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ABSTRACT

The surge in demand for eÿcient radio resource management has

necessitated the development of sophisticated yet compact neural

network architectures. In this paper, we introduce a novel approach

to Graph Neural Networks (GNNs) tailored for radio resource man-

agement by presenting a new architecture: the Low Rank Message

Passing Graph Neural Network (LR-MPGNN). The cornerstone of

LR-MPGNN is the implementation of a low-rank approximation

technique that substitutes the conventional linear layers with their

low-rank counterparts. This innovative design signiÿcantly reduces

the model size and the number of parameters. We evaluate the per-

formance of the proposed LR-MPGNN model based on several key

metrics: model size, number of parameters, weighted sum rate of

the communication system, and the distribution of eigenvalues

of weight matrices. Our extensive evaluations demonstrate that

the LR-MPGNN model achieves a sixtyfold decrease in model size,

and the number of model parameters can be reduced by up to 98%.

Performance-wise, the LR-MPGNN demonstrates robustness with

a marginal 2% reduction in the best-case scenario in the normal-

ized weighted sum rate compared to the original MPGNN model.

Additionally, the distribution of eigenvalues of the weight matrices

in the LR-MPGNN model is more uniform and spans a wider range,

suggesting a strategic redistribution of weights.
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1 INTRODUCTION

Eÿcient radio resource management is pivotal in the ever-evolving

landscape of wireless networks, yet it grapples with the challenges

of real-time problem-solving due to inherent non-convexity and

computational complexity. Traditional optimization techniques of-

ten fall short in addressing the scalability and complexity of large-

scale, non-convex problems.Motivated by deep learning’s successes,

Graph Neural Networks (GNNs) have become a key approach for

tackling complex wireless network challenges [7, 8]. Existing deep
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learning solutions for wireless networks, while successful to a de-

gree, are encumbered by their considerable model size and compu-

tational intensity, limiting their practicality in real-time scenarios

and environments with constrained computational resources [10].

Moreover, these methods exhibit deÿciencies in adaptability to

the dynamic and ever-changing scale of wireless networks, ne-

cessitating a more versatile and scalable solution. Eÿorts in Tiny

GNNs [6, 9] aim to address this, such as using neighbor distillation

strategies for implicit knowledge learning from deeper GNNs [9],

which depends heavily on the teacher model’s quality. Another

approach is the Topologically Consistent Magnitude Pruning [6],

which maintains topological consistency in extracted subnetworks

but complicates optimization and requires extensive experimenta-

tion. Despite these innovations, none have been applied to radio

resource management. To address this, we introduce the Low Rank

Message Passing Graph Neural Network (LR-MPGNN), a novel

adaptation of GNNs for the task of radio resource management in

multi-user Multi-Input Single-Output (MISO) wireless networks.

The LR-MPGNN utilizes a low-rank approximation (LRA) technique

to revolutionize GNNs into a compact and eÿcient paradigm, mak-

ing it ideal for environments where computational resources are

limited.

Conventional deep learning architectures such as Multi-Layer

Perceptrons (MLPs) and Convolutional Neural Networks (CNNs)

are hampered by scalability and generalization constraints, partic-

ularly in expansive wireless network settings. To transcend these

limitations, the application of Tiny Machine Learning (Tiny ML)

principles, particularly via LRA, revolutionizes GNNs into a par-

adigm that is both compact and eÿcient, making it well-suited

for deployment in environments where resources are constrained.

This transformation results in a Tiny GNN architecture that is sig-

niÿcantly more manageable in terms of computational resources.

This addresses the scalability and generalization challenges that

previous models have encountered.

1.1 Contributions

The main contributions of this paper are as follows:

(1) We present LR-MPGNN, an innovative adaptation of GNNs

for radio resource management. By integrating LRA tech-

nique, we signiÿcantly reduce the computational complexity

and model size, making our approach ideal for deployment

in environments with limited computational resources.

(2) The LR-MPGNN model demonstrates a drastic reduction in

model size without signiÿcantly compromising performance.

Speciÿcally, we achieve a sixtyfold decrease inmodel size and

a reduction of up to 98% in the number of model parameters,

facilitating deployment in resource-constrained settings.
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(3) By employing TinyML principles and LRA within the GNN

framework, our work addresses signiÿcant challenges in

radio resource management, including computational com-

plexity in real-time problem-solving. Our approach provides

a scalable and eÿcient solution for managing radio resources

in dense and dynamic wireless networks.

Through these contributions, we aim to bridge the gap between

theoretical machine learning models and their practical application

in the complex domain of wireless communications, particularly

in leveraging the emerging capabilities of TinyML for eÿcient and

scalable radio resource management.

1.2 Organization and Notation

The paper is organized as follows: Section 2 presents the system

model and problem deÿnition. Section 3 introduces the proposed

low-rank approximated GNN. The evaluation of the proposed ap-

proaches is in Section 4. Finally, Section 5 concludes the paper.

Notation: In this paper, vectors are shown by small bold-italic

face letters a and capital bold-italic face letters A show matrices.

The rank of matrix A is represented by rank(A). A is a set and 0 is

a scalar. The 8th element and the number of elements of set A, are

shown via A[8] and |A|, respectively. |0 | is the magnitude of the

complex number 0. The transpose and Hermitian of a matrix/vector

are shown by (.)T, (.)†, respectively. k.k2 denotes ;2-norm of a

vector. D;å; and C<å= represent a diagonal matrix of dimension

; å ; and a complex matrix of dimension< å =. The =th diagonal

element of a diagonal matrix D is denoted by D= . R denotes the

set of all real numbers. I# denotes the # å # identity matrix.

0# and 1# are the # -dimensional all-zeros and all-ones vectors,

respectively. We use CN(`,f2) to denote a circularly symmetric

complex Gaussian random vector with mean ` and variance f2.

Finally, % (.), (.)å andE(.) denote the probability, the optimum value

and the expectation, respectively.

2 SYSTEM MODEL AND PROBLEM
DEFINITION

This work explores a multi-user Multi-Input Single-Output (MISO)

wireless network consisting of # active transceiver pairs, denoted

by the set N = {1, 2, . . . ,# }. Each transmitter (TX) is equipped

with #C antennas, while receivers (RX) are single-antenna systems,

as depicted in Fig. 1.

Considering {B=}
#
==1 as the unit-norm signals transmitted from

the =th TX to its corresponding RX, and deÿning the beamform-

ing/precoding matrix Q = [q1, q2, . . . , q# ]T 2 C#å#C where q=
represents the precoder at the =th transmitter, the received signal at

the=th RX can be modeled as~= = h†=,=q=B=+
Õ#
8=1,8<= h

†
8,=

q8B8 +== ,

where h8,= 2 C
#C is the channel vector from the 8th TX to the =th

RX, and == á CN(0,f2=) denotes the Additive White Gaussian

Noise (AWGN) at the =th RX.

Furthermore, the entire network’s channel characteristics are

encapsulated in a tensor H 2 C |V |å |V |å#C . The elements of this

tensor, H8,=,: = h8,= 2 C
#C for {8,=} 2 N , include both diagonal

elements (desired channels) and non-diagonal elements (interfer-

ence channels) for each transceiver pair. This channel tensor is

accessible to the central processing unit (CPU). The CPU’s respon-

sibility includes the construction and periodic updating of the Deep

Learning (DL) model.

2.1 Graph Modeling of P2P Wireless
Communications

The P2P wireless network under consideration is modeled as a di-

rected graph, depicted in Fig. 1. In this graph, each transceiver pair

is represented as a vertex, speciÿcally the =th transceiver pair cor-

responds to the =th vertex. Vertex features encapsulate transceiver

properties, while a directed edge from vertex 8 to vertex 9 indicates

interference from TX 8 to RX 9 , with edge features describing the

interference channel properties. Interference is considered only

when the TX-RX distance is less than a threshold )3 .

î�î1
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3
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1

3

î�î
Figure 1: System Model

Formally, the graph is denoted as G(V, E), withV and E repre-

senting vertices and edges, respectively. The vertex feature matrix

is Z 2 C |V |å (#C+2) , where Z=,: = [h=,=,F=,f
2
=]

T includes channel

vector h=,= , weightF= , and noise power f2= for each vertex =. The

adjacency feature tensorA 2 C |V |å |V |å#C is deÿned below, where

h8,= representing the channel vector from the 8th TX to the =th RX.

A8,=,: =

(

0#C
, if {8,=} 8 E,

h8,=, otherwise.
(1)

Using these deÿnitions, the received signal at the =th RX is refor-

mulated as ~= = Z†
=,1:#C

q=B= +
Õ#
8=0,8<= A

†
8,=,:q8B8 + == , leading to

the Signal-to-Interference-plus-Noise Ratio (SINR) at the =th RX as:

SINR= =

|Z†
=,1:#C

q= |
2

Õ#
8=1,8<= |A†

8,=,:q8 |
2 + Z=,#C+2

. (2)

Given this SINR, the objective of the system is to ÿnd the optimal

beamformer that maximizes the weighted sum rate. The problem is

formulated as:

max
Q

9

=2N

Z=,#C+1 log2 (1 + SINR=), (3a)

s.t. kq= k
2
2 ÿ %max, 8 = 2 N (3b)

where Z=,#C+1 represents the weight for the =
th pair, based on the

deÿnition of the vertex feature matrix Z.

To optimize this system, we utilize a three-layer message passing

graph neural networks (MPGNN) described in [3, 4, 7], in which in

each layer, each vertex updates its representation by aggregating
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features from its neighbor vertices. Speciÿcally, the =th,= 2 N ,

vertex in the :th,: 2 {1, 2, 3}, layer of MPGNN updates by:

~
(: )
= = MLP2

7

G
(:�1)
= , max

92+ (=)

n

MLP1
ã

G
(:�1)
9

,A9,=,:

;o

ç

,

G
(: )
= = V

ã

~
(: )
=

;

, (4)

where MLP1 and MLP2 are two diÿerent multi-layer perceptrons

(MLPs). In addition, G
(0)
= = Z=,: is the input feature of node =, +(=)

denotes the set of the neighbors of =, A9,=,: represents the edge

feature of the edge ( 9,=), and V is the sigmoid function. The output

of this optimization problem is the beamforming vector Q that it is

optimized by minimizing the loss function ;å in the ÿnal layer:

;å = �E(

#
9

==1

Z=,#C+1 log2 (1 + SINR= (å))) . (5)

Our analysis in Section 4 demonstrates that the size of the trained

MPGNN model scales with the number of transmit (TX) antenna

elements, denoted by #C . The model input Z=,: is dependent on this

parameter. From a wireless communication engineering perspec-

tive, a larger number of antenna elements is preferred as it enhances

the communication’s system performance [1, 2]. However, when

considering deployment for edge or on-device implementation, a

smaller model size is advantageous. To reconcile these opposing

requirements and reduce the model size, we employ low-rank fac-

torization discussed in the subsequent sections. Henceforth, we

refer to the unaltered model as the original model.

3 MODEL SIZE REDUCTION VIA LOW-RANK
LINEAR LAYERS

In the proposed MPGNN model in this section, we aim to reduce

the model size without signiÿcantly compromising the learning ca-

pability and the performance of the communication system. This is

achieved by substituting standard linear layers of MPGNNwith cus-

tom low-rank linear layers. These layers oÿer a parameter-eÿcient

alternative to traditional dense layers, particularly beneÿcial in

large-scale models.

3.1 Low-Rank Linear Layer

The core idea behind the low-rank linear layer is to decompose a

typical linear operation into two sequential linear transformations

involving lower-rank matrices. Given an input feature vector x 2

R
3in , where 3in represents the input dimension, the output y 2

R
3out of a standard linear layer (with an output dimension 3out) is

computed as:

y = Wx + b, (6)

where W 2 R3outå3in is the weight matrix and b 2 R3out is the bias

vector. In contrast, the low-rank linear layer decomposesW into

two matrices U 2 R3inåA and V 2 RAå3out , where A is the rank of the

approximation (A ' min(3in,3out)). The operation thus becomes:

y = (VU)x + b (7)

This decomposition cuts the number of parameters from3inå3out
to A å (3in + 3out), leading to a more compact model.

We can reduce the number of parameters of the system so long

as the number of parameters A å (3in + 3out) is less than A (i.e.,

mn). If we would like to reduce the number of parameters in A by

a fraction p, we require the following to hold.

3.2 Implementation in LR-MPGNN

In the context of our MPGNN model, the standard linear layers

are replaced with the proposed low-rank linear layers. Algorithm 1

outlines this process:

Algorithm 1 Low-Rank Linear Layer in MPGNN

Require: Input features X 2 R#å3in , rank A

Ensure: Output features Y 2 R#å3out

1: Initialize U 2 R3inåA ,V 2 RAå3out

2: for each layer in the MPGNN do

3: Compute Y (VU)X

4: Apply activation function (e.g., ReLU) to Y

5: X Y ù Feed to next layer

6: end for

7: return Y

3.3 Impact of Rank A on Model Size and System
Performance

The choice of rank A in the low-rank linear layer is pivotal, as

it directly inÿuences the balance between model complexity and

the communication system performance. The minimum value of

A , typically set to 1, oÿers the most signiÿcant reduction in model

size. This extreme compression, however, may lead to substantial

information loss, adversely aÿecting the model’s representational

capacity and the system’s performance. Conversely, the maximum

value of A , equal to the minimum of the input and output dimen-

sions (min(3in,3out)), represents no reduction in rank and hence

no compression. This setting retains the full capacity of the orig-

inal linear layer but oÿers no advantages in terms of model size

reduction.

In practice, the optimal value of A is found between these two

extremes. A smaller A results in a more compact model, beneÿcial

for deployment in resource-constrained environments, but it may

compromise the model’s ability to capture complex patterns in

data. On the other hand, a larger A preserves more information

and may yield better system’s performance, but with diminishing

returns in terms of model size reduction and computational eÿ-

ciency. Therefore, selecting an appropriate A involves balancing

the trade-oÿ between the model size and the communication sys-

tem performance, often requiring empirical experimentation and

validation on speciÿc tasks and datasets.

3.4 Parameter Reduction in Graph Neural
Networks

GNNs are powerful tools for learning on graph-structured data.

However, the complexity of these models often leads to a large

number of parameters, which can be a hindrance for deployment

on resource-constrained devices. Low-rank matrix factorization

is a technique employed to reduce the number of parameters in

neural networks, thereby decreasing the computational cost and

memory requirements. In this section, we derive a general formula



tinyML Research Symposium’24, April 2024, Burlingame, CA Ahmad Ghasemi and Hossein Pishro-Nik

for the parameter reduction fraction ? after applying low-rank

approximations to the weight matrices in a GNN.

3.4.1 General Formula for Parameter Reduction. Consider a GNN

with two fully connected layers denoted as MLP1 and MLP2. The

ÿrst layer, MLP1, has dimensions [;11 · #C , ;12, ;13], and the second

layer, MLP2, follows with dimensions [;13 + ;21 · #C , ;22, ;23 · #C ].

The original number of parameters for each layer is given by the

product of its dimensions. After applying low-rank approximations,

MLP1 and MLP2 are factorized into pairs of matrices with ranks 01
and 02 respectively. The new number of parameters for each layer

is thus the sum of the parameters of these factorized matrices.

The parameter reduction fraction ? is then deÿned as:

? = 1 �
Low-Rank Parameters

Original Parameters
(8)

where Low-Rank Parameters is the sum of the parameters after

low-rank approximation for both layers, and Original Parameters

is the sum of the parameters before approximation.

3.4.2 Our Case. Applying the general formula to our case where

MLP1 has dimensions [6 · #C , 64, 64] and MLP2 has dimensions

[64 + 4 · #C , 512, 2 · #C ], we map the layer dimensions to our gen-

eral variables ;11, ;12, ;13, ;21, ;22, ;23 as follows: ;11 = 6, ;12 = ;13 =

64, ;21 = 4, ;22 = 512, ;23 = 2.

Substituting these values into the general formula for ? , we

obtain the speciÿc expression:

? =

�3#C01 � 3#C02 + 1728#C � 9601 � 54402 + 18432

576(3#C + 32)
(9)

This expression allows us to calculate the parameter reduction

for any given rank approximations 01 and 02, and the number of

antennas #C in the model. In Subsection 4.3, we will demonstrate

how the ? value varies with diÿerent values of #C , 01, and 02 .

3.5 Adaptability and Hardware Eÿciency

The design and implementation of LR-MPGNN consider not only

computational eÿciency and scalability but also adaptability to

dynamic network environments and eÿcient hardware resource

utilization.

3.5.1 Hardware Characteristics and Resource Utilization. The LR-

MPGNN model is speciÿcally designed to operate within the con-

straints of hardware commonly used in wireless network systems.

The LRA technique signiÿcantly reduces the computational com-

plexity and memory requirements, making the LR-MPGNN model

suitable for deployment on devices with limited computational

power and memory, such as IoT devices and edge computing nodes.

3.5.2 Operational Dynamics and Adaptability. The LR-MPGNN

model is able to adapt to changes within the network environ-

ment eÿectively. This adaptability is crucial for managing radio

resources in dynamic and dense wireless networks where network

conditions can ÿuctuate rapidly. While the primary training of the

LR-MPGNN model occurs oÿine, leveraging historical data and

simulations to capture a wide range of network scenarios, the model

is also equipped with mechanisms for incremental learning. This

enables the LR-MPGNN to update its parameters in response to

new environmental conditions or network conÿgurations without

requiring a complete retraining process.

The decision to retrain the model depends on the extent of en-

vironmental or network changes. For signiÿcant shifts in network

topology or usage patterns, a more comprehensive retraining may

be warranted. However, for minor changes, the model can adjust

through lighter updates, ensuring continuous optimization of radio

resources without substantial computational overhead.

4 PERFORMANCE ANALYSIS

This section assesses the proposed tiny MPGNN models, namely

LR-MPGNN. It focuses on assessing the impact of low-rank approx-

imation on several key aspects: the size of the model, the perfor-

mance of the communication system, and the distribution of the

model’s weights.

For our dataset, we simulated transceiver pairs within a speciÿed

rectangular area, randomly placing transmitters and distributing

their corresponding receivers uniformly within a distance range

of [3min,3max]. The channel models, based on the approach in [3],

deÿne the TX-RX channel as h9,8 = 10�! (3 98 )/20
p

k 98d 98g98 for all

pairs in N . Here, !(3 98 ) = 148.1 + 37.6 log2 (3 98 ) represents path-

loss at distance 3 98 (in kilometers),k 98 is the antenna gain (9 dBi),

d 98 is the shadowing coeÿcient, and g98 follows a CN(0#C
, I#C

)

small-scale fading distribution.

To reduce Channel State Information (CSI) training overhead, we

assumed channels exist only for transceiver pairs separated by less

than 500 meters. Our dataset split comprises 2000 training samples

and 500 testing samples, each including # transceiver pairs.

The employed GNN architecture, identical to those in [2, 7], is a

3-layer graph neural network, as detailed in Section 2.1. It inputs

channel states {Z†
=,1:#C

}#
==1 and users’ weights {F=}

#
==1, producing

user beamforming vectors. The loss function is as deÿned in (5). For

optimization, we utilized the Adam algorithm [5] with a learning

rate of 0.001. The number of transceiver pairs # and Signal-to-

Noise Ratio (SNR) settings were consistent across both training and

testing phases.

4.1 Model Size

This subsection presents a comparison of the relative sizes of low-

rank approximated models (LR-MPGNN) to the original model

(MPGNN), using variable ranks 01 and 02. This comparison is key

to understanding the eÿcacy of low-rank approximation techniques

in reducing model size. Here, the number of antenna elements at

the transmitter, denoted as #C , is 512, and the number of transceiver

pairs, # , is 3. Additionally, the maximum values for 01 and 02 are

set to 64 and 512, respectively, because the maximum possible rank

for MLP1 is 64, and for MLP2, it is 512.

First, we assess the impact of adjusting the rank parameters

01 and 02 on the model size, as detailed in Table 1. The values

presented in this table are calculated by dividing the size of the

low-rank approximated models by the size of the original model

before the application of low-rank approximation. This table shows

that as the rank parameters 01 and 02 increase, the size of the

approximated model also grows but remains smaller than the full-

sized original model. Particularly noteworthy is the substantial size

reduction when both rank parameters are at their minimum (both
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01 and 02 set to 4), where the model becomes 59 times smaller than

the original, illustrating its potential in scenarios requiring lower

storage or computational resources.

Table 1: Relative Size of Low-Rank Approximated Models

Compared to Original Model

a1

a2
4 16 32 64 128 256 512

4 58.82 22.42 12.29 6.45 3.31 1.68 0.84

16 25.87 15.10 9.71 5.66 3.09 1.62 0.83

32 14.81 10.51 7.58 4.87 2.84 1.55 0.81

64 7.98 6.54 5.27 3.80 2.44 1.42 0.77

Furthermore, a general trend of increasing relative size of the

approximated model is observed with an increase in either 01 for

a ÿxed 02 or vice versa. This indicates that both rank parameters

signiÿcantly impact the resulting model size. Increasing both 01
and 02 simultaneously results in a closer approximation to the

original model size, demonstrating a critical balance between model

complexity and approximation ÿdelity. Additionally, the non-linear

nature of size reduction, with unequal contributions from diÿerent

dimensions, suggests a limit to the achievable compression without

signiÿcant information loss.

In addition, the values less than one in the last column demon-

strate that the size of LR-MPGNN increases when the selected rank

for MLP2 is 512. This could be attributed to the fact that the actual

rank of MLP2 is less than 512.

4.2 Communication System Performance

In this subsection, we evaluate the system performance of the LR-

MPGNN model based on the weighted sum rate deÿned in (3). The

results represent the weighted sum rate achieved by LR-MPGNN,

normalized by the weighted sum rate of the original MPGNNmodel.

Table 2: Normalized weighted sum rate

a1

a2
4 16 32 64 128 256 512

4 0.762 0.819 0.596 0.739 0.723 0.57 0.765

16 0.971 0.603 0.896 0.68 0.68 0.487 0.819

32 0.743 0.603 0.652 0.714 0.67 0.64 0.99

64 0.80 0.71 0.612 0.552 0.844 0.884 0.853

Table 2 indicates a varied performance across diÿerent parameter

settings for 01 and 02. Notably, the model achieves peak perfor-

mance at 01 = 16 and 02 = 4 with a normalized weighted sum rate

of 0.971. This suggests that the LR-MPGNN model is highly eÿec-

tive under these speciÿc settings, aceiving a very close performance

to that of the original MPGNN model.

Conversely, the conÿguration at 01 = 16 and 02 = 256 yields

the lowest normalized rate of 0.487, which could be indicative of

suboptimal parameter selection for these conditions. The presence

of this outlier prompts further investigation into the underlying

causes of such a performance dip. We should note that to ensure

a fair comparison, we kept all parameters constant, including the

optimizer, learning rate, batch size, among others, during the train-

ing of both the MPGNN and LR-MPGNN models. Therefore, while

a 50% decrease in the performance might seem substantial, it is

important to recognize that this could potentially be improved by

adjusting the aforementioned parameters.

Interestingly, themodel performance does not exhibit a monoton-

ically increasing or decreasing trend with respect to the parameters

01 and 02, suggesting a complex relationship between these pa-

rameters and the resulting eÿciency. For example, a notably high

value of 0.99 is observed at 01 = 32 and 02 = 512, which contrasts

with the adjacent values and indicates an area of potential optimal

parameter space.

These ÿndings underscore the importance of parameter tuning in

the application of the LR-MPGNN model and suggest that further

studies should be conducted to understand the dynamics of the

model’s performance over its parameter space fully.

4.3 Analysis of Parameter Reduction

To better understand the impact of low-rank approximations on

parameter reduction in MPGNN, we visualize the parameter reduc-

tion fraction ? in (9) as a function of the ranks 01 and 02 used in

the approximations. Here, #C = 512 and # = 3.

Figure 2: Heatmap visualization of ?

The heatmap in Figure 2 provides a color-coded representation of

the reduction fraction ? , with each cell corresponding to a speciÿc

combination of 01 and 02. The y-axis represents the rank 01, and the

x-axis represents the rank 02. The color in each cell indicates the

value of ? , following a scale where blue signiÿes lower values of ?

(indicating less parameter reduction or an increase in parameters),

and yellow represents higher values (indicating more substantial

parameter reduction). The annotated values within each cell pro-

vide the precise reduction fraction ? for each rank combination.

This ÿgure provides insightful observations: 1. Eÿectiveness of Low-

Rank Approximations: For certain combinations of 01 and 02, the

reduction fraction ? approaches 1, indicating a signiÿcant reduction

in parameters, which is desirable for model eÿciency, 2. Impact

of Higher Ranks: As the ranks 01 and 02 increase, the reduction in

parameters diminishes, and for some higher values, ? even becomes
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negative. This indicates an increase in the number of parameters,

suggesting that high ranks may counteract the beneÿts of low-rank

approximations, and, 3. Optimal Rank Selection: The optimal choice

of ranks for low-rank approximations depends on the desired bal-

ance between model complexity and parameter reduction. Lower

ranks generally lead to higher parameter reduction but may also

impact the model’s ability to learn complex representations.

4.4 Comparison of Weight Distributions

This section discusses weight distribution changes in our MPGNN

model before and after applying low-rank approximation.

4.4.1 Original Model Weight Distribution. The weight distribution

of the original MPGNN model is presented in Figure 3. The dis-

tribution exhibits a Gaussian-like behavior centered around zero.

This is a typical characteristic of well-initialized neural networks

where the weights are often sampled from a distribution with zero

mean, which promotes balanced learning dynamics and prevents

the early saturation of neurons’ activation functions.

Figure 3: Weight distribution of the original GNN model

before low-rank approximation. The weights are normally

distributed, indicating a standard initialization scheme.

4.4.2 Low-Rank ApproximatedModelWeight Distribution. After ap-

plying low-rank approximation, the weight distribution undergoes

a substantial transformation, as depicted in Figure 4. The resulting

distribution is more uniform and spans a wider range, suggesting a

redistribution of weights towards a more diversiÿed set of values.

This redistribution magniÿes as ranks 01 and 02 decrease. This

can be attributed to the factorization process, which decomposes

the weight matrices into lower-dimensional spaces, thereby alter-

ing their inherent structure and potentially leading to a broader

exploration of the solution space during training.

4.4.3 Discussion. A comparative analysis of Figures 3 and 4 indi-

cates that low-rank approximation not only reduces the model’s

complexity by decreasing the number of parameters but also im-

pacts the weights’ distribution. One potential advantage of such a

change could be the introduction of regularization eÿects, as the

model is compelled to maintain the communication system’s per-

formance with a constrained set of parameters, possibly leading to

(a) 01 = 4 and 02 = 4 (b) 01 = 16 and 02 = 4

(c) 01 = 32 and 02 = 4 (d) 01 = 64 and 02 = 4

Figure 4: Weight distribution of LR-MPGNN.

better generalization. However, this alteration also raises concerns

regarding the model’s capacity to represent complex functions, as

the expressiveness of a neural network is partially determined by

its weight diversity. Thus, it is crucial to carefully choose the rank

of approximation to strike a balance between model eÿciency and

representational power.

5 CONCLUSION

In conclusion, this work has successfully demonstrated the viability

of leveraging low-rank approximation within the architecture of

Graph Neural Networks for radio resource management. The pro-

posed Tiny Message Passing Graph Neural Network (TMP-GNN)

stands as a testament to the eÿciency of model compactness with-

out signiÿcant performance compromise. Our results are twofold:

they reveal a substantial reduction in model size by a factor of 60

and a decrease in the number of model parameters by 98%, which

is a remarkable feat in neural network optimization.

Despite the considerable reduction in model complexity, the

performance metrics of the LR-MPGNN model oÿer compelling

evidence of its eÿcacy. In the best-case scenario, the performance

degradation compared to the original MPGNN model is a negligible

2%, while the worst-case scenario shows a 50% decrease. This delin-

eates the conditions under which the TMP-GNN model maintains

high eÿciency, providing valuable insights for its deployment in

various scenarios.

Moreover, the analysis of the eigenvalue distribution for the

weight matrices in the LR-MPGNN model indicates a uniform

spread across a wider range. This suggests an advantageous redistri-

bution of weights that underpins a more diversiÿed representation

capability, potentially enhancing the model’s ability to generalize

and thus further justifying the low-rank approach.

Overall, our research underlines the potential of low-rank ap-

proximations in reducing the computational overhead of GNNs,

while retaining a robust performance proÿle. These ÿndings not

only pave the way for more eÿcient neural network designs in the

ÿeld of radio resource management but also open avenues for future

research in model optimization strategies across various domains.
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