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SPOT: An Active Learning Algorithm for Efficient Deep Neural
Network Training

Luyang Fang, Cheng Meng, Lin Zhao, Tao Wang, Tianming Liu, Wenxuan Zhong*, and Ping Ma*

Abstract: Recent advancements in deep neural networks heavily rely on large-scale labeled datasets. However,
acquiring these datasets can be challenging due to annotation constraints. Active learning offers a promising
solution to this problem by selectively labeling a small, strategically chosen subset of the unlabeled dataset.
However, current active learning methods struggle with data that is unevenly distributed, which leads to the selection
of subsets that fail to represent the entire dataset. To overcome this challenge, we introduce a novel active learning
algorithm that integrates space-filling (SP) designs with the optimal transport (OT) technique (SPOT). SPOT utilizes
optimal transport to effectively manage data from complex manifolds by mapping it to a uniformly distributed
hypercube. Additionally, the space-filling design facilitates a faster asymptotic convergence rate, ensuring that the
selected subset encompasses the entire dataset more effectively than other sampling methods, such as random

sampling. Our extensive experiments across various image datasets and models demonstrate the superiority of

SPQOT over existing baselines.
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1 Introduction

Deep neural networks (DNNs) have achieved
significant advancements in various domains, including
image recognition and natural language processing
[1, 2, 3, 4, 5, 6]. The training of these large-scale
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DNN:s typically requires extensive labeled datasets. For
example, the optimization of the Vision Transformer
relies on the JFT-300M dataset, which contains 303
million labeled samples [2]. However, acquiring
annotations for such extensive training sets presents
challenges due to cost, privacy, and the need for
specialized expertise [7, 8, 9]. Active learning (AL)
has recently emerged as a promising strategy to address
these challenges by efficiently selecting a subset from
the unlabeled pool for annotation, thereby optimizing
the construction of training datasets [10, 11, 12, 13].
Unlike random sampling, which regards all data points
as equally important, AL assumes that certain data
points within the unlabeled pool are more critical for
model optimization. The goal is to develop a learning
algorithm that can identify and select these pivotal data
points for annotation.

Current AL strategies for DNNs fall into two
primary categories: uncertainty-based and diversity-
based methods.  Uncertainty-based methods focus
on querying data points with high uncertainty, yet
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Fig. 1 a) Unevenly distributed sample space. Distance-based
methods tend to select the points from the sparse areas (e.g.,
blue points) to cover the entire space, which ignores a lot of
information (red points). b) Data points with core-set design.
When projected to the U; dimension, 20 points are collapsed into
only 5 points because of overlap. c) Data points with MaxPro
design. In total 9 points are kept after the projection.

they risk selecting similar or duplicate samples.
Conversely, diversity-based methods aim to encompass
a comprehensive range of the sample space by selecting
data points that maximize diversity based on their
distances. A notable approach within this category is
to select a subset from a core-set perspective [14, 15],
which aims to represent the distribution of the entire
dataset effectively [16, 17, 18]. For instance, Sener and
Savarese [16] addresses the core-set selection challenge
by formulating it as a minimax-based k-center problem
[19]. The goal here is to determine k& center points
that cover the entire space by minimizing the maximum
distance between any data point and its nearest center.
However, current core-set-based methods exhibit
limitations in dealing with the data points that are
unevenly distributed on the sample space, primarily
because these methods do not estimate or account
for distribution density. For example, core-set-based
methods tend to select subsets that overly represent
sparse areas in order to cover the entire sample space,
consequently overlooking substantial information. As
shown in Fig. 1 (a), points selected by the distance-
based methods, represented in blue, result in a distorted
representation of the original dataset.  This can
lead to subsets that do not accurately reflect the
original dataset. Furthermore, minimax or maximin
[20] distance designs are ineffective in projecting the
selected design points onto subspaces. As illustrated
in Fig. 1 (b), the representative data points from
the original high-dimensional space tend to cluster
and overlap when projected onto subspaces, leading
to inefficient resource allocation at the subspace level.
Given the principle of effect sparsity [21], which
suggests that only a few dimensions in the data
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are statistically significant, it is crucial to project
data accurately onto subspaces defined by these key
dimensions. However, since the significant factors are
not known in advance, ensuring an effective projection
across all potential subspaces.

To address the aforementioned limitations, we
introduce a novel diversity-based AL algorithm, named
SPOT, which combines space-filling (SP) designs with
optimal transport (OT) techniques. Optimal transport
techniques [22, 23, 24, 25] efficiently manage data
points unevenly distributed on complex manifolds by
mapping them onto a dataset uniformly distributed on
a hypercube. This transformation relieves the difficulty
of selecting a representative subset on the manifold to
a more manageable task of choosing a subset within a
hypercube. To ensure the coverage of the design points
[21] across lower-dimensional projections, we employ
a space-filling design strategy based on maximum
projection (MaxPro) [26]. The MaxPro design
guarantees that the projection of selected design points
onto any subspace maximizes space-filling properties,
effectively countering the impact of effect sparsity and
thus improving the performance and robustness of the
algorithm.

Furthermore, in scenarios involving the fine-tuning of
pre-trained models, the unlabeled data pool may include
data from classes not recognized by the pre-trained
model. In such instances, it is critical to effectively
select data from both known and unknown classes to
ensure optimal performance. To tackle this challenge,
we introduce a re-weighting strategy. This strategy
assigns sampling probabilities that reflect not only the
distribution of the unlabeled pool but also an updated
distribution incorporating insights from the labeled
data. By considering both distributions, our approach
enables a more informed and effective selection of
data from both known and unknown classes, thereby
enhancing overall model performance.

We evaluate the SPOT algorithm on three different
datasets, specifically targeting the image classification
task. The experimental findings demonstrate consistent
improvements over baseline methods across these
varied datasets and models. In summary, the key
contributions of our work are as follows:

* We introduce a novel diversity-based active
learning algorithm, named SPOT, which integrates
space-filling (SP) designs with the optimal
transport (OT) technique. OT efficiently handles
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data distributed on complex manifolds, while SP
ensures coverage of the design points on lower-
dimensional projections.

We develop a re-weighting strategy designed to
enhance the fine-tuning performance by effectively
selecting data points from both the known and
unknown classes of the pre-trained model.

* We conduct comprehensive experiments across
various datasets and models, demonstrating that
our SPOT algorithm consistently surpasses the
baseline methods. These results provide new
perspectives and insights into active learning
methods.

2 Related Works

2.1 Active Learning

AL algorithms are generally divided into three
main categories: stream-based methods, synthesis-
based methods, and pool-based methods. Stream-
based AL methods [27, 28, 29, 30] are designed to
quickly decide whether to query incoming instances
within a data stream. Synthesis-based algorithms [31,
32, 33] generate new instances for querying, rather
than selecting from an existing dataset. Pool-based
AL methods focus on selecting a specific number of
unlabeled instances from an existing pool to optimize
learning accuracy. Our study concentrates on pool-
based AL methods, which are particularly relevant for
DNNss that have access to extensive pools of unlabeled
data but limited labeled data. In such scenarios, the
importance of each data point for DNNs can be assessed
using two main approaches: uncertainty-based and
diversity-based methods.

2.2 Uncertainty-based Methods

Uncertainty-based methods [34, 35, 36, 37, 38, 39,
40, 41, 42, 43] aim to query data points with high
uncertainty, which suggests that these points are not
effectively represented by the pre-trained model. For
example, Shannon [35] selects top-k instances with the
highest entropy for querying. However, these methods
can overlook the structural information of the unlabeled
data. As a result, data points belonging to the same
category often receive similar uncertainty scores from
DNNs, leading to sample bias and the selection of
redundant data points [44, 45].

2.3 Diversity-based Methods

This paper primarily focuses on the diversity-based
method, which distinguishes itself from uncertainty-
based methods by emphasizing the selection of diverse
samples that cover the entire sample space, considering
distances between all samples. A notable example of
this approach is the core-set method, which selects
a representative subset by choosing data points that
effectively approximate the full dataset’s diversity and
distribution within a reduced sample space [16, 17,
18]. Despite its strengths, there are situations where
the core-set method is outperformed by uncertainty-
based methods [46]. One possible explanation
is that the core-set method treats each data point
equally within the sample space, ignoring the inherent
uneven distribution of data across a complex, high-
dimensional manifold. = Consequently, this method
may favor points located in sparse areas, potentially
overlooking more critical data points in order to achieve
effective coverage. Another limitation of the core-set
method arises from the projection of high-dimensional
spaces, which can lead to overlapping points in
low-dimensional spaces, resulting in information loss
and reduced representativeness of the sampled points.
These limitations are addressed in our proposed SPOT
framework, which enhances the effectiveness of the
core-set method.

3 Methodology

We develop a novel AL algorithm named SPOT,
which integrates the space-filling design with optimal
transport mapping to select a representative subsample.
SPOT comprises two main steps. The first step involves
linking the feature space to the unit hypercube [0, 1]7,
where p is the dimension of data, using the optimal
transport technique, enabling the mapping of data
points from the complex feature space to a hypercube.
In the second step, we employ a space-filling strategy
to select the representative subsample that evenly and
efficiently covers the hypercube [0, 1]*. The workflow
of SPOT is shown in Fig. 2.

3.1 Problem Setup

Using a pre-trained model, an active learning
algorithm identifies and selects the most informative
data points from a large pool of unlabeled data. These
selected data points are then labeled by experts. The
newly labeled data is subsequently used to update and
refine the model, resulting in enhanced performance.
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Fig. 2 Workflow of the SPOT algorithm. The inputs are first embedded into the feature space, after which they are mapped into a
hypercube via the optimal transport technique. A space-filling strategy is then applied to select the representative subsample (red points)

within the hypercube.

Mathematically, consider a pre-trained base model
M and an unlabeled pool DY containing 7 unlabeled
data points, denoted as DV = {z; € RP}I,, where
each z; € RP represents the p-dimensional covariates
of data point 7. The objective is to select a fixed-size
subset D' = {z; € R”}’_, and acquire corresponding
labels {y;}5_,. This subset is chosen to maximize
the performance of model M when fine-tuned on D'.
In classification tasks, each y; is an integer from set
{1,2,..., K}, representing the class label, where K
denotes the number of classes. In regression problems,
1; 1s a real value.

3.2 SPOT algorithm
3.2.1 Space-filling

To select the subset D' that can best represent the
whole dataset DY, we prefer data points that spread
evenly in the dataset rather than cluster together. We
use star discrepancy, a commonly employed measure,
to assess the deviation of a given point set from
the uniform distribution. Assuming, without loss of
generality, that the unlabeled data points are distributed
within the hypercube [0, 1]7, our goal is to select a
discrete set of data points, D!, which has the lowest
discrepancy.

Given a p-dimensional unit hypercube [0,1]7, let
[0,a) = [I;_,[0,a;) be a hyper-rectangle and U, =
{u;};_, be a set of r data points in [0, 1]?, the star
discrepancy is defined as

Zl{u

D*(U,) = su € [0,a a;
U.) ae[oIl)p , )} = H J
(D

The subset Uf, that minimizes D* is optimal for
representing the hypercube space effectively. Several

uniform design methods [47] have been proposed
to generate such Ur. However, these methods are
computationally intensive and challenging to apply
to datasets with large sample sizes.
computational load, we employ space-filling design
strategies [21, 48], which create Ur with low star

To reduce the

discrepancy.
We utilize the Maximum Projection Design
(MaxPro), a space-filling strategy, to select a

representative subset in [0, 1]”. MaxPro helps avoid
the suboptimal projections encountered in minimax
or maximin distance designs, as illustrated in Fig. 1
(a). In this approach, when data are projected onto a
subspace defined by several original dimensions, the
distance between points u; and u; is calculated using
the weighted Euclidean distance, defined as:

1/2
d(u ll 6 {Zél uzlfuﬂ) } s (2)

where w; = (ug, - ,up)’, 8 = {01, -+ ,0,}7
for i € {1,---r}, and 6, = 1 if dimension [
participating in forming the subspace, otherwise §; = 0
for I € {1,---,p}. We aim to select a subset U,
that minimizes the projection error across all subspaces,
defined as:

Plz 1 j=i+1
(3)

{00600, > 0,00 6 <1
and £ > 0 is a constant. This ensures optimal
representation in each considered subspace. We refer
to Joseph et al. [26] for more details.

We propose Algorithm 1 to select the representative
subset U, within the unit hypercube [0,1]”. This

where S,_; =
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Algorithm 1 SP Algorithm

Input: The observed sample DY = {z; € RP}!, and budget
T.

« Step 1: Scale DY = {z; € RP}L, to xY = {x; €
[Oa 1]p}?:1-

e Step 2: Generate a set of MaxPro space-filling design
points {u;}7_, € [0,1]".

e Step3: Forj=1tor,
Select the nearest neighbor x; for u; from XV using the
Euclidean distance.

Output: The selected subset {x;}7_;.

approach integrates the space-filling design with a 1-
nearest neighbor method similar to Zhang et al. [49].
First, we scale the original sample DV to X'V, ensuring
it is distributed within [0, 1]”. We then generate MaxPro
design points within this space. For each design point,
denoted as u; € [0, 1]7, we identify its nearest neighbor
x; €X Y. This neighboring point x; is the data point
we select to fine-tune the model.

3.2.2 Optimal Transport

For any DY = {z; € R”}’_,, Algorithm 1 can be
applied following a simple scaling step. Nonetheless,
challenges arise when the data points are non-uniformly
distributed across the sample space.  Employing
the MaxPro space-filling design method under these
conditions often leads to suboptimal outcomes. Firstly,
as illustrated in Fig. 3 (a), Algorithm 1 tends to select
the subset that overly represents data points from sparse
areas. Secondly, for data points that are non-uniformly
distributed in the sample space, utilizing a uniformly
distributed space-filling design set to locate the nearest
neighbor may not be reasonable. This is because even
its nearest neighbor can still be significantly distant,
making this approach ineffective.

We apply the optimal transport (OT) technique [22,
50] to transfer the dataset DY, which is unevenly
distributed on a complex manifold, into a uniformly
distributed dataset within a unit hypercube [0, 1]”.
The transformation simplifies the challenging task of
selecting a representative subset from the manifold
to selecting one from a dataset uniformly distributed
in a hypercube. Consequently, the effectiveness of
Algorithm 1 is fully demonstrated, as shown in Fig. 3
(b). We observe that the selected data points are more
concentrated to the true distribution, and it is robust to

(a) Without OT (b) With OT
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Fig. 3 Power of OT on the unevenly distributed sample (grey
points). The points from the sparse areas are considered as
outliers (circled in blue). a) Subset (red points) selected by
applying algorithm 1 directly. b) Subset (red points) selected by
applying algorithm 1 after the optimal transport method.

this non-uniformly distribution with outliers.

Assume 4 is the probability measure on space X €
RP, the domain of the random variable, and v is the
uniform probability measure on Y = [0, 1]". Let T :
X — Y be a transport map that transports p € P(X)
to v € P(Y), where P(-) is the set of probability
measures on (-). T" is defined such that

v(B) = p(T7H(B)), @)
for all v-measurable sets B. As shorthand we write
v = T, if Eq. (4) is satisfied. The focus is primarily
on the cost of transporting p to v. Specifically, let
¢: X XY — [0, +o0] be a cost function, where ¢(x, y)
measures the cost of transporting one unit of mass from
x € X toy € Y. The objective is to search the optimal
transport map 7™ that minimizes

M(T) = [ T, )
over p-measurable maps 7' : X — Y subject to v =
T#[,L.

To obtain the desired optimal transport map that maps
the observed sample to be uniformly distributed on
[0,1]7, a synthetic sample, U,, = {u;}!_;, uniformly
distributed on [0, 1]? is first generated. Subsequently,
T*, mapping from the observed sample to U, is
calculated. This mapping can be approximated using
projection-based methods [25, 51], which simplify the
estimation of a p-dimensional optimal transport map by
addressing it through a sequence of one-dimensional
subproblems.  These subproblems, involving the
calculation of one-dimensional optimal transport maps
between projected samples, are readily solved using
sorting algorithms.  The set /. is then selected
according to Eq. 1 based on space-filling designs.
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Fig. 4 Toy example of the proposed SPOT algorithm. (a)
original data consisting of two classes, distinguished by different
colors; (b) optimal transport maps the original data to the
synthetic data uniformly distributed on the 2d unit hypercube
[0, 1]2; (c) generated space-filling design points (red points)
covering the unit hypercube [0, 1]%; (d) subset of the original data
(red points) mapped to the selected synthetic data.

Algorithm 2 Naive-SPOT Algorithm

Input: DY, D, and budget r.

e Step 1: Generate a synthetic sample U, = {u;}i—,
uniformly distributed on the unit hypercube [0, 1].

« Step 2: Calculate the optimal transport map 7" that maps
DY = {z; € RP}IL, toU,.

» Step 3: Generate the MaxPro space-filling design points
{u;}5_y = SP(Us, . 7).

* Step 4: Achieve the subset D' = {z;}7_, mapped to
{ujth=: by T7.

Output: Selected subset D'.

The observed samples transported to U4, by T form
the targeted subsample. This procedure is outlined
in Algorithm 2. The selected subset is subsequently
annotated with expert knowledge and utilized to refine
the current model, M.

We further illustrate algorithm 2 using a toy
example as shown in Fig. 4. We generate two distinct
classes of random samples, each consisting of 3,000
points. The first class is sampled from a normal

o rsin(2r) 0.4 0
distribut N ,
1sibtion ((rcos(Qr)) ’ ( 0 0.42>>

where 7 ~ Unif(0,27), and the second from

N ((g) , ((1] ?)) as displayed in Fig. 4 (a).

Following this, we map the generated data to a
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synthetic dataset uniformly distributed on [0,1]* as
per step 2 in Algorithm 2. Figure 4 (b) confirms
that data from the same class remain spatially close
even after the OT step, validating the logic of the
subsequent selection procedure (SP). The SP design
points are marked in red in Fig. 4 (c). The subsample
corresponding to these design points, marked in red in
Fig. 4 (d), form the desired subsample.

3.2.3 Down-weight

Algorithm 2 is designed to select a small subset
of data that effectively represents the entire unlabeled
dataset. This is particularly useful when the unlabeled
data comes from classes that differ from those in the
base dataset DX, which is used to train the base model.
However, in practice, DY may also contain data points
belonging to the same classes as DY, which the base
model already distinguishes well. In these cases, we
prefer to reduce the probability of selecting such data
points. To address this issue, we introduce a down-
weighting method that adjusts the input to our selection
procedure.

To illustrate our method, consider a scenario
involving two classes. Assume the unlabeled dataset
DY = {z; € RP}"_, contains two classes: C{ =
{z; : j € L} and CY = {z : k € L}, where
LUul,=A{1,---,n}, [ NIy = &, || = my, and
|I5| = ms. Furthermore, suppose that CV contains the
same classes as the base labeled dataset D = {x;}¥ |,
where N is the sample size of DY. We denote the
sampling probabilities for data points in CV, CY, and
DE by pyj (for j € I), pa. (for k € I,), and py; (for
1 =1,--- N), respectively.

According to the principle of OT and SP, the
proportion of the selected subset from each class should
be proportional to the sample size of each class.
Therefore, when incorporating the base dataset D, the
probability of selecting each data point into the subset
is given by:

poi = —————— X Lo (©)
Con+my 4+ my E?:l Doi + 22211 i’
« my D1y
P1; = X n m ’ (7)
Y+ my+my Dy Poi + i P
A m b
Por, = 2 2k (8)

> ity D2i ’

where po;, P1j, Dor represent the adjusted sampling
probability for each data point in DY, CY, CY,
respectively. Without including the base dataset, the

n—+mq + mse
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adjusted probabilities are as follows:

~ my D1y
Y my + mso Zizll D1
ma D2k (10)

ﬁQk = X Mo .
my+me Y Do

For any z; € C{ and z;, € CY, without the base
dataset, the ratio of the selection probability is given by
= ]?ﬁ — %&%m (1)

D2k D2k Zizl P1i
However, when including the base dataset, this ratio
becomes

ko

ky = @ _ P1j 22121 DP2i
P2k D2k (22;1 Po; + Z?;ll p1i)’
which is lower than ky. Thus, we effectively decrease
the probability of selecting data points from classes that
are already well represented. Further details of this
method under general conditions are outlined in the
Algorithm 3.

(12)

Algorithm 3 SPOT Algorithm
Input: DY, D, and budget 7.

« Step 1: Randomly select a subset DZ,, from DE with the
size of the sample order with DY .

* Step 2: Form Dyew = DY UDL,,.

e Step 3: Pass Dpew into the Naive-SPOT algorithm to
select a subset for labeling:

D' = Naive-SPOT(Dyew, )

- If the selected subset contains samples from D(I; ,no
budget is used for these alreadylabeled data points.

- The saved budget can either be preserved or used to
annotate additional samples.

Output: Selected subset D',

In the first step of the SPOT Algorithm 3, simple
random sampling is employed to select a subset
from the labeled base dataset, Dé . To enhance the
performance of the SPOT algorithm, the potential for
incorporating more advanced sampling techniques [52,
53, 54] can be further investigated.

4 Experiments

This section provides an overview of the datasets and
algorithms to be employed in our experiments, followed
by an experimental analysis. We perform a thorough
evaluation of SPOT across multiple classification tasks
utilizing various models. Furthermore, we conduct

Table 1 Datasets used in the experiments.

Dataset mi Mo ni No Model

CIFAR-10 7 6 30,500 19,500 ViT
Agri-ImageNet 3 8 3,149 1,491 ViT
MNIST 7 6 36,781 23,219 CNN
mq: # classes in Dg; meo: # classes in DV;
n1: #images in D§; no: #images in DY.

a sensitivity analysis to assess the effects of several
critical parameters on the performance of the SPOT
algorithm.

4.1 Baselines

To validate the performance of our approach, we
compare it against a number of baselines:

* Coreset: Following the K -center algorithm (K is
equal to the budget) developed in [16] to select D'.
We use Gurobi [55] to iteratively solve the integer
program.

* BADGE: Batch Active learning by Diverse
Gradient Embeddings according to [56].

 K-means: Partitioning DV into K clusters (K is
equal to the budget) according to [57] and take the
cluster centroids as D'.

» Random: Selecting the subset D' uniformly at
random from DV

* Least Confidence (LC) : Selecting D' for which
the pre-trained model M is least confident in class
assignment.

* ALBL: Active Learning by Learning. A bandit-
style meta-active learning algorithm that selects
between Coreset and LC at every round [58].

* GEFD: low generalized empirical F-discrepancy
(GEFD) data-driven  subsampling  method
according to [59].

4.2 Size of the Budget

Different from many previous AL studies that
allocate a large budget for their experiments, we focus
on the scenarios where budget B is very limited. This
focus mirrors situations where labeling is extremely
expensive, as is often the case in fields such as medical
imaging. Specifically, for the situation that DY contains
tens of thousands of data points, we limit the size of the
budget to the order of tens, i.e., the few-shot scenario
[60, 61].

4.3 Dataset

Agri-ImageNet: The Agri-ImageNet dataset [62]
contains two parent classes including fruits (with 11
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sub-classes) and vegetables (with 4 sub-classes).
MNIST: MNIST [63] is a dataset of handwritten digit
images with a training set of 60,000 examples and a
test set of 10, 000 examples. Each example is a 28 x 28
grayscale image, associated with a label of 10 classes.
CIFAR-10: The CIFAR-10 dataset [64] consists of a
training set of 50, 000 examples and a test set of 10, 000
examples. Each example in the dataset is a 32 % 32 color
image, spanning 10 different classes of objects such as
animals and vehicles. These classes include airplanes,
cars, birds, cats, deer, dogs, frogs, horses, ships, and
trucks, each equally represented in the dataset.

4.4 TImplementation Details

We briefly introduce some important implementation

details of our experiments. We refer to the Experiments
section in the Supplementary Materials for more
detailed settings about the models.
Dataset settings: For all datasets, we randomly
separate them into the base dataset and the novel
dataset. Model M is pre-trained on the base set, and
the active learning algorithms are applied to the novel
set. The base dataset is randomly divided into training
(80%) and test (20%) splits. For the novel dataset,
all samples except those actively selected for fine-
tuning are used as the test split. Image pre-processing
steps are also applied. Specifically, for the training
dataset, Rand-Augment [65], Random Erasing [66], and
RandomResizeCrop is applied for data augmentation.
For the test dataset, images are only resized and center-
cropped.

In table 1, we list some basic information about the
three datasets.

Model settings: We consider two different model
structures. For Agri-ImageNet and CIFAR-10 dataset,
we apply the Vision Transformer (ViT) [2] model in
the experiments. The ImageNet-1k pre-trained model
is firstly trained on the base dataset with the vanilla
ViT. We adopt an AdamW optimizer with 300 epochs
using a cosine decay learning rate scheduler and 5
epochs of linear warm-up. For the MNIST dataset,
a Convolutional Neural Network with two sequential
layers and one fully connected layer is applied.

Feature extraction: For the distance-based methods
(Coreset, K-means), we follow the instructions in [16]
to define the distance metric. Specifically, we use the [,
distance between the final fully connected layers as the
distance. For SPOT, since the properties of space-filling
designs are restricted to a relatively low dimension, we
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Fig. 5 The image classification accuracy given the budgets
(number of training samples) on the CIFAR-10 dataset with
the Vision Transformer model. Accuracies are plotted versus
different budget r (x axis).

further apply a simple Autoencoder and PCA step to
reduce the dimension. This feature extraction procedure
is solely used for selecting D' and will not be applied in
the subsequent model fine-tuning step.

For all the active learning algorithms with
randomness, we run them with three random seeds and
use the median accuracy as a metric.

4.5 Results

Figure 5, Fig. 6, and Fig. 7 show the results
of classification accuracies versus different budget 7.
Three significant observations can be made from these
results. First, it is observed that as the budget increases,
the accuracy of all methods generally exhibits an
upward trend. Although there may be slight drops in
accuracy at certain points, such as when » = 50 for
the SPOT algorithm, the overall trend remains positive.
Notably, the proposed SPOT algorithm consistently
outperforms the other methods for both datasets in
most cases with a few exceptions that GEFD achieves
marginally better accuracies. These findings align
with the statements and demonstrations provided in
the methodology section and the accompanying toy
examples. They reinforce the notion that the subset
selected by the SPOT algorithm better represents the
observed sample space compared to the subsets selected
by the other four methods.

Second, we note that even with a significantly
limited budget (specifically, a budget controlled to be
under 100), DNNs can still achieve good performance
by taking advantage of active learning algorithms.
Utilizing the SPOT algorithm,
accuracy on both datasets reaches 70%. This highlights

the classification
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Fig. 6 The image classification accuracy given the budgets
(number of training samples) on the Agri-ImageNet dataset with
the Vision Transformer model. Accuracies are plotted versus
different budget r (x axis).
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Fig. 7 The image classification accuracy given the budgets
(number of training samples) on the MNIST dataset with the
CNN model. Accuracies are plotted versus different budget r
(x axis).

the efficacy of SPOT in maximizing performance even
under resource constraints.

Third, we observe that the accuracy of all methods
gradually approaches a fixed value, differing only in
their convergence rates. This behavior is expected
since, as the training sample size increases, the
distinctions between various active learning methods
diminish until they become negligible. For instance,
the convergence rate of the star discrepancy for space-
filling design points is of the order O (log(r)?/r),
while the convergence rate for uniformly random
sampling is of the order O(log(log(r))/\/T) [67],
which is significantly slower than O (log(r)?/r).
However, as the budget r goes to infinity, even
uniformly random sampling will perform well. One
exception is the performance of the entropy-based
method LC in the Agri-ImageNet dataset. As r

increases, its accuracy barely changes. This may
come from the fact that DNNs tend to give similar
uncertainties to the data points belonging to the same
class.

4.6 Computational Time

Although the expensive
constitutes a significant cost in active learning
algorithms, it is also essential to consider the
computational time required by the proposed
SPOT algorithm. Typically, the pre-trained model
used in active learning is not counted as part
of the computational cost since it is trained on
large benchmark datasets like ImageNet. Thus, the
computational time for the model-building procedure
consists of two main parts: 1) selecting the subset D!
for annotation, and 2) the fine-tuning process to adapt
the pre-trained model to the novel dataset. The subset
selection step is performed on a Mac with a 10-Core
M1 Max processor and 32 GB memory, utilizing the
CPU. On the other hand, the fine-tuning process is
executed on an NVIDIA Tesla V100 Tensor Core. We
list the computational time of step 1 in seconds in Table

labeling  procedure

2 and the computational time for step 2 in hours in
Table 3.

Table 2 shows that the computational time required
by different subset selection methods varies greatly, but
overall this step can usually be completed within several
minutes. A running time of zero here indicates that the
execution is completed in less than one second. While
the fine-tuning step is more time-consuming, requiring
several hours to fine-tune the ViT model.

Table 2 Median Computational time (sec)

Subset selection part

Method ‘ SPOT Coreset K-means Random LC ALBL BADGE GEFD
Agri-ImageNet 23 50 416 0 119 201 223 1
MNIST 174 6 1300 0 39 205 556 0
CIFAR-10 132 83 1081 0 54 371 368 1

Table 3 Median Computational time (hour)

Fine-tuning part

Method ‘ SPOT  Coreset K-means Random LC ALBL BADGE GEFD
Agri-ImageNet | 11.57 12.25 14.55 11.38 1437 19.07 19.06 16.52
MNIST 0.17 0.18 0.15 0.18 0.08 0.07 0.13 0.12
CIFAR-10 3.08 3.89 343 3.05 2.55 1.71 351 3.20

4.7 Parameter Sensitivity

To assess the impact of parameterization changes
in the dimension reduction phase on classification
performance, we conducted experiments using the
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Fig. 8 Results of the parameter sensitivity test for the
dimension reduction part.

CIFAR-10 dataset.  Specifically, we analyzed the
effects of modifying the number of the first principal
component, denoted as p. The results, as depicted in
Fig. 8, consistently demonstrate stable classification
performance across various values of p. This finding
suggests that the performance remains robust and
unaffected by changes in the specific values of p. More
details of experiments can be found in Appendix A.4.

4.8 Ablation Study

We conduct experiments to assess the influence
of space-filling designs and OT individually. Using
the MNIST dataset as an example, we compare
SPOT with the following methods: (1) OT, which
applies optimal transport with a simple random Latin
hypercube design [68] instead of the proposed MaxPro
space-filling design; and (2) SP, which uses the MaxPro
space-filling design without OT. Figure 9 shows the
classification accuracies of these three methods at
varying budget levels r. The results demonstrate
that SPOT consistently achieves higher classification
accuracy compared to both OT and SP, with the
performance gap increasing at higher budget levels.

5 Conclusion and Discussion

In this paper, we introduce a novel active learning
framework that combines space-filling (SP) designs
and optimal transport (OT) to effectively select
representative subsets that capture the underlying
distribution of the entire dataset. In particular,
our design remedies the limitations in core-set-
based methods from the uneven distribution density
of data points and ineffective projection onto sub-
spaces.  Through extensive experiments on three

Big Data Mining and Analytics, Feb 2024, 1(1): 000-000
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Fig. 9 The image classification accuracy given the budgets
(number of training samples) on the MNIST dataset. Accuracies
are plotted versus different budget r (z axis).

diverse datasets using various models, we demonstrate
the superiority of our proposed methods compared
to the baseline approaches. The results highlight
the effectiveness and robustness of our framework.
As part of our future work, we aim to apply the
SPOT framework to other scenarios, including medical
imaging applications and other data modalities such as
text, time series, and videos. This will allow us to
explore the potential benefits and practicality of our
approach in broader domains.

The computational cost of SPOT depends on both
the OT step and the SP step. Traditional linear
programming algorithms for solving OT problems
have a computational complexity of O (n®log(n)).
Additionally, the MaxPro design step has a complexity
of O (n?-p), where n is the sample size and p is
the data dimension. For large-scale datasets, such
as medical imaging data, the high computational cost
of OT poses a significant challenge to implementing
SPOT. Fortunately, efficient OT algorithms, such
as the Sinkhorn algorithm, have been developed to
significantly reduce computational time. Empirical
studies demonstrate that the Sinkhorn algorithm, with
a complexity of O (n?log(n)), can solve OT problems
reliably and efficiently for datasets with n ~ 10*
[69]. Furthermore, under sparsity assumptions, the
computational cost can be further reduced, with
efficiency demonstrated on datasets as large as n ~ 10°
[70]. Thus, the SPOT algorithm remains feasible and
practical for most applications, even with large-scale
datasets.
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Supplementary Material for “SPOT:
An Active Learning Framework for
Deep Neural Networks”

A Experiments

In this section, we provide detailed information of our
experiments.

A.1 Dataset Settings:
A.1.1 Splitting the dataset:

We partitioned each dataset into two subsets: the base
dataset and the novel dataset. The pre-trained model
was trained using the base dataset, while the active
learning algorithm was applied to the novel dataset. In
the case of the CIFAR-10 and MNIST datasets, the
novel dataset comprises both classes that are already
present in the base dataset and additional classes that are
not included in the base dataset. For the Agri-ImageNet
dataset, all the classes in the novel dataset are entirely
new.”

CIFAR-10: We design all data samples belonging
to four classes (airplane, automobile, bird, cat) and
randomly allocate 70% of the data from three classes
(deer, dog, frog) to form the base dataset. Subsequently,
we assign the remaining 30% of the three classes (deer,
dog, frog) along with all data samples from three classes
(horse, ship, truck) as the novel dataset.
Agri-ImageNet:
classes (Chinee apple, maize, and tomato), while the
novel dataset contains 12 classes (apple, fuji apple,
golden delicious apple, melrose apple, apple tree,
avocado, capsicum, lettuce, mango, orange, rockmelon,
and strawberry).

MNIST: Similar to the CIFAR-10 dataset, we set all
data from four classes (digit 0-3) and randomly select
70% of the data from three classes (digit 4-6) as the
base dataset. We then set the rest of the data, i.e. 30% of
three classes (digit 4-6) and all data from three classes
(digit 7-9), as the novel dataset.

A.1.2 Dataset settings:

For both datasets, the base dataset is randomly split
into training/testing with 80%/20%. The remaining data
in the novel dataset except for the actively selected few-
shot samples is the test split of the novel dataset. Image
pre-processing steps are also applied. Specifically,
for the training dataset, Rand-Augment [65], Random
Erasing [66], and RandomResizeCrop to 32 x 32 for
CIFAR-10, to 224 x 224 for Agri-ImageNet are applied

The base dataset contains three
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for data augmentation. For the test dataset, images are
only resized and center cropped to 32 x 32 for CIFAR-
10, and 224 x 224 for Agri-ImageNet.

A.2 Model Settings

ViT model for CIFAR10: We use the Vision
Transformer (ViT) [2] model in the experiments. The
ImageNet-1k pre-trained model is firstly trained on
the base dataset with the vanilla ViT. We adopt an
AdamW optimizer with 300 epochs using a cosine
decay learning rate scheduler and 5 epochs of linear
warm-up. Then, we fine-tune the model on the few-shot
samples in the novel dataset. We keep the same settings
of regular training except for the epochs to 200.

ViT model for Agri-ImageNet: We use the Vision
Transformer (ViT) [2] model in the experiments. The
ImageNet-1k pre-trained model is firstly trained on
the base dataset with the vanilla ViT. We adopt an
AdamW optimizer with 100 epochs using a cosine
decay learning rate scheduler and 5 epochs of linear
warm-up. Then, we fine-tune the model on the few-shot
samples in the novel dataset. We keep the same settings
as regular training.

CNN model for MNIST: We use a Convolutional
Neural Network with two sequential layers and three
fully connected layers. The CNN model is first trained
on the base dataset. We adopt an Adam optimizer with
100 epochs and 5 epochs of linear warm-up. Then, we
fine-tune the model on the few-shot samples in the novel
dataset. We keep the same settings of regular training
except for the epochs to 300.

A.3 Feature extraction

For particularly high-dimensional data such as
images, it is not reliable or even feasible for us to
use the original high-dimensional data for analysis.
Thus, a feature extraction step, which has the ability
to extract low-dimensional features that can preserve
the most relevant information from the original dataset
and discard the redundant information, is desired before
applying the active learning algorithms. For the
classification problems, since the pre-trained model
itself has the ability to extract important features
required to distinguish classes, we take advantage of it
to finish the feature extraction step.

ViT model: For the distance-based methods (Coreset,
KNN), we follow the instruction in [16] to extract the
low-dimensional feature and define the distance metric.
Specifically, take the output of the last block of the ViT
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Fig. 10 The image classification accuracy given the budgets
(number of training samples) on the CIFAR-10 dataset with
various d. Accuracies are plotted versus different budget r (x
axis).

model as the image features, and use the /5 distance as
the distance metric. For SPOT, since the properties of
space-filling designs are restricted to a relatively low
dimension, we further apply a simple Autoencoder [71]
with a three-layer Encoder and a three-layer Decoder
to reduce the dimension. The principal component
analysis is applied when needed.

CNN model: For the distance-based methods (Coreset,
KNN), we take the output of the second fully connected
layer of the CNN model as the image features, and
use the [, distance as the distance metric. For SPOT,
we use the principal component analysis to reduce the
dimension further when needed.

A.4 Parameter Sensitivity

In order to evaluate the robustness of the proposed
SPOT algorithm over the parameters in the dimension
reduction step, we take the benchmark dataset CIFAR-
10 as an example to conduct experiments. Specifically,
we test the influence of (1) the number of nodes d for
the latent layer in Autoencoder, and (2) the number of
principal components p used in PCA.

Specifically, we first fix p to be 6 and vary d among
50, 100, and 150 to explore the influence of d. Results
are shown in Fig. 10. We observe that the overall trend
of accuracy is upward as the shot size increases for
all scenarios. For different d, the increase in accuracy
of the proposed SPOT algorithm is stable, while the
increase of the random sampling method fluctuates
greatly. Moreover, the performance of the proposed
SPOT algorithm is stable across different values of d,
and outperforms the random sampling algorithm for
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Fig. 11 The image classification accuracy given the budgets
(number of training samples) on the CIFAR-10 dataset with
various p. Accuracies are plotted versus different budget r (x
axis).

almost all scenarios.

Then we fix d to be 100 and vary p among 3, 6, and
10 to explore the influence of p. Results are shown
in Fig. 11. Similar to the phenomenon in Fig. 10,
the overall trend of accuracy is upward as the shot size
increases for all scenarios. For different p, the increase
in accuracy of the proposed SPOT algorithm is more
stable than the random sampling method. Moreover, the
performance of the proposed SPOT algorithm has better
performance than random sampling in all scenarios and
is stable across different values of p.
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