(Py, — Py, +1) is maximized when b; = 3 by Property FP3. Observe that
2(Py— P3) > 2(j —1)(Pj — Pjy1) > j(Pj — Pj41) for all j > 2 by Property FP2 and Property FP3.
Hence, a1(P,, — Pa,+1) is maximized when a; = 2. Therefore, if by > 3 and a; > 2, then nkZ; is
maximized with a; = 2 and by = 3 which yields nkZ; < 2(Po—P3)+2(P3—Py) < 1—Po+2(P3—Py)
since 2(Py — P3) < 2/3 <1 — P, by Property FPO. Therefore, if by > 3 then nkZf is maximized
when b; = 3 and a1 = 1. ]

Lemma 5.3. Assume Parameter Properties 5.1 hold. For ¢ € L where d; .(v*) = 2, then Zf is
maximized when a1 = as = 1 and bpax < 3.

Proof. Assume without loss of generality that b; > max{be, a;,a2}. Recall from Definition 5.1

nkZ{ = (A= amax — 1)Pa+ (B = byax — )P + > _ (a;Qi + biQ; — min{Q;, Q}}) .

We first show that we can assume a; < ag. Suppose az < a;. Observe that since by > max{aj,as},
then we have that Q) = P, — P < min{Q1 = Pa, — Pa,Q2 = Pa,} = P,, — P4 since P,, — Py =
min{@Q = P,, — Pa,Q2 = P,,} by Property FP1 and P, — Pg < P,, — P4 since (P; — Pj;1) <
(Pj—1 — P;) which holds by Properties FP2 to FP4. Thus, the switching of a; and as can only
change the min{Q2, @5} term in nkZf. Moreover, setting ag = min{aj,as} can only decrease
min{Q2, @Q5}. Therefore, Zf is maximized when ag > a;.

We can assume by > by, by > a1, and as > a1. Then we can write

nk:Zf = (A —2a9 — 1)PA + (B — 2b1)PB + a1Pa1 +(L2Pa2 + (b1 — 1)Pb1 =+ b2Pb2 — min{Pa2 — PA, Pbg)-

Observe that when a; = ag = 1 and by = by = 3 then nkZ; = 2 4+ 4P3. We now consider the case
where P, < P,, — Py and P, > P,, — P4 and show in each that the maximum is at most 2 + 4P5.
Suppose Py, < P,, — P4. Then we can write:

TL]{'ZE = (A — 2a9 — 1)PA + (B — 2b1)PB + alPal + GQPaZ + (bl — 1)Pb1 + (bg — 1)Pb2-

Observe that (b; — 1)P,, is maximized when b; = 2 by Property FP1. Moreover, (B — 2b;)Pp is
maximized when by + by < 6 since P; = 0 by Property FP0. Thus, Zf is maximized when b; = 3
for all 7. If a; > 2 then ag > 2, (A — 2ay — 1)P4 < P5 by Property FP1 and a1 P,, + aaP,, < 2P
by Property FP1. The claim holds in this case since 2P, + P5 < 2 + 4P3 by Property FPO and
Property FP1.

Now suppose P, > P,, — P4. Then we can write:

nkZ; = (A —2a3)Pa + (B — 2b1)Pg + a1 Py, + (a2 — 1) Py, + (b1 — 1) Py, + bo Py, .
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Suppose ag > 2. Notice that a1 P,, < 1 by Property FP1 If a; < ag then (A — 2a2)P4 + a1 P, +
(ag = )Py, <1 — Pogyy1 + (a2 — 1)Pa, < 14 (ag —1)P,, < 14 P5 by Property FP1. If a1 = aq
then (A — 2a2)Pa + a1 Py, + (a2 — 1) Py, < a1 Py, + (a2 — 1) Py, < 3P < 1 by Property FP1 and
Property FP0. Similarly, we get that (B — 2b1)Pp + a1 Py, + (b1 — 1)Py, + b2 P, < 1. The claim
then holds since 2 < 2 + 4P5. O

We can now prove Lemma 4.8. Using Lemma 5.3 we will write Zf as a linear function in dﬁc(v*),
dic(v*), and dtzf(v*)

Proof of Lemma 4.8. Note that the claim is trivially true if d; .(v*) = 1. Suppose d, .(v*) = 2. Let
{u1,u2} = Ny (v*). Without loss of generality, assume A < B, and b; > by. Note that if u; € F(?(t)
then a; = b; = 1 by definition. Likewise, if u; € F}(t) then max{a;,b;} = 2 and min{a;, b;} = 2.
Finally, if u; € FQZQ(t) then a; + b; > 4. Recall from Eq. (28) that

nk:Zf < nkzc + d?,c(v*)% — d%,c(v*)nxa

and this is an equality when the underlying graph has sufficiently high girth. Notice that the only
term affected by the value aj,ag,b; and by is nkZ;. Thus, using Lemma 5.3 it suffices to assume
a1 = a9 =1 and

1 if u; € F(v*

)
)

bi=142 ifu € Fv* (30)
3 if u; € FP2(v*)
for 1 < i < 2. Then by Definition 5.1,
Zi = (by = 1) Poyyppi1 + Py + (1= Po) + (b1 = 1)(FPyy = Poybp 1) + 1+ (b2 = 1) By
= (bg — b1) Py 4by+1 +2 — Po+ P5 + (b1 — 1) Py, + (ba — 1)Pb2.
Thus,
~c _ 0 * 775 1 N
Zy = (b — bl)Pb1+b2+1 +2—Py+ P3+ (b1 — 1)Pb1 + (bg — 1)Pb2 + dt,c(v )K — dt,c(v )K
— 0 * 775 1 N .
=2—-—Py+ P+ (by —1)By, + (b2 — 1) Py, + dt,c(v )K — dt,c(v )K (since by > b9)
* * « *
=2- P+ Py +dy.(v )% +di (v") (P2 - UK) + 2d; (v") Ps. (by Eq. (30)) (31)
Note that Eq. (31) is linear in d .(v*), di .(v*), and dt%f(v*) It follows that Eq. (31) is maximized
when d} ,(v*) = d; .(v*) for some i € {1,2,3}. O

6 Conclusions

The major open question is to obtain a substantial improvement over Theorem 1.1 by establishing
rapid mixing of the flip dynamics (or any other dynamics) for general graphs when k& > a3 A for
a constant a1 < 1.8. If we restrict attention to triangle-free graphs the best known rapid mixing
result holds for k& > asA where ay ~ 1.763... is the solution of ay = exp(1l/asg) using spectral
independence [FGYZ21, CGSV21] (or assuming girth > 5 using burn-in and local uniformity prop-
erties [DFHV13]). Can we utilize triangle-freeness to achieve similar bounds using a modified metric
as in this paper? It would be interesting to see if the threshold as is only an obstacle for certain
proof techniques (which utilize properties of the stationary distribution) or if it corresponds to the
onset of worst-case mixing obstacles for local Markov chains on locally dense graphs.
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