
Eulerian Graph Sparsification
by E↵ective Resistance Decomposition∗

Arun Jambulapati † Sushant Sachdeva ‡ Aaron Sidford § Kevin Tian ¶

Yibin Zhao �

Abstract

We provide an algorithm that, given an n-vertex m-edge Eulerian graph with polynomially bounded

weights, computes an Ŏ(n log
2
n · "�2

)-edge "-approximate Eulerian sparsifier with high probability in

Ŏ(m log
3
n) time (where Ŏ(·) hides polyloglog(n) factors). Due to a reduction from [Peng-Song, STOC

’22], this yields an Ŏ(m log
3
n + n log

6
n)-time algorithm for solving n-vertex m-edge Eulerian Laplacian

systems with polynomially-bounded weights with high probability, improving upon the previous state-

of-the-art runtime of ⌦(m log
8
n + n log

23
n). We also give a polynomial-time algorithm that computes

O(min(n log n · "�2
+ n log

5/3
n · "�4/3

, n log
3/2

n · "�2
))-edge sparsifiers, improving the best such sparsity

bound of O(n log
2
n · "�2

+ n log
8/3

n · "�4/3
) [Sachdeva-Thudi-Zhao, ICALP ’24].

In contrast to prior Eulerian graph sparsification algorithms which used either short cycle or expander

decompositions, our algorithms use a simple e�cient e↵ective resistance decomposition scheme we introduce.

Our algorithms apply a natural sampling scheme and electrical routing (to achieve degree balance) to such

decompositions. Our analysis leverages new asymmetric variance bounds specialized to Eulerian Laplacians

and tools from discrepancy theory.

∗
The full version of the paper can be accessed at https://https://arxiv.org/abs/2408.10172

†
University of Michigan, jmblpati@gmail.com

‡
University of Toronto, sachdeva@cs.toronto.edu

§
Stanford University, sidford@stanford.edu

¶
University of Texas at Austin, kjtian@cs.utexas.edu

�
University of Toronto, ybzhao@cs.toronto.edu

Copyright © 2025

Copyright for this paper is retained by authors

https://https://arxiv.org/abs/2408.10172

Contents

1 Introduction 3
1.1 Our results . 4
1.2 Overview of approach . 5
1.3 Related work . 6
1.4 Roadmap . 8

2 Preliminaries 8

3 Technical overview 9

4 E↵ective resistance decomposition 12

5 Variance bounds from e↵ective resistance diameter 16

6 Sparser Eulerian sparsifiers 18

7 Eulerian sparsification in nearly-linear time 23
7.1 Approximating modified circulations . 23
7.2 Basic partial sparsification . 26
7.3 Sparsifying an ER decomposition . 31
7.4 Complete sparsification algorithm . 33

8 Applications 34

A Deferred proofs from Section 2 39

B Rounding 40

C Potential improvements to Theorem 1.2 41

D Proof of Proposition 6.1 43

1 Introduction

Over the past decade, ideas from spectral graph theory have led to a revolution in graph algorithms. A major
frontier for such developments is the design of spectral algorithms for directed graphs. Such algorithms have
wide-ranging applications from fast algorithms for processing Markov chains (see e.g., [CKPPSV16; AJSS19])
to deterministic low-space computation (see e.g., [AKMPSV20]). A fundamental challenge in this setting is the
fairly involved machinery used in spectral directed graph algorithms, which include e�cient constructions of
expander decompositions [CKPPRSV17] and short cycle decompositions [CGPSSW18]. In this paper we focus
on the central topic of spectral sparsification of directed graphs, for which, this challenge is particularly manifest.

A sparsifier of an undirected graph G = (V,E,w) or directed graph ~G is another graph supported on the same
set of vertices with fewer edges, that approximately preserves some property. Several notions of sparsification
for undirected graphs have been studied in the literature, e.g., spanners [PS89; ADDJS93; ACIM99; BS03;
TZ05; FS16], which approximately preserve shortest path distances, and cut sparsifiers [Kar00; BK96], which
approximately preserve cut sizes. Spectral sparsification [ST04] has been particularly influential in the design
of graph algorithms. An "-approximate undirected spectral sparsifier (henceforth, "-approximate undirected
sparsifier) H = (V,E0,w0) of undirected G approximately preserves the quadratic form of G’s graph Laplacian,
i.e., for all x 2 RV ,

(1.1) (1� ")x>LGx  x>LHx  (1 + ")x>LGx, where x>LGx =
X

e=(u,v)2E

we(xu � xv)
2,

where LG and LH are the undirected Laplacian matrices of G and H (see Section 2 for notation), and (1.1) is
equivalent to (1 � ")LG � LH � (1 + ")LG. Spectral sparsification generalizes cut sparsification and was key to
the advent of nearly-linear time Laplacian systems solvers [ST04].

Simple and e�cient algorithms for computing undirected spectral sparsifiers with nearly-optimal guarantees
are known. Spielman and Srivastava [SS11] showed that independently sampling (and reweighting) O(n"�2 log n)
edges of an n-vertex graph, with probability proportional to their e↵ective resistances (a graph-theoretic analog
of leverage scores), produces a spectral sparsifier. All e↵ective resistances can be estimated in Ŏ(m log n) time1

using fast Laplacian system solvers [JS21] (see Lemma 4.1) – this step dominates the runtime for undirected
spectral sparsification. Additionally, Batson, Spielman, and Srivastava [BSS12] showed spectral sparsifiers with
O(n"�2) edges exist, which is optimal [BSS12; CKST19] and constructible in near-linear time [LS17; JRT24].

Obtaining correspondingly simple and fast sparsification algorithms and optimal sparsity bounds for directed
graphs remains elusive. Even proposing useful notions of directed sparsification was challenging; any sparsifier
of the complete, directed, bipartite graph, i.e., the graph with a directed edge from every node in one side
of the bipartition to the other, that approximately preserves all directed cuts cannot delete any edges. The
influential work [CKPPRSV17] overcame this bottleneck by restricting their attention to directed Eulerian graphs
(where every vertex has equal weighted in-degree and out-degree). Further, [CKPPRSV17] showed that their
sparsification notion su�ces for numerous applications, including fast solvers for all directed Laplacian linear
systems (not necessarily corresponding to an Eulerian graph), overviewed in Section 8. In this paper, we consider
the following definition of Eulerian sparsification closely related to that of [CKPPRSV17].2

Definition 1.1. (Eulerian sparsifier) ~H is an "-approximate Eulerian sparsifier of ~G = (V,E,w) if ~H and
~G are both Eulerian, V (~H) = V , and for G

def

= und(~G), we have

(1.2)

����L
†
2

G

⇣
~L~G � ~L ~H

⌘
L

†
2

G

����
op

 ", and E(~H) ✓ E,

where k·k
op

denotes the operator norm.

Definition 1.1 generalizes the notion of undirected sparsification (Fact 2.2). While useful in applications,
Definition 1.1 poses computational challenges. Eulerian sparsifiers preserve exact degree balance, so in contrast

1
When discussing a graph clear from context with n vertices and edge weight ratio bounded by U , we use the Ŏ notation to hide

polyloglog(nU) factors for brevity (in runtimes only).

2
The key di↵erence is that we add the E(~H) ✓ E restriction.

Copyright © 2025

Copyright for this paper is retained by authors

to undirected sparsifiers, one cannot simply sample edges independently to compute sparsifiers. There have been
two broad approaches for addressing this key challenge.

The first approach leverages expander decompositions and is related to one used in [ST04] to sparsify
undirected graphs. [CKPPRSV17] followed such an approach and their algorithm consists of decomposing the
Eulerian graph ~G into expanders, sampling edges independently inside the expanders, and then fixing the resulting
degree imbalance by adding edges; this resulted in sparsifiers that did not necessarily satisfy the E(~H) ✓ E
property in (1.2). This approach was refined in [APPSV23] (using cycle decompositions as in the second
approach below, but not necessarily short ones), resulting in an algorithm for constructing Eulerian sparsifiers with
O(n"�2 log20 n) edges in O(m log7 n) time. Existing near-linear time expander decomposition methods [SW19;
ADK23] incur several logarithmic factors in the running time and (inverse) expansion quality, leading to these
large, di�cult to improve, polylogarithmic factors in the running time and sparsity.

The second approach leverages that most the edges in ~G can be decomposed into edge-disjoint short cycles,
termed a short cycle decomposition. [CGPSSW18] pioneered this approach and sampled the edges in a coordinated
manner within each cycle to preserve degree balance. Advances in short cycle decompositions [LSY19; PY19;
STZ24] resulted in an m1+o(1)-time algorithm for constructing Eulerian sparsifiers with O(n"�2 log3 n) edges.
Short cycle decompositions yield Eulerian sparsifier constructions with significantly improved sparsity compared
to the expander decomposition approach, at the cost of large mo(1) factors in running time.

In summary, all prior algorithms for constructing Eulerian sparsifiers use either expander decomposition
or short cycle decomposition, which result in substantial polylogarithmic factors (or larger) in sparsities and
runtimes. More broadly, large gaps seem to remain in our understanding of e�cient algorithms for constructing
Eulerian sparsifiers and the optimal sparsity achievable.

1.1 Our results We present a new sparsification framework that allows one to preserve exact degree balance
while sampling, as in Eulerian sparsification, and yet analyze the sampling error as if the edges were sampled
independently. Our framework is simple and intuitive, as it is based on randomly signing multiplicative
reweightings to edges, and using electrical flows to fix the degree balance. Combining our framework with
a lightweight graph-theoretic construction, e↵ective resistance decomposition (Definition 4.1), we obtain the
following Eulerian sparsification result.

Theorem 1.1. Given Eulerian ~G = (V,E,w) with |V | = n, |E| = m, integral w 2 [1, poly(n)]E and " 2 (0, 1),
FastSparsify (Algorithm 7) in Ŏ

�
m log3 n

�
time returns Eulerian ~H that w.h.p.,3 is an "-approximate Eulerian

sparsifier of ~G with |E(~H)| = O
�
n"�2 log2(n) log2 log (n)

�
.

Theorem 1.1 constructs Eulerian sparsifiers with sparsity within a Ŏ(log2 n) factor of optimal [CKST19],
in time Ŏ(m log3 n). Our algorithm simultaneously achieves a substantially faster runtime than prior Eulerian
sparsification schemes and improves the state-of-the-art sparsity bound (see Table 1). For instance, the prior
state-of-the-art Eulerian sparsification algorithm with both O(n"�2 · polylog(n)) edges and a O(m · polylog(n))
runtime has (up to O(poly log log n)) factors an extra ⌦(log18 n) factor in sparsity and an ⌦(log4 n) factor in the
runtime compared to Theorem 1.1. The full statement of Theorem 1.1 is presented in Theorem 7.1.

As a corollary of our fast sparsification algorithm (Theorem 1.1), reductions due to Peng and Song [PS22]
and earlier works on solving (variants of) directed Laplacian systems [CKPPSV16; CKPPRSV17; AJSS19], we
obtain a host of additional results. The following is a straightforward corollary obtained by a direct reduction
given in the main result of [PS22].

Corollary 1.1. (Eulerian Laplacian solver) There is an algorithm which given input Eulerian ~G =
(V,E,w) with |V | = n, |E| = m, w 2 [1, poly(n)]E, and b 2 RV , in Ŏ

�
m log3 (n) + n log6 (n)

�
time returns

x 2 RV satisfying, w.h.p., kx� ~L
†
~GbkLG

 "k~L
†
~GbkLG

for G
def

= und(~G), where k·kLG
is the seminorm defined by

kxk2LG
= x>LGx.

3
In the introduction only, we use the abbreviation “w.h.p.” (“with high probability”) to mean that a statement holds with n�C

failure probability for an arbitrarily large constant C (which a↵ects other constants in the statement). In the formal variants of

theorem statements later in the paper, we state precise dependences on failure probabilities.

Copyright © 2025

Copyright for this paper is retained by authors

The runtime of Corollary 1.1 improves upon the prior state-of-the-art claimed in the literature of Ŏ(m log8 n+
n log23 n) (see Appendix C, [PS22]). Up to small polylogarithmic factor overheads in runtimes, our Eulerian
Laplacian solver also implies a solver for all directed Laplacians (Corollary 8.2), and fast high-accuracy
approximations for directed graph primitives such as computation of stationary distributions, mixing times,
Personalized PageRank vectors, etc., as observed by [CKPPSV16; AJSS19]. We state these additional applications
in Section 8.

We further ask: what is the optimal number of edges in an Eulerian sparsifier? By combining our new
approach with recent advances in discrepancy theory due to Bansal, Jiang, and Meka [BJM23], we obtain the
following improved sparsity bound over Theorem 1.1.

Theorem 1.2. Given Eulerian ~G = (V,E,w) with |V | = n, |E| = m, w 2 [1, poly(n)]E and " 2 (0, 1),
ExistentialSparsify (Algorithm 3) in poly(n, "�1) time returns Eulerian ~H such that w.h.p. ~H is an "-
approximate Eulerian sparsifier of ~G with

|E(~H)| = O

min

(
n log n

"2
+

n log5/3 n

"4/3
,
n log3/2 n

"2

)!
.

Method Sparsity Runtime Approach

[CKPPRSV17] n"�2 logC n m logC n expanders
[CGPSSW18] n"�2 log4 n mn short cycles

[CGPSSW18; LSY19; PY19] n"�2 logk n m+ n1+O(
1

k
) short cycles

[PY19] n1+o(1) + n"�2 log4 n m logC n short cycles
[APPSV23] n"�2 log12 n existential SV sparsification
[APPSV23] n"�2 log20 n m log7 n SV sparsification

[PY19; STZ24] n"�2 log3 n m1+� short cycles

[STZ24] n"�2 log2 n+ n"�4/3 log8/3 n nC short cycles

Theorem 1.1 n"�2 log2 n m log3 n ER decomposition

Theorem 1.2 n"�2 log n+ n"�4/3 log5/3 n nC ER decomposition

Theorem 1.2 n"�2 log3/2 n nC ER decomposition

Table 1: Eulerian sparsification algorithms. All results apply to Eulerian ~G = (V,E,w) with n
def

= |V |
and m

def

= |E|. For simplicity, w 2 [1, poly(n)]E and all algorithms fail with probability poly(1n). C denotes an
unspecified (large) constant, � denotes an arbitrarily small constant, and we hide polyloglog(n) factors. The third
row requires k � 4. The [CKPPRSV17] sparsifiers were not reweighted subgraphs of the original graph, but all
other sparsifiers in this table are.

For "  log�1 n, Theorem 1.2 establishes that O(n"�2 log n)-edge Eulerian sparsifiers exist and are

constructible in polynomial time. Moreover for any ", the sparsity is at most n"�2 log
3

2 n. The detailed statement
of Theorem 1.2 is presented in Theorem 6.1. In Appendix C, we discuss potential directions towards showing the
existence of even sparser Eulerian sparsifiers, e.g., with only O(n"�2) nonzero edge weights (matching the optimal
sparsity for undirected graph sparsifiers [BSS12; CKST19]).

1.2 Overview of approach In this paper, we provide a new, simpler framework for sparsifying Eulerian
graphs. Despite its simplicity, our approach yields Eulerian sparsification algorithms which improve upon prior
work in both runtime and sparsity. We briefly overview our framework and technical contributions here; see
Section 3 for a more detailed technical overview.

Our framework is motivated by the following simple undirected graph sparsification algorithm.

• For all edges e 2 E with an e↵ective resistance (ER) smaller than ⇢, toss an independent coin and either
drop the edge or double its weight.

Copyright © 2025

Copyright for this paper is retained by authors

• Repeat until there are no edges left with a small ER.

It is straightforward to show that this algorithm produces a spectral sparsifier. In each iteration, the
algorithm’s relative change to the Laplacian (in a multiplicative sense) is

P
e2E seAe, where se is a random

±1 sign and Ae = weL
†/2
G beb

>
e L

†/2
G denotes the normalized contribution of the edge Laplacian. The key step

of the analysis is bounding the total matrix variance
P

e2E AeA
>
e , across all iterations. When setting ⇢ = c n

m
where m is the current number of edges and c is a su�ciently large constant, the variance contribution for each
edge forms an increasing geometric progression (as m decreases geometrically) where the sum is bounded by the
last term. Moreover, each edge Laplacian only contributes if its leverage score is at most ⇢, so AeA

>
e � ⇢Ae.

Summing over all edges, the total matrix variance is � ⇢I. Stopping when ⇢ = O("2

logn) for an appropriate

constant, standard matrix concentration bounds then show the total relative spectral error is O(
p
⇢ log n) · I = "I.

Emulating such a strategy for Eulerian graphs faces an immediate obstacle: adding and dropping edges
independently might result in a non-Eulerian graph, i.e., one that does not satisfy the degree balance constraints
of an Eulerian graph. In fact, there may be no setting of s 2 {±1}E for which the relative change in edge
weights, w � s, satisfies the necessary degree balance. As mentioned previously, one approach to Eulerian
sparsification [CKPPRSV17] independently samples ±1 signs for edges inside an expander, fixes the resulting
degree imbalance, and uses the expansion property to bound the resulting error. Another approach, based on
short cycle decomposition [CGPSSW18], toggles cycles, keeping either only the clockwise or counterclockwise
edges, thus ensuring degrees are preserved. Additionally, [APPSV23] samples ±1 signs for cycles (not necessarily
short) inside an expander. Each of these results in large polylogarithmic factors or worse in their guarantees, due
to limitations in algorithms for expander or short-cycle decomposition.

To obtain faster and simpler algorithms with improved sparsity guarantees, we take an alternative approach.
As a starting point, consider sampling a random signing s on edge Laplacians, and projecting s down to the
degree balance-preserving subspace. We make the simple, yet crucial, observation: this projection step does not
increase the matrix variance (Lemma 5.1)! This fact, which lets us bound spectral error as we would if all edge
signings were independent, has not been exploited previously for e�cient degree balance-preserving sparsification
to our knowledge.

Our second key contribution is recognizing that to bound the variance of an independent edge Laplacian
signing in a subgraph, requiring the subgraph to be an expander is stronger than necessary. In Lemma 5.3, we
show it su�ces to work in subgraphs with bounded ER diameter.Decomposing a graph into low ER diameter
pieces can be achieved more simply, e�ciently, and with better parameters (for our purposes) as compared to
expander or short cycle decompositions (Proposition 4.1).

To implement this approach to Eulerian sparsification e�ciently, we overcome several additional technical
hurdles. The first one is ensuring (in nearly-linear time) that the updated edge weight vector is nonnegative;
negative weight edges could occur when projecting a large vector to the degree-preserving space. In previous
discrepancy works, e.g., [Rot17], this problem was alleviated by projecting the random vector to the intersection
of the subspace with the ±1 hypercube. This projection is expensive; on graphs it could be implemented with
oblivious routings, but unfortunately, the fastest routings of su�cient quality in the literature do not run in
nearly-linear time. We show that by scaling down the step size by a polylogarithmic factor and appealing to
sub-Gaussianity of random projection vectors, we can ensure the nonnegativity of weights.

Secondly, since the weight updates are small in magnitude, there is no immediate reduction in sparsity. Using
a careful two-stage step size schedule (see discussion in Section 7), we give a potential argument showing that
after adding roughly log2(n) random signings, each projected by solving an undirected Laplacian system, su�ces
to make a constant fraction of the weights tiny. These tiny edge weights can then be rounded to zero, decreasing
the sparsity by a constant factor. Combining our framework with state-of-the-art undirected Laplacian solvers
gives our overall runtime of Ŏ(m log3(n)) in Theorem 1.1.

1.3 Related work
Undirected sparsifiers and Laplacian solvers. The first nearly-linear time algorithm for solving

undirected Laplacian linear systems was obtained in groundbreaking work of Spielman and Teng [ST04]. Since
then, there has been significant work on developing faster undirected Laplacian solvers [KMP14; KMP11;
PS14; CKMPPRX14; KLPSS16; KS16; JS21; FGLPSY22; SZ23], culminating in an algorithm that runs in
Ŏ(m log 1

") time for approximately solving undirected Laplacian linear systems up to expected relative error "

Copyright © 2025

Copyright for this paper is retained by authors

(see Proposition 4.2 for a formal statement).
The first spectral sparsifiers for undirected graphs were constructed by Spielman and Teng [ST04], which

incurred significant polylogarithmic overhead in their sparsity. Spielman and Srivastava [SS11] then gave a
simple algorithm for constructing undirected spectral sparsifiers with O(n"�2 log n) edges in nearly-linear time.
Batson, Spielman, and Srivastava [BSS12] gave a polynomial time algorithm for constructing undirected spectral
sparsifiers with O(n"�2) edges, and established that this sparsity bound is optimal. Faster algorithms for O(n"�2)-
edge undirected sparsifiers were later given in [LS17; LS18; JRT24]. We also mention an additional notion of
sparsification in undirected graphs, degree-preserving sparsification, which has been studied in the literature as an
intermediary between undirected and Eulerian sparsification [CGPSSW18; JRT24]. Degree-preserving undirected
sparsifiers of sparsity O(n"�2) were recently shown to exist and be constructible in almost-linear time by [JRT24],
motivating our work in the related Eulerian sparsification setting.

Eulerian sparsifiers and directed Laplacian solvers. The study of e�cient directed Laplacian solvers
was initiated by Cohen, Kelner, Peebles, Peng, Sidford, and Vladu [CKPPSV16], who established that several
computational problems related to random walks on directed graphs can be e�ciently reduced to solving linear
systems in Eulerian Laplacians. This work also gave an algorithm for solving Eulerian Laplacian linear systems in
O((mn2/3+m3/4n) ·polylog(n)) time, the first such solver with a runtime faster than that known for linear system
solving in general. Subsequently, the aforementioned authors and Rao [CKPPRSV17] introduced the notion of
Eulerian sparsifiers and gave the first O(m · polylog(n))-time algorithm for constructing Eulerian sparsifiers with
O(n"�2 · polylog(n)) edges, based on expander decompositions. They used their method to give the first m1+o(1)

time algorithm for solving linear systems in directed Eulerian Laplacians. A follow-up work by the aforementioned
authors and Kyng [CKKPPRS18] later gave an improved O(m · polylog(n))-time solver for directed Laplacian
linear systems.

As an alternative approach to Eulerian sparsification, Chu, Gao, Peng, Sachdeva, Sawlani, and Wang [CG-
PSSW18] introduced the short cycle decomposition, and used it to give an O(mn) time algorithm for comput-
ing Eulerian sparsifiers with O(n"�2 log4 n) edges. Improved short cycle decomposition constructions by Liu,
Sachdeva, and Yu [LSY19], as well as Parter and Yogev [PY19] resulted in an improved running time of O(m1+�)
for any constant � > 0, for the same sparsity.

Very recently, Sachdeva, Thudi, and Zhao [STZ24] gave an improved analysis of the short cycle decomposition-
based construction of Eulerian sparsifiers from [CGPSSW18], improving the resulting sparsity to O(n"�2 log3 n)
edges. They complemented their algorithmic construction with an existential result showing that Eulerian
sparsifiers with Ŏ(n"�2 log2 n + n"�4/3 log8/3 n) edges exist, using recent progress on the matrix Spencer’s
conjecture [BJM23]. Our fast algorithm in Theorem 1.1 yields an improved sparsity compared to the strongest
existential result in [STZ24] with a significantly improved runtime, and departs from the short cycle decomposition
framework followed by that work. Moreover, our existential result in Theorem 1.2, which also applies [BJM23]
(combined with our new framework), improves [STZ24]’s existential result by a logarithmic factor.

Finally, we note that our applications in Section 8 follow from known implications in the literature, e.g.,
[CKPPSV16; AJSS19; PS22]. In particular, our directed Laplacian linear system solver follows from reductions in
[CKPPSV16; PS22], who showed that an e�cient Eulerian sparsification algorithm implies e�cient solvers for all
directed Laplacian linear systems. Building upon this result, our other applications follow [CKPPSV16; AJSS19],
which show how various other primitives associated with Markov chains can be reduced to solving appropriate
directed Laplacian systems.

Discrepancy-theoretic approaches to sparsification. The use of discrepancy-theoretic techniques for
spectral sparsification has been carried out in several prior works. First, [RR20] showed how to use matrix variance
bounds in undirected graphs with the partial coloring framework of [Rot17] to construct linear-sized sparsifiers.
Subsequently, this partial coloring-based sparsification algorithm was sped up to run in nearly-linear time by
[JRT24] and [STZ24] showed how to adapt these techniques to the Eulerian sparsification setting, by using an
improved analysis of the matrix variance induced by algorithms using short cycle decompositions.

Our strongest existential sparsification result (cf. Theorems 1.2, 6.1) follows the discrepancy-based partial
coloring approach to sparsification pioneered in these works, combining it with our new matrix variance bounds
via ER decomposition (Lemma 5.3) instead of short cycles, as was done in [STZ24]. Recently, concurrent
and independent work of [LWZ24] gave a derandomized partial colouring framework for spectral sparsification
using the “deterministic discrepancy walk” approach from [PV23], and applied it to obtain polynomial-time
deterministic Eulerian sparsifiers satisfying a stronger notion of spectral approximation known as “singular value

Copyright © 2025

Copyright for this paper is retained by authors

(SV) approximation” [APPSV23]. This result of [LWZ24] complements, but is largely orthogonal to, our results:
it yields directed sparsifiers with larger sparsities and runtimes than ours, but which satisfy stronger notions of
sparsification (i.e., SV sparsification) and are obtained deterministically.

1.4 Roadmap In Section 2, we introduce notation and useful technical tools used throughout the paper. In
Section 3 we then provide a technical overview of the rest of the paper. Next, we give our e↵ective resistance
decomposition algorithm in Section 4, a key building block in our sparsification methods. In Section 5, we then
show how to take advantage of this decomposition by proving a new matrix variance bound for directed edge
Laplacians after an electric projection. Crucially, this bound is parameterized by the e↵ective resistance diameter
of decomposition pieces.

The remainder of the paper contains applications of our sparsification framework. In Section 6, we prove
Theorem 1.2, our result with the tightest sparsity guarantees. In Section 7, we prove Theorem 1.1, which obtains
a significantly improved runtime at the cost of slightly worse sparsity. In Section 8, we combine our sparsification
methods with existing reductions in the literature and overview additional applications of our algorithms for
directed graph primitives.

2 Preliminaries

General notation. All logarithms are base e unless otherwise specified. When discussing a graph clear from
context with n vertices and edge weight ratio bounded by U , we use the Ŏ notation to hide polyloglog(nU) factors

for brevity (in runtimes only). We let [n]
def

= {i 2 N | 1  i  n}.
Vectors. Vectors are denoted in lower-case boldface. 0d and 1d are the all-zeroes and all-ones vector

respectively of dimension d. ei denote the ith basis vector. u � v denotes the entrywise product of u,v of
equal dimension.

Matrices. Matrices are denoted in upper-case boldface. We refer to the ith row and jth column of matrix
M by Mi: and M:j respectively. We use [v]i to index into the ith coordinate of vector v, and let [M]i:

def

= Mi:,

[M]:j
def

= M:j , and [M]ij
def

= Mij in contexts where v, M have subscripts.
Id is the d⇥ d identity matrix. For v 2 Rd, diag (v) denotes the associated diagonal d⇥ d matrix. For linear

subspace S of Rd, dim(S) is its dimension and PS is the orthogonal projection matrix onto S. We let ker(M) and
M† denote the kernel and pseudoinverse of M. We denote the operator norm (largest singular value) of matrix
M by kMk

op
, and the Frobenius norm (entrywise `2 norm) of M by kMk

F
. The number of nonzero entries of

a matrix M (resp. vector v) is denoted nnz(M) (resp. nnz(v)), and the subset of indices with nonzero entries is
supp(M) (resp. supp(v)).

We use � to denote the Loewner partial order on Sd, the symmetric d ⇥ d matrices. We let Ud denote the
set of d⇥ d real unitary matrices. For M 2 Sd and i 2 [d], we let �i(M) denote the ith smallest eigenvalue of M,
so �1(M)  �2(M)  . . .  �d(M). For positive semidefinite A 2 Sd, we define the seminorm induced by A by

kxk2A
def

= x>Ax.
Distributions. Geom(p) for p 2 (0, 1] denotes the geometric distribution on N with mean 1

p . N (µ,⌃)
denotes the multivariate normal distribution with mean µ and covariance ⌃. �d denotes the Gaussian measure
in dimension d, i.e., for K ✓ Rd, �d(K)

def

= Prg⇠N (0d,Id)[g 2 K]; when S is a linear subspace of Rd, we define

�S(K)
def

= Prg⇠N (0d,PS)[g 2 K].
Graphs. All graphs throughout this paper are assumed to be simple without loss of generality, as collapsing

parallel multi-edges does not a↵ect (undirected or directed) graph Laplacians. We denote undirected weighted
graphs without an arrow and directed weighted graphs with an arrow, i.e., G = (V,E,w) is an undirected graph
with vertices V , edges E, and weights w 2 RE

�0
, and ~G is a directed graph. A directed Eulerian graph is a directed

graph where weighted in-degree equals weighted out-degree for every vertex. We refer to the vertex set and edge
set of a graph G (resp. ~G) by V (G) and E(G) (resp. V (~G) and E(~G)). We associate a directed edge e from u to
v with the tuple (u, v), and an undirected edge with (u, v) and (v, u) interchangeably. We define h(e) = u and
t(e) = v to be the head and tail of a directed edge e = (u, v).

Finally, when we are discussing Eulerian sparsification of a graph ~G in the sense of Definition 1.1, we will
always assume henceforth that G = und(~G) is connected. This is without loss of generality: otherwise, we can
define an instance of Definition 1.1 on each connected component of G. The left and right kernels of ~L~G and
LG are spanned by the all-ones vectors indicating each connected component of G. Moreover, each connected

Copyright © 2025

Copyright for this paper is retained by authors

component in G still corresponds to an Eulerian graph. Therefore, satisfying Definition 1.1 for each component
individually implies the same inequality holds for the entire graph, by adding all the component Laplacians.

Subgraphs and graph operations. We say H is a subgraph of G if the edges and vertices of H are subsets
of the edges and vertices of G (with the same weights), denoting H = GF if E(H) = F , and defining the same
notion for directed graphs. For U ✓ V , we let G[U] denote the induced subgraph of G on U (i.e., keeping all of
the edges within U). We let rev(~G) denote the directed graph with all edge orientations reversed from ~G, and
und(~G) denote the undirected graph which removes orientations (both keeping the same weights). When V is a
set of vertices, we say {Vi}i2[I] is a partition of V if

S
i2[I] Vi = V , and all Vi are disjoint. We say {Gj}j2[J] are

a family of edge-disjoint subgraphs of G = (V,E,w) if all E(Gj) are disjoint, and for all j 2 [J], V (Gj) ✓ V ,
E(Gj) ✓ E, and every edge weight in Gj is the same as its weight in G.

Graph matrices. For a graph with edges E and vertices V , we let B 2 {�1, 0, 1}E⇥V be its edge-vertex
incidence matrix, so that when ~G is directed and e = (u, v), Be: is 2-sparse with Beu = 1, Bev = �1 (for

undirected graphs, we fix an arbitrary consistent orientation). For u, v 2 V , we define b(u,v)
def

= eu � ev. When B

is the incidence matrix associated with graph G = (V,E,w) (resp. ~G), we say x is a circulation in G (resp. ~G) if
B>x = 0V ; when G (resp. ~G) is clear we simply say x is a circulation. We let H,T 2 {0, 1}E⇥V indicate the heads
and tails of each edge, i.e., have one nonzero entry per row indicating the relevant head or tail vertex for each
edge, respectively, so that B = H�T. When clear from context that w are edge weights, we let W

def

= diag (w).

For undirected G = (V,E,w) with incidence matrix B, the Laplacian matrix of G is L
def

= B>WB. For directed
~G = (V,E,w), the directed Laplacian matrix of ~G is ~L

def

= B>WH. To disambiguate, we use LG, HG, TG, BG,
etc. to denote matrices associated with a graph G when convenient.

Note that ~L
>
1V = 0V for any directed Laplacian ~L. If ~G is Eulerian, then its directed Laplacian also satisfies

~L1V = 0V and w is a circulation in ~G (i.e., B>w = 0V). Note that for a directed graph ~G = (V,E,w) and

its corresponding undirected graph G
def

= und(~G), the undirected Laplacian is LG = B>WB, and the reversed
directed Laplacian is ~L

rev(~G)
= �B>WT.

We let ⇧V denote the Laplacian of the unweighted complete graph on V , i.e., ⇧V
def

= IV � 1

|V |1V 1
>
V . Note

that ⇧V is the orthogonal projection on the the subspace spanned by the vector that is 1 in the coordinates of V
and 0 elsewhere.

E↵ective resistance. For undirected G = (V,E,w), the e↵ective resistance (ER) of u, v 2 V is ERG(u, v)
def

=

b>
(u,v)L

†
Gb(u,v). We also define ERG(e) for e = (u, v) 2 E by ERG(e)

def

= ERG(u, v).
Graph linear algebra. In Appendix A we prove the following facts about graph matrices.

Fact 2.1. Let B = H�T be the edge-vertex incidence matrix of a graph, let x be a circulation in the graph (i.e.

B>x = 0), and let X
def

= diag (x). Then H>XH = T>XT and B>XH = �T>XB.

Fact 2.2. Suppose ~G = (V,E,w ~G),
~H = (V, F,w ~H) share the same vertex set and G

def

= und(~G), H
def

= und(~H).

If B>
~G
w ~G = B>

~H
w ~H , then kL

†
2

G(LG � LH)L
†
2

Gkop  2kL
†
2

G(
~L~G � ~L ~H)L

†
2

Gkop.

Fact 2.3. Suppose G,H are connected graphs on the same vertex set V , and kL†/2
G (LG � LH)L†/2

G kop  ". Then

for any M 2 RV⇥V , we have kL†/2
G ML†/2

G kop  (1 + ")kL†/2
H ML†/2

H kop.

3 Technical overview

In this section, we overview our strategy for preserving degree balance in e�cient directed sparsification primitives,
in greater detail than in Section 1.2. We first review a motivating construction for undirected sparsifiers via
randomly signed edge weight updates. Then we introduce our extension of this construction to the Eulerian
setting, based on electric projections of edge Laplacians.

To bound the spectral error incurred by random reweightings in the Eulerian setting, we then describe a new
asymmetric matrix variance bound under certain bounds on the e↵ective resistance diameter and weight ratio of
the edges under consideration (Lemma 5.3). This Lemma 5.3 is the key technical tool enabling our results, proven
in Section 5.

Copyright © 2025

Copyright for this paper is retained by authors

We then describe an e↵ective resistance decomposition (Definition 4.1) subroutine we introduce in Section 4,
used to guarantee the aforementioned weight and e↵ective resistance bounds hold in our sparsification procedures.
Finally, we explain how each of our algorithms (in proving Theorems 1.1 and 1.2) and their applications in
Sections 6, 7, and 8build upon these common primitives.

Sparsification from random signings. To motivate our approach, consider the following conceptual
framework in the simpler setting of undirected sparsification. (Variants of this framework have appeared in
the recent literature [CGPSSW18; RR20; JRT24].) Starting from undirected graph G = (V,E,w) with n vertices
and m edges, we initialize w0 w and in each iteration t, let

(3.3) wt+1 wt � (1E + ⌘st),

where st 2 {±1}E has independent Rademacher entries and ⌘ 2 (0, 1]. Intuitively, the update (3.3) drives edge
weights rapidly to zero, as it induces an exponential negative drift on each weight:

(3.4) E log

✓
[wt+1]e
[wt]e

◆
= E log(1 + ⌘[st]e) ⇡ �⌘2.

This phenomenon is most obvious when ⌘ = 1 (which su�ces for undirected sparsification), as a constant fraction
of edges are immediately zeroed out in each iteration, but (3.4) quantifies this for general ⌘. Next, consider

the spectral approximation error induced by the first step (t = 0), where we denote G0

def

= G = (V,E,w0) and

G1

def

= (V,E,w1), and let ⌘ = 1. By standard matrix concentration inequalities on Rademacher signings (see, e.g.,
Lemma 7.4), w.h.p.,

(3.5)

����L
†
2

G0
(LG1

� LG0
)L

†
2

G0

����
op

=

����L
†
2

G0
B>

G (W1 �W0)BGL
†
2

G0

����
op

=

�����
X

e2E

seAe

�����
op

.

vuut
�����
X

e2E

A2

e

�����
op

, where Ae
def

= weL
†
2

Gbeb
>
e L

†
2

G.

This argument suggests that it is crucial to control the following matrix variance statistic, �2 def

= k
P

e2E A2

ekop, as
we incur spectral approximation error ⇡ �. It is straightforward to see that, letting ⇢max

def

= maxe2E web
>
e L

†
Gbe =

maxe2E weERG(e) be the maximum weighted e↵ective resistance of any edge in G, we have

(3.6)
X

e2E

A2

e =
X

e2E

weL
†
2

Gbe

⇣
web

>
e L

†
Gbe

⌘
b>
e L

†
2

G � ⇢maxL
†
2

G

X

e2E

webeb
>
e

!
L

†
2

G � ⇢maxIV .

By zeroing entries of s corresponding to the largest half of weERG(e) values, we can ensure ⇢max = O(n
m), sinceP

e2E weERG(e)  n. Hence, (3.5) shows the spectral approximation error is .
p

n/m. Since the edge sparsity
m decreases by a constant factor in each iteration t when ⌘ = 1, this induces a geometric sequence in the spectral
approximation quality terminating at ⇡ " when nnz(wt) ⇡ n"�2, as desired. We remark that Rademacher signings
are not the only way to instantiate this scheme; indeed, [RR20; JRT24] show how to use discrepancy-theoretic
tools to choose the update (3.3) in a way which does not lose logarithmic factors in the spectral error bound.

Asymmetric variance statistics and ER decomposition. The aforementioned framework for undirected
sparsification runs into immediate di�culties in the context of Eulerian sparsification (Definition 1.1), as it does
not preserve degree balances. Previous Eulerian sparsification methods sidestepped this obstacle by either fixing
degrees after sampling and incurring errors (e.g., via expander decomposition) or coordinating the sampling in
a degree-preserving way (e.g., via short cycle decomposition). We propose an arguably more direct approach to

preserving degrees, departing from prior work. Consider Eulerian ~G0

def

= ~G = (V,E,w0

def

= w). On iteration t � 0,
let

Pt
def

= IE �WtB~GL
†
G2

t

B>
~G
Wt,

where LG2

t
is the undirected Laplacian of G2

t
def

= (V,E,w2
t), w

2
t is entrywise, and Wt

def

= diag (wt). Observe that
Pt is the orthogonal projection matrix onto the space of degree-preserving reweightings on the graph Gt with

Copyright © 2025

Copyright for this paper is retained by authors

weights wt, i.e., for all x 2 Im(Pt), we have B>
~Gt

(wt � x) = 0V . Our starting point is thus a modification of the

reweighting scheme (3.3), where the Rademacher vector st is replaced by xt
def

= Ptst, and we choose an appropriate
step size ⌘ ⇡ log�1/2(n) to ensure no edge weight falls below 0. In other words, we simply let

(3.7) wt+1 wt � (1E + ⌘xt), where xt Ptst.

Because this reweighting scheme preserves degree imbalance by construction, it remains to analyze two properties
of the reweighting. First, how much does the spectral approximation factor in (1.2) grow in each iteration?
Second, does the reweighting significantly decrease the graph sparsity (ideally, after few iterations)? We postpone
discussion of the second point until the end of this overview, when we discuss implementations of our framework.
Our analysis of weight decay will ultimately carefully quantify the intuition in (3.4) with an appropriate step size
schedule.

Regarding the first point, matrix Rademacher inequalities (extending (3.5) to the asymmetric setting) show
that the spectral error in the first step t = 0 is controlled by

(3.8)

�2 def

= max

0

@
�����
X

e2E

eAe
eA

>
e

�����
op

,

�����
X

e2E

eAe
eA

>
e

�����
op

1

A ,

where eAe
def

=
X

f2E

PfeAf and Ae
def

= weL
†
2

Gbee
>
h(e)L

†
2

G,

and we abbreviate G = und(~G) and P0 = P for short. To briefly explain the formula (3.8), note that analogously
to (3.5), the matrix Ae is defined so that the one-step spectral error when reweighting by Rademacher s (in the

sense of (3.7)) is precisely k
P

e2E seAekop. Correspondingly, the matrix eAe is defined to capture the correct error
statistic after first applying P to s.

A primary technical contribution of our work is quantifying a su�cient condition under which the asymmetric
variance statistic (3.8) is bounded, stated formally as Lemma 5.3. Recall that in the undirected setting, (3.6)
bounds �2 in terms of the maximum weighted ER of the edges we choose to reweight. Similar logic suggests that
the Eulerian variance statistic in (3.8) is small if e>v L

†
Gev is bounded for each vertex v 2 V , i.e., the diagonal

entries of L†
G are small. In the undirected, unweighted case, e>v L

†
Gev is bounded for all v 2 V if G has small

e↵ective resistance diameter, i.e., ERG(u, v)
def

= b>
(u,v)L

†
Gb(u,v) is small for all (u, v) 2 V ⇥ V (Lemma 5.2).

This intuition neglects at least three factors: it only captures the variance matrix
P

e2E AeA
>
e (rather thanP

e2E A>
e Ae), it is based on the matrices Ae (rather than eAe), and it ignores the e↵ects of weights. Our bound

in Lemma 5.3 tackles all three of these factors by using graph-theoretic construction we introduce, called an ER
decomposition (Definition 4.1). Again considering only the first step for simplicity, we prove that if ~H = (V, F,wF)

is a subgraph of ~G whose vertices all lie in U , the quantities
P

f2F
eA

>
f
eAf and

P
f2F

eAf
eA

>
f are both bounded

(in the Loewner ordering) by

⇢max(F) · L
†
2

GLHL
†
2

G, where ⇢max(F)
def

=

✓
max
f2F

wf

◆
·
✓
max
u,v2U

ERG(u, v)

◆
, and H

def

= und(~H).

This suggests that if we can isolate a cluster of edges F on a vertex set U , such that all edges in F have roughly even
edge weight, and such that U has bounded e↵ective resistance diameter through G (inversely proportional to the

weights in F), we can pay for the contribution of all eAf for f 2 F to the variance statistic in (3.8). We accordingly
define ER decompositions to decompose E into such clusters {Fk}k2[K], each with bounded ⇢max(Fk) ⇡ n

m .
Our ER decomposition scheme. We take a brief digression to answer: how do we find such an edge-

disjoint decomposition {Fk}k2[K], each with bounded ⇢max(Fk)? In fact, such a decomposition is immediately
implied by the related ER decomposition of [AALG18], save two issues. The ER decomposition of [AALG18]
only guarantees that a constant fraction of edges by total weight are cut, as opposed to by edge count (which our
recursion can tolerate). The more pressing issue is that the [AALG18] algorithm uses ⌦(mn) time, necessitating
design of a faster decomposition scheme.

In Section 4, we provide a simple near-linear time decomposition scheme which makes use of the well-known
fact that e↵ective resistances in a graph form a metric. We first partition the undirected graph G in question into

Copyright © 2025

Copyright for this paper is retained by authors

subgraphs {Gj}jminjjmax
for appropriate jmax � jmin + 1 = O(logU), where Gj consists of edges with weight

between 2j and 2j+1, and U is the multiplicative range of edge weights. In each Gj , it su�ces to partition the
vertices to induce subgraphs {Gj

i}i2[Kj]
, each with ER diameter ⇡ n

m · 2�j , and such that few edges are cut.
We accomplish this by first providing constant-factor estimates to all edge e↵ective resistances using standard
sketching tools (Lemma 4.1). Within each subgraph Gj , we induce a shortest path metric based on our ER
overestimates, and then apply classic region-growing techniques [GVY96] to partition the subgraphs into pieces
of bounded shortest path diameter without cutting too many edges.

Implementations of our framework. Finally, we briefly outline how Theorems 1.1 and 1.2 follow from the
frameworks we outlined. Our Eulerian sparsification algorithms (for establishing Theorems 1.1 and 1.2) simply
interleave computation of an ER decomposition on the current graph, with a small number of reweightings roughly
of the form (3.7). For our nearly-linear time algorithm in Theorem 1.1, in each reweighting (3.7), we zero out
the half of entries of st which are cut by the ER decomposition, and additionally enforce a linear constraint that
the total weight is preserved. We show that by making the intuition (3.7) rigorous, after polylogarithmically
many reweightings, a constant fraction of edge weights have decreased by a polynomial factor, which is enough
to explicitly delete them from the graph and (after fixing degrees by routing through a spanning tree) incur small
spectral error. This lets us recurse and obtain the same geometric sequence behavior on our accumulated spectral
error bound as in the undirected setting.

Our proof of Theorem 1.2 applies carefully-coordinated reweighting vectors xt which yield smaller spectral
error than näıve random signing. We choose these vectors xt based on recent progress towards the matrix Spencer
conjecture (a well-known open problem in discrepancy theory) due to [BJM23]. Specifically, [BJM23] (along with
earlier works, e.g., [Rot17; RR23]) provide tools which construct “partial colorings” xt such that [xt]e = �1 for
a constant fraction of e 2 E, and �����

X

e2E

[xt]eAe

�����
op

is smaller than what matrix Rademacher inequalities would predict for random xt (based on the matrix variance
statistic). Applying these higher-quality reweightings xt in each iteration through (3.7) (with ⌘ = 1) then directly
decreases the edge sparsity by a constant factor in each iteration, allowing for simple control of the spectral error
in (1.2). This strategy immediately yields Theorem 1.2 upon recursing. As mentioned previously, in Appendix C,
we examine natural routes which could further improve upon the sparsity bounds of Theorem 1.2.

4 E↵ective resistance decomposition

In this section, we show how to e�ciently decompose a weighted, undirected graph into subgraphs with bounded
weight ratio, small e↵ective resistance diameter (relative to the edge weights it contains), a limited number of
edges cut, and each vertex appearing in a limited number of subgraphs. This procedure will be a key subroutine
in our sparsification algorithms, as captured by the variance bound in Lemma 5.3. Below in Definition 4.1 we
formally define this type of decomposition guarantee and then in Proposition 4.1 we provide our main result on
computing said decompositions.

Definition 4.1. (ER decomposition) We call {Gi}i2[I] a (⇢, r, J)-e↵ective resistance (ER) decomposition if
{Gi}i2[I] are edge-disjoint subgraphs of G = (V,E,w), and the following hold.

1. Bounded weight ratio: For all i 2 [I],
maxe2E(Gi)

we

mine2E(Gi)
we

 r.

2. E↵ective resistance diameter: For all i 2 [I], (maxe2E(Gi)
we) · (maxu,v2V (Gi)

ERG(u, v))  ⇢.

3. Edges cut: |E(G) \ (
S

i2[I] E(Gi))|  m
2
.

4. Vertex coverage: Every vertex v 2 V (G) appears in at most J of the subgraphs.

Proposition 4.1. There is an algorithm, ERDecomp(G, r, �), which given any G = (V,E,w) with n = |V |,
m = |E|, maxe2E we

mine2E we

W and r � 1, � 2 (0, 1), computes a

✓
8rn log(n+ 1)

m
, r, logr(W) + 3

◆
-ER decomposition of G,

Copyright © 2025

Copyright for this paper is retained by authors

with probability � 1� � in time4

Ŏ
⇣
m log

⇣n
�

⌘
+ n log(n) logr(W)

⌘
.

In the remainder of this section, we prove Proposition 4.1. The algorithm consists of two components. First,
we use standard randomized algorithms (Lemma 4.2) to e�ciently compute an ER overestimate for the graph
edges (Definition 4.2). Then, we apply a standard result on region growing (Proposition 4.3) from [GVY96] to
e�ciently partition the edges within one weight range (Lemma 4.3). Applying this decomposition scheme at every
weight scale to the graph with edge lengths given by the e↵ective resistance overestimates then yields the result.
Interestingly, the only use of randomization in this algorithm is in computing overestimates of e↵ective resistances
and if a su�ciently e�cient deterministic subroutine for this was developed, substituting this subroutine into our
algorithm would would obtain a deterministic counterpart of Proposition 4.1.

Definition 4.2. (Effective resistance overestimate) Given G = (V,E,w) with n = |V |, we call r̃ 2 RE

an ↵-approximate e↵ective resistance (ER) overestimate if

w>r̃  ↵n and r̃e � ERG(e) for all e 2 E.

To e�ciently compute ER overestimates for use in our decomposition algorithms, we rely on near-linear time
undirected Laplacian linear system solvers. To begin, we first provide a statement of the current fastest Laplacian
linear system solver in the literature.

Proposition 4.2. (Theorem 1.6, [JS21]) Let LG be the Laplacian of G = (V,E,w). There is an algorithm
which takes LG, b 2 RV , and �, ⇠ 2 (0, 1), and outputs x such that with probability � 1� �, x is an ⇠-approximate
solution to LGx = b, i.e., ���x� L†

Gb
���
LG

 ⇠
���L†

Gb
���
LG

,

in time Ŏ(|E| · log 1

�⇠). Moreover, the algorithm returns x = Mb where M is a random linear operator constructed
independently of b, such that the above guarantee holds with 1� � for all b.

The runtime guarantee of the above proposition follows from Theorem 1.6 of [JS21]. We now briefly justify
the second clause in Proposition 4.2, i.e. that the Laplacian solver is a randomized linear function of b, as it
is not explicitly stated in [JS21]. Theorem 1.6 follows by combining an algorithm which constructs low-stretch
subgraphs with a recursive preconditioning framework (Algorithm 12). Algorithm 12 returns the result of an
error-robust accelerated gradient descent procedure PreconNoisyAGD, which only applies linear transformations
and a procedure RichardsonSolver, to b. In turn, RichardsonSolver performs only linear transformations and
another procedure PreconRichardson to its input. Finally, PreconRichardson applies linear transformations and
Algorithm 12 to its input: in addition, these calls to Algorithm 12 operate on strictly smaller problems. Thus,
if we assume that these inner calls to Algorithm 12 perform a linear transformation of b, the outer call is also a
linear transformation: the last claim in Proposition 4.2 follows.

Proposition 4.2 combined with a Johnson-Lindenstrauss based sketching approach from [SS11] shows we can
e�ciently approximate a set of e↵ective resistances to constant multiplicative error, which we summarize in the
following. We remark that the runtime in [SS11] is larger than in Lemma 4.1; our improvement stems from
replacing the solver used there with Proposition 4.2.

Lemma 4.1. (Theorem 2, [SS11]) Let � 2 (0, 1), let LG be the Laplacian of G = (V,E,w), and let S ✓
V ⇥ V . There is an algorithm, ApproxER(G,S, �), which runs in time Ŏ((|E| + |S|) log(|S|

�)) and outputs
r = {r(u,v)}(u,v)2S satisfying with probability � 1� �,

2

3
ERG(u, v)  r(u,v) 

4

3
ERG(u, v), for all (u, v) 2 S.

4
The O(n logn) term arises from the use of Fibonacci heaps to compute shortest paths in undirected graphs in Proposition 4.3.

There are results that have since obtained faster algorithms for computing shortest paths in undirected graphs [Tho99; DMSY23].

Moreover, the shortest paths do not necessarily need to be computed exactly, so it is possible that this factor could be improved as

it has been in other region growing settings [MPX13; AN19]. However, since this is not a bottleneck in the runtimes of our main

results, we make no attempt to improve it here.

Copyright © 2025

Copyright for this paper is retained by authors

Proof. Consider the following algorithm for approximating ERG(u, v) for some (u, v) 2 S. We output the median

of K = ⇥(log |S|
�) independent evaluations of

(4.9)
���QW

1

2

GBGM(ev � eu)
���
2

2

,

for Q 2 R⇥(1)⇥|E| filled with random scaled Gaussian entries, and where M is the random linear operator given
by the approximate solver in Proposition 4.2 with a su�ciently small constant ⇠. We claim that (4.9) lies in
the range [2

3
ERG(u, v),

4

3
ERG(u, v)] with probability 2

3
. By standard Johnson-Lindenstrauss guarantees (see, e.g.,

the proof of Theorem 2 in [SS11]), it su�ces to prove that with probability 5

6
, letting M be the resulting linear

operator from Proposition 4.2,
����
���W

1

2

GBGMb
���
2

2

�
���W

1

2

GBGL
†
Gb
���
2

2

���� 
1

4

���W
1

2

GBGL
†
Gb
���
2

2

.

To this end, using 0.9 kuk2
2
� 11 kvk2

2
 ku+ vk2

2
 1.1 kuk2

2
+ 11 kvk2

2
, we have

���W
1

2

GBGMb
���
2

2

 1.1
���W

1

2

GBGL
†
Gb
���
2

2

+ 11
���W

1

2

GBG

⇣
L†
Gb�Mb

⌘���
2

2

,

���W
1

2

GBGMb
���
2

2

� 0.9
���W

1

2

GBGL
†
Gb
���
2

2

� 11
���W

1

2

GBG

⇣
L†
Gb�Mb

⌘���
2

2

,

so choosing � = 1

6
and ⇠ = 1

100
in Proposition 4.2 yields the desired claim on each individual evaluation of (4.9).

Thus, by Cherno↵ bounds the median estimate will lie in the specified range with probability � 1� �
|S| , yielding

correctness after a union bound over all of S.
We now discuss how to implement the above algorithm within the stated runtime. For each independent run

k 2 [K], we first precompute QW1/2
G BG in the given time, and apply M from Proposition 4.2 to each of the ⇥(1)

rows of this matrix. Notably, we can reuse the same random seed in the solver of [JS21] so that the random linear

operator M provided by Proposition 4.2 is the same for all rows of QW1/2
G BG. The random linear function M is

constructed obliviously to the choice of Q, so Q is independent of these calls and Johnson-Lindenstrauss applies.
Each evaluation of (4.9) takes constant time, which we need to repeat |S|K times in total.

Our ER overestimate computations then follow from an immediate application of Lemma 4.1.

Lemma 4.2. There is a randomized algorithm, that given any G = (V,E,w) with n = |V |, m = |E|, computes a
2-approximate ER overestimate with probability � 1� � in Ŏ(m log n

�) time.

Proof. Consider applying Lemma 4.1 with S = E and the specified �. In Ŏ(m log n
�) time this procedure computes

r 2 RE such that with probability � 1� �,

2

3
ERG(u, v)  r(u,v) 

4

3
ERG(e), for all e 2 E.

Our algorithm simply computes this r and then outputs r̃ = 3

2
r. The output r̃ has the desired properties as

r̃e � ERG(e) for all e 2 E and

X

e2E

wer̃e 
✓
4

3
· 3
2

◆X

e2E

we · ERG(e)  2n,

as
P

e2E weERG(e) is n� c where c is the number of connected components in G.

Next, we provide a key subroutine from prior work used in our decomposition.

Proposition 4.3. (Region growing, [GVY96], Section 4) There is a deterministic algorithm that given
G = (V,E,w) with n = |V |, m = |E|, edge lengths ` 2 RE

>0
and d > 0, in O(m + n log n)-time outputs a

partition {Sk}k2[K] of V , each with diameter  2d log(n+ 1) with respect to `, and with

d ·
X

e2@({Sk}k2[K])

we  2w>`,

where @({Sk}k2[K]) is the set of edges (u, v) 2 E with u 2 Si, v 2 Sj and i 6= j.

Copyright © 2025

Copyright for this paper is retained by authors

By applying Proposition 4.3 instantiated with appropriate edge lengths, we have the following.

Lemma 4.3. There is a deterministic algorithm that given G = (V,E,w) with n = |V |, m = |E|, edge lengths
` 2 RE

>0
, and parameters v,↵ > 0 and r > 1, in O(m+ n log n)-time outputs vertex-disjoint subgraphs {Gk}k2[K]

such that the following hold.

1.
S

k2[K]
E(Gk) ✓ F for F

def

= {e 2 E | we 2 (vr , v]}.

2. For all k 2 [K], the diameter of Gk with respect to ` is at most ↵
maxe2E(G

k
) we

.

3. |F \ {
S

k2[K]
E(Gk)}|  4r ln(n+1)

↵ ·
P

e2F we`e.

Proof. Let w̄e = we for all e 2 F and w̄e = 0 for all e 2 E \ F . We apply Proposition 4.3 to G with w w̄ and
d ↵

2v log(n+1)
to obtain {Sk}k2[K]. Define {Gk}k2[K] so that V (Gk) = Sk and E(Gk) are the edges of F with

both endpoints in Sk, with the same weight as in G.
We prove that the {Gk}k2[K] satisfy Items 1, 2, and 3. Item 1 follows directly by construction. Next,

Proposition 4.3 implies that the diameter of each Gk with respect to ` is at most ↵
v . Item 2 then follows as

maxe2E(Gk)
we  v. For Item 3, note that Proposition 4.3 implies that

✓
↵

2v ln(n+ 1)

◆ X

e2E\(
S

k2[K]
E(Gk))

w̄e·  2w̄>`.

Item 3 then follows from combining the above, w̄>` =
P

e2F we`e, and
������
F \

8
<

:
[

k2[K]

E(Gk)

9
=

;

������
=

X

e2E\(
S

k2[K]
E(Gi))

w̄e>0

v

v
<

X

e2E\(
S

k2[K]
E(Gk))

r · w̄e

v
.

Proof. [Proof of Proposition 4.1] Consider the following algorithm. First, apply Lemma 4.2 to compute a 2-
approximate e↵ective resistance overestimate with probability � 1� �, and save these as ` 2 RE

>0
. We then apply

Lemma 4.3 for all integers j 2 [jmin, jmax] where jmin = blogr(mine2E we)c and jmax = dlogr(maxe2E we)e with

v vj
def

= rj , ↵ 16rn log(n+ 1)

m
, and r r.

For all j 2 [jmin, jmax] we let {Gj
i}i2[Kj]

be the vertex-disjoint subgraphs output by Lemma 4.3 and we let Fj be
the value of F for this application of Lemma 4.3. This algorithm has the desired runtime as applying Lemma 4.2
takes time Ŏ(m log n

�) and each application of Lemma 4.3 takes time O(|E(Gk)|+ n log n). Note that the sum of
all the O(|E(Gk)|) terms only contributes a single O(m) to the runtime. Additionally, the number of distinct j is

(4.10) jmax � jmin + 1  logr

✓
max

e2E(Gi)

we

◆
+ 1�

✓
logr

✓
min

e2E(Gi)

we

◆
� 1

◆
+ 1 = logr(W) + 3 .

The runtime follows and it remains only to show that the output {Gj
i}jminjjmax,i2[Kj]

have the desired properties
provided that the ` were indeed a 2-approximate ER overestimate.

Bounded weight ratio (Item 1). This follows directly by construction from Lemma 4.3.
E↵ective resistance diameter (Item 2). By Lemma 4.3, Item 2 we know that for any Gj

i it is the case
that the diameter of Gj

i with respect to ` is at most ↵(maxe2E(Gj

i
)
we)�1. Consequently, for each u, v 2 V (Gj

i)

it is the case that there is a path of edges whose sum of lengths is at most ↵(maxe2E(Gj

i
)
we)�1. Each of these

lengths is at least the e↵ective resistance of the associated edge. Since e↵ective resistances form a metric, by
triangle inequality this means

max
u,v2V (Gj

i
)

ERG(u, v) 
↵

maxe2E(Gj

i
)
we

and Item 2 follows by the setting of ↵.

Copyright © 2025

Copyright for this paper is retained by authors

Edges cut (Item 3). Note that by our choice of vj and Lemma 4.3, the {Fj} partition E. Since E(Gj
i) ✓ Fj

for all i 2 [Kj] and j 2 [jmin, jmax] we have that

������
E(G) \

8
<

:
[

jminjjmax,i2[Kj]

E(Gj
i)

9
=

;

������
=

X

jminjjmax

������
E(G) \

8
<

:
[

i2[Kj]

E(Gj
i)

9
=

;

������


X

jminjjmax

0

@4r ln(n+ 1)

↵

X

e2Fj

we`e

1

A =
m

4n

X

e2E

we`e

where we applied Lemma 4.3, Item 3 in the inequality. Since
P

e2E we`e  2n by the definition of a 2-approximate
e↵ective resistance overestimate, the result follows.

Vertex coverage (Item 4). Each collection of {Gj
i}i2[Kj]

for fixed j 2 [jmin, jmax] is vertex-disjoint by
Lemma 4.3. Consequently, each vertex v 2 V (G) is in at most jmax � jmin + 1 subgraphs and the result follows
by our earlier bound (4.10).

5 Variance bounds from e↵ective resistance diameter

In this section, we provide an operator norm bound on a matrix variance quantity, used to bound the Gaussian
measure of convex bodies induced by operator norm bounds encountered in our sparsification procedures. This
variance bound (Lemma 5.3) is a key new structural insight which enables our applications in the remainder of the
paper. In particular, it shows bounded ER diameter of decomposition pieces can be used to control the spectral
error incurred by our reweightings.

We first provide a helpful result which upper bounds matrix variances after a projection operation, by the
corresponding variance before the projection.

Lemma 5.1. Let {Ai}i2[m] 2 Rn⇥n and let P,Q 2 Rm⇥m be orthogonal projection matrices such that ker(Q) ✓
ker(P). For each i 2 [m], let eAi

def

=
P

j2[m]
PjiAj and bAi

def

=
P

j2[m]
QjiAj. Then,

X

i2[m]

eAi
eA

>
i �

X

i2[m]

bAi
bA

>
i .

Proof. Throughout this proof, we denote the Kronecker product of matrices A and B by A ⌦ B. By
ker(Q) ✓ ker(P), we have P � Q. Define the n⇥mn block-partitioned matrices

A def

=
�
A1 A2 · · · Am

�
, eA def

=
⇣
eA1

eA2 · · · eAm

⌘
, bA def

=
⇣
bA1

bA2 · · · bAm

⌘
.

Since eA = A(P⌦ Im) and bA = A(Q⌦ Im) it now su�ces to prove eA eA> � bA bA>. Note that

(P⌦ Im)2 = (P2)⌦ (Im)2 = P⌦ Im � Q⌦ Im = (Q)2 ⌦ (Im)2 = (Q⌦ Im)2,

where the equality utilizes P,Q are orthogonal projection matrices and the inequality holds since since P � Q.
Now utilizing the fact that if A � B and C is any matrix of compatible dimension, then CAC> � CBC> and
we get the desired bound that

eA eA> = A(P⌦ Im)2A> � A(Q⌦ Im)2A> = bA bA> .

We also show that e↵ective resistance decomposition pieces have bounded diagonal entries in an appropriate
subgraph inverse Laplacian.

Lemma 5.2. For any G = (V,E,w), U ✓ V , and u 2 U , e>u⇧UL
†
G⇧Ueu  maxa,b2U ERG(a, b).

Copyright © 2025

Copyright for this paper is retained by authors

Proof. First, observe that ⇧Ueu = eu � 1

|U |1U = 1

|U |
P

v2U,v 6=u b(u,v). The conclusion follows from

e>u⇧UL
†
G⇧Ueu =

1

|U |2

0

@
X

v2U,v 6=u

b(u,v)

1

A
>

L†
G

0

@
X

v2U,v 6=u

b(u,v)

1

A

 |U |� 1

|U |2
X

v2U,v 6=u

b>
(u,v)L

†
Gb(u,v) 

(|U |� 1)2

|U |2 max
a,b2U

ERG(a, b),

where the first inequality was the Cauchy-Schwarz inequality.

We now combine Fact 2.1, Lemma 5.1, and Lemma 5.2 to obtain the main result of this section.

Lemma 5.3. Let ~G = (V,E,w) and let ~H be a subgraph on vertex set U ✓ V . Suppose that for ⇢ > 0,
(maxe2E(~H)

we) · (maxu,v2U ERG(u, v))  ⇢. Define

(5.11)

LH2

def

= B>
~H
W2

E(~H)
B ~H ,

P ~H
def

= IE(~H)
�WE(~H)

B ~HL†
H2B

>
~H
WE(~H)

,

eAe
def

= L
†
2

G

0

@
X

f2E(~H)

[P ~H]fewfbfe
>
h(f)

1

AL
†
2

G for all e 2 E(~H),

where WE(~H)
, IE(~H)

zero out entries of W ~G, IE(~G)
not corresponding to edges in E(~H). Then,

X

e2E(~H)

eAe
eA

>
e 4 ⇢ · L

†
2

GLHL
†
2

G,
X

e2E(~H)

eA
>
e
eAe 4 ⇢ · L

†
2

GLHL
†
2

G,

where G
def

= und(~G), H
def

= und(~H).

Proof. For simplicity, we write W ~H = WE(~H)
and B ~H = B~GIE(~H)

. We first note that P ~H is a orthogonal

projection matrix, since W ~HB ~HL†
H2B

>
~H
W ~H is an orthogonal projection on the restriction to ~H. This justifies

our notation: the eAe are as in Lemma 5.1, where Ae
def

= L†/2
G webee>h(e)L

†/2
G . Next, let xe

def

= [P ~H]e: and

Xe
def

= diag (xe), so eAe = L†/2
G B>

~H
W ~HXeH ~HL†/2

G . Since P ~H is an orthogonal projection matrix,

P ~Hxe = xe =) W ~HB ~HL†
H2B

>
~H
W ~Hxe = 0V =) B>

~H
W ~Hxe = 0V .

To see the last implication, note that B>
~H
W ~Hxe is always orthogonal to the kernel of LH2 = B>

~H
W ~HB ~H . The

last equality then follows by noticing that ker(LH2) = ker(L†
H2). In other words, W ~Hxe is a circulation on ~H.

Since ⇧U is the projection onto the coordinates of U orthogonal to 1U , by ker(H ~H) ◆ span(1U) [RV \U , we
further have

B>
~H
W ~HXeH ~H = B>

~H
W ~HXeH ~H⇧U =) eAe = L

†
2

GB
>
~H
W ~HXeH ~H⇧UL

†
2

G.

Applying Lemma 5.1 to {eAe}e2E(~H)
using the characterization in the above display then gives

X

e2E(~H)

eAe
eA

>
e 4 L

†
2

G

0

@
X

e2E(~H)

w2

e · bee
>
h(e)⇧UL

†
G⇧Ueh(e)b

>
e

1

AL
†
2

G

4 L
†
2

G

0

@
X

e2E(~H)

⇢we · beb
>
e

1

AL
†
2

G = ⇢ · L
†
2

GLHL
†
2

G.

The second inequality follows from Lemma 5.2 and the we  maxe2E(~H)
we. This yields the first claim. To

see the second, since W ~Hxe is a circulation, by Fact 2.1, eAe = �L†/2
G T>

~H
W ~HXeB ~HL†/2

G . By instead applying

Lemma 5.1 to the matrices {�eA
>
e }e2E(~H)

(as XeT ~H1U = XeH ~H1U = xe) and following an analogous derivation,
we obtain the desired bound.

Copyright © 2025

Copyright for this paper is retained by authors

6 Sparser Eulerian sparsifiers

In this section, we give the first application of our framework by proving our Eulerian sparsification result obtaining
the best-known sparsity bound in Theorem 1.2. This application serves as a warmup for our nearly-linear time
sparsification result in Section 7.

Our approach is to recursively apply Lemma 5.3 on each subgraph component in a ER decomposition
(Proposition 4.1), with known results from the literature on discrepancy theory, to sparsify an Eulerian graph.
Specifically, our main tools are a powerful matrix discrepancy Gaussian measure lower bound recently developed
by [BJM23] (motivated by the matrix Spencer conjecture), and a corresponding partial coloring framework from
[Rot17; RR23].

Proposition 6.1. (Proof of Lemma 3.1, [BJM23]) For every constant c 2 (0, 1

2
), there is a constant Ccolor

such that for any {eAi}i2[m] ⇢ Sn with m > 2n that satisfy k
P

i2[m]
eA

2

i kop  �2,
P

i2[m]
keAik2F  mf2, and letting

eK def

=

8
<

:x 2 Rm

�����

������

X

i2[m]

xi
eAi

������
op

 Ccolor min
n
� +

p
�f log

3

4 n, � log
1

4 n+
p
�f log

1

2 n
o
9
=

; ,

there is a subspace T ✓ Rm with dim(T) � (1� c)m, �T (K) � exp(�cm).

We note that the proof of Lemma 3.1 in [BJM23] only showed how to obtain the first of the two operator
norm upper bounds within the min expression in Proposition 6.1, but the second follows straightforwardly by
substituting an alternative matrix concentration inequality from [Tro18] into the same proof of [BJM23]. We
formally show how to obtain the second bound in Appendix D.

Proposition 6.2. (Theorem 6, [RR23]) Let ctight 2 (0, 1) be a constant, let S ✓ Rm be a subspace with
dim(S) � 2ctightm, and let K ✓ Rm be symmetric and convex. Suppose �m(K) � exp(�Cm) for a constant C.
There is Cset > 0 depending only on ctight, C such that if g ⇠ N (0m, Im), and

x
def

= arg min
x2CsetK\[�1,1]m\S

kx� gk2,

then |{i 2 [m] | |xi| = 1}| � ctightm with probability 1� exp(�⌦(m)).

Roughly speaking, Proposition 6.1 shows that a convex body over x 2 Rm, corresponding to a sublevel set of
k
P

i2[m]
xi
eAikop, has large Gaussian measure restricted to a subspace. Proposition 6.2 then produces a “partially

colored” point [�1, 1]m with many tight constraints, i.e., coordinates i 2 [m] with |xi| = 1, which also lies in the
convex body from Proposition 6.1. We summarize a useful consequence of Proposition 6.2 that is more compatible
with Proposition 6.1. The di↵erence is that the variant in Corollary 6.1 only requires a Gaussian measure lower
bound on the convex body restricted to a subspace, the type of guarantee that Proposition 6.1 gives.

Corollary 6.1. In the setting of Proposition 6.2, assume that �S(K) � exp(�Cm) for a constant C, instead of
�m(K) � exp(�Cm). There is Cset > 0 depending only on ctight, C such that if g ⇠ N (0m, Im), and

x
def

= arg min
x2CsetK\[�1,1]m\S

kx� gk2,

then |{i 2 [m] | |xi| = 1}| � ctightm with probability 1� exp(�⌦(m)).

Proof. Define K0 ✓ Rm to be K \ S expanded by a hypercube (centered at the origin and with side length 2) in

the subspace orthogonal to S, denoted S?; concretely, let K0 def

= (K \ S)� (PS?)[�1, 1]dim(S?), where � denotes
the direct sum of two sets. Note that K0 is symmetric and convex, and �m(K0) � exp(�C 0m) for a constant C 0

depending only on C and the universal constant �1([�1, 1]), since the probability g ⇠ N (0m, Im) falls in K0 is
the product of the probabilities of the independent events g 2 K0 \ S and g 2 K0 \ S?. Therefore, applying
Proposition 6.2 to the subspace S and the set K0 yields the conclusion, as CsetK0 \ S = CsetK \ S.

Finally, we give an equivalence we will later use.

Copyright © 2025

Copyright for this paper is retained by authors

Lemma 6.1. For {Ai}i2[m] ⇢ Sn, a subspace S ✓ Rm and a parameter R � 0, define

eAi
def

=
X

j2[m]

[PS]ji Aj for all i 2 [m],

and their induced operator norm bodies

K def

=

8
<

:x 2 Rm

�����

������

X

i2[m]

xiAi

������
op

 R

9
=

; , eK def

=

8
<

:x 2 Rm

�����

������

X

i2[m]

xi
eAi

������
op

 R

9
=

; .

Then K \ T = eK \ T for any subspace T ✓ S.

Proof. It su�ces to note that for x 2 T , PSx = x and therefore

X

i2[m]

xi
eAi =

X

i2[m]

X

j2[m]

[PS]jixiAj =
X

j2[m]

[PSx]jAj =
X

j2[m]

xjAj .

This shows that for x 2 T , k
P

i2[m]
xi
eAikop  R () k

P
i2[m]

xiAikop  R, so K \ T = eK \ T .

Next, we state a guarantee on a degree-rounding algorithm, Rounding. This algorithm is used in all of our
sparsification subroutines, to deal with small degree imbalances induced by approximation errors in projection
operations. The algorithm (Algorithm 1) follows a standard approach of rerouting the vertex imbalances B>

~G
z

through a spanning tree. We bound the incurred discrepancy in the directed Laplacian by the size of z. This
procedure is related to, and inspired by, other tree-based rounding schemes in the literature, see e.g., [KOSZ13].

Algorithm 1: Rounding(~G, z, T)

1 Input: ~G = (V,E,w), z 2 RE , T a tree subgraph of G
def

= und(~G)

2 d B>
~G
z

3 y unique vector in RE with supp(y) ✓ E(T) and B>
~G
y = d

4 return y

Lemma 6.2. Given ~G = (V,E,w), a tree subgraph T of G
def

= und(~G) with mine2E(T) we � 1, Rounding
(Algorithm 1) returns in O(n) time y 2 RE with supp(y) ✓ T satisfying:

1. B>
~G
y = d.

2. kyk1 
1

2
kdk

1
.

3. For any z 2 RE satisfying B>
~G
z = d, we have kL†/2

G B>
~G
(Y � Z)H~GL

†/2
G kop  n kzk

1
.

4. kL†/2
G B>

~G
YH~GL

†/2
G kop  n kyk

1
.

A proof of Lemma 6.2 is deferred to Appendix B.
We next show how to combine Corollary 6.1 with our variance bound in Lemma 5.3 to slightly sparsify an

Eulerian graph, while incurring small operator norm discrepancy.

Lemma 6.3. Suppose that ExistentialDecompSparsify (Algorithm 2) is run on inputs as specified in Line 1.
Then, it returns ~G0 = (V,E,w0) satisfying the following properties, with probability � 1� �.

1. maxe2Ê w0
e  2W , mine2Ê we > ` and mine2E(T) w

0
e � mine2E(T) we � nm̂`.

2. B>
~G
w0 = B>

~G
w.

Copyright © 2025

Copyright for this paper is retained by authors

Algorithm 2: ExistentialDecompSparsify({~Gi}i2[I], ~G, T, ",W)

1 Input: {~G(i)}i2[I], subgraphs of simple ~G = (V,E,w) with maxe2supp(w) we W , and such that

{G(i) def

= und(~G(i))}i2[I] are a (⇢, 2, J)-ER decomposition of G
def

= und(~G), T a tree subgraph of G with

mine2E(T) we � 1 and E(T) \
S

i2I E(~G(i)) = ;, �, " 2 (0, 1

100
)

2 m̂ nnz(w), Ê supp(w), G
def

= und(~G), n |V |
3 if m̂ � 8nJ then

4 Si {x 2 RÊ | supp(x) ✓ E(~G(i)),B>
~G(i)

W ~Gi

x = 0V } for all i 2 [I]

5 S
S

i2[I] Si

6 x point in [�1, 1]Ê \ S such that for universal constants CESO, ctight,

(6.12)

������
L

†
2

G

0

@
X

i2I

X

e2E(~Gi)

xewebee
>
h(e)

1

AL
†
2

G

������
op

 CESO min
n
⇢

1

2 log
1

2 +⇢
3

4 log
5

4 (n), ⇢
1

2 log
3

4 (n) + ⇢
3

4 log(n)
o
,

���
n
e 2 Ê | xe = �1

o��� � ctightm̂

. Existence of x, CESO, ctight follow from Lemma 5.3, Proposition 6.1, and Corollary 6.1, see Lemma 6.3.

7 x0 extension of x to RE with x0
e = xe if e 2

S
i2I E(Gi) and x0

e = 0 otherwise
8 w w � (1E + x0)

9 D
def

= {e 2 Ê | we  `}
10 return ~G0 (V,E, [w]Ê\D +Rounding(~G, [w]D, T))

3. nnz([w0]Ê)  (1� ctight)m̂+ CESO · nJ .

4.

kL†/2
G B>

~G
(W0 �W)H~GL

†/2
G kop 

CESO min{⇢ 1

2 log
1

2 n+ ⇢
3

4 log
5

4 n,

⇢
1

2 log
3

4 n+ ⇢
3

4 log n}+ nm̂`.

Moreover, ExistentialDecompSparsify is implementable in poly(n, logU, log 1

�) time.

Proof. If Line 3 does not pass, then Items 1-3 trivially hold and it only incurs the second term in the spectral
error (Item 4) due to Lemma 6.2. We then assume it does pass for the remainder of the proof. We defer proving
existence of x, CESO, ctight in (6.12) until the end. Since x 2 [�1, 1]E and supp(x) ✓ Ê, no edge weight in Ê more
than doubles, giving the first claim of Item 1. Our definition of D on Line 9 and Rounding ensures the second
claim of Item 1. Next, since w � x is only supported on E0 def

=
S

i2[I] E(G(i)) and [w � x]E0 is the sum of disjoint
circulations on each Gi by the definition of each Si, w � x is itself a circulation on G. Combining with the first
guarantee of Lemma 6.2, this implies Item 2. Since any e 2 Ê where xe = �1 necessary has we(1 + xe) = 0 and
that Rounding only introduces new non-zero entries on E(T), Item 3 holds. Item 4 is follows from the definitions
of w0 and D, (6.12) and the third guarantee of Lemma 6.2.

It remains to prove x, CESO, ctight exist when Line 3 passes. For each e 2 E0, define Ae and eAe as in the proof

of Lemma 5.3 where ~H is set to the partition piece ~G(i) with E(~G(i)) 3 e. Summing the bound in Lemma 5.3
over all pieces gives �2 = ⇢ in Proposition 6.1, where we overload

eAe

eAe

eA
>
e

!

Copyright © 2025

Copyright for this paper is retained by authors

in its use (padding with zeroes as necessary). Correctness follows from the observations
✓

A
A>

◆2

=

✓
AA>

A>A

◆
,

����

✓
A

A>

◆����
op

= kAk
op

.

Further, we always have f2  n�2

m by linearity of trace and keAk2
F
= Tr(eA

2

) for eA 2 Sn. This gives a Gaussian

measure lower bound on eK restricted to a subspace S0 of S. By the characterization in Lemma 6.1, this also
implies a Gaussian measure lower bound on K restricted to S0. We next observe that S is a subspace of RE0

where each Si enforces |V (Gi)| � 1 linear constraints (corresponding to weighted degrees in the subgraph). By
Definition 4.1, the total number of such linear constraints is  nJ and |E0| � 1

2
m̂. The condition on Line 3

then guarantees our final subspace has su�ciently large dimension to apply Corollary 6.1. Finally, Corollary 6.1
guarantees existence of x, ctight, CESO satisfying the guarantees in (6.12) (we may negate x if it has more 1s than
�1s, and halve ctight).

Lastly, we observe that Algorithm 2 is implementable in polynomial time. This is clear for Rounding and
Lines 7-9. The most computationally intensive step is Line 6, which consists of finding a subspace of large Gaussian
measure and solving a convex program. The latter is polynomial time [GLS88]; the former is due to intersecting
the explicit subspace from Line 5 and the subspace from Proposition 6.1. The subspace from Proposition 6.1
is explicitly described in the proof of Lemma 3.1 of [BJM23]; it is an eigenspace of a flattened second moment
matrix.

All steps are deterministic except for the use of Corollary 6.1 in Line 6 (note that we can bypass Lemma 4.1
via exact linear algebra computations). This line succeeds with probability � 1

2
for a random draw. Finally, we

can boost this line to have failure probability � by running log(1�) independent trials, as we can verify whether a
run succeeds in poly(n, logU) time.

Algorithm 3: ExistentialSparsify(~G, ", �)

1 Input: Eulerian ~G = (V,E,w) with we 2 [1, U] for all e 2 E, " 2 (0, 1)
2 n |V |, m |E|
3 T arbitrary spanning tree of G

def

= und(~G), Ê E \ E(T)

4 R blog
1� 1

2
ctight

1

nc+ 1, C1 (256CESO

ctight
)2, C2 (256CESO

ctight
)4/3, C3 (256CESO

ctight
)3/2 for ctight, CESO in

(6.12)

5 Umax U · 2R, Jmax log2
�
64mnRUmax

"

�

6 t 0, ~G0 ~G

7 while nnz([wt]Ê) > max{2CESOctight · nJmax,min{C1 · n logn
"2 + C2 · n log

5/3 n
"4/3

, 2C3 · n log
3/2 n

"2 }} do

8 Gt und(~Gt)

9 S ERDecomp([Gt]Ê , 2,
�
R) . See Proposition 4.1.

10 ~Gt+1

def

= (V,E,wt+1) ExistentialDecompSparsify(S,Gt, T,
"

8mnR , Umax)
11 t t+ 1

12 return ~H (V, supp(wt),wt)

We are now ready to state and analyze our overall sparsification algorithm, ExistentialSparsify
(Algorithm 3). The following is a refined version of Theorem 1.2.

Theorem 6.1. Given Eulerian ~G = (V,E,w) with |V | = n, |E| = m, w 2 [1, U]E and " 2 (0, 1),
ExistentialSparsify (Algorithm 3) returns Eulerian ~H such that ~H is an "-approximate Eulerian sparsifier of
~G, and

| ~H| = O

✓
n logU +

n log n

"2
min

n
1 + (" log n)

2

3 , log
1

2 n
o◆

,

log

✓
maxe2supp(w0) w

0
e

mine2supp(w0) w0
e

◆
= O (log (nU)) .

Copyright © 2025

Copyright for this paper is retained by authors

ExistentialSparsify succeeds with probability � 1� � and runs in time poly(n, logU, log 1

�).

Proof. Recall from Section 2 that we assume without loss of generality that G is connected. Throughout, condition
on the event that all of the at most R calls to ERDecomp succeed, which happens with probability � 1 � �.
Because ExistentialDecompSparsify guarantees that no weight grows by more than a 2 factor in each call,
Umax is a valid upper bound for the maximum weight of any edge throughout the algorithm’s execution. Moreover,
since no weight falls below "

8mnR throughout by ExistentialDecompSparsify, Jmax

def

= log2(
64mnRUmax

") is an
upper bound on the number of decomposition pieces ever returned by ERDecomp, by Proposition 4.1.

Next, note that under the given lower bound on nnz([wt]Ê) in a given iteration (which is larger than
2CESOctight · nJmax), the sparsity progress guarantee in Item 3 of Lemma 6.3 shows that the number of edges in
each iteration is decreasing by at least a (1�ctight)+

1

2
ctight = (1� 1

2
ctight) factor until termination. Since m  n2

and the algorithm terminates before reaching n edges, R is a valid upper bound on the number of iterations before
the second condition in Line 7 fails to hold, which gives the sparsity claim.

Let m̂i
def

= nnz([w]Ê). To prove the spectral error bound, we show by induction that until the algorithm
terminates, the following conditions hold, where we use t to denote the number of times the while loop runs in
total:

1. B>wi = B>w0

2. m̂i  (1� 1

2
ctight)im̂0.

3. kL†/2B>(Wi �W0)HL†/2kop  2CESO

Pi�1

j=0
min{(n logn

m̂j

)
1

2 + (n
m̂j

)
3

4 log
5

4 n, (n
m̂j

)
1

2 log
3

4 n+ (n
m̂j

)
3

4 log n}+
i

4R .

Note that Items 1 to 3 all hold trivially for i = 0. Suppose inductively all conditions above hold for all iterations
k  i < t. By our stopping condition, n  m̂i  (1 � 1

2
ctight)i�1m̂0 and hence i  logn

� log(1� 1

2
ctight)

< R. Items 2

and 3 of Lemma 6.3 then implies Items 1 and 2 are satisfied for iteration i + 1. We also have by Item 4 of
Lemma 6.3 that

����L
†
2

Gi
B>(Wi+1 �Wi)HL

†
2

Gi

����
op

 CESO min

8
<

:

r
n log n

m̂i
+

n log

5

3 n

m̂i

! 3

4

,

r
n

m̂i
log

3

4 (n) +

✓
n

m̂i

◆ 3

4

log(n)

9
=

;+
"

8R
,

where we define ~Gi
def

= (V,E,wi) and Gi
def

= und(~Gi) for any 0  i  t. Note that ~G0 = (V,E,w0) = ~G, the
original input Eulerian graph. Moreover, L~Gi

� L~G0
= B>(Wi �W0)H. By our choice of C1, C2, the stopping

condition, Item 2, and Lemma 6.3,

2CESO

i�1X

j=0

min

8
<

:

s
n log n

m̂j
+

n log

5

3 n

m̂j

! 3

4

,
r

n

m̂j
log

3

4 (n) +

✓
n

m̂j

◆ 3

4

log(n)

9
=

;

 2CESO

i�1X

j=0

⇣
1� ctight

4

⌘i�1�j

·min

8
<

:

s
n log n

m̂i�1

+

n log

5

3 n

m̂i�1

! 3

4

,

r
n

m̂i�1

log
3

4 (n) +

✓
n

m̂i�1

◆ 3

4

log(n)

9
=

;

 8CESO

ctight
min

8
<

:

s
n log n

m̂i�1

+

n log

5

3 n

m̂i�1

! 3

4

,

r
n

m̂i�1

log
3

4 (n) +

✓
n

m̂i�1

◆ 3

4

log(n)

9
=

; 
"

8
 1

8
.

Copyright © 2025

Copyright for this paper is retained by authors

As we also have i"
4R 

"
4
 1

4
, Fact 2.2 then gives 1

2
L � LGi

� 3

2
L. Consequently, Gi has the same connected

components as the original graph G, i.e., since we assumed G is connected, so is Gi. Hence, Fact 2.3 implies that

���L
†
2B>(Wi+1 �Wi)HL

†
2

���
op

 2 ·
����L

†
2

Gi
B>(Wi+1 �Wi)HL

†
2

Gi

����
op

 2CESO min

8
<

:

r
n log n

m̂i
+

n log

5

3 n

m̂i

! 3

4

,

r
n

m̂i
log

3

4 (n) +

✓
n

m̂i

◆ 3

4

log(n)

9
=

;+
"

4R
.

This proves Item 3 in the inductive hypothesis, as desired, and also implies that after the tth loop,

(6.13)
���L

†
2B> (Wt �W0)HL

†
2

���
op

 ".

The sparsity bound follows by explicitly removing any e 2 E where [wt]e = 0 from ~H. In light of Lemma 6.3,
we note that each of the poly(n) calls to ExistentialSparsify can be implemented in poly(n, logU, log 1

�) time,
and all steps of Algorithm 3 other than ExistentialDecompSparsify run in linear time. We adjust the failure
probability by a poly(n) factor to account for the multiple uses of Corollary 6.1 via a union bound, giving the
claim.

Theorem 1.2 is one logarithmic factor in nU away from being optimal, up to low-order terms in ". The
extra logarithmic factor is due to the parameters of our ER decomposition in Proposition 4.1, and the low-order
terms come from the additive terms with polylogarithmic overhead in Proposition 6.1. In Appendix C, we discuss
routes towards removing this overhead, and relate them to known results and open problems in the literature on
graph decomposition (i.e., the [AALG18] decomposition scheme) and matrix discrepancy (i.e., the matrix Spencer
conjecture).

7 Eulerian sparsification in nearly-linear time

In this section, building upon our approach from Section 6, we provide a nearly-linear time algorithm for sparsifying
Eulerian directed graphs. We develop our algorithm via several reductions.

• In Section 7.2, we develop BasicFastSparsify, a basic subroutine which takes as input an initial subgraph
with bounded ER diameter (in the sense of Definition 4.1), and edge weights within a constant multiplicative
range. It then returns a reweighting of the initial subgraph which decreases weights by a constant factor on
average.

• In Section 7.3, we give a two-phase algorithm which builds upon BasicFastSparsify. In the first phase, the
algorithm calls BasicFastSparsify ⇡ log log n times, and we demonstrate that these applications decrease
a constant fraction of the edge weights from the original subgraph by a polylog(n) factor. We separate out
this small cluster of edges and pass it to the second phase, which applies BasicFastSparsify ⇡ log n times
to decrease a constant fraction of edge weights by a polynomial factor. We then apply Rounding to fully
sparsify these edge weights, incurring small spectral error. Our sparsity-spectral error tradeo↵ in the second
phase loses a polylogarithmic factor over our final desired tradeo↵; this is canceled out by the mild edge
weight decrease from the first phase, and does not dominate.

• In Section 7.4, we recursively call our ER decomposition algorithm from Section 4, and the two-phase
procedure described above. Each round of calls makes constant factor progress on the overall sparsity of
our final graph, and hence terminates quickly.

As a preliminary, we provide tools in Section 7.1 to streamline handling of approximation error incurred by
state-of-the-art undirected Laplacian solvers, when projecting into circulation space.

7.1 Approximating modified circulations In this section, we give a self-contained solution to the key
computational bottleneck in Section 7.2 when using approximate Laplacian system solvers. We begin by
introducing some notation to simplify our presentation. Let ~H be a subgraph of ~G = (V,E,w) with edge

Copyright © 2025

Copyright for this paper is retained by authors

set F . We define H
def

= und(~H) and H2 def

= (V (H), F,w2

F), where w2 is w with its entries squared. We further
define

(7.14) P ~H
def

= IF �C ~H , where C ~H
def

= WFB ~HL†
H2B

>
~H
WF ,

and where IF ,WF 2 RE⇥E
�0

zero out entries of IE ,W which do not correspond to edges in F . In Section 7.2, we

apply reweightings which are circulations on ~H, but which also are orthogonal to a specified vector v. We will
eventually set v to be a current weight vector, to enforce that the total weight of the edges remains unchanged.
We hence define the modified projection matrix

(7.15) P ~H,v
def

= P ~H � u ~H,vu
>
~H,v

, where u ~H,v
def

=
1q

v>P ~Hv
P ~Hv.

We prove a basic fact about P ~H,v, motivated by the Sherman-Morrison formula.

Lemma 7.1. For any u 2 RE, P ~H,v defined in (7.15) satisfies

P ~H,vv = 0E , P
2

~H,v
= P ~H,v, and B>

~H
WE(~H)

P ~H,vu = 0E .

Proof. The first claim follows from directly computing u ~H,vu
>
~H,v

v = P ~Hv. The second follows similarly: since

P ~H is an orthogonal projection matrix, u ~H,v is a unit vector, and we observe

P ~Hu ~H,vu
>
~H,v

= u ~H,vu
>
~H,v

P ~H = u ~H,vu
>
~H,v

.

Finally, the last follows from the fact that B>
~H
WE(~H)

P ~H is the zero operator on RE⇥E .

Thus, P ~H,v is the projection matrix into the subspace of P ~H ’s span that is orthogonal to v.

Algorithm 4 solves the following problem: on input ⇠ > 0, z 2 RE with supp(z) ✓ F , kzk1  1, return
x 2 RE with

(7.16) supp(x) ✓ F,
���x�P ~H,vz

���
1
 ⇠,

���B>
~G
Wx

���
1
 ⇠, | hx,vi |  ⇠ kvk

2
.

In other words, for an error parameter ⇠, we wish to enforce that w � x is an approximate circulation, and that
x is approximately orthogonal to v and approximates the true P ~H,vz we wish to compute. We remark that
x = P ~H,vz satisfies (7.16) with ⇠ = 0. We will ultimately call Algorithm 4 with inverse-polynomially small ⇠, and
apply Rounding to incur small error when rounding the residual.

Algorithm 4: ProjMinusRankOne(~H,v, z, �, ⇠)

1 Input: ~H, a subgraph of ~G = (V,E,w) with kwk1  u and F
def

= E(~H), v, z 2 RE with
supp(v), supp(z) ✓ F and kzk1  1, �, ⇠ 2 (0, 1)

2 n |V |
3 ⇠0 ⇠

9nu
p
m

4 a ⇠0-approximate solution to LH2a = B>
~H
WFv, with probability � 1� �

2

5 b ⇠0-approximate solution to LH2b = B>
~H
WF z, with probability � 1� �

2

6 u WFB>
~H
a

kWFB>
~H
ak2

, y WFB
>
~H
b

7 return x z� y � hy,uiu

Before giving our analysis in Lemma 7.3, we require one elementary helper calculation.

Lemma 7.2. Let a,a? 2 Rd satisfy ka� a?k2  ↵ kak
2
for ↵ 2 (0, 1

5
). Then, for u

def

= a
kak

2

and u?
def

= a?

ka?k2

, we

have ku� u?k2  2↵.

Copyright © 2025

Copyright for this paper is retained by authors

Proof. The problem statement is invariant under scaling a, so without loss of generality assume u = a, which
implies ka?k 2 [1� ↵, 1 + ↵]. The conclusion follows by triangle inequality:

ku� u?k2  ku� a?k2 + ka? � u?k2  ↵+ |ka?k � 1|  2↵.

Lemma 7.3. Under the stated input assumptions, ProjMinusRankOne (Algorithm 4) using Proposition 4.2 in
Lines 4-5 returns x satisfying (7.16) in time Ŏ(|F | log nu

⇠�) with probability � 1� �.

Proof. The problem definition and error guarantee (7.16) are invariant under scaling v, so we assume kvk
2
= 1

without loss of generality. Further, the problem is identical if we eliminate all coordinates on E \F (as the input
and output are supported in F), so we only handle the case E = F . Finally, for simplicity in this proof, we let

L
def

= LH2 , B
def

= B ~H , W
def

= WF , I
def

= IF , and n
def

= |V |,m def

= |F |, and define the ideal vectors (which would be
computed in the algorithm if ⇠ = 0):

a?
def

= L†B>Wv, b?
def

= L†B>Wz,

u?
def

=
WBa?
kWBa?k2

= u ~H,v, y?
def

= WBb?, x?
def

= z� y? � hy?,u?iu? = P ~H,vz.

First, by the definition of approximate solutions (see Proposition 4.2), we have

kWB(a� a?)k2 = ka� a?kL  ⇠0 ka?kL = ⇠0 kWBa?k2 .

Hence, by applying Lemma 7.2, we have ku� u?k2  2⇠0. Similarly,

ky � y?k2 = kWB(b� b?)k2 = kb� b?kL  ⇠0 kb?kL = ⇠0 kWBb?k2 = ⇠0 ky?k2  ⇠0 kzk
2
,

where the last equality follows by y? = C ~Hz and the fact that C ~H is a orthogonal projection. Now,

x� x? = (y? � y) + (hy?,u?iu? � hy,uiu)
= (y? � y) + hy?,u? � uiu? + hy? � y,uiu? + hy,ui (u? � u),

so that by the triangle and Cauchy-Schwarz inequalities, the first conclusion in (7.16) holds:

kx� x?k1  kx� x?k2
 ky? � yk

2
+ ku? � uk

2
ky?k2 ku?k2 + ky? � yk

2
kuk

2
ku?k2 + ku? � uk

2
kyk

2
kuk

2

 ky? � yk
2
+ 2⇠0 ky?k2 + ky? � yk

2
+ 2⇠0(ky?k2 + ky? � yk

2
)

 9⇠0 kzk
2
< 9⇠0

p
m kzk1  9⇠0

p
m < ⇠,

given that ⇠0 < 1. Moreover, letting kAk1!1
def

= supkxk1=1 kAxk1 be the largest `1 norm of a row of A, and
noting that kBk1!1  n and kWk1!1  u, we have

���B>Wx
���
1

(a)
=
���B>W(x� x?)

���
1


���B>

���
1!1

kWk1!1 kx� x?k1  nu kx� x?k1  9nu⇠0
p
m,

| hx,vi | (b)= | hx� x?,vi |  kx� x?k2 kvk2  9⇠0
p
m kvk

2
.

Here, both (a) and (b) followed from Lemma 7.1. By our choice of ⇠0 = ⇠
9nu

p
m

< 1, we can guarantee all the

desired bounds in (7.16). Finally, the runtime bound follows directly from Proposition 4.2.

Copyright © 2025

Copyright for this paper is retained by authors

7.2 Basic partial sparsification In this section, we give the basic subroutine of our fast sparsification
algorithms, which modifies the edge weights on a well-controlled subgraph (formally, see Definition 7.1). We
first require stating several standard helper matrix concentration results from the literature.

Lemma 7.4. (Theorem 7.1, [Tro11]) Let � 2 (0, 1) and let {Mk}k2[K]
2 Rd⇥d be a sequence of matrices, and

let s 2 {±1}K be a martingale sequence of Rademachers, i.e., sk is a Rademacher random variable conditioned
on {sj}j2[k�1] for all k 2 [K]. Further, suppose for � � 0,

(7.17)
X

k2[K]

MkM
>
k � �2Id,

X

k2[K]

M>
k Mk � �2Id.

Then with probability � 1� �, ������

X

k2[K]

skMk

������
op

 �

s

8 log

✓
2d

�

◆
.

Lemma 7.5. Let � 2 (0, 1), let P 2 Rd⇥d be an orthogonal projection matrix, and let s 2 {±1}d have independent
Rademacher entries. There is a universal constant Csign such that

kPsk1  Csign

r
log

d

�
with probability � 1� �.

Proof. For any fixed j 2 [d], the random variable X
def

= e>j Ps is sub-Gaussian with parameter �
def

= kPj:k2  1.
Standard sub-Gaussian concentration bounds (e.g., [Ver18], Proposition 2.5.2) now imply that with probability

� 1 � �
d , we have for a universal constant Csign, X  Csign

q
log d

� . Applying a union bound for all j 2 [d]

concludes the proof.

We also use the following helper scalar concentration inequality.

Lemma 7.6. Let X be a 1-sub-Gaussian random variable with EX = 0, and let E be an event on the outcome of
X with Pr[E] � 1� � where �  1

10
. Then,

��E
⇥
X2 � E

⇥
X2
⇤
| E
⇤��  300

p
�.

Proof. Let IE and IEc denote the 0-1 indicator variables for E and its complement Ec. Further, we will assume
Pr[Ec] = � as the stated bound is monotone in �. The random variable Z

def

= X2 � E[X2] is 16-sub-exponential
(Lemma 1.12, [RH17]), so applying the Cauchy-Schwarz inequality and standard sub-exponential moment bounds
(Lemma 1.10, [RH17]) yields

|E [Z | E]| = 1

Pr[E] |E[Z · IE]| =
1

1� �
|E[Z · IEc]|  1

1� �
E[Z2]

1

2 E [IEc]
1

2  300
p
�.

Finally, to simplify the statement of the input to our algorithm, we give a useful definition.

Definition 7.1. (Cluster) We say ~H is a (w̄, ⇢)-cluster in ~G = (V,E,w) if ~H is a subgraph of ~G, we 2 [w̄, 2w̄]

for all e 2 E(~H), and letting G
def

= und(~G),

max
e2E(~H)

we

!
·

max
u,v2V (~H)

ERG(u, v)

!
 ⇢.

By definition, any piece in a (⇢, 2, J)-ER decomposition of G = und(~G) (Definition 4.1) is a (w̄, ⇢)-cluster in ~G,
for some w̄. We now state our main algorithm in this section, BasicFastSparsify.

Intuitively, BasicFastSparsify randomly reweights a current subset of edges in each of ⌧ iterations, after
removing any edge whose weight has significantly changed with respect to a reference vector w?. In each loop of
Lines 6 to 16, the algorithm terminates if either a constant fraction of edge weights in E(~H) have decreased by an `

Copyright © 2025

Copyright for this paper is retained by authors

Algorithm 5: BasicFastSparsify(~H, ~G,w?, `, �, ", F, T)

1 Input: ` 2 (0, 1), ~H a subgraph of ~G = (V,E,w) with |E(~H)| � 40|V (~H)|, w? 2 RE with

(7.18)
kwk1
kw?k1

2 [0.99, 1.01], [w?]E\E(~H)
= wE\E(~H)

, and
`

2
[w?]e  we  60[w?]e for all e 2 E(~H),

and ~H?
def

= (V (~H), E(~H), [w?]E(~H)
) is a (w̄, ⇢)-cluster in ~G?

def

= (V,E,w?) and 0.9LG � LG?
� 1.1LG for

G?
def

= und(~G?), �, " 2 (0, 1

100
), F ✓ E(~H) with |F | � |E(~H)|

4
, T a tree subgraph of G

def

= und(~G) with
mine2E(T) we � 1

2 m |E(~G)|, n |V (~G)|
3 ⇠ min(`

10
, 1

1000Csign log(
60m⌧

�
)
, "
200mn2⌧), for Csign from Lemma 7.5

4 ⌘ 1

20Csign

p
log

60m⌧

�

, ⌧ d 720⌘2 e

5 t 0, Lt {e 2 F | [wt]e � 50min([w?]e,
kwF k1

|F |)}, St {e 2 F | [wt]e  `[w?]e}
6 while |St| < 1

4
|F | and

P
e2E(~H)

log([wt]e)� log([w0]e) > �|E(~H)| do
7 w0 w
8 for 0  t  ⌧ do

9 Lt {e 2 F | [wt]e � 50min([w?]e,
kwF k1

|F |)}, St {e 2 F | [wt]e  `[w?]e}
10 if |St| < 1

4
|F | and

P
e2E(~H)

log([wt]e)� log([w0]e) > �|E(~H)| then
11 ~Ht (V (~Ht), F \ (St [Lt), [wt]F\(St[Lt)

)
12 s random vector in {�1, 0, 1}E , where se is an independent ±1 random variable for all

e 2 E(~Ht), and se = 0 for all e 2 E \ E(~Ht)

13 xt ProjMinusRankOne(~Ht,wt, ⌘s,
�

4⌧ log
2
(
4

�
)
, ⇠)

. That is, xt ⇡ [x?]t
def

= ⌘P ~Ht,wt
s.

14 wt+1 wt � (1E + xt)
15 else
16 wt+1 wt

17 d B>
~G
(w �wt)

18 y unique vector in RE with supp(y) ✓ E(T) and B>
~G
y = d

19 wt wt + y
20 return w0 wt

factor compared to w?, or a certain potential function bounding the change in weights has decreased significantly.
Moreover, each reweighting adds a circulation (and hence preserves degrees), while maintaining that kwtk1 is
unchanged, up to an inverse-polynomial approximation error due to our subroutine ProjMinusRankOne. The
algorithm simply iterates this loop until termination. We now analyze Algorithm 5, by bounding the spectral
error and showing that each loop of Lines 6 to 16 is likely to terminate.

Lemma 7.7. There is a universal constant CBFS such that if CBFS · ↵⇢ log(m�)  1, where

↵
def

=
kwF k1
|F |w̄ ,

BasicFastSparsify (Algorithm 5) returns w0 satisfying, with probability � 1� �:

1. B>
~G
w0 = B>

~G
w and

kw0k
1

kwk
1

2 [1� ", 1 + "].

2. w0
e 2 [`

2
[w?]e, 60[w?]e] for all e 2 E(~H).

Copyright © 2025

Copyright for this paper is retained by authors

3. Either |{e 2 E(~H) | w0
e  `[w?]e}| � 1

4
|F |, or

P
e2E(~H)

log
⇣

w0
e

we

⌘
 �|E(~H)|.

4. kL†/2
G B>

~G
(W0 �W)H~GL

†/2
G kop  CBFS ·

p
↵⇢ log(m�) + " , where G

def

= und(~G).

The runtime of BasicFastSparsify is, for Z ⇠ Geom(p) where p 2 [1
2
, 1],5

Ŏ
⇣
|E(~H)| log

⇣ n

�"`

⌘
log
⇣n
�

⌘
· Z + |V |

⌘
.

Proof. Let m̂
def

= |E(~H)|. Because the algorithm continues looping Lines 6 to 16 until the condition in Item 3 is
met, the conclusion that Item 3 holds is immediate. The remainder of the proof proceeds as follows. We first
prove the runtime claim by giving a constant lower bound on the probability a single run of Lines 6 to 16 ever
fails to enter the else branch on Line 15, assuming for simplicity that all calls to ProjMinusRankOne are exact,
i.e., that every time Line 13 is run,

(7.19) xt = [x?]t = ⌘P ~Ht,vt

s.

We next prove that Items 1, 2, and 4 hold with the requisite failure probability. Finally, we modify the argument
to handle approximation error due to inexactness in Line 13.

Runtime bound. Our goal in this part of the proof is to establish that each run of Lines 6 to 16 results in
the else branch on Line 15 being entered with probability � 1

2
. We use this claim to obtain our runtime bound. In

the following discussion, fix a single run of Lines 6 to 16. We let Et denote the event that kxtk1 
1

10
conditioned

on the randomness of all iterations 0  s < t. We also let Ft denote the event that the algorithm enters the if
branch on Line 10 on iteration t, and

(7.20) pt
def

= Pr

2

4
[

0s<t

Fs |
[

0s<t

Es

3

5 , �t
def

= E

2

4
X

e2E(~H)

log

✓
[wt+1]e
[w0]e

◆
|
[

0st

Es

3

5 ,

where both definitions in (7.20) are taken with respect to all randomness used in the current run of Lines 6
to 16. In other words, pt is the probability the algorithm has not entered the else branch on Line 15 in any
iteration 0  s < t, and �t is an expected potential function tracking edge weights over iterations 0  s  t, both
conditioned on

S
0st Es occurring. Also, note that by Lemma 7.5, Pr[Et] � 1� �

4⌧ , so Pr[
S

0t⌧ Et] � 1� �⌧
4⌧ �

3

4
.

Thus, if we can show p⌧ � 2

3
, we have our goal:

(7.21) Pr

2

4
[

0s⌧

Ft

3

5 = Pr

2

4
[

0s⌧

Ft |
[

0s⌧

Et

3

5Pr

2

4
[

0s⌧

Et

3

5 � 2

3
· 3
4
=

1

2
.

Suppose for contradiction that p⌧  2

3
, so that pt  2

3
for all 0  t  ⌧ . First, we compute, following the

convention that [xt]e = 0 if e 62 E(~Ht) or we run the else branch in iteration t,

(7.22)

�t � �t�1 = E

2

4
X

e2E(~Ht)

log (1 + [xt]e) |
[

0st

Es

3

5

 E

2

4
X

e2E(~Ht)

[xt]e �
1

3
[xt]

2

e |
[

0st

Es

3

5

= (1� pt)E

2

4
X

e2E(~Ht)

[xt]e �
1

3
[xt]

2

e | Et [
[

0s<t

(Es [Fs)

3

5 .

5
The polyloglog factors hidden by the Ŏ notation will be polyloglog(nU) factors where U is the edge weight ratio of the original

graph we sparsify in Section 7.4, as discussed in that section.

Copyright © 2025

Copyright for this paper is retained by authors

The second line used the approximation log(1 + x)  x� 1

3
x2 for |x|  1

10
, and the last line used that no weight

changes if we enter the else branch.
We next upper bound the right-hand side of (7.22). Observe that the definition of xt (assuming (7.19))

ensures
P

e2E [xt � wt]e = 0 using Lemma 7.1, so kwtk1 = kw0k1 in every iteration. Since any e 2 Lt due to

[wt]e � 50[w?]e must have [wt]e � 50w̄, and kvtk1  1.01 kw?k1  2.02m̂w̄, there can be at most m̂
24

such edges.

Similarly, at most m̂
50

edges e 2 F can have [wt]e � 50kwk
1

|F | , so |Lt|  1

4
|F | throughout the algorithm. Hence

under
S

0s<t(Es[Fs), which also implies |St|  1

4
|F |, we always have |E(~Ht)| � 1

2
|F |. Moreover, note that since

xt = ⌘P ~Ht,vt

s for Rademacher s,

(7.23) E

2

4
X

e2E(~Ht)

[xt]e

3

5 = 0, E

2

4
X

e2E(~Ht)

[xt]
2

e

3

5 = ⌘2E
���P ~Ht,vt

���
2

2

= ⌘2Tr
⇣
P ~Ht,vt

⌘
.

However, note that the dimension of the subspace spanned by P ~Ht,vt

is at least

|E(~Ht)|� (|V (~H)|� 1)� 1 � m̂

8
� m̂

40
=

m̂

10
,

under the assumption |E(~Ht)| � 1

2
|F | � m̂

8
, since it has |V (~H)| � 1 degree constraints and one orthogonality

constraint to wt. We now handle conditioning on the event Et, which satisfies 1 � Pr[Et]  1

60002
. Combining

(7.23) with the above, and using that each [xt]e is 1-sub-Gaussian (Lemma 7.5) and the set of s satisfying Et is
closed under negation, applying Lemma 7.6 shows

(7.24) E

2

4
X

e2E(~Ht)

[xt]e | Et

3

5 = 0, E

2

4
X

e2E(~Ht)

[xt]
2

e | Et

3

5 � ⌘2
✓
m̂

10
� m̂ ·

✓
300 · 1

6000

◆◆
=

⌘2m̂

20
.

Therefore, combining with (7.22) and the assumption of pt  2

3
shows that �t decreases by at least ⌘2m̂

180
for each

of the first ⌧ iterations. However, we also have that with probability 1,

X

e2E(~H)

log

✓
[w⌧]e
[w0]e

◆
|
[

0s⌧

Es � �2m̂.

This is because the algorithm freezes the weights wt as soon as
P

e2E(~H)
log
⇣

[wt]e

[w0]e

⌘
 �m̂, and the potential

can only change by �m̂ in an iteration t assuming Et, since then log(1 + [xt]e) � �1 entrywise for e 2 F . This
is a contradiction since ⌧ � 360

⌘2 (indeed, we choose ⌧ larger by a constant factor to account for inexactness in

ProjMinusRankOne later), so p⌧ � 2

3
as claimed. The runtime follows from Lemma 7.3, as the number of runs

of Lines 6 to 16 is Z ⇠ Geom(p) for p � 1

2
.

Items 1, 2, and 4. We have shown that with probability � 1� �
4
, Lines 6 to 16 terminate after

k
def

= log2

✓
4

�

◆

loops. Conditional on this event and following our earlier notation, the probability of
S

0t⌧ Et all occurring in

each of the at most k loops is at least 1� �
4
by our choice of ⌘ and Lemma 7.5. Under these events (i.e. that there

are at most k loops and all kxtk1 are small), Item 2 is immediate, since edges e with [wt]e 62 [`[w?]e, 50[w?]e]
are removed from consideration in a current iteration t, and no edge weight changes by more than a 1.1 factor
multiplicatively. Also, assuming (7.19), Item 1 is also immediate (we will analyze the inexactness tolerance later).

We now prove Item 4. For all 0  t  ⌧ , let ~Gt
def

= (V,E,wt) and let Gt
def

= und(~Gt). We assumed that ~H? was
a (w̄, ⇢)-cluster in ~G?, and no entry of wt restricted to E(~Ht) = F \ (St [Lt) is larger than 50↵w̄ by definition
of Lt, so

max
e2E(~Ht)

[wt]e

!
·

max
u,v2V (~H)

ERG(u, v)

!
 75↵⇢ for all 0  t  ⌧.

Copyright © 2025

Copyright for this paper is retained by authors

Here we used that ERG(u, v)  1.5ERG?
(u, v) for all u, v by assumption. By applying Lemma 5.3 for all iterations

0  t0  t to the sequence of matrices eAe in (5.11) for e 2 E(~Ht), we inductively apply Lemma 7.4 to show that
with probability 1� �t

4⌧k , on any of the k runs of Lines 6 to 16,

����L
†
2

GB
>
~G
(Wt �W)H~GL

†
2

G

����
op

 1

20Csign

q
log 60m⌧

�

· 4

s

75↵⇢t log

✓
8m⌧k

�t

◆
 4

Csign

·
p
↵⇢t.

There are a few subtleties in the above calculation. First, observe that Lemma 5.3 implies that if the eAe are
defined with respect to P ~Ht,wt

rather than P ~Ht

(as in Algorithm 5), the variance bound still holds, because
Lemma 5.1 applies to P ~Ht,wt

as well. Second, inductively using the guarantee above with Fact 2.2 shows that
0.9LG � LGt

� 1.1LG for all iterations t, where we used the assumption on ↵⇢ for a large enough choice of
CBFS, so we adjusted the right-hand side by a constant factor. Third, note that the above argument holds with
probability � 1� �

4k for each of the  k runs of Lines 6 to 16, so it holds with probability � 1� �
4
for all of them

by a union bound.
Finally, we need to condition on all Et holding in all loops. We give a simple argument which removes this

conditioning. If any Et fails, we set all future weight updates to zero. Therefore, regardless of whether the Et
occur, the matrix variance (7.17) in our application of Lemma 7.4 is bounded as we claimed. In particular, in an
iteration t, as long as no Es has occured for 0  s < t, Lemma 5.3 holds, and if any have occured, the variance is
trivially bounded by 0.

The overall failure probability of  � comes from union bounding on the three events we have conditioned
on so far (finishing in k loops, all Et holding in all loops, Item 4 holding), and the event that all of the  k⌧
executions of Line 13 succeeed, which occurs with probability � 1� �

4
.

Inexactness of projection. It remains to discuss the e↵ect of replacing our exact projections with our
approximation through ProjMinusRankOne. Because we ensured ⇠  `

10
, the first bound in (7.16) shows that

entrywise xt is not a↵ected by more than `
10

by approximation, so accounting for slack in our earlier argument
Item 2 remains true. Next, using

�1

3
[xt]

2

e  �
1

3.3
[[x?]t]

2

e + 4[xt � [x?]t]
2

e  �
1

3.3
[x?]t]

2

e + 4⇠2,

we have by ⇠  1

1000Csign log(
60m⌧

�
)
that the approximation negligibly a↵ects the argument in (7.24), which we

accommodated in the constant factors in ⌧ , so it is still the case that Lines 6 to 16 terminate with probability
� 1

2
in each loop. Regarding Item 1, note that

B>
~G
wt +B>

~G
y = B>

~G
w

in each iteration after applying the degree fixing in Line 19, so the invariant on degrees holds as claimed. The
bound kwtk2 

p
m kwtk1  120

p
mw̄, combined with the last claim in (7.16) and ⇠  "

200
p
m⌧

, shows the

`1 norm of the weights cannot grow by more than "w̄ throughout. Moreover, the assumption ⇠  "
mn3⌧ with

the second guarantee in (7.16) shows that in each iteration, the total degree imbalance kdk
1
 "

3mn2⌧ , and
the error vector z (in the context of Lemma 6.2) satisfies kzk

1
 m⇠  "

3n2⌧ . Lemma 6.2 then shows that
kyk

1
 m kyk1  m kdk

1
 "

3n⌧ . The last two guarantees in Lemma 6.2 combined with the triangle inequality
show that in each iteration, the additional spectral error due to approximate solves is 2"

3⌧ , and the additional error
due to rounding is "

3⌧ giving the additional spectral error term in Item 4 after accumulating over all iterations.
Finally, the runtime follows directly from Lemma 6.2 (for computing y), and Lemma 7.3.

We provide one additional result which helps in disjoint applications of BasicFastSparsify.

Corollary 7.1. Consider calling BasicFastSparsify I times, with shared parameters ~G,w?, `, �, ", but on
edge-disjoint subgraphs { ~Hi}i2[I] through ~G, so that the corresponding [~H?]i are all (w̄i, ⇢)-clusters in ~G? for some
value of w̄i. Then with probability � 1 � �I, the total operator norm error (i.e., Item 4) incurred by all calls is
bounded by

CBFS ·
r
⇢ log

⇣m
�

⌘
+ "I.

Copyright © 2025

Copyright for this paper is retained by authors

Proof. The claim is that we do not incur an I factor overhead in the operator norm error on the first term in the
spectral error, and also do not incur an I factor overhead on the |V | term in the runtime. Note that the bound
came from combining the variance bound in Lemma 5.3 with the high-probability guarantee in Lemma 7.4. By
treating each of the at most ⌧ reweightings applied by Algorithm 5 in parallel across the edge-disjoint clusters,
the combined variance in the sense of Lemma 5.3, where ~H is set to the union of all clusters, is still bounded.
The failure probability is by a union bound over I calls. For the runtime, note that we can compute the degree
imbalances in Line 17 for all clusters simultaneously, and route them on T in time O(|V |) per iteration.

7.3 Sparsifying an ER decomposition In this section, we state and analyze DecompSparsify, which is a
two-phase application (with di↵erent parameters) of BasicFastSparsify to components of an ER decomposition.

Algorithm 6: DecompSparsify({~Gi}i2[I], ~G, T, �, ",W)

1 Input: {~G(i)}i2[I], subgraphs of simple ~G = (V,E,w) with maxe2supp(w) we W , and such that

{G(i) def

= und(~G(i))}i2[I] are a (⇢, 2, J)-ER decomposition of G
def

= und(~G), T a tree subgraph of G with
mine2E(T) we � 1, �, " 2 (0, 1

100
)

2 m E(~G), n V (~G), R ;
3 for i 2 [I] do
4 ~H ~G(i), m̂ |E(~H)|, n̂ |V (~H)|, w? w
5 if m̂ � 40n̂ then
6 w0 w, ~G0 ~G, ~H0 ~H, `1 1

2 log2(
nW

"
)
, ⌧1 log(2

`1
)

7 for 0  t < ⌧1 do
8 wt+1 BasicFastSparsify(~Ht, ~Gt,w?, `1,

�
4I⌧1

, "
4I⌧1

, E(~H), T)

9 ~Gt+1 (V,E,wt+1), ~Ht+1 (V (~H), E(~H), [wt+1]E(~H)
)

10 F {e 2 E(~H) | [wt]e  `1[w?]e}
11 w0 wt, ~G0 ~Gt, ~H0 ~H, `2 "

4nmW , ⌧2 log(2

`2
)

12 for 0  t < ⌧2 do
13 wt+1 BasicFastSparsify(~Ht, ~Gt,w?, `2,

�
4I⌧2

, "
4I⌧2

, F, T)

14 ~Gt+1 (V,E,wt+1), ~Ht+1 (V (~H), E(~H), [wt+1]E(~H)
)

15 R R [{e 2 E(~H) | [wt]e  "
4nm}, w wt

16 return ~G0 (V,E,wE\R+Rounding(~G,wR, T))

We use the following scalar concentration inequality to bound the runtime with high probability.

Lemma 7.8. Let � 2 (0, 1), and let {Zi}i2[I] ⇢ N be distributed as Zi | {Zj}j<i ⇠ Geom(pi) where pi 2 [1
2
, 1] for

all i 2 [I]. Then for S
def

=
P

i2[I] Zi,

Pr


S > 5

✓
I + log

✓
1

�

◆◆�
 �.

Proof. It su�ces to handle the case where pi =
1

2
for all i 2 [I], since otherwise we can couple Zi to an instance

of Geom(1
2
) which never exceeds Zi. Then we compute the moment generating function of S: for � < log(2),

E exp(�S) = (exp(�)
2�exp(�))

I , so by Markov’s inequality, for t
def

= 5(I + log2(
1

�)),

Pr [S > t] < exp (��t)
✓

exp(�)

2� exp(�)

◆I

=

✓
2

3

◆t

3I < �,

where we use the choice � = log(3
2
) and substituted our choice of t.

We now state our guarantee on Algorithm 6 and provide its analysis.

Copyright © 2025

Copyright for this paper is retained by authors

Lemma 7.9. There is a universal constant CPS such that if CPS · ⇢ log(nW�") log2 log(nW")  1, DecompSparsify

(Algorithm 6) returns ~G0 = (V,E,w0) satisfying, with probability � 1� �,

(7.25)

B>
~G
w0 = B>

~G
w, nnz(w0)  31

32
nnz(w) + CPS · nJ,

and

����L
†
2

GB
>
~G

�
W0 �W

�
H~GL

†
2

G

����
op

 CPS

s

⇢ log

✓
nW

�"

◆
log log

✓
nW

"

◆
+ ".

Moreover, maxe2E
w0

e

we

 CPS. The runtime of DecompSparsify is

Ŏ

✓
|E| log2

✓
nW

�"

◆
log

✓
nW

"

◆◆
.

Proof. Throughout the proof, condition on all calls to BasicFastSparsify succeeding assuming their input
conditions are met (i.e., the guarantees in Lemma 7.7 hold, with total spectral error controlled by Corollary 7.1),
which gives a failure probability of �

2
. We claim that every ~Gt used in calls to BasicFastSparsify satisfies

0.9LGt
� LG � 1.1LGt

, where G
def

= und(~G) for ~G the original input to the algorithm, and Gt
def

= und(~Gt). We
defer the proof of this claim to the end.

Next, fix i 2 [I] and consider the ⌧1 loops of Lines 7 to 9. In all calls to BasicFastSparsify, the conditions
on w? are met by assumption (i.e., each ~G(i) is an ER decomposition piece with parameters (1.2⇢, 2) in ~Gt, since
we claimed 0.9LGt

� LG � 1.1LGt
). Moreover, BasicFastSparsify is only called if m̂ � 40n̂, and the conditions

in (7.18) are preserved inductively by Lemma 7.7, since the `1 norm of the weights does not change by more than
a "

4⌧1
factor in each iteration. This shows that the ⌧1 loops of Lines 7 to 9 all have their input conditions met, so

we may assume they succeed. We claim that in this case, F on Line 10 must have |F | � m̂
4
. To see this, suppose

|F | < m̂
4
, which means the second part of Item 3 in Lemma 7.7 holds for all iterations 0  t < ⌧1. However, since

Lemma 7.7 also guarantees
X

e2E(~H)

log

✓
[w⌧]e
we

◆
> �m̂ log

✓
2

`

◆
= �m̂⌧1,

we arrive at a contradiction after ⌧1 iterations, so the first part of Item 3 must have held at some point. With
this size bound (showing F is a valid input), an analogous argument shows that after the ⌧2 loops in Lines 12
to 14 have finished, at least m̂

16
edges are added to R. Observe that each component ~G(i) with m̂i edges and n̂i

vertices either has 1

16
of its edges added to R or m̂i  40n̂i, and further

P
i2[I] n̂i  nJ . Since all edges from

R are zeroed out in the final weighting w0, and at most half the edges do not belong to any ~G(i), this gives the
bound on nnz(w0). Similarly, if all calls to BasicFastSparsify succeed, since applying Rounding at the end
of the algorithm preserves degrees, recursively applying Item 1 in Lemma 7.7 shows that B>

~G
w0 = B>

~G
w.

It remains to show the spectral error bound. Observe that we have ↵ = 2 in the first ⌧1 calls to
BasicFastSparsify for each cluster (in Lines 9 to 9), and ↵ = 1

log2(
nW

"
)
in the last ⌧2 calls (in Lines 12 to 14).

Therefore, taking note of Corollary 7.1 and since I  m, the spectral error in all intermediate iterations across
all decomposition pieces is bounded by

O

 r
⇢ log

⇣m⌧1
�

⌘
· ⌧1 +

s
⇢

log2
�
nW
"

� log
⇣m⌧2

�

⌘
· ⌧2

!
= O

 s

⇢ log

✓
mW

�"

◆
log log

✓
nW

"

◆!
.

Additionally, there is an "
4⌧1I

·⌧1I+ "
4⌧2I

·⌧2I additive error term which comes from Corollary 7.1, which is bounded

by 2"
3

after accounting for the change in the graph Laplacian (i.e., by Fact 2.3). For appropriate CPS, this both
proves the desired spectral error bound by the triangle inequality, as well as the claimed 0.9LGt

� LG � 1.1LGt

throughout the algorithm by Fact 2.2, which again implies that Gt is connected under our assumption that G
is connected (see discussion in Section 2). Finally, applying Rounding incurs at most "

3
spectral error through

the final graph by Lemma 6.2, which is at most " spectral error through the original graph by Fact 2.3. The
guarantee on the weight increase is clear as we only modify weights within clusters, and Item 2 of Lemma 7.7
shows no edge weight grows by more than a factor of 60. This concludes the correctness proof.

Copyright © 2025

Copyright for this paper is retained by authors

For the runtime, the total number of times we call BasicFastSparsify on each piece of the ER decomposition
is ⌧1+⌧2 = O(log nW

"). Thus, Lemma 7.8 shows that with probability  �
2
, the number of times Lines 6 to 16 runs

is O(log nW
�"), for all decomposition pieces simultaneously. This gives the first term in the runtime via Lemma 7.7,

as all decomposition pieces have disjoint edges. For the second term in the runtime, it su�ces to note that Lines 17
to 19 can be applied in parallel (after summing the degree imbalances d in Line 17) for all decomposition pieces
which terminate in a given run of Lines 6 to 16, so we do not pay a multiplicative overhead of |I| on the runtime
of Lemma 6.2. The total failure probability is via a union bound over Lemmas 7.7 and 7.8.

7.4 Complete sparsification algorithm We now provide our complete near-linear time Eulerian sparsifi-
cation algorithm. Our algorithm iteratively applies the ER decomposition from Proposition 4.1, sparsifies the
decomposition using Algorithm 6, and calls Algorithm 1 on small-weight edges to maintain a bounded weight
ratio. The following theorem gives a refined version of Theorem 1.1.

Algorithm 7: FastSparsify(~G, ", �)

1 Input: Eulerian ~G = (V,E,w) with we 2 [1, U] for all e 2 E, ", � 2 (0, 1)
2 n |V |, m |E|
3 T arbitrary spanning tree of G

def

= und(~G), Ê E \ E(T)
4 R 6 log n, Umax U · CR

PS
for CPS in Lemma 7.9

5 t 0, w0 w

6 while t < R and nnz([wt]Ê) > n log(n) log(32R
2mnUmax

�") log2 log(32RmnUmax

") · 2
22C2

PS

"2 do
7 ~Gt (V,E,wt), Gt und(~Gt)

8 S ERDecomp([Gt]Ê , 2,
�
2R) . See Proposition 4.1.

9 ~G0
t

def

= (V,E,w0
t) DecompSparsify(S, ~Gt, T,

�
2R , "

4R , Umax)

10 D {e 2 Ê | [w0
t]e  "

4mn}
11 wt+1 [w0

t]E\D +Rounding(~G0
t, [w

0
t]D, T)

12 t t+ 1

13 return ~H (V,E,wt)

Theorem 7.1. Given Eulerian ~G = (V,E,w) with |V | = n, |E| = m, w 2 [1, U]E and ", � 2 (0, 1),
FastSparsify (Algorithm 7) returns Eulerian ~H such that with probability � 1 � �, ~H is an "-approximate
Eulerian sparsifier of ~G, and

|E(~H)| = O

✓
n

"2
log(n) log

✓
nU

�

◆
log2 log (nU)

◆
, log

✓
maxe2supp(w0) w

0
e

mine2supp(w0) w0
e

◆
= O (log (nU)) .

The runtime of FastSparsify is Ŏ
�
m log2

�
nU
�

�
log (nU)

�
.

Proof. Throughout, condition on the event that all of the at most R calls to ERDecomp and DecompSparsify
succeed, which happens with probability � 1��. Because DecompSparsify guarantees that no weight grows by
more than a CPS factor in each call, Umax is a valid upper bound for the maximum weight of any edge throughout
the algorithm’s execution. Moreover, we explicitly delete any edge whose weight falls below "

4mn throughout the

algorithm in Line 10, and these edges never appear in a call to ERDecomp again. Hence, Jmax

def

= log2(
32mnUmax

")
is a valid upper bound on the number of decomposition pieces ever returned by ERDecomp, by Proposition 4.1.

Next, note that under the given lower bound on [wt]Ê in a given iteration (which is larger than 2CPS ·nJmax),
the sparsity progress guarantee in (7.25) shows that the number of edges in each iteration is decreasing by at
least a 1

64
factor until termination. Since m  n2 and the algorithm terminates before reaching n edges, R is a

valid upper bound on the number of iterations before the second condition in Line 6 fails to hold, which gives the
sparsity claim. Moreover, because the first term in the spectral error bound in (7.25) decreases by a geometric
factor of 1� 1

256
in each round (as ⇢ scales inversely in the current support size of wt), the sum of all such terms

Copyright © 2025

Copyright for this paper is retained by authors

contributes at most 256 times the final contribution before termination. By plugging in the bound ⇢  33n log(n)
m

from Proposition 4.1 with the lower bound on m throughout the algorithm, the total contribution of these terms
is at most "

4
. Similarly, the second additive term in (7.25) contributes at most "

4
throughout the R rounds, and

the rounding on Line 11 also contributes at most "
4
by Lemma 6.2. Here we remark that once an edge is rounded

on Line 11, it is removed from the support of wt for the rest of the algorithm. Adjusting these error terms by
a 4

3
factor (i.e., because of Fact 2.2 which shows LGt

for Gt
def

= und(~Gt) is stable throughout the algorithm, and
Fact 2.3 which shows how this a↵ects the error terms), we have the claimed spectral error guarantee. The sparsity
bound follows again by explicitly removing any e 2 E where [wt]e = 0 from ~H.

Finally, the runtime follows from combining Proposition 4.1 (which does not dominate), and Lemma 7.9. Here
we note that we do not incur an extra logarithmic factor over Lemma 7.9 because the edge count is a geometrically
decreasing sequence (with constant ratio).

8 Applications

A direct consequence of our improved nearly-linear time Eulerian sparsifier in Theorem 7.1 is a significant
improvement in the runtime of solving Eulerian Laplacian linear systems due to Peng and Song [PS22]. In
turn, combined with reductions in [CKPPSV16], our improved Eulerian system solver implies faster algorithms
for a host of problems in directed graphs. We summarize these applications in this section. As a starting point,
we state the reduction of [PS22] from solving Eulerian Laplacian linear systems to sparsifying Eulerian graphs.

Proposition 8.1. (Theorem 1.1, [PS22]) Suppose there is an algorithm which takes in Eulerian ~G = (V,E,w)
with n = |V |, m = |E|, w 2 [1, U]E, and returns an "0-approximate Eulerian sparsifier with S(n, U, "0) edges with
probability � 1 � �, in time T (m,n,U, "0, �). Then given Eulerian ~G = (V,E,w) with n = |V |, m = |E|,
w 2 [1, U]E, b 2 RV , and error parameter " 2 (0, 1), there is an algorithm running in time

O

✓
m log

✓
nU

"

◆
+ T

✓
m,n,U, 1,

�

log nU

◆◆

+Ŏ

✓
T
✓
S (n, U, 1) , n, U, 1,

�

log nU

◆
log(nU) + S(n, U, 1) log(nU) log

✓
nU

"

◆◆

which returns x 2 RV satisfying, with probability � 1� �,

(8.26)
���x� ~L

†
~Gb
���
LG

 "
���~L

†
~Gb
���
LG

, where G
def

= und(~G).

Plugging Theorem 7.1 into Proposition 8.1, we obtain our faster solver for Eulerian Laplacians. The following
corollary is a refined version of Corollary 1.1.

Corollary 8.1. (Eulerian Laplacian solver) Given Eulerian ~G = (V,E,w) with |V | = n, |E| = m,w 2
[1, U]E, b 2 RV , and error parameter " 2 (0, 1), there is an algorithm running in time

Ŏ

✓
m log2

✓
nU

�

◆
log

✓
nU

"

◆
+ n log2 (nU) log3

✓
nU

�

◆
log

✓
nU

"

◆◆

which returns x 2 RV satisfying, with probability � 1� �,
���x� ~L

†
~Gb
���
LG

 "
���~L

†
~Gb
���
LG

, where G
def

= und(~G).

We remark that there is a more precise runtime improving upon Corollary 8.1 in the logarithmic terms when
�, " are su�ciently small or U is su�ciently large, but we state the simpler variant for the following applications
and for readability purposes. Plugging our primitive in Corollary 8.1 into black-box reductions from [CKPPSV16]
then gives algorithms to solve linear systems in row-or-column diagonally dominant matrices, which we now define.

Definition 8.1. We say M 2 Rn⇥n is row-column diagonally dominant (RCDD) if Mii �
P

j 6=i |Mij | and

Mii �
P

j 6=i |Mji| for all i 2 [n]. We say M 2 Rn⇥n is row-or-column diagonally dominant (ROCDD) if either
Mii �

P
j 6=i |Mij | for all i 2 [n], or Mii �

P
j 6=i |Mji| for all i 2 [n].

Copyright © 2025

Copyright for this paper is retained by authors

Most notably, Eulerian Laplacians are RCDD, and all directed Laplacians are ROCDD. In [CKPPSV16] (see
also [AJSS19] for an alternative exposition), the following reduction was provided.

Proposition 8.2. (Theorem 42, [CKPPSV16]) Let M 2 Rn⇥n be ROCDD, and suppose both M and its
diagonal have multiplicative range at most  on their nonzero singular values. There is an algorithm which, given
M, b 2 Im(M), and error parameter " 2 (0, 1), solves log2(n") Eulerian linear systems to relative accuracy
poly("

n) (in the sense of (8.26)) and returns x 2 Rn satisfying

(8.27) kMx� bk
2
 " kbk

2
.

Moreover, if M is RCDD, a single such Eulerian linear system solve su�ces.

Combining Corollary 8.1, Proposition 8.2, and a union bound then yields the following.

Corollary 8.2. (Directed Laplacian solver) Given ~G = (V,E,w) with |V | = n, |E| = m,w 2 [1, U]E,
b 2 RV , and error parameter " 2 (0, 1), there is an algorithm running in time

Ŏ

✓
m log2

✓
nU

�"

◆
log3

✓
nU

"

◆
+ n log2 (nU) log3

✓
nU

�"

◆
log3

✓
nU

"

◆◆

which returns x 2 RV satisfying, with probability � 1� �,

���x� ~L
†
~Gb
���
LG

 "
���~L

†
~Gb
���
LG

, where G
def

= und(~G).

Finally, we mention a number of results from [CKPPSV16; CKPPRSV17; AJSS19] which leverage RCDD
solvers as a black box. Plugging Corollary 8.1, Proposition 8.2, and Corollary 8.2 into these results, we obtain the
following runtimes. For simplicity, we only consider problems with poly(n)-bounded conditioning and poly(1n)-

bounded failure probability, and let Tsolve(m,n, ")
def

= Ŏ(m log2(n) log(n")+n log5(n) log(n")) be the runtime of our
Eulerian Laplacian solver.

• Stationary distributions. We can compute a vector within `2 distance " of the stationary distribution of
a random walk on a directed graph in time Tsolve(m,n, 1) ·O(log2(n")).

• Random walks. We can compute the escape probability, hitting times and commute times for a random
walk on a directed graph to " additive error in time Tsolve(m,n, 1) ·O(log2(n")).

• Mixing time. We can compute an "-multiplicative approximation of the mixing time of a random walk on
a directed graph in time Tsolve(m,n, 1) ·O(log2(n")).

• PageRank. We can compute a vector within `2 distance " of the Personalized PageRank vector with restart
probability � on a directed graph in time Tsolve(m,n, 1) ·O(log2(n�) + log(1")).

• M-matrix linear systems. We can compute a vector achieving relative accuracy " (in the sense of (8.27))
to a linear system in an M-matrix M in time

Tsolve(m,n, ") ·O
✓
log2(n) log

✓
kM�1k1!1 + kM�1k1!1

"

◆◆
.

• Perron-Frobenius theory. Given a nonnegative matrix A 2 Rn⇥n with m nonzero entries, we can find
s 2 R and vl,vr 2 Rn such that s

⇢(A)
2 [1, 1+"],6 kAvr � svrk1  " kvrk1, and kA>vl�svlk1  " kvlk1,

in time

Tsolve(m,n, ") ·O
✓
log3

✓
kAk

1!1
+ kAk1!1

"⇢(A)

◆◆
.

6⇢(A) is the spectral radius of A: ⇢(A)
def

= limk!1kAkk1/kop .

Copyright © 2025

Copyright for this paper is retained by authors

Acknowledgments

We thank the anonymous reviewers for their feedback. We thank Richard Peng [Pen23] for clarifying the
dependence in Proposition 8.1 on � and U . We thank the authors of [CKPPRSV17] for helpful discussions.
Sushant Sachdeva’s research is supported by an Natural Sciences and Engineering Research Council of Canada
(NSERC) Discovery Grant RGPIN-2018-06398, an Ontario Early Researcher Award (ERA) ER21-16-283, and a
Sloan Research Fellowship. Aaron Sidford was supported in part by a Microsoft Research Faculty Fellowship,
NSF CAREER Grant CCF-1844855, NSF Grant CCF-1955039, and a PayPal research award. Part of this work
was conducted while authors were visiting the Simons Institute for the Theory of Computing Fall 2023 Program
Data Structures and Optimization for Fast Algorithms. The authors are grateful to the Simons Institute for its
support.

References

[AALG18] Vedat Levi Alev, Nima Anari, Lap Chi Lau, and Shayan Oveis Gharan. “Graph Clustering using
E↵ective Resistance”. In: 9th Innovations in Theoretical Computer Science Conference, ITCS
2018. Vol. 94. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, 41:1–41:16 (cit.
on pp. 11, 23, 42, 43).

[ACIM99] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. “Fast Estimation of Diameter and
Shortest Paths (Without Matrix Multiplication)”. In: SIAM Journal on Computing 28.4 (1999),
pp. 1167–1181 (cit. on p. 3).

[ADDJS93] Ingo Althöfer, Gautam Das, David Dobkin, Deborah Joseph, and José Soares. “On sparse
spanners of weighted graphs”. In: Discrete Comput. Geom. 9.1 (Dec. 1993), pp. 81–100 (cit. on
p. 3).

[ADK23] Daniel Agassy, Dani Dorfman, and Haim Kaplan. “Expander Decomposition with Fewer Inter-
Cluster Edges Using a Spectral Cut Player”. In: 50th International Colloquium on Automata,
Languages, and Programming, ICALP 2023, July 10-14, 2023, Paderborn, Germany. Vol. 261.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, 9:1–9:20 (cit. on p. 4).

[AJSS19] AmirMahdi Ahmadinejad, Arun Jambulapati, Amin Saberi, and Aaron Sidford. “Perron-
Frobenius Theory in Nearly Linear Time: Positive Eigenvectors, M-matrices, Graph Kernels, and
Other Applications”. In: Proceedings of the 2019 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). 2019, pp. 1387–1404 (cit. on pp. 3–5, 7, 35).

[AKMPSV20] AmirMahdi Ahmadinejad, Jonathan A. Kelner, Jack Murtagh, John Peebles, Aaron Sidford,
and Salil P. Vadhan. “High-precision Estimation of Random Walks in Small Space”. In: 61st
IEEE Annual Symposium on Foundations of Computer Science, FOCS. IEEE, 2020, pp. 1295–
1306 (cit. on p. 3).

[AN19] Ittai Abraham and Ofer Neiman. “Using Petal-Decompositions to Build a Low Stretch Spanning
Tree”. In: SIAM J. Comput. 48.2 (2019), pp. 227–248 (cit. on p. 13).

[APPSV23] AmirMahdi Ahmadinejad, John Peebles, Edward Pyne, Aaron Sidford, and Salil P. Vadhan.
“Singular Value Approximation and Sparsifying Random Walks on Directed Graphs”. In: 64th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023. IEEE, 2023,
pp. 846–854 (cit. on pp. 4–6, 8).

[BBvH23] Afonso S Bandeira, March T Boedihardjo, and Ramon van Handel. “Matrix concentration
inequalities and free probability”. In: Inventiones mathematicae (2023), pp. 1–69 (cit. on pp. 43,
44).

[BJM23] Nikhil Bansal, Haotian Jiang, and Raghu Meka. “Resolving Matrix Spencer Conjecture Up to
Poly-logarithmic Rank”. In: Proceedings of the 55th Annual ACM Symposium on Theory of
Computing, STOC 2023. ACM, 2023, pp. 1814–1819 (cit. on pp. 5, 7, 12, 18, 21, 42–44).

[BK96] András A. Benczúr and David R. Karger. “Approximating S-t Minimum Cuts in Õ(N2) Time”.
In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing. STOC
’96. Association for Computing Machinery, 1996, pp. 47–55 (cit. on p. 3).

Copyright © 2025

Copyright for this paper is retained by authors

[BS03] Surender Baswana and Sandeep Sen. “A Simple Linear Time Algorithm for Computing a (2k-1)-

Spanner of O(n1+1/k) Size in Weighted Graphs”. In: Automata, Languages and Programming,
30th International Colloquium, ICALP 2003. Vol. 2719. Lecture Notes in Computer Science.
Springer, 2003, pp. 384–296 (cit. on p. 3).

[BSS12] Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. “Twice-Ramanujan Sparsifiers”.
In: SIAM J. Comput. 41.6 (2012), pp. 1704–1721 (cit. on pp. 3, 5, 7).

[CGPSSW18] Timothy Chu, Yu Gao, Richard Peng, Sushant Sachdeva, Saurabh Sawlani, and Junxing Wang.
“Graph Sparsification, Spectral Sketches, and Faster Resistance Computation, via Short Cycle
Decompositions”. In: 2018 IEEE 59th Annual Symposium on Foundations of Computer Science
(FOCS). 2018, pp. 361–372 (cit. on pp. 3–7, 10).

[CKKPPRS18] Michael B Cohen, Jonathan Kelner, Rasmus Kyng, John Peebles, Richard Peng, Anup B Rao,
and Aaron Sidford. “Solving directed Laplacian systems in nearly-linear time through sparse LU
factorizations”. In: 2018 IEEE 59th Annual Symposium on Foundations of Computer Science
(FOCS). IEEE. 2018, pp. 898–909 (cit. on p. 7).

[CKMPPRX14] Michael B Cohen, Rasmus Kyng, Gary L Miller, Jakub W Pachocki, Richard Peng, Anup B Rao,
and Shen Chen Xu. “Solving SDD linear systems in nearly m log1/2 n time”. In: Proceedings
of the forty-sixth annual ACM symposium on Theory of computing. 2014, pp. 343–352 (cit. on
p. 6).

[CKPPRSV17] Michael B Cohen, Jonathan Kelner, John Peebles, Richard Peng, Anup B Rao, Aaron
Sidford, and Adrian Vladu. “Almost-linear-time algorithms for markov chains and new spectral
primitives for directed graphs”. In: Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing. 2017, pp. 410–419 (cit. on pp. 3–7, 35, 36).

[CKPPSV16] Michael B Cohen, Jonathan Kelner, John Peebles, Richard Peng, Aaron Sidford, and Adrian
Vladu. “Faster algorithms for computing the stationary distribution, simulating random walks,
and more”. In: 2016 IEEE 57th Annual Symposium on Foundations of Computer Science
(FOCS). IEEE. 2016, pp. 583–592 (cit. on pp. 3–5, 7, 34, 35).

[CKST19] Charles Carlson, Alexandra Kolla, Nikhil Srivastava, and Luca Trevisan. “Optimal Lower
Bounds for Sketching Graph Cuts”. In: Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2019. SIAM, 2019, pp. 2565–2569 (cit. on pp. 3–5).

[DMSY23] Ran Duan, Jiayi Mao, Xinkai Shu, and Longhui Yin. “A Randomized Algorithm for Single-
Source Shortest Path on Undirected Real-Weighted Graphs”. In: 64th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2023. IEEE Computer Society, 2023 (cit. on p. 13).

[FGLPSY22] Sebastian Forster, Gramoz Goranci, Yang P Liu, Richard Peng, Xiaorui Sun, and Mingquan
Ye. “Minor sparsifiers and the distributed laplacian paradigm”. In: 2021 IEEE 62nd Annual
Symposium on Foundations of Computer Science (FOCS). IEEE. 2022, pp. 989–999 (cit. on
p. 6).

[FS16] Arnold Filtser and Shay Solomon. “The Greedy Spanner is Existentially Optimal”. In:
Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing. PODC ’16.
Chicago, Illinois, USA: Association for Computing Machinery, 2016, pp. 9–17 (cit. on p. 3).

[Gia97] Apostolos A. Giannopoulos. “On some vector balancing problems”. In: Studia Mathematica
122.3 (1997), pp. 225–234 (cit. on p. 42).

[GLS88] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and combina-
torial optimization. Springer, 1988 (cit. on p. 21).

[GVY96] Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. “Approximate Max-Flow Min-
(Multi)Cut Theorems and Their Applications”. In: SIAM J. Comput. 25.2 (1996), pp. 235–
251 (cit. on pp. 12–14).

[HRS22] Samuel B. Hopkins, Prasad Raghavendra, and Abhishek Shetty. “Matrix discrepancy from
Quantum communication”. In: STOC ’22: 54th Annual ACM SIGACT Symposium on Theory
of Computing. ACM, 2022, pp. 637–648 (cit. on p. 42).

Copyright © 2025

Copyright for this paper is retained by authors

[JRT24] Arun Jambulapati, Victor Reis, and Kevin Tian. “Linear-Sized Sparsifiers via Near-Linear Time
Discrepancy Theory”. In: Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). 2024, pp. 5169–5208 (cit. on pp. 3, 7, 10).

[JS21] Arun Jambulapati and Aaron Sidford. “Ultrasparse Ultrasparsifiers and Faster Laplacian
System Solvers”. In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2021. SIAM, 2021, pp. 540–559 (cit. on pp. 3, 6, 13, 14).

[Kar00] David R. Karger. “Minimum cuts in near-linear time”. In: J. ACM 47.1 (Jan. 2000), pp. 46–76
(cit. on p. 3).

[KLPSS16] Rasmus Kyng, Yin Tat Lee, Richard Peng, Sushant Sachdeva, and Daniel A Spielman.
“Sparsified cholesky and multigrid solvers for connection laplacians”. In: Proceedings of the
forty-eighth annual ACM symposium on Theory of Computing. 2016, pp. 842–850 (cit. on p. 6).

[KLS20] Rasmus Kyng, Kyle Luh, and Zhao Song. “Four deviations su�ce for rank 1 matrices”. In:
Advances in Mathematics 375.2 (2020), pp. 557–567 (cit. on p. 42).

[KMP11] Ioannis Koutis, Gary L Miller, and Richard Peng. “A nearly-m log n time solver for sdd linear
systems”. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science. IEEE.
2011, pp. 590–598 (cit. on p. 6).

[KMP14] Ioannis Koutis, Gary L Miller, and Richard Peng. “Approaching optimality for solving SDD
linear systems”. In: SIAM Journal on Computing 43.1 (2014), pp. 337–354 (cit. on p. 6).

[KOSZ13] Jonathan A. Kelner, Lorenzo Orecchia, Aaron Sidford, and Zeyuan Allen Zhu. “A simple,
combinatorial algorithm for solving SDD systems in nearly-linear time”. In: Symposium on
Theory of Computing Conference, STOC’13. ACM, 2013, pp. 911–920 (cit. on p. 19).

[KS16] Rasmus Kyng and Sushant Sachdeva. “Approximate gaussian elimination for laplacians-fast,
sparse, and simple”. In: 2016 IEEE 57th Annual Symposium on Foundations of Computer
Science (FOCS). IEEE. 2016, pp. 573–582 (cit. on p. 6).

[LS17] Yin Tat Lee and He Sun. “An sdp-based algorithm for linear-sized spectral sparsification”. In:
Proceedings of the 49th annual acm sigact symposium on theory of computing. 2017, pp. 678–687
(cit. on pp. 3, 7).

[LS18] Yin Tat Lee and He Sun. “Constructing linear-sized spectral sparsification in almost-linear
time”. In: SIAM Journal on Computing 47.6 (2018), pp. 2315–2336 (cit. on p. 7).

[LSY19] Yang P Liu, Sushant Sachdeva, and Zejun Yu. “Short cycles via low-diameter decompositions”.
In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM.
2019, pp. 2602–2615 (cit. on pp. 4, 5, 7).

[LWZ24] Lap Chi Lau, Robert Wang, and Hong Zhou. Spectral Sparsification by Deterministic Discrep-
ancy Walk. 2024. arXiv: 2408.06146 [cs.DS] (cit. on pp. 7, 8).

[Moh91] Bojan Mohar. “Eigenvalues, diameter, and mean distance in graphs”. In: Graphs and combina-
torics 7.1 (1991), pp. 53–64 (cit. on p. 41).

[MPX13] Gary L. Miller, Richard Peng, and Shen Chen Xu. “Parallel graph decompositions using random
shifts”. In: 25th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’13.
ACM, 2013, pp. 196–203 (cit. on p. 13).

[Pen23] Richard Peng. Personal communication. 2023 (cit. on p. 36).

[PS14] Richard Peng and Daniel A Spielman. “An e�cient parallel solver for SDD linear systems”. In:
Proceedings of the forty-sixth annual ACM symposium on Theory of computing. 2014, pp. 333–
342 (cit. on p. 6).

[PS22] Richard Peng and Zhuoqing Song. “Sparsified block elimination for directed laplacians”. In:
STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing. ACM, 2022,
pp. 557–567 (cit. on pp. 4, 5, 7, 34).

Copyright © 2025

Copyright for this paper is retained by authors

https://arxiv.org/abs/2408.06146

[PS89] David Peleg and Alejandro A. Schä↵er. “Graph spanners”. In: Journal of Graph Theory 13.1
(1989), pp. 99–116. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/jgt.
3190130114 (cit. on p. 3).

[PV23] Lucas Pesenti and Adrian Vladu. “Discrepancy Minimization via Regularization”. In: Pro-
ceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 2023,
pp. 1734–1758 (cit. on p. 7).

[PY19] Merav Parter and Eylon Yogev. “Optimal short cycle decomposition in almost linear time”.
In: 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2019 (cit. on pp. 4, 5, 7).

[RH17] Philippe Rigollet and Jan-Christian Hütter. High-Dimensional Statistics. 2017 (cit. on p. 26).

[Rot17] Thomas Rothvoss. “Constructive Discrepancy Minimization for Convex Sets”. In: SIAM J.
Comput. 46.1 (2017), pp. 224–234 (cit. on pp. 6, 7, 12, 18, 42).

[RR20] Victor Reis and Thomas Rothvoss. “Linear Size Sparsifier and the Geometry of the Operator
Norm Ball”. In: Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA
2020. SIAM, 2020, pp. 2337–2348 (cit. on pp. 7, 10).

[RR23] Victor Reis and Thomas Rothvoss. “Vector balancing in Lebesgue spaces”. In: Random
Structures & Algorithms 62.3 (2023), pp. 667–688 (cit. on pp. 12, 18, 42).

[SS11] Daniel Spielman and Nikhil Srivastava. “Graph Sparsification by E↵ective Resistances”. In:
SIAM Journal on Computing 40.6 (2011), pp. 1913–1926 (cit. on pp. 3, 7, 13, 14).

[ST04] Daniel A. Spielman and Shang-Hua Teng. “Nearly-Linear Time Algorithms for Graph Parti-
tioning, Graph Sparsification, and Solving Linear Systems”. In: Proceedings of the Thirty-Sixth
Annual ACM Symposium on Theory of Computing. STOC ’04. Association for Computing Ma-
chinery, 2004, pp. 81–90 (cit. on pp. 3, 4, 6, 7).

[STZ24] Sushant Sachdeva, Anvith Thudi, and Yibin Zhao. “Better Sparsifiers for Directed Eule-
rian Graphs”. In: 51st International Colloquium on Automata, Languages, and Programming
(ICALP 2024). Ed. by Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson.
Vol. 297. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2024, 119:1–119:20 (cit. on pp. 4, 5, 7).

[SW19] Thatchaphol Saranurak and Di Wang. “Expander Decomposition and Pruning: Faster, Stronger,
and Simpler”. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2019. Ed. by Timothy M. Chan. SIAM, 2019, pp. 2616–2635 (cit. on p. 4).

[SZ23] Sushant Sachdeva and Yibin Zhao. “A Simple and E�cient Parallel Laplacian Solver”. In:
Proceedings of the 35th ACM Symposium on Parallelism in Algorithms and Architectures. SPAA
’23. 2023, pp. 315–325 (cit. on p. 6).

[Tho99] Mikkel Thorup. “Undirected Single-Source Shortest Paths with Positive Integer Weights in
Linear Time”. In: J. ACM 46.3 (1999), pp. 362–394 (cit. on p. 13).

[Tro11] Joel A. Tropp. User-friendly tail bounds for sums of random matrices. 2011 (cit. on p. 26).

[Tro18] Joel A. Tropp. “Second-order matrix concentration inequalities”. In: Applied and Computational
Harmonic Analysis 44.3 (2018), pp. 700–736 (cit. on pp. 18, 43, 44).

[TZ05] Mikkel Thorup and Uri Zwick. “Approximate distance oracles”. In: J. ACM 52.1 (2005), pp. 1–
24 (cit. on p. 3).

[Ver18] Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data
Science. Cambridge University Press, 2018 (cit. on p. 26).

A Deferred proofs from Section 2

Fact 2.1. Let B = H�T be the edge-vertex incidence matrix of a graph, let x be a circulation in the graph (i.e.

B>x = 0), and let X
def

= diag (x). Then H>XH = T>XT and B>XH = �T>XB.

Copyright © 2025

Copyright for this paper is retained by authors

https://onlinelibrary.wiley.com/doi/pdf/10.1002/jgt.3190130114
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jgt.3190130114

Proof. We observe that H>XH = diag
⇣
H>x

⌘
and T>XT = diag

⇣
T>x

⌘
. The first claim then follows from

H>x = T>x as x is a circulation. The second claim then follows from

B>XH = H>XH�T>XH = T>XT�T>XH = �T>XB.

Fact 2.2. Suppose ~G = (V,E,w ~G),
~H = (V, F,w ~H) share the same vertex set and G

def

= und(~G), H
def

= und(~H).

If B>
~G
w ~G = B>

~H
w ~H , then kL

†
2

G(LG � LH)L
†
2

Gkop  2kL
†
2

G(
~L~G � ~L ~H)L

†
2

Gkop.

Proof. Throughout the proof, let

B
def

=

✓
B~G
B ~H

◆
2 {0, 1}(E[F)⇥V , w

def

=

✓
w ~G
�w ~H

◆
2 RE[F ,

and define H,T 2 {0, 1}(E[F)⇥V to be appropriate concatenations such that B = H � T. Observe that
B>w = B>

~G
w ~G �B>

~H
w ~H = 0V . By Fact 2.1, we have

~L~G � ~L ~H = B>WH, ~L
rev(~G)

� ~L
rev(~H)

= �B>WT = H>WB = ~L
>
~G � ~L

>
~H .

It then su�ces to apply the triangle inequality, that transposition preserves the operator norm, and the
characterization LG = ~L~G + ~L

rev(~G)
(with a similar equality for ~H and H).

Fact 2.3. Suppose G,H are connected graphs on the same vertex set V , and kL†/2
G (LG � LH)L†/2

G kop  ". Then

for any M 2 RV⇥V , we have kL†/2
G ML†/2

G kop  (1 + ")kL†/2
H ML†/2

H kop.

Proof. Since LG and LH share a kernel, the given condition implies (1 � ")LG � LH � (1 + ")LG. Hence,
kvkLG

 1 implies kvkLH

p
1 + ", and so the conclusion follows from

����L
†
2

GML
†
2

G

����
op

= sup
u,v?1V

kukLG
,kvkLG

1

u>Mv  (1 + ") sup
u,v?1V

kukLH
,kvkLH

1

u>Mv = (1 + ")

����L
†
2

HML
†
2

H

����
op

.

B Rounding

In this section, we prove Lemma 6.2, our guarantee on Rounding.

Lemma 6.2. Given ~G = (V,E,w), a tree subgraph T of G
def

= und(~G) with mine2E(T) we � 1, Rounding
(Algorithm 1) returns in O(n) time y 2 RE with supp(y) ✓ T satisfying:

1. B>
~G
y = d.

2. kyk1 
1

2
kdk

1
.

3. For any z 2 RE satisfying B>
~G
z = d, we have kL†/2

G B>
~G
(Y � Z)H~GL

†/2
G kop  n kzk

1
.

4. kL†/2
G B>

~G
YH~GL

†/2
G kop  n kyk

1
.

Proof. Throughout the proof we drop the subscripts ~G, G from B, H, L for simplicity. The algorithm sets y to be
the unique flow on the edges of tree T that satisfies B>y = d. Such a vector y can be constructed in O(n) time by
recursively computing the flow required at each leaf, and then removing the leaf. By construction, supp(y) ✓ T .
Since d ? 1V , we also have kyk1 

1

2
kdk

1
.

Next, recall B>z = d, so kdk
1
= kB>zk1  2 kzk

1
, and y � z is a circulation on G. We now show that

spectral error induced by this circulation y� z is not significant in the directed Laplacians. For every edge e /2 T,

Copyright © 2025

Copyright for this paper is retained by authors

we let c(T,e) 2 {0, 1}E denote the (signed) incidence vector of the unique cycle in T [e. We observe that z � y
can be expressed uniquely as

P
e/2T zec(T,e), so

���L
†
2B>(Y � Z)HL

†
2

���
op


X

e/2T

|ze|
���L

†
2B>C(T,e)HL

†
2

���
op

.

It su�ces to show that each operator norm in the right-hand side is bounded by n. Note that

(B.1)

���L
†
2B>C(T,e)HL

†
2

���
op

=

r���(L
†
2B>C(T,e)HL

†
2)(L

†
2B>C(T,e)HL

†
2)>
���
op

=

r���L
†
2 (B>C(T,e)H)L†(B>C(T,e)H)>L

†
2

���
op

.

We will bound the norm of the last matrix in the above expression. Observe that B>C(T,e)H is just the directed
Laplacian of the cycle with unit weights. Denote it M for brevity. We further observe that M>M is twice the
undirected Laplacian of the cycle with unit weights. Since the cycle with unit weights is a downweighted subgraph
of (the undirected graph) G, we have M>M � 2L. Thus,

ML†M> � 2M(M>M)†M> � 2IV .

This implies

L
†
2 (B>C(T,e)H)L†(B>C(T,e)H)>L

†
2 � 2L† � 2L†

T .

Since T has edge weights � 1 and diameter  n, kL†
T kop  n2

4
[Moh91]. By using this bound in (B.1) and taking

square roots, we obtain the third result.
To see the last result, we bound using the triangle inequality:

���L
†
2B>YHL

†
2

���
op


X

e2T

|y|e
���L

†
2bee

>
h(e)L

†
2

���
op

.

Note that bee>h(e)eh(e)b
>
e = beb

>
e � L. Therefore, using kL†

T kop  n2

4
 n2, we have the claim:

���L
†
2bee

>
h(e)L

†
2

���
op

=

r���L
†
2bee>h(e)L

†eh(e)b
>
e L

†
2

���
op


r���L

†
2bee>h(e)L

†
T eh(e)b

>
e L

†
2

���
op

 n

r���L
†
2bee>h(e)eh(e)b

>
e L

†
2

���
op

 n.

C Potential improvements to Theorem 1.2

In this section, we discuss two natural avenues to improve the sparsity of our sparsifier construction in Theorem 1.2:
improving the matrix discrepancy result in Proposition 6.1, and obtaining a graph decomposition with stronger
guarantees than Proposition 4.1.

Partial coloring matrix Spencer. Consider the following conjecture.

Conjecture C.1. (Partial coloring matrix Spencer) There is a constant � 2 (0, 1) such that for
{Ai}i2[m] ⇢ Sn with k

P
i2[m]

A2

i kop  1, there exists x 2 [�1, 1]m such that

|{i 2 [m] | |xi| = 1}| � �m, and

������

X

i2[m]

xiAi

������
op

 1

�
.

Copyright © 2025

Copyright for this paper is retained by authors

By observation, applying the posited coloring in Conjecture C.1 in place of Proposition 6.1 and Corollary 6.1
when designing our ExistentialDecompSparsify (see the proof of Lemma 6.3)would remove the last low-
order term in Theorem 1.2, giving a sparsity bound of O(n logU + n log(n) · "�2), which is O(n log(n) · "�2) for
U = poly(n). Conjecture C.1 has already been stated implicitly or explicitly in the literature in several forms
(see e.g., Conjecture 3 in [RR23] with p =1). Notably, it is stronger than the matrix Spencer conjecture, which
asserts (in the most prominent special case) that for a set of matrices {Ai}i2[n] 2 Sn with kAikop  1 for all
i 2 [n], there exists x 2 {±1}n such that k

P
i2[n] xiAikop = O(

p
n). In the context of Conjecture C.1, considering

the matrices 1p
n
Ai, the assumption is satisfied since 1

n

P
i A

2

i � I, and hence Conjecture C.1 implies a partial

coloring with spectral discrepancy O(1) (i.e., x 2 [�1, 1]n with a constant fraction of coordinate magnitudes equal
to 1). Standard boosting techniques (see, e.g., [Gia97] or Section 4 of [Rot17]) show that we can recurse upon
this partial coloring scheme to obtain a full coloring in {±1}n, since the matrix variance decreases by a constant
factor in each iteration.

We also note that Conjecture C.1 has already been established in prominent settings, when the matrices
{Ai}i2[m] ⇢ Sn are all low-rank. For example, Theorem 1.4 of [KLS20] proves Conjecture C.1 for rank-1 matrices
(with a precise constant � = 1

4
), and if all {Ai}i2[m] have images supported in the same O(

p
n)-dimensional

subspace, Theorem 3.5 of [HRS22] also proves the claim. For completeness, using tools recently developed in
[BJM23], we provide a proof of Conjecture C.1 in one of the strongest settings we are aware of known in the
literature.

Proposition C.1. (Lemma 3.1, [BJM23]) There is a constant � 2 (0, 1) such that for {Ai}i2[m] ⇢ Sn with

k
P

i2[m]
A2

i kop  �2 and with
P

i2[m]
kAik2F  mf2, there exists x 2 [�1, 1]m such that

|{i 2 [m] | |xi| = 1}| � �m, and

������

X

i2[m]

xiAi

������
op

 1

�

⇣
� +

p
�f log

3

4 (n)
⌘
.

Corollary C.1. If the images of all Ai are supported in the same r-dimensional subspace and m � r · log3 n,
Conjecture C.1 is true.

Proof. By linearity of trace, we can choose f such that

f2 =
1

m

X

i2[m]

Tr
�
A2

i

�
=

1

m
Tr

0

@
X

i2[m]

A2

i

1

A  r

m

������

X

i2[m]

A2

i

������
op

 r

m
,

where we use that the rank of
P

i2[m]
A2

i is at most r. The resulting discrepancy bound is

O

✓
1 + 4

r
r

m
· log

3

4 (n)

◆

which proves the claim for su�ciently small �, under the assumed parameter bounds.

For example, while Corollary C.1 does not establish Conjecture C.1 in full generality, it does establish it when
m is larger than n by a polylogarithmic factor, as we may take r = n.

Stronger e↵ective resistance decomposition. We further observe that another avenue to improving
Theorem 1.2 is via strengthening Proposition 4.1, the graph decomposition result it is based on. We present
one source of optimism that the parameters in Proposition 4.1, which gives an (O(n logn

m), O(1), O(logU))-ER
decomposition, can be directly improved, though this remains an open question suggested by our work. In
particular, we use the following claim in [AALG18].

Proposition C.2. (Theorem 3, [AALG18]) Given G = (V,E,w) with n = |V | and su�ciently large C > 1,
there is a constant ↵ 2 (0, 1) and a polynomial-time algorithm which finds a partition V = {Vj}j2[J] such that if

{Gj
def

= G[Vj]}j2[J] are the corresponding induced subgraphs, we have

(C.2)
X

e2E\
S

j2[J]
E(Gj)

we 
P

e2E we

C↵
,

Copyright © 2025

Copyright for this paper is retained by authors

and

(C.3) max
u,v2Vj

ERG(u, v) 
n

C3↵
P

e2E we
for all j 2 [J].

Proposition C.2 immediately implies an improvement of Proposition 4.1 when w is well-behaved.

Corollary C.2. If G = (V,E,w) has w 2 [1, U]E for U = ⇥(1), there exists a (n
�m ,1, 1)-ER decomposition of

G, for a constant � 2 (0, 1).

Proof. Let m
def

= |E|. Apply Proposition C.2 to G with parameter C 2U
↵ = ⇥(1). The guarantee (C.2) implies

that the total cut weight is at most m
2
, so less than half the edges are cut as mine2E we � 1. Further, (C.3) shows

that the ⇢ parameter in Definition 4.1 is bounded by U · n
C3↵m = ⇥

�
n
m

�
, as desired. Each vertex appears in at

most one decomposition piece by definition.

The main di↵erence between the statement of Proposition C.2 and that needed to generalize Corollary C.2
beyond the bounded weight ratio case is that Proposition C.2 measures the cut edges by the amount of total
weight cut, rather than the number of edges cut. Indeed, for a general n-vertex, m-edge graph G = (V,E,w)

with w 2 [1, U]E but where U may be superconstant, let W
def

=
P

e2E we, and let G0 = (V,E0,wE0) where E0 ✓ E
removes any edge in E with weight larger than 4W

m (so |E0| � 3m
4
). Applying Proposition C.2 with any constant

C on G0 yields ✓
max

e2E(Gj)

we

◆✓
max
u,v2Vj

ERG(u, v)

◆
= O

✓
W

m

◆
·O
⇣ n

W

⌘
= O

⇣ n

m

⌘
,

as desired. Unfortunately, the claim (C.2) does not imply few edges are cut in this case, though for su�ciently
large C, it does imply only a small fraction of total weight is cut.

We conclude this section by mentioning one barrier to improving the guarantees of [AALG18], towards
obtaining a variant of Corollary C.2 which holds for superconstant weight ratios U . In particular, no single
decomposition of G’s vertices can simultaneously guarantee a bounded e↵ective resistance diameter while cutting
a small number of edges, as the following example demonstrates.

Let H be a path graph with all edge weights 1, and let G equal H plus a clique with edge weights n�4.
Since LH � LG � 2LH , we have 1

2
ERH(u, v)  ERG(u, v)  ERH(u, v) for any vertices u, v. We claim that any

vertex-disjoint partition of G which cuts at most m
2

edges must have one component with resistance diameter

⌦(n). Indeed, any partition P1, P2, . . . Pk with |Pi| = ni does not cut exactly
Pk

i=1

ni(ni�1)

2
edges: as this must

be more than m
2
, we have

m

2

X

i2[k]

ni(ni � 1)

2
 1

2

✓
max
i2[k]

ni � 1

◆X

i2[k]

ni =
n

2

✓
max
i2[k]

ni � 1

◆
.

Since m = n(n�1)

2
, the largest partition piece has � n

2
vertices, and since any path of length k has resistance

diameter k, this piece has diameter ⌦(n). Thus any potential application of the techniques of [AALG18] towards
improving Proposition 4.1 must partition its input by both vertices and edges; extending [AALG18]’s approach
to subsets of edges is an intriguing open question.

Finally, we mention that the definition of a graph decomposition highlighted in this work, the ER
decomposition of Definition 4.1, may not be the only useful notion of decomposition for constructing Eulerian
sparsifiers. A potentially fruitful open direction is to explore other related decomposition notions, for which there
may be better bounds bypassing di�culties with ER decompositions.

D Proof of Proposition 6.1

In this section, we show how to modify the proof of Lemma 3.1 in [BJM23] to yield the tighter concentration
bound claimed in Proposition 6.1. In particular, we show how to obtain the second argument in the minimum,
since the first was already shown by [BJM23]. To do so, we recall the following known concentration bounds from
[Tro18; BBvH23].

Copyright © 2025

Copyright for this paper is retained by authors

Proposition D.1. (Corollary 3.6, [Tro18]) Let n � 8 and {Ai}i2[m] 2 Sn satisfy k
P

i2[m]
A2

i kop  �2 and
maxU,V,W2Unk

P
i,j2[m]

AiUAjVAiWAjkop  w. Then, for g ⇠ N (0m, Im), there is a universal constant Ctro

such that

E

������

X

i2[m]

giAi

������
op

 Ctro ·
⇣
� log

1

4 n+ w log
1

2 n
⌘

Lemma D.1. (Proposition 4.6, [BBvH23]) For {Ai}i2[m] 2 Sn,

(D.4) max
U,V,W2Un

������

X

i,j2[m]

AiUAjVAiWAj

������
op



������

X

i2[m]

A2

i

������

1

2

op

·

������

X

i2[m]

vec(Ai)vec(Ai)
>

������

1

2

op

,

where vec(A) 2 Rn2

is the vectorization of A.

By combining Proposition D.1 and Lemma D.1, we have the following corollary.

Corollary D.1. Let n � 8 and {Ai}i2[m] 2 Sn satisfy k
P

i2[m]
A2

i kop  �2 and

k
P

i2[m]
vec(Ai)vec(Ai)>kop  v2. Then, for g ⇠ N (0m, Im), there is a universal constant Ctro such that

E

������

X

i2[m]

giAi

������
op

 Ctro ·
⇣
� log

1

4 n+
p
�v log

1

2 n
⌘
.

By replacing Theorem 1.2 of [BBvH23] with Corollary D.1 in the proof of Lemma 3.1 in [BJM23], we obtain
the second term in Proposition 6.1; we may use the better of the two bounds. To handle the n � 8 constraint,
for any smaller n, we can pad with zeroes up to dimension n = 8, which does not a↵ect any operator norms and
only changes constants in the claim.

Copyright © 2025

Copyright for this paper is retained by authors

	Introduction
	Our results
	Overview of approach
	Related work
	Roadmap

	Preliminaries
	Technical overview
	Effective resistance decomposition
	Variance bounds from effective resistance diameter
	Sparser Eulerian sparsifiers
	Eulerian sparsification in nearly-linear time
	Approximating modified circulations
	Basic partial sparsification
	Sparsifying an ER decomposition
	Complete sparsification algorithm

	Applications
	Deferred proofs from Section 2
	Rounding
	Potential improvements to Theorem 1.2
	Proof of Proposition 6.1

