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Abstract

Knowledge distillation (KD) has been widely
used for model compression and deployment ac-
celeration. Nonetheless, the statistical insight of
the remarkable performance of KD remains elu-
sive, and methods for evaluating the uncertainty of
the distilled model/student model are lacking. To
address these issues, we establish a close connec-
tion between KD and a Bayesian model. In par-
ticular, we develop an innovative method named
Bayesian Knowledge Distillation (BKD) to pro-
vide a transparent interpretation of the working
mechanism of KD, and a suite of Bayesian in-
ference tools for the uncertainty quantification of
the student model. In BKD, the regularization
imposed by the teacher model in KD is formu-
lated as a teacher-informed prior for the student
model’s parameters. Consequently, we establish
the equivalence between minimizing the KD loss
and estimating the posterior mode in BKD. Effi-
cient Bayesian inference algorithms are developed
based on the stochastic gradient Langevin Monte
Carlo and examined with extensive experiments
on uncertainty ranking and credible interval con-
struction for predicted class probabilities.

1. Introduction

The exponential growth of parameters in deep learning mod-
els, driven by extensive resource allocation for training, has
led to remarkable performance (Kondratyuk et al., 2023;
Dosovitskiy et al., 2020; Fang et al., 2023). However, this
growth also poses challenges in practical deployment due
to the immense model sizes. Knowledge distillation (KD)
emerges as an efficient solution for model compression
designed to reduce the model size while maintaining perfor-
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mance, playing a pivotal role in addressing the challenges in
model deployment (Zhao et al., 2022; Tung & Mori, 2019;
Hinton et al., 2015; Huang & Wang, 2017; Li et al., 2020;
Wang et al., 2023; Latif et al., 2023). Knowledge distillation
(KD) is a technique where a smaller and simpler model
(the student model) learns from a larger and more complex
pre-trained model (the teacher model), similar to a student
learning from a teacher. To facilitate this learning process,
a penalty term is introduced that measures the dissimilarity
between the predictions made by the teacher model and the
student model. This penalty term is then incorporated into
the loss function used for training the student model. By
minimizing the combined loss, the student model is guided
to make predictions that align with the teacher model’s out-
puts. We refer to Gou et al. (2021) for a comprehensive
survey on KD methods.

Despite the empirical success of KD, there remains a lack
of clear statistical insight into the distillation process and
its effects on the improvement of the student model. One
commonly accepted intuition, as proposed by Hinton et al.
(2015), is that the teacher model’s prediction probabilities
provide soft labels for the training data to the student model.
Although these soft labels are more ambiguous than the true
labels, they facilitate easier learning for the student model,
thereby enhancing its performance. Numerous studies have
provided a more comprehensive analysis to investigate the
impact of distillation, as discussed in Section 2. However,
it’s worth noting that most existing research primarily con-
centrates on assessing how distillation enhances the pre-
diction performance of the student model. While these
insights are valuable, a deeper exploration of the statistical
perspective and theoretical aspects of knowledge distillation
is needed to gain a more comprehensive understanding of
its efficacy and capability.

In this work, we approach this problem from a different
perspective. We develop a novel method called Bayesian
Knowledge Distillation (BKD) to distill knowledge from
the teacher model to the student model in a Bayesian frame-
work. Consider the classification task as an example. In
BKD, the cross-entropy between prediction probabilities
and labels of the data in the KD’s loss function is treated as
a likelihood function of the student model’s parameters. A
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Figure 1. Flowchart of Bayesian knowledge distillation. We establish a teacher-informed prior for the student model’s parameters
based on the teacher model’s predicted probabilities, and derive the posterior distribution. The stochastic Gradient Langevin Dynamics
(SGLD) method is then applied to generate Monte Carlo samples from the posterior. Uncertainty quantification of the predictions and the
subsequent downstream tasks, such as outlier detection, can be achieved accordingly.

teacher-informed prior, determined by the prediction proba-
bilities provided by the teacher model, is specified for the
parameters of the student model. This teacher-informed
prior is then integrated with the likelihood to derive the pos-
terior distribution of the student model’s parameters. In such
a formulation, one key finding is that minimizing the KD
loss is equivalent to estimating the mode of the Bayesian
posterior distribution, providing a transparent interpretation
of the working mechanism of KD. We then naturally develop
a suite of Bayesian inference tools for uncertainty quantifi-
cation of the student model by sampling from the derived
posterior distribution on the student model’s parameters.
We apply stochastic gradient Langevin dynamics (SGLD)
(Welling & Teh, 2011), a subsampling-based Markov chain
Monte Carlo (MCMC) algorithm, to generate the poste-
rior MC samples. SGLD integrates stochastic optimization
techniques with Langevin dynamics (Girolami & Calder-
head, 2011; Roberts & Stramer, 2002) to enhance parameter
updates, making it well-suited for high-dimensional, large-
scale data (Ahn et al., 2012; Girolami & Calderhead, 2011;
Teh et al., 2016). Specifically, deviance (Hastie, 1987) is
utilized to quantify uncertainty, and the credible interval
for it is established. Beyond providing conceptual insights,
the new perspective offered by BKD facilitates novel ap-
plications of KD to challenges such as outlier detection
and uncertainty ranking, leading to more robust decision-
making.

We evaluate the proposed BKD on both synthetic and real
benchmark datasets. We observe that the BKD method ex-
hibits an increase in prediction uncertainty when faced with
adversarial images generated from the original authentic
dataset. This behavior suggests that these adversarial im-
ages fall in the tail regions of the training data distribution,
highlighting the model’s capacity to recognize inputs that
fall outside its learned knowledge boundaries. The relia-
bility of the provided uncertainty measures and the robust
coverage rate of the credible intervals consistently under-

score the effectiveness of our BKD method.

Our contributions are summarized as follows:

• We develop a novel BKD method that distills the
teacher model into a compact student model by estab-
lishing a teacher-informed prior for the student model’s
parameters, along with a suite of Bayesian inference
tools for uncertainty quantification. This approach
provides a comprehensive framework for real-world
applications such as outlier detection.

• We provide a transparent interpretation of the working
mechanism of KD by establishing the equivalence be-
tween minimizing the KD loss and finding the posterior
mode in BKD. This insight explains why KD can aid
performance, offering a new perspective to improving
KD methods.

• We showcase the capability of BKD for both improv-
ing the student model performance and enabling the
uncertainty quantification of the prediction outcomes.
The empirical performance of BKD is demonstrated
on both synthetic and real datasets.

2. Related Research

The understanding of KD has been explored from several
angles. Phuong & Lampert (2019) focus on the special
scenarios where models are either linear or deep linear and
prove a generalization bound that establishes extremely fast
convergence of the risk of distillation-trained classifiers.
Distillation has also been seen as a label smoothing reg-
ularization for the student model, and this idea has been
widely explored in self-distillation (SD) (Yuan et al., 2020;
Wang et al., 2021; Shen et al., 2022; Yun et al., 2020; Kim
et al., 2021), a special case of KD where the teacher and
student model share the same parameter space. Furthermore,
Mobahi et al. (2020); Borup & Andersen (2021) interpret
SD as obtaining the regularized parameter estimation, with
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the teacher model defining the regularization term within
the kernel ridge regression framework. In the setting of the
Gaussian process model, Borup & Andersen (2023) pro-
poses a distribution-centric SD approach. This approach
shares a similar idea with BKD as it defines the prior of
the student model with the teacher model. Nevertheless,
given the divergence between SD and KD, these works fo-
cus on understanding how the student model can outperform
the teacher model instead of analyzing the effectiveness of
model compression.

Menon et al. (2021) provide a statistical perspective on
knowledge distillation, explaining its effectiveness by pre-
senting the knowledge of the teacher model as Bayesian
prediction probabilities. They prove that KD can lower the
prediction variance of the student model, and thus improve
the performance. Although this study explains the teacher
model as approximating Bayes probabilities and gives a
concrete criterion for assessing a teacher model’s perfor-
mance, thereby leading to a more accurate student model,
it falls short of quantifying the uncertainty associated with
the student model. Phuong & Lampert (2019) focus on the
distillation when the teacher and student models are simple
linear and deep linear models. Under this special case, a gen-
eralization bound on the expected risk of the student model’s
prediction has been derived, and it is shown that the student
model can almost perfectly mimic the teacher model’s pre-
diction with a fast convergence rate. Korattikara Balan et al.
(2015) introduce Bayesian Dark Knowledge for distilling
the posterior predictive distribution of the teacher model
into a compact student model, thereby enabling the student
model to quantify uncertainty. Subsequent extensions in-
clude Wang et al. (2018); Malinin et al. (2019); Vadera et al.
(2020). However, these methods require access to the pos-
terior predictive distribution of the teacher model, which
in general is unavailable for many large pre-trained teacher
models.

Another related problem is using a trained simpler model to
stabilize the estimation of a complex model when sample
sizes are too small. Huang et al. (2020) propose a cat-
alytic prior and conducts Bayesian inference for the high-
dimensional generalized linear model.

3. Preliminaries

We first introduce preliminaries about neural network mod-
els and knowledge distillation.

Neural Network Model. For the convenience of presen-
tation, we introduce our method in the context of classifi-
cation problems. In the classification tasks, we are given
the training sample D = {(xi, yi)}Ni=1, where xi → Rm

is the predictor and yi → {1, . . . ,K} is the label of the
ith data point. Each data point is independently collected

across i → {1, . . . , N}. We assume that the conditional
probability of yi is given by P(yi = k|x = xi) for each
k → {1, . . . ,K}.

The deep neural network (DNN) approximates the con-
ditional probability function P(y = k|x) by applying
a softmax transformation to the composition of a series
of simple nonlinear functions. Without loss of general-
ity, the approximated conditional probability function is
denoted by a K-dimensional probability vector function
h(x,ω) = (h1(x,ω), . . . , hK(x,ω))T , where ω → Rd rep-
resents the weight and the bias parameters, hk(x,ω) → (0, 1)

and
∑K

k=1 hk(x,ω) ↑ 1. For each xi, the label for the class
with the highest probability in h(xi,ω) is the predicted
label.

As h(·, ·) is known when the neural network structure is
fixed, the parameter to be estimated is ω. In particular, we
minimize the empirical risk

L(h(·,ω);D) =
1

N

N∑

i=1

CE(yi,h(xi,ω)), (1)

where yi = (yi1, . . . , yiK)T is the one-hot encoding
of label yi with yik = 1yi=k, and CE(yi,h(xi,ω)) =

↓
∑K

k=1 yik log (hk(x,ω)) is the cross-entropy loss be-
tween the probability vector h(xi,ω) and yi. Typically,
the minimizer, denoted by ω→, is found using the stochastic
gradient descent (SGD) algorithm.

Knowledge Distillation. Knowledge distillation (KD), in-
troduced by Hinton et al. (2015), is a procedure where a
simpler model (student) learns from a larger model (teacher).
In KD, we have a trained complex DNN model (teacher).
For each data point xi in the training sample D, the teacher
model predicts its class probability pi = (pi1, . . . piK)T ,
where pij is the predicted class probability that the ith data
point belongs to class j.

The student model Ms is trained using both the training
sample D and the corresponding teacher model’s predicted
class probabilities p = {pi}Ni=1. As formulated before, Ms

can be represented by h(·,ω). Given p, KD measures the
discrepancy between the student and teacher’s model with

L̃(h(·,ω);D,p) =
1

N

N∑

i=1

CE(pi,h(xi,ω)),

= ↓ 1

N

N∑

i=1

K∑

k=1

pik log (hk(xi;ω)) ,

(2)

which is the sample mean of the cross-entropy
CE(pi,h(xi,ω)) across the training data. To lever-
age the information from both the training data and the
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teacher model’s predictions, KD aims to solve

ω→
KD = argmin

ω↑Rd

{
LKD(h(·,ω);D,p,ω)

}

= argmin
ω↑Rd

{
L(h(·,ω);D) + ωL̃(h(·,ω);D,p)

}
,

(3)

where the minimized KD loss LKD(h(·,ω);D,p,ω) is the
linear combination of two loss terms in Equation (1) and
Equation (2). ω is a constant factor weighting the contribu-
tions of these two terms of loss.

4. Bayesian Knowledge Distillation

4.1. Bayesian Model with a Teacher-Informed Prior

Let qi = (qi1, . . . qiK)T = h(xi,ω) denote the student
model’s predicted class probabilities for the ith data point.
In our proposed Bayesian model, the student model’s param-
eter ω is assumed to be random. Given the predicted class
probabilities {pi}Ni=1, where pi = (pi1, . . . piK)T , by the
teacher model Mt, we aim to formulate a proper prior distri-
bution εω(ω; {pi}Ni=1), referred to as the teacher-informed
prior (TIP), for ω.

To efficiently leverage the information provided by
the teacher model’s predicted class probabilities, we
have the following assumption on the prior distribution
εω(ω; {pi}Ni=1),

εω(ω; {pi}Ni=1) ↔ !N
i=1εq(q = h(xi,ω);pi), (4)

where ↔ denotes proportionality, and εq(q;pi) is a probabil-
ity density function defined for a K-dimensional probability
vector q = (q1, . . . , qK)T with the parameter pi. Equa-
tion (4) presents a readily analyzable structure for the prior
of ω by multiplying N well-defined probability functions
εq(q;pi). Following the same rationale as KD, the prior
distribution εω(ω; {pi}Ni=1) should assign a larger weight
to the parameter ω that results in the probability function
εq(q;pi) having a high probability around pi.

In this article, we consider εq(q;pi) is the density function
of a Dirichlet distribution Dir(1K + ωpi), where ω is a
tuning parameter gauging our confidence in the predicted
probabilities of the teacher model Mt. Hence, we have

εq(q;pi) =
1

B(1K + ωpi)
!K

k=1(qk)
ωpik , (5)

where B(·) is the multivariate Beta function. Note that the
mode of εq(q;pi) is pi for ω > 0. Furthermore, we show
that εω(ω; {pi}Ni=1) is a proper prior with the following
proposition, whose proof is presented in Appendix B.
Proposition 4.1. Consider the probability density function
εq(q;pi) as defined in Equation (5) with a constant ω > 0,
assuming that the parameters of the student model lie in a
compact space, then εω(ω; {pi}Ni=1) is a proper prior.

We now discuss the effect of ω. In the extreme case of ω = 0,
εq(q;pi) becomes the density of a symmetric Dirichlet
distribution, Dir(1K). This implies that there is no prior
knowledge favoring one category over another when clas-
sifying each data point. For the case of ω ↗ ↘, we derive
the following theorem to illustrate its influence,

Theorem 4.2. Consider the probability density function
εq(q;pi) as defined in Equation (5), as ω ↗ ↘, we have

εq(q;pi) ↓↗ ϑ(q ↓ pi), (6)

where ϑ(·) is the multivariate Dirac delta function.

The above theorem shows that, as ω approaches infinity, the
student model’s parameters only exhibit nonzero probability
mass when the student model’s predicted class probabilities
are exactly equal to those of the teacher model. This result
is consistent with the original KD where we have complete
trust in the teacher model’s class probabilities for infinitely
large ω.

In summary, a large ω signifies our trust in the predicted
distribution achieved by the teacher model. On the con-
trary, a small ω suggests that the knowledge provided by the
teacher model are limited. In such cases, we would lean
towards proposing a prior where the probabilities of each
data point belonging to any specific class are approximately
equal. Proof of Theorem 4.2 is available in Appendix B.

We further assume that yi follows a multinomial distribution
given the student model’s parameter ω,

yi|xi ≃ Multinomial(1;h(xi,ω)). (7)

Consequently, we have the following theorem establishing
the connection between our established Bayesian posterior
and the original KD framework.

Theorem 4.3. Given the prior distribution defined in Equa-
tion (4) and Equation (5), the posterior mode of ω is the
minimizer of KD, i.e., ω→

KD.

Proof. The negative log-transformed posterior distribution
of ω,

→l(ω;D,p,ω,h(·, ·)} =→
N∑

i=1

K∑

k=1

yik log (hk(xi,ω))

→ ω
N∑

i=1

K∑

k=1

pik log (hk(xi,ω)) + c,

= LKD(h(·,ω);D,p,ω) + c, (8)

where c is a constant. It is easy to verify that the posterior
mode of ω is the minimizer of the KD loss in Equation (3).
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4.2. Bayesian inference for Prediction Uncertainty

Quantification

Point prediction alone is often insufficient in practical appli-
cations, as it lacks an assessment of the prediction precision.
In this subsection, we will show how our proposed Bayesian
model is utilized in quantifying the prediction uncertainty.

Considering a new dataset T n = {(x̃i, ỹi)}ni=1, with
x̃i → Rm and ỹi → {1, . . . ,K}, our objective is to perform
predictions and conduct Bayesian inference on these predic-
tions. Bayesian inference can be conducted naturally using
the posterior distribution of ω, as derived in Equation (8).
Nevertheless, for the high dimension of the parameter ω and
the complex structure of h(·,ω), it may not be feasible to
obtain an analytical solution in these takes. Hence, we adopt
the Langevin Monte Carlo method to tackle this problem.

Posterior Sampling. We apply the stochastic Gradient
Langevin Dynamics (SGLD) (Welling & Teh, 2011), a vari-
ant of Langevin Monte Carlo, to efficiently sample from the
complex, high-dimensional posterior distributions. SGLD
achieves this by seamlessly integrating the general approach
of stochastic gradient descent with Langevin dynamics.

Suppose ω(j↓1) is sampled in iteration j ↓ 1. Then in
the j-th step, given a mini-batch of m data points D(j) =

{(x(j)
i ,y(j)

i )}mi=1 and the class probability {p(j)
i }mi=1 pre-

dicted by the teacher model, SGLD generates the sample
from posterior using gradient updates plus Gaussian noise,

ω(j)

= ω(j→1) + ε↑ωl
(
ω(j→1);D(j), {p(j)

i }mi=1,ω,h
)
+

↓
2εϑ(j)

= ω(j→1) → ε↑ωLKD (h(·,ω);D,p,ω) +
↓
2εϑ(j)

= ω(j→1) + ε
m∑

i=1

K∑

k=1

y(j)
i + ωp(j)

i

hk(x
(j)
i ,ω)

↑ωhk(x
(j)
i ,ω) +

↓
2εϑ(j),

(9)

where ϖ is the step size, and ϱ(j) is randomly sampled
from N(0, I). SGD optimizes the log-likelihood to guide
the sampling process toward regions of higher probability,
while Langevin dynamics introduces controlled noise into
the parameter updates, ensuring convergence to the full pos-
terior distribution rather than merely its mode. Specifically,
in the limit of j ↗ ↘ and ϖ ↗ 0, the probability distri-
bution of ω(j), denoted as ς(j), converges to a stationary
distribution ε, where ε represents the distribution of ω. By
using gradient information and introducing controlled noise,
SGLD becomes more efficient in handling high-dimensional
data (Girolami & Calderhead, 2011). Furthermore, SGLD’s
use of mini-batches for gradient computation alleviates the
computational burden associated with optimizing over entire
datasets, making it particularly well-suited for large-scale
datasets. The BKD algorithm is summarized in Algorithm 1.

Algorithm 1 Bayesian Knowledge Distillation (BKD).
Input: D = {(xi,yi)}Ni=1, h(·, ·), ϖ , ω, r.
1: Get the output p of the teacher model for each data
point in D.
2: Calculate the posterior distribution of q = h(x,ω).
3: Generate Monte Carlo sample of ω:

· At iteration jth with a subset of m data points
D(j) = {(x(j)

i ,y(j)
i )}mi=1,

· Generate ϱ(j) ≃ N(0, I),
· Generate ω(j) using SGLD as in Equation (9).

Output: Monte Carlo sample {ω(j)}rj=1 of ω.

Since the MC sample {ω(1),ω(2), . . .} converges to the pos-
terior distribution of ω, it allows for a precise estimation
about the characteristics of ω. Consequently, it fosters a com-
prehensive analysis and understanding of our model cover-
ing various aspects. One aspect that we are particularly inter-
ested in is the model’s prediction on the new dataset. Consid-
ering a new dataset T n = {(x̃i, ỹi)}ni=1, with x̃i → Rm and
ỹi → {1, . . . ,K}, the posterior distribution of the model’s
predicted class probability qi for the ith data point can
be approximated by MC sample {q̂(j)

i = h(x̃i,ω
(j))}rj=1.

Consequently, we can estimate the target characteristics of
qi, such as posterior mode.

Measurement of Prediction Uncertainty. For each data
point (x̃i, ỹi), we denote the model’s prediction as q̃i =
h(x̃1,ω). We utilize deviance, which is a commonly used
criterion, to measure the model performance and derive
mean deviance as a metric to quantify uncertainty in pre-
dictions. For the multinomial distribution with observation
(x̃i, ỹi), deviance has the following form

dev (ỹi, q̃i) = ↓2
K∑

k=1

ỹik log(q̃ik), (10)

where ỹi is the one-hot encoding for ỹi. The expectation of
dev (ỹi, q̃i) with respect to ỹi, written as ”(q̃i), would be

!(q̃i) = Ey↑Mul(1;q̃i) (dev(y, q̃i)) = →2
K∑

k=1

q̃ik log(q̃ik).

(11)
Here, ”(q̃i) measures the generalized sum of squared resid-
uals for the prediction q̃i. By taking the expectation over
the distribution of q̃i, we obtain a measure of uncertainty for
the prediction at the data point (x̃i, ỹi), which is expressed
as ”i,

”i = Eqi
”(qi) = Eqi

Ey (dev(y, qi)) . (12)

With the MC sample {q̂(j)
i = h(x̃i,ω

(j))}rj=1 of q̃i =

h(x̃i,ω), we can estimate the prediction uncertainty ”i, by
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simply taking the sample average, i.e.,

!i =
1
r

r∑

j=1

!(q̂(j)
i ) =

1
r

r∑

j=1

E
y↑Mul(1;q̂

(j)
i )

(
dev(y, q̂(j)

i )
)

= →2
r

r∑

j=1

K∑

k=1

q̂(j)ik log(q̂(j)ik ). (13)

Figure 2. Results for the toy checkerboard example. The left panel
presents the data points with the color determined by class prob-
ability p. The right panel presents the data points with the color
determined by mean deviance.

We present a toy checkerboard example to illustrate the ef-
fectiveness of mean deviance in quantifying uncertainty. In
this example, we define p(x) = 0.9 when 1

2 < x1 < 3
2 and

1
2 < x2 < 3

2 , otherwise, p(x) is set to 0.1. Here, we set
x1 ≃ Unif(0, 2) and x2 ≃ Unif(0, 2). The left panel of
Figure 2 displays the class probability p for each data point,
and the right panel illustrates the predicted mean deviance
for each data point. These results clearly demonstrate that
the model exhibits higher prediction uncertainty when data
points are surrounded by those from other classes. This
phenomenon validates the ability of our model to effectively
quantify uncertainty. Furthermore, this indicates that predic-
tion uncertainty is influenced not only by class probability p
but also by additional factors like neighborhood information.
Consequently, relying solely on the posterior mode of p as
a measure of uncertainty may be inadequate.

Credible Interval. Now we develop the construction of the
credible interval for the deviance of the prediction. For
each data point (x̃i, ỹi), the 1↓ φ credible interval for its
deviance, denoted by CIi = [0, ϖi], satisfies

Eqi
[Ey↔Mul(1,qi)(1{dev(y,qi)↗εi})] = 1↓ φ, (14)

where φ is the credible level. With the MC sample {q̂(j)
i =

h(x̃i,ω
(j))}rj=1, we can empirically estimate the optimal ϖi

by minimizing L(ϖi) as defined as,

L(εi) =

∣∣∣∣∣
1
r

r∑

j=1

E
y↑Mul(1;q̂

(j)
i )

(1{dev(y,q̂(j)
i )↓ωi}

)→ (1→ ϖ)

∣∣∣∣∣

=

∣∣∣∣∣
1
r

r∑

j=1

(
q̂(j)
i 1{dev(1,q̂(j)

i )↓ωj}

+ (1→ q̂(j)
i )1{dev(0,q̂(j)

i )↓ωj}

)
→ (1→ ϖ)

∣∣∣ . (15)

The function L(ϖi) denotes the difference between the left-
hand side and the right-hand side of Equation (14).

Constructing a credible interval on deviance, rather than
directly on the prediction q, presents a notable advantage.
It enables the calculation of the coverage rate of the con-
structed interval using the true label y. This is beneficial
since, in most cases, the true labels of the testing dataset
are readily available for evaluation, whereas the true class
probabilities are typically elusive. Specifically, with the
constructed credible interval [0, ϖ̂i], the coverage rate R̂i for
the ith testing data point (x̃i, ỹi) is estimated by

R̂i =
1

r

r∑

j=1

1{
dev

(
ỹi,q̂

(j)
i

)
↗ε̂i

}. (16)

Consequently, the average coverage rate, denoted as R̂, of
the testing dataset T n is estimated by

R̂ =
1

n

n∑

i=1

R̂i =
1

nr

n∑

i=1

r∑

j=1

1{
dev

(
ỹi,q̂

(j)
i

)
↗ε̂i

}. (17)

5. Real Data Analysis

We test the proposed BKD method on four benchmark
datasets, (1) MNIST, (2) Fashion MNIST, (3) CIFAR-10,
and (4) CIFAR-100. Detailed information about the datasets
can be found in Appendix D.1.

We compare BKD with four benchmark methods: (1) the
teacher model; (2) the original KD method; (3) the integra-
tion of the original KD and Bayesian neural network (BNN)
(Blundell et al., 2015); and (4) the integration of the original
KD and Monte Carlo dropout (Dropout) (Gal & Ghahra-
mani, 2016). Please refer to Appendix D.3 for details about
the implementation of BNN and Dropout. We evaluate the
performance of the BKD method in terms of classification
accuracy and uncertainty quantification. We also evaluate
BKD on some synthetic datasets, presented in Appendix C.

5.1. Classification Results

Table 1 details the teacher and student models that we use
for each dataset, including the model structures and the
number of parameters for each model in parentheses. The
chosen student models are noticeably smaller in size when
compared to their corresponding teacher models. For de-
tailed information on the model structure, please refer to
Appendix D.2.

Table 2 presents the classification accuracy of all methods
on four benchmark datasets. Despite their smaller model
sizes, student models trained with KD methods perform
comparable to the teacher models, with the student models
even having a higher accuracy than the teacher model on
the Fashion MNIST dataset. These phenomenons highlight

6
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Figure 3. Top panel showcases 6 images with the lowest mean deviance, while the bottom panel showcases 6 images with the highest
mean deviance, for (a) MNIST, (b) Fashion MNIST, (c) CIFAR-10, and (d) CIFAR-100 datasets separately.

Table 1. Model Structure. The number of parameters for each
respective model is indicated in parentheses.

Teacher Model Student Model
MNIST MLP-L (2.4M) MLP-S (0.2M)

Fashion MNIST ResNet-50 (25.6M) CNN (0.08M)
CIFAR-10 ViT-B-16 (86M) MUXNet-m (3.4M)
CIFAR-100 ViT-B-16 (86M) MUXNet-m (3.4M)

the effectiveness of both the original KD method and BKD
in distilling the knowledge into a compact student model
without compromising performance. Across all datasets,
the performance of all methods is comparable, with BNN
demonstrating a slightly lower accuracy while BKD exhibits
a slight improvement.

Table 2. Accuracy Results. Accuracy of five methods on four
benchmark datasets separately.

Accuracy
Teacher Orig KD BNN Dropout BKD

MNIST 0.990 0.986 0.979 0.984 0.984
F-MNIST 0.901 0.902 0.890 0.902 0.905
CIFAR-10 0.989 0.963 0.906 0.962 0.964
CIFAR-100 0.929 0.841 0.787 0.840 0.842

We further consider all KD methods’ performance when
taking the perturbed images as input. An effective model
should exhibit adaptability by achieving higher accuracy
and less uncertainty (indicated by reduced mean deviance
in our case) for clean images while showing lower accuracy
and greater uncertainty for noisy images. We generate per-
turbed images xperturb from the original MNIST images x
by setting

xperturb = 2

(
x↔ → x↔

min

x↔
max → x↔

min

)
→ 1, with x↔ = x+ ϱε, (18)

where x → Rm is the original image, ε ≃ N(0, Im) is the
noise term, and ↼ is the perturbation level. As the pertur-

bation level increases, we expect to observe a decrease in
accuracy and an increase in mean deviance.

Figure 4. Classification accuracy and mean deviance results as a
function of perturbation level for the MNIST dataset. Examples of
perturbed images are shown below the axis. The red lines show the
results of the proposed BKD method, while the blue line represents
the original KD method.

The left panel of Figure 4 shows the classification accu-
racy on perturbed images, while the right panel shows the
estimated mean deviance. Below the axis, examples of per-
turbed images with varying perturbation levels are presented.
As expected, we observe a decrease in accuracy with increas-
ing perturbation levels for all the methods. However, the
trend in mean deviance as the perturbation level increases
reveals a notable pattern for BKD compared to other meth-
ods. The original KD method, BNN, and Dropout tend to
make overconfident predictions, while BKD provides more
reasonable predictions. Specifically, at relatively high per-
turbation levels (↼ > 0.3 for original KD, ↼ > 0.5 for BNN,
and ↼ > 0.7 for Dropout), the accuracy and predictive de-
viance of those methods have both decreased, indicating
high confidence in incorrect predictions. In contrast, BKD
understands its inaccuracies at high perturbation levels by
presenting high and increasing uncertainty estimates. These
findings highlight that BKD offers a more accurate assess-
ment of uncertainty compared to other methods.

7
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Figure 5. For each class in the MNIST dataset, the eight images
with the lowest mean deviance (left), and the eight images with
the highest mean deviance (right) are displayed.

5.2. Uncertainty Evaluation

Uncertainty. We use the mean deviance detailed in Equa-
tion (13) as the metric to quantify the model uncertainty for
each image.

In Figure 3, images with the lowest and highest mean de-
viance are shown on the top and bottom panels, respectively,
with each column dedicated to a specific dataset. The im-
ages with higher mean deviance in the bottom panel indicate
that the model provides higher uncertainty regarding these
predictions. These images are noticeably more difficult to
classify. The clear association between high uncertainty
and inherent difficulty in image recognition validates the
performance of BKD in uncertainty quantification. We also
present a separate visualization for each class within the
MNIST dataset in Figure 5, and results for the CIFAR-10
dataset in Figure 6. We observe that images exhibiting
greater mean deviance (right panel) tend to be more clut-
tered, with the subject being less prominent. This reasonably
leads to large uncertainty in the model’s predictions. Sim-
ilar visualization results for other datasets are available in
Appendix D.5.

To further evaluate the performance of BKD on uncertainty
quantification, we explore the distribution of mean deviance
over all images as well as the distribution of images in each
class. Figure 7 shows the log-transformed mean deviance
distribution for the Fashion MNIST dataset, with the first
box representing results across all classes and subsequent
boxes detailing results by class. Notably, classes ‘trouser’,
‘bag’, and ‘sandal’ exhibit lower mean deviance, reflect-
ing their distinctive and recognizable features. Conversely,
classes ‘T-shirt’, ‘pullover’, ‘coat’, and ‘shirt’ show higher
mean deviance, underscoring the challenges in differentiat-
ing these items. The observed pattern is expected because
items with distinctive designs, such as the specific length of

Figure 6. For each class in the CIFAR-10 dataset, the eight images
with the lowest mean deviance are displayed on the left, while the
eight images with the highest mean deviance are shown on the
right.

trousers or the particular shape of bags and sandals, tend to
be identified more easily. In contrast, upper-body garments
create a tougher task for recognition due to their generally
similar outlines, and the fine details are not always clear,
especially in low-resolution images. Similar analyses for
other datasets can be found in Appendix D.5.

Figure 7. The boxplot illustrates the log-transformed mean de-
viance for the Fashion MNIST dataset. The leftmost box shows
the result for all images, whereas the following boxes detail the
results for each class.

Coverage rate. In Figure 8, we report the coverage rates
at the commonly used 95% credible level for the testing
datasets with different sizes (500, 1000, 2000, 4000, 6000,
8000, 10000) on the CIFAR-100 dataset. The results are
based on 10 repetitions and consistently demonstrate that
our BKD method achieves coverage rates closely matching
the specified 95% credible level. As the sample size of the
data increases, variation across repetitions decreases, and the
mean coverage rate stabilizes near 0.95. Results on the other
three datasets are reported in Figure 16 in Appendix D.5.
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Figure 8. Evaluation of coverage rate on commonly used credible
level 0.95 for various sample sizes in the CIFAR-100 dataset. We
compare the results of BKD, BNN, and Dropout.

6. Conclusion

In this work, we develop a Bayesian Knowledge Distillation
(BKD) method aimed at compressing the teacher model and
providing a suite of Bayesian inference tools for the stu-
dent model’s uncertainty quantification. BKD establishes a
teacher-informed prior for the student model’s parameters,
from which the posterior is subsequently derived. We show
that minimizing KD loss is tantamount to estimating the pos-
terior mode in BKD, thereby offering a clear interpretation
of KD’s operational mechanism and suggesting novel ways
to improve KD methods. Furthermore, we establish the
theoretical properties of BKD. To handle high-dimensional,
large-scale data, we apply stochastic gradient Langevin dy-
namics for generating posterior samples.

We evaluate the performance of BKD using both synthetic
and real datasets, focusing on classification accuracy and
uncertainty quantification ability. The results demonstrate
that BKD matches the teacher model’s performance with the
advantage of a significantly smaller size. The key strength
of BKD primarily lies in precisely quantifying prediction
uncertainty, indicated by three key findings. First, we show
that mean deviance is validated as a reliable uncertainty
metric by exploring its association with both the true class
probability p and the intrinsic structure of data points (Fig-
ure 2). Second, our analysis of real datasets reveals a ten-
dency of the original KD method to yield overly confident
predictions when applied to perturbed images. In contrast,
BKD consistently provides predictions with reasonable un-
certainty. Third, the visualization and distribution analysis
of estimated uncertainty across classes confirms the reli-
ability of BKD’s uncertainty measures. Additionally, the
exploration of coverage rates demonstrates the robustness
of BKD.

There are some potential extension directions of BKD of
great interest. First, we may employ priors other than the

Dirichlet distribution for the student model’s parameters.
We use Dirichlet distribution to achieve one of the primary
goals of this manuscript, i.e., interpreting the original KD.
However, alternative priors, such as the continuous cate-
gorical (CC) distribution, could be considered based on the
practical context. In Appendix D.4, we provide the exper-
iment results evaluating the performance of BKD on the
MNIST dataset using CC prior.

Second, we may impose a more specific and restricted stu-
dent model, with a focus on the direct inference of its param-
eters. In this way, BKD may provide an analytical form of
the posterior distribution of these parameters. For example,
if the linear discriminant analysis (LDA) classifier is used
in the student model. Utilizing BKD with our currently de-
fined prior in Equation (5), the posterior distribution of class
means and covariance matrix leads to the normal-inverse-
Wishart distribution. A simulation study setting QDA as the
teacher model and LDA as the student model is reported in
Appendix C.5.

Third, BKD could potentially be extended to regression and
data generation tasks. To achieve this objective, the key
issue is to impose a suitable prior for the student model.
For regression, the teacher-informed prior distribution can
be constructed as the Gaussian density function with the
mean as the prediction results of the teacher model. For
sore-based generative models, we can establish the prior for
the score function as the Gaussian density function with the
means as the score functions estimated by the teacher model
using the training data.

This work contributes to the growing demand for reliable,
privacy-aware, and resource-efficient machine learning mod-
els in real-world applications.
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APPENDIX

Here is an outline of the Appendix.

• Appendix A summarizes the notations used in the main text.

• Appendix B gives the proof of theoretical results.

• Appendix C presents the simulation experiments.

• Appendix D presents supplementary details for real data analysis.

A. Notation

In Table 3, we summarize the notations in the main text.

Notation Interpretation
F function classes
P population distribution

D, T dataset
P distribution class
h function representing the student neural network
ω parameters of the student neural network
ω→ estimate of ω
ω̂ Monte Carlo sample of ω
x vector representing m-dimensional feature
y class label
y one-hot encoding of class label y
p output of the tea neural network, representing the predicted class probability
q output of the student neural network, representing the predicted class probability
N sample size of the training dataset D
n sample size of the testing dataset T
l likelihood function
⇐ gradient operator
ω weight parameter
dev deviance

Table 3. Notation table

B. Proof of Theoretical Results

Proposition 4.1. Consider the probability density function εq(q;pi) as defined in Equation (5) with a constant ω > 0.
Under the condition that the parameters of the student model lie in a compact space, εω(ω; {pi}Ni=1) is a proper prior.

Proof of Proposition 4.1. According to Equation (4) and (5), for some constant C > 0, we have

εω(ω; {pi}Ni=1) = C !N
i=1εq(q = h(xi,ω);pi)

= C !K
k=1!

N
i=1 (h(xi,ω))

ωpik .

(B.1)

Taking integration, we get ∫
εω(ω; {pi}Ni=1)dω = C

∫
!K

k=1!
N
i=1 (h(xi,ω))

ωpik dω. (B.2)

Since 0 ⇒ h(xi,ω) ⇒ 1, we know 0 ⇒ !K
k=1!

N
i=1 (h(xi,ω))

ωpik ⇒ 1 for all i and k. Because we assume ω is from a
compact space and !K

k=1!
N
i=1 (h(xi,ω))

ωpik is bounded, we know the integration B.2 is bounded. Thus, we have shown
εω(ω; {pi}Ni=1) is a proper prior.
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Theorem 4.2. Consider the probability density function εq(q;pi) as defined in Equation (5), as ω ↗ ↘, we have

εq(q;pi) ↓↗ ϑ(q ↓ pi), (B.3)

where ϑ(·) is the multivariate Dirac delta function.

Proof of Theorem 4.2. For the sake of brevity, we consider the general formula εq(q;p,ω), where q = (q1, q2, · · · , pK)T

and p = (p1, p2, · · · , pK)T . WLOG, we consider the situation where pk ⇑= 0 for k → 1, · · · ,K. We have

εq(q;p,ω) =
1

B(1K + ωp)
!K

k=1(qk)
ωpk =

#(ω+K)
∏K

k=1 (#(ωpk + 1))
!K

k=1(qk)
ωpk . (B.4)

We start with the situation when ωpk, k = 1, · · · ,K, are all integers. We have

εq(q;p,ω) =
(ω+K ↓ 1)!
∏K

k=1 (ωpk)!
·

K∏

k=1

(qk)
ωpk . (B.5)

According to the Stirling formula that n! ≃
⇓
2εn

(
n
e

)n, we have

εq(q;p,ω) ≃
ωK↓1 ·

⇓
ω
(
ω
e

)ω

∏K
k=1

⇓
ωpk

(
ωpk

e

)ωpk
·

K∏

k=1

(qk)
ωpk

≃ ω
K→1

2 ·
K∏

k=1

(
qk
pk

ωpk

.

(B.6)

Write g(q) =
∏K

k=1

(
qk
pk

)pk

, we now get the maximization of g(q) w.r.t. q. Since we have the constrain that
∑K

k=1 qk = 1,
we use the Lagrange multiplier to find the maximum of g(q). The Lagrangian function is defined as

L (q1, . . . , qK , c) ↑ log g + c


1↓

K∑

k=1

qk


, (B.7)

where log g =
∑K

k=1 pk (log qk ↓ log pk).

To solve
⇐q1,··· ,qK ,cg (q1, · · · , qK , c) = 0, (B.8)

we have  pk

qk
↓ c = 0, for k = 1, . . . ,K

∑K
k=1 qk = 1

(B.9)

since
∑K

k=1 pk = 1, we can easily get that the solution is


qk = pk, for k = 1, · · · ,K
c = 1.

(B.10)

That is, we have gmax(q) = 1 when (B.10) holds, and this leads to εq(q;p,ω) ≃ ω
K→1

2 · 1ω ω↘≃↓↗ ↘.

For ⇔q ⇑= p, we have g(q) < 1, which leads to εq(q;p,ω) ≃ ω
K→1

2 · (g(q))ω ω↘≃↓↗ 0. Thus, as ω ↗ ↘, we have

lim
ω↘≃

∫
εq(q;p,ω)dq = 1,

εq(q;p,ω) = 0 if q ↓ p ⇑= 0.
(B.11)

That is, εq(q;p,ω) ↓↗ ϑ(q ↓ p) as ω ↗ ↘.

If ↖ k s.t. ωpk is not an integer. According to the Stirling formula for the gamma function that #(z) ≃


2ϑ
z

(
z
e

)z , following
the same analysis, we can also get εq(q;p,ω) ↓↗ ϑ(q ↓ p) as ω ↗ ↘.
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C. Simulation

We conduct simulation studies to evaluate the performance of the proposed BKD method in classification problems. We
consider four distinct scenarios with varying dimensions and number of classes. To evaluate model performance, we employ
two criteria: classification accuracy and mean absolute error (MAE) on class probability p. In addition to assessing the
model’s overall accuracy, we place particular emphasis on validating its capacity to quantify uncertainty. To achieve this,
we use the mean deviance as a metric to measure prediction uncertainty and explore its relationship with the original data.
Additionally, we analyze coverage rates across various confidence levels and sample sizes, providing a comprehensive
assessment of the method’s uncertainty quantification ability.

C.1. Simulation Settings

We consider four different scenarios for generating synthetic data, dividing the data into training, validation, and testing sets
in a 7:3:1 ratio for all scenarios.

In the context of binary classification problems, we explore three scenarios involving different dimensions and model
structures.

p(x) =
exp(↽(x))

1 + exp(↽(x))

Y ≃ Bernoulli(p(x))

(C.1)

Scenario 1: ↽(x) = 2↓ 2x1 + x2,

where x1 ≃ Unif(↓4, 6) and x2 ≃ Unif(↓4, 4). We generate a sample of size 10, 000.

Scenario 2: ↽(x) = 1↓ 2x1 + x2 ↓ x3 ↓ 0.5x4 + 2x5,

where x1, x5 ≃ Unif(↓2, 4), x2, x3 ≃ Unif(↓4, 4), and x4 ≃ Unif(0, 2). We generate a sample with sample size
10, 000.

Scenario 3: ↽(x) = 2 exp (x1) +
1
2x

2
2 + 5sin(x3x4) +

1
2

∑10
j=5 xj ↓ 3,

where x = (x1, . . . , xk)T ≃ N(µ,!) with k-dimensional mean vector µi = 0 and k ↙ k covariance matrix $i,j = ς|i↓j|,
with 1 ⇒ i ⇒ d and 1 ⇒ j ⇒ d. We set d = 20, ς = 0.8, and generate a sample with sample size 20, 000.

Scenario 4: We also consider a multi-class scenario, using the model described below. We set

pi(x) =
f(x|µi,!)

∑5
j=1 f(x|µ1,!)

, i = 1, . . . , 5

p(x) = (p1(x), p2(x), p3(x), p4(x), p5(x))
T ,

Y ≃ Multinomial(p(x))

(C.2)

where µ1 = (0, 0, 0, 0, 0)T , µ2 = (3, 3, 3, 3, 3)T , µ3 = (0, 0, 1, 3, 2)T , µ4 = (2, 0, 1, 2, 1)T , µ5 = (2, 2, 1, 0, 1)T , and
$ = (0.5|i↓j|)5⇐5. We simulate 8, 000 sample from each N(µi,$), i = 1, . . . , 5, and generate labels according to Equation
(C.2).

C.2. Details on Model Structure

Scenario 1: The teacher model employs a Multilayer Perceptron (MLP) architecture consisting of five hidden layers. These
layers have 7, 10, 12, 10, and 5 nodes respectively. The model uses the ReLU activation function and incorporates a dropout
rate of 0.2. The student model employs an MLP architecture consisting of one hidden layer with five nodes. The model uses
the ReLU activation function.

Scenario 2: The teacher model employs a Multilayer Perceptron (MLP) architecture consisting of four hidden layers. These
layers have 5, 8, 12, and 5 nodes respectively. The model uses the ReLU activation function and incorporates a dropout rate
of 0.1. The student model employs an MLP architecture consisting of one hidden layer with five nodes. The model uses the
ReLU activation function.
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Scenario 3: The teacher model employs a Multilayer Perceptron (MLP) architecture consisting of five hidden layers. These
layers have 30, 20, 10, 10, and 5 nodes respectively. The model uses the ReLU activation function and incorporates a
dropout rate of 0.2. The student model employs an MLP architecture consisting of two hidden layers. These layers have 25,
and 10 nodes respectively. The model uses the ReLU activation function.

Scenario 4: The teacher model employs a Multilayer Perceptron (MLP) architecture consisting of five hidden layers. These
layers have 7, 15, 12, 10, and 7 nodes respectively. The model uses the ReLU activation function and incorporates a dropout
rate of 0.2. The student model employs an MLP architecture consisting of one hidden layer with ten nodes. The model uses
the ReLU activation function.

C.3. Classification Results

We evaluate the classification results using both accuracy and MAE. MAE measures the difference between the estimated
class probability and the true class probability p. For the proposed BKD method, MAE is calculated by comparing the
predicted posterior mode with the true class probability p. The results are detailed in Table 4. We compare BKD with the
teacher model and the original KD method. The best results in each scenario are highlighted in bold.

Accuracy MAE
Dataset Teacher Orig KD BKD Teacher Orig KD BKD

Scenario 1 0.921 0.918 0.920 0.069 0.027 0.023

Scenario 2 0.897 0.896 0.901 0.090 0.088 0.028

Scenario 3 0.868 0.858 0.868 0.112 0.122 0.089

Scenario 4 0.838 0.862 0.870 0.076 0.044 0.037

Table 4. Accuracy and MAE for different methods in simulation scenarios. The best results for each scenario are marked in bold.

The results in Table 4 highlight the efficiency of the BKD method. Notably, BKD achieves the highest accuracy in three out
of four scenarios and consistently records the lowest MAE, demonstrating its robust performance across different conditions.
Specifically, in Scenario 2, BKD improves accuracy from 0.897 (teacher model) to 0.901, and in Scenario 4, it shows a more
notable increase from 0.838 to 0.870, indicating its strength in enhancing the model’s classification performance. Moreover,
BKD considerably reduces the MAE, to about half that of the other methods, demonstrating its precision in accurately
estimating class probabilities in addition to class labels. Notably, in Scenario 1, while the teacher model exhibits the highest
accuracy at 0.921, BKD is close behind at 0.920, along with a substantial MAE reduction from 0.069 to 0.023. A similar
trend is observed in Scenario 3. These slight differences in accuracy, paired with notable decreases in MAE, indicate that
the advantages of BKD extend beyond mere accuracy. It can effectively predict class probabilities, thereby contributing to
the model’s reliability and enhancing its generalization capacity.

C.4. Uncertainty Evaluation

C.4.1. MEAN DEVIANCE

We employ mean deviance as a metric to quantify model uncertainty at each data point. In our model, where Y ≃
Bernoulli(p), the variance of each observation is highly correlated with p(1↓ p). Therefore, the class probability p is a
critical determinant of the prediction uncertainty for each data point. In Figure 9, this relationship is illustrated by plotting
mean deviance against various values of p across the first three scenarios. We observe that the general trend is that as
p increases, the mean deviance first increases and then decreases. Data points with p closer to 0.5 are associated with
higher mean deviance, indicating greater prediction uncertainty. This observation aligns with theoretical expectations, as
predictions on data points with probabilities near 0.5 are inherently more uncertain.

Despite the overall trend of uncertainty correlating with class probability p, as described above, there is noticeable variation
in the uncertainty of data points that share the same class probability p. This variation is especially pronounced in Scenario
3. This phenomenon suggests the presence of additional factors, beyond a data point’s class probability, contributing to
the model’s predictive uncertainty. To investigate this, we apply t-SNE (Van der Maaten & Hinton, 2008) for dimensional
reduction of data points with class probabilities p near 0 or 1 into a two-dimensional space. The resulting visualization,
shown in Figure 10, color-codes data points according to their class probability p in the left panel and mean deviance in the
right panel. We observe that although all data points highlighted in yellow share a similar class probability p, those in the top
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Figure 9. Relationship between the mean deviance and true class probability p for simulation scenarios 1-3.

Figure 10. Two-Dimensional Visualization of Simulated Data in Scenario 3 Using t-SNE. In the left panel, data points are colored based
on class probability p. In the right panel, data points are colored based on the mean deviance calculated using our BKD method. The
results demonstrate that mean deviance is influenced not only by p but also by additional factors, such as neighborhood information.

left corner exhibit lower variance. Since these data points are predominantly surrounded by others with comparable values
of p, it is plausible that the model considers neighboring data points when making predictions. The model tends to be more
certain of its predictions when the surrounding data points strongly resemble the data point in question. In contrast, data
points in the lower right corner are surrounded by numerous points from different classes. Consequently, the model tends to
produce predictions with higher uncertainty for these data points. This observation suggests that the variations in prediction
uncertainty are influenced by neighboring data points. This phenomenon is consistent with the toy example in the main text.

C.4.2. COVERAGE RATE

We calculate the coverage rate using Equation (17) and conduct tests at three commonly used credible levels (0.85, 0.90,
0.95), with varying proportions of testing data (0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0). Each test setting is replicated 10 times.
The results, presented in Figure 11, reveal that our BKD method consistently achieves coverage rates close to the specified
credible levels. As the size of the testing sample increases, variation across repetitions decreases, and the mean coverage
rate stabilizes, closely aligning with the chosen credible level.
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Figure 11. Coverage rate across commonly used credible levels in simulation scenarios.

C.5. BKD with the teacher model as QDA and the Student model as LDA

In the case where we consider the student model to be LDA, we can derive the posterior distribution of the class means
and the common covariance matrix across all classes as a normal-inverse-Wishart distribution. This allows for analytical
Bayesian inference.

If the student model is a classifier by linear discriminant analysis (LDA), we have parameter ω =
{µ1, · · · ,µK , ς1, · · · , ςK ,!}, where µk is the kth class mean, ςk is the prior probability of being kth class, ! is
the common covariance matrix K classes.

We can derive
log(hk(xi,ω)) = ↓∝(xi ↓ µk)!

↓1/2∝22/2↓ log(|!|)/2 + log ςk + C,

where C is a constant. Through this, the posterior distribution of ! is the inverse Wishart distribution W↓1(S, n(1 + ω)),
and

S =
K∑

k=1

n∑

i=1

(yik + ωpik)x
T
i xi ↓

K∑

k=1

Mkµ̄
T
k µ̄k,
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where Mk =
∑n

i=1(yik + ωpik), µ̄k =
∑n

i=1(yik + ωpik)xi/Mk. What’s more, we have the posterior distribution of µk

conditioned on ! is the multivariate normal distribution MVN(µ̄k,$/Mk).

To validate this approach, we conduct experiments where the teacher model is trained with QDA and the student model is
LDA. Specifically, we generate synthetic data similar to simulation scenario 4 by setting

Pr(Y = k|x) = Pr(x|Y = k)Pr(Y = k)
∑2

l=1 Pr(x|Y = l)Pr(Y = l)
,

P r(x|Y = k) = f(x|µk,!k)

(C.3)

where µ1 = (0, 0, 0, 0)T , µ2 = (0, 0, 3/2, 2/3)T , !1 = (0.7|i↓j|)4⇐4, and !2 = (0.4|i↓j|)4⇐4. We report (1) accuracy
and mean absolute error (MAE) of the estimated probability (Table 5); (2) mean coverage rate of the credible interval (Table
6); and (3) the relationship between mean deviance ” (uncertainty) and true probability p ↭ Pr(Y = 1|x).

Table 5. Accuracy and MAE of QDA, LDA, and BKD on Simulated data.

QDA (teacher) LDA (student) BKD (our)
Accuracy 0.845 0.837 0.842

MAE 0.064 0.144 0.138

Table 6. Coverage rate of BKD with varying sample sizes, with standard deviation in parenthesis. Credible level is set to be 0.95.

n=480 n=960 n=1440 n=1920
Level = 0.95 0.9504 0.9484 0.9477 0.9473

(0.0060) (0.0038) (0.0023) (0.0011)

In Figure 12, we plot the mean deviance against various values of p. The phenomenon is similar to the simulation settings.
We observe that the general trend is that as p increases, the mean deviance first increases and then decreases. Data points
with p closer to 0.5 are associated with higher mean deviance, indicating greater prediction uncertainty. This observation
aligns with expectations, as predictions on data points with probabilities near 0.5 are inherently more uncertain. All results
show that in this scenario, BKD also successfully distills knowledge from the teacher model.

Figure 12. Relationship between the mean deviance and true class probability p.

D. Real Data Analysis

D.1. Details on Data Sets

MNIST: MNIST (LeCun, 1998) is a dataset of handwritten digit images with a training set of 60, 000 examples and a test
set of 10, 000 examples. Each example is a 28↙ 28 grayscale image, associated with a label of 10 classes.
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Fashion MNIST: Fashion MNIST (Xiao et al., 2017) is a dataset of Zalando’s article images with a training set of 60, 000
examples and a test set of 10, 000 examples. Each example is a 28↙ 28 grayscale image, associated with a label from 10
classes.

CIFAR-10: The CIFAR-10 dataset (Krizhevsky et al., 2009) consists of a training set of 50, 000 examples and a test set of
10, 000 examples. Each example in the dataset is a 32↙ 32 color image, spanning 10 different classes of objects such as
animals and vehicles. These classes include airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks, each
equally represented in the dataset.

CIFAR-100: CIFAR-100 (Krizhevsky et al., 2009) is an image dataset that consists of a training set of 50, 000 examples
and a test set of 10, 000 examples. Each example is a 32↙ 32 color image, categorized into 100 classes.

D.2. Details on Model Structure

MNIST dataset: The model structure is inspired by Hinton et al. (2015). Specifically, the teacher model employs an MLP
with two hidden layers of 1200 hidden nodes. The model uses the ReLU activation function and incorporates a dropout
rate of 0.5. The model also incorporates a dropout layer with rate 0.2 for the input. The student model employs an MLP
architecture consisting of two hidden layers. These layers have 200 and 100 nodes, respectively. The model uses the ReLU
activation function.

Fashion MNIST dataset: The teacher model employs the 50-layer ResNet architecture as described by He et al. (2016).
We adhered closely to the parameter settings of this model as implemented in the PyTorch torchvision library (Paszke
et al., 2019). The ResNet50 model has 25.6 million parameters. The student model employs a CNN architecture with two
convolutional layers and a subsequent fully connected layer. The first convolutional layer has 16 output channels, batch
normalization, ReLU activation, and max pooling. The second convolutional layer follows a similar pattern but with 8
output channels. The convolutional layer is then followed by fully connected layers, consisting of a hidden layer with 60
nodes and an output layer with 10 nodes.

CIFAR-10 / CIFAR-100 datasets: The teacher model employs the ViT-B-16 architecture as described by Dosovitskiy et al.
(2020). The ViT-B-16 model has 86 million parameters. The student model uses the MUXNet-m architecture proposed in
Lu et al. (2020), with around 3.4 million parameters.

D.3. Implementation Details of BNN and Dropout

To implement the method integrating the original KD and BNN, we set the BNN model as the student. We train this model
using variational inference with details described in Shridhar et al. (2019), and incorporate the KD loss to distill knowledge
from the teacher model. An important hyperparameter when training the BNN model is the weight of the KL loss. We
perform a grid search over the values {0.01, 0.05, 0.1, 0.2} to find the parameter that yields the highest accuracy. For the
CIFAR-10 and CIFAR-100 datasets, due to computational constraints, we add the Bayesian layers only after the feature
extraction blocks.

To implement the method integrating the original KD and Monte Carlo dropout, we enable dropout during the test-
ing/inference stage to obtain multiple stochastic predictions.

D.4. BKD on the MNIST dataset using continuous categorical distribution (CC)

We notice that Gordon-Rodriguez et al. (2020) propose the continuous categorical distribution given the concern of Dirichlet
distribution’s divergence for modeling the probability vectors close to the extrema of the simplex. Therefore, changing the
prior to continuous categorical distribution could be beneficial for the tasks when the student model can reach very high
prediction accuracy. In particular, we consider a continuous categorical distribution CC(1 + ωpi), i.e.,

εq(q,pi) ↔ !K
k=1(1 + ωpik)

qk ,

for ω > 0. Note that as ω ↗ ↘, we also have εq(q,pi) ↗ ϑ(q↓ pi) as described in Theorem 4.2.

We evaluate the performance of BKD on the MNIST dataset using Dirichlet prior (Dir) and continuous categorical distribution
(CC), independently. Both priors yield comparably high model accuracies, with Dir 0.980 and CC 0.979. Table 7 details
mean deviance (uncertainty) when taking the perturbed images with different perturbation levels ↼ as input. BKD’s mean
deviance with the Dirichlet prior consistently rises with increased perturbation (↼), while it initially increases and then
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slightly fluctuates with the CC prior. Nevertheless, the fluctuations in CC are minimal and remain within a reasonable range.
In contrast, the original KD method tends to yield overly confident predictions at high perturbation levels. These findings
demonstrate BKD’s robustness to prior selection, indicating that various reasonable priors can produce similarly robust and
satisfactory outcomes.

Table 7. Mean deviance (uncertainty) with varying perturbation levels, on the MNIST dataset.

↼=0 ↼=0.1 ↼=0.2 ↼=0.3 ↼=0.4 ↼=0.5 ↼=0.6 ↼=0.7 ↼=0.8 ↼=0.9 ↼=1
Orig KD 0.03 0.07 0.33 0.74 0.80 0.77 0.76 0.68 0.58 0.47 0.38

BKD (Dir) 0.08 0.15 0.41 0.74 1.19 1.39 1.42 1.42 1.41 1.43 1.46

BKD (CC) 0.16 0.31 0.91 1.63 2.24 2.73 2.97 2.99 2.93 2.90 2.92

D.5. More Results

We present a separate visualization for each class within the Fashion MNIST dataset in Figure 13.

Figure 13. For each class in the Fashion MNIST dataset, the 8 images with the lowest mean deviance are displayed on the left, while the 8
images with the highest mean deviance are shown on the right.

The distribution of mean deviance for the MNIST dataset is shown in Figure 14. The first box displays the log-transformed
mean deviance across all images, while the subsequent boxes individually represent the log-transformed mean deviance for
images within each class. The results show that, on average, digits ’0’ and ’6’ have lower mean deviance, indicating higher
prediction confidence for these digits. Conversely, digits ’8’ and ’9’ exhibit higher mean deviance. This observation aligns
with our intuition as digit ‘0’ is marked by its unique round shape and digit ‘6’ is distinguishable due to its notable loop at
the bottom. On the contrary, digit ‘8’ can often be confused with ‘3’ when its top loop is small or open, and it can also
be mistaken for a ‘9’ if the bottom loop is written more openly. While a loosely written ‘9’, with its loop not fully closed,
can resemble ‘4’. Additionally, a ‘9’ with a long stem and tiny loop could be misidentified as ‘7’, particularly when ‘7’ is
written with a crossbar.

The distribution of mean deviance for the CIFAR-10 dataset is shown in Figure 15. We find that on average cars are
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Figure 14. The boxplot illustrates the log-transformed mean deviance for the MNIST dataset. The leftmost box shows the result for all
images, whereas the following boxes detail the results for each class.

the simplest to classify, with ships coming next. This aligns with our expectations, as the shape of cars is simple and
characterized by recognizable elements such as wheels and windows. Ships, distinct in both large size and distinct shape
among the ten categories, also facilitate easier classification. The most challenging classes to classify are cats and dogs, with
cats posing a slightly greater challenge. The primary difficulty arises from the high variability within these classes, including
a wide range of breeds, various poses, and their often complex surroundings. Furthermore, the similarity in features shared
between cats and dogs, such as their fur and comparable body structures, adds complexity to their accurate classification.

Figure 15. The boxplot illustrates the log-transformed mean deviance for the CIFAR-10 dataset. The leftmost box shows the result for all
images, whereas the following boxes detail the results for each class.

For the CIFAR-100 dataset, due to the large number of categories (100), we omit the results of additional analyses here.

The coverage rate is shown in Figure 16. In some cases, the results from BNN and Dropout are highly consistent across
repetitions, resulting in box plots that appear as straight lines. For instance, with the MNIST dataset, BNN consistently
achieves a coverage rate of around 0.86, whereas Dropout reaches a coverage rate equal to 1. In the case of the Fashion
MNIST dataset, BNN attains a coverage rate of approximately 1, while Dropout often has a coverage rate of around 0.85.
For the CIFAR-10 dataset, BNN consistently shows a coverage rate equal to 1.
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Figure 16. Evaluation of coverage rate on commonly used credible level 0.95 for various sample sizes in MNIST, Fashion MNIST,
CIFAR-10, and CIFAR-100 datasets. We compare the results of BKD, BNN, and Dropout.
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