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ABSTRACT

Accurate identification of late mechanical activation (LMA)
regions is crucial for optimal cardiac resynchronization ther-
apy (CRT) lead implantation. However, existing approaches
using cardiac magnetic resonance (CMR) imaging often over-
look myocardial scar information, which may be mistakenly
identified as delayed activation regions. To address this issue,
we propose a scar-aware LMA detection network that simul-
taneously detects myocardial scar and prevents LMA local-
ization in these scarred regions. More specifically, our model
integrates a pre-trained scar segmentation network using late
gadolinium enhancement (LGE) CMRs into a LMA detec-
tion network based on highly accurate strain derived from dis-
placement encoding with stimulated echoes (DENSE) CMRs.
We introduce a novel scar-aware loss function that utilizes the
segmented scar information to discourage false-positive de-
tections of late activated areas. Our model can be trained with
or without paired LGE data. During inference, our model
does not require the input of LGE images, leveraging learned
patterns from strain data alone to mitigate false-positive LMA
detection in potential scar regions. We evaluate our model
on subjects with and without myocardial scar, demonstrating
significantly improved LMA detection accuracy in both sce-
narios. Our work paves the way for improved CRT planning,
potentially leading to better patient outcomes.

1. INTRODUCTION

The accurate detection of LMA regions in the heart is cru-
cial for optimizing CRT in patients with heart failure [1, 2, 3].
LMA detection directly impacts treatment outcomes by guid-
ing the optimal placement of CRT lead [4, 5]. Precise iden-
tification of these regions is essential for improving cardiac
function and patient quality of life. An Initial effort proposed
a semi-automatic approach based on active contour [5], the
widespread use of which is limited by its requirement of in-
tense data-specific parameter tuning and its limited accuracy.
A breakthrough is made with the introduction of deep learn-

ing methods that enabled fully automatic LMA detection [6].
Building on this foundation, researchers have continued to re-
fine these techniques, incorporating multitask learning strate-
gies [7] to leverage related cardiac analysis tasks, and devel-
oping multimodal approaches that combine strain prediction
with LMA detection [8], resulting in significant accuracy im-
provements. Despite these advances, the accuracy of current
methods remains limited due to the lack of consideration for
myocardial scar tissue, which regions can produce strain pat-
terns similar to those of LMA, potentially misleading detec-
tion algorithms.

To address these challenges, we propose a novel scar-
aware LMA detection network that effectively integrates
myocardial scar information predicted from pre-trained seg-
mentation networks. Our framework includes two key com-
ponents: (i) a scar segmentation network using paired LGE
CMRs, and (ii) an LMA detection network utilizing strain
data derived from DENSE CMRs. We introduce a novel loss
function, which effectively suppresses false-positive LMA
detection in areas identified as scar regions. The segmented
scar maps are well utilized to guide the LMA detection net-
work to focus more accurately on delayed activated scar-free
regions, minimizing the influence of scar-induced motion
abnormalities. Our model is designed to be flexible, allowing
training with data that may or may not include corresponding
LGE images. This enables the use of a larger and more di-
verse training dataset. In the inference stage, LGE images are
not required, making the model more practical for widespread
clinical application. We tested our approach on real cardiac
MR images and compared it with the state-of-the-art deep
learning LMA detection method [7]. Experimental results
show that our proposed method achieves improved LMA de-
tection accuracy, especially when myocardial scar presents.

2. BACKGROUND

Building strain matrix. Instead of directly using strain
video, we first build strain matrices, which represent my-
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of-the-art model, where the later incorrectly treat scar region
as LMA region.

ocardial contraction in a relatively low-dimensional space,
reducing the cost of network training and risk of overfitting.
From DENSE image sequences of T frames (Fig. 1(a)), we
first compute circumferential strain along the myocardium
(Fig. 1(b)). We then evenly divide the myocardium region
into N, sectors, which forms a strain vector of corresponding
frame. The sectors are indexed counter-clockwise, starting
from the middle of the intersection points between the left
and right ventricles (marked with blue circles in Fig. 1(a) and
(b)). We then construct a Ny x T strain matrix by concate-
nating all strain vectors across time.

Quantify LMA with TOS. The time to the onset of circum-
ferential shortening (TOS) of each sector is used to quan-
tify the activation time, as TOS has been shown to have a
close linear relationship with electrical activation time [9].
Higher TOS values indicate more severe delayed activation
(Fig. 1(c)) [9, 1]. LMA regions typically exhibit a distinct
pattern of pre-stretching (yellow) followed by late activation
(blue), as shown in Fig. 1(c).

Challenges from myocardial scarring. Scarred regions can
cause early stretching patterns similar to LMA, potentially
misleading detection algorithms. Although these regions
also show a distinct pattern of little to no contraction in later
frames, current methods often fail to differentiate this from
true LMA. Fig. 1(c) demonstrates how existing algorithms
can be misled by the early stretching in scar regions.

3. METHODOLOGY

Our proposed scar-aware LMA detection network contains
two key components: a scar segmentation network and an
LMA prediction network with a novel scar-aware loss func-
tion. This integrated approach enhances LMA detection ac-
curacy by accounting for the presence of myocardial scar tis-
sue. An overview of our proposed scar-aware LMA detection

framework is shown in Fig. 2.

Scar segmentation network. We build on recent work in
myocardial scar segmentation [10], which performs joint seg-
mentation of the myocardium and scar tissue. This approach
improves scar segmentation accuracy by masking out back-
ground regions, leading to more precise identification of scar
areas. The network predicts myocardium segmentation My
from a given LGE CMR image I, then uses M M to weight
I before generating scar segmentation Msg. The loss func-
tion combines myocardium segmentation loss Lj; and scar
segmentation loss Lg:
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where © represents element-wise prediction. Ly, and Lg are
defined as a weighted sum of cross-entropy and Dice loss,
respectively. The training site size is denoted by Ny, and i
represents the data index.
Scar-aware LMA prediction network. The LMA predic-
tion network takes the highly accurate strain matrices derived
from DENSE CMR images as input, and predicts correspond-
ing TOS curves, which representing the activation time along
the myocardium. The key of our approach is the scar-aware
TOS prediction loss function, which is designed to suppress
false-positive LMA predictions in scarred regions. To com-
pute the loss, we first convert the predicted scar segmenta-
tions into scar vectors S € [0, 1] representing scarring ratios
within each myocardial sector (e.g., the ratio of scarred pixels
to total myocardium pixels in each sector), and they serve as
weighting parameters in the LMA detection network. Let T’
and T represent the ground-truth and predicted TOS curves,
respectively. Noting ), as the scarring sectors and (¢ as the
scar-free sectors, we formulate the scar-aware loss function as
follows:

d

2>

2)
where N denotes the number of training data samples, i is
the data index and j is the myocardial sector index. 5“1-, jeo.
represents the non-zero scarring ratios, and A is a weighting
parameter. This loss function encourages accurate TOS pre-
diction in scar-free regions while penalizing non-zero predic-
tions in scarred areas, effectively minimizing the influence of
scar-induced motion abnormalities on LMA detection.

Our model is flexible in requiring LGE CMRs. In scenar-
ios where LGE CMR images are unavailable or unnecessary,
the model defaults to standard LMA detection [6]. This al-
lows the network to be trained on a mixture of data with and
without LGE images. Moreover, once trained, the network
can operate without additional LGE images during inference.
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Fig. 2. An overview of our proposed scar-aware LMA detection framework.

This adaptable design ensures that our scar-aware LMA de-
tection network can be applied across various clinical scenar-
ios, maintaining high detection accuracy while adapting to the
available imaging data. As aresult, it serves as a versatile tool
for improving cardiac resynchronization therapy planning.

4. EXPERIMENT

We validate our method on DENSE strain data paired with
LGE images. We compare out model with the state-of-the-art
LMA detection approach [7].

Data acquisition. The LGE CMRs were acquired with
pixel size of 1.5 mm? and slice thickness=8mm. All LGE
images have corresponding manually labeled scar segmenta-
tion from experts. The myocardial strain is computed from
the displacement field collected from cine DENSE scans.
The DENSE data was performed in 4 short-axis planes at
basal, two mid-ventricular, and apical levels (with tempo-
ral resolution of 17 ms, pixel size of 2.652 mm?, and slice
thickness=8mm). Other parameters included displacement
encoding frequency k. = 0.1 cycles/mm, flip angle 15°, and
echo time = 1.08 ms. All the strain matrices are aligned to
40 temporal frames with zero padding or clipping. All of the
ground-truth TOS curves are manually labeled by experts.
Experimental settings. In our experiment, we first pre-
trained the scar segmentation model with 510 LGE images
from 140 subjects. We then train the LMA detection network
on short-axis DENSE slices, using predicted scar maps from
the pre-trained segmentation model. 342 DENSE slices from
71 subjects were used, which are divided into 216 slices for
training, 54 for validation, and 72 for testing from different
subsets of subjects. Among these, 33 slices with myocardial
scarring (with over 50% transmurality) have corresponding
LGE images, 13 of which are used for testing. Note that
when testing, LGE images are not provided to the models as
input. Instead they are used only to identify the scar regions
and evaluate how much the models are misled by scars.

We first quantitatively compare the accuracy our scar-
aware model with the baseline algorithm, using TOS (N =
128) mean absolute error as the evaluation metric. The TOS
values are shifted so that TOS=0ms if no LMA exists. We
then visually compare the 3D activation maps reconstructed
from the TOS prediction. We also built 3D scarring maps
from the scar segmentation, which show the scarring regions
on the 3D myocardial surface and can be used to identify
whether the model successfully avoid making false-positive
LMA prediction at scarring region.
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Fig. 3. Left: Visualization of four examples comparing the
predicted and ground-truth TOS. Right : A boxplot compari-
son TOS error.

Experimental results. The left panel of Fig. 3 shows exam-
ples of TOS prediction from the compared methods as well as
the ground truth, where the scar-affected region are marked
with the arrows. It shows that our scar-aware network man-
aged to tell the scarring region from LMA region, and avoid
making false-positive predictions, while the baseline method
was mislead by the scar pre-stretch pattern. The right panel of
Fig. 3 displays quantitative results of TOS error, demonstrat-
ing that our model outperforms the baseline in predicting TOS
in both scarred (2.36 (0.98, 3.18)ms vs. 4.60 (3.49, 8.07)ms)
cases and overall cases (2.87 (1.72, 4.08)ms vs. 3.46 (2.27,
4.57)ms).
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Fig. 4. (A) 3D visualization of activation maps generated
from ground truth and predicted TOS. (B) 3D scarring map of
the same subject. A notable scar is marked with red bounding
box, which our model identifies from LMA region, while the
baseline misidentifies it as an LMA region.

Fig. 4 visualizes 3D LMA maps using predicted TOS
from our model and the baseline, compared to manually
labeled ground-truth TOS. Regions with TOS large values
(marked with red rectangles) indicate severe late activation.
The 3D scarring map built from the ground-truth scar seg-
mentation of the same subject is also provided. It shows that
the baseline method is mislead by the scarring region in the
basal inferolateral (marked with a red rectangle) while our
method made much more accurate prediction.

5. CONCLUSION

In this paper, we present a novel scar-aware LMA detection
network that addresses a key limitation of current methods
by incorporating myocardial scar information. Our approach
well utilizes scar segmentations from LGE data to benefit the
LMA detection based on DENSE-derived strain data, result-
ing in substantially improved LMA detection accuracy, espe-
cially in cases involving myocardial scarring. Our model’s
capability to distinguish LMA regions from scar-induced
motion abnormalities, along with its flexibility to operate
with or without LGE data, enhances its clinical utility. This
advancement in LMA detection accuracy holds promise for
optimizing CRT lead implantation planning, supporting more
informed decision-making, and potentially improving out-
comes for heart failure patients receiving CRT.

Compliance with ethical standards. This work was sup-
ported by NIH 1R21EB032597. All studies involving human
subjects and waiver of consent were approved by our institu-
tional review board.
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