
Matching Composition and E�cient Weight Reduction in Dynamic Matching∗

Aaron Bernstein† Jiale Chen‡ Aditi Dudeja§ Zachary Langley¶ Aaron Sidford�

Ta-Wei Tu∗∗

Abstract

We consider the foundational problem of maintaining a (1 � ")-approximate maximum weight matching
(MWM) in an n-node dynamic graph undergoing edge insertions and deletions. We provide a general reduction
that reduces the problem on graphs with a weight range of poly(n) to poly(1/") at the cost of just an additive
poly(1/") in update time. This improves upon the prior reduction of Gupta-Peng (FOCS 2013) which reduces
the problem to a weight range of "�O(1/") with a multiplicative cost of O(log n).

When combined with a reduction of Bernstein-Dudeja-Langley (STOC 2021) this yields a reduction from
dynamic (1 � ")-approximate MWM in bipartite graphs with a weight range of poly(n) to dynamic (1 � ")-
approximate maximum cardinality matching in bipartite graphs at the cost of a multiplicative poly(1/") in
update time, thereby resolving an open problem in [GP’13; BDL’21]. Additionally, we show that our approach
is amenable to MWM problems in streaming, shared-memory work-depth, and massively parallel computation
models. We also apply our techniques to obtain an e�cient dynamic algorithm for rounding weighted fractional
matchings in general graphs. Underlying our framework is a new structural result about MWM that we call the
“matching composition lemma” and new dynamic matching subroutines that may be of independent interest.

1 Introduction

The maximum matching problem is foundational in graph algorithms and has numerous applications. A matching

is a set of vertex-disjoint edges in an (undirected) graph. In unweighted graphs, G = (V,E), the problem, known
as maximum cardinality matching (MCM), is to find a matching with the maximum number of edges (also known
as the matching’s size). More generally, in weighted graphs, G = (V,E,w), where each e 2 E has weight w(e) > 0,
the problem, known as maximum weighted matching (MWM), is to find a matching M of maximum weight, i.e.,P

e2M w(e). For simplicity, throughout the paper, we assume that each w(e) 2 [1,W] for W = poly(n).
In the standard static or o✏ine version of the maximum matching problem, it was recently shown how

to compute maximum matchings in unweighted and weighted bipartite graphs in almost-linear time [23, 39]
(when the edge weights are integer). Though this almost resolves the complexity of the problem in the standard
static, full-memory, sequential model of computation, the complexities of the problem in alternative models of
computation such as dynamic, streaming, and parallel models are yet to be determined. The problem has been
studied extensively in these models and there are conditional lower bounds that rule out e�cient algorithms for
exact maximum matching in certain settings (see, for example, [31] for dynamic and [30] for streaming).

Consequently, there has been work on e�ciently computing approximately maximum matchings. There is
a range of approximation quality versus e�ciency trade-o↵s studied (see e.g., [13, 14, 27, 40, 16]). We focus

∗
The full version of the paper can be accessed at https://arxiv.org/abs/2410.18936

†
New York University, bernstei@gmail.com. Supported by Sloan Fellowship, Google Research Fellowship, NSF Grant 1942010,

and Charles S. Baylis endowment at NYU.

‡
Stanford University, jialec@stanford.edu. Supported by a Lawrence Tang Graduate Fellowship, a Microsoft Research Faculty

Fellowship, and NSF CAREER Award CCF-1844855.

§
University of Salzburg, aditi.dudeja@plus.ac.at. This work is supported by the Austrian Science Fund (FWF): P 32863-N.

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research

and innovation programme (grant agreement No 947702).

¶
Rutgers University, zach.langley@rutgers.edu.

�
Stanford University, sidford@stanford.edu. Supported by a Microsoft Research Faculty Fellowship, NSF CAREER Grant CCF-

1844855, NSF Grant CCF-1955039, and a PayPal research award.

∗∗
Stanford University, taweitu@stanford.edu. Supported by a Stanford School of Engineering Fellowship, a Microsoft Research

Faculty Fellowship, and NSF CAREER Award CCF-1844855.

Copyright © 2025
Copyright for this paper is retained by authors

https://arxiv.org/abs/2410.18936

on the gold standard of computing (multiplicative) (1 � ")-approximate matching, that is a matching of size or
weight that is at least (1� ") times the maximum. While there are algorithms that compute (1� ")-approximate
maximum matchings in many computational models, there is often a significant gap between the bounds for
weighted and unweighted graphs; many state-of-the-art results are limited to unweighted graphs. However, in
dynamic, streaming, and parallel computational models, there is no clear indication of a fundamental separation
between the computational complexity of the two cases. It is plausible that the existing gap could be due to a
relative lack of techniques for working with weighted matchings.

Closing the gap between the state of the art for weighted and unweighted matchings is an important open
problem. Several works have made progress on this problem by developing meta-algorithms that convert any
algorithm for unweighted matching into an algorithm for weighted matching in a black-box fashion (albeit with
potential loss in approximation quality and e�ciency). The central focus of this paper is to provide improved meta-
algorithms and new tools that more e�ciently reduce weighted matching to unweighted matching. We motivate,
develop, and introduce our results through the prominent dynamic matching problem (which we introduce next),
though we also obtain results for streaming and parallel settings.

Dynamic Weighted Matching In the dynamic matching problem, a graph undergoes a sequence of
adversarial updates, and the algorithm must (explicitly) maintain an (approximate) maximum matching in the
graph after each update.1 The goal is to minimize the update time of the algorithm, which is the time needed
to process a single update. In the most general fully dynamic model, each update either inserts an edge into
or deletes an edge from the graph. We also consider two natural, previously studied, partially dynamic models,
including the incremental model, where each update can only insert an edge, and the decremental model, where
each update can only delete an edge.

Over the past decades, meta-algorithms for reducing dynamic matching on weighted to unweighted graphs
have been developed (with di↵erent approximation and update time trade-o↵s). The first general reduction is
by Stubbs and Williams [38], who show that any dynamic ↵-approximate MCM algorithm can be converted to a
dynamic (1/2� ")↵-approximate MWM algorithm with (multiplicative) poly(log n, "�1) overhead in the update
time.

More recently, the state of the art was achieved by a result of Bernstein, Dudeja, and Langley [11]. This
paper reduces the approximation error for weighted matching to (1 � ")↵ in bipartite graphs and (2/3 � ")↵
in non-bipartite graphs with "�⇥(1/") log n multiplicative overhead in the update time. [11] crucially relies on
di↵erent general reduction of Gupta and Peng [29], which reduces weighted matching in a general (not necessarily
bipartite) graph with large weights to one with small weights—concretely, from real values in [1,W] to integers
in {1, . . . , "�O(1/")}—at the cost of an extra (1� ")-approximation factor and O(log n) multiplicative overhead.

All of these reductions mentioned incur a multiplicative overhead of only O"(poly(log n)) to the update
time, where we use O"(·) to hide factors depending on ". However, the dependence of 1/" in update time
overhead in previous reductions for (1 � ")-approximate MWM [29, 11] are all exponential. Consequently, even
for " = 1/O(log n), an accuracy decaying slowly with increases in the graph’s size, the algorithms may no longer
achieve non-trivial update times.

Our Contribution Our first contribution is the following weighted-to-unweighted reduction in bipartite
graphs, which settles the open problem of [29, 11] for bipartite graphs. Interestingly, this reduction, along with
the prior reductions in [29, 38, 11], are partially dynamic preserving, i.e., if the input unweighted matching
algorithm is incremental or decremental, then the resulting weighted matching algorithm is also incremental or
decremental respectively.

Theorem 1.1. (Informal version of Theorem 5.8) Given any dynamic (1 � ")-approximate MCM algo-

rithm in n-node m-edge bipartite graphs with update time U(n,m, "), there is a transformation which pro-

duces a dynamic (1 � O("))-approximate MWM algorithm for n-node bipartite graphs with amortized update

time U(poly(1/") · n, poly(1/") ·m, ") · poly(1/"). This transformation is partially dynamic preserving. In non-

bipartite graphs, the approximation ratio for weighted matching becomes 2/3�O("). Moreover, if the unweighted

algorithm is deterministic, then so is the weighted algorithm.

1
Some papers instead maintain a data structure that can answer queries about a maximum matching, e.g., [21]. The low-recourse

transformation we propose in Section 5.4 can convert certain algorithms that maintain the matchings implicitly to ones that maintain

them explicitly. For the simplicity of the statement, unless stated otherwise, the dynamic matching algorithms in the paper should

maintain a matching explicitly.

Copyright © 2025
Copyright for this paper is retained by authors

Beyond improving the exponential dependence on 1/" to polynomial, Theorem 1.1 also eliminates the O(log n)
factors in the update-time of [11]. Therefore, Theorem 1.1 implies that in dynamic bipartite graphs, (1 � ")-
approximate MWM shares the same complexity as (1� ")-approximate MCM, up to poly(1/") factors.

In the case of general graphs, we make substantial progress towards reducing weighted matching to unweighted
matching. Indeed, a crucial ingredient of our algorithm is a reduction from large weights to small ones, which
applies to non-bipartite graphs as well.

Theorem 1.2. (Informal version of Theorem 3.2) Given any dynamic (1 � ")-approximate MWM al-

gorithm in n-node m-edge general (possibly non-bipartite) graphs with weights in [1,W] with update time

U(n,m,W, "), there is a transformation which produces a dynamic (1 � O("))-approximate MWM algorithm for

n-node general graphs with amortized update time U(poly(1/") · n, poly(1/") · m, poly(1/"), ") · poly(log(1/")) +
poly(1/"). This transformation is partially dynamic preserving.

Theorem 1.2 removes the exponential dependence on 1/" in [29] and again incurs no log n factors in the
update-time overhead (whereas [29] incurs log n).

Additionally, our framework leads to a dynamic weighted rounding algorithm with a polylogarithmic
dependence on W , improving over that of [22] (which depends linearly on W). Here, a weighted rounding
algorithm maintains an integral matching supported on a dynamically changing fractional one while approximately
preserving its weight (see Definition 5.6). This shows that dynamic integral matching, weighted or not, is
equivalent to dynamic fractional matching (up to poly(log n, 1/") terms). For example, as discussed in [22],
this leads to a decremental (1 � ")-approximate MWM algorithm in weighted general graphs with update
time poly(log n, 1/"). Previously, rounding algorithms with poly(log n, 1/") update times were only known for
unweighted graphs, bipartite [5, 40, 15, 19] and general [22, 25].

Theorem 1.3. (Informal version of Theorem 5.6) There is a dynamic weighted rounding algorithm with

eO(poly(1/")) update time.

Techniques Our key technical contribution is Theorem 1.2, which removes the "�O(1/") factor in an analogous
result of [29]. To reduce edge weights in weighted graph G = (V,E,w) with vertices V , edges E, and edge weights
w, both our reduction and the one in [29] define edge sets Ei ✓ E, where each edge set is defined solely as a
function of weights. The algorithm then computes an arbitrary (1 � ")-approximate MWM Mi in each Ei and
shows that the Mi can be combined to compute an approximate MWM M for the entire graph. Consequently,
the edge sets, Ei, are chosen to satisfy the following two properties:

1. Within each Ei, the ratio ⇢ of the maximum to minimum edge weight is small (we call this the width of the
interval). This is the crux of our weight-reduction because a simple scaling and rounding approach yields
the requested Mi using only an algorithm for integer weights in {1, . . . , d⇢/"e}.

2. µw(M1 [... [Mk) � (1� ")µw(G), where µw(·) is the weight of the MWM in the input graph or edge set.
This property is to ensure that the Mi can be combined to obtain a (1� ")-approximate matching.

In the algorithm of [29], the intervals were disjoint; in fact, they were well-separated. This made it easy to
prove property 2 above via a simple greedy combination. We show, however, that any set of disjoint intervals Ei

that satisfies property 2 must have, in the worst case, width ⇢ � exp(1/"). (See Section B for more details.)
To bypass this barrier, we allow for overlapping intervals. This forces us to use a di↵erent and more involved

analysis, as the analysis of [29] crucially relied on disjointedness. At the outset, it is not clear that this is even
enough. In fact, as we discuss below, it is only narrowly su�ces in that our analysis crucially relies on the
matchings Mi being (1� ")-approximate, rather than ↵-approximate for some constant ↵ < 1.

Our key technical contribution consists of two new structural properties of weighted matching, which we call
matching composition and substitution lemmas (see Lemmas 3.1 and 3.2). On a high level, these two lemmas
show that as long as the weight classes Ei overlap slightly, a width of poly(1/") is su�cient to ensure the second
property above.

Using the above idea inside the framework of [11] with a simple greedy aggregation algorithm in [29]
immediately yields a weaker version of Theorem 1.1 (with poly(1/") · O(log n) multiplicative overhead and a
slightly worse dependence on 1/"). We further optimize the greedy aggregation in [29] to remove the log n factor,
improve the analysis of [11], and propose a low-recourse transformation to remove several poly(1/") factors.

Copyright © 2025
Copyright for this paper is retained by authors

A Limitation of Our Reductions Although our results successfully remove the exponential dependence
on 1/" in prior work, they also have a limitation. The work of [29] reduces ↵(1� ")-approximate matching with
general weights to ↵-approximate matching with small edges weights; crucially, it works for any ↵  1. By
contrast, our Theorem 1.2 requires ↵ = (1 � "). As a result, our Theorem 1.1 also requires ↵ = (1 � "), while
the analogous result of [11] works for any ↵. Consequently, there are several applications related to smaller ↵, for
example, ↵ = 1/(2�

p
2) (see [10, 18, 9]) or ↵ = 2/3 (see [13, 14]) that benefit from [11] but not from our reduction.

Notably, there are also conditional lower bounds ruling out e�cient (1� ")-approximate matching algorithms in
various models, specifically the fully dynamic [36] and the single-pass streaming model [34]. Nonetheless, (1� ")-
approximate matching is a well-studied regime, and, as we show in Section 6, our reduction improves the state of
the art in multiple computational models.

Perhaps surprisingly, this limitation is inherent to the general framework discussed above. More precisely,
consider a scheme which picks edge sets Ei = {e | `i  w(e)  ri}, computes an arbitrary ↵-approximate matching
in each Mi, and then shows that µw(M1 [. . . [Mk) � (↵� ") · µw(G). Our key contribution is to show that for
↵ = (1 � O(")), there exist suitable edge sets with width poly(1/"). However, our sets do not necessarily work
for a fixed constant ↵ < 1; in fact, we show that for ↵ < 1, there are graphs for which any suitable edge sets
necessarily have width exp(1/") (as what was done in [29]). Generalizing our result to all work for all ↵ would
thus require a di↵erent approach. See Section C for more details.

Overview of the Paper In the remainder of the introduction, in Section 1.1 we give an informal overview
of our results in other computational models and in Section 1.2 we discuss concrete applications. Thereafter, we
state preliminaries in Section 2. In Section 3, we give a technical overview including our main structural lemma
that implies our reduction framework. We then show our main technical lemma in Section 4 which helps to
prove the main structural lemma, and state our framework in Section 5 in detail. We state applications of our
framework in Section 6. We conclude with open problems in Section 7.

1.1 Additional Computational Models

Our Results Although the above theorems were written for dynamic models, our techniques are general
and apply to a variety of di↵erent models. In Section 6 we state formal reductions in a variety of models; here,
we simply state the main takeaways. We show that analogs of the results in Theorem 1.1 and Theorem 1.2 also
apply to the semi-streaming, massively parallel computing (MPC) with O(n log n) space per machine, and the
parallel work-depth models. We suspect they apply to other models as well, but in this paper, we focus on these
four.

In the case of semi-streaming and MPC, the reduction when applied to existing algorithms, leaves the number
of passes/rounds the same (up to a constant factor), but increases the space requirement by log n · poly(1/").
On the other hand, in the parallel work-depth model, the work increases by a factor of log n · poly(1/"), and the
depth increases by an additive log2 n factor. Despite these overheads, we can improve many of the state of the
arts in these models.

Later in this section, we discuss these improvements and our contributions in more detail.
Contrast to Previous Work As in the case of dynamic algorithms, when we turn to other models our

Theorem 1.1 and Theorem 1.2 achieve the same reductions as [11] and [29] respectively, except that we reduce
their multiplicative overhead of "�O(1/") to poly(1/"). There is also a di↵erent reduction of Gamlath, Kale,
Mitrovic, and Svensson [26], which works in both the streaming and MPC models, but not in the dynamic model.
[26] has the advantage of reducing the most general case of weighted non-bipartite matching to the simplest
case of unweighted bipartite matching, but it has exponential dependence on 1/" and it increases the number of
passes/rounds by a "�O(1/") factor (which is generally considered a bigger drawback than the space increase).

Similar to the dynamic models, our reductions have a somewhat narrower range of application than those of
[11] and [29] even in MPC, parallel, and streaming models because ours do not work for general approximation
factors: they only reduce a (1 � ")-approximation to a (1 � ⇥("))-approximation. There is also a second, more
minor drawback, which is that our reduction in Theorem 1.2 works in a slightly narrower range of models than
the corresponding reduction of [29]. For example, the reduction of [29] applies to algorithms that only maintain
the approximate size of the maximum matching (see [18, 10]), whereas our reduction only applies to algorithms
that maintain the actual matching. But for the most part, our reduction and that of [29] apply to the same set
of models.

Copyright © 2025
Copyright for this paper is retained by authors

1.2 Applications In this subsection, we give an informal overview of some of the implications of our reductions.
For a more formal statement of the results, we refer the reader to Section 6.

Applications to Bipartite Graphs Since our reduction from weighted to unweighted matching is black-
box, it immediately improves upon the state of the art for weighted matching in a wide variety of computational
models. Many of these results which achieve the state of the art were obtained by plugging existing unweighted
algorithms into the reduction of [11], and hence incur a multiplicative overhead of "�O(1/"). Plugging in our
Theorem 5.8 reduces the multiplicative overhead to poly(1/"). In particular, our reduction obtains weighted
analogs of the following unweighted bipartite results.

1. A fully dynamic algorithm for maintaining a (1�")-approximate MCM in O(
p
m poly(1/")) time per update

[29].

2. A decremental (1� ")-approximate MCM algorithm with update time poly(log n, "�1) [12, 32].

3. A fully dynamic algorithm for maintaining a (1 � ")-approximate MCM with update time O(poly("�1) ·
n

2⌦(
p

log n)) [36].

4. A fully dynamic o✏ine algorithm for maintaining a (1 � ")-approximate MCM with update time
O(n0.58 poly("�1)); in the o✏ine model, the entire sequence is known to the algorithm in advance [36].

5. An incremental (1� ")-approximate MCM algorithm with update time poly("�1) [20].

6. An O("�2)-pass, O(n) space streaming algorithm for (1� ")-approximate MCM [8]

7. An O("�2 · log log n)-round, O(n) space per machine, MPC algorithm for (1� ")-approximate MCM [8].

Our reduction extends all of the above results to work in weighted graphs: the multiplicative overhead is only
poly(1/") in the dynamic model, as well as a O(log n) factor in some of the other models. Before our work, the
weighted versions of 1, 3, and 4 had a multiplicative overhead of "�O(1/") · logW . For others mentioned on the
list, separate weighted versions were known (see [17, 35]), but had worse dependence on either log n factors or "�1

factors. Our main contribution here is to remove these overheads and, equally importantly, to streamline existing
research by removing the need for a separate weighted algorithm.

Note that there are additional results on streaming approximate matching algorithm which obtain improved
pass dependencies on " at the cost of poly(log n) factors [1, 3, 7, 6]. Our reduction does not improve the state of
the art here for such methods. Therefore, we focus on algorithms that have pass complexities that only depend
on ".

Applications to Non-Bipartite Graphs Similar to Theorem 5.8, our aspect-ratio reduction in Theo-
rem 3.2 also works as a black-box. Each of the results below was initially obtained by applying the reduction of
[29] to a weighted matching algorithm with a large dependence on W . By plugging in our reduction, we reduce
the "-dependence in all of them from "�O(1/") to poly(1/").

1. A fully dynamic algorithm for maintaining a (1� ")-approximate MWM in general graphs in
p
m · "�O(1/") ·

logW time [29].

2. A decremental algorithm for maintaining a (1 � ")-approximate MWM in general graphs in poly(log n) ·
"�O(1/") update time [22].

3. A poly(log n)·"�O(1/") update time algorithm for rounding (1�")-approximate weighted fractional matchings
in general graphs to (1�⇥("))-approximate integral matchings [22].

2 Preliminaries

General Notation For positive integer k, we let [k]
def
= {1, . . . , k}. For sets S and T , we let S � T

def
=

(S \ T) [(T \ S) denote their symmetric di↵erence.

Copyright © 2025
Copyright for this paper is retained by authors

Graphs and Matchings Throughout this work, G = (V,E) denotes an undirected graph, and w : E ! R>0

is an edge weight function. The weight ratio of G is maxe w(e)/minf w(f). A matching M ✓ E is a set of vertex-
disjoint edges. The weight of a matching M , denoted w(M), is the sum of the weights of the edges in the matching:

w(M)
def
=

P
e2M w(e). We denote the maximum value of w(M) achieved by any matching M on G by µw(G).

For ↵ 2 [0, 1], an ↵-approximate MWM of G is a matching M such that w(M) � ↵ · µw(G). The following result
states that we can compute an (1� ")-approximate MWM very e�ciently.

Theorem 2.1. ([24, Theorem 3.12]) On an m-edge general weighted graph, a (1� ")-approximate MWM can

be computed in time O(m log("�1)"�1).

Weight Intervals For I ✓ R, we denote by GI the subgraph of G restricted to edges e such that w(e) 2 I.
A set of (disjoint) weight intervals [`1, r1), . . . , [`k, rk) ✓ R has weight gap � if `i+1 � � · ri for all i 2 [k � 1] and
we call such a set of weight classes �-spread. We also say that the set of intervals is �-wide if ri � � · `i for all
i 2 [k]. If `i+1 = ri and the intervals cover [1,W], then we say the intervals are a weight partition.

Computational Model We work in the standard Word-RAM model in which arithmetic operations over
⇥(log n)-bit words can be performed in constant time.

3 Technical Overview

Here we give an overview of our framework. For comparison and motivation, in Section 3.1 we first
introduce a result of [29], which provides a deterministic framework that is partially dynamic preserving for
dynamic approximate MWM algorithms to reduce the weight range to "�O(1/") with an overhead of O(logW).
In Section 3.2, we explain the di�culty of reducing to poly(1/") weight range using [29]. Motivated by this,
in Section 3.3, we introduce our key technical innovation, the matching composition lemma (Lemma 3.1), that
allows us to bypass the barrier. We then show that this lemma naturally induces our algorithmic framework that
reduces the weight range down to poly(1/"). Finally, in Section 3.4, we overview several further improvements
that we made to shave o↵ log n and 1/" factors from the running time.

3.1 Weight Reduction Framework of Gupta–Peng The reduction framework of [29] works as follows.
First, it groups edges geometrically by their weights so that the weight ratio of each group is ⇥(1/"). It then
deletes one group for every ⇥(1/") consecutive groups and merges the remaining consecutive groups. We refer
to the merged groups as weight classes; note that they are ⇥(1/")-spread and have weight ratio "�⇥(1/"). For
each of these weight classes, a (1� ")-approximate MWM is maintained. Because the weight classes are ⇥(1/")-
spread, a simple greedy aggregation [4, 29, 38] of the (1 � ")-approximate MWMs on each weight class leads
to a (1 � O("))-approximation of µw(G). As a result, this reduction reduces general approximate MWM to the
problem of maintaining an approximate MWM inside a weight class with weight ratio "�⇥(1/").

More formally, the algorithm of [29] assigns all edges e with weight we 2 ["�i, "�(i+1)) to the ith group. Let
G(j) denote the graph obtained by deleting all groups i such that i ⌘ j mod d"�1e. An averaging argument shows
that maxj µw(G(j)) � (1�O("))µw(G). So it su�ces to maintain a (1�O("))-approximate MWM on each G(j)

and return the one with maximum weight.
To do so, [29] merges all groups between neighboring deletions to form weight classes in G(j). Those weight

classes have weight ratio "�⇥(1/") and are ⇥(1/")-spread. [29] proceed by maintaining a (1�")-approximate MWM

M (j)
k on each weight class [`(j)k , r(j)k); by scaling down appropriately, maintaining each M (j)

k requires maintaining
a (1 � ")-approximate MWM in a graph with edges in range [1, "�⇥(1/")], as desired. The authors of [29] then
greedily aggregate the Mi into a single matching M by checking the Mi in descending order of weight range and
including in M any edge that is not adjacent to existing edges in M . The ⇥(1/") weight gap between weight
classes ensures that for each edge e in the final matching M , the total weight of edges in

S
Mi that were not

included in M because of e is at most O(") · we. Since (1� O("))µw(G)  (1� O("))µw(G(j)) 
P

i w(Mi), the
greedy aggregation keeps a 1�O(") fraction of the weight in

P
i w(Mi) thus is a (1�O("))-approximate MWM.

3.2 Disjoint Weight Classes Require Exponential Width The ⇥(1/") weight gap plays an important role
in [29] because it ensures that µw(

S
Mi) � (1�O("))µw(G), while also allowing for e�cient greedy aggregation.

But as long as we try to maintain weight classes that are 1/"-spread, it seems hard to reduce the weight ratio all the
way down to poly(1/"). This is because it would require deleting a constant fraction of the initial weight groups

Copyright © 2025
Copyright for this paper is retained by authors

(the ones of weight ratio ⇥(1/")), so the MWM on the remaining graph G(j) would have a much smaller weight
than µw(G). Indeed, we rule out the possibility of a broader family of methods that works with non-overlapping
weight classes (which includes all methods that create weight gaps) by answering the following question in the
negative.

Question 3.1. For any graph G, is there a weight partition [`1, r1), . . . , [`k, rk) such that ri/`i  poly(1/") holds
for all i and given any set of (1� ")-approximate MWM Mi on each G[`i,ri) we have

µw(M1 [M2 [· · · [Mk) � (1�O(")) · µw(G)?

To see why methods creating ⇥(1/") weight gaps are a special case of the weight partition allowed in
Question 3.1, note that given any partition with gaps, we can naturally define a weight partition by letting
each weight gap be its own weight class; if a large matching exists after deleting the edges in the gaps, it still
exists when we keep those edges.

We give a counterexample (see Claim B.1) that answers Question 3.1 in the negative, even when the weight
partition can be chosen depending on the input graph (recall that [29] chose the weight partition up front, oblivious
to the structure of the input graph). To see why this is the case, consider the gadget shown in Figure 1 below. Fix
a partition P of [1,W] into weight classes. Observe that if this partition “separates” the gadget, i.e., some weight
class i in P contains only the weight 1 but not 1.5 (and the other weight class j contains 1.5), then it leads to an
overall loss larger than (1�"). More concretely, if the matching Mi in class i restricted to the gadget contains the
edge bc (and not ab), then MWM(Mi [Mj) = 1.5 while the entire gadget contains a matching {ab, cd} of weight
2.5. The final counterexample we construct then contains multiple copies of the gadget with di↵erent weights and
argues that any weight partition P with ri/`i  poly(1/") for all i must “separate” su�ciently many gadgets.
Consequently, it cannot preserve (1� ")-approximation.

a b c d
1 1 1.5

Figure 1: Gadget for answering Question 3.1 in the negative

3.3 Leveraging Weight Overlaps: the Matching Composition Lemma How can we bypass this barrier?
Let us take a closer look at Figure 1. In the gadget above, there are two possible Mi for the weight class i that
contains the weight 1: either it contains the edge ab or bc. As we have discussed above, the “bad” case is when
Mi contains bc instead of ab, in which case the edge bc will be “kicked out” by the edge cd in Mj and results in
a weight loss. Notice also that the weight loss a↵ects the final approximation ratio when the weights of bc and

cd are relatively close (as depicted in Figure 1)—if instead of 1.5, the weight of cd is changed to at least 1/",
then the weights of ab and bc are negligible compared to cd (up to an " fraction), and it is okay if somehow Mi

contains bc and it is “kicked out” by cd. Therefore, to fix the issue, for any two weight values w1 and w2 that are
close enough (in particular, " . w1/w2 . 1/"), we should have a weight class that contains both of them. On the
other hand, it is fine for w1 and w2 to not be in any weight class together if they are far apart.

Based on the observation, we see that if the weight classes are disjoint, then there will always be two close-
enough weight values that are separated by the partition. As a result, instead of creating weight gaps, we should
leverage overlaps between adjacent weight classes. More concretely, we compute the approximate MWM for each
weight class based on the information within the class and also edges of neighboring weight classes. In other
words, we enlarge the intervals in which we compute the matchings slightly. Perhaps surprisingly, we show that
having an overlap of poly(1/") allows us to bypass the above barrier completely, which we prove the following key
technical lemma.

Lemma 3.1. (Matching Composition Lemma) Let "  1/6 and G be a graph, and consider a �-wide weight

partition [`1, r1), [`2, r2), . . . , [`k, rk). If Mi is an arbitrary (1�")-approximate MWM on G["`i,ri"�1) for all i 2 [k],
then

µw(M1 [M2 [· · · [Mk) � (1�O(" · log�(1/"))) · µw(G).

Copyright © 2025
Copyright for this paper is retained by authors

On a high level, the matching composition lemma states that if we “pad” the weight classes [`i, ri) slightly by
a factor of 1/" in both directions, causing overlap, then we can e↵ectively “sparsify” the graph by only considering
MWM’s on each G["`i,ri"�1). This readily leads to an algorithmic framework for weight reduction: fix a �-wide
weight partition of the graph, maintain a (1 � ")-approximate MWM Mi on each “padded” weight class using
the given dynamic algorithm, and then somehow aggregate them together to form the final output matching (i.e.,
maintain a (1� ")-approximate MWM on the union of Mi’s). As long as the aggregation can be done e�ciently,
the output matching can be as well. We give a more detailed overview in Section 3.3.1.

The Matching Substitution Lemma The moment we introduce weight overlaps, we need a completely
di↵erent analysis from that of [29] to prove that µw(

S
Mi) � (1 � O("))µw(G). By forcing disjoint (and in fact

spread) weighted classes, [29] ensured that any conflict between matchings Mi and Mj could always be resolved
in favor of the higher weight class (hence greedy aggregation). But once there is weight overlap, it is not clear
how conflicts should be resolved. Our new analysis thus requires a new structural understanding of weighted
matching.

In particular, the matching composition lemma is proved via a structural matching substitution lemma

formally stated below. It asserts that one can e↵ectively “substitute” parts of a matching S with matchings
T1, . . . , Tk that come from certain weight classes.

Lemma 3.2. (Matching Substitution Lemma) Let G be a graph and [`1, r1), . . . , [`k, rk) ✓ R be (1/")-spread.
For "  1/2, given any matching S ✓ G, and a batch of target matchings {Ti ✓ G["`i,ri"�1) | i 2 [k]}, there exists

a matching M ✓ S [T1 [· · · [Tk of weight

w(M) � (1� 4")w(S)�
X

i2[k]

�
µw(G["`i,ri"�1))� w(Ti)

�

such that M \G[`i,ri) ✓ Ti for all i 2 [k].

The matching substitution lemma starts with an arbitrary source matching S, and a set of target matchings
T1, . . . , Tk on the “padded” weight classes ["`1, r1/"), . . . , ["`k, rk/"). It allows us to build a matching starting
from S and substitute all edges of S in each weight class [`i, ri) with edges contained Ti; this incurs some additive
approximation error, but it is easy to check that the error is small as long as each Ti is a near-maximum matching
for the corresponding padded weight class. For example, if we take S to be a maximum weight matching on G
and set Ti to be the (1� ")-approximate MWM Mi on G["`i,ri"�1) from Lemma 3.1, then we can substitute each
weight range of S with edges from Mi at minimal loss. We defer the full proof to Section 4.

Arbitrary Approximation Ratio As discussed in the introduction, our reductions only work for (1� ")-
approximations, and not for arbitrary ↵-approximations. In particular, in the matching composition lemma,
if each Mi is instead an arbitrary ↵-approximate MWM (for some fixed ↵ < 1), then it is not the case that
µw(M1 [. . .[Mk) � (↵�O("))µw(G). Somewhat surprisingly, this limitation is not an artifact of our particular
choice of weight classes, and turns out to be inherent to the general framework of composing approximate
matchings between weight classes: for such a framework to work with any ↵-approxmation (as does [29]), exp(1/")-
wide weight classes are required. See Section C for more details.

3.3.1 Algorithmic Framework The matching composition lemma suggests the following algorithmic frame-
work:

1. Fix a �-wide weight partition of the input graph and maintain a (1 � ")-approximate MWM Mi on each
padded weight class.

2. Maintain a (1�O("))-approximate MWM on the union of Mi’s as the output matching. By the matching
composition lemma this is (1�O(" log�(1/")))-approximate in the input graph.

Scaling " down by a factor of O(log�(1/")) thus ensures that the matching we output is (1� ")-approximate
in the input graph. We now describe how we implement Step 2 e�ciently. For this we set � = ⇥("�3). With this
choice of �, even though the neighboring “padded” weight classes overlap, the sets of “odd” and “even” intervals
are still each ⇥(1/")-spread.

Copyright © 2025
Copyright for this paper is retained by authors

(2.1) As such, similar to [29], these matchings can be separately aggregated using a greedy algorithm in
O(log n) update time. More specifically, let Mi be the matching in the i-th weight class. Then, we compute a
(1�")-approximate MWMModd (respectively, Meven) on the unionM1[M3[· · · (respectively, M2[M4[· · ·)
greedily.

(2.2) At this point, we are left with two matchings Modd and Meven that we need to combine together. This
can be relatively easily handled in O(1/") time per change to Modd and Meven since the union of these two
matchings consists of only paths and cycles, and MWM can be computed and maintained very e�ciently on
them by splitting each connected component into paths of length O(1/") and solving each path individually
via a dynamic program.

As a result, with this choice of � we arrive at a deterministic framework that reduces the aspect ratio from
poly(n) to ⇥("�5) for any dynamic algorithm (note that the ⇥("�5) term comes from padding the ⇥("�3)-wide
intervals in each direction).

Theorem 3.1. Given a dynamic (1� ")-approximate MWM algorithm in general (possibly non-bipartite) graphs

with maximum weight in [1, poly(1/")], there is a transformation that produces a dynamic (1�O("))-approximate

MWM algorithm in graphs with maximum weight [1,W]. The reduction is partially dynamic preserving and has a

multiplicative update time overhead of log n · poly(1/"). The new weighted algorithm is deterministic if the initial

algorithm is deterministic.

The weight reduction framework described above works for both bipartite and non-bipartite graphs. Moreover,
combined with the unfolding framework of [11], it reduces weighted matching algorithms directly to unweighted
matching algorithms in bipartite graphs with log n · poly(1/") multiplicative overhead.

3.4 Further Improvements On top of the framework Theorem 3.1, we made the following additional
improvements to decrease log n and 1/" factors in the final running time which may be of independent interest.

More E�cient Aggregation of Spread Matchings In Step (2.1) of our framework described above, we
need to maintain a (1� ")-approximate MWM over matchings M1, . . . ,Mk whose weights are su�ciently spread
apart (by a gap of ⇥(1/")).

Problem 5.1. ((1� ")-Approximate MWM over Matchings in (1/")-Spread Weight Classes) Given

a set of (1/")-spread weight classes [`1, r1), . . . , [`k, rk) ✓ R, and a set of k matchings M1, . . . ,Mk ✓ G undergoing

adversarial edge deletions/insertions satisfying Mi ✓ G[`i,ri) for all i 2 [k]. The task is to dynamically maintain

a matching M satisfying

w(M) � (1�O("))
X

i2[k]

w(Mi).

The work of [29] solved Problem 5.1 with update time O(k) using a greedy census matching algorithm that
was also used in [4, 38]. To improve upon this, we propose a di↵erent notion of locally greedy census matching.
We show that the new notion su�ces for maintaining a (1� ")-approximation and since, on a high level, the local
version allows us to consider fewer edges in each update, we get a faster update time of O(k/ log n). Note that for
Step (2.1), the value of k is2 O(log n) and thus this shaves o↵ the O(log n) factor in the update time that would
have been there if we used the subroutine of [29]. See Section 5.1 for more details.

Low-Recourse Transformation Note that the overall update time of our framework also depends on the
recourse � of the given dynamic algorithm A, i.e., the number of changes to the matching Mi that it generates
per update to the input graph. This is because each such changes propagate to the internal dynamic subroutines,
and for our case it will first correspond to an update to our algorithm for Problem 5.1, and then be propagated to
Step (2.2) which has an update time of O(1/"). Our overall update time is thus U + �/", where U is the update
time of the dynamic algorithm A. Similar scenarios also occur in previous reductions of [29, 11], and they both
implicitly used the fact that �  U (this is for algorithms that explicitly maintain a matching) and therefore their
reductions incur a multiplicative overhead in the update time of A.

2
Note that this is because we assume the input graph has weights in [1, . . . , poly(n)].

Copyright © 2025
Copyright for this paper is retained by authors

However, the output recourse can be much smaller than the update time. For instance, for unweighted
dynamic matching algorithms, the recourse can always be made O(1/") by a simple lazy update trick (the work
of [37] further achieved a worst-case recourse bound by “smoothing” the lazy update), while all known dynamic
matching algorithms have update time much larger than this. To address this disparity and make the overhead
of our reduction additive, we design a generic low-recourse transformation that converts, in a black-box way, any
(1� ")-approximate dynamic MWM algorithm to one with amortized recourse O(poly(logW)/"). This improves
the näıve lazy update approach that would have a recourse bound of O(W/"). As our framework reduces the
weight range to W = ⇥("�5), we use this new low-recourse transformation on the input algorithm A to decrease
the additive overhead from O("�6) (with the näıve lazy update) to O(log("�1)/").

To improve the aspect ratio further than ⇥("�5), we continue to apply the framework on each ⇥("�5) intervals.
Combined with the low-recourse transformation, we provide a trade-o↵ between the aspect ratio and the e�ciency
of aggregation (see Corollary 5.1). We use it to improve the fully dynamic low-degree algorithm in [29] which
then serves as another aggregation method that finally allows us to reduce the aspect ratio to ⇥("�2), the best
we can get using Lemma 3.1. See Section 5 for more details.

The Final Transformation In the end, applying the improvements we discussed in this section, we obtain
our final main theorem.

Theorem 3.2. Given a dynamic (1 � ")-approximate MWM algorithm A that, on input n-vertex m-edge graph

with aspect ratio W , has initialization time I(n,m,W, "), and update time U(n,m,W, "), there is a transformation

which produces a dynamic (1� " log("�1))-approximate MWM dynamic algorithm that has initialization time

log("�1) ·O(I(n,m,⇥("�2),⇥(")) +m"�1),

amortized update time

poly(log("�1)) ·O(U(n,m,⇥("�2),⇥(")) + "�5),

and amortized recourse

poly(log("�1)) ·O("�5).

The transformation is partially dynamic preserving.

4 Matching Composition and Substitution Lemmas

We now turn to the proof of our key technical lemmas, the matching composition and substitution lemmas. We
first prove the matching substitution lemma, and then use it to deduce the matching composition lemma that
ultimately leads to our algorithmic framework.

In the matching substitution lemma, we are given a source matching S and target matchings T1, . . . , Tk on
padded versions of (1/")-spread intervals [`1, r1), . . . , [`k, rk); more precisely, each Ti is a matching on ["`i, ri"�1).
The lemma states that we can find a new matching M with w(M) ⇡ w(S)—assuming the matchings Ti are
large—such that M only uses edges of Ti on the weight interval [`i, ri) for each i 2 [k]. The key idea in the
proof is to identify a set of edges D with small total weight (relative to S) to delete such that the edges of every
component in (S [T1 [· · · [Tk) \D are confined to a single weight class.

Lemma 3.2. (Matching Substitution Lemma) Let G be a graph and [`1, r1), . . . , [`k, rk) ✓ R be (1/")-spread.
For "  1/2, given any matching S ✓ G, and a batch of target matchings {Ti ✓ G["`i,ri"�1) | i 2 [k]}, there exists

a matching M ✓ S [T1 [· · · [Tk of weight

w(M) � (1� 4")w(S)�
X

i2[k]

�
µw(G["`i,ri"�1))� w(Ti)

�

such that M \G[`i,ri) ✓ Ti for all i 2 [k].

Proof. We construct a sequence of matchings M0,M1, . . . ,Mk, such that M0 = S is the source matching, Mi is
constructed from Mi�1 [Ti, and Mk = M is the desired matching in the lemma.

We first describe how to construct Mi for i � 1. The components of Mi�1 � Ti are only paths and cycles.
Construct a set Di ✓ Mi�1 as follows: For each path or cycle P ✓ Mi�1 � Ti and e 2 P \Mi�1 such that

Copyright © 2025
Copyright for this paper is retained by authors

w(e) � ri"�1, in both directions of P , add the closest edges in P \Mi�1 of weight at most ri into Di. For each
e 2 P \Mi�1 such that `i  w(e) < ri"�1, in both directions of P , add the closest edges in P \Mi�1 of weight
less than "`i into Di.

Now let fMi�1
def
= Mi�1 \ Di and again consider fMi�1 � Ti and any path or cycle P ✓ fMi�1 � Ti. Notice

that if there is an e 2 P \ fMi�1 such that w(e) 2 [`i, ri), then it must be the case that P ✓ G["`i,ri"�1). Let Li

be the collection of such paths and cycles. We then construct Mi
def
= fMi�1 � Li, and thus Mi ✓ fMi�1 [Ti and

Mi \G[`i,ri) ✓ Ti. It follows by induction that Mk ✓Mk�1 [Tk ✓ · · · ✓ S [T1 [· · · [Tk and Mk \G[`i,ri) ✓ Ti

for all i.
We now analyze w(Mk). Starting with M0, two kinds of changes happened to the matching. The first one is

the edge deletion D1 [· · · [Dk, and the second one is the edge substitution through L1 [· · · [Lk. We analyze
the total weight loss in each part respectively.

1. Since `i � ri�1"�1, only edges in S cause deletion. For any edge e 2 S, it could cause at most 2 edges
deletions with respect to every weight class ["`i, ri"�1). The weight of the deleted edges in the ith weight
class would be at least " smaller than we and at most ri. Since ri � `i � ri�1"�1, the total weight of those
deleted edges would be at most w(e) ·

�
2"+ 2"2 + · · ·

�
 4" · w(e). Thus

w(D1 [· · · [Dk)  4" · w(M).

2. For each of the substitution induced by Li, notice that Li ✓ G["`i,ri"�1), thus

X

P2Li

w(P \ fMi�1)� w(P \ Ti)  µw(G["`i,ri"�1))� w(Ti).

Therefore, the second part leads to a total weight loss of at most

X

i2[k]

�
µw(G["`i,ri"�1))� w(Ti)

�
.

We also need the following helper lemma.

Lemma 4.1. For "  1/6, any graph G and any set of (1/")-spread weight classes

[`1, r1), . . . , [`k, rk) ✓ R, we have X

i2[k]

µw(G[`i,ri))  (1 + 4") · µw(G).

Proof. Suppose that `1 < `2 < · · · < `k. Let Mi be a MWM on G[`i,ri), and let H
def
= M1 [· · · [Mk. Let M

be the matching obtained by the following greedy process: While H is non-empty, we pick an edge e in H with
the maximum weight and include it into M . Then, to ensure that the next edge we pick from H still forms a
matching with M , we remove all edges in H that are adjacent to e (including e itself). Observe that if an edge
f is removed from H by e, then we must have w(f)  w(e). Let ie be such that e 2 Mie . We also have that for
each j < ie, at most two edges from Mj will be removed by e (the two matched edges in Mj for the endpoints of
e). As the weight classes are (1/")-spread, we have

X

f removed by e

w(f)  w(e) · (1 + 2 · ("+ "2 + · · ·))  (1 + 4") · w(e).

At the end of the process, H will become empty. In other words, each edge in H is removed by some edge in M .
This shows that X

i2[k]

µw(G[`i,ri)) =
X

f2H

w(f)  (1 + 4") · w(M)  (1 + 4") · µw(G).

Copyright © 2025
Copyright for this paper is retained by authors

We can now prove the matching composition lemma.

Lemma 3.1. (Matching Composition Lemma) Let "  1/6 and G be a graph, and consider a �-wide weight

partition [`1, r1), [`2, r2), . . . , [`k, rk). If Mi is an arbitrary (1�")-approximate MWM on G["`i,ri"�1) for all i 2 [k],
then

µw(M1 [M2 [· · · [Mk) � (1�O(" · log�(1/"))) · µw(G).

Proof. Let g = dlog�(1/"3)e + 1, and for all j 2 {0, . . . , g � 1}, let Ij = {i 2 [k] : i ⌘ j mod g}. For the weight
classes in each Ij , the weight gap between neighboring weight classes is at least �g�1 � 1/"3. The set of weight
classes {[`i, ri) : i 2 Ij} is (1/"3)-spread, and thus the set of padded weight classes {["`i, ri"�1) : i 2 Ij} is
(1/")-spread. Consider any exact MWM M⇤ on G. We will start with the initial source matching S0 = M⇤, and
for j = 0, 1, . . . , g�1, sequentially apply Lemma 3.2 on the source matching Sj and target matchings {Mi | i 2 Ij}
and get Sj+1. For a fixed j, since Mi is a (1�")-approximate MWM on G["`i,ri"�1) for i 2 Ij , Lemmas 3.2 and 4.1
give us a matching Sj+1 ✓ Sj [(

S
i2Ij

Mi) that satisfies

w(Sj+1) � (1� 4")w(Sj)� " ·
X

i2Ij

µw(G["`i,ri"�1))

� (1� 4")w(Sj)� "(1 + 4") · µw(G) � (1� 4")w(Sj)� 3" · µw(G),

and that Sj+1 \G[`i,ri) ✓Mi for all i 2 Ij . By induction, we have

w(Sj+1) � (1� 4(j + 1)") · w(S0)� 3(j + 1)" · µw(G) � (1� 7(j + 1)")µw(G),

and that

Sj+1 \G[`i,ri) ✓
�
Sj \G[`i,ri)

�
[

0

@
[

t2Ij

Mt

1

A ✓ · · · ✓
j[

l=j0

[

t2Il

Mt

hold for all j0  j and i 2 Ij0 . Thus, we have

w(Sg) � (1�O(g · "))µw(G) � (1�O(log�(1/") · "))µw(G),

and
Sg \G[`j ,rj) ✓

[

i2[k]

Mi

for all j 2 [k]. Therefore, the matching Sg is contained in the union of all Mi’s and consequently

µw(M1 [M2 [· · · [Mk) � w(Sg) � (1�O(log�(1/") · "))µw(G).

5 Framework

In this section, we will describe our framework in detail. As suggested by Lemma 3.1, we first fix a ⇥("�3)-
wide weight partition, and compute a (1 � ")-approximate MWM on each “padded” weight classes with aspect
ratio ⇥("�5). The choice of width ensures that the set of odd “padded” weight classes has ⇥(1/") weight
gaps and so does the set of even ones. We use a subroutine Algorithm 1 in Section 5.1 to aggregate odd
matchings and even matchings, and maintain a (1�")-approximate MWM on the union of them using the second
subroutine Algorithm 2 in Section 5.2. In Section 5.3 we give the complete framework to reduce the aspect
ratio with multiplicative poly(1/") overhead. In Section 5.4, we introduce a low-recourse transformation for
(1 � ")-approximate dynamic MWM to change the multiplicative poly(1/") overhead to an additive poly(1/")
overhead. Finally, in Section 5.5, we use the low-recourse transformation to obtain an e�cient fully dynamic
algorithm on low-degree graphs, which leads to an e�cient weighted rounding algorithm and could also serve as
an e�cient aggregation that allows us to reduce the aspect ratio to O("�2), which is the best we can hope for
based on Lemma 3.1. Also, combined with [11] we achieve a poly(1/") multiplicative overhead reduction from
weighted matching algorithms to unweighted ones in bipartite graphs.

Copyright © 2025
Copyright for this paper is retained by authors

5.1 Dynamic Approximate MWM on Matchings in (1/")-Spread Weight Classes Our first subroutine
is an improved algorithm that combines matchings in weight classes that are su�ciently spread. In particular,
the goal is to solve the following problem.

Problem 5.1. ((1� ")-Approximate MWM over Matchings in (1/")-Spread Weight Classes) Given

a set of (1/")-spread weight classes [`1, r1), . . . , [`k, rk) ✓ R, and a set of k matchings M1, . . . ,Mk ✓ G undergoing

adversarial edge deletions/insertions satisfying Mi ✓ G[`i,ri) for all i 2 [k]. The task is to dynamically maintain

a matching M satisfying

w(M) � (1�O("))
X

i2[k]

w(Mi).

As mentioned in Section 3.4, our improvement comes from maintaining the following locally greedy census

matchings.

Definition 5.1. (Locally Greedy Census) Consider k matchings M1,M2, . . . ,Mk. A matching M is a

locally greedy census matching of M1,M2, . . . ,Mk ✓ G if for every edge e 2Mi \M , there exists an f 2Mj such

that e \ f 6= ; for some j > i.

The above local notion should be compared with the standard greedy census matching considered in [4, 29, 38].
In the standard notion, an edge can only be removed if it is incident to some higher-weight edge that is included

into the output matching. In contrast to that, in our locally greedy census matching, if an edge is incident to
any higher-weight edge, regardless of whether that edge is in the output matching we are allowed to remove
it. This allows us to consider potentially much fewer edges when maintaining the local greedy census matching.
Nevertheless, we show that a similar charging argument can be used to prove the following guarantee.

Lemma 5.1. For "  1/2, any set of (1/")-spread weight classes [`1, r1), . . . , [`k, rk) ✓ R, and matchings

M1, . . . ,Mk ✓ G satisfying Mi ✓ G[`i,ri) for all i 2 [k], every locally greedy census matching M over the union of

M1, . . . ,Mk satisfies

w(M) � (1� 4")
X

i2[k]

w(Mi).

Proof. The proof idea is similar to Lemma 4.1. For any edge e 2 Mj , at most two edges in each lower weight
class i < j are not included in M because of e, and the total weight of these edges is at most

X

i2[j�1]

2 · w(e) · "�(i�j)  2"

1� "
· w(e).

Thus,

w(M) �
✓
1� 2"

1� "

◆ X

i2[k]

w(Mi) � (1� 4")
X

i2[k]

w(Mi).

We show that our modified notion allows us to maintain a locally greedy census matching more e�ciently
than what is achieved in [38] for the non-local version. Remarkably, our algorithm achieves a constant update
time when there are only O(log n) matchings.

Theorem 5.1. Algorithm 1 initializes in O(m) time and solves Problem 5.1 by dynamically maintaining a locally

greedy census matching with min{O(log k), O(k/ log n)} worst-case update time and O(1) worst-case recourse.

Proof. For any edge uv, it is contained in the locally greedy census matching if and only if it is in the highest
weight class among Nu and Nv. By definition, after the initialization, Algorithm 1 maintains a locally greedy
census matching. And the initialization takes O(m) time.

For an edge update uv, the only possible changes in the locally greedy census matching are in Nu and Nv.
For insertion of uv, Algorithm 1 checks whether the edges related to u and v in the current matching still satisfies

Copyright © 2025
Copyright for this paper is retained by authors

Algorithm 1: Dynamic Locally Greedy Census Matching

1 function Initialize()

2 for each node u 2 G do

3 Initialize its neighborhood Nu ;.
4 for j = k, . . . , 1 do

5 for uv 2Mj do

6 if Nu = ; and Nv = ; then
7 Add uv to the matching.

8 Add uv to Nu and Nv.

9 function Insert(j, uv)
10 Add uv to Nu and Nv.
11 if u is matched to some vertex u0

, and uu0 2Mi such that i < j then

12 Delete uu0 from the matching.

13 if v is matched to some vertex v0, and vv0 2Mi such that i < j then

14 Delete vv0 from the matching.

15 if uv is in the highest weight class among Nu and Nv then

16 Add uv to the matching.

17 function Delete(j, uv)
18 Delete uv from Nu and Nv.
19 if Nu is not empty then

20 uu0 the edge in the highest weight class among Nu.
21 if uu0

is in the highest weight class among Nu0 . then

22 Add uu0 to the matching.

23 if Nv is not empty then

24 vv0 the edge in the highest weight class among Nv.
25 if vv0 is in the highest weight class among Nv0 . then

26 Add vv0 to the matching.

the condition, and whether uv can be added. For deletion of uv, only the edges in the highest weight class among
Nu or Nv can be added into the matching. Algorithm 1 finds those edges and checks whether the condition is
met. Therefore, it maintains a locally greedy census matching and the worst-case recourse is O(1).

For each node u, there is at most one edge from each weight class in Nu, i.e., |Nu|  k. To maintain the
maximum element in Nu, we can use a binary search tree which runs in O(log k) time. Both Insert and Delete

have O(1) number of updates and queries to the binary search tree. Therefore, the update time would be O(log k).
Alternatively, we can use a packed bit-representation of the weight-class information in Nu. We set the i-th

bit to be 1 if and only if there is an edge in Nu in the (k� i)-th weight class. Thus to find the edge in the highest
weight class among Nu, it su�ces to look at the lowest bit in the representation, which can be done in O(k/ log n)
time in the word RAM model.

5.2 Dynamic Approximate MWM on Degree-Two Graphs After combining the odd and even matchings
with our locally greedy census matching algorithm, we are left with a union of two matchings which is a graph
with maximum degree at most two. That is, we need to solve the following problem.

Problem 5.2. (Fully-Dynamic (1� ")-Approximate MWM on Degree-Two Graphs) Given a graph G
undergoing edge updates satisfying that its maximum degree is at most two. The task is to dynamically maintain

a matching M satisfying the following condition:

w(M) � (1�O(")) · µw(G).

Copyright © 2025
Copyright for this paper is retained by authors

Observe that a degree-two graph consists of paths and cycles. Since an exact MWM on a path or cycle P
can be computed in O(|P |) time with dynamic programming, it su�ces to maintain a collection of short paths
and cycles on which a large-weight matching is supported. For this, one can delete the minimum weight edge in
each ⇥(1/")-length neighborhood while keeping a 1�O(") fraction of the total weight. We propose Algorithm 2
to solve Problem 5.2 by dynamically maintaining this O(1/")-length decomposition of the paths and cycles and
computing an exact MWM on each piece.

Lemma 5.2. (Dynamic Path/Cycle Maintainer) There is a deterministic data structure D that maintains

a set of dynamic paths or cycles {Pi} under the insertion/deletion of edges and supports the following operations,

where all update times and recourse mentioned are worst-case:

1. Find the path/cycle Pu that u belongs to in O(|Pu|) time.

2. FindHeads(P): For a path P , find its both ends in O(|Pu|) time.

3. Insert/Delete(uv): Insert/delete an edge uv in O(|Pu|+ |Pv|+ 1) time.

4. FindMin(P, h, `, r): For a path P , find the edge with the minimum weight between the `-th and the r-th edges

counting from h, one of the end of P , in O(|P |) time.

5. For a path/cycle P , explicitly maintain its MWM in O(|P |) time and recourse.

Proof. We can check all elements in a path in linear time in its size. Thus the first 4 operations are straightforward
to achieve. Now we prove that it can output the MWM. Consider the following dynamic programming for
computing MWM on paths. For a path P , number its edges from P1 to P|P |. Denote fi,0/1 as the MWM on the
path P1 . . . Pi when Pi is in the matching or not. For any i  |P |, fi,0/1 can be computed by

fi,x = wi · x+ max
0y1�x

fi�1,y.

Therefore, the value can be computed in O(|P |) time and the edge list corresponding to the MWM can be inferred
by taking notes of how each state is updated.

Lemma 5.3. During the execution of Algorithm 2, D maintains a set of paths/cycles with length at most 3d"�1e.

Proof. The length of a path only increases after an edge insertion in D, and Algorithm 2 calls Maintain every
time which splits the path into two whenever its length is at least 3d"�1e. Thus the paths have lengths at most
3d"�1e � 1. The only case D keeps a cycle is that before the formation of that cycle, the path has a length at
most 3d"�1e � 1. Therefore, the cycle has length at most 3d"�1e.

Lemma 5.4. Algorithm 2 initializes in O(m"�1) time and solves Problem 5.2 by explicitly maintaining an

matching with O("�1) worst-case update time and O("�1) worst-case recourse.

Proof. Lemma 5.3 show that D maintains a set of paths/cycles with length at most 3d"�1e. By Lemma 5.2, we
know that each operation of D takes time O(1/"). Now consider the recurrence in Maintain. Any path that
appears in Maintain has length at most O(1/") and will be at least d"�1e shorter in line 24. Thus there are
only O(1) recurrences in Maintain. Therefore, the worst-case update time of the algorithm is O(1/") and the
worst-case recourse is O(1/").

Now we show it maintains a (1 � O("))-approximated MWM. In a degree-two graph, every connected
component is either a path or a cycle, and D maintains an exact MWM on each component of G \ R according
to the last operation in Lemma 5.2. We know that µw(G) � 1

2

P
e2G we, since for each component in G, the

“odd” edges and “even” edges both form a matching. On the other hand, an edge is added into R only if it is
the minimum among a set of d"�1e edges, and those sets are disjoint for di↵erent edges in R since we only add
edges to R when the path is at least 3d"�1e long. Thus

P
e2R we  " ·

P
e2G we  2" · µw(G). Denote M as the

matching output by D, we have

w(M) = µw(G \R) � µw(G)�
X

e2R

we � (1� 2")µw(G).

Copyright © 2025
Copyright for this paper is retained by authors

Algorithm 2: Fully-Dynamic (1� ")-Approximate MWM on Degree-Two Graphs

1 function Initialize()

2 D an instance of the dynamic path/cycle maintainer described in Lemma 5.2.
3 R ;.
4 for uv 2 E do Insert(uv).

5 function Insert(u, v)
6 D.Insert(uv).
7 if Pu is a path then Maintain(Pu).

8 function Delete(uv)
9 if uv 2 R then R R \ uv.

10 D.Delete(uv).
11 hu, u D.FindHeads(Pu).
12 if there is an edge huh0

u 2 R then

13 R R \ huh0
u.

14 D.Insert(huh0
u).

15 Maintain(Pu).

16 hv, v D.FindHeads(Pv).
17 if there is an edge hvh0

v 2 R then

18 R R \ hvh0
v.

19 D.Insert(hvh0
v).

20 Maintain(Pv).

21 function Maintain(P)
22 h, t D.FindHeads(P).
23 if |P | � 3d"�1e then
24 uv D.FindMin(P, h, b(|P |� d"�1e)/2c, b(|P |� d"�1e)/2c+ d"�1e � 1).
25 D.Delete(uv).
26 R R [{uv}.
27 Maintain(Pu).
28 Maintain(Pv).

5.3 Weight Reduction Framework for General Graphs We are now ready to show our main result, a
deterministic framework with poly(1/") multiplicative overhead and recourse, which reduces the aspect ratio from
W to poly(1/") for any (1� ")-approximate dynamic MWM algorithm.

Theorem 5.2. Given a dynamic (1 � ")-approximate MWM algorithm A that, on input n-vertex m-edge graph

with aspect ratio W , has initialization time I(n,m,W, "), amortized/worst-case update time U(n,m,W, "),
amortized/worst-case recourse �(n,m,W, "), there is a transformation which produces a dynamic (1 � O("))-
approximate MWM algorithm with initialization time

O(I(n,m,⇥("�5),⇥(")) +m"�1)

time, amortized/worst-case update time

O(U(n,m,⇥("�5),⇥(")) + �(n,m,⇥("�5),⇥("))"�1),

and amortized/worst-case recourse

O(�(n,m,⇥("�5),⇥("))"�1).

The transformation is partially dynamic preserving.

There are three steps in Algorithm 3. In the first step, for all 1  i  d(L+1)/3e, Mi is maintained by Ai and
is a (1� ")-approximation of µw(eEi). In the second step, we use the locally greedy census matching Algorithm 1

Copyright © 2025
Copyright for this paper is retained by authors

Algorithm 3: Reduction Framework

Input: A dynamic algorithm for (1� ")-approximate maximum weight matching A
1 function Initialize()

2 L blog1/" W c = eO(1).

3 E�1 = EL+1 = ;.
4 for i = 0, . . . , L do

5 Ei {e 2 E : blog1/" w(e)c = i}.
6 for i = 1, . . . , d(L+ 1)/3e do
7 `i 3i� 3, ri min(L, 3i� 1).

8 eEi
ri+1S

j=`i�1
Ej .

9 Ai an independent copy of A.

10 Initialize Ai with eEi.
11 Denote Mi as the matching maintained by Ai.

12 C1, C2 two independent copies of Algorithm 1.
13 Initialize C1 with {Mi | i ⌘ 1 (mod 2) ^ 1  i  d(L+ 1)/3e}.
14 Initialize C2 with {Mi | i ⌘ 0 (mod 2) ^ 1  i  d(L+ 1)/3e}.
15 Denote Modd as the matching maintained by C1 and Meven as the one maintained by C2.
16 M Algorithm 2.
17 Initialize M with Modd [Meven.
18 output the matching maintained by M.

19 function Update(e)
20 j blog1/" w(e)c.
21 Update Ej accordingly.
22 for i : 1  i  d(L+ 1)/3e ^ `i � 1  j  ri + 1 do

23 Update eEi based on the update in Ej .

24 Use Ai to maintain Mi based on the update in eEi.
25 if i is odd then Use C1 to maintain Modd based on the update in Mi.
26 else Use C2 to maintain Meven based on the update in Mi.

27 Feed the updates in C1 and C2 into M.
28 output the matching maintained by M.

to aggregate Mi for odd i and even i respectively, into Modd and Meven, with the guarantee from Lemma 5.1 that
Modd and Meven both keep at least a (1� 4") fraction of the total weight of the corresponding matchings. Then
we use Algorithm 2 for degree-two graphs to aggregate Modd and Meven, and Lemma 5.4 shows that the final
matching output by Algorithm 3 is a (1� 2")-approximated MWM on Modd [Meven. We will prove that since at
each step we lose a O(") fraction, the final matching we output keeps a (1�O("))-approximate MWM.

Lemma 5.5. For "  1/2, Algorithm 3 maintains a matching M with µw(M) � (1�O("))µw(G).

Proof. Lemma 3.1 shows that

µw(M1 [M2 [· · · [Md(L+1)/3e) � (1�O("))µw(G).

Consider the locally greedy census matching Modd and Meven. Denote Iodd = {1  i  d(L + 1)/3e : i is odd},
and Ieven = {1  i  d(L+ 1)/3e : i is even}. Lemma 5.1 shows that

w(Modd) � (1�O("))
X

i2Iodd

w(Mi) and w(Meven) � (1�O("))
X

i2Ieven

w(Mi).

Copyright © 2025
Copyright for this paper is retained by authors

Also, we know

Modd ✓
[

i2Iodd

Mi and Meven ✓
[

i2Ieven

Mi,

thus

µw(Modd [Meven) � µw

0

@
d(L+1)/3e[

i=1

Mi

1

A�

X

i2Iodd

w(Mi)� w(Modd)

!
�

X

i2Ieven

w(Mi)� w(Meven)

!

� (1�O("))µw(G)�O(") ·
X

i2Iodd

w(Mi)�O(") ·
X

i2Ieven

w(Mi).

Lemma 4.1 shows that
X

i2Iodd

w(Mi)  (1 + 4")µw(G) and
X

i2Ieven

w(Mi)  (1 + 4")µw(G),

and thus
µw(Modd [Meven) � (1�O("))µw(G).

The final matching M we output is a (1� 2")-approximate MWM on Modd [Meven. Therefore,

µ(M) � (1�O("))µw(G).

Lemma 5.6. Algorithm 3 initializes in O(I(n,m,⇥("�5),⇥(")) + m"�1) time, and has update time

O(U(n,m,⇥("�5),⇥(")) + �(n,m,⇥("�5),⇥("))"�1) and recourse O(�(n,m,⇥("�5),⇥("))"�1).

Proof. Each weight class [`, r) has ⇥("�5) aspect ratio. Thus each edge update e 2 Ej causes �(n,m,⇥("�5),⇥("))
changes in corresponding Mis which take O(U(n,m,⇥("�5),⇥("))) update time. By Theorem 5.1, C1, C2 both
handle each of these changes in O(log1/" W/ log n) = O(1) time and recourse, thus the update time of M would

be O(�(n,m,⇥("�5),⇥("))"�1) and the recourse is at most O(�(n,m,⇥("�5),⇥("))"�1). The initialization time
follows from that of each subroutine.

By repeatedly applying Lemma 3.1 and Algorithm 2, we can further reduce the aspect ratio.

Theorem 5.3. Given a dynamic (1 � ")-approximate MWM algorithm A that, on input n-vertex m-edge graph

with aspect ratio W , has initialization time I(n,m,W, "), amortized/worst-case update time U(n,m,W, "), and
amortized/worst-case recourse �(n,m,W, "), there is a transformation that produces a dynamic (1 � O("))-
approximate MWM algorithm that has initialization time

O(I(n,m,⇥("�2�3·2�d

),⇥(")) +m"�1),

amortized/worst-case update time

O(U(n,m,⇥("�2�3·2�d

),⇥(")) + �(n,m,⇥("�2�3·2�d

),⇥("))"�(1+d)),

and amortized/worst-case recourse

O(�(n,m,⇥("�2�3·2�d

),⇥("))"�(1+d))

for any integer parameter d 2 Z�0. The transformation is partially dynamic preserving.

Proof. For each weight class [`, r) with aspect ratio ⇥("�2�3·2�x

) (we start with x = 0, i.e., ⇥("�5)), denote
m =

p
` · r. There is a consistent constant c in Lemma 3.1 such that given two (1 � ")-approximate MWM M1

Copyright © 2025
Copyright for this paper is retained by authors

and M2 on the “padded” weight classes [`,m · "�1) and [m · ", r) respectively, there is a matching of the weight
class [`, r) on M1 [M2 with approximation ratio

⇣
1� c ·

⇣
log(1/")/ log("�1�3·2�(x+1)

)
⌘
· "
⌘
=

✓
1� c

1 + 3 · 2�(x+1)
· "
◆
� (1� c · ").

Algorithm 2 can maintain a (1�")-approximate MWM on the union, thus maintain a (1� (c+1) ·")-approximate

matching, and we reduce the aspect ratio from ⇥("�2�3·2�x

) to ⇥("�2�3·2�(x+1)

). Repeatedly applying Lemma 3.1
and Algorithm 2 for d times, we achieve a d-depth binary tree representation of the weight reduction. Each inner
node of the binary tree is a matching maintained on the union of its o↵spring. Since for each layer, we lose a c+1
factor in the approximation error, the matching maintained at the root has an approximation ratio 1� (c+1)d ·".

Since there are 2d = O(1) nodes in the binary tree, the initialization takes time

O(I(n,m,⇥("�2�3·2�d

),⇥(")) +m"�1).

For the update time and recourse, consider the layers in decreasing depths. In the deepest layer with depth
d, there are 2d = O(1) nodes. The edge change could occur in each of them, so there is an update time

O(U(n,m,⇥("�2�3·2�d

),⇥("))) and recourse O(�(n,m,⇥("�2�3·2�d

),⇥("))). For the layer with depth d� 1, the
number of edge updates in total equals the recourse of the layer with depth d, thus both the update time and
recourse would be O(�(n,m,⇥("�2�3·2�d

),⇥(")))"�1. Suppose "  1/2, an easy induction shows that the total
update time would be

O(U(n,m,⇥("�2�3·2�d

),⇥(")) + �(n,m,⇥("�2�3·2�d

),⇥("))"�(1+d)),

and the recourse would be
O(�(n,m,⇥("�2�3·2�d

),⇥("))"�(1+d)).

Combined with Theorem 5.2 we finish the proof.

5.4 Low-Recourse Transformation The update time of our reduction comprises two parts: the original
update time of the algorithm A and its recourse. According to Theorem 5.3, the multiplicative overhead on the
update time is constant while that on the recourse is poly(1/"). A high recourse of the algorithm could make it
ine�cient when serving as a subroutine. [37] provides a low-recourse transformation that reduces the recourse
to worst-case O(W/") for any ↵-approximate dynamic MWM algorithm. In this section, we design a tailored
low-recourse transformation for (1 � ")-approximate weight matching that reduces the recourse to amortized
O(poly(logW)/") (see Theorem 5.4). Besides e�ciency, the low-recourse transformation can be applied to an
algorithm that implicitly maintains a matching as long as it supports the following vertex-match query, relaxing
the requirement of explicitly maintaining the matching.

Definition 5.2. (Vertex-Match Query) A dynamic matching algorithm is said to support the vertex-match

query in query time T if given any vertex query v, it answers in O(T) time either v is unmatched in the maintained

matching or the matched vertex of v; and it can output all the edges in the maintained matching M in O(|M | ·T)
time.

Formally, denote G0 as the initial graph and Gi as the graph after the i-th update. The recourse of a dynamic
matching algorithm A measures the changes in the support set of the matching maintained by A, which is defined
as follows.

Definition 5.3. (Worst-Case Recourse of a Dynamic Matching Algorithm) For a fixed dynamic

matching algorithm A that (possibly implicitly) maintains a matching Mi on graph Gi, the worst-case recourse of

A on G0, G1, . . . , Gk is defined as maxi2[k] |Mi �Mi�1|, i.e., the maximum changes in the matching edge set.

Definition 5.4. (Amortized Recourse of a Dynamic Matching Algorithm) For a fixed dynamic

matching algorithm A that (possibly implicitly) maintains a matching Mi on graph Gi, the amortized recourse of

A on G0, G1, . . . , Gk is defined as
1
k

P
i2[k] |Mi �Mi�1|, i.e., the average changes in the matching edge set.

Copyright © 2025
Copyright for this paper is retained by authors

We start with designing a transformation between two matchings fMi on Gi and Mj on Gj where i < j

that builds a large matching on Gj based on fMi and Mj with small |fMi � Mj |. We will use �-additive-
approximate to represent an additive approximation. Formally, a matching M on G is �-additive-approximate if
w(M) � µw(G)��.

Algorithm 4: Direct Transformation between Two Time Points

Input: Two matchings fMi on Gi and Mj on Gj .

1 Consider P = fMi �Mj .
2 Denote U as the set of updated edges between time i+ 1 and time j.
3 D ;.
4 for any edge e in U \ P and each of its direction do

5 if there exists at least 2/" edges in that direction in P then

6 Denote E0 as the closest 2/" edges.
7 if E0

doesn’t contain any edge in U then

8 Add the edge with minimum weight in E0 \Mj into D.

9 For those paths and cycles in P \D that contains edges in U , fMj picks edges in Mj .

10 For the remaining ones, fMj pick edges in fMi.

11 return fMj .

Claim 5.1. Suppose fMi is a �i-additive-approximate MWM on Gi and Mj is a �j-additive-approximate MWM

on Gj. Then, Algorithm 4 outputs a (�i +�j + " · µw(Gj))-additive-approximate MWM fMj on Gj such that

|fMi � fMj |  O((j � i) · "�1).

Proof. Starting with Mj , the additive approximation is �j . It increases by " · µw(Gj) during the deletion in line

8 and �i during the substitution in line 10. Since any edge in fMi � fMj belongs to a path or cycle in P \D that
contains an edge in U , by construction, its size is bounded by O(1/") · |U | = O((j � i) · "�1).

Now we are ready to introduce the full transformation. By running an independent copy of A on the
unweighted version of G we assume that we have access to a (1� ")-approximation ⌫i to the size of the MCM in
Gi. The full transformation works in multiple phases, where each phase spans a contiguous segment of time points.
Suppose that a phase starts at time t. The transformation reads the entire edge set of the weighted matching Mt

maintained by A on Gt and sets the length of the phase to be " · ⌫t. Then, we define several checkpoints ti within
this phase, where t0 is set to t and the remaining checkpoints are defined iteratively as ti+1

def
= ti +

"·w(Mti)
W . The

transformation will compute a matching fMti for each checkpoint, and this matching will be used as the output
from this time point until the next checkpoint. That is, for each time point ti < j < ti+1, the matching output

by the transformation on Gj will simply be fMti \Gj , which is fMti with edges deleted in Gj dropped.

Lemma 5.7. Suppose on Gti ,
fMti is a (1 � x · ")-approximate MWM. Then, for any j such that ti < j < ti+1,

fMti \Gj is a (1� (x+ 2) · ")-approximate MWM on Gj.

Proof. Denote U as the edge updates between ti and ti+1 then

w(U)
def
=

X

e2U

w(e)  " · w(Mti)

W
·W  " · µw(Gti).

The weight of the matching is at least

w(fMti \Gj) � w(fMti)� w(U) � (1� (x+ 1) · ") · µw(Gti),

Copyright © 2025
Copyright for this paper is retained by authors

while the MWM in the graph has weight at most

µw(Gj)  µw(Gti) + w(U)  (1 + ") · µw(Gti).

Thus

w(fMti \Gj) �
1� (x+ 1) · "

1 + "
· µw(Gj) � (1� (x+ 2) · ") · µw(Gj).

Lemma 5.7 shows that it su�ces to maintain a good approximate MWM fMti at each checkpoint. Below we show
that the number of checkpoints within each phase is bounded by O(W).

Lemma 5.8. Each phase has at most
W

(1�")2 checkpoints.

Proof. For a phase starting at time t0, its length is " · ⌫t0 . The gap between any checkpoints ti and ti+1 is at least

" · w(Mti)

W
� "(1� ") · µw(Gti)

W
� "(1� ") · µ(Gti)

W
� "(1� ") · (µ(Gt0)� "⌫t0)

W
� "(1� ")2⌫t0

W
,

thus the number of checkpoints is at most W
(1�")2 .

Algorithm 4 provides a direct transformation between any two checkpoints. The full transformation will
use Algorithm 4 as a subroutine. The initial idea is to link the checkpoints in a path-like way, i.e., the matching
maintained by the full transformation fMti on Gti is the output of Algorithm 4 on fMti�1 and Mti , where Mti is
the matching maintained by A on Gti . Two issues arise. The first issue is that the guarantee of Claim 5.1 is an
additive approximation, thus µw(Gti�1) should not be too much larger than µw(Gti). The second issue is that
the path length is O(W). Since after one direct transformation, the approximation error accumulates, suppose
we choose a (1� �)-approximate MWM algorithm, the final approximation error could reach O(W · �).

We solve the above issues in the following way. The first issue can be fixed by only allowing fMti to be
transformed by some checkpoint tj with µw(Gtj)  2·µw(Gti). The second issue is fixed by linking the checkpoints
in a tree-like way instead of a path-like. Formally, we define the transformation tree as follows.

Definition 5.5. (Transformation Tree) The transformation tree is a rooted tree where the nodes represent

distinct checkpoints and could have ordered children. The degree of a transformation tree is the maximum number

of children of any node. The depth of a node in the transformation tree is the number of edges in the path between

the root and that node. The depth of the transformation tree is the largest depth of its node. The mapping between

the checkpoints and the nodes will ensure that the preorder traversal of the transformation tree corresponds to a

contiguous subarray of the checkpoints, i.e., ti, ti+1, · · · , tj. Further, it ensures that for any pair of nodes ti, tj
such that tj is an ancestor of ti in the transformation tree, µw(Gtj)  O(1) · µw(Gti).

Lemma 5.9. Given a transformation tree with depth d and degree c that corresponds to the checkpoints

ti, tt+1, . . . , tj and a dynamic (1�")-approximate MWM algorithm A with initialization time I(n,m,W, "), update
time U(n,m,W, ") and query time T (n,m,W, "), there is an algorithm that dynamically and explicitly maintains

a (1�O(d · "))-approximate MWM on Gti , Gti+1 , . . . , Gtj with initialization time

I(n,m,W, ") +O(⌫ti) · T (n,m,W, "),

amortized update time

U(n,m,W, ") +O(c · d · "�1) · T (n,m,W, "),

and ensures that

1

tj � ti

jX

k=i+1

|fMtk � fMtk�1 | = O(c · d · "�1),

where fMtk is the matching output by the framework on Gtk . The transformation is partially dynamic preserving.

Proof. We first describe the transformation. For the root ti, we set fMti = Mti . For any checkpoint tk > ti, it

has a parent node tp < tk in the transformation tree. We run Algorithm 4 on fMtp and Mtk to get fMtk . We now
establish the guarantee of the transformation.

Copyright © 2025
Copyright for this paper is retained by authors

Approximation Error Claim 5.1 shows that for any checkpoint tk > ti and its parent node tp, the additional

approximation error of fMtk increases by O(")·µw(Gtk) compared to that of fMtp , sinceMtk is a (1�")-approximate

MWM on Gtk . Denote Ak as the set of ancestors of tk, then the additive approximation error of fMtk is at most
O(") ·

P
tl2Ak[{tk} µw(Gtl) = O(d · ") · µw(Gtk), since the definition of a transformation tree ensures that for any

tl 2 Ak, µw(Gtl)  O(1) · µw(Gtk).
Runtime and Recourse The additional initialization time is the cost of reading the edge set of Mti . For

the update time and recourse, consider a fixed checkpoint tk and its parent tp. Using the vertex-match query of

A, we can find all edges in fMtk � fMtp in time O((tk � tp) · "�1) · T (n,m,W, ") by Claim 5.1. In other words, the
cost of a direct transformation from tp to tk can be amortized by all updates between tp and tk and the amortized
additional update time is O("�1) · T (n,m,W, ") while the amortized recourse is O("�1). It su�ces to show that
for any fixed update t, there will be at most O(c · d) direct transformation that covers it, i.e., the number of pairs
tk and its parent node tp such that tp  t  tk is at most O(c · d). The definition of the transformation tree
ensures that its subtree also corresponds to a contiguous subarray of checkpoints. Consider a fixed depth of nodes
in the transformation tree. The subtrees with those nodes as root correspond to disjoint contiguous subarray.
Thus t could be included in at most one of them, i.e., the number of distinct tp is at most O(d). Since the degree
of each node is c, we conclude the proof.

Below we show an online construction of O(logW) transformation trees corresponding to disjoint contiguous
subarrays whose union covers the entire phase.

Algorithm 5: Online Construction of Transformation Trees within a Phase

Input: A set of checkpoints {t0, t1, . . . , tl} where l = O(W).
1 Denote Mti as the matching maintained by A on Gti .

2 ✓ dlog W
(1�")2 e = O(logW).

3 root t0.
4 root.complete 0.
5 root.depth 0.
6 cur t0.
7 for i = 1, . . . , l do
8 while blogw(Mcur)c > blogw(Mti)c and cur 6= root do

9 cur cur.father.

10 if blogw(Mcur)c > blogw(Mti)c then
11 root ti.
12 ti.depth 0.
13 else

14 ti.father cur.
15 ti.depth cur.depth+ 1.

16 if ti.depth = ✓ then

17 while cur.complete = 1 do

18 cur cur.father.

19 cur.complete = 1.
20 else

21 cur ti.
22 cur.complete = 0.

Lemma 5.10. Algorithm 5 constructs O(logW) transformation trees with depth O(logW) and degree O(logW)
in amortized O(1) time that corresponds to contiguous subarrays that are disjoint and their union covers the entire

phase.

Proof. It is clear that Algorithm 5 constructed a set of transformation trees in amortized O(1) time with depth

Copyright © 2025
Copyright for this paper is retained by authors

O(logW) that are disjoint. Since there are O(W) checkpoints within a phase according to Lemma 5.8 and the
choice of ✓, those transformation tree satisfy the covering property. We will prove that there are O(logW) of
them, each with degree O(logW).

Algorithm 5 creates a new transformation tree whenever the root changes, i.e., at line 11. Thus the new root
satisfies that blogw(Mnew root)c < blogw(Mold root)c. The length of a phase starting with t0 is set to be " · ⌫t0 .
Thus for any checkpoint ti within the phase,

(1� ") · ⌫t0  w(Mti) 
1 + "

1� "
·W · ⌫t0 ,

meaning that the number of di↵erent blogw(Mt·)c is at most O(logW).
For each node v in the constructed tree, v.complete represents whether there is a subtree with one of its

children as root that is a complete binary tree with depth ✓� v.depth. v.complete can only be 0 or 1 during the
execution. And whenever it changes to 1, v would continue building its subtree with a new child node. Therefore,
with the same reason as the number of roots, v would have O(logW) children when v.complete = 0 and O(logW)
children when v.complete = 1, proving that the degree is O(logW).

Theorem 5.4. Given a dynamic (1 � ")-approximate MWM algorithm A with initialization time I(n,m,W, "),
update time U(n,m,W, ") and query time T (n,m,W, "), there is a transformation that produces a dynamic

algorithm that explicitly maintains a (1�O(" · logW))-approximate MWM with initialization time

I(n,m,W, "),

amortized update time

U(n,m,W, ") +O(log2 W · "�1) · T (n,m,W, "),

and amortized recourse

O(log2 W · "�1).

The transformation is partially dynamic preserving.

Proof. The only initialization time is for A. We would prove the amortized update time and recourse within each
phase. According to Lemma 5.10, Algorithm 5 builds O(logW) transformation trees with O(logW) depth and
degree that correspond to disjoint contiguous subarrays of checkpoints and their union covers the entire phase.
Lemma 5.9 shows that for each transformation tree, we spend O(⌫t0) · T (n,m,W, ") time and O(⌫t0) recourse for
initialization of the transformation. The initialization for O(logW) transformation trees can be amortized over
the entire phase to be O(logW · "�1) ·T (n,m,W, ") amortized update time and O(logW · "�1) recourse. Thus the
bottleneck is the O(log2 W · "�1) · T (n,m,W, ") amortized update time and O(log2 W · "�1) recourse that each
transformation tree induces by the checkpoints other than root.

Consequently, our framework has a poly(1/") additive overhead independent of the underlying algorithm. For
simplicity, in the further use of this result in this work, we only consider algorithms that explicitly maintain the
matching with T (n,m,W, ") = O(1).

Corollary 5.1. Given a dynamic (1� ")-approximate MWM algorithm A that, on input n-vertex m-edge graph

with aspect ratio W , has initialization time I(n,m,W, "), update time U(n,m,W, ") and query time T (n,m,W, "),
there is a transformation that produces a dynamic (1 � O(" log "�1))-approximate MWM algorithm that has

initialization time

O(I(n,m,⇥("�2�3·2�d

),⇥(")) +m"�1),

amortized update time

O(U(n,m,⇥("�2�3·2�d

),⇥(")) + "�2�d log2 "�1 · T (n,m,⇥("�2�3·2�d

), ")),

and amortized recourse

O("�2�d log2 "�1)

for any integer parameter d 2 Z�0. The transformation is partially dynamic preserving.

Proof. It follows from combining Theorem 5.3 and Theorem 5.4.

Copyright © 2025
Copyright for this paper is retained by authors

5.5 Putting Everything Together With the help of our low-recourse transformation, we obtain an e�cient
fully dynamic algorithm on low-degree graphs, which then leads to a eO(poly(1/")) update time rounding algorithm
for weighted fractional matchings. The low-degree algorithm can also serve as an e�cient aggregation even if we
reduce the aspect ratio to O("�2) in our framework, which is the best we can hope for based on Lemma 3.1.
Finally, combined with [11] we reduce weighted matching algorithms to unweighted ones in bipartite graphs.

5.5.1 Fully Dynamic Algorithm on Low-Degree Graphs

Theorem 5.5. Given an n-vertex m-edge graph G with edge weights bounded by W that undergoes edge insertions

and deletions such that the maximum degree of G is bounded by �, there is an algorithm with O(�"�5 log2 "�1)
amortized update time and O("�5 log2 "�1) amortized recourse that explicitly maintains a (1 � O(" log "�1))-
approximate MWM in G.

Proof. For a subgraph of G, we can use the following standard algorithm [29] to maintain a (1� ")-approximate
MWM on it.

Fact 5.1. There is a fully dynamic (1 � ")-approximate MWM algorithm that has amortized update time

O(�W"�2 log("�1)) and recourse O(�W"�1) on a graph with maximum degree � and aspect ratio W .

The theorem follows by applying Corollary 5.1 with d = 3.

5.5.2 Rounding Weighted Fractional Matching We obtain a weighted rounding algorithm with polynomial
dependence on "�1, showing that the dynamic fractional matching problem is as hard as the integral one up to
poly(1/") factors. Formally, a dynamic weighted rounding algorithm is defined as follows.

Definition 5.6. (see e.g., [22, Definition 3.11]) A dynamic rounding algorithm, for a given n-vertex graph

G = (V,E), edge weights w 2 NE
bounded by W = poly(n), and accuracy parameter " > 0, initializes with an

x 2MG and must maintain an integral matching M ✓ supp(x) with w(M) � (1 � ")w>x under entry updates

to x that guarantee x 2MG after each operation.

We are going to use the given fractional matching to find a sparse subgraph on which there is a large weight
matching.

Lemma 5.11. ([22]) Given an " > 0, there is a deterministic algorithm that, on an m-edge graph G with edge

weights bounded by W and a fractional matching x 2MG, initializes in eO(m) time, supports

• inserting/deleting and edge or changing the value of xe in amortized eO(W · "�1) time,

and maintains

• a subgraph H ✓ G with maximum degree eO("�2) on which a fractional matching x(H)
of weight

P
e2E w(e)x(H)

e � (1�")
P

e2E w(e)xe that satisfies x(H)(v)  x(v)+O(") for all v 2 V and

���x(H)
e � xe

��� 
O("2) for all e 2 E.

Lemma 5.12. Given a fractional matching x 2 MG, for any " > 0 we can initialize in eO(m) a subgraph H
of G and maintain it with eO("�1) time per entry update to x such that H has maximum degree eO("�2) and

µw(H) � (1�O("))w>x holds.

Proof. We split the edges into K = O(logW) classes E0 [· · ·[EK such that Ei contain precisely the edges with
weights between 2i and 2i+1 � 1 (inclusively). Let Gi be the induced subgraph of Ei. Let "0 = ⇥("/K). We run
Lemma 5.11 on each of the Gi with accuracy "0 and obtain Hi. Let H = H0 [· · · [HO(logW). By Lemma 5.11,

there is a fractional matching x(Hi) of weight

X

e2Ei

wex
(Hi)
e � (1� "0)

X

e2Ei

wexe

Copyright © 2025
Copyright for this paper is retained by authors

and therefore letting x(H) def
= x(H1) + · · · + x(HK) we have w>x(H) � (1 � "0)w>x. Notice that x(H)(v) 

x(v) +O("0K)  1 +O(") for each v 2 V and x(H)[B]  x[B] +O(("0)2 ·K) · |B|2  x[B] +O(")|B| for all odd
sets of size at most O(1/"). Therefore, we see that if we scale x(H) down by a multiplicative 1+O(") factor then
it will be a feasible fractional matching supported on H. This proves that µw(H) � (1 � ")w>x. The update
time of the algorithm follows from that of Lemma 5.11 which is eO("0�1) = eO("�1) since the edge weights in a
single Ei are within a factor of two from each other.

Theorem 5.6. Given an m-edge graph, there is a dynamic rounding algorithm that initializes in eO(m) time and

handles each entry update to x in eO("�8) time per update.

Proof. Given the fractional matching x, we run Lemma 5.12 to maintain a eO("�2)-degree subgraph H ✓ G with
µw(G) � (1 � O("))w>x. We then apply Theorem 5.5 to maintain a (1 � O(" log "�1))-approximate matching
over H. By the guarantee of H, such a matching will have weight at least (1 � O(" log "�1))w>x. Since H has
maximum degree eO("�2), Theorem 5.5 handles each update to H in eO("�7). The theorem follows as there are
eO("�1) modifications to H per update to x by Lemma 5.12.

5.5.3 Improved Weight Reduction Framework for General Graphs The fully dynamic low-degree
algorithm in Theorem 5.5 allows us to reduce the aspect ratio to O("�2), which is the best we can get
using Lemma 3.1.

Theorem 5.7. Given a dynamic (1 � ")-approximate MWM algorithm A that, on input n-vertex m-edge graph

with aspect ratio W , has initialization time I(n,m,W, "), and update time U(n,m,W, "), there is a transformation

which produces a dynamic (1� " log("�1))-approximate MWM dynamic algorithm that has initialization time

log("�1) ·O(I(n,m,⇥("�2),⇥(")) +m"�1),

amortized update time

poly(log("�1)) ·O(U(n,m,⇥("�2),⇥(")) + "�5),

and amortized recourse

poly(log("�1)) ·O("�5).

The transformation is partially dynamic preserving.

Proof. According to Lemma 3.1, we consider any 2-wide weight partition of G. Denote g = dlog("�3)e+1, and for
0 < j  g�1, denote Ij = {i : i ⌘ j (mod g)}. The weight gap between neighboring “padded” weight classes in Ij
is ⌦("�1), and we use Algorithm 1 to aggregate matchings in Ij and use the low-degree algorithm in Theorem 5.5
to maintain a (1� " log "�1)-approximate MWM on the union. Following a similar proof of Lemma 3.1 itself, the
union of the greedy matchings keeps a 1�O(" log "�1) fraction thus so does the output matching.

Any edge would be contained in O(log("�1)) “padded” weight classes. For initialization, we use Theorem 2.1
to compute a (1 � ")-approximate MWM on the union, and it takes m log("�1)"�1 time. The update time and
recourse come from Theorem 5.1 and Theorem 5.5.

5.5.4 From Weighted Matching to Unweighted Matching in Bipartite Graphs [11] provides a
framework to reduce dynamic weighted matching algorithms to unweighted ones in bipartite graphs. We slightly
optimize their algorithm to have better runtime. The description of the algorithm, Algorithm 6, and its proof are
deferred to Section A.

Lemma 5.13. ([11, 33]) For "  1/6, given a dynamic algorithm A that, on input n-vertex m-edge bipartite
graph, initializes in I(n,m, ") time and explicitly maintains an (1 � ")-approximate MCM in U(n,m, ") update

time, there is a dynamic algorithm that initializes in

O(I(nW,mW, ") +m log("�1)"�1)

time and explicitly maintains an (1�")-approximate MWM on a bipartite graph with integer edge weights bounded

by W in

O(W · U(nW,mW,⇥("))) +W log("�1)"�2)

Copyright © 2025
Copyright for this paper is retained by authors

amortized update time and has amortized recourse

O(W log("�1)"�2).

The transformation is partially dynamic preserving. On non-bipartite graphs, the approximation ratio is
2
3 � ".

Lemma 5.13 requires integer weights. By a standard scaling and rounding argument, one can reduce a
problem with real weights and W aspect ratio to the same problem with integer weights and W"�1 aspect ratio.
Combined Theorem 3.2, Lemma 5.13 and the above fact, we have the following reduction from weighted matching
to unweighted matching.

Theorem 5.8. Given a dynamic algorithm A that, on input n-vertex m-edge unweighted bipartite graph,

initializes in I(n,m, ") time and explicitly maintains an (1 � ")-approximate MCM in U(n,m, ") update time,

there is a dynamic algorithm that initializes in

log("�1) ·O(I(⇥("�3)n,⇥("�3)m,⇥(")) +m"�1)

time and explicitly maintains an (1�O(" log("�1)))-approximate MWM in

poly(log("�1)) ·O(U(⇥("�3)n,⇥("�3)m,⇥(")) · "�3 + "�5)

amortized update time, and has amortized recourse

poly(log("�1)) ·O("�5).

The transformation is partially dynamic preserving. In non-bipartite graphs, the approximation ratio changes to
2
3 �O(" log("�1)) while the runtime and recourse remain the same.

The reduction improves on the work of [11], whose reduction, when combined with [29], has an update time
of U("�O(1/")n, "�O(1/")m,⇥(")) · "�O(1/") · logW .

6 Applications

In this section, we discuss the implications of our reduction frameworks for obtaining (1�")-approximate maximum
weight matching algorithms in various models.

6.1 The Dynamic Model In the dynamic setting, barring a few exceptions (for example, [28, 17]), much of
the focus has been designing algorithms for (1 � ")-approximate MCM. Thus, a lot of the weighted matching
results for bipartite graphs follow from the reduction of [11], and consequently, incur a multiplicative overhead of
"�O(1/"). In this section, we remedy this. A summary of our results is given in Table 1. We start with bipartite
graphs.

Table 1: Summary of Prior and Our Results on Dynamic Weighted Matching
Setting Prior Result Our Result Reduction

Fully Dynamic
Bipartite

"�O(1/") · n
2⌦(

p
log n)

[36]+[11]
O(poly("�1) · n

2⌦(
p

log n))
Lemma 6.1

Thm 5.8

Incremental
Bipartite

O(m log n log2(nW/")"�2)
[17]

(fractional)
m · "�O(1/") · logW

[20]+[11]

O((n"�9 +m"�8) · poly(log(1/"))
Lemma 6.2

Thm 5.8

Fully Dynamic
General

p
m · "�O(1/") · logW

[29]
O((
p
m · "�4 + "�5) · poly(log(1/"))

Lemma 6.7
Thm 3.2

Decremental
General

m · poly(log(nW)) · "�O(1/")

[22]
O(m · poly(log n, "�1))

Lemma 6.8
Thm 3.2

Fully Dynamic
O✏ine

Bipartite

O(n0.58 · "�O(1/") · logW)
[36]+[11]

O(n0.58 · poly("�1))
Lemma 6.3

Thm 5.8

Copyright © 2025
Copyright for this paper is retained by authors

Bipartite Graphs For bipartite graphs, we show the following three results in the fully dynamic and
incremental setting respectively.

Lemma 6.1. There is a fully dynamic randomized algorithm that maintains a (1 � ")-approximate MWM in a

bipartite graph in O(poly("�1) · n
2⌦(

p
log n)) update time.

Lemma 6.2. There is a deterministic incremental algorithm that maintains a (1 � ")-approximate MWM in an

incremental bipartite graph in O(n"�9 poly(log 1/") +m"�8 poly(log 1/")) total update time.

Lemma 6.3. There is a randomized algorithm that given an o✏ine sequence of edge insertions and deletions to

an n-vertex bipartite weighted graph, maintains the edges of a (1� ")-approximate maximum weight matching in

amortized O(n0.58 poly("�1)) time with high probability.

We now prove Lemma 6.1. In order to achieve this, we use the following recent result by [36].

Lemma 6.4. ([36]) There is a fully dynamic randomized algorithm that maintains a (1 � ")-approximate MCM

in a bipartite graph in O(poly("�1) · n
2⌦(

p
log n)) update time.

Proof of Lemma 6.1. The result follows from Lemma 6.4 and Theorem 5.8.

Prior to Lemma 6.1, the best-known result had an update time of "�O(1/") · n
2�⌦(

p
log n) , which was obtained

by combining the result of [36] and [11]. We now show Lemma 6.2, and for that we need the following recent
result by Blikstad and Kiss.

Lemma 6.5. ([20]) There exists a deterministic incremental algorithm that maintains a (1�")-approximate MCM

in an incremental bipartite graph in O(n"�6 +m"�5) total update time.

Proof of Lemma 6.2. The result follows from the application of Theorem 5.8 to the amortized runtime given by
Lemma 6.5.

Prior to Lemma 6.2, the best known incremental algorithm has an update time of O(m · log n · log2(nW"�1) · "�2)
(see [17]) or O("�O(1/") ·m · logW) (by combining [20] and [29]). We now prove Lemma 6.3. In order to achieve
this, we use the following recent result by [36].

Lemma 6.6. ([36]) There is a randomized algorithm that given an o✏ine sequence of edge insertions and deletions

to an n-vertex bipartite graph, maintains the edges of (1�")-approximate matching in amortized O(n0.58 poly("�1))
time with high probability.

Proof. The result follows from Theorem 5.8 and Lemma 6.3.

We now show our results for general graphs.
General Graphs For general graphs, we show two results in the fully dynamic and decremental settings,

respectively.

Lemma 6.7. There is a deterministic fully dynamic algorithm that maintains a (1 � ")-approximate MWM in

O((
p
m · "�4 + "�5) · poly(log(1/")) update time.

Note that prior to this work, the best-known update time for an algorithm that maintains a (1�")-approximate
maximum weight matching was O(

p
m · "�O(1/") · logW). This was obtained by combining the results of [29] with

their bucketing scheme.

Lemma 6.8. There is a randomized decremental algorithm that maintains a (1 � ")-approximate MWM in a

decremental general graph in O(m · poly(log n, "�1)) total update time.

Prior to this work, the best known decremental algorithm maintaining a (1�")-approximate maximum weight
matching in a general graph had O("�O(1/") ·poly(log n))-update time, and was obtained by combining the results
of [22] with the bucketing scheme of [29]. We now proceed with showing the proof of Lemma 6.7. For this, we
use the following result.

Copyright © 2025
Copyright for this paper is retained by authors

Lemma 6.9. ([29]) There is a deterministic fully dynamic algorithm that maintains a (1�")-approximate MWM

in O(
p
mW"�2) update time.

Proof of Lemma 6.7. The result follows from Lemma 6.9 and Theorem 3.2.

We now show the proof of Lemma 6.8. Our proof uses the following recent result by [22].

Lemma 6.10. ([22]) There is a randomized decremental algorithm that maintains a (1 � ")-approximate MWM

in a decremental general graph in O(m ·W · poly(log n, "�1)) total update time.

Proof of Lemma 6.8. The result follows from Lemma 6.10 and Theorem 3.2.

6.2 The Streaming Model

Model Definition In the streaming model, the edges of the input n-vertex graph G = (V,E) are presented
to the algorithm in a stream (in an arbitrary order). A semi-streaming algorithm is allowed to make one or a few
passes over the stream, use a limited amount of memory O(n poly(log n)), and at the end output a solution to
the problem at hand, say, find an approximate maximum weight matching of G.

Our Results As in the dynamic case, we obtain two types of reductions. First is an aspect ratio reduction,
and the second, is a weighted to unweighted reduction for bipartite graphs.

Theorem 6.1. Suppose there is a semi-streaming algorithm for (1 � ")-approximate maximum weight matching

in an n-node m-edge general graph with aspect ratio W that uses p(n,m,W, ") passes and space s(n,m,W, "),
then for any constant c > 0 there exists a semi-streaming algorithm for (1� c�1")-approximate maximum weight

matching that uses p(n,m,⇥("�(2+c)), ") passes and space complexity O(s(n,m,⇥("�(2+c)), ") · log"�1 W).

Theorem 6.2. Suppose there is a semi-streaming algorithm for (1� ")-approximate MCM in an n-node m-edge

bipartite graph that uses p(n,m, ") passes and space s(n,m, "), then there exists a semi-streaming algorithm for

(1 � O("))-approximate maximum weight matching in a n-node m-edge bipartite graph with aspect ratio W that

uses p(⇥(n · "�(3+c)),⇥(m · "�(3+c)),⇥(")) passes and space O(s(⇥(n · "�(3+c)),⇥(m · "�(3+c)),⇥(")) · log"�1 W).

The above reduction has the property that it is a weighted to unweighted reduction that preserves the number
of passes, while increasing the space complexity by a factor of logW .

As a consequence of our reductions, we new results and trade-o↵s for streaming (1� ")-approximate bipartite
maximum weight matching, which are summarized in the Table 2. We state them formally thereafter.

Table 2: Summary of Results on (1� ")-approximate Bipartite MWM in Streaming
Prior Result Our Result (8c > 0 constant) Reduction Used

O("�2 · log("�1)) passes
O(n"�2 logW) space

[2]
O("�2) passes

O(n · "�(3+c) logW) space
Lemma 6.11

Theorem 6.2

O("�7 · log3(1/")) passes
O(n · log(1/") · logW) space

[35]
O("�4 · log3(1/")) passes

O(n · logW) space
Lemma 6.15

Theorem 6.1

Our first result is the following lemma.

Lemma 6.11. For any constant c > 0, there is a semi-streaming algorithm for (1 � ")-approximate bipartite

maximum weight matching that uses O(n · "�(3+c) · logW) space and has a pass complexity of O("�2).

Prior to this, the semi-streaming algorithm of [2] had the best known pass complexity of O("�2 · log("�1)).
The second result is the following.

Lemma 6.12. For any constant c > 0 there is a semi-streaming algorithm for (1 � ")-approximate bipartite

maximum weight matching that uses O(n · log "�1 · logW) space and has a pass complexity of O("�4 · log3(1/")).

This improves on the result of [35] which had the same space complexity, but a pass complexity of O("�8)
passes.

Copyright © 2025
Copyright for this paper is retained by authors

Proofs of Our Streaming Results We first begin by stating the proofs of our reductions. We start by
proving Theorem 6.2. This will be done using Theorem 6.1 and the following result by [11, 33]. While their result
is stated as being applicable to integral weight graphs, as mentioned before, by standard scaling and rounding
techniques, one can reduce the arbitrary weight case to the integral case. We state a modified version of their
result incorporating this.

Lemma 6.13. ([11, 33]) Suppose Au is a streaming algorithm that computes a (1 � ")-approximation to the

MCM in p(n,m, ") passes and s(n,m, ") space. Then, there is a streaming algorithm Aw that computes a (1� ")-
approximation to the maximum weight matching in p(nW"�1,mW"�1, ") passes and s(nW"�1,mW"�1, ") space,
where W is the aspect ratio of the weighted graph.

Proof of Theorem 6.2. Suppose Au is the bipartite unweighted matching algorithm in the premise of the
lemma. Then, we can use Lemma 6.13 to get an algorithm Aw with space complexity O(s(nW"�1,mW"�1, "))
space, and p(nW,mW, ") passes. Applying Theorem 6.1 to Aw, get an algorithm A0

w with pass complexity
p(⇥(n · "�(3+c)),⇥(m · "�(3+c)),⇥(")) and space complexity O(s(⇥(n · "�(3+c)),⇥(m · "�(3+c)),⇥(")) · log"�1 W).

We now show how to implement our reduction in streaming.

Proof of Theorem 6.1. Let A be the algorithm given in the premise of the lemma. As in Theorem 3.2, we consider
any "�c-wide weight partition of G, and let Ij ’s be the set of “padded” weight classes. Then, by Lemma 3.1, the
union of matchings Mj on Ij contains a (1� c�1")-approximate maximum weight matching of G. We run a copy
of A on each of these weight classes Ij and then combine them. Since we run log"�1 W copies of A and the aspect
ratio of the weight classes is "�(2+c), we have the desired space and pass bound.

We now show the proof of Lemma 6.11. Our proof uses the following result by [8].

Lemma 6.14. ([8]) There is a semi-streaming algorithm for (1 � ")-approximate bipartite MCM that uses O(n)
space, and has a pass complexity of O("�2).

Proof of Lemma 6.11. Instantiating the reduction of Theorem 6.2 with the algorithm of Lemma 6.14, we obtain
the desired O(n · "�(3+c) · logW) space complexity and has a pass complexity of O("�2)

For Lemma 6.12, we need the following result.

Lemma 6.15. ([35]) There is a semi-streaming algorithm for (1 � ")-approximate bipartite maximum weight

matching that has uses O(n log(1/")) space and has a pass complexity of O(log3 W · "�4). By applying the

reduction of [29], one can obtain an algorithm that uses O(n · log("�1) · logW) space and has a pass complexity

of O("�7 log3(1/")).

We now show Lemma 6.12, which improves the pass Lemma 6.15, while still achieving a space complexity
which has logarithmic dependence on 1

" .

Proof of Lemma 6.12. Let A be the algorithm in Lemma 6.15 which has a space complexity of O(n · log(1/"))
and has a pass complexity of O(log3 W · "�4). We instantiate the reduction in Theorem 6.1 with A. This yields
a semi-streaming algorithm that satisfies the premise of the corollary.

6.3 The MPC Model

Model Definition In the MPC Model, there are p machines, each with a memory of size s, such that
p · s = O(m). The computation proceeds in synchronous rounds: in each round, each machine performs some
local computation and at the end of the round they exchange messages. All messages sent and received by each
machine in each round have to fit into the local memory of the machine, and hence their length is bounded by
s in each round. At the end, the machines collectively output the solution. In this paper, we work in the linear

memory model in which, the memory per machine is s = Õ(n). We first state our results in this model.

Copyright © 2025
Copyright for this paper is retained by authors

Table 3: Summary of Results on (1� ")-approximate Bipartite Matching in MPC Model
Rounds Space Weighted/Unweighted Reference

O("�2 log log n) O(n) Unweighted [8]
O("�8 log log n) O(n log"�1 W) Weighted [35]

O(log log(n/") · "�2) O(n · "�(3+c) · log"�1 W) Weighted Lemma 6.16
O(log3(1/") · log log(n/") · "�4) O(n log"�1 W) Weighted Lemma 6.17

Our Results As in the dynamic and streaming case, we give the following reductions, the first one being an
aspect ratio reduction, and the second, a reduction from weighted to unweighted matching in bipartite graphs.

Theorem 6.3. Suppose there is an MPC algorithm for (1� ")-approximate maximum weight matching in an n-
node m-edge general graph with aspect ratio W that uses r(n,m,W, ") rounds and space s(n,m,W, ") per machine,

then for any constant c > 0 there exists an MPC algorithm for (1 � O("))-maximum weight matching that uses

r(n,m,⇥("�(2+c)), ") rounds and O(s(n,m,⇥("�(2+c)), ") · logW + n logW) space per machine.

Theorem 6.4. Suppose there is an MPC algorithm for (1� ")-approximate MCM in an n-node m-edge bipartite

graph that uses r(n,m, ") passes and space s(n,m, "), then there exists an MPC algorithm for (1 � O("))-
approximate maximum weight matching in a n-node m-edge bipartite graph with aspect ratio W that uses

r(⇥(n ·"�(3+c)),⇥(m ·"�(3+c)),⇥(")) rounds and space O(s(⇥(n ·"�(3+c)),⇥(m ·"�(3+c)),⇥(")) · logW +n logW)
per machine.

As a consequence of these two reductions, we get the following two results about about (1� ")-approximate
bipartite maximum weight matching, which matches the round complexity of the best known MPC algorithm for
unweighted matching by [8].

Lemma 6.16. There is an MPC algorithm for computing a (1 � ")-approximate bipartite maximum weight

matching in O(log log(n/") · "�2) rounds and O(n · "�(3+c) · log"�1 W) space per machine.

The second lemma improves on the result of [35].

Lemma 6.17. There is an MPC algorithm for (1 � ")-approximate bipartite maximum weight matching using

O(log3(1/") · log log n · "�4) rounds and O(n log"�1 W) space per machine.

We summarize these results in Table 3.
Proofs in the MPC Model We first show the proof of our main reductions. We start with the proof of

Theorem 6.4, and for that, we need the following theorem, which is implicit from the work of [11, 33].

Lemma 6.18. (Implicit in [11, 33]) Suppose Au is an MPC algorithm that computes a (1 � ")-approximation

to the MCM in r(n,m, ") rounds and s(n,m, ") space per machine. Then, there is an MPC algorithm Aw

that computes a (1 � ")-approximation to the maximum weight matching in r(nW"�1,mW"�1, ") rounds and

s(nW"�1,mW"�1, ") space per machine, where W is the aspect ratio of the weighted graph.

The proof of Theorem 6.4 is implied by the above lemma, and Theorem 6.3.

Proof of Theorem 6.4. Suppose Au is the bipartite unweighted matching algorithm in the premise of the lemma.
Then, we can use Lemma 6.18 to get an algorithm Aw with O(s(nW"�1,mW"�1, ")) space per machine, and
r(nW"�1,mW"�1, ") rounds. Applying Theorem 6.3 to Aw, get an algorithm A0

w with round complexity
r(⇥(n ·"�(3+c)),⇥(m ·"�(3+c)),⇥(")) rounds and space O(s(⇥(n ·"�(3+c)),⇥(m ·"�(3+c)),⇥(")) · logW +n logW)
per machine.

We now state the proof our aspect ratio reduction in MPC.

Proof of Theorem 6.3. Let A be the algorithm given in the premise of the lemma. As in Theorem 3.2, we consider
any "�c-wide weight partition of G, and let Ij ’s be the set of “padded” weight classes. Then, by Lemma 3.1, then,
the union of matchings Mj on Ij contains a (1� c�1")-approximate maximum weight matching of G. We run a
copy of A on each of these weight classes Ij and then combine them in a single matching. Since we run logW
copies of A and the aspect ratio of the weight classes is "�(2+c), we have the desired space and pass bound.

Copyright © 2025
Copyright for this paper is retained by authors

We now show the proof of Lemma 6.16. In order to do that, we need the following result.

Lemma 6.19. ([8]) There is an MPC algorithm for (1�")-approximate bipartite matching using O("�2 · log log n)
rounds and O(n) space per machine.

Proof of Lemma 6.16. LetA be the algorithm of Lemma 6.19. We instantiate the reduction in Theorem 6.4 withA
to get an MPC algorithm for (1�")-approximate bipartite maximum weight matching that has O(log log(n/")·"�2)
round complexity and O(n · "�(3+c) · log"�1 W) space per machine.

Next, we show the proof of Lemma 6.17. We need the following result.

Lemma 6.20. ([35]) There is an MPC algorithm for (1 � ")-approximate bipartite maximum weight matching

using O(log3(W) log log n · "�4) rounds and O(n) space per machine. By applying the reduction of [29], we can

obtain an MPC algorithm for the same problem that uses O(log log n · "�7 · log3(1/")) rounds and O(n log"�1 W)
space per machine.

Proof of Lemma 6.17. Let A be the algorithm of Lemma 6.20 with space complexity O(n) and round complexity
O(log3(W) log log n · "�4). Instantiating Theorem 6.3 with A, we get a (1 � ")-approximate bipartite maximum
weight matching with round complexity O(log3(1/") · log log(n/") · "�4) and space O(n · log"�1 W) per machine.

6.4 The Parallel Shared-Memory Work-Depth Model

Model Definition The parallel shared-memory work-depth model is a parallel model where di↵erent
processors can process instructions in parallel and read and write from the same shared-memory. In this model,
we care about two properties of the algorithm: work, which is the total amount of computation done by the
algorithm and the depth, which is the longest chain of sequential dependencies in the algorithm. Our goal in this
section will be to show that our reduction can be implemented in parallel model very e�ciently. In particular,
we show the following theorems.

Theorem 6.5. Suppose there is a parallel algorithm that computes a (1 � ")-approximate maximum weight

matching on an n-node m-edge graph with aspect ratio W with B(n,m,W, ") work and D(n,m,W, ") depth.

Then there exists a parallel algorithm that computes a (1 � ")-approximate maximum weight matching in

O(B(n,m, "�5,⇥(")) · logW + n log n) work and O(D(n,m, "�5,⇥(")) + logW + log2 n) depth.

Since the lack of a parallel implementation of the reduction in [11], we currently cannot reduce the weighted
matching problem directly to an unweighted one. Thus we use Theorem 6.5 to improve the following weighted
parallel algorithm by reducing the weight ranges.

Lemma 6.21. ([35]) There exists a shared-memory parallel algorithm that computes a (1 � ")-approximate

maximum weight matching with O(m log3(W)"�4) work and O(log3(W) log2(n)"�4) depth. Using [29], this

translates into a parallel algorithm which computes a (1 � ")-approximate maximum weight matching with

O(m log(W) log3(1/")"�7) work and O(log(W) log2(n) log3(1/")"�7) depth.

A consequence of our reduction is the following improvement, in both total work and depth.

Corollary 6.1. There exists a shared-memory parallel algorithm that computes a (1 � ")-approximate max-

imum weight matching on an n-node m-edge graph with aspect ratio W with O(m log(W)"�4) work and

O(log2(n) log(W)"�4) depth.

We now show how to implement our reduction in the parallel model. The most challenging aspect of this
implementation is to compute a maximum weight matching on degree two graphs. Such a graph is a collection of
paths and cycles. First an observation is in order. Consider two paths P1 = (v0, · · · , v|P1|) or P1 = (e1, · · · , e|P1|)
and P2 = (u0, · · · , u|P2|) or P2 = (e01, · · · , e|P2|). As in the dynamic program described in Lemma 5.2, we maintain
for P1: f(e1, x, e|P1|, y) for x, y 2 {0, 1}. Here, f(e1, 0, e|P1|, 0)is for example the value of the maximum weight
matching on P1 in which e1 and e2 are unmatched. Similarly, for P2, we maintain f(e01, x, e

0
|P2|, y) for x, y 2 {0, 1}.

Copyright © 2025
Copyright for this paper is retained by authors

Suppose, P = P1
L

e
L

P2, where e = (v|P1|, v0), then, we can get the corresponding information for P as follows
for all x, y 2 {0, 1}.

f(e1, x, e
0
|P2|, y) = max

z2{0,1}
06s,t61�z

n
f(e1, x, e|P1|, s) + w(e) · z + f(e01, t, e

0
|P2|, y)

o

Thus, using P1 and P2, we can get the information for P using a constant amount of work. We now describe our
algorithm. Similarly, using depth 1, and work |P |, we can find the corresponding maximum weight matchings for
P , given the maximum weight matchings for P1 and P2. Analogously, we can also give such a dynamic program
for a cycle obtained by concatenating two paths.

Claim 6.1. There exists a parallel algorithm for computing a maximum weight matching on a degree two graph

in O(n · log n) work and O(log2 n) depth.

Proof. The algorithm proceeds by randomly concatenating paths. At any stage, the algorithm will maintain a
collection of paths P. Initially, P = {P (u, u) | u 2 V }. These are just empty paths corresponding to every vertex
u 2 V , and with the endpoints of the paths being u. As the algorithm proceeds, P is updated as follows. Let V
be the collection of all endpoints of a path. Initially, V = V . For all u 2 V, toss a coin. We can do this in parallel.
Consider any edge e = uv such that u, v 2 V. If the results of coin tosses of u and v are opposite, then we combine
the paths Pu = ((u0, u1) = e1, · · · , e|Pu| = (u|Pu|�1, u)) and Pv = (e01 = (v, v1), · · · , e0|Pv| = (v|Pv|�1, v|Pv|)) as
follows:

1. In the collection of paths, remove P [u0, u] and P [v, v|Pv|] and add P [u0, v|Pv|], which is the concatenation
of Pu � e� Pv.

2. We also update f as follows, for all x, y 2 {0, 1},

f(e1, x, e
0
|Pv|, y) = max

z2{0,1}
06s,t61�z

n
f(e1, x, e|Pu|, s) + w(e) · z + f(e01, t, e

0
|Pv|, y)

o

3. Additionally, in O(|P |) time, we can also do a search version of the above dynamic program to maintain
the four candidate matchings which realize f(e1, x, e0|Pv|, y) for x, y 2 {0, 1}

Now, want to argue about the depth and work. First, with high probability, we have log n stages. Additionally,
within each stage, with high probability, we will have to contract O(log n) paths. Thus, total depth is O(log2 n).
The total work done in each stage is proportional to the total lengths of the paths in P. Thus, the total work is
O(n · log n).

Proof of Theorem 6.5. Let Ẽi be as defined in Algorithm 3. Let A be the parallel algorithm specified in the
premise of the theorem. We consider Gi = (V, Ẽi) for i 2 [L], and run Ai on Gi to compute Mi, which is the
(1� ")-approximate maximum weight matching in Gi. Then, for all odd i 2 [L] we find a greedy census matching
Modd. We do the same for all even i 2 [L], to get Meven. Since the aspect ratio in Gi is "�5, the first step
takes work B(n,m, "�5, ") · logW work and depth D(n,m, "�5, "). The second step can be implemented in total
work B(n,m, "�5, ") · logW . The depth for the second step is logW , since we are only greedily combining logW
matchings. Finally, we want to compute a maximum matching on the graph Meven [Modd. Thus, we can find a
matching in this graph by applying Claim 6.1. Thus, we are able to compute a compute a (1 � ")-approximate
maximum weight matching in O(B(n,m, "�5, ") · logW + n log n) work and O(D(n,m, "�5, ") + logW + log2 n)
depth.

7 Open Problems

Our reductions go a long way toward showing weighted and unweighted matching have the same complexity
in a wide variety of models. By reducing the multiplicative overhead to poly(1/"), we are able to achieve this
equivalence even for small approximation parameter ". There are, however, a few limitations that we need to
overcome.

Copyright © 2025
Copyright for this paper is retained by authors

1. A limitation of all existing reductions from weighted to unweighted matching in dynamic graphs is that
they incur a large approximation error in non-bipartite graphs: in particular, both our Theorem 1.1 and
the reduction of [11] reduce the approximation guarantee by 2/3�". Achieving a general reduction for non-
bipartite graphs that only loses a (1� ")-factor is probably the main open problem in the area, and would
be very interesting even with an update-time overhead that is exponential in ". A similar open problem is
to achieve such a reduction for other models, including a reduction for streaming and MPC that does not
increase the number of passes/rounds. Note that both our Theorem 1.2 and the reduction of [29] already
apply to non-bipartite graphs, so we can safely assume that weights are small integers. The only remaining
challenge is thus that the framework of [11] uses an earlier tool called graph unfolding (first given by [33])
to reduce from small weights to unit weights, but this tool relies on the vertex-cover dual and seems limited
to bipartite graphs.

2. A second limitation is specific to our paper: as discussed in the introduction, our reduction only works
for (1 � ")-approximate matching and not for general ↵-approximate matching. Removing this restriction
would show that in bipartite graphs at least, unweighted and weighted matching have almost equivalent
complexities in a wide variety of computational models.

Acknowledgements

We thank the anonymous reviewers and David Wajc for their helpful feedback and discussions.

References

[1] Kook Jin Ahn and Sudipto Guha. Laminar families and metric embeddings: Non-bipartite maximum matching
problem in the semi-streaming model. CoRR, abs/1104.4058, 2011. Available at https://arxiv.org/abs/1104.4058.

[2] Kook Jin Ahn and Sudipto Guha. Near linear time approximation schemes for uncapacitated and capacitated b-
matching problems in nonbipartite graphs. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on

Discrete Algorithms, SODA 2014, pages 239–258. SIAM, 2014. Available at https://arxiv.org/abs/1307.4355.
[3] Kook Jin Ahn and Sudipto Guha. Access to data and number of iterations: Dual primal algorithms for maximum

matching under resource constraints. ACM Trans. Parallel Comput., 4(4):17:1–17:40, 2018. Available at https:
//arxiv.org/abs/1307.4359.

[4] Abhash Anand, Surender Baswana, Manoj Gupta, and Sandeep Sen. Maintaining approximate maximum weighted
matching in fully dynamic graphs. In IARCS Annual Conference on Foundations of Software Technology and

Theoretical Computer Science, FSTTCS 2012, volume 18 of LIPIcs, pages 257–266. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2012. Available at https://arxiv.org/abs/1207.3976.

[5] Moab Arar, Shiri Chechik, Sarel Cohen, Cli↵ Stein, and David Wajc. Dynamic matching: Reducing integral
algorithms to approximately-maximal fractional algorithms. In Proc. 45th Int. Colloquium on Automata, Languages,

and Programming, volume 107 of LIPIcs, pages 7:1–7:16, 2018. Available at https://arxiv.org/abs/1711.06625.
[6] Sepehr Assadi. A simple (1 � ")-approximation semi-streaming algorithm for maximum (weighted) matching. In

2024 Symposium on Simplicity in Algorithms, SOSA 2024, pages 337–354. SIAM, 2024. Available at https:
//arxiv.org/abs/2307.02968.

[7] Sepehr Assadi, Arun Jambulapati, Yujia Jin, Aaron Sidford, and Kevin Tian. Semi-streaming bipartite matching in
fewer passes and optimal space. In Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA

2022, pages 627–669. SIAM, 2022. Available at https://arxiv.org/abs/2011.03495.
[8] Sepehr Assadi, S. Cli↵ Liu, and Robert E. Tarjan. An auction algorithm for bipartite matching in streaming and

massively parallel computation models. In 4th Symposium on Simplicity in Algorithms, SOSA 2021, pages 165–171.
SIAM, 2021.

[9] Amir Azarmehr, Soheil Behnezhad, and Mohammad Roghani. Fully dynamic matching: (2�
p
2)-approximation in

polylog update time. In Proceedings of the 35th ACM-SIAM Symposium on Discrete Algorithms, SODA 2024, 2024.
Available at https://arxiv.org/abs/2307.08772.

[10] Soheil Behnezhad. Dynamic algorithms for maximum matching size. In Proceedings of the 2023 ACM-SIAM

Symposium on Discrete Algorithms, SODA 2023, pages 129–162. SIAM, 2023. Available at https://arxiv.org/
abs/2207.07607.

[11] Aaron Bernstein, Aditi Dudeja, and Zachary Langley. A framework for dynamic matching in weighted graphs. In
Proceedings of the 53rd Annual ACM Symposium on Theory of Computing, STOC 2021, pages 668–681. ACM, 2021.

[12] Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak. Deterministic decremental reachability,
scc, and shortest paths via directed expanders and congestion balancing. In 61st IEEE Annual Symposium on

Copyright © 2025
Copyright for this paper is retained by authors

https://arxiv.org/abs/1104.4058
https://arxiv.org/abs/1307.4355
https://arxiv.org/abs/1307.4359
https://arxiv.org/abs/1307.4359
https://arxiv.org/abs/1207.3976
https://arxiv.org/abs/1711.06625
https://arxiv.org/abs/2307.02968
https://arxiv.org/abs/2307.02968
https://arxiv.org/abs/2011.03495
https://arxiv.org/abs/2307.08772
https://arxiv.org/abs/2207.07607
https://arxiv.org/abs/2207.07607

Foundations of Computer Science, FOCS 2020, pages 1123–1134. IEEE, 2020. Available at https://arxiv.org/
abs/2009.02584.

[13] Aaron Bernstein and Cli↵ Stein. Fully dynamic matching in bipartite graphs. In Automata, Languages, and

Programming - 42nd International Colloquium, ICALP 2015, volume 9134 of Lecture Notes in Computer Science,
pages 167–179. Springer, 2015. Available at https://arxiv.org/abs/1506.07076.

[14] Aaron Bernstein and Cli↵ Stein. Faster fully dynamic matchings with small approximation ratios. In Proceedings

of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, pages 692–711. SIAM,
2016.

[15] Sayan Bhattacharya and Peter Kiss. Deterministic rounding of dynamic fractional matchings. In 48th International

Colloquium on Automata, Languages, and Programming, ICALP 2021, volume 198 of LIPIcs, pages 27:1–27:14, 2021.
Available at https://arxiv.org/abs/2105.01615.

[16] Sayan Bhattacharya, Peter Kiss, and Thatchaphol Saranurak. Dynamic (1 + ")-approximate matching size in truly
sublinear update time. In 64th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023, pages
1563–1588. IEEE, 2023. Available at https://arxiv.org/abs/2302.05030.

[17] Sayan Bhattacharya, Peter Kiss, and Thatchaphol Saranurak. Dynamic algorithms for packing-covering lps via
multiplicative weight updates. In Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA

2023, pages 1–47. SIAM, 2023. Available at https://arxiv.org/abs/2207.07519.
[18] Sayan Bhattacharya, Peter Kiss, Thatchaphol Saranurak, and David Wajc. Dynamic matching with better-than-

2 approximation in polylogarithmic update time. In Proceedings of the 2023 ACM-SIAM Symposium on Discrete

Algorithms, SODA 2023, pages 100–128. SIAM, 2023. Available at https://arxiv.org/abs/2207.07438.
[19] Sayan Bhattacharya, Peter Kiss, Aaron Sidford, and David Wajc. Near-optimal dynamic rounding of fractional

matchings in bipartite graphs. In Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC

2024, pages 59–70. ACM, 2024. Available at https://arxiv.org/abs/2306.11828.
[20] Joakim Blikstad and Peter Kiss. Incremental (1 � ")-approximate dynamic matching in O(poly(1/")) update time.

In 31st Annual European Symposium on Algorithms, ESA 2023, volume 274 of LIPIcs, pages 22:1–22:19. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2023. Available at https://arxiv.org/abs/2302.08432.

[21] Moses Charikar and Shay Solomon. Fully dynamic almost-maximal matching: Breaking the polynomial worst-case
time barrier. In 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, volume
107 of LIPIcs, pages 33:1–33:14, 2018. Available at https://arxiv.org/abs/1711.06883.

[22] Jiale Chen, Aaron Sidford, and Ta-Wei Tu. Entropy regularization and faster decremental matching in general graphs.
In arXiv Preprint, 2023. Available at https://arxiv.org/abs/2312.09077.

[23] Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant Sachdeva. Maximum
flow and minimum-cost flow in almost-linear time. In 63rd IEEE Annual Symposium on Foundations of Computer

Science, FOCS 2022, pages 612–623, 2022. Available at https://arxiv.org/abs/2203.00671.
[24] Ran Duan and Seth Pettie. Linear-time approximation for maximum weight matching. J. ACM, 61(1):1:1–1:23, 2014.
[25] Aditi Dudeja. A note on rounding matchings in general graphs. In arXiv Preprint, 2024. Available at https:

//arxiv.org/abs/2402.03068.
[26] Buddhima Gamlath, Sagar Kale, Slobodan Mitrovic, and Ola Svensson. Weighted matchings via unweighted

augmentations. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, PODC 2019,
pages 491–500. ACM, 2019. Available at https://arxiv.org/abs/1811.02760.

[27] Fabrizio Grandoni, Stefano Leonardi, Piotr Sankowski, Chris Schwiegelshohn, and Shay Solomon. (1+")-approximate
incremental matching in constant deterministic amortized time. In Proceedings of the Thirtieth Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA 2019, pages 1886–1898. SIAM, 2019.
[28] Manoj Gupta. Maintaining approximate maximum matching in an incremental bipartite graph in polylogarithmic

update time. In 34th International Conference on Foundation of Software Technology and Theoretical Computer

Science, FSTTCS 2014, volume 29 of LIPIcs, pages 227–239, 2014.
[29] Manoj Gupta and Richard Peng. Fully dynamic (1 + ")-approximate matchings. In 54th Annual IEEE Symposium

on Foundations of Computer Science, FOCS 2013, pages 548–557. IEEE Computer Society, 2013. Available at
https://arxiv.org/abs/1304.0378.

[30] Venkatesan Guruswami and Krzysztof Onak. Superlinear lower bounds for multipass graph processing. Algorithmica,
76(3):654–683, 2016. Available at https://arxiv.org/abs/1212.6925.

[31] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak. Unifying and strength-
ening hardness for dynamic problems via the online matrix-vector multiplication conjecture. In Proceedings of

the 47th Annual ACM Symposium on Theory of Computing, STOC 2015, pages 21–30, 2015. Available at
https://arxiv.org/abs/1511.06773.

[32] Arun Jambulapati, Yujia Jin, Aaron Sidford, and Kevin Tian. Regularized box-simplex games and dynamic
decremental bipartite matching. In 49th International Colloquium on Automata, Languages, and Programming,

ICALP 2022, volume 229 of LIPIcs, pages 77:1–77:20, 2022. Available at https://arxiv.org/abs/2204.12721.

Copyright © 2025
Copyright for this paper is retained by authors

https://arxiv.org/abs/2009.02584
https://arxiv.org/abs/2009.02584
https://arxiv.org/abs/1506.07076
https://arxiv.org/abs/2105.01615
https://arxiv.org/abs/2302.05030
https://arxiv.org/abs/2207.07519
https://arxiv.org/abs/2207.07438
https://arxiv.org/abs/2306.11828
https://arxiv.org/abs/2302.08432
https://arxiv.org/abs/1711.06883
https://arxiv.org/abs/2312.09077
https://arxiv.org/abs/2203.00671
https://arxiv.org/abs/2402.03068
https://arxiv.org/abs/2402.03068
https://arxiv.org/abs/1811.02760
https://arxiv.org/abs/1304.0378
https://arxiv.org/abs/1212.6925
https://arxiv.org/abs/1511.06773
https://arxiv.org/abs/2204.12721

[33] Ming-Yang Kao, Tak Wah Lam, Wing-Kin Sung, and Hing-Fung Ting. A decomposition theorem for maximum
weight bipartite matchings. SIAM J. Comput., 31(1):18–26, 2001.

[34] Michael Kapralov. Space lower bounds for approximating maximum matching in the edge arrival model. In
Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, pages 1874–1893. SIAM, 2021.
Available at https://arxiv.org/abs/2103.11669.

[35] Quanquan C. Liu, Yiduo Ke, and Samir Khuller. Scalable auction algorithms for bipartite maximum matching
problems. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, AP-

PROX/RANDOM 2023, volume 275 of LIPIcs, pages 28:1–28:24, 2023. Available at https://arxiv.org/abs/2307.
08979.

[36] Yang P. Liu. On approximate fully-dynamic matching and online matrix-vector multiplication. In 65th IEEE Annual

Symposium on Foundations of Computer Science, FOCS 2024. IEEE, 2024. Available at https://arxiv.org/abs/
2403.02582.

[37] Noam Solomon and Shay Solomon. A generalized matching reconfiguration problem. In 12th Innovations in

Theoretical Computer Science Conference, ITCS 2021, volume 185 of LIPIcs, pages 57:1–57:20, 2021. Available
at https://arxiv.org/abs/1803.05825.

[38] Daniel Stubbs and Virginia Vassilevska Williams. Metatheorems for dynamic weighted matching. In 8th Innovations

in Theoretical Computer Science Conference, ITCS 2017, volume 67 of LIPIcs, pages 58:1–58:14, 2017.
[39] Jan van den Brand, Li Chen, Richard Peng, Rasmus Kyng, Yang P. Liu, Maximilian Probst Gutenberg, Sushant

Sachdeva, and Aaron Sidford. A deterministic almost-linear time algorithm for minimum-cost flow. In 64th

IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023, pages 503–514, 2023. Available at
https://arxiv.org/abs/2309.16629.

[40] David Wajc. Rounding dynamic matchings against an adaptive adversary. In Proceedings of the 52nd Annual

ACM SIGACT Symposium on Theory of Computing, STOC 2020, pages 194–207. ACM, 2020. Available at
https://arxiv.org/abs/1911.05545.

A Analysis of [11]

We first give the definitions and notations used in the statement of the algorithm and proof.

Definition A.1. ([33]) Let G be a graph with integer edge weights in [W]. The unfolded graph �(G) is an

unweighted graph defined as follows: For each vertex u 2 G, there are W copies of u, {u1, u2, . . . , uW }, in �(G).
Corresponding to each edge uv in G there are wuv edges

�
uivwuv�i+1

i2[wuv]

in �(G).

A simple consequence of the above definition is the following observation.

Observation A.1. Let G be any weighted bipartite graph, and suppose W is the ratio between the maximum and

minimum edge weights, then |V (�(G))| = W · n and |E(�(G))| = W ·m.

Fact A.1. ([33]) Let G be a weighted bipartite graph, and suppose M is the maximum weight matching of G and

let M� be the MCM of �(G). Then, w(M) = |M�|.

Definition A.2. Let G be a weighted graph, and let H ✓ �(G). The refolded graph R(H) has vertex set V (G),
and edges E(R(H)) =

�
uv 2 G | uivj 2 H for i+ j + 1 = w(uv)

.

Fact A.2. ([11]) Let G be a weighted graph with weight function w and let M be an ↵-approximate matching of

�(G). If G is bipartite, then µw(R(M)) � ↵µw(G). If G is not bipartite, then µw(R(M)) � 2
3↵µw(G).

Now we modify Algorithm 1 of [11] to achieve a better amortized update time.

Lemma 5.13. ([11, 33]) For "  1/6, given a dynamic algorithm A that, on input n-vertex m-edge bipartite
graph, initializes in I(n,m, ") time and explicitly maintains an (1 � ")-approximate MCM in U(n,m, ") update

time, there is a dynamic algorithm that initializes in

O(I(nW,mW, ") +m log("�1)"�1)

time and explicitly maintains an (1�")-approximate MWM on a bipartite graph with integer edge weights bounded

by W in

O(W · U(nW,mW,⇥("))) +W log("�1)"�2)

Copyright © 2025
Copyright for this paper is retained by authors

https://arxiv.org/abs/2103.11669
https://arxiv.org/abs/2307.08979
https://arxiv.org/abs/2307.08979
https://arxiv.org/abs/2403.02582
https://arxiv.org/abs/2403.02582
https://arxiv.org/abs/1803.05825
https://arxiv.org/abs/2309.16629
https://arxiv.org/abs/1911.05545

Algorithm 6: Bipartite Reduction

Input: A dynamic algorithm for (1� ")-approximate MCM in bipartite graphs Au

1 function Initialize()

2 Initialize Au with the unfolded graph �(G).
3 Denote Mu as the matching maintained by Au.
4 M Rebuild().
5 output M .

6 function Update((uv))
7 Update (ui, vwuv�i) in �(G) for i 2 [wuv] accordingly.
8 Use Au to maintain a matching Mu of �(G).
9 c c+ 1.

10 if c < " ·W ⇤/W then

11 M M \ uv.
12 else

13 M Rebuild().

14 output M .

15 function Rebuild()

16 M a (1� ")-approximate MWM on the refolded graph R(Mu).
17 c 0, W ⇤ w(M).
18 output M.

amortized update time and has amortized recourse

O(W log("�1)"�2).

The transformation is partially dynamic preserving. On non-bipartite graphs, the approximation ratio is
2
3 � ".

Proof. We first prove that Algorithm 6 maintains a (1�O("))-approximate MWM on a bipartite G. Since Mu is a
(1�")-approximate matching, thus by Fact A.2, µw(R(Mu)) � (1�")µw(G). After each Rebuild, M is a (1�")-
approximate MWM onR(Mu), thusW ⇤ = w(M) � (1�")·µw(R(Mu)) � (1�2")·µw(G). Between Rebuild, there
are at most " ·W ⇤/W edge updates, thus w(M) � (1�")W ⇤ and µw(G) W ⇤/(1�2")+" ·W ⇤  (1+4")W ⇤, and
w(M) � (1� 5")µw(G). On a general graph, according to Fact A.2, µw(R(Mu)) � 2

3 (1� ")µw(G) and similarly
we can prove that w(M) � (23 �O("))µw(G).

Now we analyze the running time of Algorithm 6 for both bipartite and non-bipartite graphs. By Theorem 2.1,
the initialization can be implemented in time

O(I(nW,mW, ") +m log("�1)"�1).

The running time of Au is W · U(nW,mW,⇥(")). Since

|R(Mu)|  |Mu|  µ(�(G)) = µw(G)  O(1) ·W ⇤,

each Rebuild takes total timeO(|R(Mu)| log("�1)"�1) = O(W ⇤ log("�1)"�1) by Theorem 2.1. Thus the amortized
cost of Rebuild and the amortized recourse of the algorithm is

O(W ⇤ log("�1)"�1)/(" ·W ⇤/W) = O(W log("�1)"�2).

B Counterexample to Question 3.1

To answer Question 3.1 in the negative, we prove the following claim:

Copyright © 2025
Copyright for this paper is retained by authors

Claim B.1. There is a graph G such that for any weight partition of G, [`1, r1), [`2, r2), . . . , [`k, rk) ✓ R, the

following holds: if all possible choices of MWM Mi of G[`i,ri) satisfy

µw(M1 [M2 [· · · [Mk) � (1� �) · µw(G),

then there is a weight class [`i, ri) such that ri � `i · exp(⌦(��1)).

To prove Claim B.1, we will use the following gadget to explicitly build the graph G.

Definition B.1. (Level-i Gadget) A level-i Gadget is a path with three edges ai, bi, ci such that the edge

weights of ai and bi are 1.5i, and the edge weight of ci is 1.5i+1
.

Proof Intuition: The MWM on a level-i gadget is 1.5i+1.5i+1 = 1.5i ·2.5 by choosing ai and ci. But now let
us consider what happens if the gadget is “broken”, meaning that it is partitioned into two di↵erent weight classes.
More concretely, say that ai, bi 2 [`j , rj), while ci 2 [`j+1, rj+1). Then, one valid MWM of weight class [`j , rj) is
Mj = {bi}, and clearly we have Mj+1 = {ci}. As a result, µw(Mj [Mj+1) = w(ci) = 1.5i+1  3

5 ·µW ({ai, bi, ci}).
In other words, the loss incurred by a broken gadget is a constant fraction of the weight of the gadget. Intuitively,
we will have gadgets on di↵erent levels, and any partition into k weight classes will break k � 1 of the gadgets.
Since we can only a↵ord a total loss of only �µw(G), the average weight class [`i, ri] must contain at least ⌦(��1)
non-broken gadgets to make up for the loss of the broken ones. Since each gadget is 1.5-wide, this implies that
the average weight class must be 1.5⌦(��1)-wide. We now formally prove Claim B.1.

Proof. We first build the graph G using our gadgets. For i = 0, 1, . . . , N , where N = blog1.5 W c, G contains 1.5N�i

level-i gadgets. Therefore µw(G) = 1.5N ·2.5 ·N since the total MWM of each level is 1.5N�i ·1.5i ·2.5 = 1.5N ·2.5.
Now consider any weight partition [`1, r1), . . . [`k, rk). We assume that for any weight class [`i, ri), there is some
integer j such that `i  1.5j < ri. This is w.l.o.g. since otherwise that weight class does not contain any edge and
we can merge it with one of its neighboring weight classes.

k� 1 levels of broken gadgets can be found in this graph. For i = 0, 1, 2, . . . , k� 1, consider the largest j such
that 1.5j < ri and level-j gadgets will be broken. On a broken level-j gadget, the MWM will be 1.5j+1 instead
of 1.5j · 2.5. Since there are 1.5N�j level-j gadgets, the weight loss of all level-j gadgets is 1.5N . Therefore the
total weight loss is 1.5N · (k � 1).

Suppose the MWM on the union has weight at least (1� �) · µw(G) = (1� �) · 1.5N · 2.5 ·N. Then we have
1.5N · (k � 1)  � · 1.5N · 2.5 ·N meaning k  2.5 · � ·N + 1. Therefore the would be a weight class [`i, ri) with

ri � `i · 1.5
N

2.5·�·N+1 = `i · exp(⌦(��1)).

C Reduction of ↵-Approximation Requires Exponential Width

Claim C.1. For any constant
1
2 < ↵ < 1, there is a graph G such that for any set of weight classes (not necessarily

a weight partition), [`1, r1), [`2, r2), . . . , [`k, rk) ✓ R, the following holds: if all possible choices of ↵-approximate

MWM Mi of G[`i,ri) satisfy

µw(M1 [M2 [· · · [Mk) � (↵� �) · µw(G),

then there is a weight class [`i, ri) such that ri � `i · exp(⌦(��1)).

We use a similar gadget for ↵-approximation as before.

Definition C.1. (Level-i Gadget for ↵-Approximation) A level-i Gadget for ↵-approximation is a path

with three edges ai, bi, ci such that the edge weights of ai and bi are �i
, and the edge weight of ci is �i+1

, where
�

�+1 = ↵.

Proof. We construct a graph G that contains �N�i number of level-i gadgets for each 0  i  N � 1, where

N = b↵�↵2�(1�↵)2

� � 1c. Thus µw(G) = N · �N · (1 + �). We will construct a sparsifier S ✓ G such that for
any weight class [`i, ri) that doesn’t contain the entire graph, there is an ↵-approximate matching Mi of G[`i,ri)

in S. That means if no weight classes in [`1, r1), [`2, r2), · · · , [`k, rk) ✓ R contain the entire graph, there is a
choice of matchings such that M1 [M2 [· · · [Mk ✓ S. On the other hand, the construction of S will ensure
that µw(S) < (↵ � �) · µw(G) suggesting that at least one weight class contains the entire graph and thus has
exp(⌦(��1)) width.

Now we explicitly construct S. For all 0  i  N � 2, S contains all bi and ci edges in level-i gadgets. Also,
S contains all bN�1 edges and ↵ fraction of cN�1 edges in level-(N � 1) gadgets. Consider any weight class [l, r).

Copyright © 2025
Copyright for this paper is retained by authors

1. Suppose r < �N . Let j = blog� rc. By picking all ci edges in any corresponding level i < j intersecting with
the weight class and all bj edges in level j, there is an ↵-approximate MWM.

2. Suppose r � �N . If l > �N�1, then S clearly contains an ↵-approximation. Otherwise, if l > 1, by picking
all ci edges in any level i < N � 1, there is an ↵-approximate MWM.

So far, we have shown that if none of the weight classes contains G, S can consistently output an ↵-approximate
MWM. However,

µw(S) = (N � 1) · �N+1 + ↵ · �N+1 + (1� ↵) · �N ,

and the largest matching in S has approximation ratio

(N � 1) · �N+1 + ↵ · �N+1 + (1� ↵) · �N

N · �N · (1 + �)
= ↵� 1

N

�
↵� ↵2 � (1� ↵)2

�
< ↵� �.

Copyright © 2025
Copyright for this paper is retained by authors

	Introduction
	Additional Computational Models
	Applications

	Preliminaries
	Technical Overview
	Weight Reduction Framework of Gupta–Peng
	Disjoint Weight Classes Require Exponential Width
	Leveraging Weight Overlaps: the Matching Composition Lemma
	Algorithmic Framework

	Further Improvements

	Matching Composition and Substitution Lemmas
	Framework
	Dynamic Approximate MWM on Matchings in (1-e)-Spread Weight Classes
	Dynamic Approximate MWM on Degree-Two Graphs
	Weight Reduction Framework for General Graphs
	Low-Recourse Transformation
	Putting Everything Together
	Fully Dynamic Algorithm on Low-Degree Graphs
	Rounding Weighted Fractional Matching
	Improved Weight Reduction Framework for General Graphs
	From Weighted Matching to Unweighted Matching in Bipartite Graphs

	Applications
	The Dynamic Model
	The Streaming Model
	The MPC Model
	The Parallel Shared-Memory Work-Depth Model

	Open Problems
	Analysis of [BDL21]
	Counterexample to Question 3.1
	Reduction of a-Approximation Requires Exponential Width

