
Bayesian Adaptation of Network Depth and Width for Continual Learning

Jeevan Thapa 1 Rui Li 1

Abstract
While existing dynamic architecture-based con-
tinual learning methods adapt network width by
growing new branches, they overlook the criti-
cal aspect of network depth. We propose a novel
non-parametric Bayesian approach to infer net-
work depth and adapt network width while main-
taining model performance across tasks. Specif-
ically, we model the growth of network depth
with a beta process and apply drop-connect reg-
ularization to network width using a conjugate
Bernoulli process. Our results show that our pro-
posed method achieves superior or comparable
performance with state-of-the-art methods across
various continual learning benchmarks. Moreover,
our approach can be readily extended to unsuper-
vised continual learning, showcasing competitive
performance compared to existing techniques.

1. Introduction
Continual learning, also known as incremental or lifelong
learning, entails observing a sequence of tasks and incre-
mentally acquiring new knowledge while sustaining perfor-
mance levels for previously learned tasks. It has become im-
perative in settings with evolving data distributions, limited
resources, and privacy concerns, necessitating the retention
of past knowledge without storing the past data (Parisi et al.,
2019). Despite advancements in addressing catastrophic
forgetting (French, 1999) in deep neural networks, existing
approaches to continual learning still face limitations.

An effective strategy for continual learning involves the uti-
lization of dynamic architecture architecture, which grows
the model structure dynamically as new tasks arise. Ap-
proaches exemplified in (Rusu et al., 2016; Yoon et al.,
2018) augment the model’s width and incorporate distinct
sub-networks for individual tasks. Despite their consider-
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Figure 1: Top Row: Both the number of hidden layers (i.e.,
depth) and the number of neurons (i.e., width) per layer
are kept constant for fixed network structure. Middle Row:
Width evolution methods expand width by adding or acti-
vating more neurons with a pre-determined depth. Bottom
Row: Our method enables both network depth and width
to evolve as stochastic processes based on the varying task
complexity.

able success in mitigating forgetting, these methods can-
not adjust the network depth—a crucial factor for overall
model performance, whereas recent advances in deep learn-
ing highlight the significance of depth for optimal network
performance (He et al., 2015; Brown et al., 2020).

Another successful method for continual learning involves
utilizing the natural sequential Bayes approach. VCL
(Nguyen et al., 2018) employs the posterior of neural net-
work weights for the current task t as the prior for the next
task t + 1 to overcome catastrophic forgetting while also
enabling knowledge transfer in both forward and backward
directions. This sequential Bayes method is a type of prior-
focused or regularization-based method. Another Bayesian
continual learning method (Adel et al., 2020) introduces
task-specific weight adjustments. However, the fixed net-
work structures limit the available model capacity for the
ever-evolving lifelong scenario.

Recent works such as HIBNN (Kessler et al., 2021) and
IBPCL (Kumar et al., 2021) combine the powers of these
two worlds and extend the sequential Bayes on network pa-
rameters to incorporate model structure inference. However,
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(b) Beta process and its conjugate Bernoulli process

Figure 2: Demonstration of our Bayesian inference framework. (a) We model the growth of network depth with a beta
process, enabling it to go to infinity in theory. Skip connections allow us to feed the outputs of the last activated hidden layer
to the output head. The activated weights in each layer are depicted with dark-shaded connections, while dropped weights
are illustrated with faint dashed connections. (b) A visualization of a beta process (top) and its conjugate Bernoulli process
(bottom): the bars in the top row represent per-layer activation probabilities derived from the stick-breaking construction
of the beta process. The bottom shows layer-wise weight activation masks (in columns) sampled from the conjugate
Bernoulli process, where each column corresponds to flattened layer-wise weight activation masks. The activated weights
are represented by solid dark squares, and inactivated weights are depicted by empty squares.

they still focus on extending network width, i.e., the number
of active neurons in a hidden layer, with an Indian Buffet
Process (IBP) (Griffiths & Ghahramani, 2011) prior, as in
Figure 1. Given the importance of model depth in determin-
ing neural network performance, continual learning models
with a fixed depth still face limitations as tasks are incre-
mentally available, resulting in performance bottlenecks.

We thus propose a novel non-parametric Bayesian frame-
work that enables both network depth and width to evolve si-
multaneously for continual learning. Specifically, we model
the growth of neural network depth as a beta process and
generate a conjugate Bernoulli process for drop-connect
regularization on network width. We further develop an
efficient estimator for joint inference of network parameters
and network structures. We demonstrate the framework’s
compatibility with different types of backbone networks and
showcase performance improvement over existing methods
across benchmark datasets. Our method can be readily
applied to both supervised and unsupervised learning sce-
narios. Extensive experiments show that by continuously
updating network weights and adapting network depth and
width across tasks, our method achieves superior or com-
parable performance to the existing state-of-the-art models.
We also show competitive performance on unsupervised
continual image generation.

2. Related Works
Current continual learning methods can be broadly classified
into three categories: regularization-based methods (Zenke
et al., 2017; Kirkpatrick et al., 2016; Nguyen et al., 2018;
Ahn et al., 2019; Adel et al., 2020; Rudner et al., 2022);
replay-based techniques (Shin et al., 2017; Rolnick et al.,
2019; Hayes et al., 2020; Acharya et al., 2020; Buzzega
et al., 2020); and dynamic architecture based approaches
(Rusu et al., 2016; Yoon et al., 2018; Serrà et al., 2018; Yan
et al., 2021).

Regularization-based methods: Weight regularization-
based methods aim to control the variations in the network
weights across different tasks. EWC (Kirkpatrick et al.,
2016) uses Fisher Information Matrix to find important
weights for each task, and penalizes changes for those
weights. VCL (Nguyen et al., 2018) employs a sequen-
tial Bayesian approach in the Bayesian neural network and
regularizes changes in weight distribution over tasks. Other
approaches like (Ahn et al., 2019; Adel et al., 2020) follow
the similar line of work. Similarly, within the sequential
Bayesian framework, SFSVI (Rudner et al., 2022) diverges
from weight regularization, opting for function space regu-
larization. This requires an additional dataset as inducing
points to regularize the function space across tasks. Al-
though the sequential Bayesian approach applied in VCL
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and similar works offers a principled framework for contin-
ual learning, the model’s capacity remains bounded by the
fixed network structures.

Dynamic architecture-based methods: To address the bot-
tleneck of fixed model capacity, dynamic architectures grow
network structures to accommodate shifts with new tasks.
Specifically, some methods (Rusu et al., 2016; Yoon et al.,
2018) grow separate branches width-wise for each task.
HAT (Serrà et al., 2018) learns task-specific hard attention
masks on the neuron activations. Similarly, SPG (Konishi
et al., 2023) uses task-specific soft parameter masks in gra-
dients during training. And, UCB (Ebrahimi et al., 2020)
samples task-specific substructures using signal-to-noise
ratio for each weight in the Bayesian neural network. How-
ever, these methods are not able to adapt the network depth.
Similarly, Sequential Bayes approaches, such as HIBNN
(Kessler et al., 2021) and IBPCL (Kumar et al., 2021), apply
IBP priors on the network structure and adapt the network
width in light of data. IBPCL applies the IBP prior to select
features from the previous layer for current node activation,
and it learns task-specific masks by sampling from the IBP
posterior. HIBNN employs an IBP prior to infer node activa-
tions for each data point and extends it to a hierarchical IBP
(Thibaux & Jordan, 2007) to enable regular model structure.
Yet, these methods can adapt network width only. On the
other hand, network architecture adaptation methods for
batch learning (Cortes et al., 2017; Antorán et al., 2020; KC
et al., 2021; Nazaret & Blei, 2022) cannot be straightfor-
wardly applied to address the unique challenges posed by
continual learning.

Unsupervised continual learning: While Bayesian contin-
ual learning such as VCL (Nguyen et al., 2018) and IBPCL
(Kumar et al., 2021) show success in unsupervised settings
by adapting the network widths of variational auto-encoders
(VAEs), other recent unsupervised continual learning works
(Zhai et al., 2019; Ye & Bors, 2023) still have fixed network
structures.

Bayesian network structure adaptation: While some re-
cent works (KC et al., 2021; Regmi & Li, 2023) adopt
stochastic processes for network adaptation, they are not
designed to address catastrophic forgetting. Our adaptation
method for continual learning differs from them in terms of:
i) We propose a full sequential Bayesian inference to con-
tinuously co-adapt both network weights and network struc-
ture as tasks become incrementally available, rather than
just generating a point estimate (i.e., MAP estimate) for the
network weights. This contribution significantly enhances
the model’s knowledge transfer capability, as shown in our
ablation study. ii) We apply binary masks directly over
weights, rather than over neurons. This strategy improves
the performance of mitigating forgetting, since masking out
a neuron shuts off all its connected weights and leads to

potential information loss. iii) We introduce a weight im-
portance variable into our variational distribution to further
customize the masks for task-incremental continual learning,
which further improves knowledge retention.

3. Bayesian Continual Learning
3.1. Bayesian Neural Network

Early work on Bayesian neural networks dates back to
(MacKay, 1992b;a). In contrast to deterministic neural net-
works, where only parameters are considered, Bayesian
neural networks define a prior distribution p(θ) over net-
work weights θ. The objective, given a dataset D, is to infer
the posterior over the weights, denoted as p(θ| D). Sev-
eral approaches, such as Laplace Approximation (MacKay,
1992b) and Hamiltonian Monte Carlo (Neal, 2012), have
been proposed for this purpose but they cannot scale to large
datasets and network sizes. Variational inference (Hinton
& van Camp, 1993; Graves, 2011) offers a more efficient
solution by transforming the inference problem into an opti-
mization problem. The framework introduces a variational
distribution q(θ) within a variational family Q to approxi-
mate the true posterior p(θ| D), and this approximation is
optimized as:

q(θ) = argmin
q̃∈Q

KL[q̃(θ)||p(θ| D)]

Specifically, Bayes-by-Backprop (Blundell et al., 2015) im-
proves upon (Graves, 2011) by formulating an unbiased
estimator for gradients using the re-parameterization trick.
Our work extends this line of development to formulate a
continual learner that sequentially learns the posterior over
weights as well as the network structure.

3.2. Sequential Bayes

Given a sequence of tasks {D1,D2, ...,DT }, Bayesian in-
ference can be readily applied to continual learning. The
posterior of θ after observing t tasks can be obtained as:

p(θ| D1, ...,Dt) ∝ p(θ| D1, ...,Dt−1)p(Dt |θ) (1)

The above recursion shows that the posterior for task t can
be inferred by using the likelihood of the current data Dt

and treating the posterior learned from the past t−1 tasks as
the prior. With θ representing only network weights, VCL
(Nguyen et al., 2018) leverages this approach to sequentially
update the distribution of the model weights given different
tasks. IBPCL (Kumar et al., 2021) and HIBNN (Kessler
et al., 2021) apply the procedure to both the model weights
and width with different prior distributions over them. We
take a step further to jointly adapt the network depth and
width with two distinct yet related stochastic process priors.

3



Bayesian Adaptation of Network Depth and Width for Continual Learning

4. Network Depth and Width Adaptation for
Continual Learning

Our non-parametric Bayesian continual learning method
models the growth of network depth with a beta process
and adapts its width through drop-connect regularization
based on a conjugate Bernoulli process. Since the exact
posterior inference is intractable, we design a stochastic
variational inference procedure to jointly update the posteri-
ors for both network structures (i.e., depth and width) and
network weights given new tasks.

4.1. Bayesian Inference for Network Structures

For brevity, we first describe the neural network structure as
a likelihood and specify stochastic process priors without
task information from continual learning scenarios.

4.1.1. LIKELIHOOD FORMULATION

We formulate a neural network with infinite depth, denoting
the output hl of layer l, with l = 1, . . . ,∞, as:

hl = σ
((

W(l) ⊙ Z(l)
)
hl−1

)
+ hl−1 (2)

where, σ represents a non-linearity operation, W(l) ∈
RM×M denotes a weight matrix, Z(l) denotes a binary
weight activation mask induced from a conjugate Bernoulli
process for layer l, and ⊙ denotes elementwise multipli-
cation of the two matrices. M is the maximum number of
nodes (i.e., width) in each hidden layer. We place a Gaussian
prior over each weight parameter w(l)

m,n connecting (l− 1)th

layer’s node m to layer l’s node n, i.e. w(l)
m,n ∼ N (µ, σ2).

The element z(l)m,n = 1 of the weight activation mask Z(l)

indicates the corresponding connection is activated and
z
(l)
m,n = 0 deactivates the connection, as in Figure 2. For

backbone networks other than fully connected ones, such as
a convolutional neural network (CNN), we readily replace
the weight matrices with convolutional kernel tensors and
apply the binary layer-wise activation masks to filter these
tensors. The skip connections allow the last activated layer
to be connected to the output layer or head f(·) by skipping
deactivated layers in between.

Given a dataset D = {(xi,yi)}Ni=1, we thus specify the
likelihood with the output layer of the neural network as:

p(D |W ,Z) =
N∏
i=1

Cat (yi|f(xi;W,Z)) (3)

whereW = {W(l)} and Z = {Z(l)} denote weight tensors
and weight activation masks across the layers, respectively.

4.1.2. PRIORS OVER NETWORK STRUCTURES

We specify a beta process (Hjort, 1990) as a prior over
the number of hidden layers l (i.e., network depth) and
perform drop-connect regularization over the connections
between adjacent layers (i.e., network width) with its conju-
gate Bernoulli process. Specifically, we compute the beta
process with a stick-breaking construction (Paisley et al.,
2010) as:

vl ∼ Beta(α, β), πl =
l∏

i=1

vi (4)

We sample vl from a beta distribution with parameters α and
β for each layer l. The activation probability of the lth layer,
denoted as πl, is the cumulative product of the vl samples
up to the layer l. We proceed to sample the binary weight
activation mask for the layer from a conjugate Bernoulli
process, z(l)m,n ∼ Ber(πl).

4.1.3. STRUCTURED VARIATIONAL INFERENCE

Exact inference of the weightsW and the activation masks
Z is intractable due to the non-linearity of neural network
and l → ∞. Hence, we rely on variational inference for
approximate inference. Specifically, we employ structured
stochastic variational inference (Hoffman & Blei, 2015),
capturing the dependency between Z and v. We specify the
variational distribution q(v,Z,W) with a truncation level
K to approximate the true posterior as:

q(v,Z,W) = q(v)q(Z|v)q(W)

=
K∏

k=1

q(vk)
M∏

m=1

M∏
n=1

q
(
z(k)m,n

)
q
(
w(k)

m,n

)
(5)

where,

q(v) =
K∏

k=1

Beta(ak, bk),

q(Z|v) =
K∏

k=1

M∏
m=1

M∏
n=1

ConBer

(
k∏

i=1

vk

)

q(W) =
K∏

k=1

M∏
m=1

M∏
n=1

N
(
µ(k)
m,n,

(
σ(k)
m,n

)2)
{µ(k)

m,n, σ
(k)
m,n} and {ak, bk} denote the variational parame-

ters for the corresponding distributions, respectively. The
truncation on the variational distribution q(v) can be re-
laxed as in (Xu et al., 2019) to better approximate the true
posterior with a potentially infinite number of layers. We
also relax the discrete constraint for the binary activation
masks Z with a concrete Bernoulli (Maddison et al., 2017;
Jang et al., 2017).
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4.2. Network Structure Adaptation

Following the sequential Bayes from Equation (1), we set
the posterior obtained from the previous task t − 1 as the
prior for the current task t. The evidence lower bound
(ELBO) to the log marginal likelihood of the current task t
is:

L(t) = Eqt(v,Z,W)

[
log p(Dt |v,Z,W))

]
−KL

[
qt(v)||qt−1(v)

]
−KL

[
qt(Z|v)||qt−1(Z|v)

]
−KL

[
qt(W)||qt−1(W)

]
(6)

where, q0(v) = p(v), q0(Z|v) = p(Z|v), and q0(W) =
p(W) are the initial priors. The first term on the RHS is the
log-likelihood that adapts the network to the current task
t. The first two Kullback–Leibler (KL) divergence terms
on the network structure variables v and Z regularize the
changes in network depth and width, and the KL on weights
W regularizes the changes in the weight distribution. They
jointly adapt the network structure and weight changes from
the previous tasks to retain previously acquired knowledge.
Overall, the ELBO allows a trade-off between model evo-
lution to adapt to a new task and structural and weight
regularization for knowledge retention.

We adopt Monte Carlo estimation to approximate the log-
likelihood and the KL divergence on Bernoulli distributions.
The KL divergence on weightsW and the beta distributions
can be analytically computed. Details about the computation
of the ELBO are in Appendix.

4.3. Task-Incremental Learning

We apply our method for task-incremental learning by
learning task-specific masks on the network weights.
Specifically, we add a weight importance parameter
γ
(k)
m,n to our variational distribution, that captures the

additional importance for each connection and thus,
re-define the variational distribution as q

(
z
(k)
m,n

)
=

ConBer
(
z
(k)
m,n|sigmoid

(
γ
(k)
m,n + logit(πk)

))
.

After updating the network structure parameters for a new
task t, we sample a fixed mask Z̄t specific to the task.
We sample R layer-wise activation probabilities π(r)

k s from
the stick-breaking construction. Then, we incorporate the
weight importance γ

(k)
m,n to get the corresponding weight

activation probability. We accumulate the weight activation
probabilities as π(r)

t =
{

sigmoid
(
γ
(k)
m,n + logit(π(r)

k )
)}

,
we calculate the task-specific average weight activation prob-
ability π̄t and sample the task-specific mask as:

Z̄t ∼ Ber (π̄t) , π̄t =
1

R

R∑
r=1

π
(r)
t

Here, we make slight abuse of notation to sample the task-
specific mask from a Bernoulli distribution. To reconcile the
disparity arising from the non-zero temperature in concrete
Bernoulli during training, we further tune the task-specific
sub-network on the dataset Dt. Although the task-specific
sub-networks are especially relevant for task-incremental
learning, they can be readily extended to class-incremental
learning by including an explicit task identifier.

4.4. Unsupervised Continual Learning

Our method can also be extended to generative continual
learning to enable model structure adaptation. In partic-
ular, we apply our method for sequential generation in a
variational autoencoder (VAE) (Kingma & Welling, 2013).

Analogous to our supervised learning setting, we introduce a
variational distribution q(v,Z,W), and a latent representa-
tion s for each data point xi. Although adapting both encoder
and decoder networks is possible as in (Regmi & Li, 2023),
the primary performance contribution of a VAE model re-
lies on the decoder/generator. We thus set up task-specific
deterministic encoders qt(s|xi), and apply our method to
infer the network structure of the decoder p(xi|s,v,Z,W)
only. For a fair comparison, we experiment with an adaptive
decoder accompanied by smaller task-specific heads as in
VCL (Nguyen et al., 2018).

The overall ELBO integrating our structural inference into
VAEs for unsupervised continual learning can thus be ex-
pressed as:

LVAE(t) = −KL[qt(v,Z,W)||qt−1(v,Z,W)]+

Nt∑
i=1

[
Eqt(v,Z,W)

[
Eqt(s|xi)

[
log p(xi|s,v,Z,W)

]]
−KL

[
qt(s|xi)||p(s)

]]
(7)

where, p(s) denotes the prior distribution over latent vector
s. The first term on the RHS of Equation (7) is the KL term
that regularizes decoder structure and weight distribution,
and thus mitigates catastrophic forgetting. The second term
is the log-likelihood. The third term is the KL over the latent
representation regularizing the distribution over the VAE
latent variable.

5. Experiments
We analyze the behavior of our framework across various
settings on benchmark datasets. First, we illustrate how our
formulation enables the evolution of structure across tasks
while maintaining model performance in prior tasks. Next,
we evaluate our method in task-incremental learning using
different backbone networks across benchmark datasets.
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Figure 3: Evolution of the network structure in continual learning visualized through layer-wise activation probabilities (top)
and weight activation masks (bottom) on split fashion MNIST. As the tasks become incrementally available, the activation
probabilities increase and more weights in the corresponding layers are activated.

Table 1: Performance comparison on MNIST variants. Test accuracies are presented as percentages, averaged across five
random seeds. The best results are highlighted in bold, while the second-best methods are underlined.

Methods permuted MNIST split MNIST split fashion MNIST
EWC (Kirkpatrick et al., 2016) 96.86 ± 0.02 99.01 ± 0.03 97.87 ± 0.98
VCL (Nguyen et al., 2018) 97.11 ± 0.06 98.51 ± 0.07 98.61 ± 0.19
UCL (Ahn et al., 2019) 96.55 ± 0.34 99.75 ± 0.03 99.15 ± 0.16
SFSVI (Rudner et al., 2022) 97.53 ± 0.06 99.74 ± 0.05 99.12 ± 0.09
DEN (Yoon et al., 2018) 97.38 ± 0.04 99.01 ± 0.02 99.08 ± 0.07
HAT (Serrà et al., 2018) 97.48 ± 0.04 99.65 ± 0.01 98.93 ± 0.15
HIBNN (Kessler et al., 2021) 97.00 ± 0.30 98.71 ± 0.40 96.25 ± 1.97
IBPCL (Kumar et al., 2021) 98.18 ± 0.19 99.79 ± 0.03 99.27 ± 0.02
SPG (Konishi et al., 2023) 97.36 ± 0.12 99.28 ± 0.16 99.21 ± 0.03
Ours 97.98 ± 0.04 99.76 ± 0.05 99.33 ± 0.06

Following that, we conduct an ablation study to investigate
the importance of each component in our method. Finally,
we showcase the versatility of our approach by adapting it
to unsupervised continual learning and class-incremental
learning.1

5.1. Adaptive Network Structures for Continual
Learning

Figure 3 demonstrates the evolution of layer-wise activa-
tions and their corresponding weight masks across tasks in
a fully connected network with maximum width M = 100
and truncation K = 5 on split fashion MNIST dataset. We
threshold out layer-wise masks with activation probabili-
ties under 3% during sampling task-specific masks. The
results show that as the new tasks come in, deeper layers
are activated. Meanwhile, the activation probabilities of the
activated shallow layers also gradually increase and their
corresponding layer-wise weight masks become denser.

1The link to our codebase is https://github.com/
jt4812/bayes_struc_adap_cl. All the details about im-
plementations and settings are in Appendix.

5.2. Applications on Fully-Connected Networks

We experiment with fully connected networks on permuted
MNIST, split MNIST, and split fashion MNIST, all with 5
tasks. And, we use the final accuracy across tasks as the
evaluation metric. We limit the network width to 200 for
all experiments except for DEN, which grows width with
new tasks. We keep other methods’ hyper-parameters fixed
at their best default settings, as specified in the respective
papers. In our experiments, we set a truncation level K of
3. Additionally, for the baseline methods, we choose the
best-performing models at depths of 1, 2, and 3.

Table 1 presents the results of our comparison. For permuted
MNIST and split MNIST datasets, our method performs
second only to IBPCL. Moreover, for the Fashion MNIST
dataset, our method outperforms all competing methods,
with IBPCL ranking second to our approach. This suggests
the dominance of Bayesian regularization methods with
task-specific masks over regularization-only and dynamic
architecture-only methods.

We also investigate the effect of truncation level K and
maximum width M settings on the performance and the
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Table 2: Performance evaluation with Alexnet architecture. Test accuracies are presented in percentages, averaged across
five random seeds. The best results are highlighted in bold, and the second-best methods are underlined.

Methods CIFAR10-5 CIFAR100-10 CIFAR100-20 TinyImagenet-10
EWC (Kirkpatrick et al., 2016) 81.54 ± 0.87 62.31 ± 1.09 65.20 ± 2.02 42.03 ± 0.75
VCL (Nguyen et al., 2018) 81.89 ± 2.32 64.79 ± 0.50 72.46 ± 0.82 40.07 ± 0.29
HAT (Serrà et al., 2018) 92.29 ± 0.19 72.42 ± 0.36 75.40 ± 0.53 44.98 ± 2.87
UCL (Ahn et al., 2019) 85.89 ± 0.42 64.80 ± 0.80 74.00 ± 0.60 46.46 ± 0.72
IBPCL (Kumar et al., 2021) 92.53 ± 0.17 68.84 ± 1.09 77.13 ± 0.94 48.46 ± 0.65
SPG (Konishi et al., 2023) 88.40 ± 0.40 68.94 ± 0.56 75.26 ± 0.49 49.72 ± 0.22
Ours 91.44 ± 0.16 71.83 ± 0.48 79.93 ± 0.28 50.59 ± 0.42

Note: We exclude HIBNN and DEN due to the lack of CNN implementations in their codebases. SFSVI’s performance is in Appendix.
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Figure 4: Performance of dynamic architecture-based methods changes with their network depths in comparison with our
framework’s truncation level (K).

inferred network structures of fully-connected networks in
Appendix. The results show that the model performance and
the inferred network depth remain stable with reasonably
large truncation K and M . As the maximum network width
M increases, the inferred depth decreases first and then
becomes stable, while the model performance remains stable
for a wide range of maximum network widths.

5.3. Applications on CNNs

We further evaluate our proposed framework with convolu-
tional layers. Alexnet (Krizhevsky et al., 2012) is a popular
choice in continual learning for vision datasets (Serrà et al.,
2018; Kumar et al., 2021; Konishi et al., 2023). Hence, to
compare against the existing methods, we adapt our method
in the Alexnet architecture. And, to further showcase our
method’s capability for structure adaptation in CNN, we
experiment with fully convolutional architectures.

5.3.1. ALEXNET AS THE BACKBONE NETWORK

Following (Serrà et al., 2018; Kumar et al., 2021; Konishi
et al., 2023), we use an architecture consisting of three
convolutional layers with channel widths of 128, 256, and
512, along with two fully connected layers having a width
of 2048. For our network, due to max-pooling layers after
each convolutional layer, we omit the skip connections in
the convolutional layers. Unlike IBPCL, we do not include
any task-specific batch normalization.

The results, in Table 2, indicate the performance of our
model across various vision datasets. Specifically, for
CIFAR10-5, our model ranks third, behind HAT and IBPCL.
In the case of CIFAR100-10, our model outperforms other
methods except HAT. Interestingly, when faced with the
more challenging CIFAR100-20 dataset, which entails twice
the number of tasks compared to CIFAR100-10, our method
surpasses the performance of all the baseline methods. Fur-
thermore, on the relatively more difficult TinyImagenet-10
dataset, our proposed method exhibits superior performance
compared to other methods.

5.3.2. PERFORMANCE COMPARISON WITH DYNAMIC
ARCHITECTURE METHODS

We investigate our model’s capability to adapt network struc-
ture with different truncation levels compared to other dy-
namic architecture-based methods. For this experiment, we
use a fully convolutional backbone with K convolutional
layers only, corresponding to truncation level K. The first
three layers have max pooling layers while the remaining
K − 3 layers do not. And, the structure inference is applied
over the whole truncation.

Figure 4 shows the performance robustness of our frame-
work and other dynamic architecture-based methods to the
change of network depths. Our method is more robust to the
specification of model depth/truncation levels with stable
performance on CIFAR and Tiny-Imagenet datasets. The
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Figure 5: Performance evaluation of our method in unsupervised continual learning. (a) The upper and lower rows consist of
sequential generation results for one-MNIST and not-MNIST datasets, respectively. (b) Test log-likelihoods for one-MNIST
across tasks.

performance of IBPCL and HAT is comparable with ours
only for shallow network structures (i.e., l ≤ 5). As we
increase the model depth, their performance quickly drops.
The performance of HAT collapses even faster. We specu-
late that this is because their task-specific masks accumulate
sparsity across layers as the network depth increases, and
this leads to a decrease in the number of complete activated
pathways between the input layers and the output heads. In
contrast, our model formulation alleviates the issue caused
by the in-between sparse pathways with skip-connections
and allows us to effectively adapt the network depth without
worrying about the performance collapse caused by deep
network structures.

Table 3: Test accuracies of the ablation study on CIFAR10-5
with Alexnet and fullyConv-7 network.

Methods Alexnet fullyConv-7
ada-st + map wt 77.71 ± 2.40 79.78 ± 0.98
ada-st + Bayes wt 84.48 ± 0.56 86.54 ± 0.79
ada-st + map wt + tsm 87.34 ± 0.74 86.55 ± 0.76
ada-st + Bayes wt + tsm 91.44 ± 0.16 91.02 ± 0.29

5.4. Ablation Study

We explore the effects of sequential Bayesian inference over
weights (Bayes wt) and task-specific masks (tsm) on our
network structure adaptation (ada-st) in detail by compar-
ing with Maximum A Posteriori (map wt) estimation on
weights. The results are summarized in Table 3, where the
backbone networks are Alexnet and a fully convolutional
network with 7 layers (fullyConv-7) with a comparable pa-
rameter count on CIFAR10-5. We observe that sequential
Bayes on weight yields enhanced performance compared
to the MAP estimation. The results also show that the
task-specific masks improve the performance for both MAP
estimation and sequential Bayes. With task-specific masks,

our structure adaptation for Alexnet performs better than
fullyConv-7, while the opposite results are observed in the
cases without task-specific masks. Overall, our proposed
approach, integrating sequential Bayesian inference on both
weights and network structures with task-specific masks,
outperforms the alternative configurations.

5.5. Unsupervised Continual Learning

For continual image generation, we evaluate our method
on MNIST and not-MNIST against naive training, EWC,
VCL, and IBPCL. We fix the latent dimension to 50 and the
network width to 500. For EWC, we report the best result
obtained with λ = 10. We set a truncation level of 2 to
ensure a fair comparison with other methods. And, we cal-
culate test data log-likelihoods using importance sampling
with 5000 samples per data point.

The qualitative results depicting sequential image genera-
tion are illustrated in Figure 5a. It is evident that the naive
method, without any retraining, experiences severe catas-
trophic forgetting across both datasets. Similarly, while
EWC exhibits improved retention, it still demonstrates re-
duced performance for the initial tasks following training
on subsequent tasks. In contrast, VCL, IBPCL, and our
approach showcase notably enhanced generative outcomes.

For quantitative analysis, we report the test log-likelihoods
shown in Figure 5b for the one-MNIST dataset. Here, we
exclude the naive method due to its comparatively inferior
performance. Our method outperforms EWC and VCL con-
sistently across all tasks. Although IBPCL exhibits superior
performance for the initial five tasks, our method surpasses
it for the remaining tasks, except the eighth, suggesting
that our model outperforms IBPCL for a longer chain of
continual image generation tasks.
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5.6. Case Study: Class-Incremental Learning

We showcase the application of our structure adaptation
framework in a class-incremental learning scenario where
the task ID is not provided in prediction. For this setting,
we discard the task-specific masks and use a single-headed
architecture. Therefore, we use the variational distribution
without the weight importance parameter γ(k)

m,n. We adapt
the ER-ACE framework proposed in (Caccia et al., 2022).
Specifically, for each new training data point, ER-ACE cal-
culates the likelihood across the new task labels only, and
for the replay data points, it computes the likelihood across
the entire class labels. This strategy is successful in reduc-
ing abrupt changes in feature representations for previous
tasks and helps mitigate forgetting in the class-incremental
learning scenario.

We evaluate a single-headed 7-layered fully convolutional
network (fullyConv-7) using the CIFAR10-5 dataset. We
employ a memory replay of size 500 with reservoir sam-
pling to sample examples for replay in future tasks. We
conduct a comparison of our structure adaptation in cases
involving both sequential Bayesian inference and Maximum
A Posteriori for weights. Without Bayesian inference on
weights and structure adaptation, our method reduces to
the ER-ACE framework. Table 4 shows that by inferring
the model structures given the dataset, our structure adapta-
tion framework improves the model’s performance for both
weight MAP and Bayesian weight inference cases. We fur-
ther observe that sequential Bayesian inference on weights
enhances performance over the MAP estimation. Addition-
ally, the combination of Bayesian weight inference with our
structure adaptation leads to the best performance given the
architecture and the coreset size.

Table 4: Mean Test accuracy ±1 std across tasks for class-
incremental learning on CIFAR10-5 dataset with fullyConv-
7 architecture with a coreset of size 500.

Methods Accuracy (%)
ER-ACE 50.86 ± 2.44
ER-ACE + Bayes wt 53.16 ± 1.09
ER-ACE + ada-st 53.83 ± 1.34
ER-ACE + ada-st + Bayes wt (Ours) 56.55 ± 0.61

6. Limitations
The challenge with adding pooling layers is due to the
stochastic dimensionality of the inferred layers. For the
fully convolutional network, we insert the pooling layers
only in the first three layers and perform depth inference
over the subsequent convolutional layers. An alternative
approach to pooling layers is to use strided convolutions and
design the network in a way such that the feature map size
(i.e., product of feature map height, width, and channels) is

constant across convolutional layers.

Truncation over backbone networks for the variational
distribution can be relaxed using Russian Roulette as pointed
out in section 4.1.3.

7. Conclusion
We propose a novel non-parametric Bayesian inference
framework by integrating network structural adaptation into
sequential Bayes for continual learning. Specifically, we
model the growth of network depth as a beta process and per-
form drop-connect regularization for network width with a
conjugate Bernoulli process. We develop an efficient estima-
tor to jointly infer the depth and adapt the width continually.
We demonstrate the versatility of our framework on different
types of backbone networks in both supervised and unsuper-
vised continual learning. The results show that it can retain
performance levels that are either superior or on par with the
state-of-the-art methods across various benchmark datasets.
We also demonstrate that our proposed framework can be
readily extended to class-incremental learning scenarios.
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A. Variational Inference Framework
The Evidence Lower Bound for a mini-batch of size B of task t can be written as:

L(t) = Nt

B

Nt∑
i=1

Eqt(v,Z,W)

[
log p(xt,i|v,Z,W))

]
−KL

[
qt(v)||qt−1(v)

]
−KL

[
qt(Z|v)||qt−1(Z|v)

]
−KL

[
qt(W)||qt−1(W)

]
(8)

We approximate the log-likelihood term using Monte Carlo estimation. Using θ = (v,Z,W), we approximate the
log-likelihood as:

Eqt(θ)

[
log p(xt,i|θ)

]
≈ 1

S

∑
s

log p
(

xt,i|θ(s)
)
,

where, θ(s) ∼ qt(θ) (9)

.

We discuss the KL divergence calculation for each KL term and the sampling mechanism for the corresponding distributions
in the subsequent sections.

A.1. Gaussian Weight Distribution Reparameterization

We use the reparameterization trick to sample from the variational weight distribution w
(k)
m,n ∼ N

(
µ
(k)
m,n,

(
σ
(k)
m,n

)2)
.

w(k)
m,n = µ(k)

m,n + σ(k)
m,n × ϵ, ϵ ∼ N (0, 1) (10)

Let ϕ =
(
µ
(k)
m,n, σ

(k)
m,n

)
represents the variational parameters for weight w(k)

m,n. The above trick moves the stochasticity from

the weight to the random variable ϵ and so allows the gradient calculation for any differentiable function g
(
w

(k)
m,n

)
w.r.t ϕ.

∇ϕ Eq
(
w

(k)
m,n

) [g (w(k)
m,n

) ]
= Eϵ∼N (0,1)

[
∇ϕg

(
w(k)

m,n

) ]∣∣∣
w

(k)
m,n=µ

(k)
m,n+σ

(k)
m,n×ϵ

(11)

The KL for the Gaussian distribution has a closed-form solution (Kingma & Welling, 2013).

A.2. Relaxation of Bernoulli Distribution

During training, we relax the discrete constraint for Z by using a concrete Bernoulli (Maddison et al., 2017; Jang et al.,
2017).

logConBer
(
z
(k)
l,m|πk, τ

)
= log τ − τ logit

(
z
(k)
l,m

)
+ logit

(
π
(k)
l,m

)
−2 log

(
1 + exp

(
−τ logit

(
z
(k)
l,m

)
+ logit

(
π
(k)
l,m

)))
(12)

where, τ is temperature and logit(x) = log x
1−x is a logit function. The temperature controls the smoothness of the

distribution and we recover the discrete Bernoulli as τ → 0. We generate random samples z(k)l,m from the distribution by first
sampling ϵ from a uniform distribution and passing through the function as:

z
(k)
l,m = sigmoid

(
τ−1 (logit(πk) + logit(ϵ))

)
,

ϵ ∼ Uniform(0, 1) (13)

This relaxation of Bernoulli allows backpropagation of the ELBO while sampling from the distribution. The KL on Concrete
Bernoulli requires Monte Carlo estimation by sampling from the variational distribution.
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A.3. Implicit Reparameterization for Beta Distribution

Unlike Gaussian, an easy explicit reparameterization is not possible for beta distribution. Hence, we rely on implicit
reparameterization instead.

Using the beta CDF Fϕ(v) = ϵ ∼ Uniform(0, 1) as the transformation function, we apply implicit differentiation to avoid
F−1. Here, ϕ = (α, β) represents the beta distribution parameters. Applying the total derivative on both sides leads to the
gradient of v w.r.t. ϕ.

∇ϕv = − (∇vFϕ(v))
−1∇ϕFϕ(v) (14)

This definition of ∇ϕv allows the gradient computation of any differentiable function g(v) w.r.t. the beta parameters ϕ.
Especially, in the context of our lower bound 8, we are interested in a gradient of expectation of g(v) under the distribution
qϕ(v).

∇ϕ Eqϕ(v)[g(v)] = Eqϕ(v[∇vg(v)∇ϕv]
∣∣
v=F−1

ϕ (ϵ)
(15)

While ∇vFϕ(v) = qϕ(v), ∇ϕFϕ(v) does not have an analytic solution. Hence, we resort to numerical approximation for
its computation (Jankowiak & Obermeyer, 2018). Sampling from beta distribution can be done with rejection sampling
or by sampling from gamma distributions. The implementation for the implicit reparameterization and sampling for beta
distribution is available in PyTorch (Paszke et al., 2017).

Likewise, the KL on beta distributions for v can be obtained as:

KL
[
q(v)||p(v)

]
=
∑
k

log
B(α0, β0)

B(ak, bk)
+ (ak − α0)Ψ(ak) + (bk − β0)Ψ(bk)

+ (ak − α0 + bk − β0)Ψ(ak + bk) (16)

where, B and Ψ represent beta and di-gamma functions respectively.

B. Depth Inference and Weight Posterior Redefinition
The stick-breaking construction of the beta process leads to an exponential increase in sparsity in the masks Z(k). Conse-
quently, we define the final activated layer L as the final layer with at least one activated weight. Considering our use of
relaxed Bernoulli during model training, we introduce a threshold ϵ to compute the depth.

L = max
k

{
k
∣∣∑

m

∑
n

z(k)m,n > ϵ
}

(17)

∑
l

∑
m z

(k)
l,m signifies the pseudo-count of activated weights during training in layer k, while serving as the true count of

activated weights during testing, as we use Bernoulli distribution for predictions.

For task t, when L ≤ K layers are activated, the model’s predictions depend only on the first L layers and not the succeeding
layers. Thus the exact posterior incorporates information solely from the data for W(k) up to k ≤ L. As a result, the
posterior of the W(k) with k > L must match the prior. We incorporate this into our variational approximation as:

qt(W;L) =
L∏

k=1

qt

(
W(k)

) K∏
k=L+1

pt

(
W(k)

)
(18)

This redefinition of the posterior approximation allows the propagation of small initialization values for the variances of
variational weight distribution to subsequent tasks in inactive layers. Without this adaptation, the variances in the inactive
layers tend to increase, potentially hindering the training of newly activated layers for future tasks.

C. Experimental Setup
C.1. Datasets

For supervised continual learning using fully connected neural networks, three datasets are used: permuted MNIST, split
MNIST, and split fashion MNIST. Permuted MNIST involves a 10-class classification problem where pixels in all task

14



Bayesian Adaptation of Network Depth and Width for Continual Learning

images are shuffled based on a fixed permutation. In a similar vein, split MNIST comprises five binary classification tasks
presented sequentially: 0/1, 2/3, ..., to 8/9. Furthermore, split fashion MNIST involves five binary classification tasks related
to clothing.

To explore convolutional neural networks, experiments are conducted with split CIFAR10-5, split CIFAR100-10, split
CIFAR100-20, and split TinyImagenet-10. Split CIFAR10-5 includes a sequence of five tasks from CIFAR10, while split
CIFAR100-n involves n tasks from CIFAR100. Similarly, split TinyImagenet-10 comprises ten tasks from the TinyImagenet
dataset.

For unsupervised continual learning, we use two datasets: one-MNIST and not-MNIST for evaluation. Both datasets consist
of 10 tasks. The one-MNIST dataset consists of sequential images for digits 0, 1, ... to 9 from the MNIST dataset and the
not-MNIST dataset consists of sequential images for alphabets A, B, ..., to J.

C.2. Hyper-parameter Settings for Fully Connected Experiments

We use fully connected neural networks with a fixed width of 200 and maintain a truncation level K = 3. We apply
LeakyReLU activation with a negative slope of 0.01. We use a batch size of 512 for all experiments, and we estimate
the log-likelihood using 10 samples and 100 samples for the test. We train using the Adam optimizer its default settings
β1 = 0.9, β2 = 0.999 and we re-initialize the optimizer for each task. Additionally, we found that multiplying the KL terms
by a factor of 0.1 enhances model training. The minimum pseudo-count ϵ for activated weights to identify the activated layer
is taken to be 0.001. For each Bayesian layer’s weight, we place a standard normal N (0, 1) prior. And, for the first task, we
initialize the standard deviations of all variational weight distributions with a small value of 0.0001. For the subsequent
tasks, we employ sequential Bayes by copying the parameters of the previous task’s posterior to the next task’s prior. For
task-incremental learning with weight importance parameter γ, we reinitialize γ = 0.5 for each new task to ensure the
masks are tailored to each specific task.

We ran all the experiments five times and reported the mean and standard deviation of the final average accuracy across
tasks.

C.2.1. PERMUTED MNIST

We use α = 75 and β = 300 as beta priors for the permuted MNIST experiment. Additionally, we initialize the variational
structure parameters as ak = α and bk = β for the first task. The temperature values for both the prior and posterior concrete
Bernoulli are kept constant at 0.3. We employ two learning rates: one for weights and another for structure. The structure
learning rate is kept constant at 0.03. The weight learning rate is initialized at 0.02 and reduced by 0.85 with each new
task. We train for 25 epochs for the permuted MNIST. After sampling the task-specific masks, we train for an additional 15
epochs by reducing the weight learning rate for the task by a factor of 0.1. We apply the KL mask following (Kumar et al.,
2021) only to the activated weights, and we freeze the structure parameters during this step.

C.2.2. SPLIT MNIST AND SPLIT FASHION MNIST

For task-specific mask experiments in split MNIST and split fashion MNIST, we initialize the structure priors as α = 200
and β = 300. , for both datasets, we use a fixed structure learning rate of 0.1 and initialize the weight learning rate as
0.008 which is reduced by 0.85 for every new task. We use temperature parameter τ = 0.1 for both prior and posterior
concrete Bernoulli distributions. We train for 15 epochs for both datasets and an additional 10 for finetuning after sampling
task-specific masks. While sampling the task-specific mask, we consider the layers with weight activation below 2.5% as
unactivated, ensuring sparsely activated deeper layers are trimmed off. Other hyper-parameters follow permuted MNIST’s
experimental settings.

C.3. Hyper-parameter Settings for CNN Experiments

We provide the details regarding hyper-parameters for our experiments with task-specific masks in the following section.
Subsequently, we elaborate on the two model architecture settings employed in the CNN experiments.
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C.3.1. SPLIT CIFAR10-5, SPLIT CIFAR100-n AND SPLIT TINYIMAGENET-10

We use a batch size of 256 and set temperature τ = 0.1 for all CNN experiments. We use 2 Monte Carlo samples during
training and 10 samples for predictions. Following (Kumar et al., 2021), a single mask is employed per channel for each
convolutional layer. We remove task-specific normalization used by (Kumar et al., 2021) for fair comparison. And, following
(Konishi et al., 2023), we use 32 × 32 images for training and testing. In addition to hyper-parameter search, we utilize the
validation set to determine the optimal model weights during training. And, we set the prior for the beta process as α = 300
and β = 200, ensuring activation of at least the first three layers. A larger α compared to β ensures that the model activates
deeper layers, as opposed to the reverse setting. Moreover, using larger values for the hyper-parameters of the beta process
ensures a peakier distribution, reducing variance for the beta process.

We use a learning rate of 0.003 for the weights in all CIFAR experiments and 0.001 for TinyImagenet-10. Additionally, we
reduce the weight learning rate by a factor of 0.85 for every new task. For the structure, we maintain a constant learning rate
of 0.2 for CIFAR10-5, CIFAR100-10, and TinyImagenet-10. And, for CIFAR100-20, we find that a learning rate of 0.5
works best for the structure. During shared training, we run 25 epochs, and for selective fine-tuning of the task-specific mask,
we use 15 epochs for Alexnet experiments. And, we reinitialize γ = 0.1 every new task whenever used. All remaining
hyperparameters, except for the model architecture, are consistent with those used in the split MNIST experiments.

For fully convolutional networks, the hyperparameters are similar to those for the AlexNet architecture. Only the differences
are mentioned here. We train for 30 epochs and down-weight the KL term for the Bernoulli distribution by 1e-7, which
provides better performance while maintaining stable inferred depth for reasonably large truncation. Additionally, we found
structure learning rates of 0.3 and 0.45 to work best for the CIFAR100-10 and CIFAR100-20 datasets, respectively, with
fully convolutional networks. After training on each task t, we directly copy each layer k’s structure posterior parameters atk
as prior αt+1

k for the next task but adjust bk using the ratio of activated weights {π̃k} in the task t’s task-specific mask. We
approximate the beta sample ṽk = π̃k

π̃k−1
and adjust b̃tk = ak(1−ṽk)

ṽk
. Finally, for L activated layers, we update the priors for

the next task as

βt+1
k ←

{
b̃tk if 1 < k ≤ L

btk otherwise.

C.3.2. MODEL ARCHITECTURE

We use two different setups for CNNs - Alexnet and fully convolutional architecture. The second one allows depth inference
for convolutional layers using our formulated beta-Bernoulli processes.

Alexnet Backbone: Following the popular Alexnet backbone used in (Serrà et al., 2018; Kumar et al., 2021; Konishi et al.,
2023), we employ three convolutional layers with channel widths of 128, 256, and 512, followed by two fully connected
layers with hidden widths of 2048. We do not use any task-specific batch normalization layers as specified in (Kumar et al.,
2021). Max pooling layers are utilized after each convolutional layer. Due to spatial size reduction from max pooling and
channel expansion with each convolutional layer, we avoid skipping connections in convolutional layers. Nevertheless, we
apply skip connections in the fully connected layers while maintaining the same model width. The beta-Bernoulli process is
then applied over the entire network depth. Consequently, we can interpret the network as having a truncation K = 5. The
goal of the experiments involving the Alexnet architecture is to demonstrate our framework’s ability to showcase dynamic
expansion in a continual learning framework.

Fully Convolutional Backbone: The Alexnet architecture comprises fully connected layers after convolutional layers
before connecting to the task-specific classification heads. Consequently, leveraging depth inference for convolutional
layers becomes challenging. To address this, we design a fully convolutional backbone without any fully connected layers,
specifically for a truncation level K with K convolutional layers. The model structure is depicted in figure 6. The first three
convolutional layers have kernel sizes of 4× 4, 3× 3, and 2× 2, and we apply max pooling after each of these three layers.
However, we do not apply max pooling for the remaining K − 3 layers, each featuring a kernel size of 2× 2. Additionally,
padding is applied to ensure that the feature map sizes are the same in these layers. The last activated layer is connected to a
flatten layer, followed by the fully connected classification heads. Finally, we adapt the network structure for the model
by leveraging our beta-Bernoulli setup across the entire truncation. It is important to note that our focus here is not on
researching the optimal model architecture for vision tasks. Instead, we aim to showcase our framework’s ability to infer the
network structure—both width and depth—for convolutional architectures.
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conv 1
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Figure 6: Application of our structure inference on the fully-convolutional network (fullyConv-K). The backbone consists
of K convolutional layers and fully connected layers are present in task-specific heads only. The beta-Bernoulli process is
applied across the K convolutional layers, where the stick-breaking construction is implemented with a truncation K. And,
channel masks {Z(k)}, sampled from the conjugate Bernoulli processes, are applied on the convolutional layers.

C.4. Unsupervised Continual Learning

For all unsupervised CL experiments, we use the latent dimension of 50 and network width of 500. And, we estimate the
log-likelihood using 10 training samples and use a batch size of 50. We use importance sampling with 5000 samples per
data point to calculate the test data log-likelihoods. For VCL and IBPCL, we fix all other hyper-parameters at their best
default settings, as specified in the respective papers. And, for EWC, we report the best result obtained with λ = 10. For
all of our unsupervised continual learning experiments, we maintain a truncation level of 2 to ensure fair comparison with
other methods. We set α = 30 and β = 20 as the prior for the beta process. The temperature values for both prior and
posterior distributions are kept constant at 0.1. And, we don’t use any additional scale on the KL part. Similarly, we use the
default settings of the Adam optimizer with a learning rate initialized at 0.0003 for both weight and structure parameters,
and we reduce the weight learning rate by a factor of 0.85 for each new task. Additionally, following VCL, we reset the log
standard deviation for each weight to -6 and copy means to the next task while switching to the next task. We don’t use any
task-specific masks in our unsupervised CL experiments.

C.5. Class Incremental Learning (CIL)

We conduct a comparison of our beta-Bernoulli processes in scenarios involving both weight distribution and Maximum A
Posteriori (MAP) for weight. We employ a memory replay of size 500 with reservoir sampling and a batch size of 128. We
found that α = 20 and β = 10 yields the best results for structure inference. We evaluate with a single-headed 7-layered
fully convolutional network (fullyConv-7). In all experiments, we employ the Adam optimizer with a constant learning rate
of 0.001 for weights. Regarding structure inference, we use a learning rate of 0.5 for Bayesian weights and 0.001 for the
deterministic case. Additionally, given the longer training iterations required for Bayesian networks, we trained them for
120 epochs, while we found 40 epochs to work best for MAP estimation. And, we use 0.2 dropout in cases without structure
inference.

C.6. Hyper-parameter Tuning Setup

We leverage grid search for tuning the hyperparameters. The following shows the range of our search space.

1. α : {1, 2, 3, 4, 5, 6, 10, 20, 50, 75, 100, 200, 300}

2. β : {1, 2, 3, 4, 5, 6, 10, 20, 50, 75, 100, 200, 300}

3. τ : {0.1, 0.3, 0.75, 1, 5, 10}

4. weight learning rate: range-[0.0001, 0.5]

5. structure learning rate: range-[0.001, 0.5]

6. weight learning rate decay: {0.75, 0.85, 0.9, 1}
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C.7. Hardware Specification

We trained and evaluated our models in NVIDIA A100 GPUs.

D. Further Results and Analysis
D.1. Comparison Against Function Space Variational Inference

Stochastic Function Space Variational Inference (SFSVI), as proposed by (Rudner et al., 2022), presents an alternative
perspective on continual learning by employing function space regularization instead of weight regularization. Notably, it
necessitates an additional dataset for inducing points to ensure functional regularization. SFSVI is computationally intensive,
and the original configuration experiences out-of-memory issues, even when applied to CIFAR100-10 with the Alexnet
backbone (refer to C.3.2). Consequently, our comparison is limited to CIFAR10-5 and CIFAR100-5. The comparative
results are outlined in Table 5. To mitigate memory constraints, we reduce the memory footprint by scaling the convolutional
channels of the Alexnet architecture by a factor of 0.25 for this experiment. Despite utilizing a coreset of size 200, SFSVI
does not perform as well as our proposed method.

Table 5: Comparison against S-FSVI (Rudner et al., 2022) with Alexnet architecture (scaled by 0.25 factor).

Methods CIFAR10-5 CIFAR100-5
SFSVI - 50 coreset 85.68 ± 0.88 49.90 ± 0.98
SFSVI - 200 coreset 88.14 ± 0.53 54.61 ± 1.13
Ours 89.09 ± 0.20 57.37 ± 0.52

D.2. Task-Incremental Learning on MNIST without Task-Specific Masks

We explore our method’s ability to perform without task-specific masks in MNIST variants against fixed depth and width
methods (EWC and VCL) and fixed depth with adaptive width method (HIBNN). Our experiments encompass both single-
headed and multi-headed architectures for permuted MNIST and multi-headed cases for split MNIST. In the multi-headed
experiment, task identity is required during predictions, as in task-incremental learning (van de Ven & Tolias, 2019).
Conversely, the single-headed experiments are structured to eliminate the requirement for explicit task identity during
prediction. The single-headed permuted MNIST experiment is an example of a domain-incremental learning scenario.

For permuted MNIST, our model outperforms all other methods for both multi-headed and single-headed cases. Also, our
method performs better than competing methods in split MNIST. Accompanied by weight and structure regularization, our
drop-connect regularization effectively prevents overfitting on the training data, enabling the model to generalize well across
different tasks, unlike other methods.

Table 6: Evaluation of our model without task-specific mask against EWC, VCL, and HIBNN for single-headed (SH) and
multi-headed (MH) of permuted MNIST and multi-headed split MNIST datasets.

Methods permuted MNIST MH permuted MNIST SH split MNIST MH
EWC (Kirkpatrick et al., 2016) 96.86 ± 0.02 95.84 ± 0.07 99.01 ± 0.06
VCL (Nguyen et al., 2018) 97.11 ± 0.06 96.30 ± 0.16 98.51 ± 0.07
HIBNN (Kessler et al., 2021) 97.00 ± 0.30 96.83 ± 0.09 98.71 ± 0.40
Ours (w/o task-specific mask) 97.59 ± 0.06 96.87 ± 0.08 99.13 ± 0.04

D.3. Model Structure Learning in Fully-Connected Network

D.3.1. MODEL PERFORMANCE AND INFERRED NETWORK STRUCTURE ACROSS MAX WIDTH (M)

To analyze the effect of network maximum width M on performance and inferred structure, we experiment on split MNIST
and split Fashion MNIST datasets with different maximum widths. We set the truncation level K = 10. We consider a layer
activated only if the activated weight percentage for the layer is more than 2.5% while sampling the task-specific mask. The
results in table 7 show that as long as the maximum width is reasonably large M > 64, it doesn’t affect the performance.
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For thinner networks, we observe higher inferred depths with a higher activated weight percentage. For moderately thin
networks (M = 64), we observe an inferred depth of either 3 or 4 depending on the sampled network structure. As we
increase M , the inferred depth decreases to 3 and stabilizes with decreasing weight activation.

Table 7: Model performance with different maximum widths (M). Our model’s performance becomes stable with a
reasonably large width. Also, fewer layers are activated with larger widths with decreasing activated weight percentage.

Max Width (M) Split MNIST Split Fashion MNIST
Test Acc. (%) Depth Activated Weight (%) Test Acc. (%) Depth Activated Weight (%)

16 99.41 ± 0.04 4 85.71 ± 0.37 99.19 ± 0.06 4 85.87 ± 0.39
32 99.58 ± 0.05 4 75.93 ± 0.58 99.18 ± 0.03 4 75.31 ± 0.48
64 99.63 ± 0.06 3/4 59.84 ± 0.16 99.32 ± 0.02 3/4 59.23 ± 0.32
128 99.74 ± 0.01 3 43.02 ± 0.00 99.27 ± 0.03 3 43.02 ± 0.29
200 99.72 ± 0.08 3 33.87 ± 0.00 99.33 ± 0.06 3 33.91 ± 0.04
320 99.79 ± 0.02 3 26.06 ± 0.06 99.32 ± 0.03 3 26.13 ± 0.04

D.3.2. MODEL PERFORMANCE AND INFERRED NETWORK STRUCTURE ACROSS TRUNCATION (K)

Additionally, we investigate the effect of truncation level K in model performance and inferred depth for 5 tasks in split
fashion MNIST in table 8. We experiment with a fully connected network of width M = 200 with varying truncation levels.
We observe that the model performance remains stable even after increasing the truncation K. The inferred depth is equal to
3 in all cases with K ≥ 3 and M = 200, which is the reason why we chose truncation K = 3 in our experiments in table 1.

Table 8: Test accuracies and inferred depth on split Fashion MNIST for network width M = 200 across different truncation
levels.

Truncation (K) Test Accuracy (%) Inferred Depth
3 99.33 ± 0.06 3
7 99.33 ± 0.08 3

10 99.32 ± 0.06 3
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Figure 7: Cumulative model usage across tasks for a fully convolutional network with truncation K = 24 in CIFAR10-5,
CIFAR100-10, and Tiny Imagenet-10.

D.4. Model Structure Learning in Fully Convolutional Network

Figure 7 illustrates the percentage of cumulative model usage per layer across tasks for a fully convolutional architecture
with truncation K = 24 on the CIFAR10-5, CIFAR100-10 and Tiny Imagenet-10 datasets. We visualize only the activated
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Figure 8: Performance comparison with HAT and IBPCL after adding skip-connections.

layers for each dataset. As indicated by table 9, we observe that the inferred depth matches the dataset complexity, with
larger depths and more weights being inferred for more complex datasets. We observe a consistent increase in the activation
of overall layer usage with each successive task.

Table 9: Depth Inference and Model Usage vs. Datasets with a fully convolutional network with truncation K = 24. We
define a layer as activated if its weight activation is greater than 2.5% while sampling the task-specific mask.

Dataset Inferred Depth Cumulative Activated Weight (%)
CIFAR10-5 10 13.16%
CIFAR100-10 11 26.01%
Tiny Imagenet-10 16 35.89%
Super Imagenet-10 (Babakniya et al., 2023) 19 45.95%

Due to the larger data size, we train for longer epochs (40 for each task) and also, we set the KL coefficient for the Bernoulli distribution
equal to 1e-8 for super Imagenet-10.

Similarly, Figure 9 demonstrates the Intersection over Union (IoU) between task-specific masks learned for different layers
for the CIFAR100-10 dataset. We observe that task-specific masks in shallow layers have high overlap due to higher
activations, while in deeper layers, the overlap is lower due to lesser activation. This is a direct outcome of the stick-breaking
construction for the beta process, which induces exponentially decaying model activation with deeper layers. Additionally,
it aligns with the observation that shallow layers in convolutional neural networks learn shareable low-level image features,
while deeper layers learn more abstract feature representations.

D.5. Performance Stability Across Tasks

Although the mean accuracy across tasks reported in the main text captures the overall performance in continual learning, it
doesn’t specifically demonstrate the method’s ability to retain knowledge of previous tasks without forgetting. We illustrate
this qualitatively by explicitly plotting the test accuracies for the observed tasks over the training for each task. Figures 10
and 11 show the test accuracies for tiny Imagenet-10 and CIFAR variants respectively. Our method is able to sustain the test
accuracies for the previous tasks while being able to learn new tasks incrementally.

D.6. Augmentation of skip-connection in HAT and IBPCL

We further investigate the HAT and IBPCL’s performance by incorporating skip-connection in Figure 8. The results show
that skip connections tend to improve their performance. However, our method still outperforms them for more complex
datasets like CIFAR100-10/20 and tiny imagenet. Note that our method has a significant advantage for large truncation
K in terms of computational cost, as the number of activated layers is fewer than the truncation due to decreasing layer
activations over the layers K as shown in table 9. Hence, for each input prediction, only the activated layers need to be
computed. In contrast, for HAT and IBPCL, the layer activations do not decrease over the network layers, which means
deeper layers can be activated for large truncations too. Consequently, each forward pass must go through all the layers for
these methods in the pre-specified network depth, unlike in our proposed method.
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D.7. Time Complexity

Training our network with depth L and width M , the time complexity is T = O(NBLM2) with N training examples per
epoch and B epochs. Let S denote the number of network structure samples, The time complexity of our method is linearly
scalable as ST . With proper thresholding, the number of active layers L is relatively small in each sample.

The times taken for training the sequence of tasks with L/K = 3 for split fashion MNIST and L/K = 10 for split
CIFAR10-5 are shown in the table below. The number of network structure samples S = 10 for split fashion MNIST and
S = 2 for CIFAR10-5 for IBPCL and our method. The results are consistent with our above analysis.

Method split fashion MNIST (sec) CIFAR10-5 (sec)
VCL 1194.82 7119.54

IBPCL 126.62 1841.66
Ours 512.84 2230.41

Table 10: Comparison of training times for Fashion MNIST and CIFAR10-5 for different methods.
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Figure 9: Intersection over Union (IoU) in percentage (rounded off to nearest integer) between task-specific masks in
different layers for the CIFAR100-10 dataset.
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TinyImagenet-10: Taskwise test accuracy across training

Figure 10: Our model’s taskwise test accuracies across training in Tiny Imagenet-10 dataset- our model can preserve
previously gained knowledge throughout the sequence of tasks.
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CIFAR10-5: Taskwise test accuracy across training

(a) CIFAR10-5
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CIFAR100-10: Taskwise test accuracy across training

(b) CIFAR100-10
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CIFAR100-20: Taskwise test accuracy across training

(c) CIFAR100-20

Figure 11: Our model’s taskwise test accuracies across training in CIFAR variants- our model can retain performance in
seen tasks throughout the sequence of tasks.

24


