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Abstract

We present improved bounds for randomly sampling k-colorings of graphs with maximum
degree�; our results hold without any further assumptions on the graph. The Glauber dynamics
is a simple single-site update Markov chain. Jerrum (1995) proved an optimal O(n log n) mixing
time bound for Glauber dynamics whenever k > 2� where� is the maximum degree of the input
graph. This bound was improved by Vigoda (1999) to k > (11/6)� using a “flip” dynamics
which recolors (small) maximal 2-colored components in each step. Vigoda’s result was the
best known for general graphs for 20 years until Chen et al. (2019) established optimal mixing
of the flip dynamics for k > (11/6 � ")� where " ⇡ 10�5. We present the first substantial
improvement over these results. We prove an optimal mixing time bound of O(n log n) for the
flip dynamics when k � 1.809�. This yields, through recent spectral independence results,
an optimal O(n log n) mixing time for the Glauber dynamics for the same range of k/� when
� = O(1). Our proof utilizes path coupling with a simple weighted Hamming distance for
“unblocked” neighbors.

1 Introduction

A problem of great interest and considerable study at the intersection of theoretical computer
science, discrete mathematics, and statistical physics is the random sampling of k-colorings of a
given input graph G. Given a graph G = (V,E) of maximum degree � and an integer k � 2, let ⌦
denote the collection of proper vertex k-colorings of G, that is ⌦ is the collection of assignments
Xt : V ! {1, . . . , k} where for all (v, w) 2 E, Xt(v) 6= Xt(w). Let ⇡ denote the uniform distribution
over ⌦. The colorings problem is a natural example of a non-binary graphical model [Mur12,
KF09] and, in statistical physics, it is the zero-temperature limit of the antiferromagnetic Potts
model [SS97].

We study algorithms for the approximate counting problem of estimating |⌦|, the number of
k-colorings, and the approximate sampling problem of generating random k-colorings from a nearly
uniform distribution. In particular, given a graph G = (V,E) and a � > 0, for the sampling problem,
our goal is to sample from a distribution µ which is within total variation distance  ✏ of the uniform
distribution ⇡ in time polynomial in n = |V | and log(1/"). In the approximate counting problem,
a graph G = (V,E), an ", and a � > 0 are given, and the goal is to obtain a FPRAS to estimate |⌦|,
which is an algorithm to estimate |⌦| within a (1±") multiplicative factor with probability � 1�� in
time poly(n, 1/", log(1/�)). These approximate sampling/counting problems are polynomial-time
inter-reducible to each other. Relevant for our work, an O(n log(n/")) sampling algorithm yields
an O⇤(n2) time approximate counting algorithm [ŠVV09, Hub15, Kol18].

The Markov chain Monte Carlo (MCMC) method is a natural algorithmic approach to approx-
imate sampling. The Glauber dynamics (also known as the Gibbs sampler) is the simplest example
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of the MCMC method. The Glauber dynamics is a Markov chain on the collection of k-colorings
and the transitions update the coloring at a randomly chosen vertex in each step as follows. From
a coloring Xt 2 ⌦, choose a vertex v 2 V and a color c 2 {1, . . . , k} uniformly at random. If no
neighbor of v has color c in the current coloring Xt then we recolor v to color c in Xt+1 and all
other vertices maintain the same color Xt+1(w) = Xt(w) for all w 6= v; and if color c is not available
for v then we set Xt+1 = Xt. The Glauber dynamics is ergodic whenever k � � + 2; hence, the
unique stationary distribution is the uniform distribution ⇡.

The mixing time Tmix is the number of steps from the worst initial state X0 to guarantee that
the total variation distance from the stationary distribution ⇡ is  1/4. A mixing time of O(n log n)
is referred to as an optimal mixing time as this matches the lower bound established by Hayes and
Sinclair [HS07] for any graph of constant maximum degree �.

Jerrum [Jer95] (see also Salas and Sokal [SS97]) established an optimal mixing time of O(n log n)
for the Glauber dynamics whenever k > 2�. This was a seminal result in the development of cou-
pling techniques, including the path coupling method of Bubley and Dyer [BD97]. Vigoda [Vig99]
improved Jerrum’s result to k > (11/6)� by proving O(n log n) mixing time of the following flip

dynamics, which implied O(n2) mixing time of the Glauber dynamics.
The flip dynamics is a generalization of the Glauber dynamics, which recolors maximal two-

colored components in each step. For a coloring Xt, vertex v 2 V , and color c 2 {1, . . . , k}, let
SXt(v, c) denote the set of vertices w which have an alternating path on colors (Xt(v), c) between v
and w; we refer to the set SXt(v, c) as a cluster. The flip dynamics is defined by a set of parameters
(Pi)i�1 for the flip probabilities. The dynamics operates by choosing a random vertex v and color
c, and then flipping the cluster SXt(v, c) by interchanging the colors Xt(v) and c on the chosen
cluster with probability P`/` where ` = |SXt(v, c)|.

More formally, for Xt 2 ⌦, the transitions Xt ! Xt+1 for the flip dynamics, with flip probabil-
ities (Pi)i�1, are defined as follows:

• Choose v 2 V uniformly at random.

• Choose c 2 [k] = {1, . . . , k} uniformly at random.

• Let S = SXt(v, c) be the cluster in Xt defined by colors {Xt(v), c} which contains v. Let
` = |S| denote the size of the cluster.

• With probability P`/`, let Xt+1 denote the coloring obtained by interchanging colors Xt(v)
and c in S, and for all w /2 S set Xt+1(w) = Xt(w). With the remaining probability, set
Xt+1 = Xt.

Observe that if P1 = 1 and Pi = 0 for all i > 1 then the flip dynamics only recolors the se-
lected vertex if no neighbor has the chosen color, and is equivalent to the Glauber dynamics (see
Jerrum [Jer95]). In Vigoda’s original work, the parameters satisfy the basic properties: P1 = 1,
Pi � Pi+1 for all i � 1, and Pj = 0 for j � 7, see Section 3.1 for more details. All subsequent works
(including this paper) follow these broad settings but di↵er in the detailed setting.

Since Vigoda’s result, there was a myriad of improved results for various restricted classes of
graphs, including optimal mixing on triangle-free graphs when k > ↵⇤� for � = O(1) where
↵⇤ ⇡ 1.763 [CGŠV21, FGYZ21, CLV21] (see also [JPV22, LSS19, DFHV13] for related results),
optimal mixing on large girth graphs when k � � + 3 [CLMM23], and further improvements for
trees [MSW04], planar graphs [HVV15], and sparse random graphs [EHSV18].

The first improvement on Vigoda’s result for general graphs was 20 years later by Chen, Del-
court, Moitra, Perarnau, and Postle [CDM+19] who proved the mixing of O(n log n) of the flip
dynamics when k > (11/6�"0)� where "0 ⇡ 10�5 is a fixed positive constant. Their result (as well
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as Vigoda’s result [Vig99]) was obtained for a specific setting of the flip parameters. We present the
first substantial improvement over Vigoda’s result in obtaining optimal mixing of the flip dynamics
when k � 1.809� for any �.

Theorem 1.1. For all � � 125, for all k � 1.809�, there exists a setting of the parameters for

the flip dynamics with Pj = 0 for all j � 7, so that for any graph G on n vertices with maximum

degree �, the flip dynamics has mixing time O(n log(n)).

The flip probabilities are presented in Section 3.1. Note we use a universal setting of the flip
probabilities for all 1.809  k/� that di↵er from those used in [CDM+19, Vig99].

As in [Vig99, CDM+19] this implies polynomial mixing of the Glauber dynamics for the same
range of k/�. In particular, by comparison of the spectral gaps of the transition matrices, it
implies O(n2) mixing time of the Glauber dynamics where the hidden constant is polynomial in �
and k. Moreover, recent work of [BCC+22, Liu21] utilizing spectral independence [CLV21, ALO20],
implies O(n log n) mixing time of the Glauber dynamics when � is constant; the same result held
for the previous work of [CDM+19] for the corresponding range of parameters k and �.

Corollary 1.2. For all � � 125, all k � 1.809�, there exists a constant C = C(�, k) such that

for any and for any graph G on n vertices with maximum degree �, the mixing time of the Glauber

dynamics is  Cn log n.

A recent algorithm of Chen, Feng, Guo, Zhang, and Zou [CFG+24] uses our coupling proof
to obtain a deterministic approximate counting algorithm (FPTAS) when k and � are constant,
see Remark 4.13 for more details.

1.1 Proof Overview

Our proof of Theorem 1.1 utilizes a novel distance metric described here at a high level.
Jerrum’s bound of k > 2� can be proved using path coupling in which we consider a pair

of configurations Xt, Yt that di↵er at exactly one vertex, say v⇤. We then analyze the expected
Hamming distance of Xt+1, Yt+1 after one step of a coupled transition (Xt, Yt) ! (Xt+1, Yt+1).
The coupling in this setting is fairly simple as it is the identity coupling (i.e., both chains attempt
the same (vertex, color) pair (v, c)) for the Glauber update except when the updated vertex v is
a neighbor w of v⇤; in which case we couple trying to recolor w to color Xt(v⇤) in one chain with
color Yt(v⇤) in the other chain. Under this coupling, there is at most one coupled transition per
neighbor which can increase the Hamming distance by at most one, and this yields the k > 2�
bound.

Vigoda’s result for k > (11/6)� uses the same path coupling framework to analyze the expected
Hamming distance for a pair Xt, Yt that di↵er at a single vertex v⇤. In flip dynamics, the coupling
is more complicated than in Jerrum’s analysis because of additional moves.

Recall that the transitions of the flip dynamics correspond to flipping maximal 2-colored com-
ponents, where flipping refers to interchanging the 2 colors. An alternative and equivalent view of
the transitions of the flip dynamics is as follows. For Xt 2 ⌦, consider the collection of all clus-
ters (where a cluster is a maximal 2-colored component); note that there are at most nk clusters.
Choose a cluster S with probability P|S|/(nk) and then flip S to obtain Xt+1 (with the remaining
probability set Xt+1 = Xt).

We give a brief high-level overview of Vigoda’s coupling (Xt, Yt) ! (Xt+1, Yt+1) which is the one-
step coupling that for a Hamming distance one pair of cooringss minimizes the expected Hamming
distance at time t+1 and hence is called the greedy coupling in [CDM+19]. Consider a pair Xt, Yt
that di↵er at a single vertex v⇤, thus Xt(w) = Yt(w) for all w 6= v⇤. The coupling uses the identity
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coupling for all clusters S that are the same in chains Xt and Yt. This means that the cluster S is
flipped in both chains or in neither chain. The only nontrivial couplings are for those clusters that
appear in only one chain (and not in the other chain).

What are these clusters that appear in exactly one chain? They are clusters that include a
neighbor w of v⇤ and a color c0 which is Xt(v⇤) or Yt(v⇤). In other words, if we try to recolor some
w 2 N(v⇤) to a color c0 2 {Xt(v⇤), Yt(v⇤)} then this yields a di↵erent cluster in the two chains, as
the cluster includes v⇤ in one chain but not in the other chain. These are the clusters that use a
nontrivial coupling. Moreover, this coupling depends on the current color c = Xt(w) = Yt(w) of the
neighbor w of v⇤; we partition the clusters involving color c into a set Dt,c and clusters within Dt,c

are coupled with other clusters in the same set Dt,c.
Vigoda demonstrated a choice of the flip probabilities and a coupling so that the expected

increase in the Hamming distance is  5/6 in an amortized cost per neighbor w of v⇤, which
yields the bound k > (11/6)�. Chen et al. [CDM+19] identified 6 extremal configurations in
Vigoda’s analysis (these are the configurations that maximize the expected increase in the Hamming
distance) and presented a slightly di↵erent setting of the flip probabilities with only two extremal
configurations. They considered a weighted Hamming distance where for every neighbor w 2 N(v⇤),
if the local configuration around w is di↵erent from the two extremal configurations, then the
definition of the distance (between Xt and Yt) is decreased by ⌘/� for a fixed constant ⌘ where
1/2 > ⌘ > 0. Using Vigoda’s greedy coupling with this new metric, they established that the
expected distance decreases when k > (11/6� "0)� where "0 ⇡ 10�5.

We take a complementary approach. Whereas Chen et al. [CDM+19] reweight the worst con-
figurations (or equivalently all non-worst case configurations), we instead consider a particularly
“good” configuration. Namely, we consider the local configuration where the neighbor w is un-

blocked, which means that the colors Xt(v⇤) and Yt(v⇤) do not appear in N(w) \ {v⇤}, see Fig. 1.
Unblocked neighborhoods are the best local configurations for the greedy coupling (with respect
to the Hamming distance). For unblocked neighbors w, the potentially problematic recolorings of
w 2 N(v⇤) with colors Xt(v⇤) or Yt(v⇤) can be coupled with flips of clusters of size 2 (containing v⇤

and w). Consequently, the expected increase in the Hamming distance for w is 1�P2, significantly
less than 5/6 for any setting of the flip probabilities considered.

We choose the flip probabilities to optimize for this new metric, which results in a setting for
the flip probabilities that are suboptimal (with respect to Hamming distance) for the extremal
configurations considered by Chen et al. [CDM+19]. However, for our choice of distance metric,
these extremal configurations improve as they have a reasonable probability of moving to the
unblocked configurations, yielding a decrease in the distance.

An essential aspect of our proof is that if a neighbor w is unblocked, then it may have a
considerable probability of becoming blocked (which increases the distance with respect to our
new metric); however, in this case, if w itself becomes a disagreement, then its neighbors will be
unblocked (and hence this new disagreement at w has a smaller weight in our new metric). This is
the crucial trade-o↵ in our argument: For an unblocked neighbor w, either w is unlikely to become
blocked, or if it becomes a disagreement, it has many unblocked neighbors. Our overall proof is of
a similar technical level of di�culty as in [CDM+19] but yields a substantially improved bound of
k � 1.809�.

We present some basic definitions, including a more formal definition of the flip dynamics, and
the path coupling lemma in Section 2. In Section 3 we define our new metric. We then present
Vigoda’s greedy coupling, analyze our new metric, and prove Theorem 1.1 in Section 4.
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2 Preliminaries

In this section we detail the basic definitions and concepts that are required background for our
proofs.

For a graph G = (V,E) with vertex set V and edge set E, for v 2 V , let N(v) denote the
neighbors of v, and let d(v) = |N(v)| denote the degree of v in G. Let � = maxv2V d(v) be the
maximum degree.

2.1 List Colorings

We prove our results in the more general context of list colorings. Fix a graph G = (V,E) and a
list L(v) of colors for each v 2 V . A list labeling of G is a function � that maps each vertex v 2 V
to a color �(v) 2 L(v). A list labeling is called a list coloring if for all (u, v) 2 E, �(u) 6= �(v).
For any positive integer k, let [k] = {1, . . . , k}. Observe that if L(v) = [k] for all v 2 V , then a list
labeling is a k-labeling and a list coloring is a k-coloring.

In the remainder of this paper we will work with the general concept of list colorings and list
labelings. Let L =

S
v2V L(v), let ⌦ be the collection of all list labels of G, and let ⌦⇤ ⇢ ⌦ be the

collection of list colorings.
For a pair Xt, Yt 2 ⌦, let H(Xt, Yt) = |{v 2 V : Xt(v) 6= Yt(v)}| denote the Hamming distance

between Xt and Yt. For v 2 V , let ⌦2
v ⇢ ⌦2 denote the pairs (Xt, Yt) 2 ⌦2 where Xt(v) 6= Yt(v)

and Xt(u) = Yt(u) for all u 6= v; thus, ⌦2
v is the set of pairs of labelings that only di↵er at vertex v.

Note,
S

v2V ⌦2
v is the set of all pairs that di↵er at exactly one vertex. We will refer to pairs (Xt, Yt)

that di↵er at exactly one vertex as neighboring colorings. For simplicity, we use the term coloring
throughout since the distinction between colorings and labelings is clear from the notation ⌦ vs. ⌦⇤.

2.2 Clusters, Flip Dynamics, and Mixing Time

For a coloring Xt 2 ⌦, vertex v 2 V , and color c 2 L, let bSXt(v, c) denote the set of vertices
reachable from v by a (Xt(v), c)-alternating path in Xt. Note that Xt may not be a proper coloring,
but we still require that the colors alternate along the path. If for all w 2 bSXt(v, c) it holds that
{c,Xt(v)} ⇢ L(w) then we set SXt(v, c) = bSXt(v, c), and otherwise we set SXt(v, c) = ;. Note that
if the flip of the cluster bSXt(v, c) is invalid (namely, for some w 2 bSXt(v, c) the new color is not in
its list L(w)) then we have set the cluster to be the empty set. Hence, all clusters SXt(v, c) 6= ; can
be flipped in Xt (i.e., if Xt 2 ⌦ then Xt+1 2 ⌦ where Xt+1 is obtained from Xt by interchanging
the colors Xt(v) and c on the set SXt(v, c)).

For all v 2 V , note that SXt(v,Xt(v)) = SYt(v, Yt(v)) = {v} and if c 62 L(v) then SXt(v, c) =
SYt(v, c) = ;. For a coloring Xt 2 ⌦ and a cluster S = SXt(v, c), we refer to flipping cluster S
with the operation of interchanging colors Xt(v) and c on the set S; let Xt+1 denote the resulting
coloring. If Xt is a proper coloring, then Xt+1 is a proper coloring. Moreover, if Xt, Xt+1 are proper
colorings then by flipping S0 = SXt+1(v,Xt(v)) in Xt+1 we obtain Xt, and hence the operation is
symmetric on ⌦⇤.

We can now define the flip dynamics for the more general setting of list colorings. Consider
probabilities (Pi)i�1. For Xt 2 ⌦ the transitions Xt ! Xt+1 of the flip dynamics are defined as
follows:

• Choose v 2 V uniformly at random.

• For each c 2 L(v), let S = SXt(v, c) with probability 1/k. Let ` = |S| denote the size of the
cluster.
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• If ` � 1 then with probability P`/`, let Xt+1 denote the coloring obtained by interchanging
colors Xt(v) and c in S (and for w /2 S set Xt+1(w) = Xt(w)).

• Otherwise, let Xt+1 = Xt.

Note, that in the second step, if the flip of the cluster bSXt(v, c) is invalid then the corresponding
set SXt(v, c) = ;. Moreover, when P1 > 0 and k � �+ 2, then the unique stationary distribution
of the flip dynamics is the uniform distribution ⇡ over ⌦⇤, which is the set of proper list colorings;
note, the states in ⌦ \ ⌦⇤ have zero probability in the stationary distribution.

Our interest is the mixing time Tmix, which measures the speed of convergence to the unique
stationary distribution ⇡ from the worst initial state X0 2 ⌦. For a pair of distributions µ,⇡ on ⌦,
the total variation distance is defined as dTV(µ,⇡) =

1
2

P
Xt2⌦ |µ(Xt) � ⇡(Xt)|. For " > 0, define

the mixing time as:
Tmix(") = max

X02⌦
min{t : dTV(P t(Xt, ·),⇡)  "},

where ⇡ is the stationary distribution. We will often refer to Tmix = Tmix(1/4) as the mixing time
since Tmix(")  Tmix ⇥ dlog2(1/")e for any " > 0.

2.3 Path Coupling

We will utilize the coupling method to upper-bound the mixing time. For a pair of statesXt, Yt 2 ⌦,
a coupling for the flip dynamics is a joint evolution (Xt, Yt) ! (Xt+1, Yt+1) such that when the
individual transitions (Xt ! Xt+1) and (Yt ! Yt+1) are viewed in isolation of each other then they
are identical to the flip dynamics, see [Jer03] for a more detailed introduction.

We will bound the mixing time using the path coupling framework of Bubley and Dyer [BD97].

Theorem 2.1. [BD97, DG99] Consider a Markov chain with transition matrix P , state space ⌦,
and unique stationary distribution ⇡. Let ⌃ ⇢ ⌦2

denote a subset of pairs of states such that the

graph (⌦,⌃) is connected. Consider weights w(Xt, Yt) defined for all pairs (Xt, Yt) 2 ⌃. Assume

there exists a constant 1/2  C  1 where w(Xt, Yt) 2 [C, 1] for all (Xt, Yt) 2 ⌃. For arbitrary

pairs (Xt+1, Yt+1) 2 ⌦2
, define w(Xt+1, Yt+1) by the length of the shortest path in the graph (⌦,⌃)

where edges (Xt, Yt) 2 ⌃ have weight w(Xt, Yt).
If there exists a � > 0 and for all (Xt, Yt) 2 ⌃ there exists a coupling (Xt, Yt) ! (Xt+1, Yt+1)

where:

E [w(Xt+1, Yt+1)]  (1� �)w(Xt, Yt),

then the mixing time is bounded as Tmix(")  O (log(n/")/�).

3 New Metric Definition

This section introduces our new metric, which is the heart of the proof of Theorem 1.1. First, we
describe our flip probabilities and identify some of their key properties. Then, we introduce some
new notation. Finally, we define the new metric.

3.1 Cluster and Flip Dynamics

To prove Theorem 1.1, we use the following setting of flip probabilities, which we will refer to as
Parameter Setting 1:

P1 := 1, P2 := 0.324, P3 := 0.154, P4 := 0.088, P5 := 0.044, P6 := 0.011, and Pi := 0 for i � 7. (1)

6



We also include the following variable which we will use when defining our new metric:

⌘ := (P2 � P3)
�

2k
. (2)

We will assume the following properties, which we will refer to as Parameter Properties 3.1:

P1 = 1, P2  1/3, and P7 = 0 (FP0)

Pj  (2/3)Pj�1 for all j � 3, (FP1)

(1� P2) � (P2 � P3) � 2(P3 � P4) (FP2)

2(P3 � P4) � (j � 1)(Pj � Pj+1) for j � 4 (FP3)

(P4 � P5) � (P5 � P6) � (P6 � P7) (FP4)

2P2  1� 4P4 (FP5)

2P3  4P4 � P5 (FP6)

⌘  (6/19)P2 (FP7)

Note that these properties hold for Parameter Setting 1 when k � 9/5 and the settings originally
considered by Vigoda. As we will see later in our analysis, this assumption allows us to quickly
identify those initial configurations with the worst expected change for our new metric (introduced
in the following sections). The relevant lemma statements include any further assumptions on the
flip probabilities.

Our setting for the flip probabilities also di↵ers from those in previous works [Vig99, CDM+19].
One of the key di↵erences is that the previous work sets P3 ⇡ 1/6. In particular, the setting
P3 = 1/6 was critical in [Vig99] and any setting of P3 6= 1/6 yields a worse bound of k > C� for a
constant C > 11/6 using Vigoda’s analysis. In [CDM+19] they also fix P3 = 1/6 for their analysis
with a modified metric; the argument using a variable length coupling sets slightly above 1/6,
namely P3 = 0.166762 > 1/6. In contrast, our setting of P3 < 1/6 is somewhat counterintuitive at
first glance as it increases the expected change in Hamming distance for the extremal configurations
in Vigoda’s analysis, but the introduction of our new metric o↵sets this e↵ect.

3.2 Our New Metric

Before we introduce our new metric, we need several new definitions. For an integer s � 0, consider
a pair of colorings Xs, Ys 2 ⌦; note this pair Xs, Ys may di↵er at an arbitrary number of vertices.

For a vertex z 2 V such that Xs(z) 6= Ys(z), we partition the neighbors of z based on how many
occurrences of the colors Xs(z), Ys(z) occur in their neighborhood (besides at z). For a vertex
y 2 N(z) and (�, ⌧) 2 ⌦2

z, let

Bz(y,�, ⌧) := {w 2 N(y) \ {z} : {�(w), ⌧(w)} \ {�(z), ⌧(z)} 6= ;}

as the blocking neighbors of y with respect to z in � and ⌧ . For ease of notation, since we are often
considering a pair of chains (Xt) and (Yt), we simplify the notation as follows. For integer s � 0,

Bz
s (y) := Bz(y,Xs, Ys).

We say that a neighbor y 2 N(z) is unblocked with respect to z if it has no blocking neighbors
(i.e. |Bz

s (y)| = 0), singly blocked with respect to z if there is exactly one blocking neighbor (i.e.
|Bz

s (y)| = 1), and multiblocked otherwise (i.e. |Bz
s (y)| � 2).

7



Figure 1: A small graph showing how vertices can be unblocked, singly blocked, and multiblocked.
The vertex u1 is singly blocked with respect to v⇤ since it has a neighbor w1 that is colored B.
The vertex u2 is multiblocked with respect to v⇤ since it has a B and R neighbor, w1 and w2

respectively. Likewise, u3 is multiblocked since it has two R neighbors, w3 and w4. Finally, u4 is
unblocked since it has no neighbors that are R or B.

For integer i � 0 and (�, ⌧) 2 ⌦2
z, let

F i(z,�, ⌧) := {y 2 N(z) : |Bz(y,�, ⌧)| = i} and F�i(z,�, ⌧) :=
[

j�i

F i(z,�, ⌧)

be the neighbors of z with exactly i (or at least i) blocking neighbors with respect to � and ⌧ .
Moreover, if �(z) = ⌧(z) then let F i(z,�, ⌧) = ;. Let

di(z,�, ⌧) := |F i(z)| and d�i(z,�, ⌧) :=
X

j�i

dj(z,�, ⌧)

be the number of neighbors of z with exactly i (or at least i) blocking neighbors with respect to
� and ⌧ . For ease of notation, since we are often considering a pair of chains (Xt) and (Yt) we
simplify the notation as follows. For integers i � 0 and s � 0, if Xs(z) 6= Ys(z) then let

F i
s(z) := F i(z,Xs, Ys) and F�i

s (z) := F�i(z,Xs, Ys).

Moreover, if Xs(z) = Ys(z) then let F i
s(z) = ;. Finally, let

dis(z) := di(z,Xs, Ys) and d�i
s (z) := d�i

s (z,Xs, Ys).

Notice that F 0
s (z) is the set of unblocked neighbors of z in (Xs, Ys), F 1

s (z) is the set of singly
blocked neighbors of z, and F�2

s (z) is the set of multiblocked neighbors of z.
We can now formally define our new metric. Recall the definition of the constant ⌘ from Eq. (2).

Consider an arbitrary pair Xt, Yt 2 ⌦. We first define for a vertex z 2 V ,

Hz(Xt, Yt) :=

(
1 if Xt(z) 6= Yt(z)

0 otherwise
(3)

and

eHz(Xt, Yt) :=

(
1� ⌘

�d0t (z) if Xt(z) 6= Yt(z)

0 otherwise.
(4)
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If (Xt, Yt) 2 ⌦2
v⇤ then we define the distance between these neighboring colorings as follows:

eH(Xt, Yt) :=
X

z2V

eHz(Xt, Yt) = 1� ⌘

�
d0t (v

⇤). (5)

Extend eH to define a metric eH over all pairs in ⌦2 by considering the path metric defined by
the shortest path distance in the graph (⌦,⌃) where neighboring colorings have weight defined
by Eq. (5).

The following lemma upper bounds eH by the Hamming metric H and the number of unblocked
neighbors. The bound is tight if the two states di↵er at exactly one vertex, v. Recall that if
Xt(u) = Yt(u) then F 0

t (u) = ; and hence d0t (u) = 0. This lemma has nothing to do with the
coupling; it means that the path metric eH, which we implicitly defined for pairs (Xt, Yt) that di↵er
at more than one vertex, can be bounded naturally by the Hamming distance and the number of
unblocked neighbors of disagreements in Xt, Yt.

Lemma 3.1. For any Xt, Yt 2 ⌦,

eH(Xt, Yt) 
X

z2V

eHz(Xt, Yt).

Proof. Let U = {u 2 V : Yt(u) 6= Xt(u)} be the set of vertices that Xt and Yt disagree on, and let
U = {u1, . . . , u|U |} be an arbitrary ordering of U . Let ⇢0 = Xt, ⇢|U | = Yt, and for 1  i  |U |� 1,
let ⇢i(v) = Xt(v) for v 62 U , ⇢i(uj) = ⇢i�1(uj) for j 6= i, and ⇢i(ui) = Yt(ui). It follows that

eH(Xt, Yt) 
X

i

eH(⇢i�1, ⇢i) (6)

since eH(Xt, Yt) is defined to be the length of the shortest path between Xt and Yt and the path
⇢0, . . . , ⇢|U | is a particular path. We will prove that for all ui 2 U ,

d0(ui, ⇢i�1, ⇢i) � d0(ui, Xt, Yt). (7)

Assuming Eq. (7) and making use of Eq. (6) we can conclude the lemma as follows:

eH(Xt, Yt) 
X

i

eH(⇢i�1, ⇢i) (by Eq. (6))

=
X

ui2U

⇣
1� ⌘

�
d0(ui, ⇢i�1, ⇢i)

⌘
(by Eq. (5))

= H(Xt, Yt)�
⌘

�

X

ui2U
d0(ui, ⇢i�1, ⇢i) (|U | = H(Xt, Yt))

 H(Xt, Yt)�
⌘

�

X

ui2U
d0(ui, Xt, Yt). (by Eq. (7))

It remains to prove Eq. (7), for which it su�ces to show that, for all ui 2 U ,

F 0(ui, ⇢i�1, ⇢i) ◆ F 0(ui, Xt, Yt).

Fix i and suppose w 2 F 0(ui, Xt, Yt). We will show that w 2 F 0(ui, ⇢i�1, ⇢i). By the definition
of F 0(ui, Xt, Yt), if w 2 F 0(ui, Xt, Yt) then Bui(w,Xt, Yt) = ;. Consider z 2 N(w) \ {ui}. By the
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definition of Bui(w,Xt, Yt), since we know that Bui(w,Xt, Yt) = ; and z 2 N(w) \ {ui} then we
have that:

{Xt(z), Yt(z)} \ {Xt(ui), Yt(ui)} = ;.

Recall that by construction, we have the following:

⇢i�1(z) 2 {Xt(z), Yt(z)}, ⇢i(z) 2 {Xt(z), Yt(z)}, ⇢i�1(ui) = Xt(ui), and ⇢i(ui) = Yt(ui).

Thus, for all z 2 N(w) \ {ui},

{⇢i�1(z), ⇢i(z)} \ {⇢i�1(ui), ⇢i(ui)} ⇢ {Xt(z), Yt(z)} \ {Xt(ui), Yt(ui)} = ;.

Since this holds for all z 2 N(w) \ {ui}, we have shown that w 2 F 0(ui, ⇢i�1, ⇢i) as desired, which
completes the proof of the lemma.

4 Coupling Analysis

We start our analysis by giving a brief description of the greedy coupling. The coupling is referred
to as the greedy coupling as it minimizes the expected (unweighted) Hamming distance after the
coupled move for initial pairs of configurations that di↵er at a single vertex.

To define the greedy coupling for the flip dynamics, let us first observe an alternative formulation
of the dynamics. For a state Xt 2 ⌦, every cluster S in Xt has an associated flip probability P|S|. To
simulate the flip dynamics we choose a cluster S with probability P|S|/(nk) and then flip it to obtain
the new state Xt+1, and with the remaining probability, we stay in the same state Xt+1 = Xt.

If a cluster S exists in both chains, the greedy coupling will flip S in both chains or in neither
chain; this is referred to as the identity coupling. The only non-identity coupling is for clusters that
potentially di↵er in the two chains. These potential disagreeing clusters involve v⇤ or neighbors
of v⇤ and can be partitioned according to the current colors of the neighbors of v⇤.

We now partition the neighbors of a vertex z 2 V on a per color basis. For any coloring Xs 2 ⌦,
color c 2 L, and vertex z 2 V , let

Nc(z,Xs) := {w 2 N(z) : Xs(w) = c}

be the neighbors of z that are color c inXs. We extend this notation for an arbitrary pairXs, Ys 2 ⌦
by letting

Ns,c(z) := Nc(z,Xs) [Nc(z, Ys).

Note that if (Xt, Yt) 2 ⌦2
v⇤ then Nt,c(v⇤) = Nc(v⇤, Xt) = Nc(v⇤, Yt). Let

dt,c(v
⇤) := |Nt,c(v

⇤)|

be the number of neighbors of v⇤ that are colored c in Xt or Yt.
Now we will give a brief overview of the greedy coupling. Fix a pair (Xt, Yt) 2 ⌦2

v⇤ . The clusters
involving color c 2 L that we need to couple (using the greedy coupling) are the following:

Dt,c := {SXt(v
⇤, c)} [ {SYt(v

⇤, c)} [
[

u2Nt,c(v⇤)

{SXt(u, Yt(v
⇤)), SYt(u,Xt(v

⇤))}. (8)

Let us digest this collection of clusters Dt,c. Consider the case when dt,c(v
⇤) = 0, then

Dt,c consists of two clusters SXt(v
⇤, c) and SYt(v

⇤, c), and both of these clusters are the same:

10



SXt(v
⇤, c) = SYt(v

⇤, c) = {v⇤} since color c does not appear in the neighborhood of v⇤. These clus-
ters are coupled with the identity coupling, which means that we flip the cluster in both chains or
neither chain. Note that if we flip these clusters SXt(v

⇤, c) = SYt(v
⇤, c) when dt,c(v

⇤) = 0 then the
resulting colorings are the same Xt+1 = Yt+1 (as Xt+1(v⇤) = Yt+1(v⇤) = c); these are the “good”
moves which decrease the Hamming distance by one.

The non-trivial case is where dt,c(v
⇤) � 1. The clusters of Dt,c which occur in Xt, are the

SXt(w, Yt(v
⇤)) cluster for every w 2 Nt,c(v⇤) and the SXt(v

⇤, c) cluster; and in Yt we have the
SYt(w,Xt(v⇤)) for w 2 Nt,c(v⇤) and the SYt(v

⇤, c) cluster. Notice that these two (v⇤, c) clusters are
large clusters that consist of the union of the other small clusters plus v⇤, namely,

SXt(v
⇤, c) = {v⇤} [

[

w2Nt,c(v⇤)

SYt(w,Xt(v
⇤)) and SYt(v

⇤, c) = {v⇤} [
[

w2Nt,c(v⇤)

SXt(w, Yt(v
⇤)).

The only non-identity coupling involves clusters in Dt,c for some c where dt,c(v
⇤) � 1. The

clusters in Dt,c are coupled with each other (or with nothing corresponding to a self-loop in the
other chain); the greedy coupling in these cases is detailed in Section 5.1.

We define the set of vertices besides v⇤ that are contained in a cluster of Dt,c as

⇤t,c := {u 2 V \ {v⇤} : there exists S 2 Dc(Xt, Yt) such that u 2 S}.

That is, ⇤t,c is every vertex besides v⇤ that can be reached from v⇤ with a (c,Xt(v⇤)) or (c, Yt(v⇤))
alternating path. These are precisely the vertices where new disagreements can form after a single
step of the greedy coupling. Observe that Nt,c(v⇤) ✓ ⇤t,c.

4.1 Relating eH to H

Fix a pair (Xt, Yt) 2 ⌦2
v⇤ . Let

Wt := E [H(Xt+1, Yt+1)�H(Xt, Yt)]

and
fWt := E

h
eH(Xt+1, Yt+1)� eH(Xt, Yt)

i
(9)

denote the expected change over one step of the greedy coupling, (Xt, Yt) ! (Xt+1, Yt+1), for H

and eH respectively. Note, the quantities Wt and fWt are the expected change for the Hamming
and weighted Hamming distance, respectively, between the chains (Xt) and (Yt) for the update at

time t; both of these quantities Wt and fWt are with respect to the same pair of chains (Xt) and
(Yt). Moreover, the chains (Xt) and (Yt) are coupled using the greedy coupling, which minimizes
the expectation of the unweighted Hamming distance H(Xt+1, Yt+1); the greedy coupling is not
necessarily optimal for the weighted Hamming distance eH(Xt+1, Yt+1). The following subsections

aim to bound fWt by decomposing it with respect to each color.

4.2 Analysis by Color

We want to decompose the expected change in the Hamming distance Wt and our metric fWt with
respect to each color c.

Recall Hz is the Hamming distance at a vertex z, see Eq. (3). Fix colorings Xs, Ys 2 ⌦. We
define the Hamming distance with respect to an arbitrary subset R ✓ V as

HR(Xs, Ys) :=
X

z2R
Hz(Xs, Ys).
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Similarly, we define the new metric distance with respect to an arbitrary subset R ✓ V and vertex
z 62 R as

eHz,R(Xs, Ys) := HR(Xs, Ys)�
⌘

�

0

@|F 0
s (z) \R|+

X

y2R
|F 0

s (y)|

1

A . (10)

We will give some intuition for the definition of eHz,R(Xs, Ys) in Eq. (10) after the statement of
Lemma 4.1 below.

We can now define for all pairs (Xt, Yt) 2 ⌦2
v⇤ and for all c such that dt,c(v

⇤) � 1,

W c
t := E

⇥
H⇤t,c(Xt+1, Yt+1)�H⇤t,c(Xt, Yt)

⇤

and
fW c

t := E
h
eHv⇤,⇤t,c(Xt+1, Yt+1)� eHv⇤,⇤t,c(Xt, Yt)

i
(11)

as the expected change concerning ⇤t,c, which are the vertices related to color c. Notice that both

terms for W c
t (and also fW c

t ) the set R = ⇤t,c which is defined for time t.

We will show that if we bound these new functions W c
t and fW c

t for every color c such that
dt,c(v

⇤) � 1, then we obtain an upper bound on the total change as follows:

Lemma 4.1. For (Xt, Yt) 2 ⌦2
v⇤,

fWt  E [Hv⇤(Xt+1, Yt+1)�Hv⇤(Xt, Yt)] +
X

c2L:
dt,c(v

⇤)�1

fW c
t .

In Lemma 4.1, the E [Hv⇤(Xt+1, Yt+1)�Hv⇤(Xt, Yt)] term is capturing the change in Hamming
distance at v⇤. For the change in the new metric at v⇤ we also need to capture the change in
the number of unblocked neighbors of v⇤; these terms are considered based on the colors of the
neighbors of v⇤ and are captured in the second term in Eq. (10), namely |F 0

t (v
⇤) \ ⇤t,c|. Finally,

the change in the new metric for all other vertices (besides v⇤) are also considered on a per color
basis and captured by the last summation in Eq. (10).

Proof of Lemma 4.1. Since (Xt, Yt) 2 ⌦2
v⇤ and ⌘  1/2 we have that:

eH(Xt, Yt) = eHv⇤(Xt, Yt)

= Hv⇤(Xt, Yt) +
X

c2L:
dt,c(v

⇤)�1

eHv⇤,⇤t,c(Xt, Yt). (12)

For a vertex u 2 V , observe that if u 6= v⇤ then Xt(u) = Yt(u), and if for all colors c 2 L(()u) we
have u 62 ⇤t,c then every cluster that contains u is in both Xt and Yt and hence Xt+1(u) = Yt+1(u),
since the greedy coupling either flips a cluster containing u in both chains or neither (see Section 5.1).
Therefore, Hu(Xt+1, Yt+1) = 0 and eHu(Xt+1, Yt+1) = 0 by definition. In summary, we have the
following: X

u/2
S
c ⇤t,c:

u 6=v⇤

eHu(Xt+1, Yt+1) = 0. (13)
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This yields the following decomposition of the new metric at time t+ 1:

eH(Xt+1, Yt+1) 
X

u2V

eHu(Xt+1, Yt+1) (by Lemma 3.1)

 eHv⇤(Xt+1, Yt+1) +
X

c2L:
dt,c(v

⇤)�1

X

u2⇤t,c

eHu(Xt+1, Yt+1) (by Eq. (13))

= Hv⇤(Xt+1, Yt+1) +
X

c2L:
dt,c(v

⇤)�1

eHv⇤,⇤t,c(Xt+1, Yt+1) (by Definition 10) (14)

where the second inequality is in fact an equality for a graph with su�ciently high girth.
We can now use Eqs. (12) and (14) to finish the proof:

fWt = E
h
eH(Xt+1, Yt+1)� eH(Xt, Yt)

i
(by Definition 9)

 E [Hv⇤(Xt+1, Yt+1)�Hv⇤(Xt, Yt)] +
X

c2L:
dt,c(v

⇤)�1

E
h
eHv⇤,t,c(Xt+1, Yt+1)� eHv⇤,t,c(Xt, Yt)

i

= E [Hv⇤(Xt+1, Yt+1)�Hv⇤(Xt, Yt)] +
X

c2L:
dt,c(v

⇤)�1

fW c
t (by Definition 11),

where the second line follows from Eqs. (12) and (14). This completes the proof of the lemma.

4.3 Vertices Changing Between Blocked and Unblocked

Fix (Xt, Yt) 2 ⌦2
v⇤ . Our goal now is to bound fW c

t for all c. Recall dt,c(v
⇤) = |Nt,c(v⇤)|. Now let

dit,c(v
⇤) := |Nt,c(v

⇤) \ F i
t (v

⇤)|

be the number of neighbors of v⇤ that are colored c in Xt or Yt and have exactly i blocking neighbors
with respect to v⇤. For i � 1, let

�i = �i,t(v
⇤) := |{u 2 N(v⇤) : dt,Xt(u)(v

⇤) = i and Xt(u) 2 L(v⇤)}|

denote the number of neighbors whose color is in L(v⇤) and appears exactly i times in the neigh-
borhood of v⇤. Finally, let At(v⇤) = {c 2 L(v⇤) : dt,c(v

⇤) = 0} be the set of “available” colors for
v⇤ in Xt and Yt.

The following function will serve as an upper bound on fW c
t and is a function of W c

t , d
0
t,c(v

⇤),
and d1t,c(v

⇤). The quantities ↵ and � will appear in later lemmas.

Definition 4.2. Let ↵ = ↵(v⇤, t) := (k � � � 2), � = �(v⇤, t) := |L(v⇤)| � P2 (�1 +�2) + (1 +
P2)d(v⇤), and c 2 L(v⇤). Then for (Xt, Yt) 2 ⌦2

v⇤ , let

nk eZc
t := nkW c

t + d0t,c(v
⇤)
⌘�

�
� d1t,c(v

⇤)
⌘↵

�
.

Observe that if L(u) = [k] for all u 2 V (k-coloring case) then �  k�P2(�1+�2)+(1+P2)�.

The following lemma shows that it su�ces to bound eZc
t instead of fW c

t directly. We will later
be able to show that eZc

t is maximized in just a few cases, which we can analyze individually.

13



Lemma 4.3. For (Xt, Yt) 2 ⌦2
v⇤ and c 2 L(v⇤),

fW c
t  eZc

t .

To prove Lemma 4.3, we use the following two lemmas that bound the expected number of
vertices colored c in Xt and Yt that become blocked or unblocked after a single step of the greedy
coupling.

We first give a lower bound on the number of newly unblocked neighbors of v⇤. In particular,
for a color c, we lower bound the probability that for a neighbor w which is colored c in Xt and Yt,
that w becomes unblocked after a single step of the greedy coupling.

Lemma 4.4. For (Xt, Yt) 2 ⌦2
v⇤ and color c 2 L(v⇤) such that dt,c(v⇤) � 1,

E
⇥
|(F 0

t+1(v
⇤) \ F 0

t (v
⇤)) \Nt,c(v

⇤)|
⇤
� d1t,c(v

⇤)
↵

nk
.

Proof. Let u 2 F 1
t (v

⇤) \ Nt,c(v⇤). Since u is a singly blocked neighbor of v⇤ there must exist a
unique neighbor w 2 N(u) \ (N(v⇤) [ {v⇤}) where Xt(w) 2 {Xt(v⇤), Yt(v⇤)}. There are at least
|At(w) \ {Xt(v⇤), Yt(v⇤)}| � (|L(w)| � d(w) � 2) � (k � � � 2) = ↵ colors (other than Xt(v⇤)
and Yt(v⇤)) that do not appear in the neighborhood of w in Xt and Yt. Thus, for each color
c0 2 At(w) \ {Xt(v⇤), Yt(v⇤)}, there is a cluster of size 1 that contains just w and flipping such
a cluster results in Xt+1(w) = Yt+1(w) = c0. Therefore, for each u 2 N1

t,c(v
⇤) there are at least

↵ = (k � � � 2) clusters of size 1 (and thus flip with probability P1/(nk) = 1/(nk)) for which
flipping one of these clusters results in u 2 F 0

t+1(v
⇤).

Summarizing the above calculations we have the following:

E
⇥
|(F 0

t+1(v
⇤) \ F 0

t (v
⇤)) \Nt,c(v

⇤)|
⇤
� E

⇥
|(F 0

t+1(v
⇤) \ F 1

t (v
⇤)) \Nt,c(v

⇤)|
⇤
� d1t,c(v

⇤)
↵

nk
.

We now want to bound the probability that an unblocked neighbor u of v⇤ is no longer unblocked
after a single step of the greedy coupling. Note that it does not su�ce to only consider the
probability u becomes blocked because there may no longer be a disagreement at v⇤ after a step of
the greedy coupling, which results in u being neither blocked or unblocked (by definition).

There is a subtle and important trade-o↵ in the following lemma. There are some unblocked
neighbors u for which the probability u becomes blocked is relatively high; in these scenarios we
will argue that there is a reasonable probability of having new unblocked vertices, namely, when u
becomes a disagreement it will have many unblocked neighbors.

To capture the above trade-o↵, we need to consider two terms together, namely:

E
⇥
(F 0

t (v
⇤) \ F 0

t+1(v
⇤)) \Nt,c(v

⇤))
⇤
and

X

u2Lt,c

E
⇥
d0t+1(u)

⇤
. (15)

Note that (F 0
t (v

⇤) \ F 0
t+1(v

⇤)) \Nt,c(v⇤) includes those neighbors w 2 F 0
t (v

⇤) \Nt,c(v⇤) such that:

(i) w 2 F 1
t+1(v

⇤) if Xt+1(v⇤) 6= Yt+1(v⇤), or (ii) w 2 F�2
t+1(v

⇤) if Xt+1(v⇤) = Yt+1(v⇤). Hence, the
first term of Eq. (15) is the expected number of c colored vertices in the neighborhood of v⇤ that go
from unblocked in (Xt, Yt) to one of the two scenarios (i) or (ii). The summand E

⇥
d0t+1(u)

⇤
in the

second term of Eq. (15) is the expected number of unblocked neighbors of a vertex u in (Xt+1, Yt+1)
assuming u is a disagreement at time t + 1 since it equals 0 if Xt+1(u) = Yt+1(u) (by definition).
This trade-o↵ is a key idea in our improved bound.
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Lemma 4.5. If Property FP5 and Property FP6 hold then for (Xt, Yt) 2 ⌦2
v⇤ and color c 2 L(v⇤)

such that dt,c(v⇤) � 1,

E
⇥
|(F 0

t (v
⇤) \ F 0

t+1(v
⇤)) \Nt,c(v

⇤))|
⇤
�

X

u2⇤t,c

E
⇥
d0t+1(u)

⇤
 d0t,c(v

⇤)
�

nk
.

Proof. Recall that Nt,c(v⇤) ✓ ⇤t,c. Thus, it will su�ce to show that for all u 2 F 0
t (v

⇤) \ Nt,c(v⇤)
the following holds:

Pr
�
u 62 F 0

t+1(v
⇤) | u 2 F 0

t (v
⇤) \Nt,c(v

⇤)
�
�E

⇥
d0t+1(u)

⇤
 �

nk
. (16)

Consider u 2 F 0
t (v

⇤)\Nt,c(v⇤). Hence, u is an unblocked neighbor of v⇤, and Xt(u) = Yt(u) = c.
We begin by focusing on Pr

�
u 62 F 0

t+1(v
⇤) | u 2 F 0

t (v
⇤) \Nt,c(v⇤)

�
. If u is not an unblocked

neighbor of v⇤ after a single step of the greedy coupling (i.e., u 62 F 0
t+1(v

⇤)) then from the definition
of F 0

t+1(v
⇤) it follows that v⇤ was recolored in at least one of the chains or a neighbor w 2 N(u)\{v⇤}

was recolored to Xt(v⇤) or Yt(v⇤) in one of the chains. Let Ev⇤ be the event that v⇤ is recolored in
at least one chain (i.e., Xt+1(v⇤) 6= Xt(v⇤) or Yt+1(v⇤) 6= Yt(v⇤)) and let Ev⇤ be the event that v⇤ is
not recolored in either chain (i.e., Xt+1(v⇤) = Xt(v⇤) and Yt+1(v⇤) = Yt(v⇤)). Then, we can write

Pr
�
u 62 F 0

t+1(v
⇤) | u 2 F 0

t (v
⇤) \Nt,c(v

⇤)
�

 Pr (Ev⇤) +
X

w2N(u)\{v⇤}

Pr
�
Xt+1(w) 2 {Xt(v

⇤), Yt(v
⇤)} | Ev⇤

�
.

Therefore, to prove Eq. (16) it su�ces to show the following:

Pr (Ev⇤) +
X

w2N(u)\{v⇤}

Pr
�
Xt+1(w) 2 {Xt(v

⇤), Yt(v
⇤)} and Ev⇤

�
�E

⇥
d0t+1(u)

⇤
 �

nk
. (17)

We now bound Pr (Ev⇤) which is the probability that v⇤ is recolored in at least one of the chains.
If Xt+1(v⇤) 6= Xt(v⇤) or Yt+1(v⇤) 6= Yt(v⇤) then a cluster containing v⇤ must have flipped in Xt or
Yt. There are k clusters that contain v⇤ in each chain, one for each color in L(v⇤). For every color c
that does not appear in the neighborhood of v⇤, there is a cluster in both chains that contains only
v⇤; the number of such colors is |At(v⇤)| = |L(v⇤)|�|{c 2 L : dt,c(v

⇤) � 1}|. Each of these clusters is
of size 1 and thus flips with probability 1/(nk). For every color c that appears in the neighborhood
of v⇤ (i.e., dt,c(v

⇤) � 1), there are at most two clusters containing v⇤ (and all neighbors of v⇤ that
are colored c), SXt(v

⇤, c) and SYt(v
⇤, c). Note that SXt(v

⇤, c) and SYt(v
⇤, c) flip with probability

P|SXt (v
⇤,c)|/(nk) and P|SYt (v

⇤,c)|/(nk) respectively. Also note that |SXt(v
⇤, c)| � dt,c(v

⇤) + 1 since it
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contains v⇤ and Nt,c(v⇤) and similarly |SYt(v
⇤, c)| � dt,c(v

⇤) + 1. Thus,

Pr (Ev⇤) =
1

nk

0

BB@|At(v
⇤)|+

X

c2L:
dt,c(v

⇤)�1

⇣
P|SXt (v

⇤,c)| + P|SYt (v
⇤,c)|

⌘
1

CCA

=
1

nk

0

BB@|L(v⇤)|�
X

c2L:
dt,c(v

⇤)�1

⇣
1� P|SXt (v

⇤,c)| � P|SYt (v
⇤,c)|

⌘
1

CCA

 1

nk

0

BB@|L(v⇤)|�
X

c2L:
dt,c(v

⇤)�1

⇣
1� 2Pdt,c(v

⇤)+1

⌘
1

CCA

 1

nk
(|L(v⇤)|� (1� 2P2)�1 � (1� 2P3)�2/2)

 1

nk
(|L(v⇤)|� P2(�1 +�2)) . (18)

where the last inequality holds because P2  1/3 by Property FP0 and 1/2 � P2 + P3 which is
obtained by summing Property FP5 and Property FP6 and dividing by 2.

We now want to show for all w 2 N(u) \ {v⇤}:

Pr
�
Xt+1(w) 2 {Xt(v

⇤), Yt(v
⇤)} and Ev⇤

�
�Pr

�
w 2 F 0

t+1(u)
�
 1 + P2

nk
. (19)

If Eq. (19) holds then summing it over all w 2 N(u) \ {v⇤} and combining it with Eq. (18) proves
Eq. (17), which completes the proof of the lemma.

It remains to prove that Eq. (19) holds for all w 2 N(u) \ {v⇤}. Let w 2 N(u) \ {v⇤} and recall
that u 2 F 0

t (v
⇤) \ Nt,c(v⇤). We consider two cases: case (i) is that w has at least one neighbor

besides u with color Xt(v⇤) or Yt(v⇤) in Xt or in Yt, and case (ii) is that w has no neighbors in Xt

with colors Xt(v⇤) or Yt(v⇤) and w has no neighbors in Yt with colors Xt(v⇤) or Yt(v⇤).
Suppose case (ii) occurs, hence no neighbors of w are colored Xt(v⇤) or Yt(v⇤) in Xt or Yt.

Then SXt(w,Xt(v⇤)) and SYt(w, Yt(v
⇤)) contain only the vertex w and flip in each chain with

probability 1/(nk). Thus, the probability of w recoloring to Xt(v⇤) or Yt(v⇤) is 2/(nk). Notice
that if SXt(w,Xt(v⇤)) and SYt(w, Yt(v

⇤)) flips then v⇤ does not flip since w 6= v⇤. With probability
at least (1 � P2)/(nk) the greedy coupling flips SXt(u, Yt(v

⇤)) in Xt and flips SYt(u,Xt(v⇤)) in Yt
(see Section 5.1) and no other clusters flip at that time (hence no other vertices change colors).
Hence, with probability at least (1 � P2)/(nk), Xt+1(u) = Yt(v⇤), Yt+1(u) = Xt(v⇤) and for all
z 6= u, Xt+1(z) = Xt(z) and Yt+1(z) = Yt(z). Thus, with probability at least (1 � P2)/(nk)
we have w 2 F 0

t+1(u) since w has no neighbor besides u that are colored Xt+1(v⇤) = Xt(v⇤) or
Yt+1(v⇤) = Yt(v⇤). Therefore, in this case,

Pr
�
Xt+1(w) 2 {Xt(v

⇤), Yt(v
⇤)} and Ev⇤

�
�Pr

�
w 2 F 0

t+1(u)
�
 2

nk
� 1� P2

nk
=

1 + P2

nk

and Eq. (19) holds in this case.
Now suppose that case (i) holds so there is at least one neighbor z 2 N(w) \ {u} such that

Xt(z) = Xt(v⇤) or Yt(z) = Yt(v⇤). Suppose without loss of generality that Xt(z) = Xt(v⇤).
If SXt(w,Xt(z)) = SYt(w,Xt(z)) then it contains w and z and thus flips with probability at
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most P2/(nk). If SXt(w,Xt(z)) 6= SYt(w,Xt(z)), then it must be the case that SXt(w,Xt(z)) =
SYt(w,Xt(z))[ {v⇤} since (Xt, Yt) 2 ⌦2

v⇤ . Thus, flipping SXt(w,Xt(z)) in Xt will recolor v⇤. More-
over, SYt(w,Xt(z)) must contain w and z and thus flip with probability at most P2/(nk). Hence,
the probability of recoloring w to Xt(v⇤) conditioned on v⇤ not being recolored is at most P2/(nk).
Likewise, if there exists z0 2 N(w) such that Yt(z) = Yt(v⇤) then the probability of recoloring w to
Xt(v⇤) conditioned on v⇤ not being recolored is at most P2/(nk)  1/(nk). Finally, if there exists
no z0 2 N(w) such that Yt(z0) = Yt(v⇤) then the probability of recoloring w to Xt(v⇤) is at most
1/(nk) since, similar to the previous case, SYt(w, Yt(v

⇤)) = SXt(w, Yt(v
⇤)) is a size 1 cluster and

flips with probability 1/(nk). Thus,

Pr
�
Xt+1(w) 2 {Xt(v

⇤), Yt(v
⇤)} and Ev⇤

�
 1 + P2

nk
.

Therefore, in this case, Eq. (19) holds since Pr
�
w 2 F 0

t+1(u)
�
� 0.

We now have the tools to prove Lemma 4.3, which states that fW c
t  eZc

t .

Proof of Lemma 4.3. We start by observing:

|F 0
t+1(v

⇤) \Nt,c(v
⇤)|� d0t,c(v

⇤) = |F 0
t+1(v

⇤) \Nt,c(v
⇤)|� |F 0

t (v
⇤) \Nt,c(v

⇤)|
= |(F 0

t+1(v
⇤) \ F 0

t (v
⇤)) \Nt,c(v

⇤)|� |(F 0
t (v

⇤) \ F 0
t+1(v

⇤)) \Nt,c(v
⇤)|, (20)

where the second line uses the basic fact that for any sets A and B then |A|� |B| = |A\B|� |B\A|.
We can now bound fW c

t as follows:

fW c
t = E

h
eHv⇤,⇤t,c(Xt+1, Yt+1)� eHv⇤,⇤t,c(Xt, Yt)

i

= E [Hv⇤,c(Xt+1, Yt+1)] (by definition)

� ⌘

�
E

2

4
X

z2⇤t,c

|F 0
t+1(z)|+|F 0

t+1(v
⇤) \Nt,c(v

⇤)|

3

5�Hv⇤,c(Xt, Yt) +
⌘

�
d0t,c(v

⇤)

 Wt �
⌘

�

X

z2Nc,t(v⇤)

E
⇥
|F 0

t+1(z)|
⇤
� ⌘

�

�
E
⇥
|F 0

t+1(v
⇤) \Nt,c(v

⇤)|
⇤
+ d0t,c(v

⇤)
�

(Nt,c(v⇤) ✓ ⇤t,c)

= Wt �
⌘

�

X

z2Nc,t(v⇤)

E
⇥
|F 0

t+1(z)|
⇤

� ⌘

�
E
⇥
|(F 0

t+1(v
⇤) \ F 0

t (v
⇤)) \Nt,c(v

⇤)|
⇤

(by Eq. (20))

+
⌘

�
E
⇥
|(F 0

t (v
⇤) \ F 0

t+1(v
⇤)) \Nt,c(v

⇤)|
⇤

 Wt � d1t (v
⇤)

↵

nk
(by Lemma 4.4)

� ⌘

�

X

z2Nc,t(v⇤)

E
⇥
|F 0

t+1(z)|
⇤
+E

h ⌘
�
|(F 0

t (v
⇤) \ F 0

t+1(v
⇤)) \Nt,c(v

⇤)|
i

 Wt + d0t,c(v
⇤)

�⌘

�nk
� d1t (v

⇤)
↵⌘

�nk
(by Lemma 4.5)

= eZc
t .
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4.4 Bounding fW c
t and eZc

t

Fix a graph G = (V,E), a pair of states (Xt, Yt) 2 ⌦2
v⇤ , and a color c 2 L. The following two

lemmas significantly reduce the initial configurations we have to consider by showing it su�ces to
consider the case where v⇤ has at most 2 neighbors that are color c, and all those neighbors are of
the same type: unblocked (which is then considered in Lemma 4.9), singly blocked (Lemma 4.10),
or multiblocked (Lemma 4.11). The proofs of these lemmas are deferred to Section 5 but follow
from Lemma 4.3 and Parameter Properties 3.1.

This first lemma handles the case where dt,c � 3. In the proof of this lemma, we observe that
as dt,c(v⇤) grows, the expected change divided by dt,c(v⇤) shrinks. This means that the gain from
having additional colors in Ac(v⇤) (from having more neighbors colored c) quickly exceeds the cost
of having additional clusters that could flip and cause new disagreements.

Recall,

� = |L(v⇤)|� P2(�1 +�2) + (1 + P2)d(v
⇤) and ↵ = (k ��� 2)

from Lemmas 4.4 and 4.5 respectively. In the following lemma we will assume that ⌘�/�  P2, we
will show that this holds in our parameter region in the upcoming proof of Theorem 1.1.

Lemma 4.6. If Parameter Properties 3.1 hold, c 2 L(v⇤), ⌘�/�  P2, and dt,c(v
⇤) � 3 then

nk eZc
t  �1 + dt,c(v

⇤)

✓
4

3
+ P2 +

4

3
P4

◆
.

The following lemma handles the case where c 62 L(v⇤). In this case, we prove a weaker bound
that will su�ce in our proof of Theorem 1.1 because if c 62 L(v⇤) and dt,c(v

⇤) � 1, then there exists
an extra c0 2 L(v⇤) such that dt,c(v

⇤) = 0.

Lemma 4.7. If Parameter Properties 3.1 hold and c 62 L(v⇤) then

nkfW c
t  dt,c(v

⇤)(1 + P2).

This next lemma handles asymmetric cases: those cases where dit,c(v
⇤) > 0 and djt,c(v

⇤) > 0 for

i 6= j. The proof follows from observing that the definition of eZc
t is linear in d0t,c(v

⇤), d1t,c(v
⇤), and

d�1
t,c (v

⇤).

Lemma 4.8. If Parameter Properties 3.1 hold, c 2 L(v⇤), and dt,c(v
⇤)  2 then the function eZc

t is

maximized when dt,c(v
⇤) = d0t,c(v

⇤), dt,c(v
⇤) = d1t,c(v

⇤), or dt,c(v
⇤) = d�2

t,c (v
⇤).

We now consider the case when c 2 L(v⇤). Based on the above lemmas we can assume that
all neighbors with a specific color c 2 L(v⇤) are all unblocked (i.e., dt,c(v

⇤) = d0t,c(v
⇤)), all singly

blocked (i.e., dt,c(v
⇤) = d1t,c(v

⇤)), or all multiblocked (i.e., dt,c(v
⇤) = d�2

t,c (v
⇤)). The following three

lemmas will handle each of these three cases.
This first lemma handles the case where all neighbors of color c are unblocked. The critical

observation is that while these colors will be “charged” a lot since unblocked neighbors can become
blocked, their expected change in Hamming distance is relatively small because P2 is so big.

Lemma 4.9. If Parameter Properties 3.1 hold, c 2 L(v⇤), and d0t,c(v
⇤) = dt,c(v

⇤) then

nk eZc
t  �1 + dt,c(v

⇤)

✓
2� P2 +

⌘�

�

◆
.
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The following lemma is similar to the previous one, but handles the case when all neighbors
colored c are singly blocked. Without the new metric (i.e., setting ⌘ = 0) these bounds would not
satisfy the desired bound of nk eZc

t  �1 + dt,c(v
⇤) · 1.809. However, since ⌘ 6= 0 and each of these

cases has at least one singly blocked vertex, we get some benefit from the probability that a blocked
neighbor becomes unblocked.

Lemma 4.10. If Parameter Properties 3.1 hold, c 2 L(v⇤), and d1t,c(v
⇤) = dt,c(v

⇤) then

nk eZc
t  �1 + dt,c(v

⇤)
⇣
2� P3 �

⌘↵

�

⌘
.

Finally, the following lemma handles the case when all neighbors of color c 2 L(v⇤) are multi-
blocked. Since none of these cases will be a↵ected by the new metric, it will be enough to bound
the expected change in Hamming distance.

Lemma 4.11. If Parameter Properties 3.1 hold, c 2 L(v⇤), and d�2
t,c (v

⇤) = dt,c(v
⇤) then

nk eZc
t  �1 + dt,c(v

⇤)(2� P2 + 2P3 � 2P4).

Lemmas 4.8 to 4.11 are proved in Section 5. We now prove the main result Theorem 1.1.

4.5 Proof of Theorem 1.1

To prove Theorem 1.1, we will prove the following stronger statement that holds for list colorings.

Theorem 4.12. For all � � 125, for all k � 1.809�, for all lists such that k � |L(v)| �
d(v) + (k/�� 1)� for all v 2 V , there exists a setting of the parameters for the flip dynamics with

Pj = 0 for all j � 7, so that for any graph G on n vertices with maximum degree �,

nkfWt < �10�5�.

We can now prove Theorem 1.1 as a direct corollary of Theorems 2.1 and 4.12.

Proof of Theorem 1.1. We apply Theorem 2.1 with � = 10�5�/(nk) to get that Tmix(")  O(n log(n/"))),
which completes the proof of the theorem (See Eq. (9)).

We now prove Theorem 4.12.

Proof of Theorem 4.12. We will, in fact, prove that the mixing time is O(n log n) when k >
1.8089�, which is slightly stronger than the k � 1.809� statement in Theorem 4.12.

We apply the Path Coupling Theorem (Theorem 2.1) with the metric eH. We use the flip
probabilities defined in Parameter Setting 1. Recall ⌘ := �(P2 � P3)/(2k). Observe that when
k � 9/5, P2 = 0.324, and P3 = 0.154,

⌘ = �(P2 � P3)/(2k)  (6/19)P2.

Let
� := max{2� P2 + ⌘�/�, 2� P3 � ⌘↵/�, 2� P2 + 2P3 � 2P4}.

Consider v⇤ 2 V and (Xt, Yt) 2 ⌦2
v⇤ . Then for all c 2 L(v⇤) where 1  dt,c(v

⇤)  2, it follows from
Lemmas 4.9 to 4.11 that

nk eZc
t  �1 + �dt,c(v

⇤). (21)
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And for all c 2 L(v⇤) where dt,c(v
⇤) � 3, it follows from Lemma 4.6 that

nk eZc
t  �1 + dt,c(v

⇤)

✓
4

3
+ P2 +

4

3
P4

◆
 �1 + 1.775dt,c(v

⇤) (22)

where we used that P2 = 0.324 and P4 = 0.088.
Recall that for i � 1, �i = |{u 2 N(v⇤) : dXt(u) = i and Xt(u) 2 L(v⇤)}| denotes the num-

ber of neighbors of v⇤ that are colored with a color in L(v⇤) and appears exactly i times in the
neighborhood of v⇤. Also, recall that ��3 =

P
i�3�i. Let �0 = |{u 2 N(v⇤) : Xt(u) 62 L(v⇤)}|.

When P2 = 0.324, we can combine the above bounds as follows:

nkfWt  �|At(v
⇤)|+ nk

X

c2L:
dt,c(v

⇤)�1

fW c
t (by Lemma 4.1)

 �|At(v
⇤)|+ nk

X

c2L(v⇤):
dt,c(v

⇤)�1

eZc
t + nk

X

c2L\L(v⇤):
dt,c(v

⇤)�1

fW c
t (by Lemma 4.3)

 �|At(v
⇤)|+ nk

X

c2L(v⇤):
dt,c(v

⇤)�1

eZc
t + 1.324�0 (by Lemma 4.7 and since P2 = 0.324)

 �|At(v
⇤)|� |{c 2 L(v⇤) : dt,c(v

⇤) � 1}|+ �(�1 +�2)

+ 1.775��3 + 1.324�0 (by Eqs. (21) and (22))

 �k + �(�1 +�2) + 1.775��3 + 1.324�0.

We will show that

�(�1 +�2) + 1.775��3 + 1.324�0  (1� 10�5)k (23)

when k � 1.8089� and hence, this implies

nkfWt < �10�5�

when k � 1.8089� as desired.
All that remains is to establish Eq. (23). Recall the definition of �, and we will consider the

three corresponding cases.
Suppose � = 2 � P2 + 2P3 � 2P4, then plugging in the settings of P2 = 0.324, P3 = 0.154 and

P4 = 0.088 from Parameter Setting 1 we see that � = 1.808 and hence Eq. (23) holds in this case.
Now suppose � = 2 � P3 � ⌘↵/�. Plugging in ↵ = (k � � � 2), P3 = 0.154 and ⌘ =

�(P2 � P3)/(2k) we have that for |L(v⇤)| = k � 1.8089�:

� = 2� P3 � ⌘↵/� (24)

= 1.846� (P2 � P3)↵/(2k)

 1.846� 0.17(0.5��/(2k)� 1/k)

 1.846� 0.17(0.223588� 1/k)

 1.808 + 0.17/k

 1.8089 (25)

where the last inequality requires � � 104. This establishes Eq. (23) for this case of � when
� � 104.

20



Finally, suppose � = 2 � P2 + ⌘�/�. Plugging in � = |L(v⇤)| � P2(�1 +�2) + (1 + P2)d(v⇤),
P2 = 0.324, ⌘ = �(P2 � P3)/(2k), and k � 1.8089�,

� = 2� P2 + (P2 � P3)�/(2k)

 1.676 + 0.17 (L(v⇤)� P2(�1 +�2) + 1.324d(v⇤)) /(2k)

 1.676 + 0.17 (k � P2(�1 +�2) + 1.324�) /(2k)

 1.676 + 0.17 (0.5� 0.324(�1 +�2)/(2k) + 1.324�/(2k))

 1.823212� 0.015223(�1 +�2)/�. (26)

Note that � ��0 � d(v⇤) ��0 � �1 +�2 +��3. Let x = (�1 +�2)/� and y = �0/�. Recall
that our goal is to establish Eq. (23). Plugging in Eq. (26) into Eq. (23) we have the following:

�(�1 +�2) + 1.775��3 + 1.324�0  ��x+ 1.775�(1� y � x) + 1.324�y

 1.823212�x� 0.015223�x2 + 1.775�(1� x� y) + 1.324�y. (27)

The maximum of Eq. (27) is 1.80799, which occurs when x = 1 and y = 0. Thus, Eq. (23) holds in
all three cases.

4.6 Proof of Corollary 1.2

Theorem 1.1 established a mixing time bound of O(n log(n)) for the flip dynamics. By comparison
of the associated Dirichlet forms, Vigoda [Vig99] showed that O(n log n) mixing time for the flip
dynamics (with constant sized flips) implies O(n2 log n) mixing time for the Glauber dynamics. In
fact, since the dependence on " in the mixing time is of the form O(n log(n/")) then one obtains
O(n2) mixing time of the Glauber dynamics, see [DJV02, Corollary 2] or [LP17, Chapter 14 notes].

To obtain O(n log n) mixing time of the Glauber dynamics for constant �, we utilize the work
of Chen, Liu, and Vigoda [CLV21], who showed optimal mixing via spectral independence. For an
introduction to spectral independence, see [ŠV22]. The following proof outlines how Corollary 1.2
follows from Theorem 4.12 using the method outlined in [BCC+22].

Proof of Corollary 1.2. To prove Corollary 1.2, we first observe that the flip dynamics is contractive
under any pinning when k � 1.809� where a pinning is a fixed assignment for an arbitrary subset
of vertices. To this end, we start with the assumption that L(v) = [k] for all v. Then for any
U ⇢ V and pinning ⌧ : U ! [k], observe that

k � |L(w) \
[

z2N(w)\U

{⌧(z)}| � d(w) + (k/�� 1)�.

Hence, it follows from Theorem 4.12 that flip dynamics are contractive for any pair X0, Y0 2 ⌦, for
any pinning and with respect to a distance metric which is 2-equivalent to the Hamming distance
(in the terminology of [BCC+22]), it then follows from [BCC+22, Theorem 1.11] that for every
pinning, spectral independence holds. Thus, [BCC+22, Theorem 1.7] yields O(n log n) mixing time
for the Glauber dynamics for constant k and � as desired.

Remark 4.13. As noted in the proof of Corollary 1.2, we show for list colorings under the conditions
in Theorem 4.12 that there is a contractive coupling with respect to a metric which is 2-equivalent
to the Hamming distance. Recent work of Chen, Feng, Guo, Zhang, and Zou [CFG+24] shows that
this implies a deterministic approximate counting algorithm (FPTAS) when k and � are constant.
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5 Greedy Coupling and Remaining Proofs

To complete the proof of Theorem 1.1 it remains to prove Lemma 4.6 through Lemma 4.11. Most
of these proofs are straightforward but require additional information about the greedy coupling or
the consideration of several specific cases. We first give additional details on the greedy coupling
in Section 5.1.

5.1 Greedy Coupling: Detailed Definition

In this section, we formally define the details of the greedy coupling and analyze its expected change
in Hamming distance. Recall the definition of the clusters in the set Dt,c from Eq. (8). As stated
earlier, for each color c 2 L, flips in Dt,c are coupled with other flips within the set (or coupled
with no flip corresponding to a self-loop). Consequently, we can consider each set Dt,c separately.

Fix a pair (Xt, Yt) 2 ⌦2
v⇤ for some v⇤ 2 V . Fix a color c 2 L and we will define the coupling for

the flips of clusters in the set Dt,c.
If c /2 Xt(N(v⇤)) and c 2 L(v⇤) (and thus c is an available color for v⇤) then Dt,c consists of two

clusters SXt(v
⇤, c) and SYt(v

⇤, c), and both of these clusters are simply the vertex v⇤: SXt(v
⇤, c) =

SYt(v
⇤, c) = {v⇤}. The coupling is the identity coupling for these clusters, and hence, we choose

the same (v⇤, c) in both chains and flip the cluster in both chains or in neither chain.
Now suppose c 2 Xt(N(v⇤)) and c 2 L(v⇤). To define the coupling within Dt,c let us begin with

the simpler case dt,c(v
⇤) = 1; letNc = {u}. In this case, within Dt,c we have 2 clusters for each chain;

in Xt we have SXt(v
⇤, c) and SXt(u, Yt(v

⇤)), and in Yt we have SYt(v
⇤, c) and SYt(u,Xt(v⇤)). Let

a = |SXt(u, Yt(v
⇤))| and A = |SYt(v

⇤, c)|, and similarly b = |SYt(u,Xt(v⇤))| and B = |SXt(v
⇤, c)|.

Note that SYt(v
⇤, c) = {v⇤} [ SXt(u, Yt(v

⇤)), and hence, A = 1 + a1; similarly, B = 1 + b1.
With probability PB, we couple the flip of SXt(v

⇤, c) (of size B) in Xt with SYt(u,Xt(v⇤)) (of
size Pb) in Yt; this does not change the Hamming distance as the new chains Xt+1, Yt+1 only di↵er
at v⇤. Similarly, we couple the flip of SYt(v, c) (of size A) in Yt with SXt(u, Yt(v

⇤)) (of size Pa)
in Xt; again, this does not change the Hamming distance. There remains probability Pa � PA for
flipping SXt(u, Yt(v

⇤)) (of size a) in Xt and probability Pb�PB for flipping SYt(u,Xt(v⇤)) (of size b)
in Yt; we use the maximal coupling for these flips. Hence, with probability min{Pa � PA, Pb � PB}
we flip both SXt(u, Yt(v

⇤)) in Xt and SYt(u,Xt(v⇤)) in Yt; this increases the Hamming distance by
|SXt(u, Yt(v

⇤))[SYt(u,Xt(v⇤))|  a+ b� 1. With the remaining probability, the remaining cluster
flips by itself (self-loop in the other chain).

Summarizing, in the case dt,c(v
⇤) = 1, the expected change in Hamming distance is at most

a(Pa � PA) + b(Pb � PB)�min{PA � Pa, PB � Pb}.

Now consider the general case dt,c(v
⇤) � 1. Let Nc = {u1, . . . , udt,c(v⇤)}. Recall, Dt,c consists of

the following clusters in Xt:

{SXt(v
⇤, c)} [

[

i

{SXt(ui, Yt(v
⇤))}

and in Yt we have:
{SYt(v

⇤, c)} [
[

i

{SYt(ui, Xt(v
⇤))}

For 1  i  dt,c(v
⇤), let ai = |SXt(ui, Yt(v

⇤))| and bi = |SYt(ui, Xt(v⇤))| denote the sizes of the
(c, Yt(v⇤)) and (c,Xt(v⇤)), respectively, clusters containing ui. Moreover, if ui 2 SXt(uj , Yt(v

⇤)) for
some j < i then redefine ai = 0 (this will avoid double-counting); similarly, if ui 2 SYt(uj , Xt(v⇤))
for some j < i then bi = 0.
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Let amax = maxi ai and bmax = maxi bi. Let imax be an index i where ai = amax and similarly
let i0max be an index i0 where bi0 = bmax. Moreover, if possible it sets imax = i0max. Finally, let
A = |SYt(v

⇤, c)| and B = |SXt(v
⇤, c)|. If c 6= Yt(v⇤) then A = 1 +

P
i ai and if c 6= Xt(v⇤) then

B = 1 +
P

i bi. Note that if c 62 L(v⇤) then A = 0 and B = 0. For notational convenience, we will
define P0 = 0.

We try to couple the flips of the large clusters of sizeA andB with the largest of the small clusters
of sizes amax and bmax, respectively. If c 6= Xt(v⇤) then with probability PA we couple the flip of
SXt(v

⇤, c) in Xt with SYt(ui0max
, Xt(v⇤)) in Yt; this changes the Hamming distance by A� amax � 1

if c 6= Yt(v⇤) and A� amax � 2 if c = Yt(v⇤) since Xt+1(v⇤) = Yt+1(v⇤) in this case. Similarly, with
probability PB we couple the flip of SYt(v

⇤, c) in Yt with SXt(uimax , Yt(v
⇤)) in Xt; this changes the

Hamming distance by B � bmax � 1 if c 6= Xt(v⇤) and changes it by B � bmax � 2 if c = Xt(v⇤)
since Xt+1(v⇤) = Yt+1(v⇤) in this case. For 1  i  dt,c(v

⇤), denote the remaining flip probabilities
as Qi = Pai � PA1(i = imax), and Q0

i = Pbi � PB1(i = i0max). Then, for each 1  i  dt,c(v
⇤), with

probability min{Qi, Q0
i} we flip both SXt(ui, Yt(v

⇤)) in Xt and SYt(ui, Xt(v⇤)) in Yt; this increases
the Hamming distance by ai + bi � mi where mi = |SXt(ui, Yt(v

⇤)) \ SYt(ui, Xt(v⇤))|. With the
remaining probability, the remaining cluster flips by itself (self-loop in the other chain).

Hence, for any c such that dt,c(v
⇤) � 1, observe that

nkW c
t = (A� amax � 1)PA + (B � bmax � 1)PB +

X

i

�
aiQi + biQ

0
i �mimin{Qi, Q

0
i}
�
.

Note that for all i, mi � 1 since ui 2 SXt(ui, Yt(v
⇤)) \ SYt(ui, Xt(v⇤)). Moreover, larger

values of mi only decrease the expected change in Hamming distance. One can view the tree
as the worst case since if the graph considered is a tree (or has high girth), then mi = 1 since
SXt(ui, Yt(v

⇤)) \ SYt(ui, Xt(v⇤)) = {ui} for all i. We define the following function Zc
t , which is an

upper bound on W c
t for all graphs.

Definition 5.1. For any c such that dt,c(v
⇤) � 1, let

nkZc
t := (A� amax � 1)PA + (B � bmax � 1)PB +

X

i

�
aiQi + biQ

0
i �min{Qi, Q

0
i}
�
.

When G has su�ciently large girth (namely, girth � 15 su�ces) then W c
t = Zc

t . Moreover, for
any G we have W c

t  Zc
t . Recall, Definition 4.2 and thus

eZc
t  Zc

t + d0t,c(v
⇤)
⌘�

�
� d1t,c(v

⇤)
⌘↵

�
. (28)

The proofs of Lemma 4.6 through Lemma 4.11 are provided in the full version of the paper.

5.2 Proof of Lemma 4.6: Color Appearing At Least 3 Times

In this section, we prove Lemma 4.6.

Proof of Lemma 4.6. Let Nt,c(v⇤) = {u1, . . . , udt,c(v⇤)} be the neighbors of v⇤ that are colored c in

Xt and Yt. Since dt,c(v
⇤) � 3, it follows that A � 4 and B � 4. Hence, (A�amax�1)PA  (A�2)PA

and then it follows from Property FP1 that (A � 2)PA  maxj{(j � 2)Pj}  2P4, and similarly,
(B � bmax � 1)PB  2P4.

Fix ui 2 Nt,c(v⇤) and suppose without loss of generality that bi � ai. If ui is unblocked then
ai = 1, bi = 1, and aiQi + biQ0

i �min{Qi, Q0
i} = Qi +Q0

i �min{Qi, Q0
i} = max{Qi, Q0

i}  1. If ui
is not unblocked, then it must be the case that ai � 2 or bi � 2; thus aiQi + biQ0

i �min{Qi, Q0
i} =
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aiQi+(bi� 1)Q0
i  1+P2 since aiQi  1 by Property FP0 and Property FP1, and (bi� 1)Q0

i  P2

by Property FP2 and Property FP3. Putting together these bounds and using Definition 5.1 we
have:

nkZc
t  4P4 + dt,c(v

⇤) + (dt,c(v
⇤)� d0t,c(v

⇤))P2.

Thus, using Definition 5.1 and Eq. (28) we get

nk eZc
t  nkZc

t + d0t,c(v
⇤)
⌘�

�

 dt,c(v
⇤) +

�
dt,c(v

⇤)� d0t,c(v
⇤)
�
P2 + 4P4 + d0t,c(v

⇤)
⌘�

�

 �1 + dt,c(v
⇤)

✓
4

3
+ P2 +

4

3
P4

◆
.

where the last inequality holds because ⌘�/�  P2 and dt,c(v
⇤) � 3.

5.3 Proof of Lemma 4.7: Color Not Available

Now we prove Lemma 4.7. The proof of this lemma follows almost immediately from our coupling
and Parameter Properties 3.1.

Proof of Lemma 4.7. Since c 62 L(v⇤) it follows that SXt(v
⇤, c) = SYt(v

⇤, c) = ;. Thus,

nk eZc
t 

X

i

(aiPai + biPbi �min{Pai , Pbi})

 dt,c(v
⇤)(1 + P2)

where the last inequality follows since max{iPi} = 1 and max{(i � 1)Pi} = P2 by Parameter
Properties 3.1.

5.4 Proof of Lemma 4.9: All Unblocked

Now we prove Lemma 4.9. The key to this proof is the observation that since d0t,c(v
⇤) = dt,c(v

⇤)
(by Lemma 4.8), there is a unique configuration to consider for each value of dt,c(v

⇤), and hence
we can directly compute W c

t for any value of dt,c(v
⇤).

Proof of Lemma 4.9. We first consider the case when dt,c(v
⇤) = 1. Since d0t,c(v

⇤) = dt,c(v
⇤), it

follows that a1 = 1 and b1 = 1. Hence, A = 2, B = 2, and by Eq. (28),

nk eZc
t = 1� P2 +

⌘�

�
= �1 + dt,c(v

⇤)

✓
2� P2 +

⌘�

�

◆
.

We now consider the case when dt,c(v
⇤) = 2. Since d0t,c(v

⇤) = dt,c(v
⇤), it follows that a1 = a2 =

b1 = b2 = 1. Hence, A = 3, B = 3, by Definition 5.1,

Zc
t = �1 + dt,c(v

⇤)

✓
3

2
+ P3

◆
.

Thus, by Eq. (28),

nk eZc
t  nkZc

t + dt,c(v
⇤)
⌘�

�
 �1 + dt,c(v

⇤)

✓
3

2
+ P3 +

⌘�

�

◆
 �1 + dt,c(v

⇤)

✓
2� P2 +

⌘�

�

◆

where the last inequality follows since P2 + P3  1/2 � P5/2  1/2 follows from summing Prop-
erty FP5 and Property FP6 and dividing by 2.
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5.5 Proof of Lemma 4.10: All Singly Blocked

Next, we prove Lemma 4.10. With the help of Lemma 4.8, the proof of this lemma is very similar
to that of Lemma 4.9. However, unlike unblocked vertices, singly blocked vertices can be in clusters
of arbitrary size. We have to show that the worst case is when the clusters are relatively small.

Proof of Lemma 4.10. Using Lemma 5.3 we can assume ai = 1 and bi = 2 for 1  i  dt,c(v
⇤).

We first consider the case when dt,c(v
⇤) = 1. In this case, A = 2 and B = 3. Hence, by Eq. (28),

nk eZc
t  1� P3 �

⌘↵

�
= �1 + dt,c(v

⇤)
⇣
2� P3 �

⌘↵

�

⌘
.

We now consider the dt,c(v
⇤) = 2 case. In this case, A = 3, B = 5, and by Definition 5.1,

nkZc
t = �1 + dt,c(v

⇤)

✓
3

2
+ P2 +

P5

2

◆
 �1 + dt,c(v

⇤) (2� P3)

since P2 + P3  1/2 � P5/2  1/2 follows from summing Property FP5 and Property FP6 and
dividing by 2. Hence, by Eq. (28),

nk eZc
t  nkZc

t � dt,c(v
⇤)
⌘↵

�
 �1 + dt,c(v

⇤)
⇣
2� P3 �

⌘↵

�

⌘
.

5.6 Proof of Lemma 4.11: All Multiblocked

Finally, we prove Lemma 4.11. Again, this proof is similar to the proofs of Lemmas 4.9 and 4.10.

Proof of Lemma 4.11. Since d0t,c(v
⇤) = d1t (v

⇤) = 0 it follows from Eq. (28) that nk eZc
t  nkZc

t and
it su�ces to show nkZc

t  �1 + dt,c(v
⇤)(2� P2 + 2(P3 � P4)).

We first consider the case when dt,c(v
⇤) = 1. Using Lemma 5.2 we can assume a1 = 1 and

b1 = 3. In this case, A = 2, B = 4, and by Definition 5.1:

nk eZc
t  1� P2 + 2(P3 � P4) = �1 + dt,c(v

⇤)(2� P2 + 2(P3 � P4)).

We now consider the case where dt,c(v
⇤) = 2. It follows from Lemma 5.3 that we can assume

ai = 1 and bi = 3 for all i. In this case, A = 3, B = 7, and by Definition 5.1,

nkZc
t = 2 + 4P3 = �1 + dt,c(v

⇤)

✓
3

2
+ 2P3

◆
 �1 + dt,c(v

⇤)(2� P2 + 2(P3 � P4))

where the last inequality follows from the fact that 1/2 � P2 + 2P4 by Property FP5.

5.7 Proof of Lemma 4.8: Extremal Cases

In this section, we prove Lemma 4.8 using the following two lemmas; these two lemmas are analogous
to similar claims in previous works, namely [Vig99, Claim 6] and [CDM+19, Observation B.1].

Lemma 5.2. Assume Parameter Properties 3.1 hold. For c 2 L where dt,c(v
⇤) = 1, then Zc

t is

maximized when a1 = 1 and b1 = 2. Moreover, if dt,c(v
⇤) = 1 and b1 � 3, then Zc

t is maximized

when a1 = 1 and b1 = 3.
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Proof. Assume without loss of generality that b1 � a1. Then

nkZc
t = a1(Pa1 � Pa1+1) + (b1 � 1)(Pb1 � Pb1+1).

If a1 = 1 then we get
nkZc

t = 1� P2 + (b1 � 1)(Pb1 � Pb1+1). (29)

Observe that Eq. (29) is maximized when b1 = 2 by Property FP2 and Property FP3. Moreover,
if b1 � 3 then Eq. (29) is maximized when b1 = 3 by Property FP3.

Now let us consider the case where a1 � 2. First, suppose b1 = 2. If b1 = 2 and a1 = 1, then
nkZc

t = 1� P3. If b1 = 2 and a1 = 2, then nkZc
t = 2(P2 � P3)  2P2  2/3  1� P2  1� P3 by

Property FP0 and Property FP1. Thus, if b1 = 2 then nkZc
t is maximized when a1 = 1.

Now let us suppose b1 � 3. If b1 = 3 and a1 = 1 then nkZc
t = 1 � P2 + 2(P3 � P4). If b1 � 3

and a1 � 2 then (b1 � 1)(Pb1 � Pb1+1) is maximized when b1 = 3 by Property FP3. Observe that
2(P2 �P3) � 2(j � 1)(Pj �Pj+1) � j(Pj �Pj+1) for all j � 2 by Property FP2 and Property FP3.
Hence, a1(Pa1 � Pa1+1) is maximized when a1 = 2. Therefore, if b1 � 3 and a1 � 2, then nkZc

t is
maximized with a1 = 2 and b1 = 3 which yields nkZc

t  2(P2�P3)+2(P3�P4)  1�P2+2(P3�P4)
since 2(P2 � P3)  2/3  1 � P2 by Property FP0. Therefore, if b1 � 3 then nkZc

t is maximized
when b1 = 3 and a1 = 1.

Lemma 5.3. Assume Parameter Properties 3.1 hold. For c 2 L where dt,c(v
⇤) = 2, then Zc

t is

maximized when a1 = a2 = 1 and bmax  3.

Proof. Assume without loss of generality that b1 � max{b2, a1, a2}. Recall from Definition 5.1

nkZc
t = (A� amax � 1)PA + (B � bmax � 1)PB +

X

i

�
aiQi + biQ

0
i �min{Qi, Q

0
i}
�
.

We first show that we can assume a1  a2. Suppose a2 < a1. Observe that since b1 � max{a1, a2},
then we have that Q0

1 = Pb1 � PB  min{Q1 = Pa1 � PA, Q2 = Pa2} = Pa1 � PA since Pa1 � PA =
min{Q1 = Pa1 � PA, Q2 = Pa2} by Property FP1 and Pb1 � PB  Pa1 � PA since (Pj � Pj+1) 
(Pj�1 � Pj) which holds by Properties FP2 to FP4. Thus, the switching of a1 and a2 can only
change the min{Q2, Q0

2} term in nkZc
t . Moreover, setting a2 = min{a1, a2} can only decrease

min{Q2, Q0
2}. Therefore, Zc

t is maximized when a2 � a1.
We can assume b1 � b2, b1 � a1, and a2 � a1. Then we can write

nkZc
t = (A� 2a2� 1)PA+(B� 2b1)PB + a1Pa1 + a2Pa2 +(b1� 1)Pb1 + b2Pb2 �min{Pa2 �PA, Pb2).

Observe that when a1 = a2 = 1 and b1 = b2 = 3 then nkZc
t = 2 + 4P3. We now consider the case

where Pb2  Pa2 �PA and Pb2 > Pa2 �PA and show in each that the maximum is at most 2+ 4P3.
Suppose Pb2  Pa2 � PA. Then we can write:

nkZc
t = (A� 2a2 � 1)PA + (B � 2b1)PB + a1Pa1 + a2Pa2 + (b1 � 1)Pb1 + (b2 � 1)Pb2 .

Observe that (bi � 1)Pbi is maximized when bi = 2 by Property FP1. Moreover, (B � 2b1)PB is
maximized when b1 + b2  6 since P7 = 0 by Property FP0. Thus, Zc

t is maximized when bi = 3
for all i. If a1 � 2 then a2 � 2, (A� 2a2 � 1)PA  P5 by Property FP1 and a1Pa1 + a2Pa2  2P2

by Property FP1. The claim holds in this case since 2P2 + P5  2 + 4P3 by Property FP0 and
Property FP1.

Now suppose Pb2 > Pa2 � PA. Then we can write:

nkZc
t = (A� 2a2)PA + (B � 2b1)PB + a1Pa1 + (a2 � 1)Pa2 + (b1 � 1)Pb1 + b2Pb2 .
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Suppose a2 � 2. Notice that a1Pa1  1 by Property FP1 If a1 < a2 then (A � 2a2)PA + a1Pa1 +
(a2 � 1)Pa2  1 � P2a2+1 + (a2 � 1)Pa2  1 + (a2 � 1)Pa2  1 + P2 by Property FP1. If a1 = a2
then (A � 2a2)PA + a1Pa1 + (a2 � 1)Pa2  a1Pa2 + (a2 � 1)Pa2  3P2  1 by Property FP1 and
Property FP0. Similarly, we get that (B � 2b1)PB + a1Pa1 + (b1 � 1)Pb1 + b2Pb2  1. The claim
then holds since 2  2 + 4P3.

We can now prove Lemma 4.8. Using Lemma 5.3 we will write eZc
t as a linear function in d0t,c(v

⇤),

d1t,c(v
⇤), and d�2

t,c (v
⇤).

Proof of Lemma 4.8. Note that the claim is trivially true if dt,c(v
⇤) = 1. Suppose dt,c(v

⇤) = 2. Let
{u1, u2} = Nt,c(v⇤). Without loss of generality, assume A  B, and b1 � b2. Note that if ui 2 F 0

0 (t)
then ai = bi = 1 by definition. Likewise, if ui 2 F 1

1 (t) then max{ai, bi} = 2 and min{ai, bi} = 2.
Finally, if ui 2 F�2

2 (t) then ai + bi � 4. Recall from Eq. (28) that

nk eZc
t  nk eZc

t + d0t,c(v
⇤)
⌘�

�
� d1t,c(v

⇤)
⌘↵

�
and this is an equality when the underlying graph has su�ciently high girth. Notice that the only
term a↵ected by the value a1, a2, b1 and b2 is nk eZc

t . Thus, using Lemma 5.3 it su�ces to assume
a1 = a2 = 1 and

bi =

8
><

>:

1 if ui 2 F 0
t (v

⇤)

2 if ui 2 F 1
t (v

⇤)

3 if ui 2 F�2
t (v⇤)

(30)

for 1  i  2. Then by Definition 5.1,

Zc
t = (b2 � 1)Pb1+b2+1 + P3 + (1� P2) + (b1 � 1)(Pb1 � Pb1+b2+1) + 1 + (b2 � 1)Pb2

= (b2 � b1)Pb1+b2+1 + 2� P2 + P3 + (b1 � 1)Pb1 + (b2 � 1)Pb2 .

Thus,

eZc
t = (b2 � b1)Pb1+b2+1 + 2� P2 + P3 + (b1 � 1)Pb1 + (b2 � 1)Pb2 + d0t,c(v

⇤)
⌘�

�
� d1t,c(v

⇤)
⌘↵

�

= 2� P2 + P3 + (b1 � 1)Pb1 + (b2 � 1)Pb2 + d0t,c(v
⇤)
⌘�

�
� d1t,c(v

⇤)
⌘↵

�
(since b1 � b2)

= 2� P2 + P3 + d0t,c(v
⇤)
⌘�

�
+ d1t,c(v

⇤)
⇣
P2 �

⌘↵

�

⌘
+ 2d1t,c(v

⇤)P3. (by Eq. (30)) (31)

Note that Eq. (31) is linear in d0t,c(v
⇤), d1t,c(v

⇤), and d�2
t,c (v

⇤). It follows that Eq. (31) is maximized

when dit,c(v
⇤) = dt,c(v

⇤) for some i 2 {1, 2, 3}.

6 Conclusions

The major open question is to obtain a substantial improvement over Theorem 1.1 by establishing
rapid mixing of the flip dynamics (or any other dynamics) for general graphs when k > ↵1� for
a constant ↵1 < 1.8. If we restrict attention to triangle-free graphs the best known rapid mixing
result holds for k > ↵2� where ↵2 ⇡ 1.763... is the solution of ↵2 = exp(1/↵2) using spectral
independence [FGYZ21, CGŠV21] (or assuming girth � 5 using burn-in and local uniformity prop-
erties [DFHV13]). Can we utilize triangle-freeness to achieve similar bounds using a modified metric
as in this paper? It would be interesting to see if the threshold ↵2 is only an obstacle for certain
proof techniques (which utilize properties of the stationary distribution) or if it corresponds to the
onset of worst-case mixing obstacles for local Markov chains on locally dense graphs.
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