
 

 

 
1 Introduction  

 
Excessive vibration in civil engineering structures can 

cause human discomfort, fatigue, damage, and even the 
collapse of the structure; thus, vibration control is critical in 
many structures. In recent years, rotational inertial 
mechanisms, most prominently the inerter, have attracted 
attention in academia and industry as a potential part of 
passive vibration control systems. The term ‘inerter’ was 
proposed by Smith in the context of the force-current analogy 
between electrical and mechanical networks (Smith 2002). 
The inerter is a two-terminal mechanical element that can be 
realized with various physical means, e.g., the ball-screw 
assembly, rack-and-pinion, and fluid-based mechanisms 
(Smith 2002, 2008, 2012; Swift et al. 2013). The inerter 
generates force proportional to the relative acceleration 
across its two terminals, and the constant of proportionality 
is known as ‘inertance’, which has the same units as mass. 
The inerter can produce a mass amplification effect by 
transforming translational motion into the rotational motion 
of a flywheel. Hence, the inerter has been applied to a number 
of novel vibration control systems as well as to reduce the 
mass of modified conventional vibration control systems. 
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Examples of inerter-based vibration control devices include 
the tuned-mass-damper-inerter, rotational inertia double-
tuned mass damper, rotational inertia viscous damper, inertia 
mass damper with an electromagnetic damper, friction 
pendulum inerter system, and inerters combined with an 
external rocking wall of a frame system (Di Egidio et al. 2021; 
Giaralis and Petrini 2017; Huang et al. 2019; Hwang et al. 
2007; Jangid 2022; Javidialesaadi and Wierschem 2019; 
Marian, Laurentiu and Giaralis, Agathoklis 2017; Nakamura 
et al. 2014; Wang et al. 2019; Zhao et al. 2019).  

Most of the previously studied devices featuring 
rotational inertial components generate constant effective 
mass, whereas very few provide variable effective mass (Li 
et al. 2021b; Mahato et al. 2019; Xu et al. 2015; Zhang et al. 
2020). Due to their constant effective mass, inerters can be 
described as linear rotational inertial mechanisms. However, 
as the research in this field progresses, there is growing 
interest in understanding the dynamics of nonlinear 
rotational inertial mechanisms that produce variable 
inertance. The inertance of such nonlinear rotational inertial 
mechanisms is not fixed; rather, the inertance can depend on 
factors related to the device’s response, such as the relative 
displacement of the device and the rotational velocity of the 
device’s flywheel. These nonlinear rotational inertial 
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mechanisms can be divided into categories including 
functionally varied inertance mechanisms (  , ,b f u u u    , 
where b is inertance that varies as a smooth function of 

,  ,u u u , the displacement, velocity, or the acceleration of the 
structure) and state-switching mechanisms (b=b1 if condition 
1, b=b2 if condition 2, and so on). While this study will 
consider a functionally varied inertance mechanism, an 
example of a state switching mechanism is found in the 
clutch-inerter damper. The clutch-inerter damper consists of 
two flywheels and a passive clutch system, which transforms 
translational motion into flywheel rotational motion and 
prevents the kinetic energy in the flywheel from transferring 
back to the structure (Javidialesaadi and Wierschem 2019; 
Makris and Kampas 2016; Makris and Moghimi 2019; 
Málaga-Chuquitaype et al. 2019; Talley et al. 2023; Wang 
and Sun 2018).  

Functionally varied inertance mechanisms that have 
attracted much attention in recent years include a 
geometrically nonlinear inertance mechanism that has been 
used as a vibration isolator (Moraes et al. 2018; Yang et al. 
2020). The geometrically nonlinear inertance mechanism 
features a pair of oblique inerters and the studies’ results 
demonstrated that the geometrically nonlinear inertance 
mechanism possesses several performance benefits over 
conventional isolators, such as, improved higher frequency 
isolation and smaller displacement amplitude and force 
transmissibility, depending on the frequency range and 
amplitude of the excitation. Alternatively, other functionally 
varied inertance mechanisms have been developed by using 
a controller or a continuously variable transmission to adjust 
inertance in traditional tuned damper systems. Some 
examples of these are an adaptive tuned heave plate to 
mitigate heave motion of floating platforms (Ma et al. 2023), 
an adaptive tuned viscous inertance damper (Ali Sadeghian 
et al. 2021), and a tuned mass damper with changeable 
inertance (Brzeski et al. 2017). 

In addition to these, another functionally varied inertance 
mechanism can be produced by modifying the rotational 
inertia of a device’s flywheel (Dong et al. 2018; Jauch 2015; 
Kushwaha et al. 2020; Li et al. 2021a; Mahato et al. 2019; 
Xu et al. 2015; Zhang et al. 2020). Nonlinear rotational 
inertia from the variable moment of inertia of a flywheel can 
be obtained through flywheel designs that allow the 
distribution of mass to change during the response of the 
flywheel; for example, a flywheel with masses that can move 
within slots radially on the flywheel. These variable inertia 
rotational mechanisms (VIRM) have the potential to cause 
significant passive changes to the dynamics of the system 
they are attached to, which may be exploited as part of a 
vibration control strategy. However, the majority of VIRM 
research has been pursued through active or semi-active 
control methodologies that require input energy and intricate 
hardware. This includes work on a variable inertia flywheel 
(VIF) with energy storage and power control functionality, 
and VIF with magneto-rheological technology to adjust 
natural frequency and suppress the torsional vibration of a 
system (Dong et al. 2018; Li et al. 2021b; Ullman 1978; Yuan 
et al. 2010). In contrast to the above active and semi-active 
mechanisms, Xu and Yang proposed a VIF for a passive 

vehicle suspension system and showed improved rider 
comfort, better road handling and safety and reduced 
suspension deflection under most circumstances  (Xu et al. 
2015; Yang et al. 2019). Additionally, researchers have 
explored installing VIF in various rotary systems such as 
hydraulic motors, diesel generators, wave energy converters 
and wind turbine rotors. These studies aimed to enhance 
stability, increase power absorption bandwidth and enable 
passive vibration control of the systems (Jauch 2015; 
Kushwaha et al. 2020; Li et al. 2021a; Mahato et al. 2019; 
Yang et al. 2016).   

Although research has been conducted on VIRMs to 
evaluate their effectiveness in reducing the response 
amplitude of dynamic systems, studies investigating passive 
VIRMs are rare. Furthermore, the existing limited research 
on passive VIRMs has predominantly concentrated on their 
application in rotating machinery systems, while their 
potential utilization in other types of mechanical or civil 
engineering structures has been unexplored. The majority of 
the prior investigations have primarily examined the VIRM’s 
performance under sinusoidal or impulse loading conditions; 
thus, its behavior under random excitation scenarios remains 
unknown. As a result, there is a notable lack of understanding 
of the impact of variable rotational inertia on the natural 
frequency changes in the structure they are utilized in under 
different loading scenarios. While limited research exists in 
understanding the effect of constant rotational inertia on a 
system’s natural frequencies (Chen et al. 2014), additional 
investigation is imperative to characterize the effect of 
variable rotational inertia on the natural frequency and the 
response of a structure equipped with a VIRM under external 
excitation. To address these gaps in knowledge, the main 
objective of this study is to numerically evaluate the effects 
of a passive VIRM on the natural frequency and response 
amplitude of a single-degree-of-freedom (SDOF) structure 
under different types of excitations.  

In this study, a passive VIRM is considered in which 
multiple mass-spring-damper elements are symmetrically 
positioned on a circular flywheel, which is connected to a 
ball screw and attached to a SDOF structure. The vibration 
of the structure with the VIRM drives the ball screw and 
results in the rotation of the VIRM flywheel. Centrifugal 
force pushes the masses on the flywheel outward towards the 
boundary of the baseplate causing a dynamically changing 
inertia. In this numerical study, the VIRM is incorporated 
into a SDOF structure and numerical simulations are carried 
out given a collection of initial displacement conditions, 
harmonic loading, and white noise loading to investigate the 
evolution of the structure’s frequencies during the response. 
The effects of the damper properties of the VIRM on the 
natural frequency shift, overall fundamental frequency, and 
the response reduction are also explored. Comparisons in this 
study are made with a fixed inertia rotational mechanism 
(FIRM). 

The organization of this paper is as follows. In Section 2, 
the mechanism of the VIRM and a dynamic model of it 
installed in a SDOF structure are presented. The 
methodologies for determining relevant response measures, 
such as the instantaneous frequency, overall fundamental 
frequency, and an H2 response measure, are described in 
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Section 3. The effect of the VIRM on the instantaneous and 
overall fundamental frequencies are presented in Sections 4 
and 0, respectively. The effectiveness of the device to reduce 
the structure’s displacement response under different loads is 
discussed in Section 6. In Section 7, the contributions of this 
study are summarized and conclusions are drawn.  

 

2 Variable inertia rotational mechanism 
 
In this study, the variable inertance of the VIRM is 

produced by utilizing the flywheel rotational velocity to 
passively alter the arrangement of masses in the flywheel. A 
schematic diagram of the VIRM flywheel considered is 
presented in Fig. 1(a). This VIRM flywheel consists of a 
circular plate with four symmetrically spaced mass-spring-
damper elements. These masses are constrained such that 
they can only move radially in the flywheel. When the 
flywheel is at rest, the springs attached to these masses are at 
their free length and the masses are located at an initial radial 
position near the center of the flywheel, x0. As the absolute 
rotational velocity of the flywheel increases, the masses 
move, in general, radially outward from the center of the 
flywheel due to the increasing centrifugal force. When the 
absolute flywheel velocity decreases, the masses will slide 
back towards the center of the flywheel. The movement of 
these masses results in the variable moment of inertia of the 
flywheel. The viscous dampers (csd) in the VIRM flywheel 
damp the motion of these masses and dissipate energy in the 
system. The radial motion of the masses causes a restoring 
force in the springs that increases with the change in the 
radial position of the masses. The springs are assumed to 
have a trilinear elastic force-displacement relationship with a 
soft central spring ksd and two equal, but much stiffer, penalty 
spring segments, as illustrated in Fig. 1(b). The relatively 
stiff penalty spring stiffness (kp) in the VIRM is activated 
when the slider mass approaches the center or the upper 
bound contact point near the outer ring of the flywheel and 
works to restrain the movement of the slider mass. The 
position of the two locations on the radius where the penalty 
spring stiffness segments are engaged are called the lower 
bound contact point, Rlbc and upper bound contact point, Rubc, 
respectively. Centrifugal force on the slider masses increases 

with larger flywheel rotational velocity and increased radial 
position of the masses; thus, the slider masses are expected 
to move significantly beyond Rubc with increasing system 
excitation. However, due to the lower centrifugal forces near 
the center of the flywheel, the masses are not expected to go 
significantly beyond Rlbc.  

Compared to a VIRM, all of the components of a FIRM 
are kept fixed in the same configuration regardless of the 
flywheel’s rotational velocity. In this study, comparisons of 
the resulting dynamics and behavior of a system with a 
VIRM will be made to a system with a FIRM with its masses 
fixed in their initial position and with a FIRM with masses 
fixed at the Rubc position. 

The relationship between the flywheel angular velocity (
) and the relative velocity ( u) of the structure between the 
attachment points of the VIRM or FIRM is as follows 

u    (1)

where α is the coefficient governing this relationship. 
Utilizing a ball-screw, α is 2   where  is the lead of 
the ball-screw. 

The total moment of inertia of the VIRM flywheel 
assembly can be expressed as  

2 2 2 21 3 1
12 4 2VIRM sd sd sd c sdJ nm d h m r nm x     

 
 (2)

where ,  ,  ,  ,  ,sd sd sd cn m d h m   and r   are the number of 
slots, slider masses, slider diameter, height, mass of the 
flywheel without the sliders, and radius of the flywheel, 
respectively. Note that the total flywheel moment of inertia 
includes static components that are dependent on the 
flywheel mass and dimensions and a component that depends 
on the radial position of the slider masses. In Eq. (2), the last 
term (nmsdx2) is governed by the radial position (x) of the 
slider masses. The radial position is replaced with x0 or Rubc 
to determine the constant moment of inertia of the two FIRM 
flywheels. The inertance generated by the constant moment 
of inertia of the FIRM configuration is 

       2 2 2 2 21/12 * 3 / 4 * 1/ 2 *y sd sd sd c sdb nm d h m r nm y      

  
(a)  Schematic diagram of the VIRM with slider masses 

shown located at their initial position 
(b)  Force-displacement relationship of the trilinear spring 
attached to the slider masses on the flywheel of the VIRM 

Fig. 1 Characteristics of VIRM 
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for the FIRM with slider masses fixed at ‘y’ location. This 
study replaces the ‘y’ location with x0 or Rubc. The normalized 
inertance for the two FIRM configurations is expressed as 

0 max
0 max

,x R
x R

s s

b b
m m

    (3)

Fig. 2 shows a model with a VIRM attached to a SDOF 
structure subjected to an external force, P(t). In this figure, 
ms represents the mass of the structure, ks, and cs are the 
stiffness and viscous damping coefficients of the structure. 
When the VIRM is replaced with a FIRM, the structure 
behaves like a typical spring-mass-damper-inerter (linear) 
structure and the inertance value provided to the structure is 
constant.  

 
Fig. 2 SDOF primary structure with VIRM attached 

The equation of motion of the system can be obtained 
using Lagrange’s equation. The Lagrangian, L, is defined as 

L T V   (4) 

where T and V are the system’s kinetic energy and potential 
energy, respectively. The kinetic energy of the system is 
calculated considering the motion of the structure, the 
rotational velocity of the flywheel, and the components of the 
slider mass velocity. The potential energy of the structure 
includes the energy stored in all the springs, this includes 
springs related to the structural stiffness (ks) and the VIRM 
stiffness (ksd, kp). The effect of gravity is ignored here. The 
kinetic energy, potential energy, and the virtual work of non-
conservative forces, NCW , can be formulated as 
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 (5) 

Note that in these equations the multiple slider masses in 
the VIRM are assumed to be moving synchronously with the 
same radial motion. 

Lagrange’s equation for the system in generalized 
coordinates is given as 

 ,  1,2;i
i i i

d V p t i
dt q q q

  
   

  
 (6)

where 1q  is the displacement of the primary structure (u) 
and 2q   is the radial displacement of the slider mass (x). 
The resulting equations of motion can be expressed as 

 

2 2 2 2

2 2 2

2 2

1 3 1
12 4 2

2

0

s sd sd sd c

sd sd s s

sd sd bsd sd

m u nm d h m r u

nm xx u nm x u c u k u P t

m x m x u F c x



 



      
  

    

   

 

   
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 (7)

In the above equations, Fbsd represents the restoring force 
from the trilinear springs in the model. This restoring force 
varies depending on the radial position of the slider masses 
and can be defined as 

   
 
   

0

0

0

,

,
,

bsd sd lbc p lbc lbc

bsd sd lbc ubc

bsd sd ubc p ubc ubc

F k R x k x R x R

F k x x R x R
F k R x k x R x R

    

   

    
 (8)

In most previous work, the Coriolis force on the slider 
masses in the VIF was not accounted for (Xu et al. 2015; 
Yang et al. 2020; Zhang et al. 2020). For example, the kinetic 
energy generated from the tangential velocity component of 
the sliders are ignored. This study accounts for forces acting 
radially and tangentially to the direction of motion. 
Additionally, unlike most other work in this area, penalty 
springs that restrain the excessive motion of the slider masses 
are considered in this study (Dong et al. 2018; Xu et al. 2015; 
Yang et al. 2016). 

For the FIRM, the slider mass springs and dampers are 
removed, and the slider masses are kept fixed with the 
flywheel frame at either x0 or Rubc, which results in the 
constant moment of inertia of the flywheel. The equation of 
motion of the primary structure with the FIRM is   

 

2 2 2 2 21 3 1
12 4 2s sd sd sd c sd

s s

m u nm d h m r nm y u

c u k u P t

       
  

  

 


 (9)

In Eq. (9), the fixed position of the slider mass is denoted 
by y.  

To facilitate a generalized analysis and comparison of 
system behavior across different physical parameters, Eq. 
(7), Eq. (8), and Eq. (9) are normalized. This normalization 
reduces the number of independent parameters and 
highlights the system’s fundamental characteristics. The 
normalized system parameters are the slider mass ratio, 
flywheel mass ratio without sliders, frequency ratio, structure 
damping ratio, slider damping ratio, and stiffness ratio, 
which are defined in the next paragraph. Using the 
normalized parameters, Eq. (7), Eq. (8), and Eq. (9) can be 
rewritten as  
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where / : slider mass ratio; 
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While the normalization scheme reduces the number of 
independent parameters, note that it does not render all 
parameters dimensionless. For instance, the spatial 
dimensions, such as displacement, position, height and depth 
retain their dimensions. The original dimension of the 
displacement allows for a more intuitive understanding of the 
primary structure's movement (in ‘m’), which is a key 
response considered in this study. Furthermore, the 
complexity of the system makes it challenging to achieve 
complete non-dimensionality. Velocity and acceleration, for 
example, are normalized by the natural frequency of the 
corresponding system. Similarly, the external forces (N) are 
normalized by the stiffness (N/m) of the primary structure, 
resulting in a unit of displacement (‘m’) for all load cases 
considered.  

3 Numerical analysis and response measures 
 
In this study, the response of the structure with the VIRM 

or the FIRM, presented by the equations of motion in Eq. (7) 
and Eq. (9), is simulated under different loadings using the 

MATLAB implicit solver (MathWorks 2022a) with an output 
frequency set at 4000 Hz. The loading considered in different 
parts of this study are harmonic excitations with different 
input frequencies, initial displacements, and white noise. The 
structure and VIRM parameters selected for these numerical 
simulations are shown in Table 1. While Table 1 provides a 
single value for the slider damping ratio, Sections 4, 5 and 6 
will investigate its influence on system’s dynamics across a 
range of values.  
Table 1 Structure and VIRM parameters 

Symbol Description Value 
n Slider number 4 

1  Slider mass ratio 0.0005 

2  Flywheel mass ratio (without sliders) 0.0017 

0s  Primary structure natural frequency 
(without VIRM/FIRM) 

2.91 Hz 

sd  Slider mass linearized natural frequency 42 Hz 

  Frequency ratio 14.64 

s  Primary structure inherent damping ratio 0.02 

sd  Linearized slider damping ratio 4 

  Stiffness ratio 100 

0x  Inertance ratio at initial position, 0x  0.086 

ubcR  Inertance ratio at ubcR  0.25 

sdd  Slider diameter 0.02 m 

sdh  Slider height 0.015 m 

r  Radius of the flywheel 0.1 m 

0x  Initial radial position of the slider 0.01 m 

  Proportionality constant between the 
relative velocity of the structure and the 

angular velocity of the flywheel 

100 rad/m 

ubcR  Radial position of the upper bound contact 
point of the penalty spring 

0.095 m 

lbcR  Radial position of the lower bound contact 
point of the penalty spring 

0.005 m 

The parameters listed in Table 1 are selected based on the 
following considerations. The primary structure’s natural 
frequency and the damping ratio are selected to represent  
typical values observed in civil structures, ensuring the 
relevance of the findings to real-world applications in 
structural vibration control. The proportionality constant 
governing the relationship between the structure’s relative 
velocity and the flywheel’s rotational velocity, along with the 
flywheel’s inherent parameters, are specifically chosen to 
encompass a wide range of rotational inertia variability. This 
deliberate selection facilitates a thorough examination of the 
impact of the VIRM’s dynamically changing inertia on the 
response of the primary structure. 

To quantitatively evaluate the response of the dynamic 
systems studied, several measures are calculated from the 
system responses. These measures, which are described in 
detail below, include the instantaneous frequency  IF , the 
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weighted average instantaneous frequency  w , the overall 
fundamental frequency  0  , and the H2 norm analog 

 2H  . The IF  , w  , and 0   are normalized using the 
natural frequency of the structure without the VIRM or the 
FIRM, 

0s , which can be expressed as 

0

0 0 0

IF 0Ψ = ,  Ψ = ,  Ψ =wIF

w

s s s
  

  
  

 (13) 

where Ψ ,  Ψ ,wIF    and 
0

Ψ  are the normalized IF  ratio, 

normalized w   ratio and normalized 0   ratio, 
respectively. 

Additionally, the harmonic loading frequency  l  and 
the response frequency  r   considered in the study are 
also normalized by the natural frequency of the structure 
without the VIRM or the FIRM. These are expressed as 

0 0

,l r
l r

s s

 
 

     (14) 

where l   and r   are the loading frequency ratio and 
response frequency ratio, respectively. 
  
3.1  Instantaneous frequency 

 
The IF   is a function of the system properties and 

response and is a measure of the preferred vibration 
frequency of a dynamic system. The IF  of a linear primary 
structure remains constant over all time, regardless of the 
response of the structure, and is the same as the natural 
frequency of the structure itself. However, the IF   of a 
nonlinear system is not necessarily constant and can vary 
continuously with the response of the system. 

There are numerous potential approaches that could be 
used to determine the IF   (Frank Pai 2010; Huang et al. 
2009; Wang and Gao 2013). Although most of these 
approaches are based on the assumption that system data 
corresponds to a linear dynamic response, the IF  can be 
used as a tool to characterize specific dynamic systems along 
their nonlinear time-history response (Moaveni and Asgarieh 
2012). This study uses a method in which instantaneous 
modal parameters are produced from an eigen analysis using 
the linearized system properties of the nonlinear structure 
(i.e., tangent stiffness matrix and tangent mass matrix). 
Details on the process use to determine IF   at each time 
instant are presented below.  

In a nonlinear structure, the general force equilibrium 
equation can be presented by 

 , ,ext intP F u u u   (15) 

where extP   contains the externally applied loads and intF  
contains the internal forces, which are functions of the 
system degrees of freedom (DOF)  0u  and the derivatives 

of those DOF  ,0 0u u  . Any nonlinear equilibrium equation 
can be linearized by perturbing the force about a known set 
of evaluation points, 0u  , 0u  , and 0u  . A small 
perturbation in the applied load corresponds to a perturbation 
in the nodal DOFs, and a first-order Taylor series expansion 
of the internal forces is expressed as 
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As 0u , 0u , and 0u  satisfy Eq. (15), Eq. (16) can be 
reduced to 
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where  , ,tK u u u   ,  , ,tC u u u   , and  , ,tM u u u    are the 
tangent stiffness, tangent damping, and tangent mass 
matrices, respectively. These matrices can be expressed as 
follows for an n degree of freedom system. 
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Accordingly, the tangent stiffness and tangent mass 
matrices of the structure with the VIRM considered in this 
study are defined as 
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In the above equation for tK , ksd is replaced by kp when 
the penalty spring becomes engaged, i.e., if x<Rlbc or x≥ Rubc. 

Using the above equations, linearized mass and stiffness 
matrices are produced at each time step in the simulation. 
Finally, an eigenvalue analysis is performed at each time step 
with Mt and Kt to estimate the IF  of the system. As the 
system with a VIRM is a 2DOF system, two natural 
frequencies will result. The IF  considered in this measure 
is defined as the frequency with more substantial engagement 
of the primary structure in its mode shape.  
3.2 Weighted average instantaneous frequency 

 
While IF   varies over time, a single measure can be 

derived from the time history of IF   that provides 
information on the overall behavior of the system. One of 
these measures is w , the weighted average value of IF . 
To calculate w , the time-history of the total energy of the 
structure is considered as the weight. The weighted average 
instantaneous frequency can be calculated as 

,
1

1

N

i IF i
i

w N

i
i

W

W


 







 (22)

where Wi and ,IF i   are the total energy and IF   of the 

structure at time step i  , respectively, and N is the total 
number of time steps in the response considered. When 
computing the weighted average instantaneous frequency, 
the total energy includes the energy in the structure and the 
energy in the VIRM or FIRM attached to the structure. As 

IF   is constant for the structure with the FIRM, w   and 
IF  have the same value for the structure with the FIRM. 

3.3 Overall fundamental frequency 
 
Similar to w , the overall fundamental frequency, 0 , 

can be used to evaluate a system’s total dynamic response by 
identifying the response’s lowest dominant frequency 

component. While 0   would not change for a linear 
system, it can shift due to changes in the loading type and 
loading amplitude for a nonlinear system.  

In this study, estimated auto power spectral densities 
(APSDs) of resulting numerically simulated primary 
structure displacement time-histories are utilized to identify 

0  of the structure. These estimated APSDs are produced 
using Welch’s averaged, modified periodogram method of 
spectral estimation (MathWorks 2022b). As the APSD of a 
response can vary with the duration of the response 
considered, the time-history signal duration chosen for each 
analysis was 100 seconds. For harmonic and white noise 
loading, a Hanning window with a number of points equal to 
one tenth of the dataset length is applied and a 50% overlap 
ratio is utilized. For the initial displacement condition, a 0% 
overlap ratio is utilized and an exponential window with a 
length of the same number of points as the dataset and an 
exponential decay constant of 0.5.   

The highest peak at a non-zero frequency in the APSD 
function for the primary structure’s displacement response is 
defined in this study as 0   when considering the white 
noise loading or an initial displacement. For a generalized 
harmonic loading, the highest peak of the auto-spectrum 
would not necessarily yield the actual 0  of the system as 
the highest peak could instead come from the frequency of 
the forcing function. Consequently, an alternative definition 
of 0  is used in this paper for the harmonic loading case. 
For harmonic loading, the 0   is defined as the loading 
frequency that results in the largest peak APSD value. This 
measure can be thought of as a pseudo resonance frequency 
and is evaluated by considering the response and resulting 
APSD to harmonic loading over a range of loading 
frequencies. 
3.4 H2 Norm Analog 

 
The 2H   quantifies variance amplification and can be 

utilized to assess the impact of the VIRM on the normalized 
primary structure displacement amplitude under dynamic 
loading. When the structure is subjected to a loading p(t) and 
its response output is z(t), the 2H  of the structure is defined 
by  

  2
2

1
2 zpH H j d 






   (23)

where  zpH j  is the frequency domain transfer function 
between the loading and response.  

For a linear time invariant system with an analytically 
determined transfer function, the 2H   can be determined 
using Eq. (23). However, the same approach cannot be 
applied to a nonlinear structure like the structure in this study 
as an analytical transfer function is not available. 
Consequently, this study considers an 2H  analog value as a 
response measure, which is denoted as 2H . For the initial 
displacement and harmonic loading case, 2H  is determined 
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by taking the square of the area under the estimated APSD 
function for the structure’s displacement response between 0 
rad/sec and the Nyquist frequency. For the random force 
excitation case, the estimated transfer function is used to 
produce 2H  instead of the APSD curve.  

Normalized values of 2H  can then be produced. For the 
initial displacement and white noise cases, the 2H   of the 
structure with the VIRM is normalized by the 2H   of the 
structure with the FIRM. For the harmonic loading case, the 
maximum 2H   from the analyzed range of loading 
frequencies with the structure with the VIRM is identified 
and normalized by the identified maximum 2H   for the 
structure with the FIRM. The normalized 2H   response 
measure   , can be expressed as 

 
 

2

2 0

VIRM
=

FIRM (at )
H

H x



  (24) 

4 Instantaneous frequency 
 
To investigate the dynamic effects of the VIRM on the 

primary structure, this section presents and explores 
examples of the variation in the Ψ

IF   of the primary 
structure with a VIRM subjected to various loading types, 
loading amplitudes, and loading frequencies and for ranges 
of slider mass damping. The loads considered in this section 
are initial conditions, harmonic loading, and white noise. As 
the structure with the VIRM is nonlinear in nature, the Ψ

IF  
continuously varies over time. To provide points of 
comparison, the Ψ

IF   of the structure with the FIRM is 
provided when the sliders are locked at the initial position 
(denoted as FIRM (at x0)) and when the sliders are locked at 
the Rubc position (denoted as FIRM (at Rubc)). Note that the 
structure with the FIRM (at Rubc) will have a lower Ψ

IF  
than the structure with the FIRM (at x0) as the slider masses 
fixed at the Rubc position results in a higher moment of inertia. 
Fig. 3 presents the effect of different load types on the Ψ

IF  
of VIRM and FIRM structural configurations, where, the 

VIRM structure has a linearized slider damping ratio of 4 
d( s =4). Fig. 3(a) shows that for the initial displacement, the 

structure with the VIRM has a Ψ
IF   of 0.96 initially, 

identical to the constant Ψ
IF   of the structure with the 

FIRM (at x0), as expected. As the structure responds to the 
displacement initial condition, the Ψ

IF  oscillates between 
about 0.96 and 0.84 for several cycles, then the amplitude of 
the changes in the Ψ

IF   reduce and the Ψ
IF   remains 

around 0.96.  
The shifts in the Ψ

IF   observed in Fig. 3(a) with the 
VIRM are because of the movement of the slider masses 
within the VIRM flywheel. The effective force on the slider 
masses is related to the velocity of the flywheel; thus, 
oscillations in the response of the structure result in 
oscillations in the force on and radial displacement response 
of the slider masses. As the Ψ

IF  is inversely related to the 
moment of inertia of the structure, the Ψ

IF   holds an 
inverse analog relationship with the slider mass displacement. 
When the slider masses reach the furthest into the penalty 
spring region, the VIRM generates a higher moment of 
inertia than any other orientation of the slider masses and the 
structure with the VIRM has the lowest observed Ψ

IF  . 
Note that, while the high stiffness of the penalty spring helps 
to restrain excessive displacements of the slider mass, the 
model of the system does not consider a fixed maximum 
allowable position of the slider masses; thus, the lowest 
possible Ψ

IF  of the structure could vary depending on the 
system’s parameters and applied excitation. Additionally, the 
dynamic response of the structure to this initial displacement 
dissipates due to damping in the system and the Ψ

IF  
returns to 0.96 with the slider masses coming to rest at their 
initial positions. Fig. 3(b-c) also show that the Ψ

IF  
continuously shifts between 0.96 to 0.8 and 0.96 to 0.65 for 
the harmonic loading case and white noise case, respectively. 
However, as the harmonic loading and white noise on the 
structure continues during the entire analysis, the structure 
does not converge to a constant Ψ

IF   like the initial 
displacement case.  

  

 

 

(a) Initial displacement = 1 m 
(b) Harmonic loading with normalized 

amplitude of 0.05 m at a loading frequency 
ratio of 0.85 

(c) White noise with normalized 
RMS amplitude of 0.3 m 

Fig. 3 Normalized instantaneous frequency, Ψ
IF , of the primary structure with the VIRM (linearized slider damping ratio, 

ds =4) and the FIRMs for different loading types 
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In order to investigate the effect of slider damping for 
different types of loading, the Ψ

IF   time histories 
considering undamped (zero slider damping), low damped, 
and highly damped slider masses are shown in Fig. 4, Fig. 5, 
and Fig. 6 for the initial displacement, harmonic loading and 
white noise cases, respectively. The displacement response 
of the primary structure is also illustrated in the figures for 
all the damping levels. Note that all structures analyzed, even 
with the undamped slider masses, have the same 2% inherent 
damping in the primary structure. Additionally, low damping 
and high damping scenarios indicate a linearized slider 
damping ratio, ds , of 0.13 and 20.05, respectively in all the 
figures mentioned above. Due to the nonlinear nature of the 
VIRM, the ds   is not the same as the damping ratio in 
general. Rather, the effect of a given value of ds  will vary 
depending on the radial position of the slider masses and 
relative velocity of the primary structure. Consequently, 
values of ds   greater than 1 do not necessarily mean the 
slider should behave in an overdamped manner. 

 It can be observed Fig. 4 that the Ψ
IF   begins to 

oscillate with a maximum value consistently around 0.96. In 
the zero slider damping case, the Ψ

IF  reaches a minimum 
value of around 0.82 quickly after the initial displacement. 
As the displacement response of the structure with zero slider 
damping decays due to inherent structural damping, the 
minimum value of the Ψ

IF   increases until about 12 
seconds into the response. After this point, the displacement 

of the structure has mostly attenuated, but sustained 
oscillations between about 0.96 and 0.91 remain in the Ψ

IF . 
These sustained oscillations in Ψ

IF  are because energy is 
trapped in the undamped sliders, but cannot transfer back to 
the primary structure because the primary structure is no 
longer effectively responding dynamically. When damping is 
introduced to the slider mass, the fluctuations in the Ψ

IF  
cease after some time and return to their initial values. For 
instance, in the low damping case, the Ψ

IF  changes from 
0.96 to 0.82 for the first 5 s and smoothly transitions to have 
a constant Ψ

IF  of 0.96. When the slider masses are heavily 
damped, the sliders are restrained from moving rapidly. In 
this case, the Ψ

IF   initially keeps changing, but over a 
narrower frequency range before it finally progresses to a 
constant 0.96 as the movement of the sliders cease. In this 
high slider damping case, the Ψ

IF  of the structure with the  

VIRM initially oscillates between 0.84 and 0.91, then the 
Ψ

IF  shifts between 0.91 and 0.93 at around 5 s, and then 
steadily converges to 0.96. The displacement response of the  
primary structure reduces to zero around the same time for 
the damped cases as the undamped slider case because most 
of the energy of the structure is dissipated by the structure’s 
inherent damping.  

The Ψ
IF   and the displacement time history of the 

structure given different slider damping levels under 
harmonic loading are plotted in Fig.. For all the slider 

 

 
 

 

 

 
 (a) Ψ

IF  for zero slider damping ( sd
=0) 

(b) Ψ
IF  for low slider damping ( sd =0.13) (c) Ψ

IF  for high slider damping ( ds
=20.05) 

   
(d) Displacement for zero slider 

damping ( ds =0) 
(e) Displacement for low slider damping ( ds

=0.13) 

(f) Displacement for high slider 
damping ( ds =20.05)  

 
Fig. 4 Effect of slider damping on the normalized instantaneous frequency, Ψ

IF , and displacement of the primary structure 
for an initial displacement=1 m 
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damping levels, the loading frequency was selected such that 
it results in the largest total response. This figure shows that 
the Ψ

IF  oscillates and changes with time for all the slider 
damping levels. When the slider masses are undamped, the 
Ψ

IF  shifts between a range of 0.96 and 0.78 and includes 
some abrupt changes in the lower bound envelope of the 
Ψ

IF . It is also observed that the Ψ
IF  oscillates between 

0.96 and 0.80 for the low damping level and achieves a much 
smoother lower bound envelope of Ψ

IF . Furthermore, the 
Ψ

IF   shifts between 0.91 and 0.81 in the highly damped 
slider mass case after a short amount of time. The overall 
reduction in the upper value of Ψ

IF  in the high damped 
case is because the high damping makes the slider mass less 
responsive; the slider is not able to quickly return each cycle 
to the x0 position and the slider movement ends up restricted 
to the penalty spring region near the upper bound. This figure 
also shows that the displacement response and Ψ

IF  reach 
mostly steady state behavior after about 25 seconds in both 
the slider damping cases. 

Fig. 6 shows the Ψ
IF   and the time-history of the 

displacement of the structure for different slider damping 
levels with a white noise loading with a normalized RMS 
amplitude of 0.3 m. This figure shows that the Ψ

IF  shifts 
between 0.96 and 0.65 for the zero slider damping case and 

the lower bound envelope of the Ψ
IF   rapidly changes. 

With the small amount of slider damping that is added to the 
VIRM in the low slider damping case, the Ψ

IF  looks much 
the same, but with a slight increase in the overall lower value 
of the Ψ

IF . Even in the high slider damping case, the lower 
envelope of the Ψ

IF  changes rapidly due to the continuous 
but random loading. However, for the high slider damping 
case, the Ψ

IF   primarily oscillates between 0.91 and 0.7 
and it does not reach the initial Ψ

IF  value of 0.96 again 
similar to the harmonic loading case as presented Fig. 6(c). 
Fig. 6 also shows that the Ψ

IF  is related to the response 
amplitude of the primary structure. For example, in all cases, 
the lowest Ψ

IF   occurs around 13 seconds, when the 
primary structure experiences its maximum response. 

The influence of the slider damping on the dissipation of 
energy is illustrated in Fig. 7. This figure presents the energy 
dissipated by the slider damping, as a percentage of the total 
energy dissipated, versus ds   for different loading types. 
For this analysis, a unit displacement, a harmonic loading 
with a normalized amplitude of 0.05 m at the pseudo 
resonance frequency, and a white noise of normalized RMS 
amplitude of 0.3 m are applied to the structure separately. For 
the initial displacement loading, this figure shows that as the 

 

 

 
 

  
 (a) Ψ

IF  for zero slider damping ( sd
=0) 

(b) Ψ
IF  for low slider damping ( sd =0.13) (c) Ψ

IF  for high slider damping ( ds
=20.05) 

   

(d) Displacement for zero slider 
damping ( ds =0) 

(e) Displacement for low slider damping ( ds
=0.13) 

(f) Displacement for high slider 
damping ( ds =20.05)  

 
Fig. 5 Effect of slider damping on the normalized instantaneous frequency, Ψ

IF , and displacement of the primary structure 
for harmonic loading with normalized amplitude of 0.05 m at load frequency ratio of 0.86 (zero slider damping) or 0.85 for 

both slider damping cases 
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slider damping increases, the dissipated energy percentage 
increases and reaches a maximum of 16% when ds  is 1.34. 
Afterwards the dissipation percentage slightly decreases to 
14% and stays similar for higher slider damping. A similar 
trend is also noticed for the harmonic loading case with a 
maximum energy dissipation of 11% for ds  of 0.67 and a 
close to 5% dissipation for higher slider damping. For the 
white noise case, there is an initial peak of 10.27% in 
dissipated energy percentage at ds   of 0.80. This is 
followed by a rapid reduction in dissipation percentage until 

ds  is 1.34, then a long increase in dissipation percentage 
when ds   is higher than 1.34. For example, when ds  
increases from 6.68 to 13.36, the dissipation percentage 
increases from 10.78% to 19.78%. 

This section explored the dynamic effects of the VIRM 
on the primary structure’s instantaneous frequency, Ψ

IF  , 
under various loading conditions, and slider damping levels. 
The changes in VIRM Ψ

IF   were compared with the 
frequencies of the FIRM with different flywheel 
configurations. The results showed the Ψ

IF  of the primary 
structure with VIRM’s oscillated during the response of the 
structure due to slider mass movement within the flywheel. 
Higher slider damping generally resulted in a narrower 
frequency range for the oscillations in Ψ

IF . However, the 
impact of slider damping on the primary structure’s 

displacement response was less pronounced suggesting that 
while slider damping influences Ψ

IF  , it does not always 
translate to significant changes in overall structural response.  

While only initial displacement, a specific frequency of 
harmonic loading, and white noise loading where considered, 
the results of this section give general insight on how the 
Ψ

IF   of systems would vary in other types of loadings. 
Other types of transient loads would result in variations in 
Ψ

IF   that attenuate. Given a periodic loading, repeated 
patterns in Ψ

IF  are expected. Sustained loads that do not 
have a well-defined periodicity may result in large changes 
in Ψ

IF , including durations when the variation in Ψ
IF  is 

small and durations when it is large. A key point to note, 
however, is that the variation in Ψ

IF , and thus the resulting 
overall system dynamics, will depend on the amplitude of the 
loading applied to the system. This amplitude dependent 
behavior will be explored in the next section. 

 
 

 

 

 

 

  
 (a) Ψ

IF  for zero slider damping ( sd
=0) 

(b) Ψ
IF  for low slider damping ( sd =0.13) (c) Ψ

IF  for high slider damping ( ds
=20.05) 

   
(d) Displacement for zero slider 

damping ( ds =0), 
(e) Displacement for low slider damping ( ds

=0.13) 

(f) Displacement for high slider 
damping ( ds =20.05)  

 
Fig. 6 Effect of slider damping on the normalized instantaneous frequency, Ψ

IF , and displacement of the primary structure 
for white noise with normalized RMS amplitude of 0.3 m 
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5 Overall fundamental frequency 
 
In this section, the effect of the VIRM on the 

0
Ψ  of the 

structure is examined. For this study, the 
0

Ψ   of the 
structure is determined based on the APSD of the 
displacement response of the structure, as described in 
Section 3.3. The 

0
Ψ  can be qualitatively described as the 

frequency the structure naturally prefers to vibrate at, which 
can vary due to the type and amplitude of loading for 
nonlinear systems. The 

0
Ψ  is analyzed for different loading 

types, loading amplitudes, loading frequencies, and for 
ranges of linearized slider mass damping ratios. The Ψ w  is 
also presented in this section to compare with 

0
Ψ . Moreover, 

the constant 
0

Ψ   and Ψ w   of the structure with FIRM for 
both locked positions are provided to contrast with values of 
the structure with the VIRM. 

Fig. 8 presents the displacement response APSDs of the 
primary structure for a linearized slider damping ratio of 4 
with an initial displacement condition, harmonic loading, and 
white noise excitation. For each of the loadings in the figure, 
APSDs, 

0
Ψ  and Ψ w  of the structure with the VIRM and 

the FIRM (at Rubc and at x0) are shown. The frequency ratio 
corresponding to the highest peak of the auto-spectrum, 

0
Ψ , 

indicates the pseudo resonance frequency ratio for the 
structure with the VIRM. Note that 

0
Ψ   is the resonance 

frequency ratio of the structures with the FIRM. This figure 
shows that for an initial displacement of 1 m, the structure 
with the VIRM has a similar, but marginally lower peak 
APSD displacement amplitude compared to both structures 
with the FIRM (at Rubc and at x0). It is also observed that the 

0
Ψ  and Ψ w  are lower for the structure with the VIRM than 
structure with the FIRMs. Additionally, Ψ w   is consistent 
with the 

0
Ψ  for the structures with the FIRM, as would be 

expected. However, there are noticeable differences between 
0

Ψ  and Ψ w  for the structure with the VIRM, especially for 
the harmonic loading (Fig. 8(b)) and white noise case (Fig. 
8(c)). In the harmonic loading case, Fig. 8(b), the structures 

are loaded at the forcing frequencies that produced the 
highest peak APSD. For example, the structure with the 
VIRM, the FIRM (at Rubc), and the FIRM (at x0) are oscillated 
at load frequency ratios 0.85, 0.88 and 0.96, respectively. It 
is observed that the APSD of the VIRM is noisier than the 
FIRMs and a super harmonic pseudo resonance frequency 
can be noticed in the harmonic loading case. This super 
harmonic pseudo resonance is observed for the structure with 
the VIRM at a frequency ratio around 2.62 for all loading 
cases, but it is much more noticeable for the harmonic 
loading case.  

Some of the trends seen in the initial displacement and 
harmonic loading cases are seen in the results from white 
noise loading in Fig. 8c. One major difference in the results 
for the white noise case is that in the VIRM APSD curve the 

0
Ψ  and the Ψ w  are positioned further to the left than for 
the other load cases and the peak is reduced more relative to 
the FIRM. Another major difference in these results is that 
the VIRM APSD curve is more spread out. This increased 
spread is likely due to the broadband nature of the loading in 
the white noise case as well as the larger range of Ψ

IF  
covered by the VIRM in this case. Due to this increased 
spread, there is expected to be more variability in the 
resulting identified 

0
Ψ  in the white noise loading case. 

   

(a) Initial displacement = 1 m 
(b) Harmonic loading with normalized 

amplitude of 0.05 m at pseudo resonance 
frequency 

(c) White noise of RMS normalized 
amplitude 0.3 m 

Fig. 7 Percentage of energy dissipation caused by the slider damping (linearized slider damping ratio, ds ) for different 
loading types 
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Fig. 9 can be utilized to contrast 
0

Ψ   and Ψ w   of the 
structure with the VIRM for different loading types over a 
range of loading amplitudes. Recall that for the harmonic 
loading case, 

0
Ψ   and Ψ w   are determined using the 

forcing frequency that yields the maximum displacement 
amplitude in the frequency domain. To provide points of 
comparison, Ψ w  for the structures with the FIRMs are also 
presented. As expected, Ψ w   remains constant in the 
structures with the FIRM for each loading type as the loading 
amplitude does not affect the natural frequency of linear 
structures. However, the added mass effect from the VIRM 
continuously changes and depends on the loading magnitude 
and thus the response magnitude. Therefore, 

0
Ψ  and Ψ w  

for the VIRM vary for different loading magnitudes. It is 
observed that 

0
Ψ   and Ψ w   decrease when the loading 

amplitude increases in nearly all cases. The decreased natural 
frequency for the higher amplitude load is because the 
resulting further extension outward of the slider masses of 
the VIRM adds a higher mass effect to the overall structure, 
which reduces the fundamental natural frequency of the 
structure. Although there is a similar trend between the 
frequency ratio and the loading amplitudes with white noise, 

0
Ψ  is more irregular compared to Ψ w . This is a result of 
the broadening of the APSD curves with white noise loading, 
as seen in Fig. 9. When the structure is subjected to a 
comparatively lower loading amplitude, 

0
Ψ   and Ψ w  

remained largely unchanged around 0.96, similar to the 
structure with the FIRM, where the slider masses are fixed at 
the initial position. In the lower loading amplitude, the slider 
masses do not significantly move due to the lower rotational 
velocity of the VIRM. At an initial displacement higher than 
1.0 m and 0.9 m, 

0
Ψ  and Ψ w  are below 0.89, respectively, 

which is the resonance frequency of the structure with the 
FIRM (at Rubc). The reason that 

0
Ψ  and Ψ w  can be lower 

than the resonance frequency of the structure with the FIRM 
(at Rubc) is because the slider masses can move into the 
penalty spring region, causing lower Ψ

IF . Similarly, 
0

Ψ  
is lower than 0.89 when the normalized harmonic loading 
amplitude is higher than 0.025 m and when the normalized 
RMS white noise amplitude is higher than 0.08 m. 

  
  

 

(a) Initial displacement = 1 m 
(b) Normalized harmonic loading of 0.05 m at 
pseudo resonance/resonance frequency for the 

structures with the VIRM/FIRM 

(c) White noise of normalized RMS 
amplitude of 0.3 m 

Fig. 8 Auto spectral density plot and normalized weighted average instantaneous frequency, Ψ w , of the primary structure with 
the VIRM or the FIRM. Note that the value of normalized overall fundamental frequency, 

0
Ψ , for each case is defined as the 

frequency ratio corresponding to that case’s peak point on the auto spectral density plot. 
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 Fig. 10 presents the influence of linearized slider mass 
damping ratio sd   on the 

0
Ψ   and Ψ w   of the primary 

structure under an initial displacement of 0.3 m, a harmonic 
loading with a normalized amplitude of 0.01 m at pseudo 
resonance frequencies, and white noise excitation with a 
normalized RMS amplitude of 0.05 m. In addition, Ψ w  of 
the structures with the FIRM are presented for comparison. 
It can be observed that there is an overall decreasing trend in 
the Ψ w  for the VIRM with increasing values of sd  for all 
loading types. All deviations from this trend appear minor 
except that in the harmonic loading case, Ψ w   initially 
increases with increasing sd   before it later reduces with 
increased sd  . In contrast, 

0
Ψ   of the structure with the 

VIRM remains almost the same for nearly all sd  values for 
each of the loading types considered. While 

0
Ψ   and Ψ w  

are very similar in nearly all cases, Ψ w  is larger than 
0

Ψ  
in all cases considered for the initial displacement loading. 

For the harmonic and white noise loading cases, 
0

Ψ  
becomes larger than Ψ w   as sd   increases. While Ψ

IF  
for the VIRM clearly varies with the slider damping level, as 
seen in Fig. 4, Fig. 5, and Fig. 6, the results in Fig. 9 and 
Fig.10 show that 

0
Ψ   and Ψ w   are less influenced by the 

slider damping and more influenced by the loading amplitude 
changes. 

This section investigates the influence of the VIRM on 
the primary structure’s overall fundamental frequency, 

0
Ψ  

and weighted average instantaneous frequency, Ψ w   under 
various loading types, loading amplitudes, and slider 
damping levels. The analysis utilized the estimated transfer 
function and the auto-spectrum of the structure’s 
displacement response to determine the 

0
Ψ   and the time 

history of Ψ
IF   values were used to calculate Ψ w  . 

Comparisons of the VIRM’s frequency measures are made to 
the frequencies of the FIRM configurations. The influence of 

   
 

(a) Initial displacement = 1 m (b) Structures with VIRM/FIRM excited 
at pseudo resonance/resonance frequency (c) White noise excitation 

Fig. 9 Normalized overall fundamental frequency, 
0

Ψ , and normalized weighted average instantaneous frequency, Ψ w , of 

the primary structure with the VIRM ( ds =4) and the FIRMs for different loading types and amplitudes 

 

 

 

 

 

 

(a) Initial displacement = 0.3 m 
(b) Structure with VIRM/FIRM excited 
at a normalized amplitude of 0.01 m at 
pseudo resonance/ resonance frequency 

(c) White noise of normalized RMS 
amplitude of 0.05 m 

Fig. 10 Normalized overall fundamental frequency, 
0

Ψ  , and normalized weighted average instantaneous frequency, Ψ
w , 

of the primary structure with the VIRM and the FIRMs versus linearized slider damping ratio, ds , for different loading 
types 
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slider damping on 
0

Ψ   and Ψ w   observed in this section 
were much less pronounced than the influence of slider 
damping on Ψ

IF   observed in the last section. Instead, 
loading amplitude emerged as the primary driver of changes 
in the VIRM’s 

0
Ψ   and Ψ w  . The results showed that the 

VIRM structure’s 
0

Ψ   and Ψ w   decreased as the load 
amplitude increased. This is due to the VIRM’s variable mass 
effect, where larger amplitudes cause greater slider mass 
extension, effectively lowering the structure’s effective 
natural frequency. These findings highlight the unique 
dynamic characteristics of the structure with a VIRM, where 
its frequency response is inherently coupled to both the 
amplitude and type of loading applied. Although changes in 
slider mass and slider stiffness are not investigated in this 
study, it is anticipated that through design, sets of these 
parameters could be chosen such that a desired shift in 
system natural frequency, as measured by 

0
Ψ   and Ψ w  , 

could be achieved for a given load type and amplitude. 

6 𝑯෩ 2 response measure 

In this section, 2H   and   , which are defined in 
Section 3.4, are used as measures of the performance of the 
VIRM related to controlling the response of the primary 
structure. These measures will be evaluated given different 
types and amplitudes of loading. Furthermore, variations in 
these performance measures with changes in sd   are 
considered in this section. As an example of how to interpret 
a numerical value of the normalized response measure 
reported in this section, a    of 0.6 for a VIRM 
configuration would indicate a 40% decrease in 2H  
response measure for the structure with the VIRM relative to 
the structure with the FIRM at initial position, x0.  

The effect of slider mass damping on the response of the 
primary structure is presented in Fig. 11 and Fig. 12. Fig. 11 
compares the 2H   response measure of the structure with 
the VIRM and the FIRMs for different sd   values given 
harmonic loading with a normalized amplitude of 0.05 m. 
For each point along a given curve in this figure, the value of 
that point is the 2H   when the harmonic load has a l  
equal to the x-axis value. Fig. 11 shows that for all sd  
values considered, the maximum 2H  of the structure with 
the VIRM occurs at a lower l   value compared to the 
structure with the FIRMs. This is logical as the 2H  of the 
structure should be greatest when it is excited at the 
resonance frequency for the structures with the FIRM; 
however, for the structure with the VIRM, the 2H  should 
be greatest when it is excited at the pseudo-resonance 
frequency and the additional added mass effects of the VIRM 
can shift this pseudo-resonance frequency lower than the 
resonance frequency of the structures with the FIRM. In 
addition to shifting the location of the peak value, the VIRM 
reduces the peak 2H  for all damping levels and also bends 
the 2H  curve to the lower frequency in a manner usually 
associated with softening systems (Nayfeh and Mook 2008). 

This figure also shows that the peak values of the 2H  for 
the VIRM, and the l  value that results in this peak value, 
are all almost the same for the range of sd   values 
considered. 

Fig. 13 presents the normalized 2H  response measure    
for the primary structure for different slider damping levels 
when the structure is subjected to initial displacement 
conditions, harmonic loading, and white noise. Note that for 
harmonic loading, each data point on this figure considers a 
range of l   values and the    of the structure is 
calculated with the maximum 2H  values for the VIRM and 
the FIRMs. The performance of the structures with the FIRM 
remains unchanged as the slider masses are locked in 
position. This figure shows that the structure with the VIRM 
consistently outperform the FIRMs under initial 
displacement loading for all the slider mass damping levels 
considered. Given the initial displacement,   drops when 
a small amount of slider damping is introduced to the VIRM. 
For instance,    decreases to 0.7 at a sd   value of 1.34 
and further decreases to 0.63 until sd  reaches a value of 
5.34. Thereafter,    increases once again as sd   further 
increases. Similarly, the   is always lower than 1 for the 
harmonic loading and white noise case. However, in these 
cases   is much lower; for example, 0.45 and 0.63 for the 
harmonic and the white noise cases, respectively, when the 
VIRM is undamped. As sd   increases in the harmonic 
loading case,    decreases to 0.43 when the sd   is 1.34 
and gradually increases to 0.46 at sd  =5.34 and remains 
mostly unchanged in the higher slider damping range. Fig. 
13(c) shows that, for the white noise case,   decreases as 

 
Fig. 11 2H  of the primary structure versus loading 
frequency ratio, l , with various linearized slider 

damping ratios, ds , values given a normalized harmonic 
loading amplitude of 0.05 m 
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sd   keeps increasing. This decrease in    could be 
attributed to the continued ability of increased slider damping 
to dissipate more energy in this load case, as observed in Fig. 
7(c). 

In order to investigate the effect of loading amplitude on 
the performance of the structure, 2H  are plotted in Fig. 12 
for harmonic loading with different amplitudes across a 
range of l  . This figure shows that the maximum 2H  
occurs at a lower l  value for the structure with the VIRM 
compared to the structure with the FIRM at x0 for the same 
loading amplitude, which aligns with the previous results in 
Fig. 11. Additionally, the structure with the FIRM at Rubc 
location has a lower l   compared to the structure at x0 
location and has the maximum 2H  value among the three 
structures. At lower loading amplitudes, for example, for 
0.005 m, 0.009 m and 0.02m normalized loading amplitude, 
the l  with the maximum 2H  is higher than the structure 
with the FIRM at Rubc. The l  value with the maximum 

2H  value of the VIRM is referred to as the pseudo resonance 
frequency ratio. Near the pseudo resonance frequency ratio, 
there are multiple stable and unstable steady-state solutions. 
As the structure approaches the pseudo resonance frequency 
ratio, the steady-state solution becomes unstable and the 
structure jumps to a higher stability solution. The jump 
amplitude of the structure depends on the load amplitude. 
Additionally, when the loading amplitude increases, the 
pseudo resonance frequency of the structure with the VIRM 
decreases.  

 

Fig. 12 2H  of the primary structure with the VIRM ( ds
=4), the FIRM (at 0x ) and the FIRM (at ubcR ) versus loading 

frequency ratio, l , for a range of normalized harmonic 
loads with different normalized amplitudes, expressed in ‘m’ 

Fig. 13 can be utilized to investigate the performance of 
the VIRM at different initial displacements, harmonic 
loading amplitudes, and white noise levels. In almost every 
case examined, normalized 2H   response measure is less 
than 1, which indicates that the VIRM is outperforming both 
the FIRMs. This figure shows that with a small amount of 
initial displacement,   decreases and reaches a minimum 
of 0.7 when the initial displacement is 0.3 m. However,   
increases as the structure is excited with a higher initial  
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 displacement beyond 0.3 m. The behavior of   under 
different loading amplitudes is very different in the harmonic 
loading and white noise cases compared to the initial 
displacement case.    for harmonic loading is very low 
(close to 0.1) for small loading amplitudes and increases with 
increases in the normalized loading amplitude until a peak 
value of    = 0.57 is reached, then    once again 
decreases with increased amplitude. For the white noise case, 
   decreases initially to below 0.4 when the normalized 
RMS amplitude is 0.07 m and increases afterwards until a 
normalized RMS amplitude of 0.14 m. Finally,   
decreases again for higher normalized RMS loading beyond 
0.14 m. 

This section presents an evaluation of the effectiveness of 
the VIRM at reducing the response of the structure it is 
attached to using the normalized 2H  response measure,  , 
across various loading types, loading amplitudes, and slider 
damping levels. Comparisons of the VIRM’s effectiveness 
are made to the effectiveness of a pair of FIRM 
configurations. The results in this section demonstrate that 
the VIRM consistently achieves lower   compared to the 
FIRMs across different load types, highlighting its 
effectiveness in attenuating response. While varying slider 
damping was found to have negligible impact on   , the 
VIRM’s performance exhibit a dependence on loading 
amplitude, which showcases the system’s inherent 
nonlinearity. This energy dependency will be a crucial 
consideration when designing VIRMs for specific 
applications.  

While the impact of other device parameters, such as the 
slider mass and slider stiffness, were not investigated, it is 
anticipated these parameters would have a noticeable effect 
on the structural response as well. This impact is anticipated 
as these parameters would influence the effective force on 
the slider masses and their resistance to motion; thus, these 
parameters will influence the slider dynamic motion and how 
this motion changes with loading amplitude. These device 
parameters will have to be carefully considered as well when 
designing a VIRM. 

Notably, the VIRM’s effectiveness is particularly 
pronounced under harmonic loading, where the 2H  
response measure is reduced by 90% at certain loading 

amplitudes compared to the FIRM at x0. However, the 
VIRM’s effectiveness was observed to be limited under the 
initial displacement loading condition, likely due to the 
VIRM’s frequency shifting ability not being relevant in 
reducing the transfer of the energy into the system when a set 
input energy is provided in the initial displacement case. This 
result suggests that regardless of the parameter set chosen, it 
is unlikely that the VIRM will be a particularly effective 
choice for mitigating response to impulsive loads or initial 
conditions.  

7 Conclusions 
 
In this paper, an innovative passive nonlinear rotational 

inertial mechanism called the variable inertia rotational 
mechanism (VIRM) is described, formulated, and 
investigated. This paper examines the impact of the VIRM 
on the natural frequency and the response of a single-degree-
of-freedom (SDOF) structure under various types of loads 
using numerical simulations. The following significant 
results were observed from this study. 

 The incorporation of the VIRM in the primary 
structure significantly influenced the normalized 
instantaneous frequency ratio. Although the level of 
slider damping shifted the normalized instantaneous 
frequency ratio, the shift does not always correspond 
to major changes in the primary structure response. 
Moreover, the normalized instantaneous frequency 
ratio is highly dependent on the loading type and 
loading amplitude. 

 The normalized weighted average instantaneous 
frequency ratio and the normalized overall 
fundamental frequency ratio of the structure with the 
VIRM reduced significantly when higher loading 
amplitude is applied to the structure. However, they 
are less influenced by the slider damping changes. 

 The VIRM can notably reduce the pseudo resonance 
frequency ratio of the structure, and superharmonic 
pseudo resonances can be observed with the VIRM. 
Additionally, as the loading amplitude increases, the 
pseudo resonance frequency ratio and the 2H  
response measure decrease for the structure with the 

 

 

 

    

  
(a) Initial displacement  (b) Harmonic loading  (c) White noise  

Fig. 13 Normalized 2H  response measure,  , of the structure with the VIRM ( ds =4), the FIRM (at 0x ) and the FIRM 
(at ubcR ) versus loading amplitude for different loading types 
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VIRM relative to the structure with the fixed inertia 
rotational mechanism (FIRM) at x0 in all cases 
considered. The slider mass damping of the VIRM 
had little to no effect on the shift in the pseudo 
resonance frequency ratio. 

 The performance of the structure with the VIRM, in 
terms of 2H   response measure compared to the 
FIRMs, changes with the slider damping level 
considered, but these changes are relatively small. 

 The performance of the VIRM is highly dependent 
on the type and amplitude of the loading; however, 
the VIRM outperformed the FIRMs in terms of 2H  
response measure in almost all the cases considered.   

Overall, this paper shows that the VIRM can passively 
induce significant changes in the dynamics of a primary 
structure, as evaluated by measures related to the 
fundamental frequency shifts of the system. The VIRM’s 
unique characteristics make it well-suited for employing as a 
structural control strategy, particularly in applications 
involving harmonic excitation and white noise excitation. 
The VIRM’s performance in these load scenarios is superior 
compared to a FIRM due to its capacity to continuously shift 
the structure’s effective natural frequency. This adaptive 
frequency not only leads to superior vibration mitigation but 
also helps to protect structures by preventing sustained 
resonance conditions. While the VIRM’s dynamic frequency 
shifts prevent sustained resonance, it is important to 
acknowledge that certain loading scenarios may introduce 
brief periods of intensified interaction between the structure 
and the excitation due to the altered system frequency. 
Despite these interactions, the amplitude of the structural 
response remains bounded as resonant conditions are not 
maintained. The VIRM’s ability to adapt a system’s 
frequency and their two-terminal nature makes them 
potentially suitable for integration into structural systems in 
a variety of ways, including in base isolation systems, as an 
interstory device or in an outrigger system. However, the 
VIRM is likely not suitable for mitigating system responses 
in scenarios similar to initial displacement conditions where 
energy is rapidly applied to a system and the VIRM’s 
frequency shifts cannot disrupt the flow of energy to the 
structure from the excitation.  

Although this work with VIRM in a simplified linear 
model serves as a foundation for future investigation, the 
nonlinearity introduced by this mechanism significantly 
impacted the dynamics of the system. Additionally, in most 
circumstances investigated and with enough input amplitude, 
the inclusion of the VIRM results in a beneficial reduction in 
the system response amplitude. Thus, further research on the 
use of VIRM for passive control of structures, including the 
presence of intrinsic nonlinearities, under a variety of 
excitations, including seismic ground motions, is warranted. 
Furthermore, given the nonlinear nature of the VIRM, future 
studies should explore whether the system exhibits chaotic 
behavior, as this could offer additional insights into its 
effectiveness in structural control.  
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