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Abstract.  Rotational inertial mechanisms (RIMs) are promising for structural control as their mass amplification properties
allow them to impart large mass effects. While most research on RIMs involves the linear inerter, there is interest in utilizing the
variable mass effects from nonlinear RIMs (NRIMs). One type of NRIM is the variable inertia rotational mechanism (VIRM),
which features moving masses in the device’s flywheel that alter the flywheel’s rotational inertia. While active and semi-active
forms of the VIRM were previously considered, few studies have considered the passive VIRM. Consequently, the effect of VIRM
parameters, the VIRM’s capacity for shifting natural frequencies, and the performance of the VIRM under various loading types
remain uncertain. This paper investigates the VIRM when attached to a single-degree-of-freedom primary structure. A
mathematical model is derived for the combined primary structure and VIRM. Numerical simulations are carried out to determine
the effect of the VIRM on the system’s natural frequencies and dynamic response. This study demonstrates that the VIRM can
significantly shift the primary structure’s instantaneous and pseudo-natural frequencies, add higher frequency dynamics, and
reduce the response of the structure in many cases, but that the impact of the VIRM is highly dependent on load type and

amplitude.
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1 Introduction

Excessive vibration in civil engineering structures can
cause human discomfort, fatigue, damage, and even the
collapse of the structure; thus, vibration control is critical in
many structures. In recent years, rotational inertial
mechanisms, most prominently the inerter, have attracted
attention in academia and industry as a potential part of
passive vibration control systems. The term ‘inerter’ was
proposed by Smith in the context of the force-current analogy
between electrical and mechanical networks (Smith 2002).
The inerter is a two-terminal mechanical element that can be
realized with various physical means, e.g., the ball-screw
assembly, rack-and-pinion, and fluid-based mechanisms
(Smith 2002, 2008, 2012; Swift et al. 2013). The inerter
generates force proportional to the relative acceleration
across its two terminals, and the constant of proportionality
is known as ‘inertance’, which has the same units as mass.
The inerter can produce a mass amplification effect by
transforming translational motion into the rotational motion
of'a flywheel. Hence, the inerter has been applied to a number
of novel vibration control systems as well as to reduce the
mass of modified conventional vibration control systems.
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Examples of inerter-based vibration control devices include
the tuned-mass-damper-inerter, rotational inertia double-
tuned mass damper, rotational inertia viscous damper, inertia
mass damper with an electromagnetic damper, friction
pendulum inerter system, and inerters combined with an
external rocking wall of a frame system (Di Egidio et al. 2021;
Giaralis and Petrini 2017; Huang et al. 2019; Hwang et al.
2007; Jangid 2022; Javidialesaadi and Wierschem 2019;
Marian, Laurentiu and Giaralis, Agathoklis 2017; Nakamura
et al. 2014; Wang et al. 2019; Zhao et al. 2019).

Most of the previously studied devices featuring
rotational inertial components generate constant effective
mass, whereas very few provide variable effective mass (Li
et al. 2021b; Mahato et al. 2019; Xu et al. 2015; Zhang et al.
2020). Due to their constant effective mass, inerters can be
described as linear rotational inertial mechanisms. However,
as the research in this field progresses, there is growing
interest in understanding the dynamics of nonlinear
rotational inertial mechanisms that produce variable
inertance. The inertance of such nonlinear rotational inertial
mechanisms is not fixed; rather, the inertance can depend on
factors related to the device’s response, such as the relative
displacement of the device and the rotational velocity of the
device’s flywheel. These nonlinear rotational inertial
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mechanisms can be divided into categories including
functionally varied inertance mechanisms (b = f (u,i,ii)

where b is inertance that varies as a smooth function of
u, u, i , the displacement, velocity, or the acceleration of the

structure) and state-switching mechanisms (b=b, if condition
1, b=b; if condition 2, and so on). While this study will
consider a functionally varied inertance mechanism, an
example of a state switching mechanism is found in the
clutch-inerter damper. The clutch-inerter damper consists of
two flywheels and a passive clutch system, which transforms
translational motion into flywheel rotational motion and
prevents the kinetic energy in the flywheel from transferring
back to the structure (Javidialesaadi and Wierschem 2019;
Makris and Kampas 2016; Makris and Moghimi 2019;
Malaga-Chuquitaype et al. 2019; Talley et al. 2023; Wang
and Sun 2018).

Functionally varied inertance mechanisms that have
attracted much attention in recent years include a
geometrically nonlinear inertance mechanism that has been
used as a vibration isolator (Moraes et al. 2018; Yang et al.
2020). The geometrically nonlinear inertance mechanism
features a pair of oblique inerters and the studies’ results
demonstrated that the geometrically nonlinear inertance
mechanism possesses several performance benefits over
conventional isolators, such as, improved higher frequency
isolation and smaller displacement amplitude and force
transmissibility, depending on the frequency range and
amplitude of the excitation. Alternatively, other functionally
varied inertance mechanisms have been developed by using
a controller or a continuously variable transmission to adjust
inertance in traditional tuned damper systems. Some
examples of these are an adaptive tuned heave plate to
mitigate heave motion of floating platforms (Ma et al. 2023),
an adaptive tuned viscous inertance damper (Ali Sadeghian
et al. 2021), and a tuned mass damper with changeable
inertance (Brzeski et al. 2017).

In addition to these, another functionally varied inertance
mechanism can be produced by modifying the rotational
inertia of a device’s flywheel (Dong et al. 2018; Jauch 2015;
Kushwaha et al. 2020; Li et al. 2021a; Mahato et al. 2019;
Xu et al. 2015; Zhang et al. 2020). Nonlinear rotational
inertia from the variable moment of inertia of a flywheel can
be obtained through flywheel designs that allow the
distribution of mass to change during the response of the
flywheel; for example, a flywheel with masses that can move
within slots radially on the flywheel. These variable inertia
rotational mechanisms (VIRM) have the potential to cause
significant passive changes to the dynamics of the system
they are attached to, which may be exploited as part of a
vibration control strategy. However, the majority of VIRM
research has been pursued through active or semi-active
control methodologies that require input energy and intricate
hardware. This includes work on a variable inertia flywheel
(VIF) with energy storage and power control functionality,
and VIF with magneto-rheological technology to adjust
natural frequency and suppress the torsional vibration of a
system (Dong et al. 2018; Li et al. 2021b; Ullman 1978; Yuan
et al. 2010). In contrast to the above active and semi-active
mechanisms, Xu and Yang proposed a VIF for a passive

vehicle suspension system and showed improved rider
comfort, better road handling and safety and reduced
suspension deflection under most circumstances (Xu et al.
2015; Yang et al. 2019). Additionally, researchers have
explored installing VIF in various rotary systems such as
hydraulic motors, diesel generators, wave energy converters
and wind turbine rotors. These studies aimed to enhance
stability, increase power absorption bandwidth and enable
passive vibration control of the systems (Jauch 2015;
Kushwaha et al. 2020; Li et al. 2021a; Mahato et al. 2019;
Yang et al. 2016).

Although research has been conducted on VIRMs to
evaluate their effectiveness in reducing the response
amplitude of dynamic systems, studies investigating passive
VIRMs are rare. Furthermore, the existing limited research
on passive VIRMs has predominantly concentrated on their
application in rotating machinery systems, while their
potential utilization in other types of mechanical or civil
engineering structures has been unexplored. The majority of
the prior investigations have primarily examined the VIRM’s
performance under sinusoidal or impulse loading conditions;
thus, its behavior under random excitation scenarios remains
unknown. As a result, there is a notable lack of understanding
of the impact of variable rotational inertia on the natural
frequency changes in the structure they are utilized in under
different loading scenarios. While limited research exists in
understanding the effect of constant rotational inertia on a
system’s natural frequencies (Chen et al. 2014), additional
investigation is imperative to characterize the effect of
variable rotational inertia on the natural frequency and the
response of a structure equipped with a VIRM under external
excitation. To address these gaps in knowledge, the main
objective of this study is to numerically evaluate the effects
of a passive VIRM on the natural frequency and response
amplitude of a single-degree-of-freedom (SDOF) structure
under different types of excitations.

In this study, a passive VIRM is considered in which
multiple mass-spring-damper elements are symmetrically
positioned on a circular flywheel, which is connected to a
ball screw and attached to a SDOF structure. The vibration
of the structure with the VIRM drives the ball screw and
results in the rotation of the VIRM flywheel. Centrifugal
force pushes the masses on the flywheel outward towards the
boundary of the baseplate causing a dynamically changing
inertia. In this numerical study, the VIRM is incorporated
into a SDOF structure and numerical simulations are carried
out given a collection of initial displacement conditions,
harmonic loading, and white noise loading to investigate the
evolution of the structure’s frequencies during the response.
The effects of the damper properties of the VIRM on the
natural frequency shift, overall fundamental frequency, and
the response reduction are also explored. Comparisons in this
study are made with a fixed inertia rotational mechanism
(FIRM).

The organization of this paper is as follows. In Section 2,
the mechanism of the VIRM and a dynamic model of it
installed in a SDOF structure are presented. The
methodologies for determining relevant response measures,
such as the instantaneous frequency, overall fundamental
frequency, and an H, response measure, are described in



Influence of the variable inertia rotational mechanism on natural frequency and structural response

~ .
Slider . Ny
mass Y <

Spring
Force
k > (-\"Rubc)
k
]\' sd (.\'-.\'o) g
X
k . R‘ubc
Xo Slider Radial
ky (x-Ry3) _ Movement

(a) Schematic diagram of the VIRM with slider masses
shown located at their initial position

(b) Force-displacement relationship of the trilinear spring
attached to the slider masses on the flywheel of the VIRM

Fig. 1 Characteristics of VIRM

Section 3. The effect of the VIRM on the instantaneous and
overall fundamental frequencies are presented in Sections 4
and 0, respectively. The effectiveness of the device to reduce
the structure’s displacement response under different loads is
discussed in Section 6. In Section 7, the contributions of this
study are summarized and conclusions are drawn.

2 Variable inertia rotational mechanism

In this study, the variable inertance of the VIRM is
produced by utilizing the flywheel rotational velocity to
passively alter the arrangement of masses in the flywheel. A
schematic diagram of the VIRM flywheel considered is
presented in Fig. 1(a). This VIRM flywheel consists of a
circular plate with four symmetrically spaced mass-spring-
damper elements. These masses are constrained such that
they can only move radially in the flywheel. When the
flywheel is at rest, the springs attached to these masses are at
their free length and the masses are located at an initial radial
position near the center of the flywheel, xo. As the absolute
rotational velocity of the flywheel increases, the masses
move, in general, radially outward from the center of the
flywheel due to the increasing centrifugal force. When the
absolute flywheel velocity decreases, the masses will slide
back towards the center of the flywheel. The movement of
these masses results in the variable moment of inertia of the
flywheel. The viscous dampers (cs¢) in the VIRM flywheel
damp the motion of these masses and dissipate energy in the
system. The radial motion of the masses causes a restoring
force in the springs that increases with the change in the
radial position of the masses. The springs are assumed to
have a trilinear elastic force-displacement relationship with a
soft central spring ks and two equal, but much stiffer, penalty
spring segments, as illustrated in Fig. 1(b). The relatively
stiff penalty spring stiffness (k,) in the VIRM is activated
when the slider mass approaches the center or the upper
bound contact point near the outer ring of the flywheel and
works to restrain the movement of the slider mass. The
position of the two locations on the radius where the penalty
spring stiffness segments are engaged are called the lower
bound contact point, Rx. and upper bound contact point, Rusc,
respectively. Centrifugal force on the slider masses increases

with larger flywheel rotational velocity and increased radial
position of the masses; thus, the slider masses are expected
to move significantly beyond R, with increasing system
excitation. However, due to the lower centrifugal forces near
the center of the flywheel, the masses are not expected to go
significantly beyond R ..

Compared to a VIRM, all of the components of a FIRM
are kept fixed in the same configuration regardless of the
flywheel’s rotational velocity. In this study, comparisons of
the resulting dynamics and behavior of a system with a
VIRM will be made to a system with a FIRM with its masses
fixed in their initial position and with a FIRM with masses
fixed at the Ry position.

The relationship between the flywheel angular velocity (

0) and the relative velocity () of the structure between the
attachment points of the VIRM or FIRM is as follows

O=aui (1)

where o is the coefficient governing this relationship.
Utilizing a ball-screw, a is 27z/p where O is the lead of
the ball-screw.

The total moment of inertia of the VIRM flywheel
assembly can be expressed as

1 3 1
Jvmy = —nmy| =d> +hy® |+ —mr” +nmyx®
i = o d[4 d d ] o M d (2)

where n, my, dy, hy, m., and , are the number of

slots, slider masses, slider diameter, height, mass of the
flywheel without the sliders, and radius of the flywheel,
respectively. Note that the total flywheel moment of inertia
includes static components that are dependent on the
flywheel mass and dimensions and a component that depends
on the radial position of the slider masses. In Eq. (2), the last
term (nmsqx’) is governed by the radial position (x) of the
slider masses. The radial position is replaced with xy or Ry
to determine the constant moment of inertia of the two FIRM
flywheels. The inertance generated by the constant moment
of  inertia of  the FIRM configuration  is

b, = ((1/12)*nmsd ((3/4)* s +h5d2)+(1/2 )*mcr2 +nmxdy2)a2
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for the FIRM with slider masses fixed at ‘y’ location. This
study replaces the ‘y’ location with xy or R,s.. The normalized
inertance for the two FIRM configurations is expressed as

ﬂ(\’ = X0 R ﬂ/ = max
T = ()

Fig. 2 shows a model with a VIRM attached to a SDOF
structure subjected to an external force, P(?). In this figure,
my represents the mass of the structure, ks, and ¢, are the
stiffness and viscous damping coefficients of the structure.
When the VIRM is replaced with a FIRM, the structure
behaves like a typical spring-mass-damper-inerter (linear)
structure and the inertance value provided to the structure is
constant.

u
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Fig. 2 SDOF primary structure with VIRM attached

The equation of motion of the system can be obtained
using Lagrange’s equation. The Lagrangian, L, is defined as

L=T-V (4)

where 7 and V are the system’s kinetic energy and potential
energy, respectively. The kinetic energy of the system is
calculated considering the motion of the structure, the
rotational velocity of the flywheel, and the components of the
slider mass velocity. The potential energy of the structure
includes the energy stored in all the springs, this includes
springs related to the structural stiffness (k;) and the VIRM
stiffness (kw, kp). The effect of gravity is ignored here. The
kinetic energy, potential energy, and the virtual work of non-

conservative forces, 0W, can be formulated as

1 1(1 3 1

T =—mu*+—| —nmy| =d,* +hy” |+—m.r* |’
2 20112 4 2

+nlmxd§c2 + nlmsdxzozza2

lkuz-knlk (R —-X )2+nlk (x—R )2

5 > sd \ LNipe 0 PG Ibe

+nkg, (Rlbc - xo)(x = Ripe ),x < Rpe (5)

V= %k\.uz + n%km (x— Xo )2 JRipe S x < Rupe

1 1 1
Ekxuz + nEkxd (R,,;,(, —Xo)z + ngkp (X_R,,hc)z

+ nksq (Rupe — Xo )(x - Rubc)ax 2 Rupe
OWye = (P(t — ¢l )Ou — neg  X0x

Note that in these equations the multiple slider masses in
the VIRM are assumed to be moving synchronously with the
same radial motion.

Lagrange’s equation for the system in generalized
coordinates is given as

dor or oV .
77._7+7:pi(t),l=192; (6)
dt dg;, 0q; 0q;

where ¢, is the displacement of the primary structure (u)
and ¢, is the radial displacement of the slider mass (x).

The resulting equations of motion can be expressed as

mgii + ansd édﬂ,2 +hy? +lmar2 a’ii
12 4 2
+2nmgxxa’ i + nmy x> + e+ k= P(t) (7)

. 2.2 .
Mg X —mggxa ™ + Fuy +cyx=0

In the above equations, Fi represents the restoring force
from the trilinear springs in the model. This restoring force
varies depending on the radial position of the slider masses
and can be defined as

szd = ksd (R/bc _-xO) + kp (-x_ R/hr)a x< R/hc
Foa =k (x - xO)aRlbc Sx <Ry (®)
ngsd = ksd (Rubc _XO) +kp (X _Rubc)ax 2 Rubc

In most previous work, the Coriolis force on the slider
masses in the VIF was not accounted for (Xu et al. 2015;
Yang et al. 2020; Zhang et al. 2020). For example, the kinetic
energy generated from the tangential velocity component of
the sliders are ignored. This study accounts for forces acting
radially and tangentially to the direction of motion.
Additionally, unlike most other work in this area, penalty
springs that restrain the excessive motion of the slider masses
are considered in this study (Dong et al. 2018; Xu et al. 2015;
Yang et al. 2016).

For the FIRM, the slider mass springs and dampers are
removed, and the slider masses are kept fixed with the
flywheel frame at either xy or R.s, which results in the
constant moment of inertia of the flywheel. The equation of
motion of the primary structure with the FIRM is

1 3 1
mii+| —nmy| =d? +hy* |+—mr? +nmyy* |oi
; {12 .d[4 sd sd ) 5 sd Y

+e i+ k= P(t)

)

In Eq. (9), the fixed position of the slider mass is denoted
byy.

To facilitate a generalized analysis and comparison of
system behavior across different physical parameters, Eq.
(7), Eq. (8), and Eq. (9) are normalized. This normalization
reduces the number of independent parameters and
highlights the system’s fundamental characteristics. The
normalized system parameters are the slider mass ratio,
flywheel mass ratio without sliders, frequency ratio, structure
damping ratio, slider damping ratio, and stiffness ratio,
which are defined in the next paragraph. Using the
normalized parameters, Eq. (7), Eq. (8), and Eq. (9) can be
rewritten as
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1 3 1
U'| —my| =d,* +hy' |+ = o’ |?U"

[12 ”‘(4 “ “’j 2
R2npa’ fXX U+ mn X2*U"+25U'+U = F (1) |(10)

X"—X%U'2+ Fy+28,X'=0

Fy =Rype = X0+ k(X = Ry ), X < Ry

Fp =X =X, Rjpe <X < Rype (11)
Fy=Rype — X0+ K(X - Rul]c)’X 2 Ry

1 3 1
U+| —nu| =d* +hy? |+ —pr® +nuY? |?U"
(12 ﬂ1£4 d d) 2#2 th

REU+U=F(t)

(12)

where 1 = my; / m,: slider massratio;
1 =m, | mg: flywheel mass ratio without slider masses;

,, = W : natural frequency of the primary structure
without VIRM/FIRM,;

Wyq =ksa | My, linearized natural frequency of the
slider mass; f=w,, / w,, : frequency ratio;

U =u :displacement of the primary structure;

U'=1/ w, : normalized velocity of the primary structure;

U"=ii/ w, ?: normalized acceleration of the primary structure;

X =x: displacement of the slider;

X'=x/ wy: normalized velocity of the slider;

X"=%/w,*: normalized acceleration of the slider;

& = ¢, / 2mya,, : primary structure damping ratio;

&y =c. /2m,,: linearized damping ratio of the slider mass;

K=k, /ky: stiffness ratio;

F(t)=P(1)/k : normalized force amplitude;
F; : normalized slider stiffness restoring force

While the normalization scheme reduces the number of
independent parameters, note that it does not render all
parameters dimensionless. For instance, the spatial
dimensions, such as displacement, position, height and depth
retain their dimensions. The original dimension of the
displacement allows for a more intuitive understanding of the
primary structure's movement (in ‘m’), which is a key
response considered in this study. Furthermore, the
complexity of the system makes it challenging to achieve
complete non-dimensionality. Velocity and acceleration, for
example, are normalized by the natural frequency of the
corresponding system. Similarly, the external forces (N) are
normalized by the stiffness (N/m) of the primary structure,
resulting in a unit of displacement (‘m’) for all load cases
considered.

3  Numerical analysis and response measures

In this study, the response of the structure with the VIRM
or the FIRM, presented by the equations of motion in Eq. (7)
and Eq. (9), is simulated under different loadings using the

MATLAB implicit solver (MathWorks 2022a) with an output
frequency set at 4000 Hz. The loading considered in different
parts of this study are harmonic excitations with different
input frequencies, initial displacements, and white noise. The
structure and VIRM parameters selected for these numerical
simulations are shown in Table 1. While Table 1 provides a
single value for the slider damping ratio, Sections 4, 5 and 6
will investigate its influence on system’s dynamics across a
range of values.

Table 1 Structure and VIRM parameters

Symbol Description Value
n Slider number 4
I Slider mass ratio 0.0005
7 Flywheel mass ratio (without sliders) 0.0017
o, Primary structure natural frequency 291 Hz
(without VIRM/FIRM)
oy Slider mass linearized natural frequency 42 Hz
B Frequency ratio 14.64
g, Primary structure inherent damping ratio 0.02
Sua Linearized slider damping ratio 4
K Stiffness ratio 100
A, Inertance ratio at initial position, X, 0.086
e Inertance ratio at R, 0.25
dy Slider diameter 0.02 m
hy Slider height 0.015m
r Radius of the flywheel 0.1m
Xo Initial radial position of the slider 0.0l m
a Proportionality constant between the 100 rad/m
relative velocity of the structure and the
angular velocity of the flywheel
Ry Radial position of the upper bound contact | 0.095 m
point of the penalty spring
Ry Radial position of the lower bound contact | 0.005 m
point of the penalty spring

The parameters listed in Table 1 are selected based on the
following considerations. The primary structure’s natural
frequency and the damping ratio are selected to represent
typical values observed in civil structures, ensuring the
relevance of the findings to real-world applications in
structural vibration control. The proportionality constant
governing the relationship between the structure’s relative
velocity and the flywheel’s rotational velocity, along with the
flywheel’s inherent parameters, are specifically chosen to
encompass a wide range of rotational inertia variability. This
deliberate selection facilitates a thorough examination of the
impact of the VIRM’s dynamically changing inertia on the
response of the primary structure.

To quantitatively evaluate the response of the dynamic
systems studied, several measures are calculated from the
system responses. These measures, which are described in
detail below, include the instantaneous frequency (o), the
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weighted average instantaneous frequency (@, ), the overall
fundamental frequency (w,) , and the H, norm analog
(#.). The g, @, , and o, are normalized using the

natural frequency of the structure without the VIRM or the
FIRM, @, , which can be expressed as

_ WF
LIJ’U/F T

S0

a,, @y
s lIJ(u =
o (13)

, Yo, =

@,

S0

where ¥, , ¥, and ¥, are the normalized @y ratio,

normalized @, ratio and normalized , ratio,
respectively.

Additionally, the harmonic loading frequency (w,) and
the response frequency (o,) considered in the study are

also normalized by the natural frequency of the structure
without the VIRM or the FIRM. These are expressed as

¥=—¥, = (14)

where ¥, and ¥, are the loading frequency ratio and
response frequency ratio, respectively.

3.1 Instantaneous frequency

The @; is a function of the system properties and
response and is a measure of the preferred vibration
frequency of a dynamic system. The @ ofa linear primary
structure remains constant over all time, regardless of the
response of the structure, and is the same as the natural
frequency of the structure itself. However, the @y of a
nonlinear system is not necessarily constant and can vary
continuously with the response of the system.

There are numerous potential approaches that could be
used to determine the @y (Frank Pai 2010; Huang et al.
2009; Wang and Gao 2013). Although most of these
approaches are based on the assumption that system data
corresponds to a linear dynamic response, the @y can be
used as a tool to characterize specific dynamic systems along
their nonlinear time-history response (Moaveni and Asgarieh
2012). This study uses a method in which instantaneous
modal parameters are produced from an eigen analysis using
the linearized system properties of the nonlinear structure
(i.e., tangent stiffness matrix and tangent mass matrix).
Details on the process use to determine @y at each time
instant are presented below.

In a nonlinear structure, the general force equilibrium
equation can be presented by

Py :Fint(uaﬁaii) (15)

where P, contains the externally applied loads and K

contains the internal forces, which are functions of the
system degrees of freedom (DOF) (u,) and the derivatives

of those DOF  (u,,ii,). Any nonlinear equilibrium equation

can be linearized by perturbing the force about a known set
of evaluation points, u, , u, , and U, . A small
perturbation in the applied load corresponds to a perturbation
in the nodal DOFs, and a first-order Taylor series expansion
of the internal forces is expressed as

...\ OF,
Pext+dP:Fint(u07u0,u0)+ a : ‘u:un, du

u =i,
. ] (16)
LN
ou =i, Ol =i,

As u,, uy,and u, satisfyEq. (15), Eq. (16) canbe
reduced to

dP = i g, |du+ g 2 e, |0+ 0 "y, |l
ou =i, ou =i, Oil u=iy,

dp = [Kt(uoﬂin;ﬁo)]d“ +[C: (uo,ﬁn,ﬁo)]dﬁ

(17)

HM, (ug, iy, iy )1did

where K, (u,iii) , C,(u,u,ii), and M,(u,u,ii) are the

tangent stiffness, tangent damping, and tangent mass
matrices, respectively. These matrices can be expressed as
follows for an n degree of freedom system.

i aFinl,l aFim,l aFinl,l |
ou, ou, ou,
6Finl,2 6Fim,2 aFint,Z
o BFin
[Kt(u,u’u):l :Tut: ou, ou, ou, (18)
aFint,n aFim,rz aFint,n
| Ow ou,  ou, i
i aFim.l 6Fint.1 aFint.l i
ow, on,  ou,
alTil]t.Z aFim.Z aFint,Z
[C. (ll,ll,ll)] _ aiu‘ _ on, ou, ou, (19)
aEnt.n 6Enl.n 6Fim.n
| ow, o,  ou, |
i aFim,l aFint,l aFint,l ]
6ﬁ1 8ﬁ2 8ﬁn
6Fim,2 6Fint,2 6Fint,2
|:Mt (u,u’u)] = aiu' = alh allz alln (20)
aFim,n aFim.n aFint,n
| gi, o,  ai, |
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Accordingly, the tangent stiffness and tangent mass
matrices of the structure with the VIRM considered in this
study are defined as

R oR
M, = o 0%
or o
o ox
mg+n imm édmz +hy” |+ lm(‘r2 o’ +nmyx*a® 0
= 12 4 2
0 my | 1)
oR o
K, = ou  Ox
o, of,
ou  Ox
B k. 2nmgxa’i+2nmyxa’ii
0 —mya’i’ +ky

In the above equation for K, k. is replaced by k, when
the penalty spring becomes engaged, i.e., if x<Rjsc or x> Rupe-

Using the above equations, linearized mass and stiffness
matrices are produced at each time step in the simulation.
Finally, an eigenvalue analysis is performed at each time step
with M¢ and K¢ to estimate the @y of the system. As the
system with a VIRM is a 2DOF system, two natural
frequencies will result. The @y considered in this measure
is defined as the frequency with more substantial engagement
of the primary structure in its mode shape.

3.2  Weighted average instantaneous frequency

While @y varies over time, a single measure can be
derived from the time history of @y that provides
information on the overall behavior of the system. One of
these measures is @, , the weighted average value of @ .
To calculate @, , the time-history of the total energy of the

structure is considered as the weight. The weighted average
instantaneous frequency can be calculated as

N
ZVViCUIF,i
w, = (22)

N
W
i=1

i

where W; and w,; are the total energy and @y of the

structure at time step I, respectively, and N is the total
number of time steps in the response considered. When
computing the weighted average instantaneous frequency,
the total energy includes the energy in the structure and the
energy in the VIRM or FIRM attached to the structure. As

oy is constant for the structure with the FIRM, @, and
oy have the same value for the structure with the FIRM.

3.3  Overall fundamental frequency

Similar to @, , the overall fundamental frequency, @, ,

can be used to evaluate a system’s total dynamic response by
identifying the response’s lowest dominant frequency

component. While @, would not change for a linear

system, it can shift due to changes in the loading type and
loading amplitude for a nonlinear system.

In this study, estimated auto power spectral densities
(APSDs) of resulting numerically simulated primary
structure displacement time-histories are utilized to identify
®, of the structure. These estimated APSDs are produced
using Welch’s averaged, modified periodogram method of
spectral estimation (MathWorks 2022b). As the APSD of a
response can vary with the duration of the response
considered, the time-history signal duration chosen for each
analysis was 100 seconds. For harmonic and white noise
loading, a Hanning window with a number of points equal to
one tenth of the dataset length is applied and a 50% overlap
ratio is utilized. For the initial displacement condition, a 0%
overlap ratio is utilized and an exponential window with a
length of the same number of points as the dataset and an
exponential decay constant of 0.5.

The highest peak at a non-zero frequency in the APSD
function for the primary structure’s displacement response is
defined in this study as @, when considering the white
noise loading or an initial displacement. For a generalized
harmonic loading, the highest peak of the auto-spectrum
would not necessarily yield the actual @, of the system as
the highest peak could instead come from the frequency of
the forcing function. Consequently, an alternative definition
of , is used in this paper for the harmonic loading case.
For harmonic loading, the @, is defined as the loading
frequency that results in the largest peak APSD value. This
measure can be thought of as a pseudo resonance frequency
and is evaluated by considering the response and resulting
APSD to harmonic loading over a range of loading
frequencies.

3.4  H>Norm Analog

The H, quantifies variance amplification and can be
utilized to assess the impact of the VIRM on the normalized
primary structure displacement amplitude under dynamic
loading. When the structure is subjected to a loading p(?) and
its response output is z(?), the H, ofthe structure is defined
by

17 BENT
sz\/zﬁin,(]a)) do (23)

where H_,(jw) is the frequency domain transfer function
between the loading and response.

For a linear time invariant system with an analytically
determined transfer function, the H, can be determined

using Eq. (23). However, the same approach cannot be
applied to a nonlinear structure like the structure in this study
as an analytical transfer function is not available.

Consequently, this study considers an H, analog value as a
response measure, which is denoted as H, . For the initial

displacement and harmonic loading case, H, is determined
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by taking the square of the area under the estimated APSD
function for the structure’s displacement response between 0
rad/sec and the Nyquist frequency. For the random force
excitation case, the estimated transfer function is used to
produce H, instead of the APSD curve.

Normalized values of H, can then be produced. For the
initial displacement and white noise cases, the H, of the
structure with the VIRM is normalized by the H, of the
structure with the FIRM. For the harmonic loading case, the
maximum H, from the analyzed range of loading
frequencies with the structure with the VIRM is identified
and normalized by the identified maximum #, for the
structure with the FIRM. The normalized H, response
measure (%), can be expressed as

H,(VIRM)

i, (FIRM (at x,)) @4

4 Instantaneous frequency

To investigate the dynamic effects of the VIRM on the
primary structure, this section presents and explores
examples of the variation in the ‘¥, of the primary

structure with a VIRM subjected to various loading types,
loading amplitudes, and loading frequencies and for ranges
of slider mass damping. The loads considered in this section
are initial conditions, harmonic loading, and white noise. As
the structure with the VIRM is nonlinear in nature, the ¥,

continuously varies over time. To provide points of
comparison, the ¥, ~ of the structure with the FIRM is
provided when the sliders are locked at the initial position
(denoted as FIRM (at xy)) and when the sliders are locked at
the R, position (denoted as FIRM (at Rys.)). Note that the
structure with the FIRM (at R.s) will have a lower ¥,

than the structure with the FIRM (at x) as the slider masses
fixed at the R, position results in a higher moment of inertia.
Fig. 3 presents the effect of different load types on the ¥,

of VIRM and FIRM structural configurations, where, the

VIRM structure has a linearized slider damping ratio of 4
(£4=4). Fig. 3(a) shows that for the initial displacement, the

structure with the VIRM has a ¥, ~ of 0.96 initially,
identical to the constant ¥ of the structure with the

D
FIRM (at xy), as expected. As the structure responds to the
displacement initial condition, the ¥ oscillates between

about 0.96 and 0.84 for several cycles, then the amplitude of
the changes in the ¥, ~reduce and the ¥,  remains

around 0.96.
The shifts in the ¥, observed in Fig. 3(a) with the

VIRM are because of the movement of the slider masses
within the VIRM flywheel. The effective force on the slider
masses is related to the velocity of the flywheel; thus,
oscillations in the response of the structure result in
oscillations in the force on and radial displacement response
of the slider masses. As the ¥ is inversely related to the

holds an

inverse analog relationship with the slider mass displacement.
When the slider masses reach the furthest into the penalty
spring region, the VIRM generates a higher moment of
inertia than any other orientation of the slider masses and the
structure with the VIRM has the lowest observed ¥

Note that, while the high stiffness of the penalty spring helps
to restrain excessive displacements of the slider mass, the
model of the system does not consider a fixed maximum
allowable position of the slider masses; thus, the lowest
possible ¥, of the structure could vary depending on the

DI

moment of inertia of the structure, the ¥,

o

system’s parameters and applied excitation. Additionally, the
dynamic response of the structure to this initial displacement
dissipates due to damping in the system and the ‘¥,

returns to 0.96 with the slider masses coming to rest at their
initial positions. Fig. 3(b-c) also show that the ¥,

continuously shifts between 0.96 to 0.8 and 0.96 to 0.65 for
the harmonic loading case and white noise case, respectively.
However, as the harmonic loading and white noise on the
structure continues during the entire analysis, the structure
does not converge to a constant ¥, like the initial

displacement case.

VIRM ===== FIRM (at Rnbc) —-—-FIRM (at xo)

& o7l 095FTITIIINT r
09 bbbbbkiai...
0 0.85
05 : 5 6 _
0 10 20 30 0
Time (s)

Time (s)

20 30 "o 10 20 30
Time (s)

(a) Initial displacement = 1 m

(b) Harmonic loading with normalized
amplitude of 0.05 m at a loading frequency
ratio of 0.85

(c) White noise with normalized
RMS amplitude of 0.3 m

Fig. 3 Normalized instantaneous frequency, ¥, , of the primary structure with the VIRM (linearized slider damping ratio,
& =4) and the FIRMs for different loading types
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In order to investigate the effect of slider damping for
different types of loading, the ¥, ~ time histories
considering undamped (zero slider damping), low damped,
and highly damped slider masses are shown in Fig. 4, Fig. 5,
and Fig. 6 for the initial displacement, harmonic loading and
white noise cases, respectively. The displacement response
of the primary structure is also illustrated in the figures for
all the damping levels. Note that all structures analyzed, even
with the undamped slider masses, have the same 2% inherent
damping in the primary structure. Additionally, low damping
and high damping scenarios indicate a linearized slider
damping ratio, &4, 0f0.13 and 20.05, respectively in all the
figures mentioned above. Due to the nonlinear nature of the
VIRM, the &, is not the same as the damping ratio in
general. Rather, the effect of a given value of &4 will vary
depending on the radial position of the slider masses and
relative velocity of the primary structure. Consequently,
values of &4 greater than 1 do not necessarily mean the

slider should behave in an overdamped manner.
It can be observed Fig. 4 that the ¥,

oscillate with a maximum value consistently around 0.96. In
the zero slider damping case, the ¥ reaches a minimum

begins to

value of around 0.82 quickly after the initial displacement.
As the displacement response of the structure with zero slider
damping decays due to inherent structural damping, the
minimum value of the ¥,  increases until about 12

seconds into the response. After this point, the displacement

of the structure has mostly attenuated, but sustained
oscillations between about 0.96 and 0.91 remain in the ¥

()7 2
These sustained oscillations in ‘¥, are because energy is

trapped in the undamped sliders, but cannot transfer back to
the primary structure because the primary structure is no
longer effectively responding dynamically. When damping is
introduced to the slider mass, the fluctuations in the ¥

D
cease after some time and return to their initial values. For
instance, in the low damping case, the ¥, changes from

0.96 to 0.82 for the first 5 s and smoothly transitions to have
aconstant ¥ 0f 0.96. When the slider masses are heavily

damped, the sliders are restrained from moving rapidly. In
this case, the ¥, initially keeps changing, but over a
narrower frequency range before it finally progresses to a
constant 0.96 as the movement of the sliders cease. In this
high slider damping case, the ¥, of the structure with the

VIRM initially oscillates between 0.84 and 0.91, then the
¥, shifts between 0.91 and 0.93 at around 5 s, and then
steadily converges to 0.96. The displacement response of the

primary structure reduces to zero around the same time for
the damped cases as the undamped slider case because most
of the energy of the structure is dissipated by the structure’s
inherent damping.

The ¥, and the displacement time history of the

structure given different slider damping levels under
harmonic loading are plotted in Fig.. For all the slider

- VIRM ==oes FIRM (at R, ) —-—-FIRM (at x )
1 1
095 T
iy
N Bl 0.9 BRG ceccnceccscccsend
::, > B,‘ F
0.85
0.8 0.8
0 10 20 30 0 20 30 0 10 20 30
Time (s) Time (s) Time (s)
(a) ¥,, for zero slider damping (&, (b) W, for low slider damping ( £, =0.13) (c) ¥,, forhigh slider damping ( &
=0) =20.05)

~ 1 = 1 = 1
B ) £
- = -~
5 g 5

5 0 3 0 5 0
E - g
2 z 3

A1 A -1 A -1

0 10 20 30 0 20 30 0 10 20 30
Time (s) Time (s) Time (s)
(d) Displacement for zero slider  |(e) Displacement for low slider damping ( & ® Dlsplac§ ment fo_r high slider
. _ damping ( &, =20.05)
damping (& =0) =0.13)
Fig. 4 Effect of slider damping on the normalized instantaneous frequency, ¥, ,and displacement of the primary structure
for an initial displacement=1 m
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damping levels, the loading frequency was selected such that
it results in the largest total response. This figure shows that
the ¥, oscillates and changes with time for all the slider
damping levels. When the slider masses are undamped, the
¥, shifts between a range of 0.96 and 0.78 and includes
some abrupt changes in the lower bound envelope of the
¥, . Itis also observed that the ¥, oscillates between
0.96 and 0.80 for the low damping level and achieves a much
smoother lower bound envelope of ¥, . Furthermore, the
¥,, shifts between 0.91 and 0.81 in the highly damped

slider mass case after a short amount of time. The overall
reduction in the upper value of ¥, in the high damped

2 2

case is because the high damping makes the slider mass less
responsive; the slider is not able to quickly return each cycle
to the xy position and the slider movement ends up restricted
to the penalty spring region near the upper bound. This figure
also shows that the displacement response and ‘¥, reach

mostly steady state behavior after about 25 seconds in both
the slider damping cases.

Fig. 6 shows the V¥,

displacement of the structure for different slider damping
levels with a white noise loading with a normalized RMS
amplitude of 0.3 m. This figure shows that the ¥, shifts

between 0.96 and 0.65 for the zero slider damping case and

and the time-history of the

the lower bound envelope of the ¥ rapidly changes.
With the small amount of slider damping that is added to the

VIRM in the low slider damping case, the ‘¥, looks much

D

the same, but with a slight increase in the overall lower value
ofthe ¥, .Even inthe high slider damping case, the lower

envelope of the ¥

D
o, changes rapidly due to the continuous

but random loading. However, for the high slider damping
case, the ¥, ~ primarily oscillates between 0.91 and 0.7

and it does not reach the initial ¥, value of 0.96 again

similar to the harmonic loading case as presented Fig. 6(c).
Fig. 6 also shows that the ¥, is related to the response

amplitude of the primary structure. For example, in all cases,
the lowest ¥ occurs around 13 seconds, when the

primary structure experiences its maximum response.

D

D

The influence of the slider damping on the dissipation of
energy is illustrated in Fig. 7. This figure presents the energy
dissipated by the slider damping, as a percentage of the total
energy dissipated, versus &, for different loading types.
For this analysis, a unit displacement, a harmonic loading
with a normalized amplitude of 0.05 m at the pseudo
resonance frequency, and a white noise of normalized RMS
amplitude of 0.3 m are applied to the structure separately. For
the initial displacement loading, this figure shows that as the

o VIRM #e e e FIRM (at Rubc) —-—-FIRM (at xo)

0 10 20 30 0 20 30 0 10 20 30
Time (s) Time (s) Time (s)
(a) ¥, for zero slider damping (& (b) ¥, for low slider damping ( £, =0.13) (c) ¥,, forhigh slider damping (&

=0) =20.05)
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£ 5 5

5 5 50
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o, o, [
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= A A

0 10 20 30 0 )20 30 0 10 20 30

Time (s) Time (s) Time (s)

(d) Displacement for zero slider
damping ( &4 =0)

(e) Displacement for low slider damping ( &
=0.13)

(f) Displacement for high slider
damping ( &4 =20.05)

Fig. 5 Effect of slider damping on the normalized instantaneous frequency, ¥, ,and displacement of the primary structure

for harmonic loading with normalized amplitude of 0.05 m at load frequency ratio of 0.86 (zero slider damping) or 0.85 for
both slider damping cases
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o VIRM w0 e = FIRM (at R"bc) —-—-FIRM (at xo)
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damping ( &, =0),
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=0.13)

(f) Displacement for high slider
damping ( &4 =20.05)

Fig. 6 Effect of slider damping on the normalized instantaneous frequency, ¥
for white noise with normalized RMS amplitude of 0.3 m

, and displacement of the primary structure

@1

slider damping increases, the dissipated energy percentage
increases and reaches a maximum of 16% when & is 1.34.
Afterwards the dissipation percentage slightly decreases to
14% and stays similar for higher slider damping. A similar
trend is also noticed for the harmonic loading case with a
maximum energy dissipation of 11% for &, of 0.67 and a
close to 5% dissipation for higher slider damping. For the
white noise case, there is an initial peak of 10.27% in
dissipated energy percentage at &y of 0.80. This is
followed by a rapid reduction in dissipation percentage until
&a 1s 1.34, then a long increase in dissipation percentage

when &, is higher than 1.34. For example, when &y

increases from 6.68 to 13.36, the dissipation percentage
increases from 10.78% to 19.78%.

This section explored the dynamic effects of the VIRM
on the primary structure’s instantaneous frequency, ¥, ,

under various loading conditions, and slider damping levels.
The changes in VIRM ¥,  were compared with the

frequencies of the FIRM with different flywheel
configurations. The results showed the ¥ of the primary

structure with VIRM’s oscillated during the response of the
structure due to slider mass movement within the flywheel.
Higher slider damping generally resulted in a narrower
frequency range for the oscillations in ¥, . However, the

impact of slider damping on the primary structure’s

displacement response was less pronounced suggesting that
while slider damping influences ¥, , it does not always
translate to significant changes in overall structural response.

While only initial displacement, a specific frequency of
harmonic loading, and white noise loading where considered,
the results of this section give general insight on how the
¥,, of systems would vary in other types of loadings.
Other types of transient loads would result in variations in
v that attenuate. Given a periodic loading, repeated

patterns in ¥, are expected. Sustained loads that do not

2

have a well-defined periodicity may result in large changes
in ¥,, ,including durations when the variationin ¥, is
small and durations when it is large. A key point to note,
however, is that the variationin ¥, , and thus the resulting

overall system dynamics, will depend on the amplitude of the
loading applied to the system. This amplitude dependent
behavior will be explored in the next section.
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Fig. 7 Percentage of energy dissipation caused by the slider damping (linearized slider damping ratio, &) for different
loading types

5 Overall fundamental frequency

In this section, the effect of the VIRM on the ¥, of the
structure is examined. For this study, the W, of the

structure is determined based on the APSD of the
displacement response of the structure, as described in

Section 3.3. The ¥, can be qualitatively described as the

frequency the structure naturally prefers to vibrate at, which
can vary due to the type and amplitude of loading for
nonlinear systems. The ¥, isanalyzed for different loading

types, loading amplitudes, loading frequencies, and for
ranges of linearized slider mass damping ratios. The ¥, 1is

also presented in this section to compare with ¥, . Moreover,
the constant ¥, and ‘¥, of the structure with FIRM for

both locked positions are provided to contrast with values of
the structure with the VIRM.

Fig. 8 presents the displacement response APSDs of the
primary structure for a linearized slider damping ratio of 4
with an initial displacement condition, harmonic loading, and
white noise excitation. For each of the loadings in the figure,
APSDs, W, and ¥, of the structure with the VIRM and

the FIRM (at R.s and at xy) are shown. The frequency ratio
corresponding to the highest peak of the auto-spectrum, ¥, ,

indicates the pseudo resonance frequency ratio for the
structure with the VIRM. Note that W, is the resonance

frequency ratio of the structures with the FIRM. This figure
shows that for an initial displacement of 1 m, the structure
with the VIRM has a similar, but marginally lower peak
APSD displacement amplitude compared to both structures
with the FIRM (at R, and at x). It is also observed that the
¥, and ¥, arelower for the structure with the VIRM than
structure with the FIRMs. Additionally, ¥, is consistent
with the ¥, for the structures with the FIRM, as would be
expected. However, there are noticeable differences between
¥, and ¥, forthe structure with the VIRM, especially for

the harmonic loading (Fig. 8(b)) and white noise case (Fig.
8(c)). In the harmonic loading case, Fig. 8(b), the structures

are loaded at the forcing frequencies that produced the
highest peak APSD. For example, the structure with the
VIRM, the FIRM (at R.sc), and the FIRM (at x) are oscillated
at load frequency ratios 0.85, 0.88 and 0.96, respectively. It
is observed that the APSD of the VIRM is noisier than the
FIRMs and a super harmonic pseudo resonance frequency
can be noticed in the harmonic loading case. This super
harmonic pseudo resonance is observed for the structure with
the VIRM at a frequency ratio around 2.62 for all loading
cases, but it is much more noticeable for the harmonic
loading case.

Some of the trends seen in the initial displacement and
harmonic loading cases are seen in the results from white
noise loading in Fig. 8c. One major difference in the results
for the white noise case is that in the VIRM APSD curve the
¥, and the ¥, are positioned further to the left than for

the other load cases and the peak is reduced more relative to
the FIRM. Another major difference in these results is that
the VIRM APSD curve is more spread out. This increased
spread is likely due to the broadband nature of the loading in
the white noise case as well as the larger range of ¥,

covered by the VIRM in this case. Due to this increased

spread, there is expected to be more variability in the
resulting identified ¥, in the white noise loading case.
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Fig. 8 Auto spectral density plot and normalized weighted average instantaneous frequency, ‘¥, , of the primary structure with

the VIRM or the FIRM. Note that the value of normalized overall fundamental frequency, ¥, , for each case is defined as the

frequency ratio corresponding to that case’s peak point on the auto spectral density plot.

Fig. 9 can be utilized to contrast ¥, and ¥ of the

structure with the VIRM for different loading types over a
range of loading amplitudes. Recall that for the harmonic
loading case, ¥, and ‘¥, are determined using the

forcing frequency that yields the maximum displacement
amplitude in the frequency domain. To provide points of
comparison, ¥, for the structures with the FIRMs are also

presented. As expected, ¥, remains constant in the

structures with the FIRM for each loading type as the loading
amplitude does not affect the natural frequency of linear
structures. However, the added mass effect from the VIRM
continuously changes and depends on the loading magnitude
and thus the response magnitude. Therefore, ¥, and ‘¥,

for the VIRM vary for different loading magnitudes. It is
observed that W, and ‘¥, decrease when the loading

amplitude increases in nearly all cases. The decreased natural
frequency for the higher amplitude load is because the
resulting further extension outward of the slider masses of
the VIRM adds a higher mass effect to the overall structure,
which reduces the fundamental natural frequency of the
structure. Although there is a similar trend between the
frequency ratio and the loading amplitudes with white noise,
¥, is more irregular compared to ‘¥, . This is a result of

the broadening of the APSD curves with white noise loading,
as seen in Fig. 9. When the structure is subjected to a
comparatively lower loading amplitude, ¥, and ‘¥,

remained largely unchanged around 0.96, similar to the
structure with the FIRM, where the slider masses are fixed at
the initial position. In the lower loading amplitude, the slider
masses do not significantly move due to the lower rotational
velocity of the VIRM. At an initial displacement higher than
1.0mand 0.9 m, ¥, and ¥, arebelow 0.89, respectively,

which is the resonance frequency of the structure with the
FIRM (at Rupc). The reason that ¥, and ¥, can be lower

than the resonance frequency of the structure with the FIRM
(at Rusc) is because the slider masses can move into the
penalty spring region, causing lower ¥, . Similarly, ¥,

is lower than 0.89 when the normalized harmonic loading
amplitude is higher than 0.025 m and when the normalized
RMS white noise amplitude is higher than 0.08 m.
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, and normalized weighted average instantaneous frequency, ¥, ,
of the primary structure with the VIRM and the FIRMs versus linearized slider damping ratio, &, for different loading
types

Fig. 10 presents the influence of linearized slider mass
damping ratio &, on the ¥, and ¥, of the primary
structure under an initial displacement of 0.3 m, a harmonic
loading with a normalized amplitude of 0.01 m at pseudo
resonance frequencies, and white noise excitation with a
normalized RMS amplitude of 0.05 m. In addition, ¥, of
the structures with the FIRM are presented for comparison.
It can be observed that there is an overall decreasing trend in
the ¥, forthe VIRM with increasing values of &, for all
loading types. All deviations from this trend appear minor
except that in the harmonic loading case, ¥, initially
increases with increasing &, before it later reduces with

increased &, . In contrast, ¥, of the structure with the

VIRM remains almost the same for nearly all &, values for
each of the loading types considered. While ¥, and ‘¥,
are very similar in nearly all cases, ¥, is larger than ¥,

in all cases considered for the initial displacement loading.

For the harmonic and white noise loading cases, ¥,

becomes larger than ¥, as &, increases. While ¥

for the VIRM clearly varies with the slider damping level, as
seen in Fig. 4, Fig. 5, and Fig. 6, the results in Fig. 9 and
Fig.10 show that ¥, and ¥, are less influenced by the

slider damping and more influenced by the loading amplitude
changes.

This section investigates the influence of the VIRM on
the primary structure’s overall fundamental frequency, ¥,

and weighted average instantaneous frequency, ¥, under

By
various loading types, loading amplitudes, and slider
damping levels. The analysis utilized the estimated transfer
function and the auto-spectrum of the structure’s
displacement response to determine the ¥, and the time

history of ¥

Comparisons of the VIRM’s frequency measures are made to
the frequencies of the FIRM configurations. The influence of

values were used to calculate ¥, .

D
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slider damping on ¥, and ¥, observed in this section

were much less pronounced than the influence of slider
damping on ¥, observed in the last section. Instead,

loading amplitude emerged as the primary driver of changes
in the VIRM’s ¥, and ‘¥, . The results showed that the
VIRM structure’s ¥, and ¥, decreased as the load
amplitude increased. This is due to the VIRM’s variable mass
effect, where larger amplitudes cause greater slider mass
extension, effectively lowering the structure’s effective
natural frequency. These findings highlight the unique
dynamic characteristics of the structure with a VIRM, where
its frequency response is inherently coupled to both the
amplitude and type of loading applied. Although changes in
slider mass and slider stiffness are not investigated in this
study, it is anticipated that through design, sets of these
parameters could be chosen such that a desired shift in
system natural frequency, as measured by ¥, and ‘¥, ,

could be achieved for a given load type and amplitude.

6 Hyresponse measure

In this section, H, and X , which are defined in
Section 3.4, are used as measures of the performance of the
VIRM related to controlling the response of the primary
structure. These measures will be evaluated given different
types and amplitudes of loading. Furthermore, variations in
these performance measures with changes in &, are
considered in this section. As an example of how to interpret
a numerical value of the normalized response measure
reported in this section, a X of 0.6 for a VIRM
configuration would indicate a 40% decrease in H,
response measure for the structure with the VIRM relative to
the structure with the FIRM at initial position, xy.

The effect of slider mass damping on the response of the
primary structure is presented in Fig. 11 and Fig. 12. Fig. 11
compares the H, response measure of the structure with
the VIRM and the FIRMs for different &, values given
harmonic loading with a normalized amplitude of 0.05 m.
For each point along a given curve in this figure, the value of
that point is the H, when the harmonic load has a ¥,

equal to the x-axis value. Fig. 11 shows that for all &,
values considered, the maximum H, of the structure with
the VIRM occurs at a lower ¥, value compared to the

structure with the FIRMs. This is logical as the H, of the
structure should be greatest when it is excited at the
resonance frequency for the structures with the FIRM;
however, for the structure with the VIRM, the H, should
be greatest when it is excited at the pseudo-resonance
frequency and the additional added mass effects of the VIRM
can shift this pseudo-resonance frequency lower than the
resonance frequency of the structures with the FIRM. In
addition to shifting the location of the peak value, the VIRM
reduces the peak H, for all damping levels and also bends

the H, curve to the lower frequency in a manner usually
associated with softening systems (Nayfeh and Mook 2008).

This figure also shows that the peak values of the H, for
the VIRM, and the ¥, value that results in this peak value,

are all almost the same for the range of &y
considered.
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Fig. 11 H, of the primary structure versus loading
frequency ratio, ¥,, with various linearized slider
damping ratios, &, values given a normalized harmonic
loading amplitude of 0.05 m

Fig. 13 presents the normalized H, response measure (2)
for the primary structure for different slider damping levels
when the structure is subjected to initial displacement
conditions, harmonic loading, and white noise. Note that for
harmonic loading, each data point on this figure considers a
range of W, values and the X of the structure is

calculated with the maximum A, values for the VIRM and
the FIRMs. The performance of the structures with the FIRM
remains unchanged as the slider masses are locked in
position. This figure shows that the structure with the VIRM
consistently outperform the FIRMs under initial
displacement loading for all the slider mass damping levels
considered. Given the initial displacement, X drops when
a small amount of slider damping is introduced to the VIRM.
For instance, X decreases to 0.7 at a &, value of 1.34

and further decreases to 0.63 until &, reaches a value of
5.34. Thereafter, X increases once again as &, further

increases. Similarly, the X is always lower than 1 for the
harmonic loading and white noise case. However, in these
cases 2. is much lower; for example, 0.45 and 0.63 for the
harmonic and the white noise cases, respectively, when the
VIRM is undamped. As &, increases in the harmonic

loading case, X decreases to 0.43 when the &, is 1.34
and gradually increases to 0.46 at &, =5.34 and remains

mostly unchanged in the higher slider damping range. Fig.
13(c) shows that, for the white noise case, % decreases as
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&q keeps increasing. This decrease in X could be
attributed to the continued ability of increased slider damping
to dissipate more energy in this load case, as observed in Fig.
7(c).

In order to investigate the effect of loading amplitude on
the performance of the structure, H, are plotted in Fig. 12
for harmonic loading with different amplitudes across a

range of V,. This figure shows that the maximum H,

occurs at alower ¥, value for the structure with the VIRM
compared to the structure with the FIRM at x, for the same
loading amplitude, which aligns with the previous results in
Fig. 11. Additionally, the structure with the FIRM at Ry
location has a lower ¥, compared to the structure at xy

location and has the maximum H, value among the three
structures. At lower loading amplitudes, for example, for
0.005 m, 0.009 m and 0.02m normalized loading amplitude,
the W, withthe maximum H, is higher than the structure

with the FIRM at R,s.. The ¥, value with the maximum
H, value of the VIRM is referred to as the pseudo resonance

frequency ratio. Near the pseudo resonance frequency ratio,
there are multiple stable and unstable steady-state solutions.
As the structure approaches the pseudo resonance frequency
ratio, the steady-state solution becomes unstable and the
structure jumps to a higher stability solution. The jump
amplitude of the structure depends on the load amplitude.
Additionally, when the loading amplitude increases, the
pseudo resonance frequency of the structure with the VIRM
decreases.

Fig. 12 H, ofthe primary structure with the VIRM ( &4
=4), the FIRM (at x, ) and the FIRM (at R,.) versus loading
frequency ratio, ¥, , for a range of normalized harmonic
loads with different normalized amplitudes, expressed in ‘m’

—o—F=0.005 (VIRM)
+ —F=0.005 (FIRM (at xo))
<00 F=0.005 (FIRM (at Rubc)) — » —F=0.06 (FIRM (at xo))
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——F=0.06 (VIRM)
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F=0.009 (FIRM (atx,)) ~——F=0.1 (VIRM)
F=0.009 (FIRM (at R“bc)) — + —F=0.1 (FIRM (at xO))
>—F=0.02 (VIRM) oo F=0.1 (FIRM (at Rubc))
— « —F=0.02 (FIRM (at xO))

Fig. 13 can be utilized to investigate the performance of
the VIRM at different initial displacements, harmonic
loading amplitudes, and white noise levels. In almost every
case examined, normalized H, response measure is less
than 1, which indicates that the VIRM is outperforming both
the FIRMs. This figure shows that with a small amount of
initial displacement, X decreases and reaches a minimum
of 0.7 when the initial displacement is 0.3 m. However, X
increases as the structure is excited with a higher initial




Influence of the variable inertia rotational mechanism on natural frequency and structural response

—a— VIRM —e— FIRM at xo — % FIRMat R

uhc

1.5 1.5

Displacement (m)

W
0.5
0 0
% S 5 \ 0 0.1 0.2 0.3
05 1 15 o o 870 Normalized RMS
Normalized

amplitude (m)

amplitude (m)

(a) Initial displacement

(b) Harmonic loading

(c) White noise

Fig. 13 Normalized H, response measure, X , of the structure with the VIRM ( &, =4), the FIRM (at x, ) and the FIRM
(at Ru ) versus loading amplitude for different loading types

displacement beyond 0.3 m. The behavior of X under
different loading amplitudes is very different in the harmonic
loading and white noise cases compared to the initial
displacement case. 2 for harmonic loading is very low
(close to 0.1) for small loading amplitudes and increases with
increases in the normalized loading amplitude until a peak
value of X = 0.57 is reached, then X once again
decreases with increased amplitude. For the white noise case,
2 decreases initially to below 0.4 when the normalized
RMS amplitude is 0.07 m and increases afterwards until a
normalized RMS amplitude of 0.14 m. Finally, X
decreases again for higher normalized RMS loading beyond
0.14 m.

This section presents an evaluation of the effectiveness of
the VIRM at reducing the response of the structure it is
attached to using the normalized F, response measure, X,
across various loading types, loading amplitudes, and slider
damping levels. Comparisons of the VIRM’s effectiveness
are made to the effectiveness of a pair of FIRM
configurations. The results in this section demonstrate that
the VIRM consistently achieves lower X compared to the
FIRMs across different load types, highlighting its
effectiveness in attenuating response. While varying slider
damping was found to have negligible impact on X , the
VIRM’s performance exhibit a dependence on loading
amplitude, which showcases the system’s inherent
nonlinearity. This energy dependency will be a crucial
consideration when designing VIRMs for specific
applications.

While the impact of other device parameters, such as the
slider mass and slider stiffness, were not investigated, it is
anticipated these parameters would have a noticeable effect
on the structural response as well. This impact is anticipated
as these parameters would influence the effective force on
the slider masses and their resistance to motion; thus, these
parameters will influence the slider dynamic motion and how
this motion changes with loading amplitude. These device
parameters will have to be carefully considered as well when
designing a VIRM.

Notably, the VIRM’s effectiveness is particularly
pronounced under harmonic loading, where the H,
response measure is reduced by 90% at certain loading

amplitudes compared to the FIRM at xo. However, the
VIRM'’s effectiveness was observed to be limited under the
initial displacement loading condition, likely due to the
VIRM’s frequency shifting ability not being relevant in
reducing the transfer of the energy into the system when a set
input energy is provided in the initial displacement case. This
result suggests that regardless of the parameter set chosen, it
is unlikely that the VIRM will be a particularly effective
choice for mitigating response to impulsive loads or initial
conditions.

7 Conclusions

In this paper, an innovative passive nonlinear rotational
inertial mechanism called the variable inertia rotational
mechanism (VIRM) is described, formulated, and
investigated. This paper examines the impact of the VIRM
on the natural frequency and the response of a single-degree-
of-freedom (SDOF) structure under various types of loads
using numerical simulations. The following significant
results were observed from this study.

e The incorporation of the VIRM in the primary
structure significantly influenced the normalized
instantaneous frequency ratio. Although the level of
slider damping shifted the normalized instantaneous
frequency ratio, the shift does not always correspond
to major changes in the primary structure response.
Moreover, the normalized instantaneous frequency
ratio is highly dependent on the loading type and
loading amplitude.

e The normalized weighted average instantaneous
frequency ratio and the normalized overall
fundamental frequency ratio of the structure with the
VIRM reduced significantly when higher loading
amplitude is applied to the structure. However, they
are less influenced by the slider damping changes.

e  The VIRM can notably reduce the pseudo resonance
frequency ratio of the structure, and superharmonic
pseudo resonances can be observed with the VIRM.
Additionally, as the loading amplitude increases, the
pseudo resonance frequency ratio and the H,
response measure decrease for the structure with the
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VIRM relative to the structure with the fixed inertia
rotational mechanism (FIRM) at x, in all cases
considered. The slider mass damping of the VIRM
had little to no effect on the shift in the pseudo
resonance frequency ratio.

e  The performance of the structure with the VIRM, in
terms of H, response measure compared to the

FIRMs, changes with the slider damping level
considered, but these changes are relatively small.

e The performance of the VIRM is highly dependent
on the type and amplitude of the loading; however,
the VIRM outperformed the FIRMs in terms of H,
response measure in almost all the cases considered.

Overall, this paper shows that the VIRM can passively
induce significant changes in the dynamics of a primary
structure, as evaluated by measures related to the
fundamental frequency shifts of the system. The VIRM’s
unique characteristics make it well-suited for employing as a
structural control strategy, particularly in applications
involving harmonic excitation and white noise excitation.
The VIRM’s performance in these load scenarios is superior
compared to a FIRM due to its capacity to continuously shift
the structure’s effective natural frequency. This adaptive
frequency not only leads to superior vibration mitigation but
also helps to protect structures by preventing sustained
resonance conditions. While the VIRM’s dynamic frequency
shifts prevent sustained resonance, it is important to
acknowledge that certain loading scenarios may introduce
brief periods of intensified interaction between the structure
and the excitation due to the altered system frequency.
Despite these interactions, the amplitude of the structural
response remains bounded as resonant conditions are not
maintained. The VIRM’s ability to adapt a system’s
frequency and their two-terminal nature makes them
potentially suitable for integration into structural systems in
a variety of ways, including in base isolation systems, as an
interstory device or in an outrigger system. However, the
VIRM is likely not suitable for mitigating system responses
in scenarios similar to initial displacement conditions where
energy is rapidly applied to a system and the VIRM’s
frequency shifts cannot disrupt the flow of energy to the
structure from the excitation.

Although this work with VIRM in a simplified linear
model serves as a foundation for future investigation, the
nonlinearity introduced by this mechanism significantly
impacted the dynamics of the system. Additionally, in most
circumstances investigated and with enough input amplitude,
the inclusion of the VIRM results in a beneficial reduction in
the system response amplitude. Thus, further research on the
use of VIRM for passive control of structures, including the
presence of intrinsic nonlinearities, under a variety of
excitations, including seismic ground motions, is warranted.
Furthermore, given the nonlinear nature of the VIRM, future
studies should explore whether the system exhibits chaotic
behavior, as this could offer additional insights into its
effectiveness in structural control.
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