
Entropy Regularization and Faster Decremental Matching in General Graphs∗

Jiale Chen† Aaron Sidford‡ Ta-Wei Tu§

Abstract

We provide an algorithm that maintains, against an adaptive adversary, a (1� ")-approximate maximum
matching in n-node m-edge general (not necessarily bipartite) undirected graph undergoing edge deletions
with high probability with (amortized) O(poly("�1

, log n)) time per update. We also obtain the same update
time for maintaining a fractional approximate weighted matching (and hence an approximation to the value
of the maximum weight matching) and an integral approximate weighted matching in dense graphs.1 Our

unweighted result improves upon the prior state-of-the-art which includes a poly(log n) · 2O(1/"2) update time
[Assadi–Bernstein–Dudeja 2022] and an O(

p
m"

�2) update time [Gupta–Peng 2013], and our weighted result
improves upon the O(

p
m"

�O(1/") log n) update time due to [Gupta–Peng 2013].
To obtain our results, we generalize a recent optimization approach to dynamic algorithms from

[Jambulapati–Jin–Sidford–Tian 2022]. We show that repeatedly solving entropy-regularized optimization
problems yields a lazy updating scheme for fractional decremental problems with a near-optimal number
of updates. To apply this framework we develop optimization methods compatible with it and new dynamic
rounding algorithms for the matching polytope.

1 Introduction

Dynamic matching is a fundamental and incredibly well-studied problem in data structure design and dynamic
graph algorithms. In this problem, there is a sequence of modifications, e.g., edge insertion and deletions, to an
undirected graph G = (V,E) with vertices V and edges E. The goal is to maintain a matching M ✓ E, i.e.,
a subset of edges that are pairwise disjoint, of approximately maximum size, i.e., |M | � (1 � ")M⇤(G) where "
is a specified accuracy parameter and M⇤(G) is the size of the maximum matching in the current graph, G. In
this paper we consider solving this problem with the goal of obtaining improved (amortized) update time per
operation.2

The dynamic matching problem is also notoriously challenging to solve e�ciently. In the general setting
of maintaining such a (1 � ")-approximate maximum matching in a general undirected graph undergoing edge
insertions and deletions, the state-of-the-art includes an O

�p
m"�2

�
update time algorithm of [41] for all " and an

n/(log⇤ n)⌦(1) update time algorithm of [2] for " = ⌦((log⇤ n)�c) where c > 0 is some small constant. Subsequent
to the initial release of our paper, the work of [6], building on top of [15], obtained an O

�
no(1)

· ORS(n,⇥"(n))
�

update time algorithm for constant ", where ORS(n, r) is the maximum possible density of the so-called ordered

Ruzsa-Szemerédi Graphs: the current, state-of-the-art bound is no(1)
 ORS(n,⇥"(n))  n1�o(1) for constant " [6].

Additional improvements are only known in special cases. For example, when there are vertex (instead of edge)
updates to a bipartite graph then [30, 70] provide eO("�1) time3 algorithms. Additionally, recent breakthrough

∗The full version of the paper can be accessed at https://arxiv.org/abs/2312.09077
†Stanford University, jialec@stanford.edu. Supported by a Lawrence Tang Graduate Fellowship, a Microsoft Research Faculty

Fellowship, and NSF CAREER Award CCF-1844855.
‡Stanford University, sidford@stanford.edu. Supported in part by a Microsoft Research Faculty Fellowship, NSF CAREER

Award CCF-1844855, NSF Grant CCF-1955039, a PayPal research award, and a Sloan Research Fellowship.
§Stanford University, taweitu@stanford.edu. Supported by a Stanford School of Engineering Fellowship, a Microsoft Research

Faculty Fellowship, and NSF CAREER Award CCF-1844855.
1Independently and concurrently, Aditi Dudeja obtained new decremental weighted matching results for general graphs [37].
2Our new algorithms periodically rebuild a fractional matching when its value degrades. Consequently, their update times are

(näıvely) amortized instead of worst-case. We leave de-amortizing our results as an open problem.
3In this paper, we use eO(·) to hide poly(log(n), log("�1)) factors and bO(·) to hide subpolynomial, (n"�1)o(1) factors in the O(·)

notation. e⌦(·), b⌦(·), e⇥(·), and b⇥(·) are defined analogously.

Copyright © 2025
Copyright for this paper is retained by authors

https://arxiv.org/abs/2312.09077

results maintain better-than-2 approximations to the size of the maximum matching (rather than the matching
itself) in near-optimal update time [13, 28, 3] and better approximations in sub-linear update time [25].

Towards explaining the challenging nature of dynamic matching, recent work established conditional lower
bounds on the problem’s complexity. To maintain exactly the maximum matching, there are conditional lower
bounds on the update times of ⌦(

p
m) [9, 46, 52] and ⌦(n1.407) [68]. To maintain approximate maximum

matchings, very recently, [53] ruled out the possibility of a truly sublinear, "�O(1)n1�O(1) update time algorithm
in the fully dynamic setting, assuming a new dynamic approximate OMv conjecture. Additionally, assuming only
the standard OMv conjecture, [53] ruled out the possibility of truly sublinear update time algorithms for the
closely related problem of maintaining a (1 + ")-approximate vertex cover.

Corresponding to the di�culty of dynamic matching, recent work studied the decremental setting where
starting from an initial graph only edge deletions are permitted until the graph is deleted. Excitingly, [17]
provided an eO("�4) time per update algorithm for this problem. [49] then obtained update times of eO("�3)
and bO("�2) for the problem of maintaining fractional matchings. [29] then obtained update times of eO("�3)
and bO("�2) for maintaining integral matchings through improved dynamic rounding algorithms for fractional

matchings. Recently, [1] obtained an eO(1) · 2O(1/"2) update time for general (not necessarily bipartite) graphs.
Strikingly, these results show that decremental matching can be solved near-optimally in bipartite graphs

for " = 1/poly(log n). However, in general graphs, for such ", the state-of-the-art is still O(
p
m"�2) time [41].

A central question motivating this work is whether it is possible to narrow this gap and develop improved
decremental matching algorithms for general graphs. One of our main results is an a�rmative answer to this
question; we provide eO("�41) and bO("�17) update time algorithms for maintaining a (1�")-approximate matching
in a general graph undergoing edge deletions. Our algorithm succeeds with high probability (w.h.p.4) against an
adaptive adversary that has access to the internal randomness used by our algorithm and can design its future
updates based on that. This is the first decremental dynamic matching algorithm for general graphs that achieves
subpolynomial accuracy and subpolynomial update time simultaneously.5

We obtain our results through the development of a general framework that also allows us to obtain improved
runtimes in the decremental setting of the more challenging dynamic weighted matching as well. In this problem
we must maintain a (1 � ")-approximate maximum weight matching given polynomially bounded edge weights
w 2 NE . Prior to our work, the state-of-the-art was an eO(

p
m"�O(1/")) time [41] and an eO("�3) time per update

algorithm for maintaining fractional matchings in bipartite graphs [26] (which also applied to a broader class of
partially-dynamic packing/covering linear programs). In contrast, we provide algorithms which decrementally
maintain (1� ")-approximate fractional matchings in general weighted graphs in eO("�41) and bO("�17) time per
update and integral (1 � ")-approximate matchings in dense graphs in the same update times. We also provide
an eO("�O(1/")) update time integral matching algorithm, which is not limited to dense graphs, using a weight
reduction framework of [41]. These are the first near-optimal partially dynamic algorithms for weighted matchings
with edge updates.

1.1 Approach

Lazy Updates and Congestion Balancing. Our algorithms follow a natural, time-tested lazy approach
to solving dynamic matching problems [41, 31, 32, 17, 49, 1]. Broadly, we compute an approximate fractional
matching, delete edges from it as needed, and then, when the updates cause the solution to change, we rebuild,
computing a new fractional matching. By e�ciently computing the fractional matching, computing fractional
matchings that limit the number of rebuilds, and e�ciently rounding, we obtain our dynamic matching algorithms.

More specifically, our algorithms follow a template common to [17, 49, 1] (see Section 3.1 for a more precise
description). In this framework, we first, compute a (1 � �)-approximate fractional matching. Then, when
edges are deleted, the corresponding fractional assignment on those edges is removed as well. Once the value of
the fractional matching decreases by (1 � �) multiplicatively, a new (1 � �)-approximate fractional matching is
computed and the process is repeated; we call each computation of a (1� �)-approximate fractional matching a
rebuild. Any algorithm following this lazy update framework clearly maintains a (1� �)2-approximate fractional

4We use w.h.p. in this paper as an abbreviation of with high probability, meaning the success probability can be made at least
1� n

�c for any constant c > 0 by increasing the runtime by a constant factor.
5More precisely, when " = ⇥(1/poly(log(n))), or even " = ⇥(1/no(1)), previous algorithms require poly(n) or even exp(n) update

times, while our algorithms achieve an n
o(1) update time.

Copyright © 2025
Copyright for this paper is retained by authors

matching and consequently, by picking, e.g., � = "/2, this algorithm maintains a (1 � ")-approximate fractional
solution. What is perhaps unclear, is how to make this approach e�cient.

The update time of an algorithm following the lazy update framework is governed by:6

1. the number of rebuilds, i.e., the number of approximate fractional matchings computed,

2. the cost per rebuilding, i.e., the cost of computing each fractional matching, and

3. the cost of rounding, i.e., the cost of turning these dynamically maintained fractional matchings into
dynamically maintained integral matchings.

Note that computing a (1 � ")-approximate matching takes e⌦(m) time in the worst case [27]. Consequently,
if each rebuild is computed from scratch (as they are in our algorithms) then the cost of each rebuild is ⌦(m)
(Item 2) and to obtain an O(poly(log n, "�1))-update time it must be that the number of rebuilds (Item 1) is
O(poly(log n, "�1)). However, it is unclear, just from the approach, whether or why this should be obtainable.

Nevertheless, in a striking result, [17] showed that it was possible to follow this framework and obtain eO("�4)
time per update for bipartite graphs. The algorithm had eO("�3) rebuilds (Item 1) at a cost of eO(m"�1) time
per rebuild7 (Item 2) for a total runtime of eO(m"�4) and, therefore, an update time of eO("�4) for maintaining
fractional matchings. The technique they used to construct the fractional matchings they call congestion balancing.
Furthermore, [1] generalized this approach to non-bipartite graphs. Their algorithm had eO(2O(1/"2)) rebuilds

(Item 1) at a cost of eO(m"�1) per rebuild (Item 2) for a total runtime of eO(m ·2O(1/"2)) and, therefore, an update

time of eO(2O(1/"2)) for maintaining fractional matchings. To obtain integral matchings, both papers applied
known dynamic rounding algorithms [69] to solve Item 3.

Entropy Regularization and Weighted Matching. A key question motivating our result is, how powerful

and general is the lazy update framework for decremental problems? Recent work of [49] opened the door to
studying this question. This work showed that, for bipartite graphs, to bound the number of rebuilds (Item 1) it
su�ced to set the fractional matchings to be su�ciently accurate solutions to natural, regularized optimization
problems. The current state-of-the-art decremental bipartite matching algorithms follow this framework [49, 29].

In this paper, we provide a broad generalization of this result. We show that for any non-negative, non-
degenerate, compact, downward closed, and convex X ✓ Rd

�0, to maintain approximate maximizers of w>x for

x 2 X under deletions of coordinates to X one can apply the lazy update framework and rebuild only eO("�2)
times! Furthermore, we show that this rebuild count is obtained so long as the algorithm solves certain entropy-
regularized versions of the problem, i.e., finding an x 2 X approximately maximizing w>x + µ ·H(x) for some
trade-o↵ parameter µ, where H(x) is an appropriately weighted and scaled measure of the entropy of x.

This result, when combined with [33] and [29], recovers the bO("�2) update time of [29, 49] and enables our
main results on decremental matching in general graphs. Letting X = MG be the non-bipartite matching polytope
of the input graph G, this result implies that to obtain a fractional solution we simply need to repeatedly solve
an entropy-regularized matching problem. Additionally, our entropy regularization result immediately implies
the same for maintaining a weighted fractional matching! This leads to improved algorithms even for bipartite
graphs, where the previous best algorithm has an eO("�3) update time [28].

However, to obtain e�cient decremental fractional algorithms for general graphs, we still need to e�ciently
solve these entropy-regularized problems over the matching polytope (Item 2). In Section 5 we show how to solve
these entropy-regularized problems to (1��) accuracy in eO(m ·��13) and bO(m ·��5) time for all � � e⌦(n�1/2). To
maintain a (1�")-approximate matching, it su�ces to set � = 1/poly("�1, log n). We obtain this by modularizing
and generalizing the framework of [5] for capacitated weighted general b-matching and provide two di↵erent
instantiations of the framework. In one approach we apply the recent convex flow algorithm of [33], leading to the
running time of bO(m · ��5). In the other one we reduce entropy regularization to capacity-constrained weighted
general matching, leading to the other running time of eO(m · ��13).

6Additionally, the algorithm must remove fractional assignments to the deleted edges from the fractional matching, but that is
trivial to implement in O(1) per update.

7The eO(m"
�1) runtimes stems from running a push-relabel-style flow algorithm to find an approximate flow. Using recent almost

linear time maximum flow algorithms [33, 66], this can be improved to be bO(m), leading to an bO("�3) update time algorithm for
maintaining fractional matchings. See [17, Lemma 5.2].

Copyright © 2025
Copyright for this paper is retained by authors

Dynamic Rounding. To turn our dynamic fractional matching results into dynamic integral matching
results we develop two unweighted rounding algorithms for general graphs, one randomized and the other
deterministic. For the randomized algorithm, we analyze the standard sampling procedure for rounding in
bipartite graphs and argue that, excitingly, it can also be used in general graphs. On the other hand, our
deterministic algorithm is based on a recently dynamized pipage rounding procedure [29]. However, we di↵er
from [29] by stopping their algorithm earlier and running static algorithms on the result periodically. Although
the randomized rounding algorithm does not have a strictly better update time than the deterministic one, it
has stronger guarantees that we leverage to round weighted matchings. We remark that while [1] also required
rounding, the fractional matching they maintained has a special property (in particular it is poly(")-restricted [32,
Definition 1]) that allows them to argue the bipartite rounding algorithm of [69] directly applies to the fractional
matching they found. In contrast, our rounding algorithms generically work for any fractional matching in general
graphs, and are the first to achieve such a guarantee. (See Section 1.3 for a more detailed comparison of rounding
algorithms.)

Optimality of Entropy Regularization. Given the utility of entropy regularization and the lazy update
framework, we ask, can we further decrease the number of rebuilds (Item 1)? Interestingly, we show that this
is not the case for decremental matching, even on unweighted bipartite graphs. We show that for any n � 1
and " = ⌦(n�1/2), there is an adversarial choice of the initial graph with n vertices and a sequence of deletions
such that, regardless of what fractional matching the algorithm maintains, there are at least ⌦(log2("2n) · "�2)
rebuilds. This shows the optimality of entropy regularization in both log n and "�1 factors for " = ⌦(n�1/2+�)
for constant � > 0.

Summary. We obtain improved results for decremental matching in general graphs by building new tools
to follow the lazy update framework: we prove a general bound on the number of rebuilds when using entropy
regularization (Item 1), we develop e�cient algorithms for solving entropy-regularized optimization problems
over the matching polytope (Item 2), and we develop new dynamic rounding algorithms for fractional matchings
in general graphs (Item 3). We think that each tool could be of independent interest. Additionally, given
the generality and optimality (in terms of the number of rebuilds) of our entropy regularization approach to
decremental problems, we hope that our results may open the door to new dynamic algorithms in broader
settings.

Paper Organization. In the remainder of this introduction we present our results in Section 1.2 and compare
and survey previous work in Section 1.3. We then cover preliminaries in Section 2 and provide a technical overview
of our approach in Section 3. In Section 4 we show the robustness and optimality of entropy regularization for the
decremental linear optimization problem. We then turn our attention to the special case of decremental matching
in non-bipartite graphs, presenting our algorithms for solving entropy-regularized matchings in Section 5 and
our rounding algorithms in Section 6. In Sections A and B we provide additional proofs that are included for
completeness.

1.2 Results In this paper we consider the decremental matching problem formally defined as follows. Note
that in this definition, when W = 1, the problem is the aforementioned unweighted matching problem in which
the maintained matching is simply a (1� ")-approximate maximum (cardinality) matching.

Problem 1.1. (Decremental Matching) In the decremental matching problem, we are given an n-vertex m-

edge graph G = (V,E), integer
8
edge weights w 2 NE

bounded by W = poly(n), and an accuracy parameter

" 2 (0, 1). The goal is to maintain a (1 � ")-approximate maximum weight matching M ✓ E at all times under

deletions to E until G becomes empty.

We develop a variety of randomized algorithms to solve Problem 1.1. Due to the use of randomization,
it is important to distinguish between di↵erent kinds of update sequences that they can support. We say a
dynamic algorithm is output-adaptive (respectively, fully-adaptive) if it works for update sequences that are chosen
adaptively based on the output (respectively, internal randomness) of the algorithm. Note that a fully-adaptive

8Note that the assumption that w is integral is without loss of generality as it can be achieved by scaling. For instance, we can
first make the minimum weight 1, and then scale each entry to the nearest value of

⌃
(1 +O("))i

⌥
since we are only aiming for an

approximate solution.

Copyright © 2025
Copyright for this paper is retained by authors

algorithm is automatically output-adaptive. These are in contrast to the oblivious algorithms which only work
for updated sequences that are fixed in advance.9

We now describe our main results. Recall that in the unweighted case, the previous state-of-the-art algorithms
that solve Problem 1.1 are an eO(1)·2O(1/"2) update time algorithm of [1] and an O(

p
m"�2) update time algorithm

of [41].

Theorem 1.1. (Unweighted Decremental Matching) There are randomized fully-adaptive eO("�41) and

bO("�17) update time algorithms that solve Problem 1.1 in the unweighted case w.h.p.

For the weighted case, the algorithm of [1] does not apply, and the previous state-of-the-art, even for bipartite
graphs, is an eO(

p
m"�O(1/")) update time algorithm, also by [41]. Our algorithms have near-optimal update time

when either " is a constant or the input graph is dense.

Theorem 1.2. (Weighted Decremental Matching) There is a randomized fully-adaptive eO("�O(1/")) up-

date time algorithm that solves Problem 1.1 w.h.p. Additionally, when m = e⇥(n2), there are randomized output-

adaptive eO("�41) and bO("�17) update time algorithms.

For dense bipartite graphs we obtain an even better update time.

Theorem 1.3. (Weighted Bipartite Decremental Matching) For bipartite graphs with m = b⇥(n2) there
is an output-adaptive randomized bO("�6) update time algorithm that solves Problem 1.1 w.h.p.

Theorem 1.1 to 1.3 are all obtained by solving the intermediate problem of decremental fractional matching
(Problem 3.2) and then converting the fractional results to integral via rounding algorithms. Following the entropy
regularization approach in the lazy update framework, the fractional matching algorithms we develop achieve an
upper bound of eO("�2) on the number of rebuilds (Item 1) in Theorem 3.1. We investigate whether this bound
on the number of rebuilds can be improved. Interestingly, we show that this is not possible and that entropy
regularization is a near-optimal strategy for the lazy update framework in the decremental setting for any n and
" = ⌦(n�1/2). This lower bound holds even in the simple case of unweighted bipartite matching.

Theorem 1.4. (informal, see Theorem 3.2) For any n 2 N, " � 2/
p
n, and any output-adaptive algorithm

implementing the rebuilding subroutine in the lazy update framework, there exists an unweighted bipartite graph of

n vertices on each side such that an output-adaptively chosen sequence of edge deletions causes ⌦(log2("2n) · "�2)
rebuilds.

1.3 Related Work Here we give a more extensive summary of previous work related to our results in this
paper.

General Matching. Due to the existence of odd cycles and blossoms, matching problems in general graphs
are often considerably more challenging than in bipartite graphs. Starting from the blossom algorithm of
Edmonds [39], with additional ideas and techniques, several works culminated in general matching algorithms that
are equally e�cient as classic bipartite algorithms, both in the exact [58, 44, 36] and approximate [58, 35, 5] settings
(we make particular use of [5] in our dynamic algorithms). Yet, it is still open whether modern optimization-
based algorithms for bipartite matching [55, 54, 56, 67, 51, 8, 33] can lead to runtime improvements for computing
matchings in general graphs.

Incremental Matching. Another studied partially-dynamic matching problem is the incremental matching

problem, where instead of edge deletions, there are only edge insertions. In this setting, near-optimal results are
known for obtaining (1 � ")-approximate matchings, achieving eO(poly("�1)) and recently O(poly("�1)) update
times in bipartite graphs [45, 24] and "�O(1/") update time in general graphs [40]. For bipartite graphs, an
eO(poly("�1)) update time is also obtainable by a more general partially dynamic packing/covering LP algorithm
[28].

9It is also common in the dynamic algorithm literature to model the adaptiveness of an algorithm in the adversarial setting in
which the algorithm is working against an adversary designing the update sequence either on-the-fly (in which case it is an adaptive
adversary) or in advance (an oblivious adversary). We also remark that the term adaptive is widely used in the literature but has
mixed meanings and can refer to either output-adaptive or fully-adaptive based on the context. Consequently, in this paper we make
an explicit distinction between the two notions.

Copyright © 2025
Copyright for this paper is retained by authors

Additional Matching Results. Aside from (1�")-approximations, dynamic matching with other approxi-
mation ratios has been studied, particularly in the fully dynamic setting. Notably, for 1/2-approximate, maximal
matching, a line of work culminated into optimal, constant-update-time algorithms [60, 16, 18, 64, 20, 10, 21, 11].
The work of [31] introduced the notion of edge-degree constrained subgraphs (EDCS) and with this initiated a
line of work on non-trivial algorithms to maintain (2/3� ") approximate matchings [32, 42] and beyond [23]. Im-
provements in other directions such as derandomization, de-amortization, and frameworks converting unweighted
results to the weighted case have also been studied [19, 65, 34, 21, 14, 12, 22, 50, 62, 29]. Dynamic rounding
algorithms which reduce dynamic integral matching algorithms to dynamic fractional matching algorithms are
also well-studied in various regimes [4, 69, 22, 50, 29].

Entropy Regularization. Even in prior dynamic matching results that do not explicitly use entropy
regularization, entropy does play a role implicitly. More precisely, [45, 26, 70] all used the multiplicative weight
update (MWU) method, which can be viewed as an iterative method for optimization method which uses an
entropy regularizer to determine the steps it makes.

Comparison to [1]. The eO(1) ·2O(1/"2) update time algorithm of [1] used the congestion balancing approach
introduced in [17] to implement rebuilds in the lazy update framework. Informally, in congestion balancing, a
capacity constraint c 2 [0, 1]E is maintained, and in each iteration the goal is to find a matching Mc respecting
this capacity constraint of size comparable to the actual maximum matching or, in that case that such a matching
does not exist, find a set of edges whose capacity constraint is “critical” to Mc being small. In the first case, Mc

is used as the output fractional matching until future deletions decrease its value significantly. In the second case,
the capacities of these critical edges are increased to accommodate larger matchings. The exponential dependence
on "�1 of [1]’s algorithm stems from the di�culty of solving the above subroutine in general graphs. As we will
show later in this paper, there is indeed an eO(m · poly("�1)) algorithm for the capacity-constrained matching
problem in general graphs (see Lemma 5.5), but [1] additionally needed a dual certificate (obtainable from, e.g.,
[35], on uncapacitated graphs) of the matching problem to identify critical edges. Interestingly, obtaining such
certificates is still left open by our work.10

Comparison to Previous Randomized Rounding Algorithms. Our randomized rounding algorithm
adopts the same strategy central to previous algorithms [4, 69]. Their algorithms build upon the subgraph,
hereafter referred to as a sparsifier, obtained by sampling each edge, either independently or dependently, with
probability proportional to the fractional mass assigned to it. Informally, [4] showed that the independently
sampled sparsifier preserves11 approximately maximal fractional matchings which are (1/2 � ")-approximate.
This holds in general graphs as well. [69], on the other hand, studied fully-adaptive rounding, in which case
updating the sparsifier only partially as in [4] no longer works. [69] therefore designed a dependent sampling
scheme that has marginal the same as the independent one, which turned out to be more e�ciently sample-able
from scratch. Their analysis also showed that the sparsifier preserves (1 � ")-approximate fractional matchings
in bipartite graphs. [1] then extended the analysis to show that O(")-restricted matchings in general graphs are
preserved in [69]’s sparsifier as well. Finally, our rounding algorithm goes back and considers the independently
sampled sparsifier which can now be used in the (output-)adaptive setting due to the dynamic sampler of [29].
Adopting a more direct analysis, we show that this sparsifier can in fact preserve arbitrary fractional matchings in
general graphs. Given that the sampling distribution of [69] is, in essence, an easier-to-sample-from but correlated
version of the distribution we consider in this paper, we suspect their analysis can be extended to work for any
fractional matching in general graphs, perhaps at the cost of a larger runtime. After the initial publication of our
manuscript, [38] showed that indeed the rounding algorithm of [69] can be extended to work in general graphs,
albeit with a slightly larger update time.

2 Preliminaries

Notation. We let [d]
def
= {1, 2, . . . , d} for d 2 N, R1

def
= R [{1}, and R�1

def
= R [{�1}. We use log(·) to

denote logarithm base 2 and ln(·) for natural logarithm. We let J�K be evaluated to 1 if the expression � is true

10More precisely, [1] ran the algorithm of [35] only on a carefully sampled subgraph of G, and thus the dual certificate they obtained
and used is di↵erent from that of the capacity-constrained matching problem in Problem 5.1. Interestingly, one can show that a dual
certificate to Problem 5.1 also su�ces to identify critical edges, so this leaves extracting the dual from our algorithm the final step
toward speeding up [1].

11More precisely the sparsifier contains an integral matching whose size is the same as the fractional one, up to (1��) multiplicatively
for any � (on which the algorithm’s runtime depends).

Copyright © 2025
Copyright for this paper is retained by authors

and 0 otherwise.
Consider a finite set U and S ✓ U . Let 0

S and 1
S be the all-zero and all-one vector in RS , respectively.12

Let �S denote the simplex in RS , i.e., �S def
= {x 2 RS

�0 | kxk1 = 1}. For x 2 RU , let xS 2 RS be x with

coordinates restricted to S, i.e., (xS)i = xi for all i 2 S. For X ✓ RU , let XS be X restricted to coordinates S,

i.e., XS
def
= {xS : x 2 X}, and XS,+

def
= {x 2 XS : xi > 0 8 i 2 S} be the subset of XS in RS

>0. For x 2 RS and
i 2 U , let x \ {i} 2 RS\{i} be x excluding coordinate i, i.e., (x \ {i})j = xj for all j 2 S \ {i}. For S0

✓ S and
x 2 RS0 , let xS

2 RS be x extended to RS , i.e., xS
i = xi for i 2 S0 and xS

i = 0 for i 2 S \ S0.
Runtimes. In this paper we use the standard word-RAM model where basic arithmetic operations over

O(log n)-bit words can be performed in constant time. When the input size n is clear from context, we say an
x 2 R is polynomially bounded if |x| 2 {0} [[n�O(1), nO(1)].

Graphs. All graphs in this paper are undirected, simple, and not necessarily bipartite, unless stated
otherwise. For a graph G = (V,E), let Ev

def
= {e 2 E : v 2 e} be the set of edges incident to v 2 V , and

E[B]
def
= {e 2 E : e ✓ B} be the set of edges whose endpoints are both in B ✓ V . For F ✓ E let Fv

def
= F \ Ev

and F [B]
def
= F \ E[B]. For x 2 RE

�0, let x(v)
def
=
P

e2Ev
xe for v 2 V and x(B)

def
=
P

e2E[B] xe for B ✓ V . Let

BG 2 {�1, 0, 1}E⇥V be the (edge vertex) incidence matrix of G, where there are exactly two non-zero entries per
row e, one at entry (e, u) with value �1 and the other at entry (e, v) with value 1, for an arbitrary orientation
(u, v) of e = {u, v}. Let M⇤(G) be the size of the maximum matching in G and M⇤

w(G) for w 2 RE
�0 be the value

of the maximum weight matching in G for the weights w.
Matching Polytope. For an undirected graph G = (V,E), the matching polytope of G is the convex hull of

the indicator vectors of matchings in G. Let

(2.1) PG
def
=
� P

e2Ev
xe  1, 8 v 2 V

\ RE

�0.

It is a standard fact that when G is bipartite, PG is the matching polytope of G. When G is non-bipartite, we
need to further consider odd-set constraints. Formally, we let

OG
def
= {B ✓ V : |B| � 3 and |B| is odd}

be the collections of odd sets and define

(2.2) MG
def
= PG \

n
x(B) 

j
|B|

2

k
, 8 B 2 OG

o
.

It is known that MG is the matching polytope of G [63]. We often consider the relaxation of (2.2) to only contain

small odd sets OG,"
def
= {B 2 OG : |B|  1/"} denoted by

(2.3) MG,"
def
= PG \

n
x(B) 

j
|B|

2

k
, 8 B 2 OG,"

o

when dealing with (1� ")-approximatation algorithms. The following fact about MG versus MG," is folklore and
key to our algorithm development.

Fact 2.1. (see, e.g., [1]) For " > 0 and x 2MG," it holds that
x

1+3" 2MG.

We may refer to an x 2MG as a (fractional) matching in G and x 2 PG as a relaxed (fractional) matching
13

in G. When x 2MG or x 2 PG is clear from context, we may refer to xe as the mass the matching x puts on
edge e.

Miscellaneous. The recourse of a dynamic algorithm is the total number of changes it makes to its output.
When working with (1�")-approximation, in the remainder of the paper we may assume without loss of generality
that " is upper-bounded by an explicit constant. This only incurs a constant increase in runtimes.

12When S is clear from context, we may drop the superscript and simply use 0 and 1.
13We remark that an x 2 PG is often referred to as a fractional matching even in general graphs in the literature (see, e.g., [4, 29]).

However, we deviate from this convention so that there is no integrality gap between fractional and integral matchings.

Copyright © 2025
Copyright for this paper is retained by authors

3 Technical Overview

In this section we introduce the problems that we consider in this paper, present the main results and technical
tools of each section, and illustrate high-level ideas towards proving them. At the end of this section, we utilize
these results and tools to prove our main theorems stated in Section 1.2.

3.1 Lazy Updates for Decremental Linear Optimization In this paper we consider a unifying framework
of congestion balancing for solving decremental linear optimization problems formally defined as follows.

Problem 3.1. (Decremental Linear Optimization) In the decremental linear optimization problem we are

given a positive weight vector w 2 Rd
>0 and a non-negative, non-degenerate

14
, compact

15
, downward closed

16
,

convex X ✓ Rd
�0 where d > 1.17 Starting from the entire coordinate set S = [d], under a sequence of deletions of

coordinates from S we must maintain an x 2 XS such that

w>

Sx � (1� ") max
x02XS

w>

Sx
0

for a given accuracy " > 0 until S becomes empty.

The framework for solving Problem 3.1 that we study in this paper is a generalization of the lazy update
scheme that is widely used for dynamic matching problems as we discussed in Section 1. Specifically, we consider
algorithms that maintain an approximate solution x 2 XS and use it as the solution until its value drops by an
O(") fraction at which point we perform a rebuild. The following Algorithm 1 is a template for the lazy update
approaches, for which we will later specify what approximate solutions x will be used in Rebuild() at Line 9.

Algorithm 1: LazyUpdate(X)

global: weight vector w 2 Rd
>0 and accuracy parameter " 2 (0, 1).

global: current coordinates S ✓ [d] and solution x 2 XS with “rebuild” value ⌫.
global: number of rebuilds t 2 Z�0.
global: snapshots x(t) and S(t) for analysis.

1 function Initialize(w 2 Rd
>0, " 2 (0, 1))

2 Save w and " as global variables.
3 Initialize S [d] and t 0.
4 (x, ⌫) Rebuild().

5 function Delete(i 2 [d])
6 Set x x \ {i} and S S \ {i}.
7 if w>

Sx <
�
1� "

2

�
⌫ then (x, ⌫) Rebuild().

8 function Rebuild()

// What x(t)
is computed below depends on the specific algorithm

9 Set x(t) to an element in XS with w>

Sx
(t)
�
�
1� "

2

�
maxx02XS w>

Sx
0.

10 Set ⌫(t) w>

Sx
(t) and S(t)

 S.

11 return (x(t), ⌫(t)) and set t t+ 1.

Observation 3.1. Algorithm 1 solves the decremental linear optimization problem (Problem 3.1).

14That is, for each coordinate i 2 [d] there exists an x 2 X such that xi > 0. This is a natural assumption since we can always
ignore the degenerate dimensions.

15Note that this is equivalent to being bounded and closed, which implies maxx2X w>x is bounded as well.
16That is, for each x 2 X and y 2 Rd

�0 with y  x entry-wise, we have y 2 X also.
17The assumption of d > 1 is natural as otherwise the problem degenerates into a 1D optimization and becomes not decremental

in essense.

Copyright © 2025
Copyright for this paper is retained by authors

Proof. Note that x 2 XS at all times since X is downward closed. The vector x(t), when constructed in Rebuild(),
is an

�
1� "

2

�
-approximate solution with value ⌫(t). Since the Delete operations only decrease maxx02XS w>

Sx
0,

as long as w>

Sx �
�
1� "

2

�
⌫(t), we have

w>

Sx �
⇣
1�

"

2

⌘
⌫(t) � (1� ") max

x02XS

w>

Sx
0.

On the other hand, whenever w>

Sx <
�
1� "

2

�
⌫(t), we call Rebuild(). Algorithm 1 thus maintains a (1 � ")-

approximate solution at all times.

3.2 Entropy Regularization To solve the above decremental linear optimization problem using the lazy
update scheme, we apply a variant of the entropy regularization strategy previously used decremental dynamic
matching in unweighted bipartite graphs [49]. Intuitively, to avoid the adversary from deleting large weight from
our solution at once, the idea is to find an x 2 XS with uniformly distributed value on each coordinate. As such,
the approach is to use the entropy-regularized solution as x in Rebuild(), prioritizing vectors with higher entropy
when they have similar weights.

To formally describe our results, consider a fixed positive weight w 2 Rd
>0. For S ✓ [d], µ, � 2 R>0, we define

our entropy-regularized objective fµ
S,� : XS ! R for all x 2 XS by

(3.4) fµ
S,�(x)

def
= w>

Sx+ µ ·

X

i2S

wixi log
�

wixi

and let

(3.5) xµ
S,�

def
= argmax

x2XS

fµ
S,�(x)

be the optimal solution to (3.4). The main result we show later in Section 4 is that solutions to (3.4) with
µ = e⇥(") lead to a lazy update scheme with bounded rebuilds.

Lemma 3.1. For any ↵ � 0, accuracy parameter " > 0, and 0 < µ  "
8 log d , if the subroutine Rebuild()

in Algorithm 1 returns xµ
S(t),�

as x(t)
for �

def
= ↵, then Rebuild() will be called at most O(log d

µ·") times before

maxx02XS w>

Sx
0
drops from at most ↵ to below ↵/d.

Analogous to [49], to prove Lemma 3.1, we use fµ
S,�(x

µ
S,�), the optimal value of the entropy-regularized

objective on XS , as a potential function to capture the progress that Algorithm 1 makes. Applying the optimality
conditions for concave optimization to fµ

S,�(x
µ
S,�) allows us to lower bound the decrease from fµ

S,�(x
µ
S,�) to

fµ
S0,�(x

µ
S0,�) using the Bregman divergence of the entropy regularizer, which has a close relationship to the weighted

value of the deleted coordinates in S \ S0. The choice of µ and � is to guarantee that the entropy-regularized
solution serves as a valid solution for Rebuild().

In case the exact solution xµ
S,� is computationally expensive to compute, we also show that an accurate

enough approximation to it admits the same robustness property, by combining the proof of Lemma 3.1 and the
strong concavity of the entropy-regularized objective. In the following, we say an x 2 XS is a (1� �)-approximate

solution to fµ
S,� if fµ

S,�(x) � (1� �)fµ
S,�(x

µ
S,�).

Lemma 3.2. For any ↵ � 0, accuracy parameter " > 0, and 0 < µ  "
128 log d , if the subroutine Rebuild() in

Algorithm 1 returns any (1� µ"2

512)-approximate solution to fµ
S(t),�

as x(t)
for �

def
= ↵, then Rebuild() will be called

at most O(log d
µ·") times before maxx02XS w>

Sx
0
drops from at most ↵ to below ↵/d.

In the general case that maxx02XS w>

Sx
0 drops by more than a factor of d, we can simply re-run the algorithm

with di↵erent values of �. Algorithm 2 below implements this strategy and Theorem 3.1 bounds its performance
when used as the Rebuild() subroutine in Algorithm 1.

Theorem 3.1. For parameters ↵, k, " > 0, and 0 < µ  "
128 log d , using Algorithm 2 as the Rebuild() subroutine

in Algorithm 1, before maxx02XS w>

Sx
0
drops from at most ↵ to below ↵/k there will be at most O(log k

µ·") calls to

Rebuild(). Moreover, the value � in Rebuild() satisfies maxx02XS w>

Sx
0
 �  ↵, and the while-loop in Line 3

will be run at most O(logd k) times in total.

Copyright © 2025
Copyright for this paper is retained by authors

Algorithm 2: Implementation of Rebuild() for Theorem 3.1.

global: weight vector w 2 Rd
>0, accuracy parameter " 2 (0, 1), and µ 2 (0, 1).

global: current coordinates S ✓ [d].
global: number of rebuilds t 2 Z�0 and snapshots x(t) and S(t) for analysis.
global: an estimate e⌫ for the current phase, initially set to ↵

1 function Rebuild()

2 Let x(t)
2 XS be an arbitrary

⇣
1� µ"2

512

⌘
-approximate solution to fµ

S,� for �
def
= e⌫.

3 while w>x(t) < e⌫/d do

4 e⌫ 1
1�"e⌫/d.

5 Recompute x(t)
2 XS as a

⇣
1� µ"2

512

⌘
-approximate solution to fµ

S,� for �
def
= e⌫.

6 Set ⌫(t) w>

Sx
(t) and S(t)

 S.

7 return (x(t), ⌫(t)) and set t t+ 1.

Proof. Let us assume "  1/3. Consider dividing Algorithm 1 into phases, where each phase ends when e⌫ is
decreased in Line 4. At the start of each phase, we maintain the invariant that e⌫ � maxx02XS w>

Sx
0. The

invariant implies that the number of phases is O(logd k).
Within each phase, as long as w>

Sx
(t)
� e⌫/d, we know that maxx02XS w>

Sx
0
� e⌫/d. Lemma 3.2 therefore

shows that the vector x we maintain throughout this phase is a valid approximation. On the other hand, when
w>x(t) < e⌫/d, we know that maxx02XS w>

Sx
0 must fall below e⌫/d

1�" 
3e⌫
4 . Hence, the new e⌫ remains an upper

bound on it and the invariant holds. Lemma 3.2 also shows that within each phase the subroutine Rebuild()

will be called at most O
⇣

log d
µ·"

⌘
times. As such throughout the O(logd k) phases the number of rebuilds is at most

O
⇣

log k
µ·"

⌘
.

To complement our algorithmic results, we investigate the limit of the lazy update framework. It turns out
that entropy regularization is a nearly optimal strategy for the lazy update framework in its dependence on both
log n and "�1 for the decremental matching problem for any given n and " = ⌦(n�1/2), even in unweighted
bipartite graphs.

Theorem 3.2. For any n 2 N, 2/
p
n  "  1/4, and implementation of Rebuild() in Algorithm 1, there exists

a bipartite graph G with n vertices on each side and an output-adaptively chosen sequence of deletions that when

X
def
= PG Algorithm 1 calls Rebuild() ⌦(log2("2n) · "�2) times before G is empty.

Deletions

Figure 1: Illustration of the adversarial strategy for proving the lower bound.

To give an intuition of the construction, Figure 1 shows the choice of the initial graph and the output-adaptive
deletion strategy. We use the square to represent the adjacency matrix of the chosen bipartite graph, where the
gray area represents edges between row vertices and column vertices. In this graph, the only maximum matching
is the one on the diagonal of the square. We generalize this observation to any (1�O("))-approximate fractional
maximum matching and show that a constant fraction of the mass will be concentrated around the diagonal.
Thus edge deletion near the diagonal su�ces to cause rebuilds of the algorithm. We show that within each phase,

Copyright © 2025
Copyright for this paper is retained by authors

which is defined by deleting everything in the dashed rectangle, an output-adaptive deletion sequence can cause
⌦(log("2n)/") calls to Rebuild(). Additionally, there are ⌦(log("2n)/") such phases in total, which together
establish the lower bound.

3.3 Dynamic Fractional Matching We obtain our algorithms for Problem 1.1 by first solving the following
intermediate fractional version of the problem.

Problem 3.2. (Decremental Fractional Matching) In the decremental fractional matching problem, we

are given the same set of inputs as Problem 1.1 does, and the goal is to maintain a (1� ") approximate maximum

weight fractional matching, i.e., an x 2MG such that
P

e2E wexe � (1� ")M⇤
w(G), at all times under deletions

to E until G becomes empty.

Our dynamic algorithms use the framework established in the preceding sections, and in particular they
apply Theorem 3.1 with X = MG. This su�ces to solve Problem 3.2 provided we can solve the following
entropy-regularized problem e�ciently.

Problem 3.3. (Entropy-Regularized Matching) Given an n-vertex m-edge graph G = (V,E) with edge

weights w 2 NE
bounded by W = poly(n), a trade-o↵ parameter µ  1, a � 2 R�0 such that M⇤

w(G)  �  n3W ,

and an accuracy parameter " 2 (0, 1), the entropy-regularized matching problem is to compute a (1 � ")-
approximate solution x 2MG to

(3.6) max
x2MG

(
w>x+ µ ·

X

e2E

wexe log
�

wexe

)
.

We develop two algorithms for solving the entropy-regularized matching problem as specified in the following
theorem.

Theorem 3.3. For any " � e⌦(n�1/2), there are randomized eO
�
m"�6 + n"�13

�
and bO

�
m"�5

�
time algorithms

that solve Problem 3.3 w.h.p.

This when combined with Theorem 3.1 immediately implies algorithms for solving the decremental fractional
matching problem.

Theorem 3.4. There are fully-adaptive randomized algorithms that, for " � e⌦(n�1/6), solve Problem 3.2 w.h.p.

with amortized update times eO("�41) and bO("�17). Additionally, if G is bipartite, then there is such an algorithm

that works for any " � 1/poly(n) with amortized update time bO("�2). The recourse of the algorithms is eO(m"�2).

Proof. Letting X
def
= MG for the decremental matching problem, Theorem 3.1 shows that by using Problem 3.3

with µ
def
= "

128 logm and accuracy parameter "0
def
= µ"2

512 = e⇥("3) inside Algorithm 2 as the subroutine Rebuild(),

there will be at most eO("�2) calls to Rebuild() throughout the algorithm, as the weight of any non-empty
matching is at most nW and at least one. For general graphs, we have "0 � e⌦("�1/2), and the update times of
eO("�41) and bO("�17) can be obtained by running Theorem 3.3 as the subroutine Rebuild() and amortizing over
the m updates. For bipartite graphs, we can use [33, Theorem 10.16] to solve Problem 3.3 to high accuracy in
bO(m) time, resulting in the amortized update time of bO("�2). The recourse is eO(m"�2) since there are at most
eO("�2) di↵erent matchings.

Our algorithms for Theorem 3.3 build upon the MWU-based algorithm for weighted non-bipartite b-matching
by [5]. Informally, [5] showed that the weighted b-matching problem in non-bipartite graphs reduces to solving a
sequence of the same problem in bipartite graphs, possibly with di↵erent weights. We observe that the analysis
of [5] seamlessly extends to general concave objective optimization over the non-bipartite matching polytope. We
then leverage the recent almost-linear time convex flow algorithm of [33] for our almost-linear time algorithm for
entropy-regularized matching. Alternatively, by approximating the concave weight with piecewise linear functions

Copyright © 2025
Copyright for this paper is retained by authors

and splitting each edge into multiple copies, we reduce Problem 3.3 to a capacity-constrained maximum weight
matching problem, which is then solved by similarly applying the generalized approach of [5]. The runtime of this
algorithm does not have the subpolynomial factor incurred by the use of [33] but su↵ers from a larger dependence
on "�1.

3.4 Dynamic Rounding of Fractional Matchings The results in previous sections show that we can solve
the decremental fractional matching problem adaptively. To turn the fractional matching into an integral one,
we further design dynamic rounding algorithms for general graphs. To present our algorithms in a unified way,
we consider the following weighted definition of dynamic rounding algorithms.

Definition 3.1. (Dynamic Rounding Algorithm) A dynamic rounding algorithm, for a given n-vertex
graph G = (V,E), edge weights w 2 NE

bounded by W = poly(n), and accuracy parameter " > 0, initializes

with an x 2MG and must maintain an integral matching M ✓ supp(x) with w(M) � (1 � ")w>x under entry

updates to x that guarantee x 2MG after each operation.

We prove the following deterministic rounding algorithm which has near-optimal overhead in the unweighted
case.

Theorem 3.5. There is a deterministic dynamic rounding algorithm for general graphs with amortized update

time eO(W"�4).

Our algorithm for Theorem 3.5 builds on top of the pipage-rounding algorithm recently dynamized by [29] for
bipartite graphs. Their algorithm circumvents the inherent barrier of the periodic-recomputation approaches by
directly rounding to integral matchings without creating an intermediate sparsifier. Although this approach does
not generalize to non-bipartite graphs due to odd-set constraints, we observe that terminating their algorithm
early in fact creates a good sparsifier for general graphs. The main intuition is that the first few rounds of their
algorithm only have small additive e↵ects on the value xe, and perturbing each edge slightly indeed does not
have a huge impact on odd-set constraints. While Definition 3.1 is weighted, we remark that the algorithm of
Theorem 3.5 is essentially unweighted in its design, hence the linear dependence on W . We thus apply it in the
unweighted case or through reductions to the case when W is small. See Section 3.5 for more details.

We further consider rounding with better dependence on W . For this we directly adopt the standard sampling
approach of creating a matching sparsifier. Similar approaches were studied before in, e.g., [4, 69, 29], for rounding
matchings in bipartite graphs or certain structured matchings in general graphs. Our analysis of the sparsifier,
however, di↵ers from the previous ones in that we directly analyze the violation of each odd-set constraint while
previous work used various proxies (e.g., kernels or "-restrictness) when arguing the integrality gap. In particular,
by standard Cherno↵ bounds, we show that the sparsifier maintains (i) the degree of the vertices, (ii) the total edge
mass in odd sets, and (iii) the unweighted matching size. Coupled with a dynamic set sampler from, e.g., [29], we
obtain from the sampling approach an unweighted rounding algorithm for general graphs. Though the sampling
scheme itself does not lead to a runtime improvement over Theorem 3.5, we further show that in the decremental
setting, surprisingly, properties (i) and (ii) su�ce to round the entropy-regularized fractional matching maintained
by Theorem 3.4 in weighted graphs with large W . The resulting rounding algorithm in Theorem 3.6 below has a
near-optimal overhead in dense graphs.

Theorem 3.6. There are randomized output-adaptive algorithms that solve Problem 1.1 w.h.p. with amortized

update times eO("�41+(n2/m) · "�6) and bO("�17+(n2/m) · "�6). Additionally, if G is bipartite then there is such

an algorithm with amortized update time bO((n2/m) · "�6).

3.5 Putting Everything Together We conclude this overview by using the previously stated results to prove
our main theorems.

Theorem 3.7. (Unweighted Decremental Matching) There are randomized fully-adaptive eO("�41) and

bO("�17) update time algorithms that solve Problem 1.1 in the unweighted case w.h.p.

Proof. For " < n�1/6, the update times of eO("�41) and bO("�17) can be obtained by re-running the static algorithm
of [35] after each update. As a result we assume " � n�1/6 in the remainder of the proof. By Theorem 3.4 with

Copyright © 2025
Copyright for this paper is retained by authors

accuracy parameter "/2, we can maintain a
�
1� "

2

�
-approximate fractional matching in amortized update times

eO("�41) and bO("�17). We then apply Theorem 3.5 with accuracy parameter "/2 to round the fractional matching
we maintain to a (1 � ")-approximate integral matching. Since the recourse of Theorem 3.4 is eO(m"�2), there
will be eO(m"�2) updates to Theorem 3.5 in total, incurring an additional eO("�6) amortized time per update that
is subsumed by the update time of Theorem 3.4. Since Theorem 3.5 is deterministic, our final algorithm works
against a fully-dynamic adversary like Theorem 3.4 does.

Theorem 3.8. (Weighted Decremental Matching) There is a randomized fully-adaptive eO("�O(1/")) up-

date time algorithm that solves Problem 1.1 w.h.p. Additionally, when m = e⇥(n2), there are randomized output-

adaptive eO("�41) and bO("�17) update time algorithms.

We make use of the following weight reduction framework from [41] which allows us to assume that the
maximum weight is bounded by "�O(1/").

Proposition 3.1. ([41]) Given a fully-dynamic/incremental/decremental algorithm for (1 � ")-approximate

maximum weighted matching on n-vertex m-edge graphs of maximum weight W with worst-case/amortized update

time T (n,m, ",W), there is a fully-dynamic/incremental/decremental algorithm for the same task with worst-

case/amortized update time eO
�
T
�
n,m,⇥("), "�O(1/")

��
.

Proof of Theorem 1.2. As in the proof of Theorem 1.1 we assume " � n�1/6. For the first algorithm, we apply
the weight reduction framework of [41] in Proposition 3.1 to make W  "�O(1/"). Again, running Theorem 3.4
with accuracy parameter "/2 we maintain a

�
1� "

2

�
-approximate fractional matching in amortized update time

eO("�41). The rounding algorithm Theorem 3.5 now has amortized update time eO("�O(1/")), incurring an
additional eO("�O(1/")) amortized time per update which subsumes the update time of the fractional matching.
The algorithms for dense graphs follow from Theorem 3.6.

Finally, the bipartite result Theorem 1.3 also follows from Theorem 3.6.

Theorem 3.9. (Weighted Bipartite Decremental Matching) For bipartite graphs with m = b⇥(n2) there
is an output-adaptive randomized bO("�6) update time algorithm that solves Problem 1.1 w.h.p.

4 Entropy Regularization for Decremental Linear Optimization

In this section we analyze our entropy regularization strategy for the lazy update framework that solves the
decremental linear optimization problem. In Sections 4.2 and 4.3 we show the robustness of the entropy
regularization strategy, and in Section 4.4 we prove its optimality. We consider a fixed instance of the decremental
linear optimization problem, including the d-dimensional convex set X and the input weight w 2 Rd

>0.

4.1 Notation and General Setup Before showing the robustness of our framework, we first set up the
notation and various optimization constructs that will be used throughout the section. For S ✓ [d] and � � 0, we
consider the entropy regularizer rS,� : XS ! R defined by

(4.7) rS,�(x)
def
=
X

i2S

wixi log
�

wixi
,

which is a weighted and scaled version of the original entropy function HS(y)
def
=
P

i2S yi log
1
yi

for y 2 �S that

is usually applied on the simplex. For intuition, observe that for an x 2 XS with
P

i2S wixi = �, we have

rS,�(x) = � ·HS(⇧(x)), where ⇧(x) 2 �S with (⇧(x))i
def
= wixi/�. Below we give upper and lower bounds on

the value of rS,�(x) which generalize known properties of entropy on the simplex.

Lemma 4.1. For x 2 XS with w>

Sx = ⌫, we have ⌫ log(�/⌫)  rS,�(x)  ⌫ log(d�/⌫).

Proof. For the upper bound, consider the relaxation of the problem

(4.8) max
x02RS :kx0k1=⌫/�

� ·

X

i2S

x0

i log
1

x0

i

.

Copyright © 2025
Copyright for this paper is retained by authors

For any fixed x 2 XS , there is a feasible point y0 of (4.8) with y0

i
def
= wixi/�, and � ·

P
i2S y0 log 1

y0 = rS,�(x). Thus

the optimal value of (4.8) is an upper bound on rS,�(x). Let gx0 2 RS with (gx0)i = �(1+ logx0

i) be the gradient

of the objective of (4.8) at x0. Note that the optimality conditions of the problem are that gx0 ? ker(1S>

) or
equivalently that gx0 = ↵ · 1

S for some ↵ 2 R. Thus, it holds that x0 = � · 1
S for some � 2 R. Combining with

kx0
k1 = ⌫/�, we have x0

i = ⌫/(d�), implying that the maximizing value of (4.8) is ⌫ log(d�/⌫).
For the lower bound, since w>

Sx = ⌫, we have maxi2S wixi  ⌫, and thus

rS,�(x) �
X

i2S

wixi log (�/⌫) = ⌫ log(�/⌫).

Using rS,� we may rewrite the entropy-regularized objective defined in (3.4) as fµ
S,�(x)

def
= w>

Sx+ µ · rS,�(x).

Note that µ > 0 in the definition. Let Zµ
S,�

def
= maxx2XS fµ

S,�(x) be the maximum entropy-regularized objective

value and ⌫⇤S
def
= maxx2XS w>

Sx be the maximum of the actual linear objective. Below are properties of fµ
S,� that

we will use in this section.

Lemma 4.2. The entropy-regularized objective function fµ
S,� admits the following properties:

(i) fµ
S,� has a unique maximizer xµ

S,� on XS.

(ii) xµ
S,� has positive coordinates, i.e., xµ

S,� 2 XS,+, and thus fµ
S,� and rS,� are di↵erentiable at xµ

S,� .

(iii) fµ
S,�(x)  fµ

S,�

⇣
xµ
S,�

⌘
�

µ
2⌫⇤

S

���x� xµ
S,�

���
2

w,S
for all x 2 XS, where kxkw,S

def
=
P

i2S wi|xi| is the weighted

`1-norm.
18

We provide a fairly standard proof of the properties from first principle.

Proof. By the compactness of XS , f
µ
S,� has a maximizer on XS . We prove the following claims.

Claim 4.1. Any maximizer of fµ
S,� on XS must be in XS,+.

Proof. Consider the first-order partial derivative of fµ
S,� with respect to an x 2 XS,+ and coordinate i 2 S, which

by calculation is

@if
µ
S,�(x)

def
=
@fµ

S,�(x)

@xi
= (1� µ)wi + µwi log

✓
�

wixi

◆
.

Since X contains no degenerate dimension and is convex, there is a point y 2 XS,+. Consider any point

x 2 XS \ XS,+, and let x↵
def
= x + ↵(y � x) for ↵ 2 [0, 1]. Note that x↵ 2 XS,+ for ↵ > 0. By the mean

value theorem, for any ↵ > 0 there is a 0 < � < ↵ such that

fµ
S,�(x↵)� fµ

S,�(x) = rf
µ
S,�(x�)

>(x↵ � x) =
X

i2S

@if
µ
S,�(x�) · ((x↵)i � xi).

For i 2 S with xi > 0, |@if
µ
S,�(x�)| is bounded since (x�)i is between xi and yi. For i 2 S with xi = 0, however,

when (x�)i approaches 0, @if
µ
S,�(x�) goes to infinity. This shows that we can pick an ↵ close enough to 0 so that

fµ
S,�(x↵) > fµ

S,�(x), proving that x 2 XS \ XS,+ is not a maximizer.

Claim 4.2. For any x, z 2 XS,+ it holds that z>
r

2fµ
S,�(x)z  �

µ
⌫⇤
S
kzk2w,S.

Note that fµ
S,� is twice-di↵erentiable on XS,+ and thus Claim 4.2 is well-defined.

18k·kw,S is indeed a norm since wi > 0 for all i 2 [d].

Copyright © 2025
Copyright for this paper is retained by authors

Proof. The second-order partial derivatives of fµ
S,� satisfy

@2fµ
S,�(x)

@x2
i

= �
µwi

xi
and

@2fµ
S,�(x)

@xi@xj
= 0 for j 6= i.

Using Cauchy-Schwarz inequality, for any x, z 2 XS,+ we have

z>
r

2fµ
S,�(x)z =

X

i2S

�
µwi

xi
z2
i  �µ

kzk2w,S

kxkw,S
 �

µ

⌫⇤S
kzk2w,S ,

as claimed.

Now consider a maximizer y of fµ
S,� and an x 2 XS,+. Since y 2 XS,+, f

µ
S,� is di↵erentiable at y. Letting

y↵
def
= y + ↵(x� y) for ↵ 2 [0, 1], we have

fµ
S,�(x) = fµ

S,�(y) +
⇣
rfµ

S,�(y)
⌘>

(x� y) +

Z 1

0

Z t

0
(x� y)>r2fµ

S,�(y↵)(x� y)d↵dt(4.9)

(i)
 fµ

S,�(y)�
µ

⌫⇤S
kx� yk2w,S ·

Z 1

0

Z t

0
d↵dt = fµ

S,�(y)�
µ

2⌫⇤S
kx� yk2w,S ,(4.10)

where (i) uses the optimality conditions of fµ
S,� at y and Claim 4.2. On the other hand, for x 2 XS \ XS,+, there

is a sequence {xn} ✓ XS,+ approaching x. By continuity of fµ
S,� we have

(4.11) fµ
S,�(x) = lim

n!1
fµ
S,�(xn)  lim

n!1
fµ
S,�(y)�

µ

2⌫⇤S
kxn � yk2w,S = fµ

S,�(y)�
µ

2⌫⇤S
kx� yk2w,S .

This implies that there is a unique maximizer xµ
S,� of fµ

S,� on XS . The rest of the lemma follows from Claim 4.1
and Equations (4.10) and (4.11).

Finally, our analysis of the framework uses the Bregman divergence of rS,� as a proxy to bound the decrease
of a certain potential.

Definition 4.1. (Bregman divergence) For di↵erentiable r : X ! R and x,y 2 X for a domain X , the

Bregman divergence of r from y to x is

V r
y (x)

def
= r(x)�

⇣
r(y) + (rr(y))> (x� y)

⌘
.

Overloading notation, let V S,�
y (x) for S ✓ [d],x 2 XS and y 2 XS,+ be the Bregman divergence induced by

rS,� , which is non-positive since rS,� , as a generalization of the entropy function, is concave. We have by direct
calculation from the definition that

V S,�
y (x)

def
= V

rS,�
y (x) = rS,�(x)�

⇣
rS,�(y) + (rrS,�(y))

> (x� y)
⌘

(4.12)

=

X

i2S

wixi log
�

wixi

!
�

"
X

i2S

wiyi log
�

wiyi

!
�

X

i2S

wi

✓
1 + log

wiyi

�

◆
(xi � yi)

!#
(4.13)

=
X

i2S

wixi log
yi

xi
+
X

i2S

wi(xi � yi).(4.14)

Note that we need y 2 XS,+ because the gradient does not exist on XS \ XS,+. Indeed, in the remainder of
the section we will only use V S,�

y (x) for y = xµ
S,� , which lies in XS,+ by Lemma 4.2(ii). The following lemma

bounds the entropy-regularized objective by the Bregman divergence from xµ
S,� .

Lemma 4.3. For any x 2 XS, we have fµ
S,�(x)  fµ

S,�(x
µ
S,�) + µV S,�

xµ
S,�

(x).

Copyright © 2025
Copyright for this paper is retained by authors

Proof. For clarity let us write x⇤ def
= xµ

S,� . Optimality conditions for concave optimization applied to fµ
S,�(x

⇤)
imply that

(4.15) (wS + µrrS,�(x
⇤)>(x� x⇤) = rfµ

S,�(x
⇤)>(x� x⇤)  0.

As such, we have

fµ
S,�(x

⇤)� fµ
S,�(x)

(i)
= w>

S (x
⇤
� x) + µ(rS,�(x

⇤)� rS,�(x))

(ii)
= (wS + µrrS,�(x

⇤))>(x⇤
� x)� µV S,�

x⇤ (x)
(iii)
� �µV S,�

x⇤ (x),

where (i) is by definition of fµ
S,� , (ii) is by definition of the Bregman divergence, and (iii) follows from (4.15).

The following Table 1 summarizes the notation introduced here for future reference.

Notation Definition Description

rS,�(x)
P

i2S wixi log
�

wixi
entropy regularizer

V
S,�
y (x)

P
i2S wixi log(yi/xi) +

P
i2S wi(xi � yi) Bregman divergence of entropy regularizer

f
µ
S,�(x) w>

Sx+ µ · rS,�(x) entropy-regularized objective

xµ
S,� argmaxx2XS

f
µ
S,�(x) optimal entropy-regularized solution

⌫
⇤
S maxx2XS w>

Sx optimal linear objective value

Z
µ
S,� maxx2XS f

µ
S,�(x) optimal entropy-regularized objective value

kxkw,S
P

i2S wi|xi| norm of x 2 XS induced by w

Table 1: Frequently used notation

4.2 Robustness of Entropy Regularization In this section we show that if the subroutine Rebuild() in
Algorithm 1 returns the exact maximizer of the entropy-regularized objective, then Rebuild() will be called at
most eO("�2) times. The first step is to derive a proper choice of � and µ so that xµ

S,� becomes an approximate
maximum weight solution that can be used in Algorithm 1. We call a tuple containing an accuracy parameter
" > 0, coordinate subset S ✓ [d], and estimate

(4.16) ⌫⇤S  �  d · ⌫⇤S

a valid iterate which will repeatedly appear as input to lemmas in the remainder of this section.

Lemma 4.4. For any valid iterate (", S, �) and 0 < µ  "
8 log d , it holds that 0  µ ·rS,�(x) 

"
2 ·⌫

⇤

S for all x 2 XS.

Proof. The lower bound follows from Lemma 4.1 and the assumption of � in (4.16). For the upper bound, let

x 2 XS be arbitrary and define ⌫
def
= w>

Sx. Lemma 4.1 implies that

µ · rS,�(x)  µ⌫ log
d�

⌫
= µ⌫ log

d�

⌫⇤S
+ µ⌫⇤S ·

⌫

⌫⇤S
log

⌫⇤S
⌫

(i)
 µ⌫ · (2 log d) + µ⌫⇤S

(ii)


"

2
· ⌫⇤S ,

where (i) comes from x log(1/x)  1 for all x 2 R�0 and the assumption of � in (4.16) and (ii) is by the assumption
of µ and ⌫  ⌫⇤S .

Copyright © 2025
Copyright for this paper is retained by authors

Lemma 4.5. For any valid iterate (", S, �) and 0 < µ  "
8 log d , it holds that

w>

Sx
µ
S,� �

⇣
1�

"

2

⌘
· ⌫⇤S .

Proof. For any x 2 XS such that w>

Sx < (1� "/2) · ⌫⇤S , we have

fµ
S,�

⇣
xµ
S,�

⌘
� fµ

S,�(x)
(i)
� ⌫⇤S �

⇣
w>

Sx+
"

2
· ⌫⇤S

⌘ (ii)
> 0,

where (i) comes from Lemma 4.4 (note that the non-negativity of the entropy-regularizer implies fµ
S,�(x

µ
S,�) � ⌫

⇤

S)

and (ii) comes from the assumption that w>

Sx < (1 � "/2) · ⌫⇤S . The lemma follows since xµ
S,� is a maximizer of

fµ
S,� .

Lemma 4.5 shows that for � being a d-approximate upper bound of ⌫⇤S , if we choose µ to be roughly
proportional to ", then the corresponding value of w>

Sx
µ
S,� is a (1 � "/2)-approximation to ⌫⇤S . Thus we can

use the entropy-regularized solution for the Rebuid() procedure in Algorithm 1. Moreover, as we will show
below, a decrease in the linear objective value of xµ

S,� implies a decrease in the entropy-regularized objective
globally. This enables the use of the latter quantity as a potential to bound the number of calls to Rebuild()

Algorithm 1 needs.

Lemma 4.6. For any valid iterate (", S, �), 0 < µ  "
8 log d , and S0

✓ S, if

w>

S0

⇣
xµ
S,�

⌘

S0
<
⇣
1�

"

2

⌘
·w>

Sx
µ
S,� ,

then Zµ
S0,� 

�
1� µ"

3

�
Zµ
S,� .

Proof. For clarity let xS
def
= xµ

S,� , and xS0
def
=
⇣
xµ
S0,�

⌘S
be xµ

S0,� extended to have coordinates S. Lemma 4.3

shows that
fµ
S,�(xS0)  fµ

S,�(xS) + µV S,�
xS

(xS0).

Since S0
✓ S, we have

(4.17) Zµ
S0,� = fµ

S0,�

⇣
xµ
S0,�

⌘
= fµ

S,�(xS0)  fµ
S,�(xS) + µV S,�

xS
(xS0) = Zµ

S,� + µV S,�
xS

(xS0).

Further, by above lettingD
def
= S\S0 and therefore xS0,i = 0 for i 2 D, we have from (4.14) and the non-positiveness

of the Bregman divergence for concave functions that

V S,�
xS

(xS0) =
X

i2S

wi(xS0)i log
(xS)i
(xS0)i

+
X

i2S

wi ((xS0)i � (xS)i)



X

i2D

wi(xS0)i log
(xS)i
(xS0)i

+
X

i2D

wi ((xS0)i � (xS)i)

= �
X

i2D

wi(xS)i  �
"

2
·w>

SxS ,

which when combined with (4.17) and Lemma 4.4 shows that

Zµ
S0,�  Zµ

S,� �
µ"

2
·w>

SxS 

✓
1�

µ"

(1 + "/2) · 2

◆
· Zµ

S,� 

⇣
1�

µ"

3

⌘
· Zµ

S,� .

We now conclude the number of rebuilds before the actual optimal value ⌫⇤S drops to a certain number, if we
use an entropy-regularized solution xµ

S,� for Rebuild().

Copyright © 2025
Copyright for this paper is retained by authors

Lemma 3.1. For any ↵ � 0, accuracy parameter " > 0, and 0 < µ  "
8 log d , if the subroutine Rebuild()

in Algorithm 1 returns xµ
S(t),�

as x(t)
for �

def
= ↵, then Rebuild() will be called at most O(log d

µ·") times before

maxx02XS w>

Sx
0
drops from at most ↵ to below ↵/d.

Proof. Note that while ⌫⇤S is between ↵/d and ↵, �
def
= ↵ is a d-approximate upper bound of ⌫⇤S and thus the

preceding lemmas apply. By Lemma 4.5, x(t) is a
�
1� "

2

�
-approximate solution to the linear objective w>

S(t)x

before ⌫⇤S drops below ↵. Fix a round t and consider S(t+1) which is obtained by deleting some coordinates from
S(t) so that

w>

S(t+1)x
(t)
S(t+1) <

⇣
1�

"

2

⌘
w>

S(t)x
(t).

In other words, the quality of the current solution x(t) decreases by a multiplicative factor of 1 � "
2 when we go

from S(t) to S(t+1). Lemma 4.6 then implies

Zµ
S(t+1),�



⇣
1�

µ"

3

⌘
Zµ
S(t),�

for each round t. This allows us to bound the number of calls to Rebuild() as follows. Initially when
maxx2XS w>

Sx  ↵, the optimal entropy-regularized objective is no more than (1 + "/2) · ↵ by Lemma 4.4.
Likewise, at the end before ⌫⇤S drops below ↵/d, the objective is at least ↵/d. Thus there will be at most

log1�µ"
3
((1 + "/2)d) = O

✓
log d

µ"

◆

calls to Rebuild().

4.3 Su�ciency of Approximate Solutions From Section 4.2 we have seen that the maximizer of the entropy-
regularized objective solves the decremental linear optimization problem. However, exact maximizers are not
always easy to obtain, and therefore in this section, we show that any accurate enough approximate maximizer of
fµ
S,� su�ces for the lazy update framework to work e�ciently. This is by the following lemma which states that
such a solution is also close in k·kw,S-distance to the actual maximizer xµ

S,� .

Lemma 4.7. For any valid iterate (", S, �), 0 < µ  "
8 log d , and x 2 XS with fµ

S,�(x) �
⇣
1� µ"2

2

⌘
Zµ
S,� , it holds

that

���x� xµ
S,�

���
w,S
 " · Zµ

S,� .

Proof. Lemma 4.2(iii) states that

fµ
S,�(x)  fµ

S,�

⇣
xµ
S,�

⌘
�

µ

2⌫⇤S

���x� xµ
S,�

���
2

w,S

for all x 2 XS . Thus for every x 2 XS such that fµ
S,�(x) �

⇣
1� µ"2

2

⌘
· Zµ

S,� , we have

���x� xµ
S,�

���
w,S


s
2⌫⇤S
µ

⇣
fµ
S,�

⇣
xµ
S,�

⌘
� fµ

S,�(x)
⌘


q
"2 · ⌫⇤S · Zµ

S,�  " · Z
µ
S,� ,

where the last inequality follows from Lemma 4.4 and therefore ⌫⇤S  Zµ
S,� .

The closeness of an approximate maximizer x to the actual one xµ
S,� allows us to bound the decrease in the

objective value of xµ
S,� that is hidden to us. This establishes the number of rebuilds needed if we only have an

accurate enough approximation to fµ
S,� .

Lemma 3.2. For any ↵ � 0, accuracy parameter " > 0, and 0 < µ  "
128 log d , if the subroutine Rebuild() in

Algorithm 1 returns any (1� µ"2

512)-approximate solution to fµ
S(t),�

as x(t)
for �

def
= ↵, then Rebuild() will be called

at most O(log d
µ·") times before maxx02XS w>

Sx
0
drops from at most ↵ to below ↵/d.

Copyright © 2025
Copyright for this paper is retained by authors

Proof. Setting "0
def
= "/4 and "00

def
= "/16, we have µ  "00

8 log d 
"0

8 log d and x(t) being a
⇣
1� µ"00

2

⌘
-approximate

solution to fµ
S(t),�

. By Lemma 4.5 with accuracy parameter "0 we know that xµ
S(t),�

is a
�
1� "

8

�
-approximate

solution to the linear objective w>

S(t)x before ⌫⇤S drops below ↵/d. By triangle inequality of the norm k·kw,S(t)

and Lemma 4.7 with accuracy parameter "00, the value of w>

S(t)x
(t) satisfies

w>

S(t)x
(t) =

���x(t)
���
w,S(t)

�

���xµ
S(t),�

���
w,S(t)

�

���xµ
S(t),�

� x(t)
���
w,S(t)

(4.18)

�

⇣
1�

"

8

⌘
⌫⇤S(t) �

"

16
Zµ
S(t),�

�

⇣
1�

"

4

⌘
⌫⇤S(t) ,(4.19)

where the last inequality uses that Zµ
S(t),�


�
1 + "

8

�
⌫⇤
S(t)  2⌫⇤

S(t) by Lemma 4.4 with accuracy parameter "0.

This shows that x(t) is indeed a
�
1� "

2

�
-approximate solution to the linear objective, as required by Algorithm 1.

Fix a round t and consider S(t+1) which is obtained by deleting some coordinates from S(t) so that

w>

S(t+1)x
(t)
S(t+1) <

⇣
1�

"

2

⌘
w>

S(t)x
(t).

This implies

w>

S(t+1)

⇣
xµ
S(t),�

⌘

S(t+1)
=
���
⇣
xµ
S(t),�

⌘

S(t+1)

���
w,S(t+1)



���
⇣
x(t)

⌘

S(t+1)

���
w,S(t+1)

+
���
⇣
xµ
S(t),�

� x(t)
⌘

S(t+1)

���
w,S(t+1)

<
⇣
1�

"

2

⌘
w>

S(t)x
(t) +

���xµ
S(t),�

� x(t)
���
w,S(t)

(i)


✓
1� "/2

1� "/4

◆
w>

S(t)x
µ
S(t),�

+
"

16
· Zµ

S(t),�

(ii)


✓
1� "/2

1� "/4

◆
w>

S(t)x
µ
S(t),�

+
"

16(1� "/8)
w>

S(t)x
µ
S(t),�

(iii)


⇣
1�

"

8

⌘
w>

S(t)x
µ
S(t),�

,

where (i) is by (4.19), (ii) is by Lemma 4.4 with accuracy parameter "0, and (iii) uses 1�"/2
1�"/4  1 � "/4 for

" 2 (0, 1). The theorem then follows from Lemma 4.6 with accuracy parameter "0 and the same reasoning that
proves Lemma 3.1.

4.4 Near-Optimality of Entropy Regularization We have shown earlier in this section that Algorithm 1
with the entropy regularization strategy Algorithm 2 solves the decremental linear optimization problem with at
most O(log2 d/"2) calls to Rebuild() before the optimal linear objective drops from d · ↵ to ↵. Complementing
this result, in this section we show that this bound is near optimal for a certain range of ".

More specifically, we focus on the special case of unweighted bipartite matching, i.e., when X = PG = MG

for some bipartite graph G, and consider any algorithm that implements the Rebuild() subroutine. In this
decremental unweighted bipartite matching problem, Theorem 3.1 gives an upper bound of O(log2 n/"2) on
the number of calls to Rebuild(), where n is the number of vertices. The following theorem establishes an
⌦(log2("2n)/"2) lower bound in the regime of " � ⌦(1/

p
n) against an output-adaptive adversary.

Theorem 4.1. For any n 2 N, 2/
p
n  "  1/4, and implementation of Rebuild() in Algorithm 1, there exists

a bipartite graph G with n vertices on each side and an output-adaptively chosen sequence of deletions that when

X
def
= PG Algorithm 1 calls Rebuild() ⌦(log2("2n) · "�2) times before G is empty.

We first introduce a graph structure Gk that will repeatedly appear during the deletion process.

Definition 4.2. For k 2 N, Gk is a bipartite graph with k vertices on each side, and the edge set E(Gk) of Gk

is {{i`, jr} | 1  j  i  k}.

Copyright © 2025
Copyright for this paper is retained by authors

It is straightforward to check that Gk has a unique maximum matching M = {{i`, ir} | 1  i  k}. The
following lemma shows a generalization of the observation, that any large enough fractional matching has a mass
concentration on edges with small di↵erences in their endpoint labels.

Lemma 4.8. For k 2 N and ⌘, � > 0, any fractional matching x of Gk with matching size kxk1 � (1� ⌘) k
satisfies that X

0i�j�k

x{i,j} �
�
1� (1 + ��1)⌘

�
· k.

Proof. By Definition 4.2, for any edge {i`, jr} in Gk, we have i� j � 0. Also, we can upper-bound the weighted
sum of di↵erence by

X

{i`,jr}2E(Gk)

(i� j)x{i`,jr} =
X

i2[k]

i · x(i`)�
X

j2[k]

j · x(jr) 
X

j2[k]

j · (1� x(jr))  k(k � kxk1)  ⌘k
2.

By Markov’s inequality,
P

i�j>�k
x{i`,jr}  ⌘�

�1k, and thus
P

0i�j�k
x{i`,jr} �

�
1� (1 + ��1)⌘

�
· k.

Now we are ready to construct an output-adaptive adversary to achieve the previously claimed lower bound.

Proof. [Proof of Theorem 3.2] Let A be an instance of Algorithm 1 with the given implementation of Rebuild().
The adversarial input graph to the algorithm is Gn, and the adversary works in phases. At the beginning of the
t-th phase, let kt be the largest number such that Gkt is a subgraph of the current graph. The adversary will
guarantee that kt = (1� 4")t ·n. In the t-th phase, the adversary will cause ⌦(log("2kt)/") rebuilds in this phase.
Before kt reaches 4/"2, there will be at least log1�4"(4/("

2n)) = ⌦(log("2n)/") phases, achieving a

⌦(log("2n)/")X

t=0

⌦
�
log
�
"2kt

�
/"
�
=

⌦(log("2n)/")X

t=0

⌦
�
log
�
"2(1� 4")tn

�
/"
�
= ⌦(log2("2n)/"2)

lower bound on the total number of rebuilds. In the remainder of the proof, we focus on a single phase t, and
show how the adversary can cause ⌦(log("2kt)/") rebuilds in this phase.

Algorithm 3: The adversarially chosen sequence of deletions

1 Let G Gn be the initial graph and feed it to A.
2 Let t 0.

3 while kt
def
= (1� 4")t satisfies kt > 4/"2 do // phase t

4 Identify a subgraph Gkt ✓ G, delete G \Gkt , and re-label vertices so that
E(G) = {{i`, jr} : 1  j  i  kt}. // preprocessing

5 Let M
def
= {Mp : 0  p  "kt/2}, where Mp

def
= {{i`, jr} : i = j + p}.

6 while |M| > 1/" do // regular deletion

7 Let x be the current matching output by A.

8 Choose r
def
= 2"|M| matchings Mp1 , . . . ,Mpr such that

��xMp1

��
1
+ · · ·+

��xMpr

��
1
� "/2 · kt.

// guaranteed by Lemma 4.8

9 Delete Mp1 [· · · [Mpr and set M = M\ {Mpj : 1  j  r}. // cause a rebuild

10 t t+ 1.

Preprocessing. At the beginning of phase t, by definition of kt, Gkt is a subgraph of the current graph G.
The adversary will first delete edges outside this subgraph, then relabel vertices in this subgraph on each side
from 1 to kt in a way that the current set of edges is {{i`, jr} | 1  j  i  kt}. The adversary will then delete
edges

�
{i`, jr} | j + "kt/2 < i < j + 4"kt

. After that, regular deletion starts.

Copyright © 2025
Copyright for this paper is retained by authors

Regular Deletion. A regular deletion starts after a preprocessing finishes. During the regular deletion of
phase t, the adversary will only delete edges in the subgraph G"

kt

def
= {{i`, jr} | j  i  j + "kt/2} of Gkt , and

the deletion continues until the maximum matching size M⇤(G) becomes less than (1 � "/2)kt. After that, the
current phase ends. Since no edges in the subgraph {{i`, jr} | i � j + 4"kt} are deleted, G(1�4")kt

= Gkt+1 is a
subgraph of the current graph at the beginning of phase t + 1. It remains to show that ⌦(log("2kt)/") rebuilds
could be caused during the deletion described above in G"

kt
.

Note that G"
kt

is the union of ⇥("kt) matchings where the p-th matching is Mp
def
= {{i`, jr} | i = j+p}, each of

size at least (1� "/2)kt. Therefore, as long as one of the Mp’s remains intact, we have (1� "/2)kt M⇤(G)  kt.
This implies that the fractional matching x that A maintains must have size at least

kxk1 �
⇣
1�

"

2

⌘2
kt �

"

2
· kt �

✓
1�

3"

2

◆
kt

throughout this phase, since by definition of Algorithm 1 x was a (1� "/2)-approximate matching since the last
rebuild, and after "

2 · kt units of mass get deleted, a rebuild must be caused.
By the above argument it su�ces to delete "/2 · kt units of mass to cause a rebuild from A. Applying

Lemma 4.8 with ⌘ = 3"/2 and � = 4" on the fractional matching x, we know that at least kt/4 units of mass

are on G"
kt
, i.e,

���xE(G"
kt

)

���
1
� kt/4. Thus via an averaging argument the adversary can delete 2" fraction of

the matchings Mp’s to cause a rebuild. After the rebuild, we repeat the same argument again, choosing 2"
fraction of the remaining Mp’s to cause another rebuild. Note that after the first batch of deletions, the current
graph is no longer Gkt . Nevertheless, we can still apply Lemma 4.8 by interpreting the future x’s as a fractional
matching on Gkt by assigning a mass of zero on deleted edges. This shows that the mass of x is still concentrated
on the remaining Mp’s. Before the number of intact matchings in Mp’s reaches 1/(2"), there will be at least
log1�2"(4/("

2kt)) = ⌦(log("2kt)/") reconstructions, if "kt/2 � 1/(2") or equivalently kt  4/"2. This completes
the proof.

5 Decremental Algorithms for Fractional Matching

In Section 4 we showed that the decremental linear optimization problem reduces to computing an approximate
solution to the entropy-regularized problem to moderate accuracy. In the particular, in the special case of
decremental bipartite matching, i.e., when X is the matching polytope MG, it su�ces to solve the entropy-
regularized matching problem recalled below.

Problem 3.3. (Entropy-Regularized Matching) Given an n-vertex m-edge graph G = (V,E) with edge

weights w 2 NE
bounded by W = poly(n), a trade-o↵ parameter µ  1, a � 2 R�0 such that M⇤

w(G)  �  n3W ,

and an accuracy parameter " 2 (0, 1), the entropy-regularized matching problem is to compute a (1 � ")-
approximate solution x 2MG to

(3.6) max
x2MG

(
w>x+ µ ·

X

e2E

wexe log
�

wexe

)
.

Consequently, in the remainder of the section we focus on solving Problem 3.3. We prove the following
theorem.

Theorem 5.1. For any " � e⌦(n�1/2), there are randomized eO
�
m"�6 + n"�13

�
and bO

�
m"�5

�
time algorithms

that solve Problem 3.3 w.h.p.

Our approaches for Theorem 3.3 follow from a generalization of the MWU-style algorithm of [5] that solves
the uncapacitated and capacitated versions of weighted matching. Given a graph G = (V,E) and consider
a downward closed convex set P ✓ RE

�0 of interest. By modularizing and generalizing the framework of [5],
we derive the following Lemma 5.1 on concave function optimization over the matching polytope. Informally
speaking, Lemma 5.1 gives a reduction from approximately maximizing a concave function P together with odd-
set constraints to the same task just in P by increasing the dependence on "�1. We then, in Sections 5.1 and 5.2
respectively, instantiate the framework of Lemma 5.1 in two di↵erent ways with the entropy-regularized function
to obtain the two runtimes stated in Theorem 3.3.

Copyright © 2025
Copyright for this paper is retained by authors

Let P be the minimum number such that P ✓ P · MG, which for both PG and P
c
G that we will consider

later in this section are O(1). A function f : RE
�0 ! R�1 is coordinate-separable concave/linear if f is of

the form f(x) =
P

e2E fe(xe) where each fe : R�0 ! R�1 is concave/linear. Specifically, if ` : RE
�0 ! R is

coordinate-separable linear, we use ` 2 RE to denote the linear coe�cients, i.e., `(x)
def
= `>x.

Definition 5.1. For � � 1 and 0  ⇣  1, an algorithm A is a (�, TA, ⇣)-oracle for (P, f), where P ✓ RE
�0 is

convex and downward closed and f is concave, if given any concave function g of the form g = f � ` for some

coordinate-separable linear ` such that each `e is polynomially bounded, with an additional guarantee that

(5.20) max
x2P

g(x) �
1

poly(n)
,

it outputs an xg 2 � · P with g(xg) � ⇣ ·maxx2P g(x) in TA(n,m) = ⌦(m) time.

We defer the proof and discussion on modularization and explicit dependence on "�1 of the following
Lemma 5.1 to Section A for completeness. It is worth noting that the two stated runtimes below are obtained
by leveraging recently developed algorithms in certain components (specifically the computation of Gomory-Hu
trees) of [5].

Lemma 5.1. (adapted from [5]) For any " � e⌦(n�1/2), downward closed and convex P ✓ RE
�0, and concave

function f : RE
�0 ! R�1 such that maxx2P\MG f(x) � 1, given an (�, TA, ⇣)-oracle A for (P, f) where

P ·� < n, there are randomized eO
��
TA (n,m) +m"�1 + n"�9

�
· P�"�4

�
and bO

��
TA (n,m) +m"�1

�
· P�"�4

�

time algorithms that w.h.p. compute an xf 2 (� · P) \MG such that f(xf) � ⇣(1� ")maxx2P\MG f(x).

For instance, if we set P to be PG, then P = O(1) since for any x 2 PG we have

X

e2E[B]

xe 

P
v2B

P
e2Ev

xe

2


|B|

2
 2 ·

�
|B|

2

⌫

for all odd sets B 2 OG. As such, optimizing concave functions (specifically the entropy-regularized objective)
over the general matching polytope reduces to optimizing over PG, which may be substantially simpler to solve. In
Sections 5.1 and 5.2 we will develop two incomparable algorithms that both follow Lemma 5.1. These ultimately
assemble into the two runtimes of Theorem 3.3 in Section 5.3.

5.1 Almost-Linear Time Oracle via Convex Flow Algorithms Using the convex flow algorithm of [33],
we can indeed optimize any “e�ciently-computable” concave function over PG. We then use that result to obtain
an algorithm optimizing concave functions over the general matching polytope in Lemma 5.3, with the help of
Lemma 5.1. The algorithm of [33] requires as input self-concordant barriers on the domain {(x, y) : y > he(x)},
where he is the convex edge weight, that satisfy assumptions detailed in [33, Assumption 10.2] which ensures the
numbers encountered during the algorithm are quasi-polynomially bounded.

Lemma 5.2. ([33, Theorem 10.13] derandomized by [66]) Given m-edge graph G = (V,E), demands d 2
RV

, convex he : R ! R1, and ⌫-self-concordant barriers e(x, y) on the domain {(x, y) : y > he(x)} that

satisfy [33, Assumption 10.2], there is a deterministic m1+o(1)
time algorithm that computes a flow f 2 RE

with

B>

Gf = d such that

h(f)  min
B>

Gf⇤=d
h(f⇤) + exp(� logC m)

for any fixed constant C > 0, where h(f)
def
=
P

e2E he(fe).

The following is our main lemma in the section which turns the flow algorithm above into an algorithm for
optimizing concave functions over MG. For simplicity of the construction of barriers, we allow the functions fe
to be decomposed into eO(1) portions, each with its own barrier.

Copyright © 2025
Copyright for this paper is retained by authors

Lemma 5.3. Suppose we are given a graph G = (V,E), " � e⌦(n�1/2), and a coordinate-separable concave

function f : RE
�0 ! R�1 such that maxx2MG f(x) � 1, where the function on each edge is given as

fe(x)
def
= f (1)

e (x) + · · ·+ f (ke)
e (x) for some ke = eO(1), each equipped with a ⌫-self-concordant barrier (i)

e (x, y) on

the domain {(x, y) : y > �f (i)
e (x)} that satisfy [33, Assumption 10.2]. Then, there is a randomized bO(m"�5) time

algorithm that w.h.p. computes an x 2MG such that

f(x) � (1� ") max
x⇤2MG

f(x⇤).

Proof. By Lemma 5.1, to prove Lemma 5.3 it su�ces to provide a (1,m1+o(1), 1 � "/2)-oracle for (PG, f). We
achieve this by reducing the optimization problem over the relaxed matching polytope PG to a minimum cost
circulation19 problem as follows. Consider the following directed graph eG = (eV , eE) with eV def

= {vin : v 2 V }[{vout :
v 2 V } and

eE def
= {(vin, vout) : v 2 V } [{(uout, vin) : {u, v} 2 E} [{(vout, uin) : {u, v} 2 E}.

In other words, each vertex v is split into two copies vin and vout, and each edge {u, v} is directed from uout to
vin and from vout to uin. For each e = {u, v} in E, let e(1) and e(2) denote (uout, vin) 2 eE and (vout, uin) 2 eE
respectively. Let e(v) 2 eE for v 2 V be (vin, vout).

Let g
def
= f � ` be the coordinate-separable concave function that the oracle needs to optimize which we write

as g(x)
def
=
P

e2E ge(xe). We translate the concave edge weights ge’s on E to convex he’s on eE as follows. For
each e 2 E, let he(1) , he(2) : R! R1 be defined as

he(1)(x) = he(2)(x)
def
=
�ge(x)

2
+ �(x) =

�fe(x)

2
+
`e(x)

2
+ �(x),

where

�(x) =

(
0, if 0  x  1

1, otherwise

is a convex regularizer which enforces each edge having flow at most one. For each v 2 V , let he(v) : R! R1 be
defined as

he(v)(x)
def
= �(x).

Observe that we can translate between circulations in eG and relaxed fractional matchings in G as follows.

For a circulation f 2 R eE with h(f) < 1, by definition of the edge weights we may assume 0  fe  1 for

every e 2 eE. Setting xe
def
=

f
e(1)

+f
e(2)

2 for each edge e 2 E, we see that by concavity of ge that ge(xe) �

�he(1)(fe(1)) � he(2)(fe(2)). Conversely, for any relaxed fractional matching x 2 PG, let fe(1) = fe(2)
def
= xe and

fe(v)
def
= x(v). It can be easily checked that f is a circulation and has weight h(f) = �f(x). This shows that

the optimal values of these two problems are the same (up to negation). Consequently, if we get a �-additive-
approximate minimizing circulation f , then the corresponding relaxed fractional matching x would satisfy

g(x) � �h(f) � � min
B>

Gf⇤=0
h(f⇤)� � = max

x⇤2PG

g(x⇤)� �.

We will then choose � to be su�ciently small to make x a (1� "/2)-approximate maximizer of g in PG.
To apply the convex flow algorithm of Lemma 5.2 to minimize h(f), we need to provide self-concordant

barriers for the edge weights. Consider edges e(1), e(2) 2 eE for some e 2 E. The edge weights he(1) and he(2) can
be divided into ke+2 parts which we handle by splitting e(1) and e(2) further into paths of length ke+2 (recall that
ke the function fe is given to Lemma 5.3 as ke portions, each with its own barrier). Among the first ke parts, the i-

th of which has weight �f(i)
e (x)
2 which we use e (x, y) def

= (i)
e (x, 2y) as the barrier, where recall that (i)

e is the given

barrier to the i-th portion of edge e; the second last part has weight `e(x)
2 which we use e (x, y) def

= � log
⇣
y � `e(x)

2

⌘

19A circulation is a flow f such that routes the demand 0, i.e., B>
Gf = 0.

Copyright © 2025
Copyright for this paper is retained by authors

as the barrier; and the last part has weight �(x) which we use e (x, y) def
= x�↵+(1�x)�↵ for ↵

def
= 1

1000 logmU as the

barrier. The barrier � log
⇣
y � `e(x)

2

⌘
is the same barrier that [33, Theorem 10.16] used for linear functions (note

that `e is polynomially bounded); the barrier x�↵ +(1�x)�↵ is the same barrier that [33] used in their min-cost
flow algorithm to enforce capacity constraints. Both of the barriers were shown to satisfy the assumption in [33].
The barrier for �(x) is also used for edges e(v) 2 eE.

This gives us an exact reduction from maximizing concave weights over PG to finding a circulation minimizing
convex weights in a graph with eO(m) edges. Applying Lemma 5.2 with the constant C chosen in such a way that
exp(� logC m)  "/2 ·maxx2PG g(x) = ⇥(1/poly(n)) thus results in a (1,m1+o(1), 1�"/2)-oracle for (PG, f). The
theorem then follows from Lemma 5.1 with accuracy parameter "/2.

5.2 Near-Linear Time Reduction to Linear Optimization To remove the no(1) factors incurred by the
almost-linear time flow algorithm in Lemma 5.3, we can instead reduce concave function maximization over the
matching polytope directly to a capacity-constrained weighted matching problem at the cost of a larger "�1

factor in the running time. For c 2 [0, 1]E , let �c
def
= {0  xe  ce, 8 e 2 E} ✓ RE

�0 be the capacity-constrained

polytope. Let Mc
G

def
= MG \ �c and P

c
G

def
= PG \ �c.

Problem 5.1. In the capacity-constrained weighted matching problem, we are given a graph G = (V,E), an

accuracy " > 0, edge weights w 2 RE
�0, capacities c 2 [0, 1]E, all polynomially bounded. The goal is find an

x 2M
c
G such that

w>x � (1� ") max
x⇤2Mc

G

w>x⇤.

To solve Problem 5.1, we use the following constant-approximate algorithm to the “relaxed” capacitated
b-matching problem as an oracle and apply Lemma 5.1. Their algorithm works for multigraphs with integral
demands and capacities.

Lemma 5.4. ([5, Theorem 13]) Given an m-edge multigraph G = (V,E), edge weights w 2 RE
�0, demands

b 2 ZV
�0, capacities c 2 ZE

�0, all polynomially bounded entrywise, there is a deterministic eO(m) time algorithm

that obtains a 1/8-approximate maximizer to the following “relaxed” capacitated b-matching problem:

(5.21)

maximize w>x

subject to x(v)  bv, 8 v 2 V,
0  xe  ce, 8 e 2 E.

The criterion of b and c being integral in Lemma 5.4 can be relaxed via scaling.

Corollary 5.1. For polynomially bounded b 2 RV
�0 and c 2 RE

�0 there is an eO(m) time algorithm that obtains

a 1/16-approximate maximizer to (5.21).

Proof. Since b and c are polynomially bounded, we can scale them to integers by replacing each bv and ce with
bbv/bminc and bce/cminc, respectively. Observe that bbv/bminc � bv/(2bmin) and bce/cminc � ce/(2cmin), and
thus we only lose a factor of 2 in the approximation ratio from Lemma 5.4.

Using Corollary 5.1 as an oracle, Lemma 5.1 now implies the following algorithm for Problem 5.1.

Lemma 5.5. There is a randomized eO(m"�5 + n"�13) time algorithm for " � e⌦(n�1/2) that solves Problem 5.1

w.h.p.

Proof. Consider the function fw(x)
def
= w>x. By scaling w we may assume maxe2E wece � 1 and therefore

maxx2Pc
G\MG fw(x) � 1. By running Corollary 5.1 and returning the vector x it outputs by 16, we get a

(16, eO(m), 1)-oracle for (Pc
G, fw). Since M

c
G = P

c
G \MG, the lemma follows from Lemma 5.1.

Copyright © 2025
Copyright for this paper is retained by authors

Note that an immediate corollary of the above Lemma 5.5 is that we can solve the subproblem in [1] of
finding an approximate maximum matching obeying capacity and odd-set constraints in eO

�
m · poly("�1)

�
time.

However, we remark again this does not su�ce to make their framework run in eO
�
m · poly("�1)

�
completely, as

a dual variable to Problem 5.1 is still required to identify the set of critical edges along which the capacity is
increased.

We now present the reduction from maximizing convex objective to Problem 5.1 by approximating the
objective with piecewise linear functions, thereby e↵ectively splitting each edge into eO("�1) copies of di↵erent
capacities and weights. Similar approaches were used before, e.g., in [57].

Lemma 5.6. Given an n-vertex m-edge graph G = (V,E) and a coordinate-separable concave function f : RE
�0 !

R satisfying

(1) fe(x) is polynomially bounded for x � 1/poly(n),

(2) each fe can be evaluated in O(1) time, and

(3) z⇤e
def
= argmaxx2[0,1] fe(x) is given and satisfies z⇤e � 1/poly(n),

for any " � e⌦(n�1/2) there is a randomized eO(m"�6 + n"�13) time algorithm that computes an xf 2MG such

that w.h.p.,

f(xf) � (1� ") max
x2MG

f(x) .

Proof. Let us consider a fixed "0 = O(") that we will set later. For each edge e 2 E, let r(0)e
def
= z⇤e and

r(i)e
def
= r(i�1)

e /(1 + "0) for i 2 {1, . . . , k}, where k
def
=
l
log1+"0

n2

"0

m
= eO("�1). Let r(k+1)

e
def
= 0. Splitting each edge e

into k + 1 copies e(0), e(1), . . . , e(k), we get a graph G0 = (V,E0) with m0 = eO(m"�1) edges. Define c0 2 RE0
and

w0
2 RE0

with c0
e(i)

def
= r(i)e � r(i+1)

e and w0

e(i)
def
= fe(r

(i)
e)�fe(r

(i+1)
e)

c0
e(i)

for each e 2 E and i 2 {0, . . . , k}. Note that ce(i)

and we(i) are both polynomially bounded by (1) and (3). Recall that Mc0

G0 is the capacity-constrained matching
polytope of G0. We show the following two claims.

Claim 5.1. For any x0
2 M

c0

G0 , the vector x 2 RE
�0 given by xe

def
= x0

e(0)
+ · · · + x0

e(k) satisfies x 2 MG and

f(x) � w0>x0
.

Proof. That x 2MG is immediate from x0
2M

c0

G0 . Let

efe(x)
def
=

Z x

0
ewe(y) dy, where ewe(y)

def
= w0

e(i) for r
(i+1)

 y < r(i)

be the piecewise linearized version of fe. By concavity of fe, it holds that efe(x)  fe(x) for all x 2 [0, z⇤e]. We
have

f(x) �
X

e2E

efe(xe) =
X

e2E

X

0ik

w0

e(i) ·min
n
c0e(i) ,max

n
0,xe � r(i+1)

e

oo
� w0>x0,

where the last inequality uses the fact that w0

e(k) � w0

e(k�1) � · · · � w0

e(0)
by concavity of fe so it is always better

to saturate e(i) before putting mass on e(i�1).

Claim 5.2. For any x 2MG, there exists an x0
2M

c0

G0 with w0>x0
� (1� 2"0)f(x).

Proof. Let ex 2 RE0

�0 by defined as

exe(i)
def
=

(
min

n
c0
e(i)

,max
n
0,xe � r(i+1)

e

oo
, if i < k,

c0
e(k) , if i = k.

Copyright © 2025
Copyright for this paper is retained by authors

Observe that exe(k)  "0/n2 for every e 2 E by definition. As such we have exe(0) + · · ·+ exe(k)  xe + "0/n2, which

implies ex 2 (1+"0)Mc0

G0 given x 2MG. Letting 0  te  k be the smallest integer such that r(te)e  max{xe, c0e(k)},
we also have

w0>ex �
X

e2E

kX

i=te

w0

e(i)c
0

e(i)
(i)
=

X

e2E\F

fe(r
(te)
e)

(ii)
�

1

1 + "0

X

e2E

fe(xe) � (1� "0)f(x),

where (i) is by definition of w0 and c0, and (ii) uses the fact that r(te)e � xe/(1 + "0) by definition and concavity

of fe. Therefore, the vector x0 def
= ex/(1 + "0) satisfies x0

2M
c0

G and w0>x0
� (1� 2"0)f(x).

Going back to the proof of Lemma 5.6, with "0
def
= "/4, we run Lemma 5.5 on the split graph G0 with edge

weights w0 and capacities c0 to accuracy 1 � "0 in time eO
�
m0"�5 + n"�13

�
= eO

�
m"�6 + n"�13

�
, obtaining an

x0
2M

c0

G0 . Letting x 2MG be derived from x0 as in Claim 5.1, it follows that

f(x) � w0>x0
� (1� "0) max

x002Mc0
G0

w0>x00
� (1� "0)(1� 2"0) max

x⇤2MG

f(x⇤) � (1� ") max
x⇤2MG

f(x⇤),

where we used Claim 5.2. This concludes the proof.

5.3 Putting Everything Together We can now prove Theorem 3.3 by combining Lemmas 5.3 and 5.6.

Proof of Theorem 3.3. Let fe(x)
def
= wex + µ ·wex log

�
wex

so that the entropy-regularized matching objective is

a coordinate-separable concave function f(x)
def
=
P

e2E fe(xe).

The runtime of eO(m"�6 + n"�13) follows from Lemma 5.6, since the function f satisfies (1) wex  fe(x) 
we + µwe log(�/we) is polynomially bounded for x � 1/poly(n), (2) each fe can be evaluated in O(1) time, and
(3) z⇤e = 1 since µ  1.

For the runtime of bO(m"�5), we use Lemma 5.3, in which each fe(x) is decomposed into f (1)
e (x) + f (2)

e (x),

where f (1)
e (x)

def
= (we + µwe log �))x is linear and f (2)

e (x)
def
= �µ ·wex logwex. We use the barriers (1)

e (x, y)
def
=

� log(y + (we + µwe log �)x) for {(x, y) : y � �f
(1)
e (x)} and (2)

e (x, y)
def
= � log(wex)� log (y/µ�wex log(wex))

for {(x, y) : y � �f (2)
e (x)}. The barrier (1)

e is the same as the one used in [33, Theorem 10.16] for linear functions,
and (2) is the same barrier that [33, Theorem 10.16] used for the entropy term. Both of the barriers were shown
to satisfy [33, Assumption 10.2] as long as the coe�cients are polynomially bounded (note that we apply an a�ne

substitution for (2)
e which preserves self-concordance [59, Proposition 3.1.1]).

6 Dynamic Rounding Algorithms

In Sections 4 and 5 we have shown how to solve the decremental fractional matching problem with eO(poly("�1))
amortized update time and eO(m · poly("�1)) recourse. Here we further show how to obtain an integral matching
from the fractional one with dynamic rounding algorithms whose definition is recalled below.

Definition 3.1. (Dynamic Rounding Algorithm) A dynamic rounding algorithm, for a given n-vertex
graph G = (V,E), edge weights w 2 NE

bounded by W = poly(n), and accuracy parameter " > 0, initializes

with an x 2MG and must maintain an integral matching M ✓ supp(x) with w(M) � (1 � ")w>x under entry

updates to x that guarantee x 2MG after each operation.

Note that although the previous sections of our paper focus on the decremental setting, the rounding algorithm
as defined in Definition 3.1 and given below in Theorem 3.5 is fully dynamic. In other words, it works under
arbitrary updates to the fractional matching x, irrespective of how the underlying fractional algorithm maintains
x. Our rounding algorithms are obtained by maintaining a sparse subgraph in which the maximum weight
matching is approximately preserved.

Definition 6.1. For a fractional matching x 2 MG, a subgraph H ✓ supp(x) is an s-sparse "-sparsifier for

s
def
= s(n,m, ") of G if |H|  s · kxk1 and M⇤

w(H) � (1 � ")w>x. We call a fractional matching x(H)
2MH a

certificate of H if w>x(H)
� (1� ")w>x.

Copyright © 2025
Copyright for this paper is retained by authors

Following standard techniques of periodic recomputation, if we can maintain an eO(poly("�1))-sparse O(")-
sparsifier under updates to x, then this gives the desired fully-dynamic rounding algorithm using the below static
algorithm of [35].

Proposition 6.1. ([35]) There is an eO(m"�1) time algorithm that given an m-edge graph G = (V,E) weighted
by w 2 RE

�0 computes a matching M ✓ E such that

w(M) � (1� ") · max
matching M 0✓E

w(M 0).

The notion of sparsifier maintenance is formalized as follows.

Definition 6.2. An algorithm S is an (s, Tinit, Tupdate, Toutput)-sparsifier-maintainer if given a fractional matching

x and parameter " > 0, it initializes in Tinit(n,m, ") time, processes each entry update to x in Tupdate(n,m, ")
amortized time, and outputs an s-sparse "-sparsifier H of the current x in Toutput(n,m, ") · |H| time.

Lemma 6.1. (rounding via sparsification) Given an (s, Tinit, Tupdate, Toutput)-sparsifier-maintainer S, there is

a dynamic rounding algorithm that initializes in eO
�
m · "�1 + Tinit(n,m, "/4)

�
time and maintains an integral

matching M ✓ supp(x) with w(M) � (1� ")w>x in amortized

eO
✓
Tupdate(n,m, "/4) + s(n,m, "/4) ·W ·

✓
Toutput(n,m, "/4)

"
+

1

"2

◆◆

time per update to x. The dynamic rounding algorithm has the same properties as S does in terms of being

deterministic/randomized and being fully/output-adaptive.

Proof. Let M be an initial
�
1� "

2

�
-approximate maximum weight matching over supp(x) obtained by the static

algorithm of [35]. We initialize S and feed every update to x to it to maintain an "/4-sparsifier H of x in
Tupdate(n,m, "/4) time per update. If xe is set to zero for some e 2 M , we remove e from M . Every time
w(M) < (1� ")w>x, we query S to get an s(n,m, "/4)-sparse "/4-sparsifier H and re-compute M as a

�
1� "

4

�
-

approximate matching of H, again using [35]. This step takes time

eO
�
Toutput(n,m, "/4) · s(n,m, "/4) · kxk1 + s(n,m, "/4) · kxk1 · "

�1
�
.

By definition of an "/4-sparsifier, we have w(M) �
�
1� "

4

� �
1� "

4

�
w>x �

�
1� "

2

�
w>x. The re-computation

happens at most once every "
2W ·w>x � "

2W ·kxk1 updates, as we need that many updates to either decreasew(M)
by "

2 ·w
>x or increase the value of the maximum weight matching size by "

2 ·w
>x, so the time of re-computation

amortizes to eO
⇣
s(n,m, "/4) ·W ·

⇣
Toutput(n,m,"/4)

" + 1
"2

⌘⌘
time per update. Combined with the update time of S,

the lemma follows.

In Section 6.1 we design a determinstic (eO("�2), eO(m), eO(W"�1), O(1))-sparsifier-maintainer in Lemma 6.7.
This together with Lemma 6.1 proves the following theorem.

Theorem 6.1. There is a deterministic dynamic rounding algorithm for general graphs with amortized update

time eO(W"�4).

In Section 6.3 we further obtain a rounding algorithm specifically for Theorem 3.4, proving the following.

Theorem 6.2. (informal, see Theorem 3.6) We can round the entropy-regularized matching maintained in

Theorem 3.4 in eO((n2/m) · "�6) additional amortized time per update.

We emphasize that while Theorem 6.2 has a near-optimal dependence on W , it is not a generic dynamic
rounding algorithm as defined in Definition 3.1. See Section 3.4 for a more detailed exposition on this. We
leave obtaining a generic, fully-dynamic weighted rounding algorithm that has polylogarithmic or even better
dependence on W as an important open question. No such algorithms are known even for bipartite graphs.

Copyright © 2025
Copyright for this paper is retained by authors

6.1 Deterministic Sparsifier To obtain a deterministic sparsifier, we employ the “bit-by-bit” rounding
approach of [29] that iteratively sparsifies the support of x while maintaining the degree value of each vertex. For
bipartite graphs, [29] showed that using this approach, we can directly round to an integral matching without
resorting to periodic re-computation, e.g., as in Lemma 6.1. However, it is unclear how to extend this approach to
general graphs due to odd-set constraints. Our key observation here is that, nevertheless, if we stop the bit-by-bit
rounding process earlier, we still get a sparsifier on which we can then perform periodic re-computation.

Lemma 6.2. For any " > 0, given a fractional matching x 2 MG and a vector ex 2 RE
�0 such that (1)

supp(ex) ✓ supp(x), (2) w>ex � (1� "/2)w>x, (3) ex(v)  x(v) + "/4 for all v 2 V , and (4) |xe � exe| 
"2

144 for

all e 2 E(G), we can conclude that H
def
= supp(ex) is an "-sparsifier of x and it has a certificate x(H)

satisfying

x(H)
e = ⇥(exe) for all e 2 E.

Proof. Let "0
def
= "/4 and let x0 def

= ex
1+"0 whose support is supp(x0) = supp(ex) = H ✓ supp(x). We

have x0(v) = ex(v)
1+"0  1 for each v 2 V . For each odd set B 2 OG of size |B|  3/"0, it follows from

|xe � exe| 
"02

9 that |x(B)� ex(B)|  "0

3 |B|. As such, we have x0(B) = ex(B)
1+"0 

x(B)+"0|B|/3
1+"0  b|B|/2c.

Therefore by Fact 2.1 we have x(H) def
= x0

1+"0 satisfies x(H)
2 MG and this fractional matching has weight

w>x(H)
� (1 � "/2)(1 � "0)2w>x � (1 � ")w>x. This shows that H is indeed an "-sparsifier of x. That

x(H)
e = ⇥(exe) is obvious from definition of x(H).

The pipage-rounding algorithm of [29] is based on the following degree-split algorithm for dividing a graph
into a collection of cycles and paths.

Proposition 6.2. ([29, Proposition 2.4]) There exists an algorithm degree-split, which on multigraph

G = (V,E) with maximum edge multiplicity at most two (i.e., no edge has more than two copies) computes

in O(|E|) time two (simple) edge-sets E(1)
and E(2)

of two disjoint sub-graphs of G, such that E(1)
, E(2)

and the

degrees dG(v) and d(i)(v) of v in G and H(i) def
= (V,E(i)) satisfy:

(1)
��E(1)

�� =
l
|E|

2

m
and

��E(2)
�� =

j
|E|

2

k
and

(2) d(i)(v) 2
h
dG(v)

2 � 1, dG(v)
2 + 1

i
for all v 2 V .

The rounding algorithm of [29] works in a bit-by-bit fashion, and thus for x 2 [0, 1]E we encode each entry
xe as a binary string xe =

P
i(xe)i · 2�i. The following observation suggests that it is without loss of optimality

to focus only on the first eO("�1) bits of this encoding.

Observation 6.1. (similar to [29, Observation 2.2]) For an x 2 MG with w>x � 1 and accuracy

parameter " > 0, the matching x0
obtained from x by zeroing out edges e with xe < "

2n2W and setting (x0
e)i = 0

for all e 2 E and i > L for L
def
= 1 +

l
log 2n2W

"

m
satisfies w>x0

� (1� ")w>x.

Proof. Direct calculation shows

w>x0
� w>x�W ·

 ✓
n

2

◆
·

"

2n2W
+
X

e2E

X

i>L

2�i

!
� w>x� " � (1� ")w>x.

Our algorithm for deterministically maintaining a dynamic sparsifier is Algorithm 4, which is almost identical
to [29, Algorithm 2] except that we only run it until level Lmin instead of 0 (modulo rather straightforward changes
needed for generalization to the weighted case). Stopping the algorithm early disallows us from having the same
“straight-to-integral” property as [29, Algorithm 2] does but enables rounding in general graphs.

For simplicity of analysis, we depart from [29] in the implementation of Rebuild(i) in that we are using a
tail-recursion style implementation while they use a loop from j = i to Lmin + 1. These two implementations are
equivalent, and we choose the current one to emphasize that a call to Rebuild(i) causes a Rebuild(i� 1).

Copyright © 2025
Copyright for this paper is retained by authors

Algorithm 4: DetSparsifier

global: edge weights w 2 NE and accuracy parameter " 2 (0, 1).
global: fractional matching x 2MG.
global: maximum and minimum level Lmax, Lmin 2 N.
global: edge sets Ei ✓ suppi(x) and Fi ✓ Ei for i 2 {Lmin + 1, . . . , Lmax}.
global: counters ci 2 N for i 2 {Lmin + 1, . . . , Lmax}.

1 function Initialize(G = (V,E,w),x 2MG such that (xe)i = 0 for all i > L, " 2 (0, 1))
2 Save w, ", and x as global variables.

3 Set Lmin
⌃
log 2000L

"2

⌥
and Lmax L.

4 Call Rebuild(Lmax).

5 function Rebuild(i)
6 if i  Lmin then return.
7 Ei suppi(x) and ci 0.

8 Let (E(1), E(2)) degree-split(G[Ei [Fi]).

9 Set Fi�1 to be the E(b) for b 2 {1, 2} with larger weight, i.e., the one that satisfies

w(E(b)) � w(E(3�b)).
10 Call Rebuild(i� 1).

11 function Update(e, ⌫ such that (⌫)i = 0 for all i > Lmax)

12 xe ⌫.
13 for i = Lmax, Lmax � 1, . . . , Lmin + 1 do

14 if e 2 Ei then remove e from Ei.
15 if e 2 Fi�1 then remove e from Fi�1.
16 else remove one edge adjacent to each endpoint of e from Fi�1 (if there is one).
17 ci ci + 1.

18 if ci > 2i�2
·

"·w>x
Lmax·W

then call Rebuild(i) and return.

19 function Output()

20 return H
def
= supp0(x) [· · · [suppLmin

(x) [FLmin as the sparsifier.

Notation from [29]. For x 2MG, let suppi(x) be the set of edges e whose xe has its i-th bit set to one,

i.e., suppi(x)
def
= {e 2 E : (xe)i = 1}. Let Fi(v) and Si(v) be the number of edges in Fi and suppi(x) incident to

v respectively. Let Fi(e)
def
= Je 2 FiK and Ei(e)

def
= Je 2 EiK. Let x(i)

2 RE
�0 be given by

(6.22) x(i)
e

def
= Fi(e) · 2

�i +
LminX

j=0

Sj(e) · 2
�j +

iX

j=Lmin+1

Ej(e) · 2
�j .

for Lmin  i  Lmax.

Lemma 6.3. (similar to [29, Lemma 3.8]) If x 2MG holds for each update, then x(i)(v)  x(v)+ "/2 for all

Lmin  i  Lmax holds after each update.

Proof. We adopt a similar proof strategy except that the degree-split subroutine can only give us a weaker
guarantee in non-bipartite graphs. By backward induction from i = Lmax to Lmin � 1 we show that

(6.23) Fi(v) 

0

@2i ·
LmaxX

j=i+1

Sj(v) · 2
�j

1

A+ Lmax � i.

The base case when i = Lmax is trivial as the left-hand side is 0 and the right-hand side is non-negative. Now
consider an i < Lmax and suppose first that a Rebuild(i + 1) happened right before the current moment. Then

Copyright © 2025
Copyright for this paper is retained by authors

Ei+1 is set to Si+1 and we have

Fi(v)
(i)


Si+1(v) + Fi+1(v)

2
+ 1

(ii)


1

2

0

@Si+1(v) +

0

@2i+1
·

LmaxX

j=i+2

Sj(v) · 2
�j

1

A

1

A+ Lmax � (i+ 1) + 1



0

@2i ·
LmaxX

j=i+1

Sj(v) · 2
�j

1

A+ Lmax � i,

where (i) is by Property (2) and (ii) is by the inductive hypothesis. On the other hand, if the Update(e, ⌫)
operation did not cause a Rebuild(i + 1), then the right-hand side might decrease by at most one as an edge
incident to v is removed. If e 2 Fi, then the left-hand side was also decreased by one so the inequality holds. If
e 62 Fi, then we still decrease the left-hand side by one via removing an edge in Fi adjacent to v unless it is empty,
for which the left-hand side was already 0 so the inequality holds again. Observe that by definition

x(v) =
LmaxX

j=0

Sj(v) · 2
�j ,

and therefore

x(i)(v)� x(v) = Fi(v) · 2
�i
�

0

@
LmaxX

j=Lmin+1

Sj(v) · 2
�j
�

iX

j=Lmin+1

Ej(v) · 2
�j

1

A

(i)
 Lmax · 2

�i
�

0

@
iX

j=Lmin+1

Sj(v) · 2
�j
�

iX

j=Lmin+1

Ej(v) · 2
�j

1

A

 "/2,

where (i) uses (6.23) and that Sj(v) � Ej(v) for all j since Ej ✓ suppj(x) and (ii) is by our choice of Lmin and
Lmax.

Let ex def
= x(Lmin). In particular Lemma 6.3 shows that ex(v)  x(v) + "/2 for all v 2 V . Also observe that ex

is a vector supported on H, the sparsifier outputted by Algorithm 4. The following helper lemmas analogous to
ones in [29] can be shown, and to avoid repeating their arguments we defer the formal proofs to Section B.

Lemma 6.4. (analogous to [29, Lemma 3.10]) supp(x(i)) ✓ supp(x) holds for each Lmin  i  Lmax after

each operation.

Lemma 6.5. (analogous to [29, Lemma 3.11]) w>ex � (1� ")w>x holds after each operation.
20

Lemma 6.6. (analogous to [29, Lemma 3.13]) The amortized time per Update(e, ⌫) of Algorithm 4 is O(W ·

"�1
· L2

max).

Using these helper lemmas we show that Algorithm 4 maintains a deterministic sparsifier.

Lemma 6.7. There is a deterministic (eO("�2), eO(m), eO(W"�1), O(1))-sparsifier-maintainer.

Proof. By preprocessing the input fractional matching x to a x0 with large-enough entries and low bit-complexity
as in Observation 6.1 with accuracy parameter "/2, we may run Algorithm 4 on x0 with accuracy parameter

"/2 and L
def
= 1 +

l
log 4n2W

"

m
. The initialization, update, and output time of Algorithm 4 follow from

definition and Lemma 6.6. Observe that since the rounding algorithm is only run until level Lmin, we have

|x0
e�exe|  2�Lmin+1


("/2)2

144 for all e 2 E. By Lemma 6.4 we also have supp(ex) ✓ supp(x0) ✓ supp(x). Therefore,
together with Lemmas 6.3 and 6.5, Lemma 6.2 applies and the H = supp (ex) returned by Algorithm 4 is an "/2-

sparsifier of x0 with certificate x(H), hence an "-sparsifier of x. Finally, as x(H)
e = ⇥(exe) � ⌦(2�Lmin) = e⌦("2),

H is eO("�2)-sparse.

20Unlike [29], we assume the input matching x is already preprocessed by Observation 6.1, and thus the bound stated here is (1�")
instead of (1� 2").

Copyright © 2025
Copyright for this paper is retained by authors

6.2 Randomized Degree Sparsifier Toward getting the near-optimal weighted rounding algorithm for
decremental dense graphs, in this section we consider the following notion of degree sparsifiers. We remark
that Property (1) below in fact is not used later in Section 6.3. Nevertheless, we choose to include it to make
degree-sparsifier a stronger notion than the sparsifier in previous sections on unweighted graphs.21 This, as we will
demonstrate later, also shows that the simple and standard sampling approach previously studied for bipartite
graphs can also be used for rounding in general graphs.

Definition 6.3. (Degree Sparsifiers) For a fractional matching x 2 MG, a subgraph H ✓ supp(x) is an

s-sparse "-degree-sparsifier for s
def
= s(n,m, ") of G if |H|  s · kxk1 and there exists a fractional matching

x(H)
2MG supported on H, which is similarly called a certificate of H, such that

(1)
��x(H)

��
1
� (1� ")kxk1.

(2) x(H)(v) � x(v)� " for all v 2 V .

(3) x(H)(B) � x(B)� "
3 · |B| � x(B)� " · b|B|/2c for all odd sets B 2 OG.

Given x 2MG, our randomized degree sparsifier H is obtained from a simple sampling scheme that includes
each edge e into H independently with probability

(6.24) pe
def
= min

✓
1,

xe

�

◆
where �

def
=

"2

320 · d · lnn
,

where d
def
= max{c, 1} for c > 0 a given constant to Lemma 6.8 below.

Lemma 6.8. (Degree Sparsification) For any fractional matching x 2 MG with kxk1 � 1 and constant

c > 0, the random subgraph H obtained by sampling each edge e independently with probability pe defined in

(6.24), is an eO("�2)-sparse "-degree-sparsifier with probability at least 1� n�c
.

To prove Lemma 6.8, we will use the following version of the Cherno↵ bound to show concentration on all
the constraints.

Proposition 6.3. (Chernoff Bound) Given m independent random variables X1, . . . , Xm in [0, b], for X =Pm
i=1 Xi and any � > 0 it holds that

Pr (|X � E[X]| > � · E[X])  2 exp

✓
��2 · E[X]

(2 + �)b

◆
.

Let x0
2 RE be a random vector conditioned and supported on H defined by

x0

e
def
=

8
><

>:

xe, if xe � �,

�, if xe < � and e 2 H,

0, if xe < � and e 2 E \H.

Equivalently, for xe < �, x0
e is a random variable that takes value � with probability pe = xe/� and 0 with

probability 1 � pe. Therefore, x0 is an unbiased estimator of x. Let F
def
= {e 2 E : xe < �}. We prove the

following claims about x0.

Claim 6.1. With probability at least 1� 2 · n�20d
, we have |x0(v)� x(v)|  "

2 .

21One can fairly directly extend Property (1) to be weighted, i.e., w>x(H) � (1� ")w>x, at the cost of an O(W) blow-up in the
sparsity.

Copyright © 2025
Copyright for this paper is retained by authors

Proof. By definition, |x0(v)� x(v)| =
���
��x0

Fv

��
1
� kxFvk1

���, and thus it su�ces to bound the right-hand side. Using

the Cherno↵ bound with �
def
= "

2kxFvk1
, we have

Pr
⇣����x0

Fv

��
1
� kxFvk1

�� > "

2

⌘
 2 exp

0

B@
�

⇣
"

2kxFvk1

⌘2
· kxFvk1⇣

2 + "
2kxFvk1

⌘
"2

320·d·lnn

1

CA  2 exp (�20d lnn)  2 · n�20d

using that xFv  1.

Claim 6.2. With probability at least 1� 2 · n�2d|B|
, we have |x0(B)� x(B)|  " · |B|

12 .

Proof. Again |x0(B)� x(B)| =
���
���x0

F [B]

����
��xF [B]

��
��� and therefore we will bound the right-hand side. We set

�
def
= |B|"

12kxF [B]k1
and apply the Cherno↵ bound, giving

Pr

✓���
���x0

F [B]

���
1
�
��xF [B]

��
1

��� >
|B|

12
· "

◆
 2 exp

0

BBB@

�

✓
|B|"

12kxF [B]k1

◆2

·
��xF [B]

��
1

✓
2 + |B|"

12kxF [B]k1

◆
"2

320·d·lnn

1

CCCA

 2 exp

�26d lnn|B|

2

24
��xF [B]

��
1
+ |B|"

!
.

Since
��xF [B]

��
1


|B|

2 , we get

Pr

✓���
���x0

F [B]

���
1
�
��xF [B]

��
1

��� >
|B|

12
· "

◆
 2n�2d|B|.

Claim 6.3. With probability at least 1� 2 · n�32d
, we have

�
1� "

2

�
kxk1  kx

0
k1 

�
1 + "

2

�
kxk1.

Proof. An application of the Cherno↵ bound shows that

Pr
⇣
|kx0
k1 � kxk1| >

"

2
kxk1

⌘
= Pr

⇣
|kx0

F k1 � kxF k1| >
"

2
kxk1

⌘

 2 exp

0

B@
�

⇣
"·kxk1
2·kxF k1

⌘2
· kxF k1⇣

2 +
"·kxk1
2·kxF k1

⌘
"2

320·d·lnn

1

CA

 2 exp (�32kxk1 lnn)  2n�32

using that kxF k1  kxk1 and kxk1 � 1.

Proof. [Proof of Lemma 6.8] Take x(H) def
= x0

1+"/2 as the fractional matching over H. By union bounds over

Claims 6.1 to 6.3 (note that there are at most nk odd sets of size k), with probability 1 � n�d
� 1 � n�c

we have x(H)(v) = x0(v)
1+"/2  1 for all v 2 V , x(H)(B) = x0(B)

1+"/2  b|B|/2c for all B 2 OG, and

(1 � ") · kxk1 
��x(H)

��
1
 (1 + ") · kxk1. This implies x(H)

2 MG and shows Property (1). Claim 6.1

also implies that x(H)(v) = x0(v)
1+"/2 � x(v) � " which establishes Property (2). Similarly, Claim 6.2 implies that

x(H)(B) = x0(B)
1+"/2 � x(B)� "

3 · |B| which establishes Property (3). For the sparsity of H, note that x(H)
e � ⌦("2)

and by
��x(H)

��
1
 O(kxk1) we have |H|  eO("�2) · kxk1. Finally, H ✓ supp(x) is apparent by definition. This

concludes the proof.

Copyright © 2025
Copyright for this paper is retained by authors

Combining the above sampling scheme with the dynamic set sampler of [29], we get the following algorithm
for maintaining a degree sparsifier.

Lemma 6.9. ([29, Theorem 5.2]) There is an output-adaptive data structure that, given p 2 [0, 1]d with the

guarantee that mini2[d]:pi 6=0 pi � 1/poly(n) for each update, initializes in O(d) time and supports (1) updating

an entry pi in O(1) time and (2) sampling a set T ✓ [d] in O(1 + |T |) time such that each i 2 [d] is included

independently with probability pi.

Lemma 6.10. There is a randomized output-adaptive (eO("�2), O(m), O(1), O(1))-degree-sparsifier-maintainer for

any " � 1/poly(n) that succeeds w.h.p.

Proof. For a given " > 0, let "0
def
= "/2. We can preprocess the matching x to be x0 by zeroing out edges with

xe <
"0

2n2 . By Observation 6.1, we have kx0
k1 � (1�"0)kxk. Moreover, |x0(v)�x(v)|  "0 and |x0(B)�x(B)|  "0

hold for all v 2 V and B 2 OG. Now we can simply run the dynamic sampler of Lemma 6.9, with pe being the
probability defined in (6.24) with accuracy parameter "0 and constant c > 0 chosen to make Lemma 6.10 succeed
w.h.p. Note that as x0

e �
"0

2n2 � 1/poly(n) for all e with non-zero x0
e, pe’s are polynomially bounded and thus the

runtime of Lemma 6.9 holds. Every time there is an update to xe, we interpret that as an update to x0
e (by again

zeroing out the coordinate if xe < "0

2n2), and hence to pe, and feed it to the dynamic sampler. Every time we
are asked to output a sparsifier, we use the dynamic sampler to sample each edge independently with probability
pe, obtaining a subgraph H, in time O(1 + |H|). By Lemma 6.8, H is an eO("�2)-sparse "0-degree-sparsifier
for x0 w.h.p. This implies that H is an "-degree-sparsifier for x as well. Thus, we have Tinit(n,m, ") = O(m),
Tupdate(n,m, ") = O(1), and Toutput(n,m, ") = O(1). The algorithm works against an output-adaptive adversary
as Lemma 6.9 does.

As alluded to at the beginning of the section, by including Property (1) into the definition, we get the
following immediate corollary. This can straightforwardly be generalized to the weighted setting by imposing a
linear dependence on W , but we omit this part since it is irrelevant to this paper.

Corollary 6.1. For " � 1/poly(n) there is a randomized output-adaptive (eO("�2), O(m), O(1), O(1))-sparsifier-
maintainer for unweighted graphs that succeeds w.h.p.

6.3 Weighted Rounding for Entropy-Regularized Matching While the rounding algorithms presented
previously work with weights, their dependence on W is polynomial, which in general might incur a poly(n) or
"�O(1/") runtime overhead. As such, here we further leverage the primal-dual properties of entropy-regularized
matchings and provide a weighted rounding algorithm in the decremental setting that has near-optimal update
time in dense graphs, proving Part (II) of Theorem 3.4. Before diving into the technical calculations that form
the rest of the sections, we first give a short and intuitive explanation of this weighted rounding algorithm. It
leverages the following properties.

(1) For any fractional matching xe, deleting edges e with xe = O("/n) does not a↵ect the weight of x by more
than an O(") factor.

(2) For the entropy-regularized fractional matching, a degree-sparsifier obtained from the unweighted rounding
algorithm keeps most of its weight.

As such, (1) ensures that we can only consider edges with xe � ⌦("/n). This implies that any deletion to the
integral matching that we maintain will also delete a comparable portion from the underlying fractional matching,
which bounds the number of rebuilds of the integral matchings. Rounding with nearly optimal dependence on W
is then made possible by (2).

With this intuition we now proceed to the proofs. Let G = (V,E) be the input graph to the decremental
matching problem with edge weights w 2 NE . In the remainder of this section we consider a fixed set of input
G(t) = (V,E(t)), µ, and � to Problem 3.3, where E(t)

✓ E is the edge set in Algorithm 1 for the t-th rebuild.

Fixing t, we let x⇤ def
= xµ

E(t),�
2 MG(t) be the unique optimal entropy-regularized fractional matching. Note

that we adopt the notations from Section 4 for the special case of X
def
= MG, and thus the subscripts of certain

notations are changed to E from S. For instance, Zµ
E(t),�

denotes the optimal value of the entropy-regularized

matching problem on G(t) with parameters µ and �.

Copyright © 2025
Copyright for this paper is retained by authors

Lemma 6.11. There exists a pair of dual solutions (y, z) 2 RV
⇥ ROG such that for every edge e 2 E(t)

it holds

that

x⇤

e = 2
1
µ�1� se

µ·we
+log �

we ,

where se
def
= yu + yv +

P
B◆{u,v} zB for e = {u, v}. Further, the optimal objective value Zµ

E(t),�
satisfies

Zµ
E(t),�

= µ ·

X

e2E(t)

wex
⇤

e +
X

v2V

yv +
X

B2OG

zB ·

�
|B|

2

⌫
.

Proof. Denote

L(x,y, z, r)
def
= fµ

E(t),�
(x) +

X

v2V

yv

0

@1�
X

e2E(t)
v

xe

1

A+
X

B2OG

zB

0

@
�
|B|

2

⌫
�

X

e2E(t)[B]

xe

1

A+
X

e2E(t)

rexe

as the Lagrangian of Problem 3.3 (see (2.2) for the definition of MG). Strong duality of Problem 3.3 (by Slater’s
condition) implies that

Zµ
E(t),�

= fµ
E(t),�

(x⇤) = max
x

min
y,z,r�0

L(x,y, z, r) = min
y,z,r�0

max
x

L(x,y, z, r).

Suppose (y, z, r) is the minimizer of the dual problem. From the stationarity of the KKT condition, the
corresponding optimal primal solution x⇤ satisfies that

(6.25) x⇤

e = 2
1
µ�1� se

µ·we
+ re

µ·we
+log �

we

for every edge e 2 E(t). From the complementary slackness of the KKT condition, we know rex⇤
e = 0 for every

e 2 E(t). Since x⇤ > 0 from (6.25), we have r = 0, and therefore

x⇤

e = 2
1
µ�1� se

µ·we
+log �

we .

Further, by plugging in (x⇤,y, z, r) to L and expanding the formula, we can see that the optimal objective value
can be written as

Zµ
E(t),�

= L(x⇤,y, z, r) = µ ·

X

e2E(t)

wex
⇤

e +
X

v2V

yv +
X

B2OG

zB ·

�
|B|

2

⌫
.

An immediate corollary of Lemma 6.11 that will be used throughout is the following.

Corollary 6.2. It holds that

Zµ
E(t),�

�

X

v2V

yv +
X

B2OG

zB ·

�
|B|

2

⌫
.

For " > 0 and x 2 RE(t)

�0 , let E(t)
" (x)

def
=
�
e 2 E(t)

| xe �
"
3n

. Recall from Table 1 that ⌫⇤

E(t)

def
=

maxx2M
G(t)

w>

E(t)x which satisfies ⌫⇤
E(t)  nW .

Lemma 6.12. For " > 0, ⌫⇤
E(t)  �  m·⌫⇤

E(t) , and µ  "
8 log(n4W/") , the optimal dual solution (y, z) approximately

covers all edge weights, i.e., for every e 2 E(t)
it holds that se � (1 � "/8)we. Moreover, the covering is almost

tight on the subgraph E(t)
" (x), i.e., se  (1 + "/8)we holds for every e 2 E(t)

" (x).

Proof. From Problem 3.3 and the choice of �, we have maxe2E(t) we  ⌫⇤E(t)  �  m · ⌫⇤
E(t)  n3W . Lemma 6.11

shows that
x⇤

e = 2
1
µ�1� se

µ·we
+log �

we .

Copyright © 2025
Copyright for this paper is retained by authors

Since the optimal primal solution is feasible, we have x⇤
e  1, implying

se � (1� µ)we + µwe log
�

we
�

⇣
1�

"

8

⌘
we

for all e 2 E(t) because � � we and µ  "/8. Similarly, for all e 2 E(t)
" (x), we have

se 
⇣
1� µ+ µ log

⇣ n

3"

⌘⌘
we + µwe log

�

we


⇣
1 +

"

8

⌘
we,

since �  n3W and µ  "
8 log(n4W/") .

We argue that E(t)(",x) for any fractional matching x 2MG(t) keeps most of the weight of x.

Lemma 6.13. For any fractional matching x 2 MG(t) , accuracy parameter " > 0, ⌫⇤
E(t)  �  m · ⌫⇤

E(t) , and

µ  "
8 log(n4W/") , we have

X

e2E(t)
" (x)

wexe �

X

e2E(t)

wexe �
4"

7
· Zµ

E(t),�
.

Proof. For those edges in E(t)
" (x), we have

X

e2E(t)\E(t)
" (x)

wexe

(i)


1

1� "/8

X

e2E(t)\E(t)
" (x)

se · xe

=
1

1� "/8

X

v2V

yv

���xE(t)
v \E(t)

" (x)

���
1
+

1

1� "/8

X

B2OG

zB

���xE(t)[B]\E(t)
" (x)

���
1

(ii)


"

3(1� "/8)

X

v2V

yv +
"

3(1� "/8)

X

B2OG

zB
|B|

2

(iii)


"

3(1� "/8)
kyk1 +

"

2(1� "/8)

X

B2OG

zB

�
|B|

2

⌫

(iv)


4"

7
· Zµ

E(t),�
,

where (i) is by Lemma 6.12 which shows that se � (1� "/8)we for all e 2 E(t), (ii) is because

X

e2E(t)
v \E(t)

" (x)

xe 
"

3
and

X

e2E(t)[B]\E(t)
" (x)

xe 
1

2
·

X

v2B

X

e2E(t)
v \E(t)

" (x)


"

3
·
|B|

2
,

(iii) is by |B| � 3, and (iv) is by Corollary 6.2.

Now, we consider a fractional matching x 2MG(t) that is close to x⇤. We show that a degree-sparsifier of
x preserves most of its weight. This is perhaps surprising as the definition of degree-sparsifier (Definition 6.3) is
purely unweighted, while we can use it to sparsify this particular weighted matching.

Lemma 6.14. For any accuracy parameter " > 0, ⌫⇤E  �  m · ⌫⇤E, and µ  "
64 log(8n4W/") , given an x 2MG

with

(6.26)
X

e2E(t)

we |xe � x⇤

e| 
"

8
· Zµ

E(t),�
,

for any edge subset E0
✓ E(t)

such that

X

e2E0

wexe � (1� "/8)
X

e2E(t)

wexe,

Copyright © 2025
Copyright for this paper is retained by authors

we have that any "/8-degree-sparsifier H of x
E0\E(t)

"/8
(x)

satisfies

M⇤

w(H) �
⇣
1�

"

2

⌘
·

X

e2E0

wexe.

Proof. Letting "0
def
= "/8, we have µ  "0

8 log(n4W/"0) . Let x
(H) be the certificate of H being an "/8-degree-sparsifier.

It su�ces to prove that
P

e2E0 wex
(H)
e � (1� "/2) ·

P
e2E0 wexe. From Lemma 6.13 with accuracy parameter "0,

we have

(6.27)
X

e2E0\E(t)
"/8

(x)

wexe 
"

14
· Zµ

E0,� 
"

14
· Zµ

E(t),�
and

X

e2E0\E(t)
"/8

(x⇤)

wex
⇤

e 
"

14
· Zµ

E(t),�
.

By (6.26), (6.27), and triangle inequality we have

X

e2E0\E(t)
"/8

(x⇤)

wexe 

X

e2E0\E(t)
"/8

(x⇤)

wex
⇤

e +
X

e2E0\E(t)
"/8

(x⇤)

we |xe � x⇤

e| 
3"

14
· Zµ

E(t),�

and thus

(6.28)
X

e2E0\
⇣
E(t)

"/8
(x)[E(t)

"/8
(x⇤)

⌘
wexe 

2"

7
· Zµ

E(t),�
.

Applying Lemma 6.12 with accuracy parameter "0, for every edge e 2 E(t)
\E(t)

"/8(x
⇤), we have se 

�
1 + "

64

�
we.

Therefore, letting eE def
= E0

\ E(t)
"/8(x) and

bE def
= eE \ E(t)

"/8(x
⇤) for clarity, we have

X

e2E0

wex
(H)
e �

X

e2 eE

wex
(H)
e �

⇣
1�

"

64

⌘X

e2 eE

sex
(H)
e

=
⇣
1�

"

64

⌘ X

v2V

yv

���x(H)
eEv

���
1
+
X

B2OG

zB

���x(H)
eE[B]

���
1

!

(i)
�

⇣
1�

"

64

⌘ X

v2V

yv

���x eEv

���
1
+
X

B2OG

zB

���x eE[B]

���
1

!
�
"

8

kyk1 +

X

B2OG

zB

�
|B|

2

⌫!

�

⇣
1�

"

64

⌘ X

v2V

yv

���x bEv

���
1
+
X

B2OG

zB

���x bE[B]

���
1

!
�
"

8

kyk1 +

X

B2OG

zB

�
|B|

2

⌫!

(ii)
�

⇣
1�

"

64

⌘⇣
1�

"

8

⌘
0

@
X

e2 bE

wexe

1

A� "

8
Zµ
E,�

(iii)
�

✓
1�

9"

64

◆ X

e2E0

wexe

!
�
"

6
Zµ
E(t),�

(iv)
�

⇣
1�

"

2

⌘ X

e2E0

wexe

!
,

where (i) uses the assumption of x(H) being an "/8-degree-sparsifier of x
E0\E(t)

"/8
(x)

, (ii) uses Lemma 6.12

and Corollary 6.2, and (iii) uses (6.28). Finally, (iv) follows from

X

e2E0

wexe

(a)
�

⇣
1�

"

8

⌘ X

e2E(t)

wexe

(b)
�

⇣
1�

"

8

⌘
0

@
X

e2E(t)

wex
⇤

e �
"

8
Zµ
E(t),�

1

A

(c)
�

⇣
1�

"

8

⌘⇣⇣
1�

"

16

⌘
Zµ
E(t),�

�
"

8
Zµ
E(t),�

⌘
�

✓
1�

5

16
"

◆
Zµ
E(t),�

,

where (a) and (b) follow from the input assumption, and (c) is from Lemma 4.4 with accuracy parameter "0. This
concludes the proof.

Copyright © 2025
Copyright for this paper is retained by authors

We are now ready to finish the proof of Theorem 3.6. For completeness we repeat the proof of Theorem 3.4
with a di↵erent set of parameters which allows us to perform rounding afterward.

Theorem 6.3. There are randomized output-adaptive algorithms that solve Problem 1.1 w.h.p. with amortized

update times eO("�41+(n2/m) · "�6) and bO("�17+(n2/m) · "�6). Additionally, if G is bipartite then there is such

an algorithm with amortized update time bO((n2/m) · "�6).

Proof. Let us assume " � n�1/6 for general G and " � n�1 for bipartite G, as the update time of eO("�41), bO("�17),

and bO("�6) can be obtained by re-running the static algorithm of [35] after every update. Letting X
def
= MG,

Theorem 3.1 with accuracy parameter "0
def
= "/8 and µ

def
= "0

128 log ((n4W)/"0) shows that by using Theorem 3.3 with

accuracy parameter µ"02

512 inside Algorithm 2 as the subroutine Rebuild(), there will be at most eO("�2) calls to
Rebuild() until the graph becomes empty. As such, we can maintain a (1�"/8)-approximate fractional maximum
weight matching in amortized update times eO("�41) and bO("�17) for general G. As in the proof of Theorem 3.4,
for bipartite G, the update time improves to bO("�2) by using [33, Theorem 10.16] instead of Theorem 3.3.

Consider the t-th rebuild, where the current graph is G(t) = (V,E(t)). Until the next rebuild, let E0
✓ E(t)

be the current edge set, i.e., the adversary has deleted E(t)
\E0 from the graph. To round the fractional matching

into an integral matching, right after the t-th rebuild we run Lemma 6.10 to maintain an "/8-degree-sparsifier H

of x
E0\E(t)

"/8
(x)

, where x
def
= x(t) is the new fractional matching that we just got from Rebuild(). We then run the

static algorithm of [35] to get a (1� "/4)-approximate matching M in H in time eO(n"�3), since |H|  eO(n"�2)
by the sparsity guarantee of Lemma 6.10. We use M as the output integral matching, and let ⌫ be the value
of w(M) right after running [35]. Until the next rebuild happens, for every deletion, we feed the update of
x
E0\E(t)

"/8
(x)

to Lemma 6.10 to maintain a degree sparsifier. Whenever the deletions make w(M) < (1 � "/8)⌫,

we query the degree-sparsifier-maintainer of Lemma 6.10 to get a new H over which we reconstruct an integral
(1� "/4)-approximate matching M and its value ⌫ using [35].

We first analyze the quality of M . By Lemma 4.7, the x(t) returned by Rebuild() satisfies22

X

e2E(t)

we

���x(t)
e �

⇣
xµ
E(t),�

⌘

e

��� 
"

8
Zµ
E(t),�

.

By definition of Algorithm 1, until the next rebuild happens, we have

X

e2E0

wex
(t)
e �

✓
1�

"0

2

◆ X

e2E(t)

wex
(t)
e =

⇣
1�

"

16

⌘ X

e2E(t)

wex
(t)
e .

Since µ  "
64 log(8n4W/") , the conditions of Lemma 6.14 are satisfied, showing that the "/8-degree-sparsifier H of

x
E0\E(t)

"/8
(x)

we maintain indeed has M⇤
w(H) �

�
1� "

2

� ⇣P
e2E0 wex

(t)
e

⌘
. This implies that

(6.29) w(M) �
⇣
1�

"

4

⌘⇣
1�

"

2

⌘ X

e2E0

wex
(t)
e

!
�

✓
1�

3"

4

◆⇣
1�

"

16

⌘ X

e2E(t)

wex
(t)
e �

✓
1�

7"

8

◆
M⇤

w(G)

holds right after we run [35] since x(t) was a (1�"0/2)-approximate fractional matching after the rebuild. Because
we re-run [35] whenever w(M) <

�
1� "

8

�
⌫, we have that M is always a (1 � ")-approximate maximum weight

matching.
We now analyze the additional update time spent in rounding. By (6.29), whenever we have to re-run [35],

we must have deleted a set of edges D ✓ E(t)
\E0 from M whose weights sum to at least

P
e2D we �

"
8⌫. Because

M ✓ E(t)
"/8(x

(t)), we have x(t)
e � ⌦("/n) for all e 2 M , and thus the adversary also deletes ⌦(⌫ · "2/n) units of

weight from x(t), i.e.,
P

e2D wex
(t)
e � ⌦(⌫ · "2/n). As a result, until the next rebuild of x(t) happens (i.e., when

22Note that there is a change of notation here, so
P

e2E(t) we

����x
(t)
e �

⇣
xµ

E(t),�

⌘

e

���� is the same as
���x(t) � xµ

S(t),�

���
w,S(t)

from

Section 4. See also Table 1.

Copyright © 2025
Copyright for this paper is retained by authors

the weight of x(t) drops by an ⇥(") fraction), we will run [35] at most eO(n/") times. Since there are eO("�2)
rebuilds of x(t) by Theorem 3.1, rounding incurs an eO(n2"�6) additional running time, which is amortized to
eO((n2/m) · "�6) time per update. This proves the update times of the algorithms. Finally, the algorithms are
output-adaptive as Lemma 6.10 is.

Acknowledgements

Thank you to Aditi Dudeja for coordinating the posting to arXiv. Thank you to Aaron Bernstein, Sayan
Bhattacharya, Arun Jambulapati, Peter Kiss, Yujia Jin, Thatchaphol Saranurak, Kevin Tian, and David Wajc
for helpful conversations at various stages of the project that ultimately led to this paper. Part of the work for
this paper was conducted while the authors were visiting the Simons Institute for the Theory of Computing.

References

[1] Sepehr Assadi, Aaron Bernstein, and Aditi Dudeja. Decremental matching in general graphs. In 49th International

Colloquium on Automata, Languages, and Programming, ICALP 2022, volume 229 of LIPIcs, pages 11:1–11:19.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. Available at https://arxiv.org/abs/2207.00927.

[2] Sepehr Assadi, Soheil Behnezhad, Sanjeev Khanna, and Huan Li. On regularity lemma and barriers in streaming
and dynamic matching. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023,
pages 131–144. ACM, 2023. Available at https://arxiv.org/abs/2207.09354.

[3] Amir Azarmehr, Soheil Behnezhad, and Mohammad Roghani. Fully dynamic matching: (2�
p
2)-approximation in

polylog update time. In Proceedings of the 35th ACM-SIAM Symposium on Discrete Algorithms, SODA 2024, 2024.
Available at https://arxiv.org/abs/2307.08772.

[4] Moab Arar, Shiri Chechik, Sarel Cohen, Cli↵ Stein, and David Wajc. Dynamic matching: Reducing integral
algorithms to approximately-maximal fractional algorithms. In 45th International Colloquium on Automata,

Languages, and Programming, ICALP 2018, volume 107 of LIPIcs, pages 7:1–7:16. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2018. Available at https://arxiv.org/abs/1711.06625.

[5] Kook Jin Ahn and Sudipto Guha. Near linear time approximation schemes for uncapacitated and capacitated b-
matching problems in nonbipartite graphs. In Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2014, pages 239–258. SIAM, 2014. Available at https://arxiv.org/abs/1307.4355.
[6] Sepehr Assadi and Sanjeev Khanna. Improved bounds for fully dynamic matching via ordered ruzsa-szemerédi graphs.

In arXiv Preprint, 2024. Available at https://arxiv.org/abs/2406.13573.
[7] Amir Abboud, Jason Li, Debmalya Panigrahi, and Thatchaphol Saranurak. All-pairs max-flow is no harder than

single-pair max-flow: Gomory-hu trees in almost-linear time. In 64th IEEE Annual Symposium on Foundations of

Computer Science, FOCS 2023, pages 2204–2212. IEEE Computer Society, 2023.
[8] Kyriakos Axiotis, Aleksander Madry, and Adrian Vladu. Faster sparse minimum cost flow by electrical flow

localization. In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, pages 528–539.
IEEE Computer Society, 2021. Available at https://arxiv.org/abs/2111.10368.

[9] Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower bounds for dynamic
problems. In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, pages 434–443.
IEEE Computer Society, 2014. Available at https://arxiv.org/abs/1402.0054.

[10] Sayan Bhattacharya, Deeparnab Chakrabarty, and Monika Henzinger. Deterministic fully dynamic approximate
vertex cover and fractional matching in O(1) amortized update time. In Integer Programming and Combinatorial

Optimization - 19th International Conference, IPCO 2017, volume 10328 of Lecture Notes in Computer Science, pages
86–98. Springer, 2017. Available at https://arxiv.org/abs/1611.00198.

[11] Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Cli↵ Stein, and Madhu Sudan. Fully dynamic
maximal independent set with polylogarithmic update time. In 60th IEEE Annual Symposium on Foundations of

Computer Science, FOCS 2019, pages 382–405. IEEE Computer Society, 2019. Available at https://arxiv.org/
abs/1909.03478.

[12] Aaron Bernstein, Aditi Dudeja, and Zachary Langley. A framework for dynamic matching in weighted graphs. In
Proceedings of the 53rd Annual ACM Symposium on Theory of Computing, STOC 2021, pages 668–681. ACM, 2021.

[13] Soheil Behnezhad. Dynamic algorithms for maximum matching size. In Proceedings of the 34th ACM-SIAM

Symposium on Discrete Algorithms, SODA 2023, pages 129–162. SIAM, 2023. Available at https://arxiv.org/
abs/2207.07607.

[14] Aaron Bernstein, Sebastian Forster, and Monika Henzinger. A deamortization approach for dynamic spanner and
dynamic maximal matching. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms,

SODA 2019, pages 1899–1918. SIAM, 2019. Available at https://arxiv.org/abs/1810.10932.

Copyright © 2025
Copyright for this paper is retained by authors

https://arxiv.org/abs/2207.00927
https://arxiv.org/abs/2207.09354
https://arxiv.org/abs/2307.08772
https://arxiv.org/abs/1711.06625
https://arxiv.org/abs/1307.4355
https://arxiv.org/abs/2406.13573
https://arxiv.org/abs/2111.10368
https://arxiv.org/abs/1402.0054
https://arxiv.org/abs/1611.00198
https://arxiv.org/abs/1909.03478
https://arxiv.org/abs/1909.03478
https://arxiv.org/abs/2207.07607
https://arxiv.org/abs/2207.07607
https://arxiv.org/abs/1810.10932

[15] Soheil Behnezhad and Alma Ghafari. Fully dynamic matching and ordered ruzsa-szemerédi graphs. In 65th IEEE

Annual Symposium on Foundations of Computer Science, FOCS 2024. IEEE Computer Society, 2024. Available at
https://arxiv.org/abs/2404.06069.

[16] Surender Baswana, Manoj Gupta, and Sandeep Sen. Fully dynamic maximal matching in O(log n) update time. In
52nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2011, pages 383–392. IEEE Computer
Society, 2011. Available at https://arxiv.org/abs/1103.1109.

[17] Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak. Deterministic decremental reachability,
scc, and shortest paths via directed expanders and congestion balancing. In 61st IEEE Annual Symposium on

Foundations of Computer Science, FOCS 2020, pages 1123–1134. IEEE Computer Society, 2020. Available at
https://arxiv.org/abs/2009.02584.

[18] Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. Deterministic fully dynamic data structures for
vertex cover and matching. In Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA

2015, pages 785–804. SIAM, 2015. Available at https://arxiv.org/abs/1412.1318.
[19] Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. New deterministic approximation algorithms for

fully dynamic matching. In Proceedings of the 48th Annual ACM Symposium on Theory of Computing, STOC 2016,
pages 398–411. ACM, 2016. Available at https://arxiv.org/abs/1604.05765.

[20] Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. Fully dynamic approximate maximum matching
and minimum vertex cover in O(log3 n) worst case update time. In Proceedings of the 28th Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA 2017, pages 470–489. SIAM, 2017. Available at https://arxiv.org/abs/
1704.02844.

[21] Sayan Bhattacharya and Janardhan Kulkarni. Deterministically maintaining a (2 + ✏)-approximate minimum vertex
cover in O(1/✏2) amortized update time. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2019, pages 1872–1885. SIAM, 2019. Available at https://arxiv.org/abs/1805.03498.
[22] Sayan Bhattacharya and Peter Kiss. Deterministic rounding of dynamic fractional matchings. In 48th International

Colloquium on Automata, Languages, and Programming, ICALP 2021, volume 198 of LIPIcs, pages 27:1–27:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. Available at https://arxiv.org/abs/2105.01615.

[23] Soheil Behnezhad and Sanjeev Khanna. New trade-o↵s for fully dynamic matching via hierarchical EDCS. In
Proceedings of the 33rd ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, pages 3529–3566. SIAM, 2022.
Available at https://arxiv.org/abs/2201.02905.

[24] Joakim Blikstad and Peter Kiss. Incremental (1 � ✏)-approximate dynamic matching in O(poly(1/✏)) update time.
In 31st Annual European Symposium on Algorithms, ESA 2023, volume 274 of LIPIcs, pages 22:1–22:19. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2023. Available at https://arxiv.org/abs/2302.08432.

[25] Sayan Bhattacharya, Peter Kiss, and Thatchaphol Saranurak. Dynamic (1 + ✏)-approximate matching size in truly
sublinear update time. In 64th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023, 2023.
Available at https://arxiv.org/abs/2302.05030.

[26] Sayan Bhattacharya, Peter Kiss, and Thatchaphol Saranurak. Dynamic algorithms for packing-covering lps via
multiplicative weight updates. In Proceedings of the 34th ACM-SIAM Symposium on Discrete Algorithms, SODA

2023, pages 1–47. SIAM, 2023. Available at https://arxiv.org/abs/2207.07519.
[27] Sayan Bhattacharya, Peter Kiss, and Thatchaphol Saranurak. Sublinear algorithms for (1.5+✏)-approximate

matching. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, pages 254–266.
ACM, 2023.

[28] Sayan Bhattacharya, Peter Kiss, Thatchaphol Saranurak, and David Wajc. Dynamic matching with better-than-
2 approximation in polylogarithmic update time. In Proceedings of the 34th ACM-SIAM Symposium on Discrete

Algorithms, SODA 2023, pages 100–128. SIAM, 2023. Available at https://arxiv.org/abs/2207.07438.
[29] Sayan Bhattacharya, Peter Kiss, Aaron Sidford, and David Wajc. Near-optimal dynamic rounding of fractional

matchings in bipartite graphs. In arXiv Preprint, 2023. Available at https://arxiv.org/abs/2306.11828.
[30] Bartlomiej Bosek, Dariusz Leniowski, Piotr Sankowski, and Anna Zych. Online bipartite matching in o✏ine time. In

55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, pages 384–393. IEEE Computer
Society, 2014.

[31] Aaron Bernstein and Cli↵ Stein. Fully dynamic matching in bipartite graphs. In 42nd International Colloquium on

Automata, Languages, and Programming, ICALP 2015, volume 9134 of Lecture Notes in Computer Science, pages
167–179. Springer, 2015. Available at https://arxiv.org/abs/1506.07076.

[32] Aaron Bernstein and Cli↵ Stein. Faster fully dynamic matchings with small approximation ratios. In Proceedings of

the 27th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, pages 692–711. SIAM, 2016.
[33] Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant Sachdeva. Maximum

flow and minimum-cost flow in almost-linear time. In 63rd IEEE Annual Symposium on Foundations of Computer

Science, FOCS 2022, pages 612–623. IEEE Computer Society, 2022. Available at https://arxiv.org/abs/2203.
00671.

Copyright © 2025
Copyright for this paper is retained by authors

https://arxiv.org/abs/2404.06069
https://arxiv.org/abs/1103.1109
https://arxiv.org/abs/2009.02584
https://arxiv.org/abs/1412.1318
https://arxiv.org/abs/1604.05765
https://arxiv.org/abs/1704.02844
https://arxiv.org/abs/1704.02844
https://arxiv.org/abs/1805.03498
https://arxiv.org/abs/2105.01615
https://arxiv.org/abs/2201.02905
https://arxiv.org/abs/2302.08432
https://arxiv.org/abs/2302.05030
https://arxiv.org/abs/2207.07519
https://arxiv.org/abs/2207.07438
https://arxiv.org/abs/2306.11828
https://arxiv.org/abs/1506.07076
https://arxiv.org/abs/2203.00671
https://arxiv.org/abs/2203.00671

[34] Moses Charikar and Shay Solomon. Fully dynamic almost-maximal matching: Breaking the polynomial worst-
case time barrier. In 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018,
volume 107 of LIPIcs, pages 33:1–33:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. Available at
https://arxiv.org/abs/1711.06883.

[35] Ran Duan and Seth Pettie. Linear-time approximation for maximum weight matching. J. ACM, 61(1):1:1–1:23, 2014.
[36] Ran Duan, Seth Pettie, and Hsin-Hao Su. Scaling algorithms for weighted matching in general graphs. In Proceedings

of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, pages 781–800. SIAM, 2017.
Available at https://arxiv.org/abs/1411.1919.

[37] Aditi Dudeja. Decremental matching in general weighted graphs. In 51st International Colloquium on Automata,

Languages, and Programming, ICALP 2024, volume 297 of LIPIcs, pages 59:1–59:20. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2024. Available at https://arxiv.org/abs/2402.03068.

[38] Aditi Dudeja. A note on rounding matchings in general graphs. In arXiv Preprint, 2024. Available at https:
//arxiv.org/abs/2402.03068.

[39] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17:449–467, 1965.
[40] Fabrizio Grandoni, Stefano Leonardi, Piotr Sankowski, Chris Schwiegelshohn, and Shay Solomon. (1 + ✏)-approximate

incremental matching in constant deterministic amortized time. In Proceedings of the 30th Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA 2019, pages 1886–1898. SIAM, 2019.
[41] Manoj Gupta and Richard Peng. Fully dynamic (1 + ✏)-approximate matchings. In 54th Annual IEEE Symposium

on Foundations of Computer Science, FOCS 2013, pages 548–557. IEEE Computer Society, 2013. Available at
https://arxiv.org/abs/1304.0378.

[42] Fabrizio Grandoni, Chris Schwiegelshohn, Shay Solomon, and Amitai Uzrad. Maintaining an EDCS in general graphs:
Simpler, density-sensitive and with worst-case time bounds. In 5th Symposium on Simplicity in Algorithms, SOSA

2022, pages 12–23. SIAM, 2022. Available at https://arxiv.org/abs/2108.08825.
[43] Harold N. Gabow and Robert Endre Tarjan. A linear-time algorithm for a special case of disjoint set union. In

Proceedings of the 15th Annual ACM Symposium on Theory of Computing, STOC 1983, pages 246–251. ACM, 1983.
[44] Harold N. Gabow and Robert Endre Tarjan. Faster scaling algorithms for general graph-matching problems. J.

ACM, 38(4):815–853, 1991.
[45] Manoj Gupta. Maintaining approximate maximum matching in an incremental bipartite graph in polylogarithmic

update time. In 34th International Conference on Foundation of Software Technology and Theoretical Computer

Science, FSTTCS 2014, volume 29 of LIPIcs, pages 227–239. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2014.

[46] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak. Unifying and strength-
ening hardness for dynamic problems via the online matrix-vector multiplication conjecture. In Proceedings of

the 47th Annual ACM Symposium on Theory of Computing, STOC 2015, pages 21–30. ACM, 2015. Available at
https://arxiv.org/abs/1511.06773.

[47] Ramesh Hariharan, Telikepalli Kavitha, and Debmalya Panigrahi. E�cient algorithms for computing all low s-t

edge connectivities and related problems. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2007, pages 127–136. SIAM, 2007.
[48] Ramesh Hariharan, Telikepalli Kavitha, Debmalya Panigrahi, and Anand Bhalgat. An Õ(mn) gomory-hu tree

construction algorithm for unweighted graphs. In Proceedings of the 39th Annual ACM Symposium on Theory of

Computing, STOC 2007, pages 605–614. ACM, 2007.
[49] Arun Jambulapati, Yujia Jin, Aaron Sidford, and Kevin Tian. Regularized box-simplex games and dynamic

decremental bipartite matching. In 49th International Colloquium on Automata, Languages, and Programming,

ICALP 2022, volume 229 of LIPIcs, pages 77:1–77:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
Available at https://arxiv.org/abs/2204.12721.

[50] Peter Kiss. Deterministic dynamic matching in worst-case update time. In 13th Innovations in Theoretical Computer

Science Conference, ITCS 2022, volume 215 of LIPIcs, pages 94:1–94:21. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022. Available at https://arxiv.org/abs/2108.10461.

[51] Tarun Kathuria, Yang P. Liu, and Aaron Sidford. Unit capacity maxflow in almost O(m4/3) time. In 61st IEEE

Annual Symposium on Foundations of Computer Science, FOCS 2020, pages 119–130. IEEE Computer Society, 2020.
[52] Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3sum conjecture. In Proceedings of the

27th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, pages 1272–1287. SIAM, 2016. Available
at https://arxiv.org/abs/1407.6756.

[53] Yang P. Liu. On approximate fully-dynamic matching and online matrix-vector multiplication. In 65th IEEE

Annual Symposium on Foundations of Computer Science, FOCS 2024. IEEE Computer Society, 2024. Available
at https://arxiv.org/abs/2403.02582.

[54] Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving linear programs in Õ(
p
rank)

iterations and faster algorithms for maximum flow. In 55th IEEE Annual Symposium on Foundations of Computer

Copyright © 2025
Copyright for this paper is retained by authors

https://arxiv.org/abs/1711.06883
https://arxiv.org/abs/1411.1919
https://arxiv.org/abs/2402.03068
https://arxiv.org/abs/2402.03068
https://arxiv.org/abs/2402.03068
https://arxiv.org/abs/1304.0378
https://arxiv.org/abs/2108.08825
https://arxiv.org/abs/1511.06773
https://arxiv.org/abs/2204.12721
https://arxiv.org/abs/2108.10461
https://arxiv.org/abs/1407.6756
https://arxiv.org/abs/2403.02582

Science, FOCS 2014, pages 424–433. IEEE Computer Society, 2014. Available at https://arxiv.org/abs/1910.
08033.

[55] Aleksander Madry. Navigating central path with electrical flows: From flows to matchings, and back. In 54th IEEE

Annual Symposium on Foundations of Computer Science, FOCS 2013, pages 253–262. IEEE Computer Society, 2013.
Available at https://arxiv.org/abs/1307.2205.

[56] Aleksander Madry. Computing maximum flow with augmenting electrical flows. In 57th IEEE Annual Symposium

on Foundations of Computer Science, FOCS 2016, pages 593–602. IEEE Computer Society, 2016. Available at
https://arxiv.org/abs/1608.06016.

[57] Tung Mai, Richard Peng, Anup B. Rao, and Vijay V. Vazirani. Concave flow on small depth directed networks. In
arXiv Preprint, 2017. Available at http://arxiv.org/abs/1704.07791.

[58] Silvio Micali and Vijay V. Vazirani. An O(
p

|V ||E|) algorithm for finding maximum matching in general graphs.
In 21st IEEE Annual Symposium on Foundations of Computer Science, FOCS 1980, pages 17–27. IEEE Computer
Society, 1980.

[59] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer Science & Business
Media, 2003. Available at https://wwwfr.uni.lu/content/download/92121/1121193/file/NesB.pdf.

[60] Krzysztof Onak and Ronitt Rubinfeld. Maintaining a large matching and a small vertex cover. In Proceedings of the

42nd ACM Symposium on Theory of Computing, STOC 2010, pages 457–464. ACM, 2010.
[61] Manfred W. Padberg and M. R. Rao. Odd minimum cut-sets and b-matchings. Math. Oper. Res., 7(1):67–80, 1982.
[62] Mohammad Roghani, Amin Saberi, and David Wajc. Beating the folklore algorithm for dynamic matching. In 13th

Innovations in Theoretical Computer Science Conference, ITCS 2022, volume 215 of LIPIcs, pages 111:1–111:23.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. Available at https://arxiv.org/abs/2106.10321.

[63] Alexander Schrijver. Combinatorial optimization: polyhedra and e�ciency, volume 24. Springer, 2003.
[64] Shay Solomon. Fully dynamic maximal matching in constant update time. In 57th IEEE Annual Symposium

on Foundations of Computer Science, FOCS 2016, pages 325–334. IEEE Computer Society, 2016. Available at
https://arxiv.org/abs/1604.08491.

[65] Daniel Stubbs and Virginia Vassilevska Williams. Metatheorems for dynamic weighted matching. In 8th Innovations

in Theoretical Computer Science Conference, ITCS 2017, volume 67 of LIPIcs, pages 58:1–58:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017.

[66] Jan van den Brand, Li Chen, Richard Peng, Rasmus Kyng, Yang P. Liu, Maximilian Probst Gutenberg, Sushant
Sachdeva, and Aaron Sidford. A deterministic almost-linear time algorithm for minimum-cost flow. In 64th IEEE

Annual Symposium on Foundations of Computer Science, FOCS 2023, pages 503–514. IEEE Computer Society, 2023.
Available at https://arxiv.org/abs/2309.16629.

[67] Jan van den Brand, Yin Tat Lee, Danupon Nanongkai, Richard Peng, Thatchaphol Saranurak, Aaron Sidford,
Zhao Song, and Di Wang. Bipartite matching in nearly-linear time on moderately dense graphs. In 61st IEEE

Annual Symposium on Foundations of Computer Science, FOCS 2020, pages 919–930. IEEE Computer Society, 2020.
Available at https://arxiv.org/abs/2009.01802.

[68] Jan van den Brand, Danupon Nanongkai, and Thatchaphol Saranurak. Dynamic matrix inverse: Improved algorithms
and matching conditional lower bounds. In 60th IEEE Annual Symposium on Foundations of Computer Science,

FOCS 2019, pages 456–480. IEEE Computer Society, 2019. Available at https://arxiv.org/abs/1905.05067.
[69] David Wajc. Rounding dynamic matchings against an adaptive adversary. In Proccedings of the 52nd Annual ACM

Symposium on Theory of Computing, STOC 2020, pages 194–207. ACM, 2020. Available at https://arxiv.org/
abs/1911.05545.

[70] Da Wei Zheng and Monika Henzinger. Multiplicative auction algorithm for approximate maximum weight
bipartite matching. In Integer Programming and Combinatorial Optimization - 24th International Conference,

IPCO 2023, volume 13904 of Lecture Notes in Computer Science, pages 453–465. Springer, 2023. Available at
https://arxiv.org/abs/2301.09217.

A Generalizing [5]

As mentioned in Section 5, [5] can be generalized to prove Lemma 5.1 in a fairly straightforward manner. Their
results, however, only claimed a poly("�1) dependence in the runtime instead of an explicit one. As we will swap
out certain components in their algorithms with recently developed counterparts, for completeness we give a proof
of Lemma 5.1 with explicit dependence on "�1. Most of the proofs in this section are slight variants of analogous
proofs in [5], and we do not claim novelty of them.

Overview. Here we outline the overall approach of [5] to make it easier to understand what the subsequent
lemmas and proofs are about. To begin, note that by Fact 2.1 and concavity of the objective we can focus only
on MG,". Since the constraints of the matching polytope MG," are linear and each x 2 � · P returned by the
oracle only violates these constraints by a factor of P ·�, the main idea of [5] is to use the multiplicative weights

Copyright © 2025
Copyright for this paper is retained by authors

https://arxiv.org/abs/1910.08033
https://arxiv.org/abs/1910.08033
https://arxiv.org/abs/1307.2205
https://arxiv.org/abs/1608.06016
http://arxiv.org/abs/1704.07791
https://wwwfr.uni.lu/content/download/92121/1121193/file/NesB.pdf
https://arxiv.org/abs/2106.10321
https://arxiv.org/abs/1604.08491
https://arxiv.org/abs/2309.16629
https://arxiv.org/abs/2009.01802
https://arxiv.org/abs/1905.05067
https://arxiv.org/abs/1911.05545
https://arxiv.org/abs/1911.05545
https://arxiv.org/abs/2301.09217

update (MWU) framework to produce a sequence of vectors in � · P whose average only violates the constraints
by a factor of (1 + O(")). Here, the width of the MWU algorithms is P · �. As long as each vector in the
sequence is an approximate maximizer of the objective, the average of them will be one as well (again we use the
concavity of the objective). However, classic MWU algorithms need to spend ⌦(nnz(A)) time in each iteration
where A is the constraint matrix, which is exponential for the matching polytope even only considering small
odd sets. Thus, to circumvent to issue, [5] showed that (1) a variation of the classic MWU algorithms where only
constraints that are violated significantly are evaluated still works and (2) for (a slightly perturbed) MG,", these
maximally-violated constraints can be found and evaluated e�ciently. In what follows we adopt several lemmas
from [5], reproving them analogously in the form we need if necessary.

Lemma A.1. ([5, Theorem 8(1)]) Suppose we are given an (�, TA, ⇣)-oracle A for (P, f), " � 1
poly(n) , concave

function f , non-negative linear function ` where all `e’s are polynomially bounded, �1 � ⌦(1) and �2 � 0. If

(A.1) {x 2 P : f(x) � �1 and `(x)  �2} 6= ;,

then in eO(TA(n,m)) time we can find an x 2 � · P such that f(x) � ⇣(1� ")�1 and `(x)  �2.

Proof. The proof strategy is the same as that of [5, Lemma 6.1]. Let g⇢(x)
def
= f(x) � ⇢ · `(x). We can use a

binary search to find 0  ⇢� < ⇢+  �1

�2
and x⇢� ,x⇢+ 2 � · P such that ⇢+ � ⇢�  "�1

�2
with `(x⇢�) > �2 and

`(x⇢+)  �2 in eO (TA(n,m)) time as follows. For ⇢ = 0, the x0 returned by A on input g0 satisfies f(x0) � ⇣�1.

If `(x0)  �2 then we can simply return x0 as the solution. Similarly, for ⇢ = �1

�2
, the vector x�1/�2

def
= 0 satisfies

`(x�1/�2
)  �2. Starting from the left endpoint ⇢� = 0 and the right endpoint ⇢+ = �1

�2
, we do a binary search

on ⇢ 2 [⇢�, ⇢+] using A to optimize g⇢. Let x⇢ be the returned vector on g⇢. We maintain that `(x⇢�) > �2 and
`(x⇢+)  �2 until ⇢+ � ⇢�  "�1

�2
, i.e., if `(x⇢) > �2, then we set ⇢� ⇢; otherwise, we set ⇢+ ⇢. This takes

eO(TA(n,m)) time. To see that each g⇢ is indeed a valid function for A to optimize, observe that by the guarantee
of (A.1), we have maxx2P g⇢(x) � �1 � ⇢�2. Since the binary search is terminated when ⇢+ � ⇢�  "�1

�2
, we have

�1 � ⇢�2 �
"
2 and therefore maxx2P g⇢(x) �

1
poly(n) for each ⇢ that we invoke the oracle. This verifies (5.20). In

the end, we take a linear combination of x⇢� and x⇢+ to get an x
def
= (1�↵)x⇢� +↵x⇢+ for some ↵ 2 [0, 1], which

is in � · P by convexity of P, with `(x) = �2. This x is then returned as the solution.
To analyze the quality of x, we use by the guarantee of (A.1) that

(A.2) g⇢�(x⇢�) � ⇣(�1 � ⇢
��2) and g⇢+(x⇢+) � ⇣(�1 � ⇢

+�2).

It then follows that

f(x)
(i)
� (1� ↵)f(x⇢�) + ↵f(x⇢+)

(ii)
= (1� ↵)

�
g⇢�(x⇢�) + ⇢�`(x⇢�)

�
+ ↵

�
g⇢+(x⇢+) + ⇢+`(x⇢+)

�

(iii)
� ⇣

�
(1� ↵)

�
�1 � ⇢

��2
�
+ ↵

�
�1 � ⇢

+�2
��

+ (1� ↵)⇢�`(x⇢�) + ↵⇢+`(x⇢+)

(iv)
� ⇣

�
�1 � ↵ · " · �1 � ⇢

��2
�
+ `(

�
1� ↵)⇢�x⇢� + ↵⇢+x⇢+

�

(v)
� ⇣(1� ")�1 � ⇣⇢

��2 + ⇢�`(x) + ↵(⇢+ � ⇢�)`(x⇢+) � ⇣(1� ")�1,

where (i) is by concavity of f , (ii) is by definition of g⇢, (iii) is by (A.2), (iv) is by ⇢+ � ⇢�  "�1

�2
and linearity of

`, and (v) is by definition of x and again linearity of `. This proves the lemma.

In addition to the oracle optimizing the objective, as described in the overview we also need to find constraints
that are violated by the current solution significantly. Let

(A.3) M̂G,"
def
=

(
x(v)  ebv, 8 v 2 V

x(B)  ebB , 8 B 2 OG,"

)
\ RE

�0, where ebv
def
= 1� 4" and ebB

def
=

�
|B|

2

⌫
�
"2|B|

2

4

be a slightly perturbed version of MG,". Formally, for x 2 RE
�0, let

(A.4) �x
def
= max

⇢
max
v2V

�x,v, max
B2OG,"

�x,B

�
, where �x,v

def
=

x(v)
ebv

and �x,B
def
=

x(B)
ebB

.

Copyright © 2025
Copyright for this paper is retained by authors

An algorithm B is a TB-evaluator for M̂G," if given any vector x 2 RE
�0, when �x > 1 + 8", it computes �x

and the subset of small odd sets Lx
def
=
�
B 2 OG," : �x,B � �x � "3/10

in TB(n,m) time. On the other hand,

it correctly identifies when �x � 1 + 8" in the same runtime. Let �x,OG,"

def
= maxB2OG," {�x,B}. The following

theorem from [5] characterizes the structure of Lx.

Proposition A.1. ([5, Theorem 5]) If �x,OG," � 1 + 3", then Lx forms a laminar family.

We also give the following simple algorithm which helps us compute the multiplicative weights induced by a
laminar family without any dependence on "�1.

Lemma A.2. Given any x 2 RE
�0, a laminar family L ✓ OG,", and value pB associate with each B 2 L, there is

an eO
�
m+

P
B2L

|B|
�
time algorithm that computes

`e
def
=

X

B2L:u,v2B

pB

for each edge e = {u, v} in E.

Proof. Let T be a tree on L [{V } [{{v} : v 2 V } such that U is an ancestor of W if and only if W ✓ U .
By laminarity of L such a tree exists and can be constructed in eO

�
m+

P
B2L

|B|
�
time. Observe that for each

e = {u, v} 2 E, the sets of B 2 L containing both u and v correspond to a path from the root of T to the lowest
common ancestor (LCA) of {u} in {v} in the tree. The LCAs of all edges can be computed in eO(m) time [43], so
can the sum of pB ’s of all root-to-vertex paths be populated in O(n) time.

The following claim is proven in [5].

Claim A.1. It holds that M̂G," ✓MG ✓
1

1�4" · M̂G,".

Proof. Consider an x 2 M̂G,", which clearly satisfies the degree constraints and odd set constraints of size at
most 1/". For an odd set B 2 OG with |B| > 1/", it follows that

x(B) 
1

2

X

v2B

x(v) 
(1� 4")|B|

2


�
|B|

2

⌫
.

That MG ✓
1

1�4" · M̂G," follows from

(1� 4") ·

�
|B|

2

⌫


�
|B|

2

⌫
�
"2|B|

2

4
.

We now present the algorithm for concave optimization over the matching polytope. Algorithm 5 is a
specialization of [5, Algorithm 2] to the case that the constraint matrices A and b correspond to that of the

perturbed matching polytope M̂G,", and then modified to work for concave function optimization. The algorithm
is divided into superphases, where each superphase contains several phases, and each phase contains several
iterations. The only real di↵erence between Algorithm 5 and [5, Algorithm 1] is that we substitute the subroutine
optimizing linear objective (e.g., the solver for LP8 in [5]) to an oracle capable of optimizing general concave
objective. Other changes to the algorithm are for consistency with the notations and terminologies that we are
using throughout the paper and to highlight when each superphase, phase, and iteration begins and ends. What
may appear confusing at first is that [5] used � for the input accuracy parameter and " as the variable used in
their algorithm that gradually decreases from 1/8 to �. Instead, we use " for the accuracy parameter, and thus
the roles of these two symbols are interchanged. Also, [5, Algorithm 2] has other degrees of freedom where they
can choose a function f(") < " (which is not to be confused with the concave function f in our context) and

↵  1
f(") ln

M�0
" . Nevertheless, for simplicity, we fix f(")

def
= "3 � 10 and ↵

def
= 50"�3 lnn as in the uncapacitated

b-matching algorithm in [5].

Copyright © 2025
Copyright for this paper is retained by authors

Algorithm 5: Concave function optimization over matching polytope

Input: n-vertex m-edge graph G = (V,E) and " 2 (3/
p
n, 1/16).

Input: convex, downward closed P ✓ RE
�0 and concave f : RE

�0 ! R�1.

Input: (�, TA, ⇠)-oracle A for (P, f) and TB-evaluator B for M̂G,".

1 Let � 1
8 , ↵ 50"�3 lnn, and �0

def
= P · �.

2 Use A on f to find an x 2 � · P with f(x) � maxx02P f(x) and set OPT
def
= f(x). Note that �x  �0 by

definition of P and �.
3 while true do

4 Compute �x and Lx using the evaluator B in TB(n,m) time.23

5 if �x  1 + 8" then return xf
def
= x

1+8" .

6 Repeatedly set � max{2�/3, "} until �x > 1 + 8�.

7 Let pv
def
= exp (↵�x,v � ↵�x) /ebv for v 2 V with �x,v � �x � "3/10, and pv

def
= 0 otherwise.

8 Let pB
def
= exp (↵�x,B � ↵�x) /ebB for B 2 L, and pB

def
= 0 for B 62 Lx.

9 Let �x
def
=
P

v2V pv
ebv +

P
B2OG,"

pB
ebB .

10 Compute `e
def
= pu + pv +

P
B2Lx:u,v2B pB for each e = {u, v} in eO(m) time by Lemma A.2, using

that Lx forms a laminar family.

11 Use Lemma A.1 with f , �1
def
= OPT, `(x0)

def
= `>x0, and �2

def
= �x to find an ex 2 � · P such that

f(ex) � ⇣(1� ")OPT and `(ex)  �x in eO(TA(n,m)) time.
12 while Lemma A.1 failed to find such an ex do

13 OPT (1� ")OPT and re-run Lemma A.1 with the new OPT.

14 Update x by xe (1� �)xe + �exe where �
def
= �

4↵�0
.

Lemma A.3. ([5, Algorithm 2, Theorem 16, and Lemma 18]) For any " � e⌦(n�1/2), downward closed,

convex P ✓ RE
�0, concave function f : RE

�0 ! R such that maxx2P\MG f(x) � 1, given an (�, TA, ⇣)-oracle

A for (P, f) and a TB-evaluator B for M̂G,", if P · � < n, then Algorithm 5 takes

eO
�
(TA(n,m) + TB(n,m)) · �P"

�4
�

time and computes an xf 2 (� · P) \MG such that f(xf) � ⇣(1� 13")maxx2P\MG f(x).

Proof. Let us assume "  1/16. Let f⇤ def
= maxx2P\MG f(x) and x⇤ def

= argmaxx2P\MG
f(x). The vector x in

Algorithm 5 is in � · P at all times, and thus xf 2 � · P as well. Lemma A.1 never fails after OPT decreases to

(1� 4")f⇤: we can take x⇤
· (1� 4") with f(x⇤

· (1� 4")) � (1� 4")f⇤ and by Claim A.1, x⇤
· (1� 4") 2 P \M̂G,"

and in particular ` (x⇤
· (1� 4"))  � is guaranteed. This shows that indeed the value of �1 in Lemma A.1

is ⌦(1) as f(x⇤) � ⌦(1). Also, all ex’s returned by Lemma A.1 have f(ex) � ⇣(1 � ")(1 � 4")f⇤, proving

f(x) � ⇣(1 � ")(1 � 4")f⇤ and therefore f(xf) �
⇣(1�")(1�4")

1+8" f⇤
� ⇣(1 � 13")f⇤ by concavity of f . At the end

of the algorithm, we have that �x  1 + 8" and thus xf 2 M̂G," ✓ MG by Claim A.1. The numbers pv’s
are polynomially bounded since �x,v � �x � "3/10 and thus n�5

 exp(↵�x,v � ↵�x)  1. Similarly pB ’s are

polynomially bounded. This ensures that `(x)
def
= `>x is a valid input to Lemma A.1.

It thus remains to bound the number of iterations in Algorithm 5 until it terminates since each iteration takes
O(TA(n,m) + TB(n,m)) time. Let �x

def
=
P

v2V exp(↵�x,v) +
P

B2OG,"
exp(↵�x,B) as defined in [5, Definition

4]. [5, Theorem 16] showed that [5, Algorithm 2] converges in eO(�0 · ("�2 + ↵"�1)) iterations if we start with
�x  �x+

"�x

�0
. This can be verbatim carried to Algorithm 5 since the analysis is oblivious to the function f we are

optimizing: it applies as long as the vector ex we found in each iteration satisfies `>ex  �x, which is guaranteed
by Lemma A.1. Roughly speaking, in [5, Lemma 15] they showed that �x decreases after every iteration if the
initial condition �x  �x + "�x

�0
is satisfied. The proof only used how �x can change for the new x given by

Copyright © 2025
Copyright for this paper is retained by authors

xe (1 � �)xe + �exe via the fact that `>ex  �x. [5, Theorem 16] then used [5, Lemma 15] to argue the total
decrease of �x after eO(�0 · ("�2+↵"�1)). Finally, we use [5, Lemma 18] which showed that indeed for the specific
value of ↵ that we choose, when �0 < n the initial condition �x  �x + "�x

�0
is satisfied. This shows that the

number of iterations Algorithm 5 has is eO(P�"�4).

A.1 Finding Maximally-Violated Constraints It remains to give an evaluator for M̂G," that finds all
the maximally-violated odd sets. [5, Lemma 17] reduces this to the case where �x,OG," � 1 + 3". In this
regime, [5, Theorem 5] applies (recall that it says Lx forms a laminar family), and [5, Theorem 6] presents
an eO(m + n · poly("�1)) algorithm. We briefly sketch the algorithm and analyze its dependence on "�1 in the
remainder of the section.

The algorithm uses a binary search to find an estimate e� such that e� � "3

100  �x,OG," 
e�, where

�x,OG,"

def
= maxB2OG," �x,B . Fix a current value of e�. For each odd 3  `  1/", [5] constructs an integral

weighted graph G'(`, e�) with V (G'(`, e�)) = V (G) [{s} with O(min{m,n"�5
}) edges whose weights sum up to

O(n"�5) in O(m) time. Let cut(B) for B ✓ V be the sum of weights of edges between B and (V (G) [{s}) \ B

in G'(`, e�). If e� is an accurate estimate, i.e., e�� "3

100  �x,OG," 
e�, then [5, Property 1] showed that

(1) every `-sized odd set B 2 Lx satisfies cut(B,B) < (`), where (`)
def
=
j
'e�
⇣
1� "2`2

2

⌘k
+ 12`

" + 1 < 2' for

'
def
= 50"�4, and

(2) every `-sized odd set B 2 OG," that satisfies cut(B,B) < (`) belongs to the collection L
0
x

def
=�

B 2 OG," : �x,B � �x,OG," � "
3

.

They then applied the following algorithm of Lemma A.4 below with 
def
= (`) = O("�4) to obtain a collection

of vertex sets L, for which they showed that Lx ✓ L and therefore we can extract all size-` sets in Lx in eO(m)

time by simply checking their value of �x,B .24 The value of e� can then be adjusted based on whether any size-`

set in Lx is found (recall that we are doing a binary search to determine an accurate estimate e�).
To compute the collection L, [5] used the minimum odd-cut approach of [61] using the construct of partial

Gomory-Hu trees. A -partial Gomory-Hu tree of a (possibly weighted) graph G is a partition U = {U1, . . . , Uk}

of V (G) and a weighted tree T on U such that each x, y 2 Ui belonging to the same set has minimum cut value
greater than  in G, and each x 2 Ui and y 2 Uj in di↵erent sets has minimum cut (both the value and the actual
cut) equal to that induced by T .

Lemma A.4. ([5, Lemma 19 and Algorithm 3]) Given a T (n,m,)-time algorithm G that constructs a -
partial Gomory-Hu tree of an n-vertex m-edge graph, there is an algorithm that computes an eO(n)-sized collection

L of odd sets in G where s 2 V (G) in eO (T (n,m,)) time such that (i) s 62 B for every B 2 L, (ii) EG(B,B)  
for every B 2 L, and (iii) every odd set B0

not containing s with EG(B0, B0)   intersects with some B 2 L.

Moreover, L is of the form L1 [· · · [LO(logn), where each Li contains disjoint vertex subsets. The algorithm is

deterministic if G is.

Proof. The lemma is the same as [5, Lemma 19] modulo the additional guarantee that L is the union O(log n)
collections of disjoint sets. This is manifest from the implementation of [5, Algorithm 3], using that it has O(log n)
iterations, and in each of them the sets it found are disjoint.

We deliberately make the statement of Lemma A.4 flexible to the choice of partial Gomory-Hu tree algorithm,
given that faster algorithms were developed recently. [5] used the following algorithm in the regime where  is
small.

Lemma A.5. ([48, 47]) There is a randomized eO(m+n2) time algorithm for constructing a -partial Gomory-

Hu tree on an m-edge n-vertex unweighted graph.

24Since L = L1 [· · · [LO(logn) where sets in Li are disjoint by Lemma A.4, for each 1  i  O(logn) we can compute �x,B for
B 2 Li in O(m) time.

Copyright © 2025
Copyright for this paper is retained by authors

Alternatively, we can use the recent almost-linear time Gomory-Hu tree algorithm which does not depend on
 at the cost of having a subpolynomial factor mo(1). Note that contracting edges greater than  in a Gomory-Hu
tree trivially gives a -partial Gomory-Hu tree.

Lemma A.6. ([7]) There is a randomized m1+o(1)
time algorithm that constructs a Gomory-Hu tree on an m-edge

weighted graph w.h.p.

Lemma A.7. ([5, Theorem 6 and Lemma 17]) There are randomized eO(m"�1 + n"�9)-evaluator and

bO(m"�1)-evaluator for M̂G,".

Proof. The runtime of the algorithms can be analyzed as follows. The binary search takes eO(1) iterations. In
each iteration, O("�1) values of ` are enumerated, and for each of them we either use Lemma A.5 for constructing
partial Gomory-Hu tree in Lemma A.4, resulting in an eO(m+ n"�8) time algorithm for computing size-` sets in
Lx, or we use Lemma A.6 and get an bO(m) time algorithm.

By [5, Lemma 17], if �x > 1 + 8" but �x,OG," < 1 + 3", then Lx = ;. Since the above algorithms based on
[5, Theorem 6] correctly identify Lx when �x,OG," � 1 + 3", by checking whether there is indeed an odd set B
returned with �x,B � 1+ 3" we can deduce whether we should return an empty set or not. Similarly, we can also
deduce whether �x  1 + 8" by inspecting if there is a vertex or returned odd set which is violated by a 1 + 8"
factor by x.

With Lemmas A.3 and A.7, Lemma 5.1 follow by appropriately adjusting the parameter ".

Remark A.1. From the discussion above in combination with the deterministic rounding algorithm in Section 6

we can also see that to obtain a deterministic eO"(1) update time decremental matching algorithm, it su�ces to get

a deterministic, eO(m) time algorithm for constructing -partial Gomory-Hu tree. We leave this as an interesting

open question and future direction.

B Omitted Proofs in Section 6

In this section we provide proofs of the following lemmas.

Lemma 6.4. (analogous to [29, Lemma 3.10]) supp(x(i)) ✓ supp(x) holds for each Lmin  i  Lmax after

each operation.

Proof. By reverse induction on i we show that supp(x(i)) ✓ supp(x(i+1)) ✓ supp(x). From (3.5) we have
supp(x(i)) = Fi [

S
0jLmin

suppj(x) [
S

Lmin+1ji Ej and thus it su�ces to show that Fi ✓ supp(x)
and Ej ✓ supp(x) for all Lmin + 1  j  i at all times. That Ej ✓ supp(x) is immediate as Ej is
set to suppj(x) in Rebuild(), and in each subsequent update we will remove e from Ej if xe is changed.
By the property of degree-split, we have Fi ✓ Ei+1 [Fi+1, which by the inductive hypothesis satisfies
Ei+1[Fi+1 ✓ supp(x(i+1)) ✓ supp(x), and thus Fi ✓ supp(x(i+1)) ✓ supp(x) after a call to Rebuild(). Similarly,
in each update after the rebuild, we will remove e from Fi whose xe is changed, and thus the containment is
maintained. This proves the lemma.

Lemma 6.5. (analogous to [29, Lemma 3.11]) w>ex � (1� ")w>x holds after each operation.
25

Proof. Choosing the subgraph returned by degree-split with large weight ensures that, right after a call to

Rebuild(i), we have w(Fi�1) �
w(Ei)+w(Fi)

2 and thus w>x(i�1)
� w>x(i) by that

(B.5) x(i�1)
e � x(i)

e = Fi�1(e) · 2
�(i�1)

� (Fi(e) + Ei(e)) · 2
�i.

On the other hand, there are at most 2i�2
·

"·w>x
Lmax·W

updates between two calls to Rebuild(i) and thus at most

2i�1
·

"·w>x
Lmax·W

edges are deleted from Fi�1, decreasing w>x(i�1) by at most "
Lmax

· w>x. By (B.5), any change

25Unlike [29], we assume the input matching x is already preprocessed by Observation 6.1, and thus the bound stated here is (1�")
instead of (1� 2").

Copyright © 2025
Copyright for this paper is retained by authors

to Ej for j 6= i does not a↵ect the di↵erence between w>x(i�1) and w>x(i). Furthermore, Ei and Fi can only
decrease until Rebuild(i) is called (if Rebuild(i + 1) is called and Fi increases consequently, then Rebuild(i)
will be called as well). This shows except for operations that remove edges from Fi�1, w>x(i�1)

�w>x(i) cannot
decrease, and as such

(B.6) w>x(i�1)
� w>x(i)

�
"

Lmax
·w>x

holds at all times for each i 2 {Lmin + 1, . . . , Lmax}. Chaining (B.6) for all i and noticing that x = x(Lmax) and

ex def
= x(Lmin) conclude the proof.

Lemma 6.6. (analogous to [29, Lemma 3.13]) The amortized time per Update(e, ⌫) of Algorithm 4 is O(W ·

"�1
· L2

max).

Proof. We first show using a similar argument as the proof of Lemma 6.3 that |Fi|  O(2i · kxk1). By backward
induction on i we prove

(B.7) |Fi| 

2

666
2i ·

LmaxX

j=i+1

|Sj | · 2
�j

3

777
.

For i = Lmax this is trivially true. For i < Lmax, right after a call to Rebuild(i + 1) when Ei+1 Si+1, by
Property (1) of the subroutine degree-split we have

|Fi| 

⇠
|Si+1|+ |Fi+1|

2

⇡


2

666

|Si+1|+
l
2i+1

·
PLmax

j=i+2 |Sj | · 2�j
m

2

3

777


2

666
2i ·

LmaxX

j=i+1

|Sj | · 2
�j

3

777
.

On the other hand, for an update after which Rebuild(i+ 1) is not called, as in the proof of Lemma 6.3, if the
right-hand side decreases by one, then we will remove an extra edge from Fi and thus the inequality still holds.
This proves the (B.7) which in turn implies |Fi|  O(2i · kxk1).

This shows that the call to degree-split in Rebuild(i) takes O(2i · kxk1) time. Since Rebuild(i) causes

Rebuild(i� 1), the total running time of Rebuild(i) is
Pi

j=0 O(2j · kxk1) = O(2i · kxk1). Because Rebuild(i)

is called once every 2i�2
·

"·w>x
Lmax·W

� 2i�2
·

"·kxk1
Lmax·W

updates, the amortized update time of Algorithm 4 is
eO(W · "�2

· Lmax).

Copyright © 2025
Copyright for this paper is retained by authors

	Introduction
	Approach
	Results
	Related Work
	Preliminaries

	Technical Overview
	Lazy Updates for Decremental Linear Optimization
	Entropy Regularization
	Dynamic Fractional Matching
	Dynamic Rounding of Fractional Matchings
	Putting Everything Together

	Entropy Regularization for Decremental Linear Optimization
	Notation and General Setup
	Robustness of Entropy Regularization
	Sufficiency of Approximate Solutions
	Near-Optimality of Entropy Regularization

	Decremental Algorithms for Fractional Matching
	Almost-Linear Time Oracle via Convex Flow Algorithms
	Near-Linear Time Reduction to Linear Optimization
	Putting Everything Together

	Dynamic Rounding Algorithms
	Deterministic Sparsifier
	Randomized Degree Sparsifier
	Weighted Rounding for Entropy-Regularized Matching

	Generalizing [AG14]
	Finding Maximally-Violated Constraints
	Omitted Proofs in Section 6

