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A B S T R A C T

The two major challenges to deep-learning-based medical image segmentation are multi-modality and a lack
of expert annotations. Existing semi-supervised segmentation models can mitigate the problem of insufficient
annotations by utilizing a small amount of labeled data. However, most of these models are limited to
single-modal data and cannot exploit the complementary information from multi-modal medical images. A
few semi-supervised multi-modal models have been proposed recently, but they have rigid structures and
require additional training steps for each modality. In this work, we propose a novel flexible method,
semi-supervised multi-modal medical image segmentation with unified translation (SMSUT), and a unique semi-
supervised procedure that can leverage multi-modal information to improve the semi-supervised segmentation
performance. Our architecture capitalizes on unified translation to extract complementary information from
multi-modal data which compels the network to focus on the disparities and salient features among each
modality. Furthermore, we impose constraints on the model at both pixel and feature levels, to cope with
the lack of annotation information and the diverse representations within semi-supervised multi-modal data.
We introduce a novel training procedure tailored for semi-supervised multi-modal medical image analysis, by
integrating the concept of conditional translation. Our method has a remarkable ability for seamless adaptation
to varying numbers of distinct modalities in the training data. Experiments show that our model exceeds the
semi-supervised segmentation counterparts in the public datasets which proves our network’s high-performance
capabilities and the transferability of our proposed method. The code of our method will be openly available
at https://github.com/Sue1347/SMSUT-MedicalImgSegmentation.
1. Introduction

The pixel-to-pixel level annotations of lesions and organs help sur-
geons make better diagnoses and give treatments precisely. However,
in general, eliciting manual annotated medical images from radiology
experts for every patient is laborious and time-consuming. An ideal
solution is to enable machine learning to assist diagnosis with limited
annotations [1]. Semi-supervised deep learning methods can leverage
large number of unlabeled data to improve the learning performance
iven limited labeled data, which has been a hot research topic in
edical image analysis in recent years [2]. Common semi-supervised

medical image segmentation based on deep learning can be roughly
divided into two categories: iterative pseudo-label-based methods and
consistency constraint training methods. The former methods generate
pseudo-labels of partial unlabeled images from a supervised learning
network trained with labeled data, and then the pseudo-labels can
be used in the next round of training until eligible predictions are
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made for all the unlabeled data [3]. The latter strategies utilize some
consistency constraints and regularize the model by minimizing the
difference between these constrained elements on both labeled and
unlabeled data. These constraints can be implemented through data
perturbation, network dropout, self-ensemble models [4–6], parallel
models [7,8], and GAN-based segmentation [9].

In radiology diagnosis, physicians examine various modalities of
medical images for the diagnosis, such as computed tomography (CT),
magnetic resonance imaging (MRI), magnetic resonance angiography
(MRA), etc. [10]. Each modality of medical images contains anatomic
structures of patients and, based on different imaging technologies, pre-
serves different features that amplify different properties of organs and
tissues [11]. CT images utilize X-ray absorption to analyze the structure
of the body, providing accurate information about hard tissues, internal
organs, and tumors. MR images can visualize normal and pathological
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Fig. 1. The framework of SMSUT, where images and labels are selected from the abdominal dataset. The pink arrows show the training stream of our framework, the blue frames
indicate the supervised training data, the yellow frames indicate the unsupervised training data, the blue dotted lines indicate the supervised losses and the yellow dotted lines
indicate the unsupervised losses.
soft tissues with high resolution, aiding in the diagnosis of blood
vessels, the brain, heart, and other internal organs. Integrating multiple
data modalities improves diagnostic accuracy and enhances medical
decision-making [12–14]. Generative adversarial network (GAN) [15]
is a type of neural network model that has gained attention in medical
image analysis due to its usefulness in counteracting domain shift, and
effectiveness in generating new image samples. It is commonly used to
perform medical images’ modal translation, which can transform the
source modal image into target modality without changing its anatomic
content [16,17] in order to process the downstream tasks such as
detection, and segmentation.

Multi-modal medical image segmentation methods typically neces-
sitate a paired set of training images and achieve the fusion of multi-
modal image information by either concatenating the input multi-
modal images or fusing features in the latent space [18,19]. However,
acquiring a paired set of medical images is challenging for medical
image analysis due to various scanning protocols and unsuitable pa-
tient conditions. The transformer method which based on multi-head
attention mechanism, has demonstrated state-of-the-art performance in
various computer vision tasks [20,21]. Leveraging the attention mech-
anism, multi-modality information can be integrated without the need
for multiple parallel structures and remains flexible to the number of
modalities [19]. However, multi-head attention methods require a large
dataset and significant computational resources, posing challenges in
the context of medical image analysis.

Although semi-supervised learning methods effectively alleviate the
insufficient label problem, most of them can only model one modality
at one time. How to extend it to model multi-modal data simultaneously
so as to leverage their complementary information remains an open
question. The semi-supervised multi-modal medical image segmenta-
tion is a novel area of research, it is based on real scenes in which
physicians tend to have limited time to annotate every patient’s medical
images for each modality [22,23]. Tackling the task can highly improve
he efficiency of the doctors and possess a great prospect of application.
Most of the research uses the cross-modal strategy, in terms of solv-

ng the multi-modal medical images by tackling two modalities at one
ime. One of the strategies is utilizing translation [24–26] or disentan-
gling [27,28] methods to enable cross-modal synthesis. These kinds of
methods intend to simplify the semi-supervised or unsupervised cross-
modal segmentation problems into semi-supervised single-modal seg-
mentation problems. However, these methods do not combine the im-
portant complementary information extracted from multi-modal data
2

to improve the semi-supervised segmentation task. Also, They are
time-consuming and have complicated training details. Another com-
mon strategy is to combine translation and segmentation in order
to force the model learning and sharing the feature level semantic
information [29–31]. Zhu et al. [23] use the architecture that con-
sists of two segmentation networks and two translation networks to
generate pseudo-labels for unlabeled data to complete the cross-modal
semi-supervised learning. These networks are commonly restricted to
training each modality with one segmentation network and one trans-
lation network, which makes the model difficult to adapt to multiple
modalities in reality. Maheshwari et al. [32] use cross-attention method
to integrate multi-modal information bypass the translation procedure.
However, it requires large databases for optimal performance. While
proven effective in natural images, the approach faces challenges in
multi-modal medical image segmentation due to the limited dataset.

To approach semi-supervised multi-modal medical image segmen-
tation, we present a novel deep-learning framework, SMSUT, that
combines a segmentation network with a unified multi-modal trans-
lation module and follows a unique semi-supervised procedure that
can handle multiple modal information. The network is inspired by
the inherent of the task, which requires the full utilization of multi-
modal information to overcome the insufficient annotation problem.
We integrate the segmentation network and translation network to ex-
ploit the complementary information within multi-modal data and the
limited annotation information. Through the translation task, we force
the network to capture the differences and significant features between
each modality, and by composing consistency losses and contrastive
learning loss, we achieve constraints on the model at the pixel level
and feature level to cope with the lack of information and the multiple
representations of semi-supervised multi-modal data. As a result, our
model can integrate the complementary information from different
modalities to propagate information from labeled data to unlabeled
data. Also, we propose a unique procedure for training semi-supervised
multi-modal medical images and using the idea of conditional transla-
tion. The method has a strong ability to be conveniently transferred to
adapt to flexible numbers of different modalities of training data. Exper-
iments show that our model exceeds the semi-supervised segmentation
counterparts in both the public multi-modal healthy abdominal organ
dataset and the multi-site prostate dataset. The abdominal dataset
proves our network can efficiently solve the semi-supervised multi-
modal segmentation task, and the prostate dataset proves our method’s

transferability, which can adapt to any number of modalities.
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In summary, our contributions can be summarized as follows:

• Propose a semi-supervised multi-modal segmentation framework
that can utilize the translation and segmentation tasks to exploit
the complementary information of multi-modal images and assist
in solving the insufficient annotation problem.

• Propose a semi-supervised multi-modal procedure with multiple
consistency constraints, that can adapt to flexible numbers of
modal information.

• Experiments show that our model exceeds the semi-supervised
segmentation counterparts in the two public datasets, which
proves our method’s high performance and transferability.

2. Related works

2.1. Deep learning based medical image segmentation

Medical image segmentation is to separate a target area of interest
from its background [33]. Ronneberger et al. [34] propose U-Net, a
U-shaped architecture that consists of a contracting path to capture
context and a symmetric expanding path that enables precise local-
ization, for medical image segmentation. Considering the relatively
simple structure of medical images and the importance of boundary
information, U-Net corresponds the underlying texture information
to high-level semantic information using skip connections. Through
the encoder–decoder structure with skip connections, U-Net achieves
promising segmentation results. Because of the simplicity and supe-
rior performance, various UNet-like methods are constantly emerging,
such as swin-UNet [35], ST-UNet [36], PDAtt-UNet [37], and TDD-
UNet [38]. Thus We adopt U-Net as the backbone structure of our
framework SMSUT.

2.2. Deep learning based medical image translation

In medical image translation, Generative adversarial networks (GANs
[15] have been widely used in multi-modal image synthesis tasks,
which can transform the source modal image into the target modality
without changing its anatomic content [39,40]. Gulrajani et al. [41]
propose gradient penalty loss to solve the consistently stable GAN
training problem, which penalizes the norm of the gradient of the
critic with respect to its input. To avoid image deformation generated
from GAN, contrastive learning [42,43] is introduced to constrain the
deformation at the feature level during training, which can provide
another perspective of self-supervised learning. Mirza et al. [44] pro-
pose conditional GAN for multi-modal image generation with a single
generator and a single discriminator, by generating descriptive tags
which are not part of training labels. Jung et al. [45] integrating
an additional module that ensures smooth and realistic transitions
in 3D space to cGAN. Ziegler et al. [46] utilize cGAN to analyze
the combination of image and tabular data for conditional 3D image
synthesis.

We use the same conditional method for our translation sub-network,
which enables our network to adapt to flexible numbers of modality
data without extra training processes. The generator takes the source
image and its corresponding modal information as inputs, and the
discriminator has two outputs, one for distinguishing real images, and
the other for resolving which modality the image comes from. Also,
we apply contrastive learning to constrain the deformation of genera-
tive adversarial learning and provide guidance to the semi-supervised
3

learning process.
2.3. Semi-supervised uni-modal medical image segmentation

Common semi-supervised medical image segmentation based on
deep learning is a uni-modal segmentation task. The segmentation is
based on the constraints such as data perturbation, network dropout,
self-ensemble models [4,47,48], parallel models [7,8], and GAN-based
segmentation [9]. Self-ensemble models and parallel models are ex-
tensively used in semi-supervised segmentation tasks [4,49–51]. Ouali
et al. [52] propose cross-consistency training to achieve semi-supervised
learning. The method enforces the consistency of predictions after
different perturbations are applied to the outputs of the encoder and
the consistency between the main decoder predictions and the auxiliary
decoders. Basak et al. [53] propose a semi-supervised patch-based con-
trastive learning framework for medical image segmentation without
using any explicit pretext task, they use the pseudo-labels generated
from semi-supervised learning strategies to provide additional guidance
to the contrastive learning method. We adopt the pixel-level consis-
tency and the feature-level consistency to constrain the semi-supervised
segmentation prediction. The supervised segmentation labels and the
segmentation consistency provide the basic semi-supervised segmenta-
tion performance on the pixel level. Through the unified translation
task, the extra modality information and the feature-level contrastive
learning consistency give the feature-level constraint.

2.4. Semi-supervised multi-modal medical image segmentation

At first, the semi-supervised multi-modal medical image segmenta-
tion is mainly about semi-supervised cross-modal learning tasks, which
focus on fully annotated source modal images (usually CT images) and
zero-annotated target modal images (usually MRI). To approach cross-
modal segmentation, it usually utilizes translation to transform the
unsupervised cross-modal segmentation problem into a semi-supervised
single-modal segmentation problem [24–26,54]. However, it is time-
consuming and has complicated training details while translating the
simulated images. It only focuses on the pixel level of constraining
by using the segmentation label, it does not combine the important
features extracted from translation into the segmentation network. The
improved strategy is to combine translation and segmentation in order
to force the model learning and sharing the feature level semantic
information, [29,30]. Nonetheless, the cross-modal tasks are limited to
only two modalities and require fully annotated source modal images.

Recent studies are focusing on a broader field and applying the im-
proved strategies to adapt the multiple modalities. Chartsias et al. [27]
use disentangled decomposition encoders that are dedicated to each
modality to get anatomical and imaging factors from the original data.
The Shared anatomical factors from the different inputs are jointly
processed and fused into the segmentation prediction. MASS [28] uses
cross-modal consistency to regularize deep segmentation models in
aspects of both semantic and anatomical spaces. Zhang et al. [31]
propose a semi-supervised contrastive mutual learning segmentation
framework, and an area-similarity contrastive loss to conduct semi-
supervised multi-modal segmentation.

However, these methods are still restricted by the cross-modal
strategies, which require training encoders or decoders dedicated to
each modality. This design choice makes the training procedures heavy
and rigid. To address this limitation, we propose applying a conditional
encoder that can adapt to multiple modalities with flexible numbers.
We demonstrate this flexibility through experiments conducted on a
four-modal abdominal dataset and a six-site prostate dataset. Addition-
ally, we combine important complementary information extracted from
multi-modal data to enhance the semi-supervised segmentation task.
We provide the idea for utilizing the combination of the latent features
of translation and segmentation and applying both pixel-level and
feature-level restraints for multi-modal tasks to solve semi-supervised
multi-modal segmentation problems. Due to the heavy training proce-
dures involved in applying cross-modal methods to multi-modal data,
we opt not to conduct comparison experiments with existing research
that employs cross-modal strategies.
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3. Method

Our framework SMSUT, as in Fig. 1, consists of Segmentation and
nified Translation Generator (STG), Discriminator (D), and multi-layer
erceptron (MLP) connecting to the shared middle layers of STG. STG
onsists of an encoder–decoder sub-structure 𝐺𝑠𝑒𝑔 = {𝐸𝑠𝑒𝑔 , 𝐿𝑠ℎ𝑟, 𝐷𝑠𝑒𝑔}
for multi-modal segmentation, and an encoder–decoder sub-structure
𝐺𝑡𝑠𝑙 = {𝐸𝑡𝑠𝑙 , 𝐿𝑠ℎ𝑟, 𝐷𝑡𝑠𝑙} for multi-modal translation, 𝐿𝑠ℎ𝑟 is a shared
convolution block, sharing semantic information and content informa-
tion between two tasks. Given multi-modal images 𝑋 = {𝑋𝑙

𝑖 , 𝑋
𝑢
𝑖 }, 𝑥 ∈

1×𝐻×𝑊 , 𝑖 ∈ 𝑁𝑚 and their annotations 𝑌 = {𝑌 𝑙}, 𝑦 ∈ 𝑅1×𝐻×𝑊 , where
ubscript 𝑖 denotes the modality index, superscript 𝑙 and 𝑢 denote
abeled and unlabeled, 𝑁𝑚 denotes the number of modalities, 𝐻 and𝑊
enote the height of width of images. Given a modal attribute vector
= {𝐶𝑖, 𝐶𝑗 ∥ 𝑐 ∈ {0, 1}𝑁𝑚 }, where 𝑐𝑖 denotes one-hot coding for a

ource modality, 𝑐𝑗 denotes one-hot coding for a target modality. We
se the Difference Attribute (DA) Vectors [55] to define the translation
etween a target modality and a source modality, DA vectors from the
ource modality to the target modality are 𝐷𝑖𝑗 and DA vectors from the
arget modality to the source modality are 𝐷𝑗𝑖. The detailed procedure
s in pseudocode 1.
Algorithm 1 The SMSUT procedure
Require: 𝑁𝑚 = number of modalities in the training set
Require: 𝑥𝑖 = {𝑥𝑙𝑖 , 𝑥

𝑢
𝑖 } = training multi-modal medical images 𝑖 ∈ 𝑁𝑚

Require: 𝑦𝑙 = partial annotations
Require: 𝐼𝑚𝑎𝑥 = the maximum of training epochs
Require: 𝑓𝜃1 (𝑥, 𝑑) = 𝑆𝑇𝐺 network with trainable parameter 𝜃1, d is

the DA vector
Require: 𝑔𝜃2 (𝑧, 𝑐) = 𝐷 network with trainable parameter 𝜃2, z is the

generated images, c is the modal attribute vector
Require: 𝑘𝜃3 (𝑓 ) = 𝑀𝐿𝑃 network with trainable parameter 𝜃3, f is the

latent feature after the shared middle layer
nsure: Trained 𝑆𝑇𝐺 and 𝐷
1: for 𝑡 = 0 → 𝐼𝑚𝑎𝑥 do
2: for each minibatch B do
3: randomly set target modality 𝑗
4: get DA vectors 𝑑𝑖𝑗 and 𝑑𝑗𝑖
5: 𝑧𝑗 , 𝑝, 𝑓𝑚𝑖𝑑1 ← 𝑓𝜃1 (𝑥𝑖, 𝑑𝑖𝑗 ) ⊳ get network outputs
6: 𝑧𝑖, 𝑝𝑐𝑜𝑛𝑠, 𝑓𝑚𝑖𝑑2 ← 𝑓𝜃1 (𝑧𝑗 , 𝑑𝑗𝑖) ⊳ get network cyclic outputs
7: supervised loss ← 𝑦𝑙 and 𝑝𝑙 ⊳ use Equation (1)
8: adversarial losses ← 𝑔𝜃2 (𝑥𝑖, 𝑐𝑖) and 𝑔𝜃2 (𝑧𝑗 , 𝑐𝑗 ) ⊳ use Equation
(2), (3), (4), (5)

9: reconstruction loss ← 𝑥𝑖 and 𝑧𝑖 ⊳ use Equation (6)
0: contrastive learning loss ← 𝑘𝜃3 (𝑓𝑚𝑖𝑑1) and 𝑘𝜃3 (𝑓𝑚𝑖𝑑2) ⊳ use
Equation (7)

11: if 𝑡 ≥ 𝐼𝑝𝑟𝑒 then ⊳ calculate the segmentation consistency
loss after 𝐼𝑝𝑟𝑒 iterations

12: segmentation consistency loss ← 𝑝 and 𝑝𝑐𝑜𝑛𝑠 ⊳ use
Equation (8)

13: end if
14: Update 𝜃1, 𝜃2, 𝜃3 ⊳ update network parameters
15: end for
16: end for
Test Input: 𝑥𝑖 = multi-modal images
Test Output: 𝑝 = segmentation prediction
1: Set target modality 𝑗
2: get DA vectors 𝑑𝑖𝑗
3: 𝑧𝑗 , 𝑝, 𝑓𝑚𝑖𝑑1 ← 𝑓𝜃1 (𝑥𝑖, 𝑑𝑖𝑗 ) ⊳ get network outputs

3.1. Supervised segmentation loss

The limited labeled image set (𝑥𝑙𝑖 , 𝑦
𝑙) is the only supervised learning

data in our method. We make the supervised segmentation loss as
the base guidance of our network, which is the combination of cross
4

entropy loss and dice loss between the prediction 𝑝𝑙 and the manual
annotation label 𝑦𝑙:

𝑠𝑒𝑔 = E𝑝𝑙→𝑃 𝑙 ,𝑦𝑙→𝑌 𝑙 [−(𝑦𝑙 log(𝑝𝑙) +
2𝑝𝑙𝑦𝑙

‖𝑝𝑙‖1 + ‖𝑦𝑙‖1
)], (1)

where ‖… ‖1 denoted the 𝐿1 norm.

3.2. Unsupervised learning based on unified translation

Unified translation helps our model to use the different information
among multiple modalities to complement the lack of information in
semi-supervised learning. The module can be flexibly applied to tasks
with any number of modalities.

In order to enable STG to change the modal features of the output
image to misguide the discriminator’s classification results. We use the
loss functions described in WGAN-GP [41] that can differentiate both
the authenticity and modality information of images, which can be
denoted as 𝐿𝑎𝑑𝑣, 𝐿𝑐𝑙𝑠. 𝐿𝑎𝑑𝑣 computes whether the generated image 𝑧
is a near-real medical image with the gradient penalty that enables the
stable training of GAN, 𝐿𝑐𝑙𝑠 is to verify the modality of images and to
guide the multi-modal translation. They are defined as:

𝐷
𝑎𝑑𝑣 = −E𝑥𝑖→𝑋𝑖

[𝐷𝑠𝑟𝑐 (𝑥𝑖)] + E𝑧𝑗→𝑍𝑗
[𝐷𝑠𝑟𝑐(𝑧𝑗 )]

+𝜆𝑔𝑝E𝑥̃→𝑋̃ [(‖∇𝑥̃𝐷𝑠𝑟𝑐(𝑥̃)‖2 − 1)2],
(2)

𝐺
𝑎𝑑𝑣 = −E𝑧𝑗→𝑍𝑗

[𝐷𝑠𝑟𝑐(𝑧𝑗 )], (3)

where the superscripts 𝐷 and 𝐺 denotes the loss that used for the Dis-
criminator 𝐷 and for the 𝑆𝑇𝐺, the generated image 𝑍 = {𝑍𝑙

𝑗 , 𝑍
𝑢
𝑗 }, 𝑧 ∈

𝑅1×𝐻×𝑊 , 𝑗 ∈ 𝑁𝑚, 𝜆𝑔𝑝 denotes the hyper-parameter of the gradient
parallel constraints, 𝑥̃ denotes the linear interpolation result of sample
𝑥𝑖 and 𝑧𝑗 , and ‖… ‖2 denotes the 𝐿2 loss.

The other sub-discriminator 𝐷𝑐𝑙𝑠 is for identifying the modality of
images, so as to guide the generator’s multi-modal translation. STG
needs to change the modal features of the output image to misguide
the discriminator’s classification results. Specifically, the Discriminator
classification losses are defined as:
𝐷
𝑐𝑙𝑠 = −E𝑥𝑖→𝑋𝑖 ,𝑐𝑖→𝐶𝑖

[𝑐𝑖 log(𝐷𝑐𝑙𝑠(𝑐𝑖 ∣ 𝑥𝑖))]

+E𝑧𝑗→𝑍𝑗 ,𝑐𝑗→𝐶𝑗
[𝑐𝑗 log(𝐷𝑐𝑙𝑠(𝑐𝑗 ∣ 𝑧𝑗 ))],

(4)

𝐺
𝑐𝑙𝑠 = −E𝑧𝑗→𝑍𝑗 ,𝑐𝑗→𝐶𝑗

[𝑐𝑗 log(𝐷𝑐𝑙𝑠(𝑐𝑗 ∣ 𝑧𝑗 ))]. (5)

The cyclic consistency reconstruction loss 𝑟𝑒𝑐 is defined as the 𝐿1
loss between 𝑋𝑖 and 𝑋𝑗 , which prevents STG from creating images
with the same content information in the modal reconstruction step.
We define the cyclic consistency reconstruction loss as:

𝑟𝑒𝑐 = E𝑥𝑖→𝑋𝑖 ,𝑧𝑗→𝑍𝑗
[‖𝑥𝑖 − 𝑧𝑗‖1]. (6)

where ‖… ‖1 denoted the 𝐿1 norm.
The STG utilizes a generative adversarial strategy to fully exploit

multi-modal semi-supervised data. Additionally, the cyclic consistency
reconstruction loss ensures that the STG can extract modality infor-
mation without discarding any important details. The unified transla-
tion module serves as an unsupervised method for the task, thereby
enhancing the semi-supervised segmentation performance.

3.3. Unsupervised learning based on feature-level and pixel-level consis-
tency

The feature-level consistency for semi-supervised training relies
deeply on the shared middle layers of the STG, as depicted in Fig. 1.
Other than that, we incorporate the contrastive learning loss [56] into
our network. This loss function leverages the concept of similarity mea-
surement, which has been proven to be highly effective in classification
and translation tasks. It provides additional feature-level supervision

and constrains the deformation caused by the generative network.
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The idea of nce loss is to map the positive samples (patches with
the same content at the same location of the different feature maps) to
be close to each other and the negative sample to be far away in the
latent feature space, and the equation is:

𝑛𝑐𝑒 = E𝑥𝑖→𝑋𝑖 ,𝑧𝑗→𝑍𝑗
[𝑝𝑎𝑡𝑐ℎ𝑁𝐶𝐸 (𝐺,𝐻,𝑋𝑖)

+𝑝𝑎𝑡𝑐ℎ𝑁𝐶𝐸 (𝐺,𝐻,𝑍𝑗 )],
(7)

here 𝐺 denotes the generator STG and 𝐻 denotes the MLP multi-layer
erceptron, that connects to the STG’s middle layer.
For pixel-level consistency constraint of semi-supervised tasks, we

ropose segmentation consistency loss in our training procedure 1.
his loss also ensures that, after modal translation, the organ position
nd the morphology of organs are consistent, and the corresponding
egmentation labels remain unchanged. Thus it forces STG to learn the
ame semantic features imposed by different modalities. We define this
egmentation consistency loss 𝑐𝑜𝑛𝑠 as the combination of cross entropy
oss and dice loss with combination ratios of (𝜆𝑐𝑒 = 0.5, 𝜆𝑑𝑐 = 0.5).

𝑐𝑜𝑛𝑠 = E𝑝𝑐𝑜𝑛𝑠→𝑃𝑐𝑜𝑛𝑠 ,𝑦𝑗→𝑌𝑗 [ − 𝜆𝑐𝑒(𝑦𝑗 log(𝑝𝑐𝑜𝑛𝑠)

+𝜆𝑑𝑐
2𝑦𝑗𝑝𝑐𝑜𝑛𝑠

‖𝑦𝑗‖1 + ‖𝑝𝑐𝑜𝑛𝑠‖1
)].

(8)

As suggested in [57], we apply the dynamic adjustment strategy of
exponential growth in setting the hyperparameter of 𝑐𝑜𝑛𝑠, with

𝜆𝑐𝑜𝑛𝑠 = 𝜆𝑚𝑎𝑥 exp[−5(1 −
𝐼

𝐼𝑚𝑎𝑥
)2], (9)

here 𝜆𝑚𝑎𝑥 denotes the maximum of the training weights, and 𝐼
enotes the current iteration epoch, 𝐼𝑚𝑎𝑥 denotes the maximum of the
teration epochs.

.4. Overall losses

The SMSUT is designed to fully exploit semi-supervised multi-modal
ata. It consists of a unified translation structure that can adapt to a
lexible number of modality information and provide strong supervision
n addition to the limited annotation data. Our cyclic training proce-
ure allows for a comprehensive investigation of the semi-supervised
ulti-modal data and enables the network to achieve a better train-
ng model. This approach effectively solves the problem of insuffi-
ient labels and provides additional supervision through the training
rocedure.
The complete loss functions of SMSUT are:

in𝑆𝑇𝐺 = 𝜆𝑎𝑑𝑣𝐺
𝑎𝑑𝑣 + 𝜆𝑐𝑙𝑠𝐺

𝑐𝑙𝑠 + 𝜆𝑟𝑒𝑐𝑟𝑒𝑐

+𝜆𝑠𝑒𝑔𝑠𝑒𝑔 + 𝜆𝑐𝑜𝑛𝑠𝑐𝑜𝑛𝑠 + 𝜆𝑛𝑐𝑒𝑛𝑐𝑒,
(10)

in𝐷 = 𝐷
𝑎𝑑𝑣 + 𝜆𝑐𝑙𝑠𝐷

𝑐𝑙𝑠, (11)

here 𝜆𝑎𝑑𝑣, 𝜆𝑐𝑙𝑠, 𝜆𝑟𝑒𝑐 , 𝜆𝑠𝑒𝑔 , 𝜆𝑐𝑜𝑛𝑠 and 𝜆𝑛𝑐𝑒 denote the hyperparameters.

. Experiments

We evaluate our proposed method with two datasets, multi-modal
bdominal medical image segmentation dataset [58,59] and multi-site
RI prostate medical image segmentation dataset [60], to verify the
erformance of our model on semi-supervised multi-modal tasks and
he ability to transfer to any number of modalities tasks. The results
chieve superior performance in both semi-supervised learning and
upervised learning experiments over the other competing models. We
urther design ablation experiments to analyze the performance of our
odel’s critical loss functions.
5

.1. Datasets

The multi-modal abdominal dataset contains four modalities, {CT,
R T1-DUAL in-phase, MR T1-DUAL out-phase, and MRI T2w Spectral
re-saturation Inversion Recovery}, which have {20, 20, 20, 30} cases
f 3D sequences respectively (36 slices on average). The CT images
f the multi-modal abdominal dataset are sourced from the Multi-
tlas Labeling Beyond the Cranial Vault–Workshop Challenge data of
ICCAI 2015 [59], Each scanning image has a resolution of 512 × 512

pixels. In the horizontal view, each pixel corresponds to a length of
0.54 mm to 0.98 mm (0.68 mm on average). The MR images in the
multi-modal abdominal dataset are elicited from the Combined Healthy
Abdominal Organ Segmentation challenge data of ISBI 2019 [58]. Each
of the MR T1 in-phase, the MR T1 out-phase, and the MR T2w in the
dataset has 20 cases of 3D sequences, and each case contains 25 to
50 slices of scanned images (36 slices on average). The resolution of
256 × 256 pixels. In the horizontal view, each pixel corresponds to a
length of 1.36 mm to 1.89 mm (1.61 mm on average).

The multi-site prostate MR dataset has one prostate label and six
ifferent sites which are {RUNMC, BMC, HCRUDB, UCL, BIDMC, HK},
nd the corresponding cases are {30, 30, 19, 13, 12, 12} (33 slices
n average). It is elicited from the Multi-site Dataset for Prostate
RI Segmentation [60]. The resolution of 384 × 384 pixels. In the

horizontal view, each pixel corresponds to a length of 0.25 mm to
0.79 mm (0.58 mm on average).

4.2. Evaluation metrics

We use standard evaluation metrics of medical image segmentation:
Dice coefficient and the Average Symmetric Surface Distance (ASSD) to
evaluate the performance of our model and competing methods. Dice
coefficient (%) calculates the similarity between the prediction map
and ground truth. A higher Dice value indicates better segmentation
performance. ASSD (mm) calculates the average symmetric distances
between the surface of the prediction mask and ground truth. A lower
ASSD value indicates better segmentation performance. We use 2D im-
ages to train our model due to the limitation of computing power. After
training and testing, we concatenate the 2D results into 3D sequences
and calculate the evaluation metrics based on the 3D sequences.

4.3. Implementation details

We split our data into training, validation, and test sets, and
the corresponding ratio of the abdominal dataset is (3 ∶ 1 ∶ 2)
and the ratio of the prostate dataset is (6 ∶ 1 ∶ 2). We evaluate
the performance of our model in 6 different ratios of labeled data,
{10%, 30%, 50%, 70%, 90%, 100%} in semi-supervised multi-modal med-
ical image segmentation. Also we test our method’s performance on
different modality sets in the 10% labeled data ratio scenario.

We use linear interpolation to change the image size so that each
pixel matches the actual distance of 1.0 mm3. To exclude the ex-
treme values and irrelevant regions, all images are trimmed, centrally
cropped, and modified to the size of 256 × 256 pixels. In addition, to
exclude the extreme values, the values of the CT images are trimmed
according to the range of Hounsfield Unit (HU) values of [−500, 500].
And the MR image pixel values are trimmed by the percentile of
[0.5%, 99.5%]. Due to the limited amount of data set, we split our data
into training and test sets in the ratios of (1 ∶ 1) and (2 ∶ 1) for the
bdominal dataset and the prostate dataset respectively. The codes for
ata preprocessing, training, and evaluation are sourced from the open
ource project 𝑆𝑆𝐿4𝑀𝐼𝑆.1 We set hyperparameters {𝜆𝑎𝑑𝑣, 𝜆𝑐𝑙𝑠, 𝜆𝑟𝑒𝑐 ,
𝜆𝑠𝑒𝑔 , 𝜆𝑔𝑝, 𝜆𝑚𝑎𝑥, 𝜆𝑛𝑐𝑒} as {1, 1, 10, 10, 10, 10, 1} empirically. We set 𝜆𝑐𝑜𝑛𝑠 to
be zero within the first 1000 iterations (𝐼𝑝𝑟𝑒), in case the segmentation
consistency loss would exacerbate the instability in the early stage of
training.

1 https://github.com/HiLab-git/SSL4MIS/

https://github.com/HiLab-git/SSL4MIS/
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Fig. 2. Abdominal dataset Segmentation results on each modality, with ratio setting from 10% to 100%. The horizontal coordinate is the ratio and the vertical coordinate is the
Dice value(%).
Table 1
Comparison models based on modality and supervision type.
Models Modality Supervision type

U-Net [34] uni-modal fully supervised
MT [4] uni-modal semi-supervised
coraNet [51] uni-modal semi-supervised
CPS [50] uni-modal semi-supervised
DualS [61] multi-modal fully supervised
KD [62] multi-modal fully supervised
MASS [28] multi-modal semi-supervised
M3L [32] multi-modal semi-supervised

SMSUT(ours) multi-modal semi-supervised

4.4. Comparison methods

We compare our model with eight segmentation methods. Table 1
categorizes the comparison models by modality and supervision type.

Uni-modal segmentation methods use the dataset as uni-modal
data, while fully supervised methods train only on labeled data. Mean
Teacher [4] is a classical semi-supervised method, which constrains
the consistent results of the student model and the teacher model.
CoraNet [51] combines the MT model with co-training segmentation
networks that focus on different tasks. And CPS [50] co-trains two
parallel networks with different parameter initialization. Due to the
superior performance of U-Net in medical image segmentation, we
adopt the U-Net as the backbone of all the uni-modal semi-supervised
methods.

Multi-modal segmentation methods are designed based on cross-
modal strategy. DualS [61] employs a dual-stream encoder–decoder ar-
chitecture for unpaired image multi-modal segmentation. KD [62] uti-
lizes knowledge distillation to constrain outputs from multiple modal-
ities. MASS [28] leverages multiple atlases’ labels and cross-modal
consistency for multi-modal semi-supervised segmentation. The com-
parison results of DualS, KD, and MASS are directly sourced from the
referenced articles. These methods utilize the same abdominal dataset
as ours, which is constructed from the CHAOS dataset (MRI) [58] and
the Multi-Atlas dataset (CT) [59]. M3L [32], on the other hand, is
a multi-modal semi-supervised segmentation method that has demon-
strated successful performance in natural images. It achieves this by in-
tegrating multi-modal information using Linear Fusion and employing
a masked mean teacher strategy.

5. Results

5.1. Sensitivity analysis on labeled data ratio

Table 2 shows the quantitative segmentation performances on the
multi-modal medical images under different ratios of labeled data.
6

Table 5 shows the quantitative segmentation performances on the
multi-site medical images under different ratios of labeled data. As
these two tables show, our model SMSUT obtains consistently higher
accuracy in terms of Dice and ASSD over the baseline, U-Net, across
different ratio settings of the labeled data. Our method outperforms
other comparison approaches in every ratio setting of the labeled data.
Also, our model achieves better performance even with fewer labeled
data, which indicates that our network can exploit more information
within data. Our unified translation module can provide a thorough
investigation of the multi-modal images and our consistency constraint
can provide extra semantic information. The results show that our
network can reduce the annotation workload of physicians, and become
more applicable in real-world scenarios.

5.2. Sensitivity analysis on modalities

Table 4 demonstrates that increasing the number of training modal-
ities enhances the performance of our methods. This suggests that
our model effectively integrates complementary information from each
modality, resulting in improved segmentation results. Each modality
possesses distinct features that aid in analyzing the segmentation of
other modalities. In the strict semi-supervised scenario with only 10%
labeled data, our method achieves the highest average performance
among all models when trained with all four modalities.

When considering the complementary information from CT and
T1in images, T2 images achieve an impressive Dice value of 87.49%,
surpassing the performance achieved by training with all four modal-
ities. This phenomenon can be attributed to the modality ratio when
applying the multi-modal segmentation model. In the setting of {CT,
T1in, T2}, T2 achieves optimal results by leveraging the complemen-
tary information from both CT and T1in. However, in the more complex
setting of {CT, T1in, T1in, T2}, the model must strike a balance among
these four modality images, which may lead to a reduction in T2 seg-
mentation performance. Table 4 reveals that our method, when using
the {CT, T2} setting, exhibits relatively lower performance compared to
the MASS model [28]. The discrepancy can be attributed to differences
in dataset size: MASS utilizes 70% of the dataset, while our approach
uses only 50%. Dataset size significantly impacts training performance.
Importantly, our model demonstrates flexibility and can achieve higher
performance when incorporating additional modalities. Compared to
other cross-modal semi-supervised models, our approach consistently
outperforms in experiments. While the M3L [32] model utilizes a trans-
former architecture to integrate multi-modal information, it requires
a large dataset for effective training due to its extensive parameters.
In contrast, our method leverages unified translation for multi-modal
segmentation, enabling successful training even with limited data.

The results of Table 3, Table 4 and Fig. 2 show that our model
significantly surpasses the other semi-supervised methods among all
the modalities (CT, MR T1 in-phase, MR T1 out-phase, and MR T2)
in the Dice metric. In the 10% ratio scenario, the few labeled CT
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Table 2
Model performance comparison on the abdominal dataset. % of 𝐷𝑖𝑐𝑒 and mm of 𝐴𝑆𝑆𝐷 (Average Symmetric Surface Distance) are omitted, the results are the means of
multi-label and multi-modal results, and after ± is the standard deviation. 𝑀𝑇 means the teacher model [4], 𝐶𝑃𝑆 means the Cross Pseudo model [50], 𝑆𝑀𝑆𝑈𝑇 is our
model, Semi-supervised Multi-modal Segmentation network with Unified Translation. The leftmost column shows the ratios of labeled data. The best results among models
are in 𝐛𝐨𝐥𝐝.
Ratio U-Net [34] MT [4] coraNet [51] CPS [50] SMSUT(ours)

𝐷𝑖𝑐𝑒 𝐴𝑆𝑆𝐷 𝐷𝑖𝑐𝑒 𝐴𝑆𝑆𝐷 𝐷𝑖𝑐𝑒 𝐴𝑆𝑆𝐷 𝐷𝑖𝑐𝑒 𝐴𝑆𝑆𝐷 𝐷𝑖𝑐𝑒 𝐴𝑆𝑆𝐷

10% 56.26
±0.13

7.55
±0.50

58.10
±0.64

7.81
±1.01

61.49
±1.07

5.15
±0.37

67.07
±0.36

3.97
±0.37

𝟖𝟑.𝟓𝟒
±0.38

𝟏.𝟓𝟏
±0.10

30% 80.00
±0.34

1.84
±0.09

81.00
±0.60

1.79
±0.07

83.20
±0.60

1.67
±0.10

82.22
±0.15

1.67
±0.08

𝟖𝟔.𝟏𝟒
±0.26

𝟏.𝟐𝟐
±0.07

50% 82.63
±0.17

1.66
±0.029

83.42
±0.17

1.63
±0.076

83.48
±0.50

1.60
±0.01

83.54
±0.09

1.69
±0.071

𝟖𝟔.𝟓𝟖
±0.43

𝟏.𝟏𝟗
±0.05

70% 85.07
±0.08

1.41
±0.09

85.30
±0.08

1.43
±0.055

85.05
±0.24

1.41
±0.01

85.25
±0.22

1.42
±0.049

𝟖𝟕.𝟔𝟎
±0.19

𝟏.𝟐𝟎
±0.04

90% 85.58
±0.28

1.38
±0.05

85.69
±0.06

1.52
±0.07

86.44
±0.21

1.28
±0.11

85.62
±0.12

1.49
±0.09

𝟖𝟕.𝟗𝟗
±0.04

𝟏.𝟎𝟗
±0.12

100% 86.15
±0.18

1.30
±0.10

85.93
±0.07

1.50
±0.09

87.01
±0.26

1.45
±0.26

86.21
±0.15

1.50
±0.07

𝟖𝟖.𝟑𝟑
±0.12

𝟏.𝟎𝟓
±0.03
Table 3
Multi-modal Performance on The Abdominal Dataset with ratio 10% and 100%.
Ratio Models CT T1in T1out T2 Average

𝐷𝑖𝑐𝑒 𝐴𝑆𝑆𝐷 𝐷𝑖𝑐𝑒 𝐴𝑆𝑆𝐷 𝐷𝑖𝑐𝑒 𝐴𝑆𝑆𝐷 𝐷𝑖𝑐𝑒 𝐴𝑆𝑆𝐷 𝐷𝑖𝑐𝑒 𝐴𝑆𝑆𝐷

U-Net
[34]

24.57
±0.32

18.95
±1.68

62.76
±0.85

4.65
±0.58

64.78
±0.64

3.50
±0.42

72.92
±0.88

3.11
±0.31

56.26
±0.13

7.55
±0.50

10%

MT [4] 25.76
±1.94

20.46
±5.17

67.39
±1.79

3.78
±1.18

64.91
±1.52

3.69
±0.14

74.34
±2.39

3.30
±0.29

58.10
±0.64

7.81
±1.01

coraNet
[51]

38.57
±4.73

9.65
±1.18

68.86
±2.79

3.25
±0.86

66.73
±2.44

3.63
±1.59

71.80
±1.31

4.08
±0.57

61.49
±1.07

5.15
±0.37

CPS [50] 35.30
±1.54

9.11
±2.08

75.78
±0.12

2.31
±0.32

76.24
±0.32

2.09
±0.12

80.95
±0.16

2.35
±0.34

67.07
±0.36

3.97
±0.37

SMSUT
(ours)

𝟖𝟑.𝟕𝟐
±1.32

𝟏.𝟓𝟔
±0.03

𝟖𝟐.𝟖𝟓
±0.47

𝟏.𝟒𝟖
±0.17

𝟖𝟑.𝟐𝟕
±0.82

𝟏.𝟑𝟕
±0.14

𝟖𝟒.𝟑𝟐
±0.17

𝟏.𝟔𝟑
±0.10

𝟖𝟑.𝟓𝟒
±0.38

𝟏.𝟓𝟏
±0.10

U-Net
[34]

85.98
±0.47

1.23
±0.07

85.41
±0.78

1.11
±0.03

86.75
±0.18

1.03
±0.02

86.47
±0.57

1.82
±0.44

86.15
±0.18

1.30
±0.10

100%

MT [4] 86.47
±0.26

1.30
±0.03

84.32
±0.42

1.25
±0.09

86.60
±0.44

1.08
±0.01

86.33
±0.20

2.38
±0.25

85.93
±0.07

1.50
±0.09

coraNet
[51]

87.29
±0.30

1.08
±0.13

85.92
±0.24

1.06
±0.05

87.66
±0.28

0.93
±0.04

87.17
±0.46

2.71
±1.20

87.01
±0.26

1.45
±0.26

CPS [50] 87.00
±0.26

1.22
±0.11

84.39
±0.56

1.47
±0.45

87.11
±0.21

1.04
±0.03

86.34
±0.42

2.28
±0.37

86.21
±0.15

1.50
±0.07

SMSUT
(ours)

𝟖𝟖.𝟗𝟐
±0.20

𝟎.𝟗𝟔
±0.07

𝟖𝟕.𝟓𝟔
±0.19

𝟏.𝟎𝟑
±0.04

𝟖𝟖.𝟓𝟓
±0.03

𝟎.𝟗𝟐
±0.01

𝟖𝟖.𝟐𝟗
±0.45

𝟏.𝟐𝟖
±0.17

𝟖𝟖.𝟑𝟑
±0.12

𝟏.𝟎𝟓
±0.03
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images lead to bad performance in other models, while our network
achieves a relatively high performance due to utilizing the unified
translation method to provide extra information from other modal data
and employing enough consistency constraint from feature level and
pixel level. In the 100% ratio scenario, our model still proves that our
unique structure and training strategy can serve better results. This
suggests that SMSUT, by leveraging the unified translation module, can
fully exploit both the complementary and the shared information of the
different modalities to improve the segmentation performance in the
multi-modal scenario.

5.3. The multi-site prostate segmentation task

In general, the images of the same modality collected by different
institutions can have great variability in terms of imaging parameters,
size of shooting area, brightness setting, etc. The multi-site problem
can also be addressed by semi-supervised multi-modal methods. We
can readily transfer our network to address multi-site problems due to
its flexibility and portability. Table 5 shows the average performance
f the 6 different sites on the prostate MRI dataset. For this task,
ll the models show better performance. This is due to the relatively
imple segmentation object and the uniform modality of the prostate
ataset. Our model still achieves the best performance for every ratio
f the labeled data. It suggests that under the semi-supervised multi-site
egmentation scenario, SMSUT can effectively leverage the complemen-
7

ary information from various site images to improve the segmentation o
performance. This experiment shows that our network is adaptable
to any number of modalities and, therefore has great development
prospects to be applied in real clinical scenes.

5.4. Ablation experiments

We investigate the impacts of the losses on segmentation perfor-
mance separately, in the extreme condition of 10% labeled ratio. As
Fig. 3 and Table 6 illustrate, the losses from the unified translation
odule provide more semantic accuracy and restraints to the model
raining from the multi-modal data which compensates for the lack of
abel information and brings significant improvements in segmentation
erformance. Without the adversarial loss (𝐿𝑎𝑑𝑣) and the classification
oss (𝐿𝑐𝑙𝑠), the segmentation prediction would make large-area mistakes
nd the contour of the results would be discontinuous. The outcomes
btained from the model without the adversarial losses demonstrate
notable enhancement attributed to the unified translation module,
articularly in scenarios involving limited annotation.
Furthermore, Fig. 3 and Table 6 show that the contrastive learning

oss (𝐿𝑛𝑐𝑒) and the segmentation consistency loss (𝐿𝑐𝑜𝑛𝑠) constrain the
eformation in the feature level and pixel level, which makes the model
ore capable of capturing the details of the segmented objects and
akes the segmentation results closer to the real results locally. The
esults derived from the model lacking the segmentation consistency
oss underscore the significance of segmentation consistency loss within

ur framework.
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Table 4
Experiments of sensitivity analysis on modalities and model comparison experiments on the abdominal dataset. The labeled data ratio is set to 10%. Due to the design of multi-modal
segmentation models based on cross-modal segmentation, we select the comparison modality settings that include only two modalities: CT and MRI. The first two column is the
performance of fully supervised multi-modal segmentation methods, and the rest results are the performance of semi-supervised multi-modal segmentation methods. 𝐷𝑢𝑎𝑙𝑆 means
he DualStream model [61], 𝐾𝐷 means the unpaired multi-modal model with Knowledge Distillation [62]. 𝑀3𝐿 means the Multi-modal teacher for Masked Modality Learning
odel [32]. * denotes results directly sourced from the referenced articles without replication in this study.
Model CT T1in T1out T2 CT T1in T1out T2 Average

𝐷𝑖𝑐𝑒 𝐴𝑆𝑆𝐷 𝐷𝑖𝑐𝑒 𝐴𝑆𝑆𝐷 𝐷𝑖𝑐𝑒 𝐴𝑆𝑆𝐷 𝐷𝑖𝑐𝑒 𝐴𝑆𝑆𝐷 𝐷𝑖𝑐𝑒 𝐴𝑆𝑆𝐷

DualS*[61] ✓ ✓ 74.7
±6.1

– – – – – 77.5
±4.5

– 76.1 —

KD*[62] ✓ ✓ 76.6
±5.2

– – – – – 78.3
±4.2

– 77.5 —

MASS*[28] ✓ ✓ 81.3
±4.6

– – – – – 82.1
±3.4

– 81.7 —

✓ ✓ 73.16
±0.76

2.54
±0.23

63.64
±5.76

6.58
±1.70

– – – – 68.40
±2.50

4.56
±0.96

M3L [32] ✓ ✓ 69.47
±2.46

3.52
±0.11

– – 69.91
±0.21

2.97
±0.27

– – 69.69
±1.20

3.24
±0.15

✓ ✓ 76.08
±11.03

3.08
±0.92

– – – – 67.41
±8.83

3.39
±1.28

71.74
±1.10

3.24
±0.17

✓ ✓ 82.78
±0.66

2.43
±0.18

80.71
±0.41

1.40
±0.10

– – – – 81.75
±0.12

1.92
±0.14

✓ ✓ 83.21
±0.30

1.49
±0.42

– – 80.77
±0.96

1.64
±0.23

– – 81.99
±0.64

1.57
±0.32

✓ ✓ 83.46
±4.62

1.88
±0.67

– – – – 79.00
±5.59

2.43
±0.18

81.23
±5.11

2.16
±0.40

✓ ✓ ✓ 81.56
±0.47

1.58
±0.03

82.30
±2.02

𝟏.𝟑𝟕
±0.28

81.50
±1.82

1.56
±0.38

– – 81.79
±1.44

1.51
±0.23

SMSUT (ours) ✓ ✓ ✓ 83.14
±1.88

𝟏.𝟑𝟖
±0.31

78.14
±3.01

1.83
±0.12

– – 𝟖𝟕.𝟒𝟗
±0.72

𝟏.𝟏𝟕
±0.26

82.92
±1.87

𝟏.𝟒𝟔
±0.23

✓ ✓ ✓ 82.18
±2.40

1.70
±0.18

– – 77.11
±4.55

1.76
±0.32

87.16
±0.97

1.49
±0.07

82.15
±2.64

1.65
±0.19

✓ ✓ ✓ ✓ 𝟖𝟑.𝟕𝟐
±1.32

1.56
±0.03

𝟖𝟐.𝟖𝟓
±0.47

1.48
±0.17

𝟖𝟑.𝟐𝟕
±0.82

𝟏.𝟑𝟕
±0.14

84.32
±0.17

1.63
±0.10

𝟖𝟑.𝟓𝟒
±0.38

1.51
±0.10
Table 5
Model performance comparison on the prostate dataset.
Ratio U-Net [34] MT [4] coraNet [51] CPS [50] SMSUT(ours)

𝐷𝑖𝑐𝑒 𝐴𝑆𝑆𝐷 𝐷𝑖𝑐𝑒 𝐴𝑆𝑆𝐷 𝐷𝑖𝑐𝑒 𝐴𝑆𝑆𝐷 𝐷𝑖𝑐𝑒 𝐴𝑆𝑆𝐷 𝐷𝑖𝑐𝑒 𝐴𝑆𝑆𝐷

10% 74.06
±0.01

2.32
±0.46

75.83
±0.01

1.94
±0.05

75.81
±0.02

2.25
±0.19

80.98
±0.01

1.58
±0.05

𝟖𝟑.𝟐𝟐
±0.01

𝟏.𝟑𝟓
±0.05

30% 84.04
±0.01

1.32
±0.16

84.88
±0.01

1.23
±0.07

83.70
±0.01

1.35
±0.09

85.27
±0.01

1.17
±0.05

𝟖𝟔.𝟓𝟐
±0.01

𝟏.𝟏𝟐
±0.06

50% 86.75
±0.01

1.22
±0.11

86.86
±0.01

1.05
±0.02

86.01
±0.01

1.14
±0.06

86.89
±0.01

1.08
±0.04

𝟖𝟖.𝟏𝟏
±0.01

𝟏.𝟎𝟐
±0.06

70% 87.35
±0.01

1.03
±0.03

87.55
±0.01

1.03
±0.01

87.06
±0.01

1.05
±0.02

87.87
±0.01

0.99
±0.02

𝟖𝟖.𝟖𝟐
±0.01

𝟎.𝟗𝟐
±0.01

90% 88.00
±0.01

0.97
±0.02

87.85
±0.01

1.02
±0.02

87.50
±0.01

1.02
±0.02

87.71
±0.01

1.00
±0.02

𝟖𝟖.𝟕𝟑
±0.01

𝟎.𝟗𝟎
±0.04

100% 87.50
±0.01

1.01
±0.01

87.73
±0.01

1.01
±0.02

88.20
±0.01

0.94
±0.02

87.61
±0.01

1.02
±0.03

𝟖𝟗.𝟐𝟐
±0.01

𝟎.𝟗𝟎
±0.02
e
f
m
p
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These findings highlight the substantial guidance provided by such
osses, particularly in settings with limited annotation. These out-
omes collectively affirm our network’s adeptness at effectively lever-
ging semi-supervised multi-modal information to facilitate the pro-
ess of multi-modal information extraction, thus bolstering the semi-
upervised segmentation task.

.5. Visualization

Due to the insufficient annotation of medical images in the real-
orld scenario, we choose ratio setting 10% of the labeled data to
resent the visualization performance. The results imply that training
n a small amount of annotated data leads to the boundary of objects
eing difficult to classify clearly. As Fig. 4 shows, it is apparent that
MSUT outperforms the other comparative models in the localization
nd the segmentation boundaries. The unified translation results show
hat our model successfully changes the modality of the image and
etains the content information distinctly. The translated images on the
eft columns show that our model extracts the different properties of
8

ach modality which can generate the four modality images success-
ully. By utilizing this learned information from our unified translation
odule and our consistency constraints, our network provides better
erformance on the limited-label multi-modal task.

. Discussion

In medical images, precise object boundaries are essential for di-
gnosis and treatment planning. However, the segmentation models’
imitation is the relatively low accuracy in delineating the contours of
bjects. As shown in Fig. 4, our model in the 10% labeled ratio setting
an achieve a better performance in the results, but it still needs to en-
ance the ability to capture the fine details and irregularities in object
oundaries. To address this limitation, our future work should focus on
he development of methods that prioritize the accurate delineation of
bject contours. For example, add loss functions that explicitly penalize
rrors near object boundaries and incorporate multi-scale features in
he segmentation network to help capture both local and global context.
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Fig. 3. Ablation experiment results in abdominal dataset, with labeled data ratio setting to 10%. The figure from left to right contains source images 𝑋𝑠, the ground truth (GT),
the segmentation results of ablated models without 𝐿𝑎𝑑𝑣 (w/o adv), without 𝐿𝑐𝑙𝑠 (w/o cls), without 𝐿𝑟𝑒𝑐 (w/o rec), without 𝐿𝑛𝑐𝑒 (w/o nce), without 𝐿𝑐𝑜𝑛𝑠 (w/o cons), and SMSUT.
The segmentation labels of the abdominal dataset denote four organs: red is for the liver, green is for the right kidney, blue is for the left kidney, and yellow is for the pancreas.
Fig. 4. Segmentation results and unified translation results in the abdominal dataset, with ratio setting of 10% of the labeled data. The figure contains source images 𝑋𝑠, the
round truth (GT), the segmentation results of Comparison methods and SMSUT, and the translated images (CT, T1in, T1out, T2). The segmentation labels represent four organs,
red, green, blue, yellow} denote {liver, right kidney, left kidney, pancreas}.
Table 6
Ablation experiments on the abdominal dataset with the labeled data ratio setting to 10%.
Models CT T1in T1out T2 Average

𝐷𝑖𝑐𝑒 𝐴𝑆𝑆𝐷 𝐷𝑖𝑐𝑒 𝐴𝑆𝑆𝐷 𝐷𝑖𝑐𝑒 𝐴𝑆𝑆𝐷 𝐷𝑖𝑐𝑒 𝐴𝑆𝑆𝐷 𝐷𝑖𝑐𝑒 𝐴𝑆𝑆𝐷

w/o 𝐿𝑎𝑑𝑣 49.10
±3.32

5.94
±1.36

73.88
±1.49

2.03
±0.22

68.76
±3.95

2.26
±0.26

80.24
±2.40

2.53
±0.19

67.99
±1.13

3.19
±0.27

w/o 𝐿𝑐𝑙𝑠 80.77
±0.30

1.99
±0.02

82.33
±0.73

1.63
±0.15

79.75
±0.04

1.64
±0.24

82.14
±0.74

1.91
±0.35

81.25
±0.31

1.79
±0.15

w/o 𝐿𝑟𝑒𝑐 78.54
±3.10

1.95
±0.72

79.68
±0.01

1.69
±1.12

81.05
±2.31

1.58
±0.90

𝟖𝟒.𝟒𝟓
±0.22

𝟏.𝟒𝟗
±0.37

80.93
±1.30

1.68
±0.78

w/o 𝐿𝑛𝑐𝑒 81.87
±1.55

1.67
±0.10

80.40
±0.93

1.67
±0.12

82.33
±0.99

1.52
±0.18

83.43
±0.45

2.20
±0.34

82.01
±0.45

1.77
±0.15

w/o 𝐿𝑐𝑜𝑛𝑠 35.42
±1.21

10.88
±2.31

64.58
±2.20

3.30
±0.25

62.05
±1.54

3.46
±0.17

77.07
±1.16

2.91
±0.10

59.78
±1.14

5.14
±0.60

SMSUT (ours) 𝟖𝟑.𝟕𝟐
±1.32

𝟏.𝟓𝟔
±0.03

𝟖𝟐.𝟖𝟓
±0.47

𝟏.𝟒𝟖
±0.17

𝟖𝟑.𝟐𝟕
±0.82

𝟏.𝟑𝟕
±0.14

84.32
±0.17

1.63
±0.10

𝟖𝟑.𝟓𝟒
±0.38

𝟏.𝟓𝟏
±0.10
The radiological medical images are often volumetric (e.g., CT or

RI scans). Exploring the integration of three-dimensional perspectives
9

into the segmentation network can bring accuracy and continuity pre-

diction between slices. Our future work would consider adding context
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across multiple slices so that our model can generate more continuous
and anatomically consistent segmentation. The Transformer architec-
ture is currently at the forefront of segmentation and other related
tasks. Recent research has demonstrated its efficacy, particularly due
to the multi-head cross and self-attention mechanisms, which facilitate
the integration of multi-modal information. Our ongoing work also
focuses on exploring how to leverage this powerful method effectively
in scenarios with limited training data.

7. Conclusion

We introduce a novel idea of the segmentation network with unified
translation in real-world semi-supervised multi-modal scenarios. By
unified translation of multi-modal images and using consistency con-
straints at the pixel level and feature level, we successfully leverage the
differential information between different modalities to achieve better
semi-supervised learning. In particular, due to our network structure
and training procedure, our model can be easily transferred to any
other semi-supervised multi-modal segmentation tasks. Experiments
show that our method can effectively handle multi-modal and multi-
site segmentation and outperform other semi-supervised methods. Our
future work will focus on increasing the accuracy of segmenting the
contours of the objects and integrating the 3D perspectives into our
network.
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