Entropy Regularization and Faster Decremental Matching in General Graphd'

Jiale Chenw Aaron Sidfordﬂi Ta-Wei TuF

Abstract

We provide an algorithm that maintains, against an adaptive adversary, a (1 — £)-approximate maximum
matching in n-node m-edge general (not necessarily bipartite) undirected graph undergoing edge deletions
with high probability with (amortized) O(poly(¢~',logn)) time per update. We also obtain the same update
time for maintaining a fractional approximate weighted matching (and hence an approximation to the value
of the maximum weight matching) and an integral approximate weighted matching in dense graphs[Our
unweighted result improves upon the prior state-of-the-art which includes a poly(logn) - 90(1/¢%) update time
[Assadi-Bernstein-Dudeja 2022] and an O(/me™?) update time [Gupta—Peng 2013], and our weighted result
improves upon the O(y/me~°1/9) logn) update time due to [Gupta—Peng 2013].

To obtain our results, we generalize a recent optimization approach to dynamic algorithms from
[Jambulapati-Jin—Sidford-Tian 2022]. We show that repeatedly solving entropy-regularized optimization
problems yields a lazy updating scheme for fractional decremental problems with a near-optimal number
of updates. To apply this framework we develop optimization methods compatible with it and new dynamic
rounding algorithms for the matching polytope.

1 Introduction

Dynamic matching is a fundamental and incredibly well-studied problem in data structure design and dynamic
graph algorithms. In this problem, there is a sequence of modifications, e.g., edge insertion and deletions, to an
undirected graph G = (V, E) with vertices V and edges E. The goal is to maintain a matching M C E, i.e.,
a subset of edges that are pairwise disjoint, of approximately maximum size, i.e., |M| > (1 — e)M*(G) where ¢
is a specified accuracy parameter and M*(G) is the size of the maximum matching in the current graph, G. In
this paper we consider solving this problem with the goal of obtaining improved (amortized) update time per
operation?]

The dynamic matching problem is also notoriously challenging to solve efficiently. In the general setting
of maintaining such a (1 — €)-approximate maximum matching in a general undirected graph undergoing edge
insertions and deletions, the state-of-the-art includes an O (ﬁe”) update time algorithm of [41] for all £ and an
n/(log* n)*") update time algorithm of [2] for e = Q((log* n)~¢) where ¢ > 0 is some small constant. Subsequent
to the initial release of our paper, the work of [6], building on top of [15], obtained an O (n°) - ORS(n, ©.(n)))
update time algorithm for constant £, where ORS(n,r) is the maximum possible density of the so-called ordered
Ruzsa-Szemerédi Graphs: the current, state-of-the-art bound is n°*) < ORS(n, ©.(n)) < n'~°M) for constant « [6].
Additional improvements are only known in special cases. For example, when there are vertex (instead of edge)
updates to a bipartite graph then [30] [70] provide 6(6_1) tim algorithms. Additionally, recent breakthrough

*The full version of the paper can be accessed at https://arxiv.org/abs/2312.09077

fStanford University, jialec@stanford.edu. Supported by a Lawrence Tang Graduate Fellowship, a Microsoft Research Faculty
Fellowship, and NSF CAREER Award CCF-1844855.

fStanford University, sidford@stanford.edu. Supported in part by a Microsoft Research Faculty Fellowship, NSF CAREER
Award CCF-1844855, NSF Grant CCF-1955039, a PayPal research award, and a Sloan Research Fellowship.

$Stanford University, taweitu@stanford.edu. Supported by a Stanford School of Engineering Fellowship, a Microsoft Research
Faculty Fellowship, and NSF CAREER Award CCF-1844855.

IIndependently and concurrently, Aditi Dudeja obtained new decremental weighted matching results for general graphs [37].

20ur new algorithms periodically rebuild a fractional matching when its value degrades. Consequently, their update times are
(naively) amortized instead of worst-case. We leave de-amortizing our results as an open problem.

3In this paper, we use O(-) to hide poly(log(n),log(¢~1)) factors and O(-) to hide subpolynomial, (ne=1)°(!) factors in the O(-)
notation. Q(-), ﬁ()7 O(+), and é() are defined analogously.

Copyright (© 2025
Copyright for this paper is retained by authors

https://arxiv.org/abs/2312.09077

results maintain better-than-2 approximations to the size of the maximum matching (rather than the matching
itself) in near-optimal update time [13] 28] [3] and better approximations in sub-linear update time [25].

Towards explaining the challenging nature of dynamic matching, recent work established conditional lower
bounds on the problem’s complexity. To maintain exactly the maximum matching, there are conditional lower
bounds on the update times of Q(y/m) [9, 46l 52] and Q(n'4°7) [68]. To maintain approximate maximum
matchings, very recently, [53] ruled out the possibility of a truly sublinear, =9 p1=0M) ypdate time algorithm
in the fully dynamic setting, assuming a new dynamic approximate OMv conjecture. Additionally, assuming only
the standard OMv conjecture, [53] ruled out the possibility of truly sublinear update time algorithms for the
closely related problem of maintaining a (1 + ¢)-approximate vertex cover.

Corresponding to the difficulty of dynamic matching, recent work studied the decremental setting where
starting from an initial graph only edge deletions are permitted until the graph is deleted. Excitingly, [17]
provided an O(¢~4) time per update algorithm for this problem. [49] then obtained update times of O(s~3)
and O(e2) for the problem of maintaining fractional matchings. [29] then obtained update times of O(s~3)
and 6(5‘2) for maintaining integral matchings through improved dynamic rounding algorithms for fractional
matchings. Recently, [1] obtained an 6(1) . 20(1/¢%) update time for general (not necessarily bipartite) graphs.

Strikingly, these results show that decremental matching can be solved near-optimally in bipartite graphs
for ¢ = 1/poly(logn). However, in general graphs, for such e, the state-of-the-art is still O(y/me=2) time [41].
A central question motivating this work is whether it is possible to narrow this gap and develop improved
decremental matching algorithms for general graphs. One of our main results is an affirmative answer to this
question; we provide O(e~#!) and O(¢~17) update time algorithms for maintaining a (1—e¢)-approximate matching
in a general graph undergoing edge deletions. Our algorithm succeeds with high probability (w.h.pEb against an
adaptive adversary that has access to the internal randomness used by our algorithm and can design its future
updates based on that. This is the first decremental dynamic matching algorithm for general graphs that achieves
subpolynomial accuracy and subpolynomial update time simultaneously

We obtain our results through the development of a general framework that also allows us to obtain improved
runtimes in the decremental setting of the more challenging dynamic weighted matching as well. In this problem
we must maintain a (1 —)-approximate maximum weight matching given polynomially bounded edge weights
w € NE. Prior to our work, the state-of-the-art was an O(y/me~°(1/9)) time [41] and an O(¢~3) time per update
algorithm for maintaining fractional matchings in bipartite graphs [26] (which also applied to a broader class of
partially-dynamic packing/covering linear programs). In contrast, we provide algorithms which decrementally
maintain (1 — &)-approximate fractional matchings in general weighted graphs in 6(5_41) and 6(6_17) time per
update and integral (1 — ¢)-approximate matchings in dense graphs in the same update times. We also provide
an 6(6_0(1/ ¢)) update time integral matching algorithm, which is not limited to dense graphs, using a weight
reduction framework of [41]. These are the first near-optimal partially dynamic algorithms for weighted matchings
with edge updates.

1.1 Approach

Lazy Updates and Congestion Balancing. Our algorithms follow a natural, time-tested lazy approach
to solving dynamic matching problems [41) [31] [32] [17] [49] [1]. Broadly, we compute an approximate fractional
matching, delete edges from it as needed, and then, when the updates cause the solution to change, we rebuild,
computing a new fractional matching. By efficiently computing the fractional matching, computing fractional
matchings that limit the number of rebuilds, and efficiently rounding, we obtain our dynamic matching algorithms.

More specifically, our algorithms follow a template common to |17, [49] [1] (see for a more precise
description). In this framework, we first, compute a (1 — §)-approximate fractional matching. Then, when
edges are deleted, the corresponding fractional assignment on those edges is removed as well. Once the value of
the fractional matching decreases by (1 — §) multiplicatively, a new (1 — d)-approximate fractional matching is
computed and the process is repeated; we call each computation of a (1 — J)-approximate fractional matching a
rebuild. Any algorithm following this lazy update framework clearly maintains a (1 — §)2-approximate fractional

4We use w.h.p. in this paper as an abbreviation of with high probability, meaning the success probability can be made at least
1 — n~¢ for any constant ¢ > 0 by increasing the runtime by a constant factor.

5More precisely, when & = ©(1/poly(log(n))), or even ¢ = ©(1/n°()), previous algorithms require poly(n) or even exp(n) update
o(1)

times, while our algorithms achieve an n update time.

Copyright (© 2025
Copyright for this paper is retained by authors

matching and consequently, by picking, e.g., § = /2, this algorithm maintains a (1 — ¢)-approximate fractional
solution. What is perhaps unclear, is how to make this approach efficient.
The update time of an algorithm following the lazy update framework is governed byﬁ

1. the number of rebuilds, i.e., the number of approximate fractional matchings computed,
2. the cost per rebuilding, i.e., the cost of computing each fractional matching, and

3. the cost of rounding, i.e., the cost of turning these dynamically maintained fractional matchings into
dynamically maintained integral matchings.

Note that computing a (1 — ¢)-approximate matching takes ﬁ(m) time in the worst case [27]. Consequently,
if each rebuild is computed from scratch (as they are in our algorithms) then the cost of each rebuild is Q(m)
(item 2) and to obtain an O(poly(logn,e~!))-update time it must be that the number of rebuilds is
O(poly(logn,e~1)). However, it is unclear, just from the approach, whether or why this should be obtainable.

Nevertheless, in a striking result, [17] showed that it was possible to follow this framework and obtain O(e~4)
time per update for bipartite graphs. The algorithm had 5(5*3) rebuilds ([tem 1) at a cost of 5(m5*1) time
per rebuil for a total runtime of O(me~*) and, therefore, an update time of O(e~%) for maintaining
fractional matchings. The technique they used to construct the fractional matchings they call congestion balancing.
Furthermore, [1] generalized this approach to non-bipartite graphs. Their algorithm had 0(20(1/ E2)) rebuilds
(ltem 1) at a cost of O(me~1) per rebuild (Item 2) for a total runtime of O(m.- 20(1/52)) and, therefore, an update
time of 5(20(1/ 52)) for maintaining fractional matchings. To obtain integral matchings, both papers applied
known dynamic rounding algorithms [69] to solve

Entropy Regularization and Weighted Matching. A key question motivating our result is, how powerful
and general is the lazy update framework for decremental problems? Recent work of [49] opened the door to
studying this question. This work showed that, for bipartite graphs, to bound the number of rebuilds it
sufficed to set the fractional matchings to be sufficiently accurate solutions to natural, regularized optimization
problems. The current state-of-the-art decremental bipartite matching algorithms follow this framework [49] 29].

In this paper, we provide a broad generalization of this result. We show that for any non-negative, non-
degenerate, compact, downward closed, and convex X C]Rio, to maintain approximate maximizers of w'a for

x € X under deletions of coordinates to X one can apply the lazy update framework and rebuild only O(s~2)
times! Furthermore, we show that this rebuild count is obtained so long as the algorithm solves certain entropy-
regularized versions of the problem, i.e., finding an & € X’ approximately maximizing w ' + - H(x) for some
trade-off parameter p, where H(x) is an appropriately weighted and scaled measure of the entropy of @.

This result, when combined with [33] and [29], recovers the O(¢~2) update time of [29, 49] and enables our
main results on decremental matching in general graphs. Letting X = M be the non-bipartite matching polytope
of the input graph G, this result implies that to obtain a fractional solution we simply need to repeatedly solve
an entropy-regularized matching problem. Additionally, our entropy regularization result immediately implies
the same for maintaining a weighted fractional matching! This leads to improved algorithms even for bipartite
graphs, where the previous best algorithm has an O(e~%) update time [28].

However, to obtain efficient decremental fractional algorithms for general graphs, we still need to efficiently
solve these entropy-regularized problems over the matching polytope (Item 2). In[Section 5|we show how to solve
these entropy-regularized problems to (1—4) accuracy in O(m-6~'3) and O(m-6~5) time for all § > Q(n~1/2). To
maintain a (1 —¢)-approximate matching, it suffices to set § = 1/poly(¢~1,logn). We obtain this by modularizing
and generalizing the framework of [5] for capacitated weighted general b-matching and provide two different
instantiations of the framework. In one approach we apply the recent convex flow algorithm of [33], leading to the

running time of 6(m -675). In the other one we reduce entropy regularization to capacity-constrained weighted
general matching, leading to the other running time of O(m - §~13).

6 Additionally, the algorithm must remove fractional assignments to the deleted edges from the fractional matching, but that is
trivial to implement in O(1) per update.

"The é(ma’l) runtimes stems from running a push-relabel-style flow algorithm to find an approximate flow. Using recent almost
linear time maximum flow algorithms [33} [66], this can be improved to be O(m), leading to an O(s~3) update time algorithm for
maintaining fractional matchings. See [17| Lemma 5.2].

Copyright (© 2025
Copyright for this paper is retained by authors

Dynamic Rounding. To turn our dynamic fractional matching results into dynamic integral matching
results we develop two unweighted rounding algorithms for general graphs, one randomized and the other
deterministic. For the randomized algorithm, we analyze the standard sampling procedure for rounding in
bipartite graphs and argue that, excitingly, it can also be used in general graphs. On the other hand, our
deterministic algorithm is based on a recently dynamized pipage rounding procedure [29]. However, we differ
from [29] by stopping their algorithm earlier and running static algorithms on the result periodically. Although
the randomized rounding algorithm does not have a strictly better update time than the deterministic one, it
has stronger guarantees that we leverage to round weighted matchings. We remark that while [I] also required
rounding, the fractional matching they maintained has a special property (in particular it is poly(e)-restricted [32],
Definition 1]) that allows them to argue the bipartite rounding algorithm of [69] directly applies to the fractional
matching they found. In contrast, our rounding algorithms generically work for any fractional matching in general
graphs, and are the first to achieve such a guarantee. (See|Section 1.3 for a more detailed comparison of rounding
algorithms.)

Optimality of Entropy Regularization. Given the utility of entropy regularization and the lazy update
framework, we ask, can we further decrease the number of rebuilds @? Interestingly, we show that this
is not the case for decremental matching, even on unweighted bipartite graphs. We show that for any n > 1
and ¢ = Q(n~1/2), there is an adversarial choice of the initial graph with n vertices and a sequence of deletions
such that, regardless of what fractional matching the algorithm maintains, there are at least Q(log?(e2n) - e~2)
rebuilds. This shows the optimality of entropy regularization in both logn and e~! factors for € = Q(n~1/2+9)
for constant ¢ > 0.

Summary. We obtain improved results for decremental matching in general graphs by building new tools
to follow the lazy update framework: we prove a general bound on the number of rebuilds when using entropy
regularization (Ttem 1)), we develop efficient algorithms for solving entropy-regularized optimization problems
over the matching polytope ([tem 2), and we develop new dynamic rounding algorithms for fractional matchings
in general graphs . We think that each tool could be of independent interest. Additionally, given
the generality and optimality (in terms of the number of rebuilds) of our entropy regularization approach to
decremental problems, we hope that our results may open the door to new dynamic algorithms in broader
settings.

Paper Organization. In the remainder of this introduction we present our results in[Section 1.2Jand compare
and survey previous work in[Section 1.3] We then cover preliminaries in[Section 2/and provide a technical overview
of our approach in[Section 3| In[Section 4]we show the robustness and optimality of entropy regularization for the
decremental linear optimization problem. We then turn our attention to the special case of decremental matching
in non-bipartite graphs, presenting our algorithms for solving entropy-regularized matchings in and
our rounding algorithms in [Section 6] In [Sections A] and [B] we provide additional proofs that are included for
completeness.

1.2 Results In this paper we consider the decremental matching problem formally defined as follows. Note
that in this definition, when W = 1, the problem is the aforementioned unweighted matching problem in which
the maintained matching is simply a (1 — €)-approximate maximum (cardinality) matching.

PROBLEM 1.1. (DECREMENTAL MATCHING) In the decremental matching problem, we are given an n-vertex m-
edge graph G = (V, E), integeﬁ edge weights w € NF bounded by W = poly(n), and an accuracy parameter
e € (0,1). The goal is to maintain a (1 — €)-approximate mazimum weight matching M C E at all times under
deletions to E until G becomes empty.

We develop a variety of randomized algorithms to solve [Problem 1.I. Due to the use of randomization,
it is important to distinguish between different kinds of update sequences that they can support. We say a
dynamic algorithm is output-adaptive (respectively, fully-adaptive) if it works for update sequences that are chosen
adaptively based on the output (respectively, internal randomness) of the algorithm. Note that a fully-adaptive

8Note that the assumption that w is integral is without loss of generality as it can be achieved by scaling. For instance, we can
first make the minimum weight 1, and then scale each entry to the nearest value of {(1 + O(e))ﬂ since we are only aiming for an
approximate solution.

Copyright (© 2025
Copyright for this paper is retained by authors

algorithm is automatically output-adaptive. These are in contrast to the oblivious algorithms which only work
for updated sequences that are fixed in advancel’|

We now describe our main results. Recall that in the unweighted case, the previous state-of-the-art algorithms
that solveare an O(1) :20(1/¢*) ypdate time algorithm of [1] and an O(y/me~?) update time algorithm
of [41].

THEOREM 1.1. (UNWEIGHTED DECREMENTAL MATCHING) There are randomized fully-adaptive O(e~*1) and
O(e~'7) update time algorithms that solve|Problem 1.1 in the unweighted case w.h.p.

For the weighted case, the algorithm of [I] does not apply, and the previous state-of-the-art, even for bipartite
graphs, is an O(y/me~9(1/2)) update time algorithm, also by [41]. Our algorithms have near-optimal update time
when either € is a constant or the input graph is dense.

THEOREM 1.2. (WEIGHTED DECREMENTAL MATCHING) There is a randomized fully-adaptive O(e=C1/)) up-
date time algorithm that solves |Problem 1.1 w.h.p. Additionally, when m = ©(n?), there are randomized output-
adaptive O(e=*1) and O(e¢~17) update time algorithms.

For dense bipartite graphs we obtain an even better update time.

THEOREM 1.3. (WEIGHTED BIPARTITE DECREMENTAL MATCHING) For bipartite graphs with m = ©(n2) there
is an output-adaptive randomized O(c~%) update time algorithm that solves|Problem 1.1 w.h.p.

to [L.3] are all obtained by solving the intermediate problem of decremental fractional matching
and then converting the fractional results to integral via rounding algorithms. Following the entropy
regularization approach in the lazy update framework, the fractional matching algorithms we develop achieve an
upper bound of 5(6*2) on the number of rebuilds dItem 1I) in |Theorem 3.1. We investigate whether this bound
on the number of rebuilds can be improved. Interestingly, we show that this is not possible and that entropy
regularization is a near-optimal strategy for the lazy update framework in the decremental setting for any n and
e = Q(n~'/?). This lower bound holds even in the simple case of unweighted bipartite matching.

THEOREM 1.4. (INFORMAL, SEE [THEOREM 3.2)) For any n € N, ¢ > 2/y/n, and any output-adaptive algorithm
implementing the rebuilding subroutine in the lazy update framework, there exists an unweighted bipartite graph of

n wertices on each side such that an output-adaptively chosen sequence of edge deletions causes Q(log®(e2n) - e72)
rebuslds.

1.3 Related Work Here we give a more extensive summary of previous work related to our results in this
paper.

General Matching. Due to the existence of odd cycles and blossoms, matching problems in general graphs
are often considerably more challenging than in bipartite graphs. Starting from the blossom algorithm of
Edmonds [39], with additional ideas and techniques, several works culminated in general matching algorithms that
are equally efficient as classic bipartite algorithms, both in the exact [58][44] [36] and approximate [58],[35] 5] settings
(we make particular use of [5] in our dynamic algorithms). Yet, it is still open whether modern optimization-
based algorithms for bipartite matching [55] [54] 56} [67, [51], 18] B3] can lead to runtime improvements for computing
matchings in general graphs.

Incremental Matching. Another studied partially-dynamic matching problem is the incremental matching
problem, where instead of edge deletions, there are only edge insertions. In this setting, near-optimal results are
known for obtaining (1 — €)-approximate matchings, achieving O(poly(¢~1)) and recently O(poly(¢~!)) update
times in bipartite graphs [45, 24] and e~©(1/¢) update time in general graphs [40]. For bipartite graphs, an
6(poly(s_1)) update time is also obtainable by a more general partially dynamic packing/covering LP algorithm
[28].

91t is also common in the dynamic algorithm literature to model the adaptiveness of an algorithm in the adversarial setting in
which the algorithm is working against an adversary designing the update sequence either on-the-fly (in which case it is an adaptive
adversary) or in advance (an oblivious adversary). We also remark that the term adaptive is widely used in the literature but has
mixed meanings and can refer to either output-adaptive or fully-adaptive based on the context. Consequently, in this paper we make
an explicit distinction between the two notions.

Copyright (© 2025
Copyright for this paper is retained by authors

Additional Matching Results. Aside from (1 —¢)-approximations, dynamic matching with other approxi-
mation ratios has been studied, particularly in the fully dynamic setting. Notably, for 1/2-approximate, maximal
matching, a line of work culminated into optimal, constant-update-time algorithms [60, [16] [18] [64] 20} [10] [21], [11].
The work of [31] introduced the notion of edge-degree constrained subgraphs (EDCS) and with this initiated a
line of work on non-trivial algorithms to maintain (2/3 — €) approximate matchings [32] [42] and beyond [23]. Im-
provements in other directions such as derandomization, de-amortization, and frameworks converting unweighted
results to the weighted case have also been studied [19] [65] [34] 21} [14] [12] 22} 50} [62] 29]. Dynamic rounding
algorithms which reduce dynamic integral matching algorithms to dynamic fractional matching algorithms are
also well-studied in various regimes [4 [69] 22} (50 [29].

Entropy Regularization. Even in prior dynamic matching results that do not explicitly use entropy
regularization, entropy does play a role implicitly. More precisely, [45] 26] [70] all used the multiplicative weight
update (MWU) method, which can be viewed as an iterative method for optimization method which uses an
entropy regularizer to determine the steps it makes.

Comparison to [1]. The O(1)- 20(1/¢) update time algorithm of [1] used the congestion balancing approach
introduced in [17] to implement rebuilds in the lazy update framework. Informally, in congestion balancing, a
capacity constraint ¢ € [0,1]F is maintained, and in each iteration the goal is to find a matching M, respecting
this capacity constraint of size comparable to the actual maximum matching or, in that case that such a matching
does not exist, find a set of edges whose capacity constraint is “critical” to M. being small. In the first case, M,
is used as the output fractional matching until future deletions decrease its value significantly. In the second case,
the capacities of these critical edges are increased to accommodate larger matchings. The exponential dependence
on =1 of [1]'s algorithm stems from the difficulty of solving the above subroutine in general graphs. As we will
show later in this paper, there is indeed an 5(m -poly(e~1)) algorithm for the capacity-constrained matching
problem in general graphs (see [Lemma 5.5), but [I] additionally needed a dual certificate (obtainable from, e.g.,
[35], on uncapacitated graphs) of the matching problem to identify critical edges. Interestingly, obtaining such
certificates is still left open by our Work

Comparison to Previous Randomized Rounding Algorithms. Our randomized rounding algorithm
adopts the same strategy central to previous algorithms [4 [69]. Their algorithms build upon the subgraph,
hereafter referred to as a sparsifier, obtained by sampling each edge, either independently or dependently, with
probability proportional to the fractional mass assigned to it. Informally, [4] showed that the independently
sampled sparsifier preserve approximately maximal fractional matchings which are (1/2 — ¢)-approximate.
This holds in general graphs as well. [69], on the other hand, studied fully-adaptive rounding, in which case
updating the sparsifier only partially as in [4] no longer works. [69] therefore designed a dependent sampling
scheme that has marginal the same as the independent one, which turned out to be more efficiently sample-able
from scratch. Their analysis also showed that the sparsifier preserves (1 — ¢)-approximate fractional matchings
in bipartite graphs. [I] then extended the analysis to show that O(g)-restricted matchings in general graphs are
preserved in [69]’s sparsifier as well. Finally, our rounding algorithm goes back and considers the independently
sampled sparsifier which can now be used in the (output-)adaptive setting due to the dynamic sampler of [29].
Adopting a more direct analysis, we show that this sparsifier can in fact preserve arbitrary fractional matchings in
general graphs. Given that the sampling distribution of [69] is, in essence, an easier-to-sample-from but correlated
version of the distribution we consider in this paper, we suspect their analysis can be extended to work for any
fractional matching in general graphs, perhaps at the cost of a larger runtime. After the initial publication of our
manuscript, [38] showed that indeed the rounding algorithm of [69] can be extended to work in general graphs,
albeit with a slightly larger update time.

2 Preliminaries
def def

Notation. We let [d] = {1,2,...,d} for d € N, Ry = RU {o0}, and R_,, = RU {—oc}. We use log(-) to
denote logarithm base 2 and In(-) for natural logarithm. We let [¢] be evaluated to 1 if the expression ¢ is true

10More precisely, [1] ran the algorithm of [35] only on a carefully sampled subgraph of G, and thus the dual certificate they obtained
and used is different from that of the capacity-constrained matching problem in Interestingly, one can show that a dual
certificate to |Problem 5.1 also suffices to identify critical edges, so this leaves extracting the dual from our algorithm the final step
toward speeding up [1].

' More precisely the sparsifier contains an integral matching whose size is the same as the fractional one, up to (1—4) multiplicatively
for any ¢ (on which the algorithm’s runtime depends).

Copyright (© 2025
Copyright for this paper is retained by authors

and 0 otherwise.

Consider a finite set U and S C U. Let 0° and 1° be the all-zero and all-one vector in RS, respectively
Let AS denote the simplex in RS, ie., AS = {x € RS, | ||z||, = 1}. For € RV, let 5 € R¥ be = with
coordinates restricted to S, i.e., (xg); = x; for all i € S. For X C RY, let Xs be X restricted to coordinates S,
e, Xs = {xg:x e X}, and Xs + = {xeXs:a; >0VieS} be the subset of Xg in RS . For ¢ € RS and
i €U, let x\ {i} € R\ be x excluding coordinate i, i.e., (z \ {i}); = =, for all j € S\ {i}. For &' C S and
x € Ry, let % € RY be x extended to R®, i.e., 7 =x; fori € S’ and 7 =0 fori € S\ .

Runtimes. In this paper we use the standard word-RAM model where basic arithmetic operations over
O(log n)-bit words can be performed in constant time. When the input size n is clear from context, we say an
z € R is polynomially bounded if |z| € {0} U [n=O™M) nOM)],

Graphs. All graphs in this paper are undirected, simple, and not necessarily bipartite, unless stated

def

otherwise. For a graph G = (V,E), let E, = {e € E : v € e} be the set of edges incident to v € V, and

def def

E[B] = {e € E : e C B} be the set of edges whose endpoints are both in B C V. For F C E let F,, = FNE,
and F[B] € F N E[B]. For x € R, let x(v) = Y eer, Te for v €V and z(B) = > cen(p) Te for B C V. Let
Bg € {-1,0,1}F*V be the (edge vertez) incidence matriz of G, where there are exactly two non-zero entries per
row e, one at entry (e,u) with value —1 and the other at entry (e,v) with value 1, for an arbitrary orientation
(u,v) of e = {u,v}. Let M*(G) be the size of the maximum matching in G and M (G) for w € RE be the value
of the maximum weight matching in G for the weights w. B

Matching Polytope. For an undirected graph G = (V, E), the matching polytope of G is the convex hull of
the indicator vectors of matchings in G. Let

(2.1) Pe={ Yeep, we <1, VveV }nRE,.

It is a standard fact that when G is bipartite, Pg is the matching polytope of G. When G is non-bipartite, we
need to further consider odd-set constraints. Formally, we let

O¢ = {BCV :|B|>3and |B|is odd}
be the collections of odd sets and define
(2.2) Me = Pen{ aB) < |18, vBeOs }.

It is known that M is the matching polytope of G [63]. We often consider the relaxation of (2.2)) to only contain
small odd sets Og. = {B € Og : |B| < 1/} denoted by

(2.3) M. = Pan { #(B) < {@J , VBeOg. }

when dealing with (1 — ¢)-approximatation algorithms. The following fact about M¢ versus Mg . is folklore and
key to our algorithm development.

FAcT 2.1. (SEE, E.G., [1]) Fore >0 and x € Mg, it holds that 175 € Mg.

We may refer to an @ € Mg as a (fractional) matching in G and x € Pg as a relaxed (fractional) matchin
in G. When x € Mg or @ € Pg is clear from context, we may refer to . as the mass the matching puts on
edge e.

Miscellaneous. The recourse of a dynamic algorithm is the total number of changes it makes to its output.
When working with (1 —e¢)-approximation, in the remainder of the paper we may assume without loss of generality
that € is upper-bounded by an explicit constant. This only incurs a constant increase in runtimes.

12When S is clear from context, we may drop the superscript and simply use 0 and 1.
13We remark that an @ € Pg is often referred to as a fractional matching even in general graphs in the literature (see, e.g., [4,[29]).
However, we deviate from this convention so that there is no integrality gap between fractional and integral matchings.

Copyright (© 2025
Copyright for this paper is retained by authors

3 Technical Overview

In this section we introduce the problems that we consider in this paper, present the main results and technical
tools of each section, and illustrate high-level ideas towards proving them. At the end of this section, we utilize
these results and tools to prove our main theorems stated in

3.1 Lazy Updates for Decremental Linear Optimization In this paper we consider a unifying framework
of congestion balancing for solving decremental linear optimization problems formally defined as follows.

PROBLEM 3.1. (DECREMENTAL LINEAR OPTIMIZATION) In the decremental linear optimization problem we are
: s : d : et 5 6
given a positive weight vector w € R<, and a non-negative, non—degenemt compac downward close
conver X C]R‘io where d > 1 Starting from the entire coordinate set S = [d|, under a sequence of deletions of

coordinates from S we must maintain an x € Xg such that

wiz > (1—¢) max wliz
x'€Xg

for a given accuracy € > 0 until S becomes empty.

The framework for solving that we study in this paper is a generalization of the lazy update
scheme that is widely used for dynamic matching problems as we discussed in Specifically, we consider
algorithms that maintain an approximate solution * € Xg and use it as the solution until its value drops by an
O(e) fraction at which point we perform a rebuild. The following @ is a template for the lazy update
approaches, for which we will later specify what approximate solutions & will be used in Rebuild() at Line[J]

Algorithm 1: LAzZYUPDATE(X)

global: weight vector w € R, and accuracy parameter € € (0, 1).

global: current coordinates S C [d] and solution & € Xg with “rebuild” value v.
global: number of rebuilds ¢ € Zx.

global: snapshots () and S for analysis.

1 function Initialize(w € R%, ¢ € (0,1))
2 Save w and ¢ as global variables.

3 Initialize S < [d] and ¢ < 0.

4 (z,v) < Rebuild().

5 function Delete (i € [d])
6 Set © «<— x \ {i} and S « S\ {i}.
| if wix < (1—5)v then (z,v) < Rebuild().

8 function Rebuild()
// What z® is computed below depends on the specific algorithm

9 Set (Y to an element in Xg with wgw(t) > (1 — %) MaXy e Xg wg:c’.
10 | Set v® « wlx® and SO « .
11 | return (z(V, ") and set t « ¢ + 1.

OBSERVATION 3.1. |Algorithm 1| solves the decremental linear optimization problem 4Problem 3.1).

4That is, for each coordinate i € [d] there exists an @ € X such that @; > 0. This is a natural assumption since we can always
ignore the degenerate dimensions.

15Note that this is equivalent to being bounded and closed, which implies maxge x w !« is bounded as well.

16That is, for each z € X and y €]R‘i with y < z entry-wise, we have y € X also.

17The assumption of d > 1 is natural as otherwise the problem degenerates into a 1D optimization and becomes not decremental
in essense.

Copyright (© 2025
Copyright for this paper is retained by authors

Proof. Note that & € Xg at all times since X is downward closed. The vector ¥), when constructed in Rebuild (),
is an (1 — §)-approximate solution with value v(). Since the Delete operations only decrease max e, wi@',
as long as w:qrac > (1 — %) V(t)7 we have

wiz

v

€
(1 — 5) v > (1-¢) Inax wex'.

On the other hand, whenever wiz < (1 —£)v®, we call Rebuild(). [Algorithm 1 thus maintains a (1 — ¢)-

approximate solution at all times. 0

3.2 Entropy Regularization To solve the above decremental linear optimization problem using the lazy
update scheme, we apply a variant of the entropy regularization strategy previously used decremental dynamic
matching in unweighted bipartite graphs [49]. Intuitively, to avoid the adversary from deleting large weight from
our solution at once, the idea is to find an @ € Xg with uniformly distributed value on each coordinate. As such,
the approach is to use the entropy-regularized solution as @ in Rebuild (), prioritizing vectors with higher entropy
when they have similar weights.

To formally describe our results, consider a fixed positive weight w € Rio. For S C [d], pu,y € Rso, we define
our entropy-reqularized objective fg,7 : Xs — R for all x € Xg by

(3.4) P (@) < wha + - 3 wiwilog -
i€S
and let
(3.5) Tl = argmax fs.,(x)
xEXg

be the optimal solution to (3.4). The main result we show later in [Section 4 is that solutions to (3.4) with
= 0O(e) lead to a lazy update scheme with bounded rebuilds.

LEMMA 3.1. For any a > 0, accuracy parameter € > 0, and 0 < p < ﬁgd, if the subroutine Rebuild()

in |Algorithm 1| returns :cg(t)’,y as) for ~ < «, then Rebuild() will be called at most O(lof?rd) times before

pee

MaXy cxs Wex' drops from at most o to below a/d.

Analogous to [49], to prove we use fg,'y(mg,’y)’ the optimal value of the entropy-regularized
objective on Xg, as a potential function to capture the progress that makes. Applying the optimality
conditions for concave optimization to fg (%) allows us to lower bound the decrease from f§_(z§.) to
f §,7 - (:cg, ﬂ/) using the Bregman divergence of the entropy regularizer, which has a close relationship to the weighted
value of the deleted coordinates in S\ S’. The choice of p and v is to guarantee that the entropy-regularized
solution serves as a valid solution for Rebuild().

In case the exact solution :Is‘é’7 is computationally expensive to compute, we also show that an accurate
enough approximation to it admits the same robustness property, by combining the proof of and the
strong concavity of the entropy-regularized objective. In the following, we say an « € Xg is a (1 — §)-approzimate
solution to fg_ if f&_(z) > (1—0)fs (2 ,).

LEMMA 3.2. For any a > 0, accuracy parameter € > 0, and 0 < p < if the subroutine Rebuild() in

R, 128§ogd’
2 € .
Algorithm 1 returns any (1 — £55)-approzimate solution to ffof(t) , 08 x® fory = o, then Rebuild() will be called
(Iogd ’

at most O F) times before maxg cxs wa' drops from at most a to below av/d.

In the general case that maxgcx; wéx’ drops by more than a factor of d, we can simply re-run the algorithm

with different values of . below implements this strategy and bounds its performance
when used as the Rebuild () subroutine in

THEOREM 3.1. For parameters o, k, € >0, and 0 < p < ﬁogd, using %lgom’thm 2 as the Rebuild () subroutine
in |Algorithm 1, before maxy e xs wa@' drops from at most a to below a/k there will be at most O(%) calls to

Rebuild(). Moreover, the value v in Rebuild() satisfies maxq exg wg:c’ < v < «a, and the while-loop in Linelé
will be run at most O(log, k) times in total.

Copyright (© 2025
Copyright for this paper is retained by authors

Algorithm 2: Implementation of Rebuild() for [Theorem 3.1}

global: weight vector w € RY, accuracy parameter € € (0,1), and p € (0,1).
global: current coordinates S C [d].
global: number of rebuilds ¢t € Z>(and snapshots ™ and SO for analysis.
global: an estimate v for the current phase, initially set to «

1 function Rebuild ()

def ~

2 Let (Y) € Xg be an arbitrary (1 — ’gf;)—approximate solution to fg,7 for v & 7.
3 | whilew'z® <7/d do
~ 1 ~
V< El//d
def ~

2
Recompute) € Xg as a (1 - ﬁ)—approximate solution to fgﬁ for v = 7.

512
6 Set () 'wgm(t) and S® « §.

7 | return (x®,v®) and set t < ¢ + 1.

Proof. Let us assume ¢ < 1/3. Consider dividing into phases, where each phase ends when 7 is
decreased in Line At the start of each phase, we maintain the invariant that ¥ > maxgexg 'wga:’ . The
invariant implies that the number of phases is O(log, k).

Within each phase, as long as wlz") > 7/d, we know that maxy cx; wiz' > v/d. therefore
shows that the vector we maintain throughout this phase is a valid approximation. On the other hand, when
w'z® < v/d, we know that maxg cxq 'wga:’ must fall below g < 37?. Hence, the new U remains an upper

bound on it and the invariant holds. also shows that within each phase the subroutine Rebuild ()
will be called at most O (k’g) times. As such throughout the O(log, k) phases the number of rebuilds is at most

e
0 (IM) O

e

To complement our algorithmic results, we investigate the limit of the lazy update framework. It turns out
that entropy regularization is a nearly optimal strategy for the lazy update framework in its dependence on both
logn and e~' for the decremental matching problem for any given n and & = Q(n’l/ %), even in unweighted
bipartite graphs.

THEOREM 3.2. For anyn € N, 2/\/n <e < 1/4, and implementation of Rebuild() n|Algorithm 1| there exists

a bipartite graph G with n vertices on each side and an output-adaptively chosen sequence of deletions that when
X = Pg |Algorithm 1] calls Rebuild () Q(log?(e2n) - 2) times before G is empty.

I

N

Deletions
J—

N O

Figure 1: Illustration of the adversarial strategy for proving the lower bound.

To give an intuition of the construction, shows the choice of the initial graph and the output-adaptive
deletion strategy. We use the square to represent the adjacency matrix of the chosen bipartite graph, where the
gray area represents edges between row vertices and column vertices. In this graph, the only maximum matching
is the one on the diagonal of the square. We generalize this observation to any (1 — O(e))-approximate fractional
maximum matching and show that a constant fraction of the mass will be concentrated around the diagonal.
Thus edge deletion near the diagonal suffices to cause rebuilds of the algorithm. We show that within each phase,

Copyright (© 2025
Copyright for this paper is retained by authors

which is defined by deleting everything in the dashed rectangle, an output-adaptive deletion sequence can cause
Q(log(g2n)/e) calls to Rebuild(). Additionally, there are Q(log(¢2n)/e) such phases in total, which together
establish the lower bound.

3.3 Dynamic Fractional Matching We obtain our algorithms for [Problem 1.1| by first solving the following
intermediate fractional version of the problem.

PROBLEM 3.2. (DECREMENTAL FRACTIONAL MATCHING) In the decremental fractional matching problem, we
are given the same set of inputs as does, and the goal is to maintain a (1 —¢&) approzimate mazimum
weight fractional matching, i.c., an x € Mg such that) pwexe > (1 —€) M (G), at all times under deletions
to E until G becomes empty.

Our dynamic algorithms use the framework established in the preceding sections, and in particular they
apply [Theorem 3.1 with X = M. This suffices to solve [Problem 3.2 provided we can solve the following
entropy-regularized problem efficiently.

PROBLEM 3.3. (ENTROPY-REGULARIZED MATCHING) Given an n-vertex m-edge graph G = (V, E) with edge
weights w € NE bounded by W = poly(n), a trade-off parameter u < 1, ay € Rxq such that M}, (G) <~ < n3W,
and an accuracy parameter € € (0,1), the entropy-regularized matching problem is to compute a (1 — €)-
approzimate solution x € Mg to

y
3.6 T -§ o, |)
(3.6) wrélx%fc {w ety eeEw ¥ ngeme}

We develop two algorithms for solving the entropy-regularized matching problem as specified in the following
theorem.

THEOREM 3.3. For any € > ﬁ(n_lﬂ), there are randomized O (ma_6 + n6_13) and O (ms_5) time algorithms

that solve [Problem 3.3 w.h.p.

This when combined with [Theorem 3.1|/immediately implies algorithms for solving the decremental fractional
matching problem.

THEOREM 3.4. There are fully-adaptive randomized algorithms that, for € > S~2(’1/6), solve |Problem 3.2 w.h.p.
with amortized update times O(e~*) and O(e~17). Addztwnally, if G is bipartite, then there is such an algomthm
that works for any € > 1/poly(n) with amortized update time O(2). The recourse of the algorithms is O(me=2).

Proof. Lettlng X = Mg for the decremental matchmg problem Theorem 3.1 shows that by using |[Problem 3.3
with g = W and accuracy parameter &’ - £ = @(3) inside |Algorithm 2 as the subroutine Rebuild(),
there will be at most O(e~2) calls to Rebuild() throughout the algorithm, as the weight of any non-empty
matching is at most nWW and at least one. For general graphs, we have & > ﬁ(e_l/ 2), and the update times of
O(e=") and O(c~17) can be obtained by running as the subroutine Rebuild() and amortizing over
the m updates. For bipartite graphs, we can use [33] Theorem 10.16] to solve @ to high accuracy in
O(m) time, resulting in the amortized update time of O(¢~2). The recourse is O(me~2) since there are at most

6(2) different matchings. O

Our algorithms for [Theorem 3.3 build upon the MWU-based algorithm for weighted non-bipartite b-matching
by [5]. Informally, [5] showed that the weighted b-matching problem in non-bipartite graphs reduces to solving a
sequence of the same problem in bipartite graphs, possibly with different weights. We observe that the analysis
of [5] seamlessly extends to general concave objective optimization over the non-bipartite matching polytope. We
then leverage the recent almost-linear time convex flow algorithm of [33] for our almost-linear time algorithm for
entropy-regularized matching. Alternatively, by approximating the concave weight with piecewise linear functions

Copyright (© 2025
Copyright for this paper is retained by authors

and splitting each edge into multiple copies, we reduce [Problem 3.3 to a capacity-constrained maximum weight

matching problem, which is then solved by similarly applying the generalized approach of [5]. The runtime of this

algorithm does not have the subpolynomial factor incurred by the use of [33] but suffers from a larger dependence
-1

one ',

3.4 Dynamic Rounding of Fractional Matchings The results in previous sections show that we can solve
the decremental fractional matching problem adaptively. To turn the fractional matching into an integral one,
we further design dynamic rounding algorithms for general graphs. To present our algorithms in a unified way,
we consider the following weighted definition of dynamic rounding algorithms.

DEFINITION 3.1. (DYNAMIC ROUNDING ALGORITHM) A dynamic rounding algorithm, for a given n-vertex
graph G = (V,E), edge weights w € N¥ bounded by W = poly(n), and accuracy parameter ¢ > 0, initializes
with an © € Mg and must maintain an integral matching M C supp(x) with w(M) > (1 — e)w "x under entry
updates to x that guarantee x € Mg after each operation.

We prove the following deterministic rounding algorithm which has near-optimal overhead in the unweighted
case.

THEOREM 3.5. There is a deterministic dynamic rounding algorithm for general graphs with amortized update
time O(We™4).

Our algorithm for @ builds on top of the pipage-rounding algorithm recently dynamized by [29] for
bipartite graphs. Their algorithm circumvents the inherent barrier of the periodic-recomputation approaches by
directly rounding to integral matchings without creating an intermediate sparsifier. Although this approach does
not generalize to non-bipartite graphs due to odd-set constraints, we observe that terminating their algorithm
early in fact creates a good sparsifier for general graphs. The main intuition is that the first few rounds of their
algorithm only have small additive effects on the value x., and perturbing each edge slightly indeed does not
have a huge impact on odd-set constraints. While is weighted, we remark that the algorithm of
is essentially unweighted in its design, hence the linear dependence on W. We thus apply it in the
unweighted case or through reductions to the case when W is small. See for more details.

We further consider rounding with better dependence on W. For this we directly adopt the standard sampling
approach of creating a matching sparsifier. Similar approaches were studied before in, e.g., [4] 169, 29|, for rounding
matchings in bipartite graphs or certain structured matchings in general graphs. Our analysis of the sparsifier,
however, differs from the previous ones in that we directly analyze the violation of each odd-set constraint while
previous work used various proxies (e.g., kernels or e-restrictness) when arguing the integrality gap. In particular,
by standard Chernoff bounds, we show that the sparsifier maintains (i) the degree of the vertices, (ii) the total edge
mass in odd sets, and (iii) the unweighted matching size. Coupled with a dynamic set sampler from, e.g., [29], we
obtain from the sampling approach an unweighted rounding algorithm for general graphs. Though the sampling
scheme itself does not lead to a runtime improvement over we further show that in the decremental
setting, surprisingly, properties (i) and (ii) suffice to round the entropy-regularized fractional matching maintained

by in weighted graphs with large W. The resulting rounding algorithm in below has a

near-optimal overhead in dense graphs.

THEOREM 3.6. There are randomized output-adaptive algorithms that solve w.h.p. with amortized
update times O(e~*! + (n?/m)-e7%) and O(717 + (n?/m)-e75). Additionally, if G is bipartite then there is such
an algorithm with amortized update time O((n?/m) -e~°).

3.5 Putting Everything Together We conclude this overview by using the previously stated results to prove
our main theorems.

THEOREM 3.7. (UNWEIGHTED DECREMENTAL MATCHING) There are randomized fully-adaptive O(e=4') and
O(e717) update time algorithms that solve |Problem 1.1 in the unweighted case w.h.p.

Proof. Fore < n~Y/6 the update times of O(¢~*!) and 6(5*17) can be obtained by re-running the static algorithm
‘

of [35] after each update. As a result we assume ¢ > n~ /6 in the remainder of the proof. By [Theorem 3.4 with

Copyright (© 2025
Copyright for this paper is retained by authors

accuracy parameter £/2, we can maintain a (1 — 5)—appr0ximate fractional matching in amortized update times
O(e=*) and O(e~'7). We then apply [Theorem 3.5/ with accuracy parameter £/2 to round the fractional matching
we maintain to a (1 — ¢)-approximate integral matching. Since the recourse of [Theorem 3.4|is O(me~2), there

will be 6(m5_2) updates to[Theorem 3.5|in total, incurring an additional 5(5_6) amortized time per update that
is subsumed by the update time of [Theorem 3.4. Since [l'heorem 3.5 is deterministic, our final algorithm works

against a fully-dynamic adversary like does.]

THEOREM 3.8. (WEIGHTED DECREMENTAL MATCHING) There is a randomized fully-adaptive O(e=C1/)) up-
date time algorithm that solves |Problem 1.1 w.h.p. Additionally, when m = @(2), there are randomized output-
adaptive O(e=*1) and O(e~17) update time algorithms.

We make use of the following weight reduction framework from [41] which allows us to assume that the
maximum weight is bounded by e~ ©(1/¢),

ProPosITION 3.1. ([41]) Given a fully-dynamic/incremental/decremental algorithm for (1 — €)-approximate
mazimum weighted matching on n-vertex m-edge graphs of mazimum weight W with worst-case/amortized update
time T(n,m,e, W), there is a fully-dynamic/incremental/decremental algorithm for the same task with worst-
case/amortized update time O (T (n, m,O(e), 6‘0(1/5))).

Proof of[Theorem 1.2 As in the proof of [Theorem 1.1 we assume ¢ > n~'/6. For the first algomthmf we aﬁflf

the weight reduction framework of [41] in Proposmon 3.1/ to make W < ¢=9(/9) " Again, running [Theorem 3.4
with accuracy parameter £/2 we maintain a (1 — £)-approximate fractional matching in amortized update time

5(5’41). The rounding algorithm [Theorem 3.5 now has amortized update time 5(—0(1/2)) incurring an
additional O(o/ 5)) amortized time per update which subsumes the update time of the fractional matching.

The algorithms for dense graphs follow from [Theorem 3.6 0
Finally, the bipartite result [Theorem 1.3[also follows from [Theorem 3.6

THEOREM 3.9. (WEIGHTED BIPARTITE DECREMENTAL MATCHING) For bipartite graphs with m = ©(n2) there
is an output-adaptive randomized O(c~°) update time algorithm that solves|Problem 1.1 w.h.p.

4 Entropy Regularization for Decremental Linear Optimization

In this section we analyze our entropy regularization strategy for the lazy update framework that solves the
decremental linear optimization problem. In and we show the robustness of the entropy
regularization strategy, and in we prove its optimality. We consider a fixed instance of the decremental
linear optimization problem, including the d-dimensional convex set X and the input weight w € R‘io.

4.1 Notation and General Setup Before showing the robustness of our framework, we first set up the
notation and various optimization constructs that will be used throughout the section. For S C [d] and v > 0, we
consider the entropy regularizer rg , : Xs — R defined by

(4.7) s (x) = Z w;x; log
i€S

l:BZ

def

which is a weighted and scaled version of the original entropy function Hs(y) = ;s ¥; 1og - for y € A® that
is usually applied on the simplex. For intuition, observe that for an & € Xg with . Sw wl = v, we have

rs () = v - Hs(Il(z)), where II(z) € A with (II(z)); = w,x;/v. Below we give upper and lower bounds on
the value of rg . (2) which generalize known properties of entropy on the simplex.

LEMMA 4.1. For ¢ € Xs with wix = v, we have vlog(y/v) < rs~(x) < vlog(dy/v).

Proof. For the upper bound, consider the relaxation of the problem

(4.8) Z x, log

@’ €RS: Hw'\l —V/“/

Copyright (© 2025
Copyright for this paper is retained by authors

/ def

For any fixed & € Xs, there is a feasible point ¢’ of (4.8) with y; = w;x;/v, and v}, g y'log % =rg(x). Thus
the optimal value of (4.8) is an upper bound on rg (). Let g, € RS with (g,.); = —(1+log) be the gradient

of the objective of at «’. Note that the optimality conditions of the problem are that g, L ker(lST) or
equivalently that g, = a - 1° for some o € R. Thus, it holds that ' = 3 - 1° for some 8 € R. Combining with
|x'l||; = v/v, we have x] = v/(dy), implying that the maximizing value of is vlog(dy/v).

For the lower bound, since wga} = v, we have max;cg w;x; < v, and thus

rsq(@) > Y wiw;log (v/v) = vlog(v/v).
ies
a
S wle+p-rsq(x).

Note that @ > 0 in the definition. Let Zg} . S MaXge Xy fg W(w) be the maximum entropy-regularized objective

Using 75, we may rewrite the entropy-regularized objective defined in (3.4) as f§ (@)
value and v§ L MaXge Xy wgw be the maximum of the actual linear objective. Below are properties of fgﬁ that
we will use in this section.

LEMMA 4.2. The entropy-reqularized objective function fg’7 admits the following properties:
(i) f&., has a unique mazimizer x'_ on Xs.
(i) :cgﬁ has positive coordinates, i.e., :L"SLW € Xs 1, and thus fgrv and rg~ are differentiable at :cgﬁ.

2
< for all x € Xs, where ||@||ws =

w

(iii) fs.(x) < f§., (m’é» - 2‘7% Y ics Wilxi| is the weighted

¢1-norm/[™]

We provide a fairly standard proof of the properties from first principle.

Proof. By the compactness of Xs, f& - has a maximizer on Xg. We prove the following claims.

CLAaM 4.1. Any maximizer of fgﬁ on Xs must be in Xg ;.

Proof. Consider the first-order partial derivative of fgﬂ with respect to an @ € X5 and coordinate i € S, which
by calculation is
aer 05, ()

9ifs.(x) G = (1 — p)w; + pw; log <w’y) .

iLs

Since X' contains no degenerate dimension and is convex, there is a point y € Xg,. Consider any point
ef

x € X\ Xsy, and let &, = = + a(y — x) for a € [0,1]. Note that x, € Xs for a > 0. By the mean
value theorem, for any v > 0 there is a 0 < 8 < « such that

FE (@) = fi (@) = VfE (@) (@a — @) = 3 L (@5) - (wa): — @2).

€S

For i € S with @; > 0, |0; f§ ., (x)| is bounded since (xg); is between @; and y,. For i € S with ; = 0, however,
when (xzg); approaches 0, 0; fg . (xp) goes to infinity. This shows that we can pick an « close enough to 0 so that
fs.,(xa) > f§_ (x), proving that € X \ Xs y is not a maximizer. O

CLAIM 4.2. For any x,z € Xg 4 it holds that zTVQfgv(a:)z < —lf—inva g
: B :

Note that fg,—y is twice-differentiable on X’s ; and thus|Claim 4.2 is well-defined.

8||-||lp,s is indeed a norm since w; > 0 for all ¢ € [d].

Copyright (© 2025
Copyright for this paper is retained by authors

Proof. The second-order partial derivatives of fg y satisfy

2fl () w; >*fs ()
ol __pwi d Syy —Ofori<i
ox? x; an Oz 0z, or j 7 i
Using Cauchy-Schwarz inequality, for any x, z € X5 we have
T2 it HW; o ||z||12u,S H
z' 'V fS;y(:B)Z = -] i § - || || S 77”2”11,75,
% w,S S

€S
as claimed. O

Now consider a maximizer y of f§_ and an x € X5 . Since y € Xs 4, fg , is differentiable at y. Letting

Yy, =y +alx—y) for a € [0,1], we have

4 @=rw+ (VEw) @ws [[0V e - v
(4)
(4.10) < 1w - %nwfyni,y / / dadt = 1%, 0) ~ 5o =l

where (i) uses the optimality conditions of féf’7 at y and |Claim 4.2] On the other hand, for x € Xg \ X 4, there
is a sequence {z, } C X approaching x. By continuity of fg_ we have

2
wa,S'

I _ 7 : I
(4.11) fsﬁ(w) = nh_{IOlo fsﬂ(wn) < nh_{gc fs,y(y)) §||33n wa S = fS 7() —

This implies that there is a unique maximizer zcgﬁ of fg,v on Xg. The rest of the lemma follows from |Claim 4.1
and [Equations (4.10)|and |(4.11)] d

Finally, our analysis of the framework uses the Bregman divergence of rg ., as a proxy to bound the decrease
of a certain potential.

DEFINITION 4.1. (BREGMAN DIVERGENCE) For differentiable v : X — R and x,y € X for a domain X, the
Bregman divergence of r from y to « is

Vy@) = r(@) — (r(y) + (Vr(®) (@ —y).
Overloading notation, let VySW (z) for S C [d],x € X5 and y € Xg 1 be the Bregman divergence induced by

r3,y, which is non-positive since rg, as a generalization of the entropy function, is concave. We have by direct
calculation from the definition that

(412) V(@) Vo (@) = 15 () — (rsa(y) + (Vrs(9) (-)

(4.13) (Zw x; log oy) [(Z w;Y; log) (Z w; <1 + log > (z; — y))]
i€S Wilki i€S ies
(4.14) =Y wa log o T2 wil@ v

€S €S

Note that we need y € Xg 1 because the gradient does not exist on Xs \ Xs . Indeed, in the remainder of
the section we will only use Vysﬁ(a:) for y = @ _, which lies in Xs ;. by ii), The following lemma

bounds the entropy-regularized objective by the Bregman divergence from g Y

LEMMA 4.3. For any ® € Xs, we have f§_(x) < f§_ (.)+ quS,ﬂ ().
7 : : -

Copyright (© 2025
Copyright for this paper is retained by authors

Proof. For clarity let us write &* < x!s . Optimality conditions for concave optimization applied to f ,Y(a:*)

-
imply that

(4.15) (ws + pVrs,(x*) " (x — xx) = Vféf’,y(w*)—r(w —*) <0.

As such, we have

a2

fa (@) - i (@) Lwl(@ — @) + plrs, (@) - rs, (@)
(4i)

D (ws + pVrg (@) (2" — @) — pVE () > —pVS (x),

where (i) is by definition of fgﬁ, (ii) is by definition of the Bregman divergence, and (iii) follows from (4.15).
0

The following summarizes the notation introduced here for future reference.

Notation | Definition Description

75~ (T) Y ics Wixilog entropy regularizer

wW; T

Vi (@) | Yies wimilog(y,/xi) + Y ,cs wi(zi —y,;) | Bregman divergence of entropy regularizer

fgw(a:) wlax + -1 (x) entropy-regularized objective

wgﬂ argmax,,c v, fgw (x) optimal entropy-regularized solution

v MaXzeXg wgaz optimal linear objective value

Z g','y MaXzeXg fgﬂ/(m) optimal entropy-regularized objective value
[|2||w,s Y ics Wilxi norm of & € Xs induced by w

Table 1: Frequently used notation

4.2 Robustness of Entropy Regularization In this section we show that if the subroutine Rebuild() in
[Algorithm T returns the exact maximizer of the entropy-regularized objective, then Rebuild() will be called at
most O(¢72) times. The first step is to derive a proper choice of v and y so that wg . becomes an approximate
maximum weight solution that can be used in [Algorithm I. We call a tuple containing an accuracy parameter
€ > 0, coordinate subset S C [d], and estimate

(4.16) vg <y <d-vg
a wvalid iterate which will repeatedly appear as input to lemmas in the remainder of this section.

LEMMA 4.4. For any valid iterate (¢, 5,7) and 0 < p < it holds that 0 < p-rg~(x) < §-v§ forallx € Xs.

_£€ £
8logd’ 2

Proof. The lower bound follows from and the assumption of v in (4.16)). For the upper bound, let

x € Xg be arbitrary and define v Lt w:qr:c. Lemma 4.1 implies that

d d v vE
jo s (x) < prlog <L = pwlog = + v - - log -5
v I/S VS 14

(1) (44)

< - (2logd) + s < 5%,

where (i) comes from zlog(1/z) < 1 for all z € R>¢ and the assumption of v in (4.16)) and (ii) is by the assumption
of pand v < v§. 0

Copyright (© 2025
Copyright for this paper is retained by authors

LEMMA 4.5. For any valid iterate (£,5,7) and 0 < p < it holds that

_£&
— 8logd’

wsws,y = (1 - 5) 'Z/:;V.
Proof. For any x € Xs such that wiz < (1 —¢/2) - v, we have

W e L\ G
fg,'y (ajg‘,’y) - fg,’y(aj) 2 Vg — (wgw+ 2 : VS) > 0,

where (i) comes from (note that the non-negativity of the entropy-regularizer implies f§_ (s) > v§)
and (ii) comes from the assumption that wix < (1 —¢/2) - v5. The lemma follows since x’éﬁ is a maximizer of

fi. O

[Lemma 4.5 shows that for v being a d- approxirnate upper bound of v, if we choose p to be roughly
proportional to €, then the corresponding value of wsa:S is a (1 — ¢/2)-approximation to v§. Thus we can
use the entropy-regularized solution for the Rebuld() procedure in [Algorithm 1. Moreover, as we will show
below, a decrease in the linear objective value of xf 5. implies a decrease in the entropy-regularized objective
globally. This enables the use of the latter quantity as a potential to bound the number of calls to Rebuild()

Algorithm 1| needs.

LEMMA 4.6. For any valid iterate (¢,S5,7v), 0 < pu < and 8" C S, if

J
8logd’

T € T
wg (mg”)s' < (1 - 5) W T

then Zg,ﬂ < (1 — %) Zgﬁ.

Proof. For clarity let g = zl , and xg] (a:g,’,y)s be x, , extended to have coordinates S. [Lemma 4.3
shows that -
5 (ws) <[5 (xs) + pVy (wsr).

Since S’ C S, we have

(4.17) iy =L (@) = Tho(@s) < JL, (ws) + WVED (@) = 25+ 1wV (@s).

Further, by above letting D = S\ S” and therefore s/ ; = 0 for i € D, we have from (&.14)) and the non-positiveness
of the Bregman divergence for concave functions that

VS’Y (zs) Z'wz xg); log (@s); +sz (xs)i — (x35):)

i€S (@s1): €S
Ts)i
<zm%/m&§+zwmwr@m
i€D st ieD
€
= - Zwi(wS)i < 5" wlzs,
ieD

which when combined with (4.17) and [Lemma 4.4]shows that

pe ot e pe
ZgL/,“/SZlSL,ﬂ/Q'waSS(]‘(l_*_E/z)_Q) lel,y_(lf 3) Z‘u’

d

We now conclude the number of rebuilds before the actual optimal value v§ drops to a certain number, if we
use an entropy-regularized solution % Sy for Rebuild().

Copyright (© 2025
Copyright for this paper is retained by authors

LEMMA 3.1. For any a > 0, accuracy parameter € > 0, and 0 < p < ﬁgd, if the subroutine Rebuild()
in |Algorithm 1| returns a:’SLmﬁ as) for v = «, then Rebuild() will be called at most O(li’fgd) times before

maXy cxs Wex' drops from at most a to below o /d.

Proof. Note that while v§ is between a/d and a, v s a d-approximate upper bound of v§ and thus the
preceding lemmas apply. By [Lemma 4.5, ®) is a (1 — %)-approximate solution to the linear objective w—'s—(t)a:

before v§ drops below a. Fix a round ¢ and consider S (t+1) which is obtained by deleting some coordinates from
S®) so that

T (t) S W S
wS(t+1)wS<t+1) < (1 — 5) ws(t)w()

In other words, the quality of the current solution ® decreases by a multiplicative factor of 1 — 5 when we go
from S® to S+ [Lemma 4.6 then implies

Zs<t+1) = (1 - ?) Z's%

for each round t. This allows us to bound the number of calls to Rebuild() as follows. Initially when
MaXye xg wg:c < «, the optimal entropy-regularized objective is no more than (1 + £/2) - a by [Lemma 4.4
Likewise, at the end before v§ drops below «/d, the objective is at least a/d. Thus there will be at most

logy_ue ((1+¢/2)d) = O (k)gd)

JE
calls to Rebuild (). u|

4.3 Sufficiency of Approximate Solutions From[Section 4.2]we have seen that the maximizer of the entropy-
regularized objective solves the decremental linear optimization problem. However, exact maximizers are not
always easy to obtain, and therefore in this section, we show that any accurate enough approximate maximizer of
f§7 , suffices for the lazy update framework to work efficiently. This is by the following lemma which states that

such a solution is also close in ||-[|w,s-distance to the actual maximizer '
:

LEMMA 4.7. For any valid iterate (£,5,7), 0 < p < and x € Xs with fg_(x) > (1 — “762) Zg. ., it holds

£
8logd’
17 b
that Haz—wSﬁH S&-ZS,,Y

w,S

Proof. [Lemma 4.2(iii) states that

' Iz |2
£5(@) = 18, (25,) = e le = ok,
for all x € Xg. Thus for every & € Xs such that fg,y(:c) > (— —) ZS»w we have

2v%
Hw_mgWHw,s<\/ NS (fgw() fsq(@)> Ve Vs Zsy Se Dy,

where the last inequality follows from and therefore v§ < Z§ o 0

The closeness of an approximate maximizer @ to the actual one w’é . allows us to bound the decrease in the
objective value of w'g . that is hidden to us. This establishes the number of rebuilds needed if we only have an
accurate enough approximation to fg .

LEMMA 3.2. For any a > 0, accumcy parameter € > 0, and 0 < p < if the subroutine Rebuild() in

S
128logd’

pe?)-approximate solution to fsm as € fory = «, then Rebuild() will be called

512
times before maxqy:ecxg wSa: drops from at most « to below a/d.

Algorithm 1 returns any (1 —
at most O(Iogd)

Copyright (© 2025
Copyright for this paper is retained by authors

Proof. Setting &’ = /4 and ¢’ = /16, we have p < ﬁéd < ﬁ/gd and ®) being a (1 - %”)—approximate

solution to fgm » By [Lemma 4.5 with accuracy parameter ¢’ we know that x is a (1 - %)—approximate

o
Sy
solution to the linear objective w g,z before v drops below a/d. By triangle inequality of the norm ||-[|,, s

and [Lemma 4.7 with accuracy parameter ¢”, the value of w:gr(t)w(t) satisfies

(4.18) w:gr(t)a:(t) = Hw(t)

2 [“l

M _ 1 _
S‘”v’YHw,SM Hxs‘”ﬂ r
€

€ €
(4.19) 2 (1 - g) Vsw ~ 164504 2 (1 - Z) Vg
where the last inequality uses that Zg(t) . < (1 + %) Vi < 205, by with accuracy parameter &’

This shows that ® is indeed a (1 — %)—approximate solution to the linear objective, as required by |Algorithm 1
Fix a round ¢ and consider S®*1) which is obtained by deleting some coordinates from S®) so that

w,S () w,S ()

T t e\, T
ws<t+1>m(s<)t+1) < (1 - 5) 'ws(t)m(t).

This implies

wg(t“) (mg(”ﬁ)s(wn - H (mg(”ﬂ) §+1) |4, g0t+1)
= H (x(t))swn w,S(t+D) + H (xg“’ﬂ N m(t))smn w,S(t+D)
< (1 B g) wgwa'® + ng(”ﬂ B x(t)Hw,sm
(? G_iﬁ) ’w;w“’g(tw + mwgmmg%

(447) c
T %
= (1 - é) W Pgw

where (i) is by (4.19), (ii) is by [Lemma 4.4 with accuracy parameter &', and (iii) uses tzﬁ < 1—¢/4 for
€ € (0,1). The theorem then follows from [Lemma 4.6| with accuracy parameter ¢ and the same reasoning that

proves [Lemma 3.1. 0

4.4 Near-Optimality of Entropy Regularization We have shown earlier in this section that [Algorithm T
with the entropy regularization strategy solves the decremental linear optimization problem with at
most O(log2 d/?) calls to Rebuild() before the optimal linear objective drops from d - a to a. Complementing
this result, in this section we show that this bound is near optimal for a certain range of ¢.

More specifically, we focus on the special case of unweighted bipartite matching, i.e., when X = Pg = Mg
for some bipartite graph G, and consider any algorithm that implements the Rebuild() subroutine. In this
decremental unweighted bipartite matching problem, gives an upper bound of O(log?n/e?) on
the number of calls to Rebuild(), where n is the number of vertices. The following theorem establishes an
Q(log?(e2n)/e?) lower bound in the regime of ¢ > Q(1/,/n) against an output-adaptive adversary.

THEOREM 4.1. For anyn € N, 2/y/n < e < 1/4, and implementation of Rebuild() in|Algorithm 1| there exists
a bipartite imih G with n vertices on each side and an output-adaptively chosen sequence of deletions that when

def

X = Pg |Algorithm 1| calls Rebuild() Q(log?(e2n) - e~2) times before G is empty.

We first introduce a graph structure Gy that will repeatedly appear during the deletion process.
DEFINITION 4.2. For k € N, Gy, is a bipartite graph with k vertices on each side, and the edge set E(Gy) of G
is {{i*,j"} |1 <j <i <k}

Copyright (© 2025
Copyright for this paper is retained by authors

It is straightforward to check that Gy has a unique maximum matching M = {{i’,i"} | 1 < i < k}. The
following lemma shows a generalization of the observation, that any large enough fractional matching has a mass
concentration on edges with small differences in their endpoint labels.

LEMMA 4.8. For k € N and n,6 > 0, any fractional matching x of Gj with matching size ||z|, > (1—-n)k
satisfies that

Yo oz 21—+ ke

0<i—j<dk

Proof. By |Definition 4.2, for any edge {i’, j"} in G, we have i — j > 0. Also, we can upper-bound the weighted
sum of difference by

oo = Prpegy = i =Y () <Y (- a(") < k- x),) < k.

{i%,j7}YeE(Gk) i€ k] J€E[k] JE[k]

By Markov’s inequality, Y. @y <00 'k, and thus > @ ey > (1—@1+0"n) k. |
i—j>0k 0<i—j<é&k

Now we are ready to construct an output-adaptive adversary to achieve the previously claimed lower bound.

Proof. [Proof of Let A be an instance of [Algorithm 1] with the given implementation of Rebuild().
The adversarial input graph to the algorithm is G,,, and the adversary works in phases. At the beginning of the
t-th phase, let k; be the largest number such that Gy, is a subgraph of the current graph. The adversary will
guarantee that k; = (1 —4e)*-n. In the t-th phase, the adversary will cause Q(log(e%k;)/¢) rebuilds in this phase.
Before k; reaches 4/&2, there will be at least log;_,.(4/(*n)) = Q(log(¢2n)/e) phases, achieving a

Q(log(e?n)/¢e) Q(log(e?n)/¢)
Z Q (log (e%ky) /) = Q (log (£%(1 — 4¢)'n) /e) = Q(log*(e?n) /?)
t=0 t=0

lower bound on the total number of rebuilds. In the remainder of the proof, we focus on a single phase ¢, and
show how the adversary can cause Q(log(¢?k;)/e) rebuilds in this phase.

Algorithm 3: The adversarially chosen sequence of deletions
1 Let G < G, be the initial graph and feed it to A.

2 Let ¢t + 0.

3 while k;, = (1 — 4¢)* satisfies k, > 4/ do // phase t
4 Identify a subgraph Gy, C G, delete G \ Gy,, and re-label vertices so that

E(G)={{i*j"}:1<j<i<k} // preprocessing

5 Let M= {M,:0<p<ek;/2}, where M, = {{i*,j"} : i =j + p}.

6 while |[M| > 1/e do // regular deletion
7 Let « be the current matching output by A.

8 Choose r = 2¢| M| matchings M,,, ..., M, such that Hachl ||1 + ot ||z, H1 >e/2 k.

// guaranteed by |[Lemma 4.8

9 Delete M,,, U---U M, and set M =M\ {M,, :1<j<r} // cause a rebuild
10 | t<t+1

Preprocessing. At the beginning of phase ¢, by definition of k;, Gy, is a subgraph of the current graph G.
The adversary will first delete edges outside this subgraph, then relabel vertices in this subgraph on each side
from 1 to k; in a way that the current set of edges is {{i*,j"} | 1 < j <i < k;}. The adversary will then delete
edges {{i’,j"} | j +€ki/2 < i < j + 4ek; }. After that, regular deletion starts.

Copyright (© 2025
Copyright for this paper is retained by authors

Regular Deletion. A regular deletion starts after a preprocessing finishes. During the regular deletion of
phase ¢, the adversary will only delete edges in the subgraph Gj, = {{if 7Y | j < i < j+eky/2} of Gy,, and
the deletion continues until the maximum matching size M*(G) becomes less than (1 —e/2)k;. After that, the
current phase ends. Since no edges in the subgraph {{i,j"} | i > j + 4ek;} are deleted, G(1_4c)p, = Gp,,, Is a
subgraph of the current graph at the beginning of phase ¢ + 1. It remains to show that Q(log(e?k;)/e) rebuilds
could be caused during the deletion described above in G, .

Note that Gy, is the union of ©(ek;) matchings where the p-th matching is M, = {{i%, 4"} | i = j+p}, each of
size at least (1 —e/2)k;. Therefore, as long as one of the M)’s remains intact, we have (1—¢/2)k, < M*(G) < k.
This implies that the fractional matching x that A maintains must have size at least

€\2 € 3e
||:c|\12(1—§) kt—Q-kt2(1—2)kt

throughout this phase, since by definition of [Algorithm 1| was a (1 — /2)-approximate matching since the last
rebuild, and after § - k; units of mass get deleted, a rebuild must be caused.
By the above argument it suffices to delete £/2 - k; units of mass to cause a rebuild from 4. Applying

with n = 3¢/2 and ¢ = 4e on the fractional matching x, we know that at least k;/4 units of mass

are on Gg , i.e,

TpG:)| = ki /4. Thus via an averaging argument the adversary can delete 2¢ fraction of
¢/l

the matchings M,,’s to cause a rebuild. After the rebuild, we repeat the same argument again, choosing 2¢
fraction of the remaining M,’s to cause another rebuild. Note that after the first batch of deletions, the current
graph is no longer Gy,. Nevertheless, we can still apply [Lemma 4.8 by interpreting the future ’s as a fractional
matching on Gy, by assigning a mass of zero on deleted edges. This shows that the mass of « is still concentrated
on the remaining M,’s. Before the number of intact matchings in M,’s reaches 1/(2¢), there will be at least
log; _o.(4/(c%kt)) = Q(log(2ky) /¢) reconstructions, if ek;/2 > 1/(2¢) or equivalently k; < 4/¢2. This completes
the proof. 0

5 Decremental Algorithms for Fractional Matching

In we showed that the decremental linear optimization problem reduces to computing an approximate
solution to the entropy-regularized problem to moderate accuracy. In the particular, in the special case of
decremental bipartite matching, i.e., when X is the matching polytope Mg, it suffices to solve the entropy-
regularized matching problem recalled below.

PROBLEM 3.3. (ENTROPY-REGULARIZED MATCHING) Given an n-vertex m-edge graph G = (V, E) with edge
weights w € NE bounded by W = poly(n), a trade-off parameter u < 1, ay € Rxq such that M}, (G) <~ < n3W,
and an accuracy parameter € € (0,1), the entropy-regularized matching problem is to compute a (1 — ¢€)-
approzimate solution x € Mg to

~
3.6 T . oo 1)
() mrél?‘j(c {w $+M eGZEw Te 108 weme}

Consequently, in the remainder of the section we focus on solving [Problem 3.3. We prove the following
theorem.

THEOREM 5.1. For any € > ﬁ(n’lm), there are randomized O (mesf6 + ne’l?’) and O (msf‘r’) time algorithms

that solve [Problem 3.3 w.h.p.

Our approaches for @ follow from a generalization of the MWU-style algorithm of [5] that solves
the uncapacitated and capacitated versions of weighted matching. Given a graph G = (V,E) and consider
a downward closed convex set P C REO of interest. By modularizing and generalizing the framework of [5],
we derive the following [Cemma 5.1 on concave function optimization over the matching polytope. Informally
speaking, [Lemma 5.1 gives a reduction from approximately maximizing a concave function P together with odd-
set constraints to the same task just in P by increasing the dependence on e~'. We then, in [Sections 5.1/ and Iﬂl
respectively, instantiate the framework of [Lemma 5.1 in two different ways with the entropy-regularized function
to obtain the two runtimes stated in [Theorem 3.3

Copyright (© 2025
Copyright for this paper is retained by authors

Let kp be the minimum number such that P C kp - Mg, which for both Pg and P§ that we will consider
later in this section are O(1). A function f : Rgo — R_. is coordinate-separable concave/linear if f is of

the form f(x) = > .y fe(®e) where each f. : R>g — R_ is concave/linear. Specifically, if £ : Rgo — R is

coordinate-separable linear, we use £ € RF to denote the linear coefficients, i.e., £(x) = £ z.

DEFINITION 5.1. For 8> 1 and 0 < ¢ < 1, an algorithm A is a (8,T4,()-oracle for (P, f), where P C Rgo is
convezr and downward closed and f is concave, if given any concave function g of the form g = f — £ for some
coordinate-separable linear £ such that each £. is polynomially bounded, with an additional guarantee that

1
2 >
(5.20) rmnez%(g(ac) ~ poly(n)’

it outputs an x4 € - P with g(xy) > ¢ - maxgep g(x) in Tg(n,m) = Q(m) time.

We defer the proof and discussion on modularization and explicit dependence on £~ ! of the following
[Lemma 5.1] to [Section Al for completeness. It is worth noting that the two stated runtimes below are obtained
by leveraging recently developed algorithms in certain components (specifically the computation of Gomory-Hu
trees) of [5].

LEMMA 5.1. (ADAPTED FROM [5]) For any £ > Q(n=Y/2), downward closed and convex P C Rgo, and concave
function f : Rgo — R_o such that maxgepomg f(x) > 1, given an (5,T4,()-oracle A for (P, f) where

kp B < n, there are randomized O ((TA (n,m) +me=t + TLE_9) . /17:65‘4) and O ((TA (n,m) + me_l) . Hp,@&“l)
time algorithms that w.h.p. compute an x; € (B-P) N Mg such that f(xy) > ((1 — &) maxgepnme f().

For instance, if we set P to be Pg, then kp = O(1) since for any « € Pg we have

> owe < Lovep 2eep, Te |D] <2 leJ

IN

- 2 2 2
e€E[B]

for all odd sets B € Og. As such, optimizing concave functions (specifically the entropy-regularized objective)
over the general matching polytope reduces to optimizing over Pg, which may be substantially simpler to solve. In
Sections 5.1 and [5.2] we will develop two incomparable algorithms that both follow [Lemma 5.1. These ultimately
assemble into the two runtimes of [I’heorem 3.3|in [Section 5.3l

5.1 Almost-Linear Time Oracle via Convex Flow Algorithms Using the convex flow algorithm of [33],
we can indeed optimize any “efficiently-computable” concave function over Pg. We then use that result to obtain
an algorithm optimizing concave functions over the general matching polytope in with the help of
Lemma 5.1] The algorithm of [33] requires as input self-concordant barriers on the domain {(z,y) : y > h.(z)},
where h, is the convex edge weight, that satisfy assumptions detailed in [33] Assumption 10.2] which ensures the
numbers encountered during the algorithm are quasi-polynomially bounded.

LEMMA 5.2. ([33, THEOREM 10.13] DERANDOMIZED BY [66]) Given m-edge graph G = (V, E), demands d €
RY, conver h. : R — Ry, and v-self-concordant barriers 1.(x,y) on the domain {(z,y) : v > h.(z)} that

satisfy |33, Assumption 10.2], there is a deterministic m*te) time algorithm that computes a flow f € RE with
Bl f = d such that

h(f) < min h(f*) + exp(—log® m)
BLf*=d
for any fized constant C > 0, where h(f) = Yoecr he(fe)-

The following is our main lemma in the section which turns the flow algorithm above into an algorithm for
optimizing concave functions over M. For simplicity of the construction of barriers, we allow the functions f.
to be decomposed into O(1) portions, each with its own barrier.

Copyright (© 2025
Copyright for this paper is retained by authors

LEMMA 5.3. Suppose we are given a graph G = (V,E), € > ﬁ(n_l/z), and a coordinate-separable concave
function f Rgo — R_o such that maxgem, f(x) > 1, where the function on each edge is given as
folz) = fe(l)(x) +--+ fe(kc)(:v) for some ke = O(1), each equipped with a v-self-concordant barrier e (x,y) on
the domain {(z,y) : y > —fe(l)(:c)} that satisfy [33, Assumption 10.2]. Then, there is a randomized O(me=5) time
algorithm that w.h.p. computes an x € Mg such that

f(@)> (1) max f(z").

T*EMa

Proof. By to prove it suffices to provide a (1,m'T°(M) 1 — ¢/2)-oracle for (Pg, f). We

achieve this by reducing the optimization problem over the relaxed matching polytope Pg to a minimum cost
circulatio problem as follows. Consider the following directed graph G = (V, E) with V= {vj, : v € VIU{vous :
v eV} and

EY {(Vin; Vout) : v € V} U {(tout, vin) : {u,v} € E} U {(Vout, tin) : {u,v} € E}.
In other words, each vertex v is split into two copies vi, and vout, and each edge {u,v} is directed from uoyu to
Vin and from vey; to ui,. For each e = {u,v} in E, let ™) and e denote (uout, vin) € E and (vous, uin) € E
respectively. Let e(*) € E for v € V be (Vin, Vout)-
Let ¢ < f — ¢ be the coordinate-separable concave function that the oracle needs to optimize which we write
as g(x) = Y ecr Je(®e). We translate the concave edge weights g.’s on £ to convex h.’s on E as follows. For
each e € E, let h,1), h.2) : R = Ry be defined as

—fe(x) Le(x)
2 + 2

) def —ge(l')

h/e(l) (:B) = he(z) ($ 9

+ o(x),
where
0, ifo<z<l1
P(x) = { .
oo, otherwise

is a convex regularizer which enforces each edge having flow at most one. For each v € V', let h) : R = R, be
defined as

f

hew () = (x).
Observe that we can translate between circulations in G and relaxed fractional matchings in G as follows.

For a circulation f € RE with h(f) < oo, by definition of the edge weights we may assume 0 < f, < 1 for

S Mgﬂ for each edge e € E, we see that by concavity of g, that g.(x.) >

—hey(fo)) = he (fo@). Conversely, for any relaxed fractional matching « € Pg, let f.q) = fo@ < z. and

Ffor = (v). Tt can be easily checked that f is a circulation and has weight h(f) = —f(). This shows that
the optimal values of these two problems are the same (up to negation). Consequently, if we get a d-additive-
approximate minimizing circulation f, then the corresponding relaxed fractional matching & would satisfy

every e € E. Setting x.

glx) > —h(f) > — min h(f*)—0= max g(z*)— 4.
Bl f*=0 z*€Pq

We will then choose § to be sufficiently small to make x a (1 — &/2)-approximate maximizer of g in Pg.

To apply the convex flow algorithm of to minimize h(f), we need to provide self-concordant
barriers for the edge weights. Consider edges e @ ¢ E for some e € E. The edge weights h,1) and h,e) can
be divided into k.42 parts which we handle by splitting e(*) and e(?) further into paths of length k. +2 (recall that
k. the function f. is given toas ke portions, each with its own barrier). Among the first k. parts, the i-

def

th of which has weight w which we use 1;(:107 y) = wgi) (x,2y) as the barrier, where recall that wgi) is the given

barrier to the i-th portion of edge e; the second last part has weight éegﬂ) which we use {/;(x, Y) Lot log (y — @)

19A circulation is a flow f such that routes the demand 0, i.e., Bgf =0.

Copyright (© 2025
Copyright for this paper is retained by authors

E a4 (1—z) *fora ™ =+ asthe

as the barrier; and the last part has weight ¢(x) which we use {/;(x, Y) 000 Tog T’

Le(z)
2

barrier. The barrier — log (y -) is the same barrier that [33, Theorem 10.16] used for linear functions (note

that £, is polynomially bounded); the barrier =% + (1 — z) ™% is the same barrier that [33] used in their min-cost
flow algorithm to enforce capacity constraints. Both of the barriers were shown to satisfy the assumption in [33].
The barrier for ¢(z) is also used for edges () € E.

This gives us an exact reduction from maximizing concave weights over Pg to finding a circulation minimizing
convex weights in a graph with O(m) edges. Applying With the constant C' chosen in such a way that
exp(—log® m) < £/2-maxgep, g(z) = O(1/poly(n)) thus results in a (1,m () 1—¢/2)-oracle for (Pg, f). The
theorem then follows from @ with accuracy parameter /2. O
5.2 Near-Linear Time Reduction to Linear Optimization To remove the n°() factors incurred by the
almost-linear time flow algorithm in we can instead reduce concave function maximization over the
matching polytope directly to a capacity-constrained weighted matching problem at the cost of a larger e~!

def

factor in the running time. For ¢ € [0,1]7, let Te = {0 < x, < ¢, Ve € E} C RE; be the capacity-constrained
polytope. Let M ' MeNTe and PE < Pe N T,

PROBLEM 5.1. In the capacity-constrained weighted matching problem, we are given a graph G = (V, E), an
accuracy € > 0, edge weights w € Rgo, capacities ¢ € [0,1]F, all polynomially bounded. The goal is find an

x € Mg such that

w'x>(1-¢) max w
T*eME

T,

To solve we use the following constant-approximate algorithm to the “relaxed” capacitated
b-matching problem as an oracle and apply |[Lemma 5.1. Their algorithm works for multigraphs with integral
demands and capacities.

LEMMA 5.4. ([5, THEOREM 13]) Given an m-edge multigraph G = (V,E), edge weights w € Rgo, demands

be Z‘>/07 capacities ¢ € ZEO, all polynomially bounded entrywise, there is a deterministic O(m) time algorithm
that obtains a 1/8-approzimate mazimizer to the following “relaxed” capacitated b-matching problem:

maximize w'x
(5.21)

subject to @ (v) < by, YoeV,
0<zxz.<c., VeekF.

The criterion of b and ¢ being integral in [Lemma 5.4 can be relaxed via scaling.

COROLLARY 5.1. For polynomially bounded b € R;O and c € Rgo there is an 6(m) time algorithm that obtains
a 1/16-approzimate mazimizer to (5.21).

Proof. Since b and ¢ are polynomially bounded, we can scale them to integers by replacing each b, and c. with
|by/bmin] and |ce/Cmin], respectively. Observe that |b,/bmin] > by/(2bmin) and |€e/Cmin] > €/ (2¢min), and
thus we only lose a factor of 2 in the approximation ratio from]

Using as an oracle, now implies the following algorithm for

LEMMA 5.5. There is a randomized O(me = + ne=13) time algorithm for e > Q(n~'/2) that solves|Problem 5.1
w.h.p.

Proof. Consider the function f,,(x) = w'x. By scaling w we may assume max.cp w.c. > 1 and therefore
MaXge PN Mg fw(x) > 1. By running [Corollary 5.1 and returning the vector x it outputs by 16, we get a

(16,0(m), 1)-oracle for (P&, fw). Since ME& = P& N Mg, the lemma follows from [Lemma 5.1. 0

Copyright (© 2025
Copyright for this paper is retained by authors

Note that an immediate corollary of the above is that we can solve the subproblem in [1] of
finding an approximate maximum matching obeying capacity and odd-set constraints in O (m . poly(e_l)) time.

However, we remark again this does not suffice to make their framework run in O (m . poly(s_l)) completely, as
a dual variable to is still required to identify the set of critical edges along which the capacity is
increased.

We now present the reduction from maximizing convex objective to by approximating the
objective with piecewise linear functions, thereby effectively splitting each edge into O(¢~1) copies of different
capacities and weights. Similar approaches were used before, e.g., in [57].

LEMMA 5.6. Given an n-vertex m-edge graph G = (V, E) and a coordinate-separable concave function f : Rgo —
R satisfying

(1) fe(x) is polynomially bounded for x > 1/poly(n),
(2) each fo can be evaluated in O(1) time, and
(8) zr = argmax,co 1] fe(¥) is given and satisfies z; > 1/poly(n),

Jor any £ > Q(n=1/2) there is a randomized O(me= + ne='3) time algorithm that computes an x5 € Mg such
that w.h.p.,

flws) 2 (1—¢) max f(x).

Proof. Let us consider a fixed ¢/ = O(e) that we will set later. For each edge e € FE, let rgo) = zZ and
pt) &t réz_l)/(l +¢) fori e {1,...,k}, where k = [loglﬁ, %2“ = O0(e™Y). Let pEFD L) Splitting each edge e
into k + 1 copies e, eM ... e®) we get a graph G’ = (V, E) with m’ = 6(m5_1) edges. Define ¢ € RE" and
’ o i i o Oy f (p(i4+1) 3
w’ € RY with ¢/, L0 0D and w’ ;) B %f@(” for each e € E and ¢ € {0,...,k}. Note that c.i)
€ € (i))

and w,u) are both polynomially bounded by and Recall that ME, is the capacity-constrained matching
polytope of G'. We show the following two claims.

def

CLAIM 5.1. For any x' € Mg,, the vector x € Rgo given by ©. = o + -+, satisfies x € Mg and

flx)>w' .

Proof. That & € Mg is immediate from @’ € MS,. Let
fe(x) of / w,(y) dy, where w.(y) &of w;m for r(+1) < y < r(®
0

be the piecewise linearized version of f.. By concavity of f., it holds that fe(:c) < fe(z) for all x € [0, zF]. We
have

flx) > Z folw) = Z Z w’ ;) - min {c;(i),max{O,a}e — ré”l)}} >w'' @,

ccE e€E 0<i<k

where the last inequality uses the fact that w’e(k) > w’e(k,l) > > wé(o) by concavity of f. so it is always better
to saturate e(® before putting mass on e(=1). 0

CLAIM 5.2. For any @ € Mg, there exists an ' € MS, with w''a > (1-2)f(x).

Proof. Let x € Rgg by defined as

. i1 o

— def | min {c;(wmax {O,me — ré”)}} , ifi <k,

xe(i) = / ep -
Cis if 1 = k.

Copyright (© 2025
Copyright for this paper is retained by authors

Observe that T k) < &’/n? for every e € E by definition. As such we have Z) + -+ + Z.x) < @ + €' /n?, which

implies ¢ € (1+¢’) g, given £ € Mg. Letting 0 < ., < k be the smallest integer such that rte) < max{z.,c, },
we also have

k ..
T () @ 1
w B> Y wlde = Y f(rlt) > S felxe) > (1-€) (),
cFE

14¢
ecE i=t. e€EE\F e

where (4) is by definition of w’ and ¢’, and (i) uses the fact that rie) > g, /(1 +¢’) by definition and concavity

/ def

of f.. Therefore, the vector &’ = Z/(1 + £') satisfies ' € Mg and w''a > (1-2)f(x). a

Going back to the proof of , with ¢/ = ¢/4, we run on the split graph G’ with edge
weights w’ and capacities ¢’ to accuracy 1 — ¢’ in time O (m'e™® + ne13) = O (me =% + ne~!3), obtaining an
x' € MS,. Letting € Mg be derived from @’ as in |Claim 5.1, it follows that

fl@)>w 'z’ >(1—¢) max w @’ >(1-¢)1-2) max f(z*) > (1—¢) max f(z*),
m”GMCG/, x*EMg r*EMg

where we used [Claim 5.2, This concludes the proof. O

5.3 Putting Everything Together We can now prove [Theorem 3.3| by combining |[Lemmas 5.3 and

Proof of[Theorem 3.3, Let fo(x) = wex + p - wezlog == so that the entropy-regularized matching objective is
a coordinate-separable concave function f(x) = 3,4 fe(z.)

The runtime of O(me =6 4+ ne~13) follows from , since the function f satisfies (1) wez < fe(z) <

w, + pw, log(y/we) is polynomially bounded for x > 1/poly(n), (2) each f. can be evaluated in O(1) time, and
(3) z¥ =1 since u < 1.

For the runtime of O(me~?), we use [Lemma 5.3, in which each f.(z) is decomposed into fe(l)(x) + féQ)(x),
where fél)(x) = (w, 4 pw, log 7))z is linear and fez)(x) & wezlogwez. We use the barriers ¢£1>(x, y) =
—log(y + (we + pw,logy)x) for {(z,y) : y > —fe(l)(a:)} and 1% (z,y) =

= —log(wex) —log (y/p — wex log(wex))
for {(x,y) : y > —fc@(m)}. The barrier 1{") is the same as the one used in [33, Theorem 10.16] for linear functions,
and 1 is the same barrier that [33] Theorem 10.16] used for the entropy term. Both of the barriers were shown
to satisfy [33] Assumption 10.2] as long as the coefficients are polynomially bounded (note that we apply an affine

substitution for wf) which preserves self-concordance [59, Proposition 3.1.1]). a

6 Dynamic Rounding Algorithms

In and [5| we have shown how to solve the decremental fractional matching problem with O(poly(c!))

amortized update time and 6(m -poly(e1)) recourse. Here we further show how to obtain an integral matching
from the fractional one with dynamic rounding algorithms whose definition is recalled below.

DEFINITION 3.1. (DYNAMIC ROUNDING ALGORITHM) A dynamic rounding algorithm, for a given n-vertex
graph G = (V, E), edge weights w € N¥ bounded by W = poly(n), and accuracy parameter ¢ > 0, initializes
with an * € Mg and must maintain an integral matching M C supp(z) with w(M) > (1 — e)w ' = under entry
updates to x that guarantee x € Mg after each operation.

Note that although the previous sections of our paper focus on the decremental setting, the rounding algorithm
as defined in and given below in is fully dynamic. In other words, it works under
arbitrary updates to the fractional matching @, irrespective of how the underlying fractional algorithm maintains
x. Our rounding algorithms are obtained by maintaining a sparse subgraph in which the maximum weight
matching is approximately preserved.

DEFINITION 6.1. For a fractional matching x € Mg, a subgraph H C supp(x) is an s-sparse e-sparsifier for
s = s(n,m,e) of G if |H| < s- |||y and M2 (H) > (1 —e)w x. We call a fractional matching ') € My a
certificate of H if w'x™) > (1 —e)w ' x.

Copyright (© 2025
Copyright for this paper is retained by authors

Following standard techniques of periodic recomputation, if we can maintain an 5(poly(€_1))—sparse O(e)-
sparsifier under updates to x, then this gives the desired fully-dynamic rounding algorithm using the below static
algorithm of [35].

PROPOSITION 6.1. ([35]) There is an O(me™1) time algorithm that given an m-edge graph G = (V, E) weighted
by w € Rgo computes a matching M C E such that

B A 3 s

The notion of sparsifier maintenance is formalized as follows.

DEFINITION 6.2. An algorithm S is an (s, Tinit, Tupdate, Toutput)-Sparsifier-maintainer if given a fractional matching
x and parameter ¢ > 0, it initializes in Tini(n, m,€) time, processes each entry update to « in Tpdate(n, M, €)
amortized time, and outputs an s-sparse e-sparsifier H of the current & in Touput(n, m,e) - |H| time.

LEMMA 6.1. (ROUNDING VIA SPARSIFICATION) Given an (S, Tinit, Tupdate, Loutput)-Sparsifier-maintainer S, there is
a dynamic rounding algorithm that initializes in O (m el —&—Tin;t(n,m,s/él)) time and maintains an integral
matching M C supp(x) with w(M) > (1 —e)w ' = in amortized

9] (Tupdate(n7m,s/4) +s(n,m,e/4) - W - (Tomput(ng, m,e/4) n 1))

2

time per update to . The dynamic rounding algorithm has the same properties as S does in terms of being
deterministic/randomized and being fully/output-adaptive.

Proof. Let M be an initial (1 — %)—approximate maximum weight matching over supp(«) obtained by the static
algorithm of [35]. We initialize S and feed every update to x to it to maintain an e/4-sparsifier H of x in
Tupdate(n, m, £/4) time per update. If x. is set to zero for some e € M, we remove e from M. Every time
w(M) < (1—¢)w'x, we query S to get an s(n,m,e/4)-sparse ¢/4-sparsifier H and re-compute M as a (1 — i)—
approximate matching of H, again using [35]. This step takes time

6 (TOUtPUt(namae/Zl) ’ 5(71,771,8/4) ! H"BHl + 5(n3m35/4) ' Hm‘ll : 571) :

By definition of an e/4-sparsifier, we have w(M) > (1—-£) (1-$)w @ > (1 — £) w'®. The re-computation
happens at most once every zo-w '@ > 55 ||z||; updates, as we need that many updates to either decrease w(M)
by § -w "z or increase the value of the maximum weight matching size by 5 -w ' x, so the time of re-computation
amortizes to O <s(n, m,e/4) - W - (M + 6%)) time per update. Combined with the update time of S,

the lemma follows. 0

In we design a determinstic (O(e72), O(m), O(We=1), O(1))-sparsifier-maintainer in

This together with proves the following theorem.

THEOREM 6.1. There is a deterministic dynamic rounding algorithm for general graphs with amortized update
time O(We™%).

In we further obtain a rounding algorithm specifically for proving the following.

THEOREM 6.2. (INFORMAL, SEE [THEOREM 3.6)) We can round the entropy-regularized matching maintained in
Theorem 3.4| in O((n?/m) - e=Y) additional amortized time per update.

We emphasize that while has a near-optimal dependence on W, it is not a generic dynamic
rounding algorithm as defined in |Definition 3.1, See [Section 3.4| for a more detailed exposition on this. We
leave obtaining a generic, fully-dynamic weighted rounding algorithm that has polylogarithmic or even better
dependence on W as an important open question. No such algorithms are known even for bipartite graphs.

Copyright (© 2025
Copyright for this paper is retained by authors

6.1 Deterministic Sparsifier To obtain a deterministic sparsifier, we employ the “bit-by-bit” rounding
approach of [29] that iteratively sparsifies the support of & while maintaining the degree value of each vertex. For
bipartite graphs, [29] showed that using this approach, we can directly round to an integral matching without
resorting to periodic re-computation, e.g., as in[Cemma 6.1 However, it is unclear how to extend this approach to
general graphs due to odd-set constraints. Our key observation here is that, nevertheless, if we stop the bit-by-bit
rounding process earlier, we still get a sparsifier on which we can then perform periodic re-computation.

LEMMA 6.2. For any ¢ > 0, given a fractional matching * € Mg and a vector T € Rgo such that (1)

supp(Z) C supp(zx), (2) w'z > (1 —¢/2)w 'z, (3) T(v) < x(v) +¢e/4 for allv €V, and (}) | — T.| < % for

all e € E(G), we can conclude that H = supp(&) is an e-sparsifier of © and it has a certificate £ satisfying
(H) _ o7

x ' =0(x,) foralle € E.

def

Proof. Let & = ¢/4 and let o’ = % whose support is supp(z’) = supp(x) = H C supp(x). We
i(_?, < 1 for each v € V. For each odd set B € Og of size |B| < 3/¢', it follows from

. — Z| < = that |2(B) ~ Z(B)| < 9|B|. As such, we have @/(B) = 28) < BB |y,

Therefore by we have x(H) < 1i;, satisfies £#) € Mg and this fractional matching has weight
w'zW) > (1 -¢/2)(1 —&)?w'z > (1 —e)w'z. This shows that H is indeed an e-sparsifier of . That

ot = O(z.) is obvious from definition of &), |

have o'(v) =

The pipage-rounding algorithm of [29] is based on the following degree-split algorithm for dividing a graph
into a collection of cycles and paths.

PROPOSITION 6.2. (|29, PROPOSITION 2.4]) There exists an algorithm degree-split, which on multigraph
G = (V,E) with mazimum edge multiplicity at most two (i.e., no edge has more than two copies) computes
in O(|E|) time two (simple) edge-sets BV and E®) of two disjoint sub-graphs of G, such that EV) | E?) and the
degrees dg(v) and dD(v) of v in G and H® = (V, ED) satisfy:

(1) ‘E(1)| = {@—‘ and ’E(z)‘ = L@J and
(2) d(v) € o) 1,95 1] for ative V.

The rounding algorithm of [29] works in a bit-by-bit fashion, and thus for & € [0,1]¥ we encode each entry
x. as a binary string €. = Y _.(x.); - 277, The following observation suggests that it is without loss of optimality
to focus only on the first O(e71) bits of this encoding.

OBSERVATION 6.1. (SIMILAR TO [29, OBSERVATION 2.2]) For an ® € Mg with w'x > 1 and accuracy
parameter € > 0, the matching ' obtained from x by zeroing out edges e with x. < 553 and setting (x,); = 0

orallee & and i > or L=1+ |log n’W satisfies w' ' > (1 — e)w ' x.
foralle e E andi> L for L = 1+ |log 2

€

Proof. Direct calculation shows

wazwie I ((Z) 'zniw+ZZ2i> >wle—c>(1-cw'e.
]

Our algorithm for deterministically maintaining a dynamic sparsifier is which is almost identical
to [29] Algorithm 2] except that we only run it until level Ly,;, instead of 0 (modulo rather straightforward changes
needed for generalization to the weighted case). Stopping the algorithm early disallows us from having the same
“straight-to-integral” property as [29, Algorithm 2] does but enables rounding in general graphs.

For simplicity of analysis, we depart from [29] in the implementation of Rebuild (i) in that we are using a
tail-recursion style implementation while they use a loop from j = ¢ to Ly + 1. These two implementations are
equivalent, and we choose the current one to emphasize that a call to Rebuild (i) causes a Rebuild (i — 1).

Copyright (© 2025
Copyright for this paper is retained by authors

Algorithm 4: DETSPARSIFIER

global: edge weights w € N¥ and accuracy parameter ¢ € (0, 1).

global: fractional matching * € M.

global: maximum and minimum level Ly ax, Limin € N.

global: edge sets E; C supp;(x) and F; C E; for i € {Lmin + 1, ..., Lmax}-

global: counters ¢; € N for ¢ € {Luyin + 1, ..., Lmax }-
1 function Initialize(G = (V, E,w),x € Mg such that (x.); =0 for alli > L,e € (0,1))
2 Save w, ¢, and x as global variables.

3 Set me — DOg QOOOL] and Lmax + L.
4 | Call Rebuild(Lmax)-

function Rebuild (i)

if i < Ly, then return.

E; < supp,(x) and ¢; < 0.

Let (EMW, E?)) < degree-split(G|[E; U F}]).

Set F;_; to be the E® for b € {1,2} with larger weight, i.e., the one that satisfies
w(E®) > w(ECG-Y).

10 Call Rebuild (s — 1).

© 0 N o O

11 function Update(e,v such that (v); =0 for all i > Lyax)

12 T, V.

13 for i = Linax, Lmax — 1, ..., Lpyin + 1 do

14 if e € E; then remove e from F;.

15 if e € F;_1 then remove e from F;_;.

16 else remove one edge adjacent to each endpoint of e from F;_; (if there is one).
17 c ¢+ 1.

18 if ¢; >2072. y— w’ %> then call Rebuild(i) and return.

19 function Output)

20 L return H = suppy(x)U--- U suppy, . () U Fr,,, as the sparsifier.

min

Notation from [29]. For x € Mg, let supp,(x) be the set of edges e whose . has its i-th bit set to one,
i.e., supp;(x) = {e € E: (x.); = 1}. Let F;(v) and S;(v) be the number of edges in F; and supp,(z) incident to
v respectively. Let Fj(e) = [e € F;] and Ei(e) = [e € E;]. Let 29 € Rgo be given by

Lmin

(6.22)) < Fie).2- +ZS 2774 > Ej(e)-277

J=Lmin+1

for Lmin < { < Lmax'

LEMMA 6.3. (SIMILAR TO [29, LEMMA 3.8]) If & € Mg holds for each update, then £ (v) < z(v) +¢/2 for all
Liin <1 < Liyax holds after each update.

Proof. We adopt a similar proof strategy except that the degree-split subroutine can only give us a weaker
guarantee in non-bipartite graphs. By backward induction from ¢ = Ly ax to Ly, — 1 we show that

(6.23) Fi(v) < 2 > 8j(0) 277 | 4 Linax —
j=i+1

The base case when i = L.y is trivial as the left-hand side is 0 and the right-hand side is non-negative. Now
consider an i < Luyax and suppose first that a Rebuild(é 4+ 1) happened right before the current moment. Then

Copyright (© 2025
Copyright for this paper is retained by authors

FE;41 is set to S;1 and we have

. .. Lmax
Fi(v) (é) Sit1(v) ;r Fipa(v) 1 (g) % Spir(v) + [271 Z S;(v) - 27 F Lpax— (i+1)+1
J=i+2
LII]ELX
<2)] Si(0) 277 | + Linax — 4,
j=i+1

where (i) is by Property and (ii) is by the inductive hypothesis. On the other hand, if the Update(e,v)
operation did not cause a Rebuild(i + 1), then the right-hand side might decrease by at most one as an edge
incident to v is removed. If e € F;, then the left-hand side was also decreased by one so the inequality holds. If
e & F;, then we still decrease the left-hand side by one via removing an edge in F; adjacent to v unless it is empty,
for which the left-hand side was already 0 so the inequality holds again. Observe that by definition

Lmax
z(v) =) Sj(v)-277,
=0
and therefore
Lmax i
2V (v) —x(v) = Fi(v) - 27° — Z S;(v)-279 — Z E;(v)-277
j=Lumin+1 j=Lumin+1

< Lpax - 270 — Z S;(v)-279 — Z E;(v)-277

J=Lmin+1 J=Lmin+1

where (i) uses (6.23) and that S;(v) > E;(v) for all j since E£; C supp,(z) and (ii) is by our choice of Ly, and
Lpox. O

Let = a(Imin)| In particular shows that Z(v) < x(v) +&/2 for all v € V. Also observe that @
is a vector supported on H, the sparsifier outputted by [Algorithm 4. The following helper lemmas analogous to
ones in [29] can be shown, and to avoid repeating their arguments we defer the formal proofs to

LEMMA 6.4. (ANALOGOUS TO [29, LEMMA 3.10]) supp(z?) C supp(z) holds for each Luyin < i < Lumax after
each operation.

LEMMA 6.5. (ANALOGOUS TO [29, LEMMA 3.11]) w'Z > (1 — e)w '@ holds after each opemtionm

LEMMA 6.6. (ANALOGOUS TO [29, LEMMA 3.13]) The amortized time per Update(e,v) of|Algorithm 4| is O(W -

571 : Lr2nax) .

Using these helper lemmas we show that [Algorithm 4] maintains a deterministic sparsifier.

LEMMA 6.7. There is a deterministic (O(c~2),0(m), O(We™1), 0(1))-sparsifier-maintainer.

Proof. By preprocessing the input fractional matching x to a ' with large-enough entries and low bit-complexity

as in |[Observation 6.1 with accuracy parameter £/2, we may run [Algorithm 4| on &’ with accuracy parameter

def

/2 and L = 1+ |log 4”2W—‘. The initialization, update, and output time of [Algorithm 4 follow from

g

definition and [Lemma 6.6] Observe that since the rounding algorithm is only run until level Ly,, we have
2

|x! —x| < 27 Emintl < % foralle € E. By|[Lemma 6.4 we also have supp(2) C supp(a’) C supp(x). Therefore,

together with [Lemmas 6.3 and Lemma 6.2 applies and the H = supp () returned by [Algorithm 4|is an ¢/2-

sparsifier of &’ with certificate &%), hence an e-sparsifier of «. Finally, as o = O(x.) > Q27 Lmin) = Q(e?),

H is O(e~?)-sparse. 0

20Unlike [29], we assume the input matching @ is already preprocessed by [Observation 6.1} and thus the bound stated here is (1 —¢)
instead of (1 — 2e¢).

Copyright (© 2025
Copyright for this paper is retained by authors

6.2 Randomized Degree Sparsifier Toward getting the near-optimal weighted rounding algorithm for
decremental dense graphs, in this section we consider the following notion of degree sparsifiers. We remark
that Property below in fact is not used later in @. Nevertheless, we choose to include it to make
degree-sparsifier a stronger notion than the sparsifier in previous sections on unweighted graphsm This, as we will
demonstrate later, also shows that the simple and standard sampling approach previously studied for bipartite
graphs can also be used for rounding in general graphs.

DEFINITION 6.3. (DEGREE SPARSIFIERS) For a fractional matching x € Mg, a subgraph H C supp(x) is an
s-sparse e-degree-sparsifier for s = s(n,m,e) of G if |H| < s - ||x|1 and there exists a fractional matching
M) € Mg supported on H, which is similarly called a certificate of H, such that

(1) ||, = 0 =e)l|]|;.-

(2)) (v) > x(v) —¢ forallv e V.

(3) *)(B) > x(B) — £ - |B| > @(B) — ¢ - ||B|/2] for all odd sets B € Og.

Given * € Mg, our randomized degree sparsifier H is obtained from a simple sampling scheme that includes
each edge e into H independently with probability

52

€ . m e
(6.24) D, < min (1, 'ye> where v & 390 d Inm’

where d = max{c, 1} for ¢ > 0 a given constant to below.

LEMMA 6.8. (DEGREE SPARSIFICATION) For any fractional matching * € Mg with |||, > 1 and constant
¢ > 0, the random subgraph H obtained by sampling each edge e independently with probability p, defined in
(6.24), is an O(e2)-sparse e-degree-sparsifier with probability at least 1 —n~¢.

To prove [Lemma 6.8 we will use the following version of the Chernoff bound to show concentration on all
the constraints.

PROPOSITION 6.3. (CHERNOFF BOUND) Given m independent random variables X1, ..., X, in [0,b], for X =
Yot X and any § > 0 it holds that

Pr(|X —E[X]| > 6 E[X]) < 2exp (W) .

Let 2’ € R¥ be a random vector conditioned and supported on H defined by

T, ifaxe>1,
T, =17 Iifx.<vyandee€ H,
0, ife.<yandeecFE\H.

!/
€

probability 1 — p,. Therefore, &’ is an unbiased estimator of . Let F = {e € E: x. < ~}. We prove the
following claims about x’.

Equivalently, for . < «, @, is a random variable that takes value v with probability p, = x./v and 0 with

. .. _20d
CLAIM 6.1. With probability at least 1 — 2 - n=2°%, we have |z'(v) — x(v)| < 5.

210ne can fairly directly extend Propertyto be weighted, i.e., w' &(f) > (1 —&)w " x, at the cost of an O(W) blow-up in the
sparsity.

Copyright (© 2025
Copyright for this paper is retained by authors

Proof. By definition, |z’(v) — x(v)| = ‘Ha:’FU . — lzr, |1 |, and thus it suffices to bound the right-hand side. Using
the Chernoff bound with § = m7 we have

2
£
P [— . m
(2||-mnl) 2z,
£ g2
(2 + 2Ha:FUH1> 320.dInn

1

Pr (|||xvaH1 — ||mpu||1| > %) < 2exp < 2exp(—20dInn) <2.n"2%

using that xp, <1. O
CLAIM 6.2. With probability at least 1 — 2 -n=24Bl we have |x'(B) — x(B)| < ¢ - %.
Proof. Again |2'(B) — x(B)| = ‘Hm’F[B]H - H(EF[B]H’ and therefore we will bound the right-hand side. We set
§% _1Ble _ and apply the Chernoff bound, giving
2fler |,
2
B - (aer) el
Pr (||eiis|, — lermll,| > 55 -¢) < 2exp 1
1 12 9 |Ble g2
12||EF[B]||1 320-d-Inn
—26d Inn|B|?
< 2exp .
24|erp|, +1Ble
Since ||:cF[B]||1 < @, we get
Bl —2a|B
PI‘(HZE’F[B]Hl—HQJF[B]H1’>12'5 SQ’I’L | ‘

]
CLAIM 6.3. With probability at least 1 —2-n=32 we have (1 —3) [lz||; < |2/||; < (1 + 5) [|=[;-

Proof. An application of the Chernoff bound shows that

9 9
Pr (1112l = 2l | > Slel,) = Pr (el = el > Sl)

B (SEIR)2 N
zrl, £l
EH:I:HI g2
(2 * 5 Taerl;) 320-dnn

< 2exp (—32|z||, Inn) < 2n~32

< 2exp

using that ||z p||; < |lx||; and |||, > 1. O

Proof. [Proof of [Lemma 6.8] Take z(/) S 1 fel 73 s the fractional matching over H. By union bounds over
Claims 6.1] to [6.3] (note that there are at most n* odd sets of size k), with probability 1 —n~% > 1 —n=¢
we have z(H)(v) = ﬁ_(e% < 1 forall v € V, 2)(B) = ﬁ_g; < [|B|/2] for all B € Og, and

1-=2e) x| < H:B(H)Hl < (1 +¢)-||=|;. This implies) € Mg and shows Property m Claim 6.1

1:1(51;)2 > x(v) — e which establishes Property |(2)| Similarly, |[Claim 6.2| implies that

1) (B) = ﬂg; > x(B) — 5 - |B| which establishes Property @ For the sparsity of H, note that z\") > Q(e?)

and by Hw(H)Hl < O(||z||,) we have |H| < O(e72) - ||&||,. Finally, H C supp(z) is apparent by definition. This
concludes the proof. 0

also implies that =) (v) =

Copyright (© 2025
Copyright for this paper is retained by authors

Combining the above sampling scheme with the dynamic set sampler of [29], we get the following algorithm
for maintaining a degree sparsifier.

LEMMA 6.9. ([29, THEOREM 5.2]) There is an output-adaptive data structure that, given p € [0,1]? with the
guarantee that mingeq).p. 20 P; > 1/poly(n) for each update, initializes in O(d) time and supports (1) updating
an entry p; in O(1) time and (2) sampling a set T C [d] in O(1 + |T|) time such that each i € [d] is included
independently with probability p;.

LEMMA 6.10. There is a randomized output-adaptive (O(e=2),0(m), O(1), O(1))-degree-sparsifier-maintainer for
any € > 1/poly(n) that succeeds w.h.p.

Proof. For a given € > 0, let & S e/2. We can preprocess the matching x to be &’ by zeroing out edges with
T, < % By [Observation 6.1} we have ||&'||; > (1—¢’)||z||. Moreover, |2'(v) —x(v)| < &’ and |z’ (B)—x(B)| < €’

hold for all v € V and B € Og. Now we can simply run the dynamic sampler of [Lemma 6.9] with p, being the
probability defined in (6.24)) with accuracy parameter ¢’ and constant ¢ > 0 chosen to make [Lemma 6.10 succeed

w.h.p. Note that as x/ > =5 > 1/poly(n) for all e with non-zero ., p.’s are polynomially bounded and thus the

e Z)
runtime of h01(217sl. Every time there is an update to x., we interpret that as an update to x/, (by again
zeroing out the coordinate if x, < %), and hence to p,, and feed it to the dynamic sampler. Every time we
are asked to output a sparsifier, we use the dynamic sampler to sample each edge independently with probability
p,, obtaining a subgraph H, in time O(1 + |H|). By M H is an O(e~?%)-sparse &’-degree-sparsifier
for &’ w.h.p. This implies that H is an e-degree-sparsifier for & as well. Thus, we have Tt (n, m,e) = O(m),
Tupdate(n,m,e) = O(1), and Touput(n, m,€) = O(1). The algorithm works against an output-adaptive adversary
as [Cemma 6.9 does. 0

As alluded to at the beginning of the section, by including Property into the definition, we get the
following immediate corollary. This can straightforwardly be generalized to the weighted setting by imposing a
linear dependence on W, but we omit this part since it is irrelevant to this paper.

COROLLARY 6.1. Fore > 1/poly(n) there is a randomized output-adaptive (O(e=2),0(m), O(1), O(1))-sparsifier-
maintainer for unweighted graphs that succeeds w.h.p.

6.3 Weighted Rounding for Entropy-Regularized Matching While the rounding algorithms presented
previously work with weights, their dependence on W is polynomial, which in general might incur a poly(n) or
e~ 90/¢) runtime overhead. As such, here we further leverage the primal-dual properties of entropy-regularized
matchings and provide a weighted rounding algorithm in the decremental setting that has near-optimal update
time in dense graphs, proving Part (II) of M. Before diving into the technical calculations that form
the rest of the sections, we first give a short and intuitive explanation of this weighted rounding algorithm. It
leverages the following properties.

(1) For any fractional matching x., deleting edges e with . = O(e/n) does not affect the weight of & by more
than an O(e) factor.

(2) For the entropy-regularized fractional matching, a degree-sparsifier obtained from the unweighted rounding
algorithm keeps most of its weight.

As such, ensures that we can only consider edges with &, > Q(e/n). This implies that any deletion to the
integral matching that we maintain will also delete a comparable portion from the underlying fractional matching,
which bounds the number of rebuilds of the integral matchings. Rounding with nearly optimal dependence on W
is then made possible by

With this intuition we now proceed to the proofs. Let G = (V, E) be the input graph to the decremental

matching problem with edge weights w € N¥. In the remainder of this section we consider a fixed set of input
G® = (V,EW), pu, and v to [Problem 3.3, where E®) C E is the edge set in [Algorithm 1| for the ¢-th rebuild.

* ol x def
Fixing ¢, we let * = T

that we adopt the notations from [Section 4 for the special case of X = M, and thus the subscripts of certain
notations are changed to E from S. For instance, Zg(t) . denotes the optimal value of the entropy-regularized

€ Mg be the unique optimal entropy-regularized fractional matching. Note

matching problem on G*) with parameters z and ~.

Copyright (© 2025
Copyright for this paper is retained by authors

LEMMA 6.11. There exists a pair of dual solutions (y,z) € RV x RO such that for every edge e € E®) it holds
that

1 Se
* =—1-
T, = VAT Hwe

+log -
)

where s. = y, +y, + ZBQ{WJ} zp for e = {u,v}. Further, the optimal objective value Z*, satisfies

EM® 1y
L= 3w 7

ecE(t) veV BeO¢g

Proof. Denote

L(w,y,z,r)d:dfg(,,w(w)—i—Zyv 1-— Z Te | + Z zZB V?J - Z Te | + Z TeLe

veV eeEf,t) BeOg ec E(1)[B] ecE)

as the Lagrangian of [Problem 3.3| (see (2.2)) for the definition of M¢). Strong duality of [Problem 3.3| (by Slater’s

condition) implies that

Z;(t)’,y = fg(t)ﬁ(a:*) =max min L(z,y,z,7) = min maxL(z,y,z,7).

z y,z,r>0 Y,2,r>20

Suppose (y, z,r) is the minimizer of the dual problem. From the stationarity of the KKT condition, the
corresponding optimal primal solution a* satisfies that

(6.25) o 9%~ 1=yt Hlog o
for every edge e € E®). From the complementary slackness of the KKT condition, we know rexs = 0 for every
e € EW. Since * > 0 from (6.25), we have r = 0, and therefore

1
x: = QE_I_H'UJP,

+log 2L

Further, by plugging in (z*,y, z,7) to L and expanding the formula, we can see that the optimal objective value
can be written as

ZJ%(”,V:L(:B*’y’z’r):M' Z we$:+zyv+ Z Zp - V;ﬂJ

ecE(t) veV BeOg

d
An immediate corollary of [Lemma 6.11 that will be used throughout is the following.

COROLLARY 6.2. It holds that

Zpw oy 2 Zy'u + Z zZp - V?J :

veV BeOg

For ¢ > 0 and o € Rgg), let BV (z) {e€ EW |z, > £}, Recall from [Table 1f that v}, =

maXze M, wgmw which satisfies v, < nW.

LEMMA 6.12. Fore >0, vy <7y < mpq), and p <

covers all edge weights, i.e., for every e € EW it holds that s, > (1 — €/8)w,. Moreover, the covering is almost
tight on the subgraph Eét)(:c), i.e., Se < (1+¢/8)w. holds for every e € Eét)(m).

W, the optimal dual solution (y, z) approzimately

Proof. From [Problem 3.3/ and the choice of v, we have max c g« we < I/E(t) <y<m-: I/E(t) < n3W. [Lemma 6.11
shows that

1_1__Se e BN
w::2u 1 #"S’c+10gwc.

Copyright (© 2025
Copyright for this paper is retained by authors

Since the optimal primal solution is feasible, we have x} < 1, implying

Se > (1—M)we+,uwelogl > (1_5) w,
w 8

e

for all e € E® because v > w, and p < £/8. Similarly, for all e € Eét) (z), we have

Se < (1 — p+ plog (2)) we +,uwelogl < (1 + E) We,
3e w 8

€

since v < n*W and u< 0

e
8log(n*W/e)*

We argue that E(®) (e, x) for any fractional matching € Mg keeps most of the weight of .

*

LEMMA 6.13. For any fractional matching * € Mgw, accuracy parameter € > 0, v, < v < m- vy,

we have
4e
m
§ Weke > § WeLe — 7 : ZE(t),'y'
eGEét)(m) ecE®)

w, and

S 810g(n€4W/5)’

Proof. For those edges in gY (x), we have

@) 1
Z we$e§1_€/8 Z Se " Te

c€EW\EL" (x) c€BO\EL ()

1
T
1_5/81161/

(i

) € € |B|
SEy &t T i X e

BeOg

1

T1=:/8 Z zBHmEWB E®
1 1—¢/8 o [BI\E:" (z)

X
ES\E (z) 1

(ii) c c |B|
e kA b Tr sy D = {zJ

BeOg

(iv) 4e

n
= T ZE(”,W’

where (i) is by [Lemma 6.12 which shows that s, > (1 — ¢/8)w, for all e € E®), (ii) is because

Z wegg and Z megé-z Z S%'@v

e ESN\EY () € E®[BN\E® () V€8 e O\ EM (2)

(iii) is by |B| > 3, and (iv) is by [Corollary 6.2 O

Now, we consider a fractional matching © € M) that is close to £*. We show that a degree-sparsifier of
x preserves most of its weight. This is perhaps surprising as the definition of degree-sparsifier (Definition 6.3) is
purely unweighted, while we can use it to sparsify this particular weighted matching.

LEMMA 6.14. For any accuracy parameter € > 0, vy < v <m-vp, and p < W, given an x € Mg
with

-Z

(6.26) Z we |[Te — x| < Zm,w

ecE®)

ool m

for any edge subset E' C EY such that

Z wexe > (1 —¢/8) Z WL,

ecE’ ecE()

Copyright (© 2025
Copyright for this paper is retained by authors

we have that any e/8-degree-sparsifier H of x satisfies

ENEY), ()

M} (H) > (1 - f) Z WeLe.

ecE’

Proof. Lettinge’ < ¢ /8, we have p < W;W/a,). Let () be the certificate of H being an &/8-degree-sparsifier.

It suffices to prove that) . wext” > (1—-¢/2)-3 . cp wexe. From|Lemma 6.13| with accuracy parameter €',

we have

3 L * L
(6.27) > wemegﬁ-zg,ﬂ_ T, and Y wel < 14 Ly

ce E\E), () c€ B\E), (x*)

By (6.26)), (6.27)), and triangle inequality we have
3¢
Y. wee< Y werlt+), welme @< T L
c€E\E') (z*) e€E'\E') (z*) c€ B\E), (x*)
and thus

(6.28) Z WeLe < — 7 Z}ém
e BN\ (B (@)UE (=)

Applying [Lemma 6.12 with accuracy parameter ¢’, for every edge e € E®) N E(f/)g(*), we have s, < (1 + &) w

Therefore, letting E % E' N E(j)s()and E ¥ En E(/)g(*) for clarity, we have

Zwe >wa(H)>(64)236 (H

ecE’ e€E ecE

8 (Sl - el
(1 64)(Yo g, I, T > = el
veV BeO

G

Q) € € | B
g (Sulenl,+ 5 slerl,) 5 (e 5 0] 41])
veV BeOg BeOg
€ 5 |B|
(1) (Sl 3 sollesal,) -5 (3 =121
veV BeOg BeOg
€

(i1) e c "
> (1-g7) (1= 5) | Xweme | - 522,

eckE

(-3) (Gee) e 209 (5o0)

where (i) uses the assumption of 1) being an &/8-degree-sparsifier of T B () (ii) uses [Lemma 6.12
/8

and [Corollary 6.2 and (iii) uses (6.28). Finally, (iv) follows from
(a) £ () € « Eou
Z WeZe Z (1 - g) elLe Z (1 - g) Z wewe - gZE(‘)m/

eckE’ ecE() ecE(®)

(©) € € 5
2 (- (0 55) 2o 5780) 2 (1) 2

where (a) and (b) follow from the input assumption, and (c) is from with accuracy parameter ¢’. This
concludes the proof. 0

Copyright (© 2025
Copyright for this paper is retained by authors

We are now ready to finish the proof of For completeness we repeat the proof of

with a different set of parameters which allows us to perform rounding afterward.

THEOREM 6.3. There are randomized output-adaptive algorithms that solve w.h.p. with amortized
update times O(e~* + (n2/m)-e7¢) and O(e717 + (n?/m)-e7). Additionally, if G is bipartite then there is such
an algorithm with amortized update time O((n?/m) - e7%).

Proof. Let us assume ¢ > n~ /6 for general G and e > n~! for bipartite G, as the update time of 6(6_41), 6(6_17),
and O(c~%) can be obtained by re-running the static algorithm of [35] after every update. Letting X = Mg,
with accuracy parameter &’ S e/8 and p S WM shows that by using with
accuracy parameter ‘g‘i/; inside [Algorithm 2| as the subroutine Rebuild(), there will be at most 5(5*2) calls to
Rebuild () until the graph becomes empty. As such, we can maintain a (1 —¢/8)-approximate fractional maximum
weight matching in amortized update times 6(5*41) and 5(5*17) for general GG. As in the proof of [Theorem 3.4|,
for bipartite G, the update time improves to 6(5*2) by using 33, Theorem 10.16] instead of [Theorem 3.3
Consider the t-th rebuild, where the current graph is G® = (V, E®). Until the next rebuild, let £/ C E®
be the current edge set, i.e., the adversary has deleted E(®) \ E’ from the graph. To round the fractional matching
into an integral matching, right after the ¢-th rebuild we run @ to maintain an e/8-degree-sparsifier H
where = () is the new fractional matching that we just got from Rebuild(). We then run the

of x
BB (=)

static algorithm of [35] to get a (1 — &/4)-approximate matching M in H in time O(ne=3), since |H| < O(ne~2)
by the sparsity guarantee of [Lemma 6.10, We use M as the output integral matching, and let v be the value
of w(M) right after running [35]. Until the next rebuild happens, for every deletion, we feed the update of

T g () O Lemma 6.10| to maintain a degree sparsifier. Whenever the deletions make w(M) < (1 —¢/8)v,
e/8

we query the degree-sparsifier-maintainer of to get a new H over which we reconstruct an integral
(1 — e/4)-approximate matching M and its value v using [35].
We first analyze the quality of M. By [Lemma 4.7, the 2®) returned by Rebuild() satisﬁe

‘ €
Z w, |z — (wé(t)ﬁ)e‘ < ng(t)ﬁ.
ecE(®)
By definition of until the next rebuild happens, we have

S vl > (1-5) ¥ walt = (1-5) T watd

ecE’ ecE(®) ecE®)

Since p < W’ the conditions of [Lemma 6.14| are satisfied, showing that the £/8-degree-sparsifier H of
we maintain indeed has M7 (H) > (1 — £) (ZSGE, wewg)). This implies that

x
ENEY) ()

629 winz(1-5) (1-5) (Z wew@) S(1-5) () X wet > (1-F) i

ecE(®)

holds right after we run [35] since ") was a (1—¢’/2)-approximate fractional matching after the rebuild. Because
we re-run [35] whenever w(M) < (1 — £) v, we have that M is always a (1 — £)-approximate maximum weight
matching.

We now analyze the additional update time spent in rounding. By , whenever we have to re-run [35],
we must have deleted a set of edges D C E® \ £’ from M whose weights sum to at least ZeeD we > %l/. Because
M C Eit/)s(:c(t)), we have) > Q(e/n) for all e € M, and thus the adversary also deletes Q(v - 2/n) units of

weight from =, i.e., YD wezl) > Q(v-€%/n). As a result, until the next rebuild of ® happens (i.e., when

from

22Note that there is a change of notation here, so ZeeE(f) We is the same as H:cw —x

See also [Table T

= (e) S04
Te PEW), 5O yllaw, 50

Copyright (© 2025
Copyright for this paper is retained by authors

the weight of () drops by an ©(e) fraction), we will run [35] at most O(n/e) times. Since there are O(s~2)
rebuilds of ® by [Theorem 3.1, rounding incurs an O(n?e~°) additional running time, which is amortized to

O((n?/m) - €7%) time per update. This proves the update times of the algorithms. Finally, the algorithms are
output-adaptive as|Lemma 6.10|is. 0

Acknowledgements

Thank you to Aditi Dudeja for coordinating the posting to arXiv. Thank you to Aaron Bernstein, Sayan
Bhattacharya, Arun Jambulapati, Peter Kiss, Yujia Jin, Thatchaphol Saranurak, Kevin Tian, and David Wajc
for helpful conversations at various stages of the project that ultimately led to this paper. Part of the work for
this paper was conducted while the authors were visiting the Simons Institute for the Theory of Computing.

References

[1] Sepehr Assadi, Aaron Bernstein, and Aditi Dudeja. Decremental matching in general graphs. In 49th International
Colloquium on Automata, Languages, and Programming, ICALP 2022, volume 229 of LIPIcs, pages 11:1-11:19.
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2022. Available at https://arxiv.org/abs/2207.00927.

[2] Sepehr Assadi, Soheil Behnezhad, Sanjeev Khanna, and Huan Li. On regularity lemma and barriers in streaming
and dynamic matching. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023,
pages 131-144. ACM, 2023. Available at https://arxiv.org/abs/2207.09354.

[3] Amir Azarmehr, Soheil Behnezhad, and Mohammad Roghani. Fully dynamic matching: (2 — v/2)-approximation in
polylog update time. In Proceedings of the 35th ACM-SIAM Symposium on Discrete Algorithms, SODA 2024, 2024.
Available at https://arxiv.org/abs/2307.08772.

[4] Moab Arar, Shiri Chechik, Sarel Cohen, Cliff Stein, and David Wajc. Dynamic matching: Reducing integral
algorithms to approximately-maximal fractional algorithms. In 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, volume 107 of LIPIcs, pages 7:1-7:16. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 2018. Available at https://arxiv.org/abs/1711.06625.

[5] Kook Jin Ahn and Sudipto Guha. Near linear time approximation schemes for uncapacitated and capacitated b-
matching problems in nonbipartite graphs. In Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2014, pages 239-258. SIAM, 2014. Available at https://arxiv.org/abs/1307.4355.

[6] Sepehr Assadi and Sanjeev Khanna. Improved bounds for fully dynamic matching via ordered ruzsa-szemerédi graphs.
In arXiv Preprint, 2024. Available at https://arxiv.org/abs/2406.13573.

[7] Amir Abboud, Jason Li, Debmalya Panigrahi, and Thatchaphol Saranurak. All-pairs max-flow is no harder than
single-pair max-flow: Gomory-hu trees in almost-linear time. In 64th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2023, pages 2204-2212. IEEE Computer Society, 2023.

[8] Kyriakos Axiotis, Aleksander Madry, and Adrian Vladu. Faster sparse minimum cost flow by electrical flow
localization. In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, pages 528-539.
IEEE Computer Society, 2021. Available at https://arxiv.org/abs/2111.10368.

[9] Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower bounds for dynamic
problems. In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, pages 434-443.
IEEE Computer Society, 2014. Available at https://arxiv.org/abs/1402.0054.

[10] Sayan Bhattacharya, Deeparnab Chakrabarty, and Monika Henzinger. Deterministic fully dynamic approximate
vertex cover and fractional matching in O(1) amortized update time. In Integer Programming and Combinatorial
Optimization - 19th International Conference, IPCO 2017, volume 10328 of Lecture Notes in Computer Science, pages
86-98. Springer, 2017. Available at https://arxiv.org/abs/1611.00198.

[11] Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Cliff Stein, and Madhu Sudan. Fully dynamic
maximal independent set with polylogarithmic update time. In 60th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2019, pages 382—-405. IEEE Computer Society, 2019. Available at https://arxiv.org/
abs/1909.03478.

[12] Aaron Bernstein, Aditi Dudeja, and Zachary Langley. A framework for dynamic matching in weighted graphs. In
Proceedings of the 53rd Annual ACM Symposium on Theory of Computing, STOC 2021, pages 668—681. ACM, 2021.

[13] Soheil Behnezhad. Dynamic algorithms for maximum matching size. In Proceedings of the 34th ACM-SIAM
Symposium on Discrete Algorithms, SODA 2023, pages 129-162. STAM, 2023. Available at https://arxiv.org/
abs/2207.07607.

[14] Aaron Bernstein, Sebastian Forster, and Monika Henzinger. A deamortization approach for dynamic spanner and
dynamic maximal matching. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2019, pages 1899-1918. SIAM, 2019. Available at https://arxiv.org/abs/1810.10932,

Copyright (© 2025
Copyright for this paper is retained by authors

https://arxiv.org/abs/2207.00927
https://arxiv.org/abs/2207.09354
https://arxiv.org/abs/2307.08772
https://arxiv.org/abs/1711.06625
https://arxiv.org/abs/1307.4355
https://arxiv.org/abs/2406.13573
https://arxiv.org/abs/2111.10368
https://arxiv.org/abs/1402.0054
https://arxiv.org/abs/1611.00198
https://arxiv.org/abs/1909.03478
https://arxiv.org/abs/1909.03478
https://arxiv.org/abs/2207.07607
https://arxiv.org/abs/2207.07607
https://arxiv.org/abs/1810.10932

[15]

[16]

(17]

(18]

(19]

20]

(21]

(22]

23]

24]

(25]

[26]

27]

(28]

29]

(30]

(31]

32]

(33]

Soheil Behnezhad and Alma Ghafari. Fully dynamic matching and ordered ruzsa-szemerédi graphs. In 65th IEEFE
Annual Symposium on Foundations of Computer Science, FOCS 2024. IEEE Computer Society, 2024. Available at
https://arxiv.org/abs/2404.06069.

Surender Baswana, Manoj Gupta, and Sandeep Sen. Fully dynamic maximal matching in O(logn) update time. In
52nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2011, pages 383-392. IEEE Computer
Society, 2011. Available at https://arxiv.org/abs/1103.1109.

Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak. Deterministic decremental reachability,
scc, and shortest paths via directed expanders and congestion balancing. In 61st IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2020, pages 1123-1134. IEEE Computer Society, 2020. Available at
https://arxiv.org/abs/2009.02584.

Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. Deterministic fully dynamic data structures for
vertex cover and matching. In Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2015, pages 785-804. STAM, 2015. Available at https://arxiv.org/abs/1412.1318.

Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. New deterministic approximation algorithms for
fully dynamic matching. In Proceedings of the 48th Annual ACM Symposium on Theory of Computing, STOC 2016,
pages 398-411. ACM, 2016. Available at https://arxiv.org/abs/1604.05765.

Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. Fully dynamic approximate maximum matching
and minimum vertex cover in O(log®n) worst case update time. In Proceedings of the 28th Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017, pages 470-489. STAM, 2017. Available at https://arxiv.org/abs/
1704.02844.

Sayan Bhattacharya and Janardhan Kulkarni. Deterministically maintaining a (2 + €)-approximate minimum vertex
cover in O(1/€®) amortized update time. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2019, pages 1872-1885. SIAM, 2019. Available at https://arxiv.org/abs/1805.03498.

Sayan Bhattacharya and Peter Kiss. Deterministic rounding of dynamic fractional matchings. In 4/8th International
Colloquium on Automata, Languages, and Programming, ICALP 2021, volume 198 of LIPIcs, pages 27:1-27:14.
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2021. Available at https://arxiv.org/abs/2105.01615.

Soheil Behnezhad and Sanjeev Khanna. New trade-offs for fully dynamic matching via hierarchical EDCS. In
Proceedings of the 33rd ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, pages 3529-3566. STAM, 2022.
Available at https://arxiv.org/abs/2201.02905.

Joakim Blikstad and Peter Kiss. Incremental (1 — ¢)-approximate dynamic matching in O(poly(1/€)) update time.
In 81st Annual European Symposium on Algorithms, ESA 2023, volume 274 of LIPIcs, pages 22:1-22:19. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2023. Available at https://arxiv.org/abs/2302.08432.

Sayan Bhattacharya, Peter Kiss, and Thatchaphol Saranurak. Dynamic (1 4 €)-approximate matching size in truly
sublinear update time. In 64th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023, 2023.
Available at https://arxiv.org/abs/2302.05030.

Sayan Bhattacharya, Peter Kiss, and Thatchaphol Saranurak. Dynamic algorithms for packing-covering Ips via
multiplicative weight updates. In Proceedings of the 34th ACM-SIAM Symposium on Discrete Algorithms, SODA
2023, pages 1-47. SIAM, 2023. Available at https://arxiv.org/abs/2207.07519.

Sayan Bhattacharya, Peter Kiss, and Thatchaphol Saranurak. Sublinear algorithms for (1.54¢€)-approximate
matching. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, pages 254—266.
ACM, 2023.

Sayan Bhattacharya, Peter Kiss, Thatchaphol Saranurak, and David Wajc. Dynamic matching with better-than-
2 approximation in polylogarithmic update time. In Proceedings of the 34th ACM-SIAM Symposium on Discrete
Algorithms, SODA 2023, pages 100-128. STAM, 2023. Available at https://arxiv.org/abs/2207.07438.

Sayan Bhattacharya, Peter Kiss, Aaron Sidford, and David Wajc. Near-optimal dynamic rounding of fractional
matchings in bipartite graphs. In arXiv Preprint, 2023. Available at https://arxiv.org/abs/2306.11828,
Bartlomiej Bosek, Dariusz Leniowski, Piotr Sankowski, and Anna Zych. Online bipartite matching in offline time. In
55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, pages 384-393. IEEE Computer
Society, 2014.

Aaron Bernstein and Cliff Stein. Fully dynamic matching in bipartite graphs. In 42nd International Colloquium on
Automata, Languages, and Programming, ICALP 2015, volume 9134 of Lecture Notes in Computer Science, pages
167-179. Springer, 2015. Available at https://arxiv.org/abs/1506.07076.

Aaron Bernstein and CIiff Stein. Faster fully dynamic matchings with small approximation ratios. In Proceedings of
the 27th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, pages 692—711. STAM, 2016.

Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant Sachdeva. Maximum
flow and minimum-cost flow in almost-linear time. In 63rd IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2022, pages 612-623. IEEE Computer Society, 2022. Available at https://arxiv.org/abs/2203.
00671.

Copyright (© 2025
Copyright for this paper is retained by authors

https://arxiv.org/abs/2404.06069
https://arxiv.org/abs/1103.1109
https://arxiv.org/abs/2009.02584
https://arxiv.org/abs/1412.1318
https://arxiv.org/abs/1604.05765
https://arxiv.org/abs/1704.02844
https://arxiv.org/abs/1704.02844
https://arxiv.org/abs/1805.03498
https://arxiv.org/abs/2105.01615
https://arxiv.org/abs/2201.02905
https://arxiv.org/abs/2302.08432
https://arxiv.org/abs/2302.05030
https://arxiv.org/abs/2207.07519
https://arxiv.org/abs/2207.07438
https://arxiv.org/abs/2306.11828
https://arxiv.org/abs/1506.07076
https://arxiv.org/abs/2203.00671
https://arxiv.org/abs/2203.00671

34]

(35]
(36]

37]
(38]
39]
[40]
[41]

42]

(43]
(44]

(45]

[46]

(47]

(48]

(49]

[50]

[51]

[52]

[53]

[54]

Moses Charikar and Shay Solomon. Fully dynamic almost-maximal matching: Breaking the polynomial worst-
case time barrier. In 45th International Colloguium on Automata, Languages, and Programming, ICALP 2018,
volume 107 of LIPIcs, pages 33:1-33:14. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2018. Available at
https://arxiv.org/abs/1711.06883.

Ran Duan and Seth Pettie. Linear-time approximation for maximum weight matching. J. ACM, 61(1):1:1-1:23, 2014.
Ran Duan, Seth Pettie, and Hsin-Hao Su. Scaling algorithms for weighted matching in general graphs. In Proceedings
of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, pages 781-800. STAM, 2017.
Available at https://arxiv.org/abs/1411.1919.

Aditi Dudeja. Decremental matching in general weighted graphs. In 51st International Colloquium on Automata,
Languages, and Programming, ICALP 2024, volume 297 of LIPIcs, pages 59:1-59:20. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 2024. Available at https://arxiv.org/abs/2402.03068.

Aditi Dudeja. A note on rounding matchings in general graphs. In arXiv Preprint, 2024. Available at https:
//arxiv.org/abs/2402.03068.

Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17:449-467, 1965.

Fabrizio Grandoni, Stefano Leonardi, Piotr Sankowski, Chris Schwiegelshohn, and Shay Solomon. (1 + €)-approximate
incremental matching in constant deterministic amortized time. In Proceedings of the 30th Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2019, pages 1886—-1898. STAM, 2019.

Manoj Gupta and Richard Peng. Fully dynamic (1 4 €)-approximate matchings. In 54th Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2013, pages 548-557. IEEE Computer Society, 2013. Available at
https://arxiv.org/abs/1304.0378.

Fabrizio Grandoni, Chris Schwiegelshohn, Shay Solomon, and Amitai Uzrad. Maintaining an EDCS in general graphs:
Simpler, density-sensitive and with worst-case time bounds. In 5th Symposium on Simplicity in Algorithms, SOSA
2022, pages 12-23. STAM, 2022. Available at https://arxiv.org/abs/2108.08825.

Harold N. Gabow and Robert Endre Tarjan. A linear-time algorithm for a special case of disjoint set union. In
Proceedings of the 15th Annual ACM Symposium on Theory of Computing, STOC 1983, pages 246-251. ACM, 1983.
Harold N. Gabow and Robert Endre Tarjan. Faster scaling algorithms for general graph-matching problems. J.
ACM, 38(4):815-853, 1991.

Manoj Gupta. Maintaining approximate maximum matching in an incremental bipartite graph in polylogarithmic
update time. In 34th International Conference on Foundation of Software Technology and Theoretical Computer
Science, FSTTCS 201/, volume 29 of LIPIcs, pages 227-239. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
2014.

Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak. Unifying and strength-
ening hardness for dynamic problems via the online matrix-vector multiplication conjecture. In Proceedings of
the 47th Annual ACM Symposium on Theory of Computing, STOC 2015, pages 21-30. ACM, 2015. Available at
https://arxiv.org/abs/1511.06773,

Ramesh Hariharan, Telikepalli Kavitha, and Debmalya Panigrahi. Efficient algorithms for computing all low s-¢
edge connectivities and related problems. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2007, pages 127-136. STAM, 2007.

Ramesh Hariharan, Telikepalli Kavitha, Debmalya Panigrahi, and Anand Bhalgat. An O(mn) gomory-hu tree
construction algorithm for unweighted graphs. In Proceedings of the 39th Annual ACM Symposium on Theory of
Computing, STOC 2007, pages 605-614. ACM, 2007.

Arun Jambulapati, Yujia Jin, Aaron Sidford, and Kevin Tian. Regularized box-simplex games and dynamic
decremental bipartite matching. In 49th International Colloguium on Automata, Languages, and Programming,
ICALP 2022, volume 229 of LIPIcs, pages 77:1-77:20. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2022.
Available at https://arxiv.org/abs/2204.12721.

Peter Kiss. Deterministic dynamic matching in worst-case update time. In 13th Innovations in Theoretical Computer
Science Conference, ITCS 2022, volume 215 of LIPIcs, pages 94:1-94:21. Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, 2022. Available at https://arxiv.org/abs/2108.10461!

Tarun Kathuria, Yang P. Liu, and Aaron Sidford. Unit capacity maxflow in almost O(m4/ %) time. In 61st IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2020, pages 119-130. IEEE Computer Society, 2020.
Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3sum conjecture. In Proceedings of the
27th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, pages 1272-1287. STAM, 2016. Available
at https://arxiv.org/abs/1407.6756.

Yang P. Liu. On approximate fully-dynamic matching and online matrix-vector multiplication. In 65th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2024. IEEE Computer Society, 2024. Available
at https://arxiv.org/abs/2403.02582,

Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving linear programs in O(\/ rank)
iterations and faster algorithms for maximum flow. In 55th IEEE Annual Symposium on Foundations of Computer

Copyright (© 2025
Copyright for this paper is retained by authors

https://arxiv.org/abs/1711.06883
https://arxiv.org/abs/1411.1919
https://arxiv.org/abs/2402.03068
https://arxiv.org/abs/2402.03068
https://arxiv.org/abs/2402.03068
https://arxiv.org/abs/1304.0378
https://arxiv.org/abs/2108.08825
https://arxiv.org/abs/1511.06773
https://arxiv.org/abs/2204.12721
https://arxiv.org/abs/2108.10461
https://arxiv.org/abs/1407.6756
https://arxiv.org/abs/2403.02582

[55]

[56]

[57]

(58]

[59]
(60]
[61]
(62]

(63]
(64]

[65]

[66]

(67]

(68]

(69]

[70]

A

Science, FOCS 2014, pages 424-433. IEEE Computer Society, 2014. Available at https://arxiv.org/abs/1910.
08033.

Aleksander Madry. Navigating central path with electrical flows: From flows to matchings, and back. In 54th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2013, pages 253-262. IEEE Computer Society, 2013.
Available at https://arxiv.org/abs/1307.2205.

Aleksander Madry. Computing maximum flow with augmenting electrical flows. In 57th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2016, pages 593-602. IEEE Computer Society, 2016. Available at
https://arxiv.org/abs/1608.06016,

Tung Mai, Richard Peng, Anup B. Rao, and Vijay V. Vazirani. Concave flow on small depth directed networks. In
arXiv Preprint, 2017. Available at http://arxiv.org/abs/1704.07791|

Silvio Micali and Vijay V. Vazirani. An O(y/|V||E|) algorithm for finding maximum matching in general graphs.
In 21st IEEE Annual Symposium on Foundations of Computer Science, FOCS 1980, pages 17-27. IEEE Computer
Society, 1980.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer Science & Business
Media, 2003. Available at https://wwwfr.uni.lu/content/download/92121/1121193/file/NesB.pdf.

Krzysztof Onak and Ronitt Rubinfeld. Maintaining a large matching and a small vertex cover. In Proceedings of the
42nd ACM Symposium on Theory of Computing, STOC 2010, pages 457—-464. ACM, 2010.

Manfred W. Padberg and M. R. Rao. Odd minimum cut-sets and b-matchings. Math. Oper. Res., 7(1):67-80, 1982.
Mohammad Roghani, Amin Saberi, and David Wajc. Beating the folklore algorithm for dynamic matching. In 13th
Innovations in Theoretical Computer Science Conference, ITCS 2022, volume 215 of LIPIcs, pages 111:1-111:23.
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2022. Available at https://arxiv.org/abs/2106.10321.
Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer, 2003.

Shay Solomon. Fully dynamic maximal matching in constant update time. In 57th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2016, pages 325—-334. IEEE Computer Society, 2016. Available at
https://arxiv.org/abs/1604.08491.

Daniel Stubbs and Virginia Vassilevska Williams. Metatheorems for dynamic weighted matching. In 8th Innovations
in Theoretical Computer Science Conference, ITCS 2017, volume 67 of LIPIcs, pages 58:1-58:14. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 2017.

Jan van den Brand, Li Chen, Richard Peng, Rasmus Kyng, Yang P. Liu, Maximilian Probst Gutenberg, Sushant
Sachdeva, and Aaron Sidford. A deterministic almost-linear time algorithm for minimum-cost flow. In 64th IEEFE
Annual Symposium on Foundations of Computer Science, FOCS 2023, pages 503-514. IEEE Computer Society, 2023.
Available at https://arxiv.org/abs/2309.16629.

Jan van den Brand, Yin Tat Lee, Danupon Nanongkai, Richard Peng, Thatchaphol Saranurak, Aaron Sidford,
Zhao Song, and Di Wang. Bipartite matching in nearly-linear time on moderately dense graphs. In 61st IEEFE
Annual Symposium on Foundations of Computer Science, FOCS 2020, pages 919-930. IEEE Computer Society, 2020.
Available at https://arxiv.org/abs/2009.01802.

Jan van den Brand, Danupon Nanongkai, and Thatchaphol Saranurak. Dynamic matrix inverse: Improved algorithms
and matching conditional lower bounds. In 60th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2019, pages 456—-480. IEEE Computer Society, 2019. Available at https://arxiv.org/abs/1905.05067.
David Wajc. Rounding dynamic matchings against an adaptive adversary. In Proccedings of the 52nd Annual ACM
Symposium on Theory of Computing, STOC 2020, pages 194-207. ACM, 2020. Available at https://arxiv.org/
abs/1911.05545,

Da Wei Zheng and Monika Henzinger. Multiplicative auction algorithm for approximate maximum weight
bipartite matching. In Integer Programming and Combinatorial Optimization - 24th International Conference,
IPCO 2023, volume 13904 of Lecture Notes in Computer Science, pages 453-465. Springer, 2023. Available at
https://arxiv.org/abs/2301.09217.

Generalizing [5]

As mentioned in [5] can be generalized to prove in a fairly straightforward manner. Their

results, however, only claimed a poly(¢~!) dependence in the runtime instead of an explicit one. As we will swap
out certain components in their algorithms with recently developed counterparts, for completeness we give a proof
of Lemma 5.1 with explicit dependence on e~!. Most of the proofs in this section are slight variants of analogous
proofs in [5], and we do not claim novelty of them.

Overview. Here we outline the overall approach of [5] to make it easier to understand what the subsequent

lemmas and proofs are about. To begin, note that by [Fact 2.1 and concavity of the objective we can focus only
on Mg. Since the constraints of the matching polytope Mg . are linear and each € - P returned by the
oracle only violates these constraints by a factor of kp - 3, the main idea of [5] is to use the multiplicative weights

Copyright (© 2025
Copyright for this paper is retained by authors

https://arxiv.org/abs/1910.08033
https://arxiv.org/abs/1910.08033
https://arxiv.org/abs/1307.2205
https://arxiv.org/abs/1608.06016
http://arxiv.org/abs/1704.07791
https://wwwfr.uni.lu/content/download/92121/1121193/file/NesB.pdf
https://arxiv.org/abs/2106.10321
https://arxiv.org/abs/1604.08491
https://arxiv.org/abs/2309.16629
https://arxiv.org/abs/2009.01802
https://arxiv.org/abs/1905.05067
https://arxiv.org/abs/1911.05545
https://arxiv.org/abs/1911.05545
https://arxiv.org/abs/2301.09217

update (MWU) framework to produce a sequence of vectors in /3 - P whose average only violates the constraints
by a factor of (1 4+ O(g)). Here, the width of the MWU algorithms is xp - . As long as each vector in the
sequence is an approximate maximizer of the objective, the average of them will be one as well (again we use the
concavity of the objective). However, classic MWU algorithms need to spend 2(nnz(A)) time in each iteration
where A is the constraint matrix, which is exponential for the matching polytope even only considering small
odd sets. Thus, to circumvent to issue, [5] showed that (1) a variation of the classic MWU algorithms where only
constraints that are violated significantly are evaluated still works and (2) for (a slightly perturbed) Mg ., these
maximally-violated constraints can be found and evaluated efficiently. In what follows we adopt several lemmas
from [5], reproving them analogously in the form we need if necessary.

LeMMA A.1. ([5, THEOREM 8(1)]) Suppose we are given an (8,74, ()-oracle A for (P, f), € > m,
function f, non-negative linear function ¢ where all £.’s are polynomially bounded, v1 > Q(1) and v2 > 0. If

(A1) {xeP: f(x) 2 andl(z) <72} # 0,
then in 5(TA(n,m)) time we can find an © € 8- P such that f(x) > (1 —)y and {(x) < 2.

concave

Proof. The proof strategy is the same as that of [5, Lemma 6.1]. Let g,(z) = f(x) — p - £(z). We can use a
binary search to find 0 < p~ < p™ < % and x,-,z,+ € - P such that p* — p~ < % with £(x,-) > 72 and
l(x,+) < 2 in O (T4(n,m)) time as follows. For p = 0, the xy returned by A on input go satisfies f(xzo) > (1.
If £(xg) < 2 then we can simply return xg as the solution. Similarly, for p = %, the vector ., /-, ' 0 satisfies
U, /~,) < Yo Starting from the left endpoint p~ = 0 and the right endpoint pt = %, we do a binary search

on p € [p~,pT] using A to optimize g,. Let x, be the returned vector on g,. We maintain that ¢(x,-) > v, and
U+) < y2 until pT —p= < %, Le., if £(x,) > 72, then we set p~ < p; otherwise, we set p* < p. This takes

O(T4(n,m)) time. To see that each g, is indeed a valid function for A to optimize, observe that by the guarantee
of (A.1), we have maxzep g,(x) > 71 — py2. Since the binary search is terminated when pt — p= < %, we have

71 — pY2 > § and therefore maxgzep g,(x) > m for each p that we invoke the oracle. This verifies (5.20). In

the end, we take a linear combination of x,- and x,+ to get an x = (1- a)x,- +ax,+ for some o € [0, 1], which
is in 8- P by convexity of P, with £(x) = 2. This x is then returned as the solution.
To analyze the quality of @, we use by the guarantee of (A.1) that

(A.2) G- (Tp-) = C(n1—p72) and g+ (zp) = (01— p 2).
It then follows that
(@) (i1) _
f(:L') > (1 - O‘)f(mp*) + O‘f(mp+) = (1 - o‘) (gp* (mp*) +p E(mp*)) + (gp+ (mer) + p+£(mp+))
(4id)
> (=) (n—p) +a(n—p"r) + 1 —a)p Uz,)+ ap™l(z,)
(iv)
>C((nm-—acemn—p) +i(l-a)p z, +aptz,)
(v)
> C(l=e)m = Cprat+p lm) +alp —pT)lmy+) = C(1 -),
where (i) is by concavity of f, (ii) is by definition of g,, (iii) is by (A.2), (iv) is by pt —p~ < % and linearity of
¢, and (v) is by definition of x and again linearity of ¢. This proves the lemma. 0

In addition to the oracle optimizing the objective, as described in the overview we also need to find constraints
that are violated by the current solution significantly. Let

— < g VoeV ~ s ~ et |B| 52| B|2
A3 ar | (V) < by, NRZ,, whereb, = 1—4eandbp = | 7| — — —
(A.3) M { x(B) <bp, VBE€Oq,. 20 e © ana s 2 4

be a slightly perturbed version of Mg .. Formally, for « € Rgo, let

of . o (B
(A4) Az = max {ma&(Ae,vs Smax)\m,B} , where Az, B w~(v) and Ay B Lot &
ve S

G,e b’U B

Copyright (© 2025
Copyright for this paper is retained by authors

An algorithm B is a Tg-evaluator for X_/l\c_;/a if given any vector x € Rgm when A\, > 1+ 8¢, it computes A
and the subset of small odd sets £, = {B €06 AaB > Ao — 53/10} in Tg(n,m) time. On the other hand,
it correctly identifies when A, > 1+ 8¢ in the same runtime. Let Ay o, . & maxpeoe . {\z,5}. The following
theorem from [5] characterizes the structure of L.

PROPOSITION A.1. ([5, THEOREM 5]) If Ap,0s. > 1+ 3¢, then Ly forms a laminar family.

We also give the following simple algorithm which helps us compute the multiplicative weights induced by a

laminar family without any dependence on e~1.

LEMMA A.2. Given any x € Rgo, a laminar family £ C Og ., and value pp associate with each B € L, there is
an O (m+ Y per |Bl) time algorithm that computes

ee = Z PB

BeL:wu,veB
for each edge e = {u,v} in E.

Proof. Let T be a tree on LU {V} U {{v} : v € V} such that U is an ancestor of W if and only if W C U.
By laminarity of £ such a tree exists and can be constructed in O (m+ Y per |B|) time. Observe that for each
e = {u,v} € E, the sets of B € L containing both u and v correspond to a path from the root of T to the lowest
common ancestor (LCA) of {u} in {v} in the tree. The LCAs of all edges can be computed in O(m) time [43], so
can the sum of pp’s of all root-to-vertex paths be populated in O(n) time. |

The following claim is proven in [5].

CLa A.1. It holds that M. € Mg C 2 - M.

Proof. Consider an @ € Mg ., which clearly satisfies the degree constraints and odd set constraints of size at
most 1/e. For an odd set B € O¢ with |B| > 1/e, it follows that

1 (1—4¢)|B| |B|
B) < — < — " < | —.
z(B) < 5 Z z(v) < 5 <15
That Mg C 717145 /\//l\c_;/s follows from

oo 2]

We now present the algorithm for concave optimization over the matching polytope. is a
specialization of [5, Algorithm 2] to the case that the constraint matrices A and b correspond to that of the

|

perturbed matching polytope Mg ., and then modified to work for concave function optimization. The algorithm
is divided into superphases, where each superphase contains several phases, and each phase contains several
iterations. The only real difference between and [5, Algorithm 1] is that we substitute the subroutine
optimizing linear objective (e.g., the solver for LP8 in [5]) to an oracle capable of optimizing general concave
objective. Other changes to the algorithm are for consistency with the notations and terminologies that we are
using throughout the paper and to highlight when each superphase, phase, and iteration begins and ends. What
may appear confusing at first is that [5] used § for the input accuracy parameter and ¢ as the variable used in
their algorithm that gradually decreases from 1/8 to §. Instead, we use € for the accuracy parameter, and thus
the roles of these two symbols are interchanged. Also, [5, Algorithm 2] has other degrees of freedom where they
can choose a function f(¢) < e (which is not to be confused with the concave function f in our context) and

a < % In M6>‘°. Nevertheless, for simplicity, we fix f(e) 3 10 and o & 5063 Inn as in the uncapacitated

b-matching algorithm in [5].

Copyright (© 2025
Copyright for this paper is retained by authors

Algorithm 5: Concave function optimization over matching polytope
Input: n-vertex m-edge graph G = (V, E) and € € (3/+/n,1/16).
Input: convex, downward closed P C Rgo and concave f : Rgo - R_.
Input: (8,T4,€)-oracle A for (P, f) and Tg-evaluator B for Mg ..

1 Let § + £, a « 50e*Inn, and A = kp - B
2 Use Aon f to find an x € 8- P with f(2) > maxzcp f(x) and set OPT = f(x). Note that Ay < Ao by
definition of kp and f.
while true do

Compute A\; and L, using the evaluator B in Tp(n,m) timeﬁ

if A\x <1+ 8¢ then return x; E 1—',9-685'

3
4
5
6 Repeatedly set 6 < max{20/3,e} until Az > 1 + 8.
7
8
9

Let p, < exp (0Ag0 — QAg) /gv for v € V with Ay, > Ay —€3/10, and p,, 10 otherwise.
Let pg = exp (g5 — a\g) Jbg for Be L, and py & 0 for B & L.
Let g & > vey Poby + ZBEOG,E ppbB.

10 | Compute £, = p, +p, + > Ber,uwvepPp for each e = {u, v} in O(m) time by , using

that £, forms a laminar family.

11 Use with f, v = OPT, £(z') = £ 2/, and v, = 7, to find an & € § - P such that

f(@) > ¢(1—e)OPT and £(Z) < v, in O(T4(n,m)) time.
12 while failed to find such an do
13 L OPT «+ (1 —¢)OPT and re-run with the new OPT.

14 Update by . < (1 — o)z, + o, where o et 4055)\0.

LEMMA A.3. ([5, ALGORITHM 2, THEOREM 16, AND LEMMA 18]) For any €
convex P C Rgo, concave function f : Rgo — R such that maxgepam, ()

A for (P, f) and a Tg-evaluator B for /T/l_\c_:;, if kp - B < n, then takes

> ﬁ(n’l/z), downward closed,
> 1,

given an (B,Ta,()-oracle

9) (Ta(n,m) + T(n,m)) - Brpe™*)
time and computes an x5 € (8- P) N Mg such that f(xy) > ((1 — 13¢) maxzepnre f().

Proof. Let us assume ¢ < 1/16. Let f* = maxgepnmg f(x) and x* = argmax,cpna f (€). The vector = in
5 goritﬁm 5isin - P at all times, and thus x; € - P as well. [Lemma A.1I| never fails after OPT decreases to

(1 —4e)f*: we can take &* - (1 —4e) with f(x*- (1 —4e)) > (1 —4e) f* and by [Claim A.1, z* - (1 —4¢) € Pﬂ/T/l\c;:
and in particular £(z* - (1 —4e)) < « is guaranteed. This shows that indeed the value of ~; in
is Q1) as f(x*) > Q(1). Also, all ’s returned by have f(z) > ¢(1 — e)(1 — 4e)f*, proving

f(x) > (1 —¢)(1 —4e)f* and therefore f(xy) > 4(17164_781;46]”* > ((1 — 13¢)f* by concavity of f. At the end

of the algorithm, we have that A, < 14 8¢ and thus xy € Mg, C Mg by The numbers p,’s
are polynomially bounded since Ay, > Ay — £2/10 and thus n™° < exp(adg,, — adg) < 1. Similarly pg’s are
polynomially bounded. This ensures that ¢(x) “ £"x is a valid input to

It thus remains to bound the number of iterations in until it terminates since each iteration takes
O(Ta(n,m) + Tg(n,m)) time. Let ®p = > vev eXP(AAzw) + X peo,, . €XP(@Ae,5) as defined in [5, Definition

4]. [5, Theorem 16] showed that [5, Algorithm 2] converges in O(Xg - (e72 + ae 1)) iterations if we start with
Pr < Vgt % This can be verbatim carried to|Algorithm 5 since the analysis is oblivious to the function f we are

optimizing: it applies as long as the vector & we found in each iteration satisfies 'z < Y, Which is guaranteed
by [Lemma A.1. Roughly speaking, in [5 Lemma 15] they showed that ®, decreases after every iteration if the

initial condition ®, < v, + % is satisfied. The proof only used how ®, can change for the new x given by

Copyright (© 2025
Copyright for this paper is retained by authors

x, « (1 — 0)x, + 0Z, via the fact that £'% < 4. |5, Theorem 16] then used |5, Lemma 15] to argue the total
decrease of @, after O(\g- (672 +ae~1)). Finally, we use [5, Lemma 18] which showed that indeed for the specific
value of o that we choose, when \g < n the initial condition ®, < ~, + 5= is satisfied. This shows that the

~ Ao
number of iterations [Algorithm 5| has is O(kpBe~?). O

A.1 Finding Maximally-Violated Constraints It remains to give an evaluator for .//\-/I\G/8 that finds all
the maximally-violated odd sets. [5l Lemma 17] reduces this to the case where A\ o,. > 1+ 3c. In this
regime, [5 Theorem 5] applies (recall that it says £, forms a laminar family), and [5, Theorem 6] presents
an 5(m +n - poly(e~1)) algorithm. We briefly sketch the algorithm and analyze its dependence on 7! in the
remainder of the section. _ _ . _

The algorithm uses a binary search to find an estimate A such that A — 55 < Az os. < A, where
Az,0c . E maxpeog. Ae,B. Fix a current value of . For each odd 3 < ¢ < 1/e, [5] constructs an integral
weighted graph G, (¢, \) with V(G,(¢, X)) = V(G) U {s} with O(min{m, ne5}) edges whose weights sum up to
O(ne~®) in O(m) time. Let cut(B) for B C V be the sum of weights of edges between B and (V(G) U {s}) \ B
in G, (¢, X). If X is an accurate estimate, i.e., A — 156 < A2,06. < X, then [5, Property 1] showed that

(1) every f-sized odd set B € L, satisfies cut(B, B) < (f), where r({) = VX (1 - %)J + 172[+1 < 2¢ for
def
= 50 %, and

def

(2) every f-sized odd set B € Og. that satisfies cut(B,B) < k(f) belongs to the collection L, =
{B €0¢e:AeB >)\w’oa_’E — 83}.

They then applied the following algorithm of|[Lemma A.4 below with & = k() = O(~%) to obtain a collection
of vertex sets L, for which they showed that £, C £ and therefore we can extract all size-f sets in L, in 6(m)
time by simply checking their value of A, B The value of X can then be adjusted based on whether any size-¢
set in L, is found (recall that we are doing a binary search to determine an accurate estimate X)

To compute the collection £, [5] used the minimum odd-cut approach of [61] using the construct of partial
Gomory-Hu trees. A k-partial Gomory-Hu tree of a (possibly weighted) graph G is a partition Y = {Uq, ..., U}
of V(G) and a weighted tree T on U such that each x,y € U; belonging to the same set has minimum cut value
greater than « in G, and each z € U; and y € U; in different sets has minimum cut (both the value and the actual
cut) equal to that induced by T.

LEMMA A.4. ([5, LEMMA 19 AND ALGORITHM 3]) Given a T(n,m,k)-time algorithm G that constructs a k-
partial Gomory-Hu tree of an n-vertex m-edge graph, there is an algorithm that computes an 5(n)-sized collection
L of odd sets in G where s € V(G) in O (T(n,m, k)) time such that (i) s & B for every B € L, (ii) Eq(B,B) < k
for every B € L, and (iii) every odd set B' not containing s with Eq(B’, B’) < k intersects with some B € L.
Moreover, L is of the form L1 U ---U Lo(1ogn), where each L; contains disjoint vertex subsets. The algorithm is
deterministic if G is.

Proof. The lemma is the same as [5 Lemma 19] modulo the additional guarantee that £ is the union O(logn)
collections of disjoint sets. This is manifest from the implementation of |5, Algorithm 3], using that it has O(logn)
iterations, and in each of them the sets it found are disjoint. |

We deliberately make the statement of[Lemma A 4 flexible to the choice of partial Gomory-Hu tree algorithm,
given that faster algorithms were developed recently. [5] used the following algorithm in the regime where & is
small.

LEMMA A.5. ([48,47]) There is a randomized O(m+nk?2) time algorithm for constructing a k-partial Gomory-
Hu tree on an m-edge n-verter unweighted graph.

24Gince L=L1U---U Lo (1og n) Where sets in £; are disjoint by [Lemma A.4, for each 1 < i < O(logn) we can compute Ay g for
B € L; in O(m) time.

Copyright (© 2025
Copyright for this paper is retained by authors

Alternatively, we can use the recent almost-linear time Gomory-Hu tree algorithm which does not depend on
r at the cost of having a subpolynomial factor m°(1). Note that contracting edges greater than x in a Gomory-Hu
tree trivially gives a x-partial Gomory-Hu tree.

LEMMA A.6. ([7]) There is a randomized m'*°1) time algorithm that constructs a Gomory-Hu tree on an m-edge
weighted graph w.h.p.

LEMMA A.7. ([5, THEOREM 6 AND LEMMA 17]) There are randomized O(me™' + ne9)-evaluator and
O(me=")-evaluator for Ma.e.

Proof. The runtime of the algorithms can be analyzed as follows. The binary search takes 6(1) iterations. In
each iteration, O(e~1) values of £ are enumerated, and for each of them we either use [Lemma A.5 for constructing
partial Gomory-Hu tree in [Lemma A.4L resulting in an 6(m +ne~8) time algorithm for computing size-¢ sets in
L, or we use [Lemma A.6|and get an O(m) time algorithm.

By [5, Lemma 17], if Ay > 1 + 8¢ but A\g 0, . < 1+ 3¢, then £, = (). Since the above algorithms based on
[5) Theorem 6] correctly identify L, when Az o,. > 1+ 3¢, by checking whether there is indeed an odd set B
returned with Ay p > 14 3¢ we can deduce whether we should return an empty set or not. Similarly, we can also
deduce whether A\, < 1 4 8¢ by inspecting if there is a vertex or returned odd set which is violated by a 1 + 8¢
factor by x.]

With and [A.7] follow by appropriately adjusting the parameter «.

REMARK A.1. From the discussion above in combination with the deterministic rounding algorithm in[Section 6]
we can also see that to obtain a deterministic O (1) update time decremental matching algorithm, it suffices to get

a deterministic, 6,§(m) time algorithm for constructing k-partial Gomory-Hu tree. We leave this as an interesting
open question and future direction.

B Omitted Proofs in

In this section we provide proofs of the following lemmas.

LEMMA 6.4. (ANALOGOUS TO [29, LEMMA 3.10]) supp(z?) C supp(z) holds for each Lmin < i < Lumax after
each operation.

Proof. By reverse induction on i we show that supp(z(?) C supp(z@*tY) C supp(x). From we have
supp(z?) = F; U UOSJ‘SLmn supp; (x) U ULminJrlSjgiEj and thus it suffices to show that F; C supp(x)
and E; C supp(zx) for all Ly, +1 < j < ¢ at all times. That E; C supp(x) is immediate as Ej is
set to supp; (z) in Rebuild(), and in each subsequent update we will remove e from E; if . is changed.
By the property of degree-split, we have F; C F;y; U F;11, which by the inductive hypothesis satisfies
B 1UF; 1 Csupp(xtY) C supp(z), and thus F; C supp(x*t1)) C supp(x) after a call to Rebuild(). Similarly,
in each update after the rebuild, we will remove e from F; whose x. is changed, and thus the containment is
maintained. This proves the lemma.]

LEMMA 6.5. (ANALOGOUS TO [29, LEMMA 3.11]) w'Z > (1 —e)w " holds after each opemtion

Proof. Choosing the subgraph returned by degree-split with large weight ensures that, right after a call to

Rebuild (i), we have w(F;_q) > M and thus w0~ > w " z® by that

(B.5) 2l —2l) =F,_i(e)- 270 — (Fi(e) + Ei(e)) - 27"
On the other hand, there are at most 202 . % updates between two calls to Rebuild(z) and thus at most
2i-1. L‘SwT"fV edges are deleted from F;_;, decreasing w' =1 by at most T w'x. By (B.5), any change

25Unlike [29], we assume the input matching is already preprocessed by [Observation 6.1} and thus the bound stated here is (1 —¢)
instead of (1 — 2e).

Copyright (© 2025
Copyright for this paper is retained by authors

to E; for j # i does not affect the difference between w' 20D and w'x®. Furthermore, E; and F; can only
decrease until Rebuild (i) is called (if Rebuild(i + 1) is called and F; increases consequently, then Rebuild (i)
will be called as well). This shows except for operations that remove edges from F;_1, w20 —w Tz cannot
decrease, and as such

(B.6) wzY > w e — £ w'z

max

holds at all times for each ¢ € {Lpin + 1,..., Limax - Chaining for all 4 and noticing that @ = x(Fm=x) and

< g(Lmin) conclude the proof. |

LEMMA 6.6. (ANALOGOUS TO [29, LEMMA 3.13]) The amortized time per Update(e,v) of|Algorithm 4|is O(W -

et Ll%nax)'

Proof. We first show using a similar argument as the proof of that |F;| < O(2¢ - ||z||,). By backward
induction on 7 we prove

Lmax
(B.7) Fil < |20 > |S,]-27
j=i+1

For i = Lyax this is trivially true. For i < Ly, right after a call to Rebuild(i + 1) when FE;;1 < S;4+1, by
Property of the subroutine degree-split we have

: PRI St L H B Linax

|Sit1] + [Fiqa] [Siva| + [j=i+2 2] i »

|Fi|§’7 5 < 5 <2 > ISl-2
j=i+1

On the other hand, for an update after which Rebuild (i + 1) is not called, as in the proof of [Lemma 6.3] if the
right-hand side decreases by one, then we will remove an extra edge from F; and thus the inequality still holds.
This proves the which in turn implies |F;| < O(2" - ||z|],).

This shows that the call to degree-split in Rebuild(i) takes O(2'- ||z||,) time. Since Rebuild(i) causes
Rebuild (i — 1), the total running time of Rebuild (i) is 3;_ O(27 - ||z||,) = O(2" - [|x||,). Because Rebuild (i)

is called once every 2072 . fﬂ:’% > 2072 % updates, the amortized update time of |Algorithm 4| is

O(W - £72 - Lipax)- 0

Copyright (© 2025
Copyright for this paper is retained by authors

	Introduction
	Approach
	Results
	Related Work
	Preliminaries

	Technical Overview
	Lazy Updates for Decremental Linear Optimization
	Entropy Regularization
	Dynamic Fractional Matching
	Dynamic Rounding of Fractional Matchings
	Putting Everything Together

	Entropy Regularization for Decremental Linear Optimization
	Notation and General Setup
	Robustness of Entropy Regularization
	Sufficiency of Approximate Solutions
	Near-Optimality of Entropy Regularization

	Decremental Algorithms for Fractional Matching
	Almost-Linear Time Oracle via Convex Flow Algorithms
	Near-Linear Time Reduction to Linear Optimization
	Putting Everything Together

	Dynamic Rounding Algorithms
	Deterministic Sparsifier
	Randomized Degree Sparsifier
	Weighted Rounding for Entropy-Regularized Matching

	Generalizing [AG14]
	Finding Maximally-Violated Constraints
	Omitted Proofs in Section 6

