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LONG TIME EVOLUTION OF THE HENON-HEILES SYSTEM FOR SMALL ENERGY

OVIDIU COSTIN', RODICA COSTIN?, KRITI SEHGAL?

1. ABSTRACT

The Hénon-Heiles system, initially introduced as a simplified model of galactic dynamics, has become a
paradigmatic example in the study of nonlinear systems. Despite its simplicity, it exhibits remarkably rich
dynamical behavior, including the interplay between regular and chaotic orbital dynamics, resonances,
and stochastic regions in phase space, which have inspired extensive research in nonlinear dynamics.

In this work, we investigate the system’s solutions at small energy levels, deriving asymptotic con-
stants of motion that remain valid over remarkably long timescales—far exceeding the range of validity of
conventional perturbation techniques. Our approach leverages the system’s inherent two-scale dynamics,
employing a novel analytical framework to uncover these long-lived invariants.

The derived formulas exhibit excellent agreement with numerical simulations, providing a deeper un-
derstanding of the system’s long-term behavior.
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2. INTRODUCTION

In 1964, Michel Hénon and Carl Heiles introduced a model for the planar motion of a star under the
influence of a galactic center (represented by a rotationally symmetric potential). This model, motivated by
the question of the existence of a third integral for galactic motion, is both analytically simple to formulate
and "sufficiently complicated to give trajectories that are far from trivial” [14]. Hénon and Heiles’ numerical
investigations revealed highly intricate trajectory behavior, including an infinite number of islands where
some trajectories remain confined, chains linking these islands, and ergodic trajectories densely filling the
surrounding region.

The Hénon-Heiles potential is given by

_los 9 2 13
1) Viz,y) = 5@ +y7) + a7y — 297,
which can be interpreted as two harmonic oscillators coupled by a cubic "perturbation.” The corresponding
Hamiltonian is

L. .
(2) h= 5@ +3%) + V(zy),
and the equations of motion are
d’x d? 9 9
3) W:—x—%:y, 22 T Yty et

From a theoretical perspective, this is a four-dimensional system of ordinary differential equations with
a resonant fixed point at the origin. The dynamics near such resonant fixed points remain poorly under-
stood, presenting an enduring theoretical challenge.

The numerical results of Hénon and Heiles have inspired extensive mathematical investigations into this
system, employing diverse analytical and numerical techniques. These include studies of fractal structures
[2], escape dynamics [4], separability conditions [17], and chaotic transitions [15], as well as broader
explorations of integrability properties [5], [7], [9], [13], [18] and numerical studies [19]. This rich body of
work underscores the continued relevance of the Hénon-Heiles system as a benchmark for understanding
nonlinear dynamics.

For energies h with 0 < h < 1/6, the trajectories are confined within a triangular region bounded by
the equipotential curve h = 1/6. At higher energies, trajectories can escape to infinity [19].

In this paper, we analyze the trajectories for small variables; these evolve within the triangular confine-
ment region. We provide asymptotic formulas for the solutions, valid for time periods significantly longer
than those for which simple perturbation series are valid.

2.1. Features Revealed Numerically. Numerical calculations reveal several interesting features of the
trajectories. Figure 1 plots the curve (x(t), y(t¢)) for a numerically obtained solution of the Hénon-Heiles
system with initial conditions z(0) = 0.1, ¥(0) = 0, £(0) = 0.08, and §(0) = 0.1 (for which h = 0.0132 <
1/6). The following features are observed: (A) over a short time, the trajectory is almost periodic; (B) each
nearly closed trajectory drifts over time; (C) over a long time, the trajectory densely fills a domain.

We prove that the behaviors illustrated in (A) and (B) are mathematically correct. We derive explicit
approximations for the solutions and provide rigorous estimates for the time span over which these ap-
proximations remain valid.

2.2. Rescaling. To investigate the system in the regime of small variable values, we introduce a small
parameter ¢ through a rescaling of the variables. Specifically, we apply the transformations x +— cx and
y +— ey. Under this rescaling, the Hénon-Heiles system assumes a “perturbed” form:

2



-0.15

(a)Fort = 6.27 (B) For t =90 (c) For t = 4000

FIGURE 1. Numerically calculated evolution of the system for initial conditions z(0) = 0.1, y(0) = 0,
#(0) = 0.08, and §(0) = 0.1.

d?z
w = —Tr — 251‘3},
(4) 5
d
2¥ = —y +ey? — ex?
dt? )

The Hamiltonian rescales as h + h/e?; for simplicity, we will continue to denote it by h:

1 . . €
(5) h=§(2+y2+x2+y2)+6x2y—§y3.

It is important to note that the speed of the slow evolution decreases as € decreases, as shown in Figure
2.
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FIGURE 2. Comparison of the evolution of the system with initial conditions z(0) = 0.1, y(0) = 0, £(0) =
0.08, and ¢(0) = 0.1 from time ¢ = 0 to ¢ = 1000 for various values of .



2.3. Perturbation series solution. It is natural to attempt solving the system (4) using a perturbation
series in €. Introducing an expansion of the form

x(t) = mg cos(t) + xosin(t) + ex(t) + 2z (t) + 0(53),

(6) . 2 3
y(t) = yo cos(t) + yo sin(t) + eye(t) + “y2(t) + O(e?),

a straightforward calculation yields the terms of this expansion explicitly, and these are given in Appendix
A. We observe that x.(t) and y.(t) are 27-periodic, while the coefficients of £ take the form:

z2(t) = fi(t) +tf2(t),  ye2(t) = 91 (t) +tg2(t),

where f;(t) and g;(t) (j = 1, 2) are 27-periodic functions. This generates a secular term te%, which implies
that the perturbation expansion holds only for times that are not too large, namely up to te? = O(1).

We also observe the “almost periodic” nature of the motion. The time 7" required for a solution with
initial conditions xg, Yo, Zo, Yo to return to y(T') = yo can be determined using the expansion above,
yielding

l4zoyodo — 9z300 + Sydyo + 5idyo + 5

(7) T =2 +e%n
690

+0(e?), provided g # 0.
If o = 0, the solutions do not exactly return to yg, but instead come close to it. In such cases, we find
"approximate constants" valid for a long time, as described in Theorem 3.1(i).

As illustrated by the figures, the system exhibits multiscale behavior. This lies at the core of the secular
terms—a well-known phenomenon [1]—which ultimately limits the validity of the expansion to a timescale
too short to capture the system’s intricate long-term dynamics.

To address this issue, a variety of multiscale methods have been introduced in both mathematics and
physics [16]. However, in this particular problem, the application of classical multiscale approaches proved
to be unwieldy. Instead, we utilize "approximate adiabatic invariants", an approach and methods introduced
in [10], [11].

3. MAIN RESULTS

3.1. Method used. Asin [10], [11], we use the Poincaré map to eliminate the fast variable, reducing the
problems to a purely slow evolution one.

We define a variable u := ®(x, &, y, y) as "slow" if %Cb(l‘, z,y,y) = O(e). It turns out that the homo-
geneous quadratic polynomials that represent slow variables are 22 + 22, y? + 92, xy + &7, and 2y — x7
(as well as their combinations).

We choose the following slow variables:

(8) v=y>+9%, w=1y+my,

in addition to h (which is not only slow but in fact constant). It turns out that our final result is more
aesthetically pleasing when expressed in terms of u := h — v (another slow variable) instead of v, and we
will adopt this convention, though we will occasionally return to v during the proof.

Theorem 3.1 summarizes our main results: we provide approximations for solutions that are valid for
times much longer than those obtained from perturbation series expansions (6).

Before stating the rigorous results, it is useful to observe the behavior of v(¢) and w(¢) numerically, and
compare them with a non-slow variable. In figure 3 (A) and (B), we observe that v(¢) and w(¢) exhibit a
sinusoidal behavior. For ¢ = 0.1, the slow period for both v(t) and w(t) is approximately 7570. During
this time, in a simple e-expansion, the secular terms grow to as large as 75.7, causing the expansion to
fail after a small fraction of the period. Superimposed over this slow sinusoidal behavior, we observe fast
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oscillations of small amplitude. In contrast, the fast variable x(¢), shown in Figure 3 (C), oscillates rapidly
within a larger range. !
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@A) v(t) = y(t)? +y(t)? B) w(t) = z()y(t) + & (t)y(t) (c) Fast variable ()

FIGURE 3. The evolution of the slow variables v(¢) and w(t), and a non-slow variable x(¢) with initial

_ \/3/5
)

conditions x ,Y0 = 0,20 = %,yo = % and ¢ = 0.1.

3.2. Main results. The main theoretical result is Theorem 3.1. It demonstrates that the iterated Poincaré
map of the slow variables u, w with respect to the manifold y = 0 satisfies the recursive formula (13), (14)
(in real variables (17)), which is valid for n such that ne® < 1. For n slightly smaller, such that ne®? <« 1,
the recursion decouples, and we obtain the simpler formula (16); this n is beyond the range of validity of
the perturbation series.

Using the iterated Poincaré map given by Theorem 3.1, the time evolution at any time ¢ on the n + 1-th
fast cycle (where n is the integer part of t/7', with T" given by (7)) can be obtained by straightforward
integration or by using the perturbation series, with initial conditions calculated from w,,, wy, h.

The proof of Theorem 3.1 can be found in section §4.

Section §5 compares the theoretical results of the theorem with actual numerical results, showing ex-
cellent agreement, as seen in Figure 4.
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(a) The quantity v,, obtained numerically (blue) and (B) The quantity w,, obtained numerically (blue) and
calculated from (17) (red). calculated from (17) (red).

FIGURE 4. Comparison between numerical calculations and (17) for n = 1024000, h = 0.1, ¢ = 0.01,

To = \/3%, yo =0, 49 = 0.2, and 9o = 0.1.

The plot in Figure 3 was obtained by numerically solving the system (4) with initial conditions zo = 7”2/5, Yo = 0,20 =
é7 Yo = %, and € = 0.1 (for which A = 0.1, smaller than é). We used Mathematica’s NDSolve, with AccuracyGoal set to
19. From this, we computed v(t) and w(t).
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We note that Theorem 3.1 assumes the initial condition y(0) = 0, which can always be arranged by
allowing the system to evolve until y(¢) = 0.

The assumption (10) in the Theorem 3.1 simply states that xy # 0 (since, with 59 = 0, we have h? —
u} — wi = 93 (2h — 93 — @3) = ydxd > 0). In the case zy = 0, higher-order expansions are required,
which we do not pursue here.

Theorem 3.1. Let x(¢), y(t) be solutions of (4) with initial conditions
) 2(0) = o, y(0) =0, &(0) = &0, ¥(0) = 9o
where xg, 29,99 € R.

Define u = h — (y2 + @'/2) and w = 37 + zy, and let ug := u(0) = h — 92 and wy := w(0) = ZoYo.
Denote by wu,, w,, the iterated Poincaré map with respect to the manifold {(x,y,Z,y)|y = 0} (see, e.g.,
(8]).

(i) If o = 0, then w,, = O(ne?) and u,, = O(ne?).

(i) If o # 0 and ug = wo = 0, we have u,, = O(ne3) and w, = O(ne?).

(iii) If 9o # 0, and up # 0 or wy # 0, satisfying
(10) ug + w% < h?,
then there exist positive constants €, Ko, and M, which depend only on u% + w%, such that for any N
satisfying Ne§ < K, the following holds: for alln = 0,1,..., N and all ¢ € [0, &), we have

(11) u? 4+ wk = ud + wi + ne’s,
where |6, < M.
Furthermore, with (g given by
(12) GiP0 _ ug + 1wo 7
we have

(13) Uy, + 1Wy = 4 /u% + wg een (1 + ns377n)

with

e
(14) wn:cp(ﬁ-Ts Z h? — (uf + wy)

k=0
and
(15) | < M.
For n slightly smaller, such that ne®/? < 1, and for sufficiently small &, Formula (14) simplifies to
14

(16) on =00+ ——ne2y /b2 — (ud + w) + n2e%n,,

3
where 7], is bounded by constants depending only on u3 + w3.

Remark 3.1. Since ¢, is real, separating the real and imaginary parts in (13) gives

Uy, = \/u3 + w cos gy, + n53517n,
Wy, = \/uf + wj sin gy, +neddy

where 6; ,,, 53»771 are bounded by constants depending only on u3 + w3.

The exponential form in (13) shows the errors written in multiplicative form.

(17)

Remark 3.2. Note that the value of n for which ne%2 < 1 can be significantly larger than the value at
which secular terms become significant, as the latter corresponds to ne? = O(1).
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4. PrROOF oF THEOREM 3.1

The proof of (i) is found in §4.7.1. The rest of this section is dedicated to the proof of (ii) and (iii) and
therefore we assume that g # 0 (hence vy > 0). We need the following preparations and several lemmas,
based on which the proof is concluded in §4.7.2, §4.7.3 and §4.7.4.

4.1. Preparation. We now revert to the variable v, as defined in (8) at the beginning of this section. (Recall
thatu = h — v.)

The system (4) naturally extends to the complex domain, and solutions are analytic in ¢, ¢ and initial
conditions.

We change variables (in the complex domain): pass from the variables x, 2, y, ¢ (dependent) and ¢ (in-
dependent) to the variables h, v, w, t (dependent) and y (independent).

In these new variables (4) becomes

dt 1 dh dv dw z? — 92
(18) — = — =0, —=2e(2? ), — = | F—=0+22y |,
dy Jv—y? dy dy ( ) dy Vv — 92

where r = x(y, v, w) is given by ?

(19) x =z(y,v,w;e) = L 2y <wy+\/v—y2\@>

v+2ey(v—y

with

2 2 2 o, 4 24 2 2 3
(20) S=2hv—v"—w +25y(2hv—v —w ) —|—§€ y (v—y°) —4de h—gv Yy
and
@ = iy, v wse) = UL YA

v — 12

The initial conditions (9) become
(22) Vo = |y—0 = 5, Wo := wly—o = &o¥o, tly—o =0, hly—o ="h

We see in (18) that the derivatives of v and w are of order : they are slow variables.
Solutions of (18) with initial conditions (22) satisfy the system of integral equations:

(23)
v(y) =vy +¢€ /y F(s,v(s),w(s),e)ds, where F(s,v(s),w(s),e)= 2(—33(5)2 + 52)

0
Y x(s)? — s?)i(s
w(y) = wo + 5/0 G(s,v(s),w(s),e)ds, where G(s,v(s),w(s),e)=— (a( )v(s) )52( ) + 2x(s)s
and
Y ds
(24) ) = /0 Vo(s) — 2

h(y) = h,

Here, z(s) := z(s,v(s),w(s);e) is given by (19), and z(s) := @(s,v(s), w(s);e) is given by (21). The
path of integration in the complex y-plane is chosen to ensure the observed 27-periodicity up to O(¢) and
maintain analyticity. As a motivation of our choice, note that expanding in series in ¢ the system (23), we

4 1
that = vg + O(e) therefore ¢ :/ —_—
see that v(y) = v (¢) therefore ¢(y) A e

%Since h is a constant we omit marking the dependence on it.
7
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around both singularities s = 4-/v¢ of integrand.

To be precise, we consider the path of integration to be the
curve Cy, defined as follows: starting at y = 0 the path goes
counterclockwise along a circle centered at /vy and of radius Ry
\/vo followed, counterclockwise, by the circle centeredaty = -2,/ N V0 2/00
vo and of radius /v, see figure 5.
Integrating once around C,, we obtain the Poincaré map.

Denote by vy, w; the values of v(y),w(y) after integrating
once along Cy,:

FIGURE 5. The curve of integration C,,

(25) v = U +57€ F(s,v(s),w(s),e)ds, w; = wy + 67£ G(s,v(s),w(s),e)ds

and, the time to complete a loop is
ds

Coy VV(s) — 52

Continuing integration along subsequent loops C,,, we obtain an iterated Poincaré map. Along the first
y

t1 =

loop v(y) and w(y) are determined as solutions of the integral system v(y) = vo+¢ / F(s,v(s),w(s),e)ds
0

y
andw(y) = wo+e / G(s,v(s),w(s),e)ds which is proven to have a unique solution in Lemma 4.1. With

these values for v(y), w(y), at the end of the first loop we have (25). Continuing the integration and ap-
plying Lemma 4.1 on subsequent loops, we find that on the (n + 1)-th loop, v(y) and w(y) are the unique
solutions of the integral system:

(26) v(y) = vy + E/Oy F(s,v(s),w(s),e)ds, w(y) =wy, + E/Oy G(s,v(s),w(s),e)ds

Here, we denote by v, and w,, the values of v and w at the end of the n-th loop. Consequently, at the end
of the (n + 1)-th loop, we have:

(27) Un+1 = Un +€f F(87U<8>7w(5)76)d87 Wnp+1 = Wn +5% G(S,?}(S),U}(S),E)dé‘
Cug

4.2. Epsilon-expansion with remainder. We expand v(y) and w(y) in € up to O(¢?) and keep track of
remainders. Substituting

v(y) = v%y) + eol(y) +2P(y) + ER(y),
w(y) = w(y) + ewl(y) + 2wl (y) + 25 ().
in (23) (where the remainders R, S also depend on ¢), expanding and identifying the powers of € we obtain

ol%(y) = vo, w(y) = wy

(28)

and
Y

y
vm(y): F(s,vg,wp,0)ds, wm(y):/ G(s,vp,wp,0) ds,
0

y
F,(s,v0,wo,0 [1](5) + Fw(s,vg,wo,O)w[l](s) + Fa(s,vo,wo,O)} ds,

||
S— .

)
[Gv (8,00, wp,0)v [1](3)+Gw(87007w0,0)w[1](3)+Ga(57vo,w070)] ds.
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from which the terms v!! (), wl(y), v?/(y), and w!? (y) are calculated explicitly; they are given in the
appendix B.

4.2.1. Remainders. To derive the equations satisfied by the remainders R and S, we rewrite (28) in the
form:

(29) v(y) =vo +e&u(y), w(y) =wo + e&w(y),

where &,(y) = vl'(y) + evP(y) + e2R(y) and &, (y) = wll(y) + cwP(y) + £25(y). Using (29), the
functions F' and G (with explicit formulas provided in (23)) admit e-expansions with remainders:

(50) F(y,vo + & (y), wo + €€w(y),€) = F + & Fy + €& Fry + €F: + £20p,

G(y, Vo + 5§v(y)7 wo + éfw(y)v 5) =G +e6Gy + Gy + eGe + 52QG’7
where f denotes the function f evaluated at (y, v, wo, 0) and Qp, Q¢ are quadratic forms in (&, &, 1)
whose coefficients are integrals, in A on [0, 1], of 1 — A multiplying second derivatives of F' evaluated at
(y,v0 + Ae&y, wo + Ae€w, Ae); hence Qp = Qr(y,¢,e2R,€2S), Qc = Qa(y,¢,e2R, €29) and they are
analytic in €.
Substituting (28), (30) in (23) we obtain integral equations for R, S:

R(y) = /0 "[11(s) + e fals, eR(s), 25 (s))ds = Ta(R, 5) (1),

(31) ,
S(y) = / [91(5) + 2ga(s, R(s), £5(s))lds := To(R, S)(y).
where
f1 = Fout2 4 L Ful2 4 Fryoll) 4+ Fool) 4 Fpewl) + LF..
(32)

fo= 1*9‘1) (v +eR) + I*Sw (w2 +e8) + Qp(y,e,e2R, £29).

The functions g1, go are similar.
Existence and uniqueness of solutions R(y), S(y) of the integral system (31) where the integral goes
along C,, is proved in Lemma 4.2.

4.2.2. Values after one loop. Let us denote the values of v[*! (), w!™ (y), v/ (y), and w? () at y = 0 after a
full loop along C,, by ACv[1(0), ACw!™(0), ACv?(0), and ACw!?(0), respectively. A direct inspection
of the expressions in appendix B shows that

ACv(0) =M (0) =0, ACw!(0) = wl(0) =0,

14
Acvl(0) = Tﬂwo \/2hv0 — V3 — w3,

14
= Tﬂ(h — )4/ 2hvg — v3 — wa.

ACw?(0)

Therefore, after one loop the values at y = 0 of v and w in (28) become

14
V1 =g + g2 l’u}o\/Qh'I}o — ’Ug — ’U)(Q) + €3R0,
(33) y

14
w1 =wp + g2 ?ﬂ—(h — 1)0)\/2h1}0 — ’U(% — ’LU(Q) + ESSO

where Ry, Sy denote the values of R, S after one loop.
9



Remark 4.1. We use real initial conditions. After integration in the complex plane, along C,,, the values
v1, w1 are, again, real numbers (as they must coincide with the values of the solution obtained in the real
domain).

4.3. Heuristics. Aslong as we can continue integrating on subsequent loops integration, (i.e., as long as
Lemmas 4.1 and 4.2 remain applicable), after the (n + 1)-th loop, we have (27). There, using (33) for the
(n + 1)-th loop, we obtain:

14
Vgl — Up = il wn\/2hvn —v2 —w? + 3R,
3
(34) 147
Wil — Wy = ?52 (h — vn)\/2hvn —v2 —w? + 35,
To solve (34), approximately, to order O(£3), it is natural to look at the differential system
14
VT oy oy —vE—we,
(35) d% IZW
=g (h- V)V2hV — V2 — W2

which has the solutions
V(n) = h + Asin(nfe® + B),

36
9 W(n) = Acos(nfBe* + B), where 8 = 147;:/%

where the constant quantity kg = 2hV — V2 — W? and the constants of integration A, B are determined
from the initial conditions: V(0) = vy, W (0) = wy.

In the following, we prove that this picture is correct: the iteration can be continued for n as stated
in Theorem 3.1, that V' (n) and W (n) indeed approximate v,, and wy,, respectively, and we provide error
estimates.

4.4. Solutions along one loop. Lemma 4.1 proves the existence, form and bounds of solutions of (23)
along one loop. Lemma4.2 gives estimates for the O(e%) remainders. Since v(y) and w(y) will have
different values at the end of the loop C,,, let us denote by C,,, the open path obtained from C,,, by making
the starting point y = 0 and the endpoint (also y = 0) distinct.

4.5. Solutions Along One Loop. Lemma 4.1 establishes the existence, form, and bounds of solutions to
(23) along a single loop. Lemma 4.2 provides estimates for the O(¢?) remainders. Since v(y) and w(y) take
on different values at the end of the loop C,,, we denote by C,,, the open path derived from C,, by making
the starting point y = 0 and the endpoint (which is also y = 0) distinct.

Lemma 4.1. Fix h > 0. Assume vg > 0 and wgy € R satisfy’
(37) (h —vo)?* + wi < h?,
and let cy be a positive constant such that
(38) (h — o) + wg < c% < h2.
Then the solution of the system (23) with initial conditions (vy, wg) satisfies the following:

(i) The system of integral equations (23) has a unique solution for y surrounding C.,, once, provided ¢ is
sufficiently small: 0 < € < gq, where ¢ depends only on cy.
More precisely, the solution takes the form v(y) = vo +€0(y), w(y) = wo + ew(y), with |0(y)| <
M and |w(y)| < M, where M is a constant depending only on cq.

3These are the assumptions of Theorem 3.1 (iii), since u = h — v.
10



(ii) The solution is continuous with respect to the parameters vy, wg, and € for vy, wo in the domain defined
by (38) and ¢ satisfying 0 < € < (. Furthermore, the solution is analytic inc ate = 0.

Proof. We focus on the integral equations for v and w in (23), as the behavior of ¢ is an immediate conse-
quence (see Corollary 4.0.1). These equations are

(39) v(y) = v + E/Oy F(s,v(s),w(s),e)ds, w(y)=wo+ f-:/oy G(s,v(s),w(s),e)ds

where the integrals are calculated along C,,,. With the substitution v(y) = vo+¢9(y), w(y) = wo+cw(y),
equations (23) become

y

o(y) = / F(s,vp +€0(s),wp + ew(s),e) ds,
(40) %
w(y) = /0 G(s,vp +€0(s),wp + ew(s),e) ds.

Consider the Banach space BB of pairs v(y) = (9(y), w(y)) of continuous functions on C,,, with the norm
9] = max{supe,_[5(s)].supg, [@(y)]}
Define J : B — B by

where

J1(0,0) = /y F(s,v0+¢€0(s),wo + cw(s),e) ds,

(41) %

Jo(0, W) := / G(s,vo +€0(s),wp + ew(s),€) ds.
0

We show that .J is a contraction in a suitable ball || V|| < M in B, implying that v = J¥ has a unique
solution, by contraction mapping theorem.
Note that by (23) we have

2 0]\2 y* — ()% g [0]
(42> F(y,UO,U}0,0) :2y —2(37 ) = Fl(y)7 G(y71}07w070) = 72x —2x Y= FQ(y)
Vo —Y
where, from (19), (20), (21)
S — 12/Sn — [0l
(43) 210 = 20 RARVAL el VAT with Sg = 2 hvg — US — w%, and 0 = woixj/‘
V0 Vo — Y

L The constant M.

We first show that the functions (42) are bounded for y € C,, with a bound depending only on ¢y (and
not on each v, wp separately). To see this, note that

(a) If (vo, wy) satisfy (38) then necessarily

(44) 0<h—co<vy<h+co, and |wp| < h.
(b) For y € C,,, we have

(45) vo < Jvo — y°| < 3ug

and

(46) lyl < 20 < 2V/h + oo

(these follow by noting that such a y has the form y = /vo(£1 + ¢') for some 6, and thus ‘vo — yz‘ =
vo [£2 4 €”)).
11



Thus, from (44), (45) it follows that 0 < h—cy < vo < |vo—¥?| < 3(h+cp) and Sy = h%2—(h—wvp)? —w3.
Thus
(47) 0<h?®—c3 <S8y <h’
So,
‘x[o]‘ < h(2\/h + CQ) + \/g\/h + Co h L
= h—co N
. [0] h 4+ 2vh + cg co
RIS =c3
vV h — Co
Thus, the bounds on F and F» depend only on cy:

1P (y)] = 1297 = 222 <2y + 21 P < 8(h + co) + 263

Jy2] + =12 | 10] (0] 4(h + o) +¢5
[Fa(y)] < | + 2]z |y < | —F——==—" | 3 + 42V h +co
MF\ Vh—co
/ FLQ(S) ds
0

Therefore, for y € C,, we have < 4my /v max | Fy 9| < 4mv/h + co max |F 2| =: K.

Clearly, K is a constant that depends only on ¢o. Let M = 2Kj.
II: We now show that the function J leaves the ball ||V|| < M invariant. Let v be such that ||v| =

(o), w(y)ll < M

By substituting v(y) = vy + €0, w(y) = wo + €W, write the quantity (20) as S = Sp + €S1 where
So =2 hvy — UO — wo and &7 is a polynomial in €, vg, 0, wq, W, y. We know that Sy satisfies (47).
Let 0 < & < &g be small enough (with gy < 1) so that it satisfies the following:
<

(1) eM < a(h —cp) forsome a € (0,1),
(2) (h—co)—e[M+4\/h+c 3(h+co) +eM)| > 2(h —cp) >0, and

2 2 _ 2
(3) (h* = cf) — e maxoce<t MAX L10,w | (h—vo)2+w3<cd} MK g <7 yec,, |S1] > (h —c5) >0

We now establish that the denominators which appear in the integrands in (40) do not vanish for y on
the path of integration and, moreover, are uniformly bounded below.

First, we have, using (45) and (1) from above: [v — y?| = |vg + €0(y) — ¥?| = |vo — ¥?| — |v(v)|
vg—eM > (1 —a)(h—cy) > 0.

Then, the denominator in (19) does not vanish: using (44), (45), (46) and (2) we have |v + 2y (v — %)
vo—aM—45\/170|v—y2] > vg—eM —4e VI + c0(3v0+€M) > h—co—eM —4e/h + 00(3(h+co)+5]\2f)
%(h — Co) > 0.

Finally, the quantity S in (20) does not vanish since |S| > |So| — ¢|S1| = h? — 3 — emax |S1| > 0
where for the last inequality we used (3) from above.

We claim that the functions F', G, 0, F, 0,G, O, F, 0,,G, O: F, 0-G evaluated at (y, vo+€0, wo+ew, ) are
well defined, and continuous if || V|| < M. Indeed, these functions are rational functions of v, w, y, €, VS,

v — 42, y; their denominators are products of v + 2ey (v — y2) ,V/S, /v — y2 which, by the estimates
above, for all € < ¢, are bounded below by a positive constant dependent only on cg.

Then the absolute values of 0, F, 9,G, O, F, 0,,G, O- F, 0-G evaluated at points (y, vg + €0, wo + €10, €)
with ]1:)| < M | < M are bounded by some constant C' which depends only on ¢g.

From (41) we have, with the bound C above,

’JLQ({/)‘ < Kog+ell (QM + 1) < Ko+ Ky

WV

>
>

4The maximal value 1 was chosen conventionally, for the estimate (3) below.
12



where / is the length of the loop Cy, (so £ = 4m/vg < 4m\/h + cg := {p) and the last inequality holds for
¢ small enough: ¢ < &)y := min{eg, Ko/[loC(4Ko + 1)]}. Therefore |.J; 2(¥)| < M and J leaves the ball
invariant.

II. J is a contraction. Indeed, with C' same as above, we have |J; 2(V) — Jj 2(V')| < €2C||v — ¥/|.
Therefore, J is a contraction if ¢ < 1/(2(yC) := €.

IV. In conclusion, by the contraction mapping theorem, the system (40) has a unique solution for ¢ <
min{ey, g

(ii) Continuity in parameters and initial conditions follow from general theorems. g

Corollary 4.0.1. After integration along a loop C,,, the time which is initially 0 becomes, by Lemma 4.1:

t1 =

g) =2m+ O(e)

f\/i Jq{\/vo—i-av f\/F

therefore t; is a “quasi-period" of the motion. In fact we have t; = 2 + O(£?).

Lemma 4.2 estimates the remainders R, S in (28); recall that they satisfy the integral system (31).

Lemma 4.2. Under the assumptions of Lemma 4.1 there exist positive constants €y and M depending only on
co, such that the system (31) has a unique solution R, S and this solution satisfies

|R(y)| < M and |S(y)| < M forally € Cy,, € < &o.
Moreover, R, S depend continuously on vy, wo, €.

Proof. The proof is similar to the proof of Lemma 4.1. Fix vg, wy satisfying (38) and consider the same Ba-
nach space B as in the proof of Lemma 4.1. We show that the operator (Z;,Z,) defined in (31) is contractive
in B if € is small enough.

We see that the structure of the integral operators Z; 5 in (31) is similar to that of the integral operators
J1,2 in the proof of Lemma 4.1. One difference is the appearance of the function arcsin \/LFO (through the

functions v[2), w[) but this is regular on C,,.
The same arguments as in the proof of Lemma 4.1 go through straightforwardly.
O

4.6. Solution along n loops: iteration. Under the assumptions of Lemma4.1, after the first loop we
replace the initial conditions vg, wg by v1,w;. We can assume that vy, w; satisfy (38) decreasing £ and
increasing ¢y if needed; this is possible by Lemma 4.1. Lemma 4.1 can be applies again, for initial conditions
vy, wi. This procedure can be continued inductively for a finite number IV of steps. The question is how
large can N be: we find that the condition is Ne3 = O(1).

Let vy, wy, be the values of vy, wg after n loops, see also §4.1; vy, wy, are real numbers, see Remark 4.1.
After n loops they satisfy (34) (where R,,, S,, depend on vg, wy, €).

14
Rescaling. For simplicity, we rescale the variables as follows. Let 5 = ?ﬂ, and define

(48) VBe=e1, B3R, =R,1, B3%S,=5,..

For the remainder of this section, we omit the subscript 1 in the notation above to avoid overburdening
the expressions. Recall that w = A — v, and denote u, = h — vy,
After rescaling, the recurrence (34) becomes

(49) Upy1 = Up — E2wp /B2 — u2 — w2 — 3R,
49
W1 = Wy + 2Un /P2 — u2 — w2 +38,.

where R,,, S,, depend on ug, wo, €.
13



Lemma 4.3. Fix h > 0 and assume that for some positive constant cy, we have
(50) ud +wi < g < h?

Consider the solution of the recurrence (49) with initial conditions ug, wg. Assume that for some positive
constants €y, M, and for some natural number N, the remainders in (49) satisfy

(51) |Rn| < M, |Sp| <M, foralln=0,1,....N—1, andalle €|0,¢g9).
(i) Ifug # 0 orwg # 0, let ¢c; > 0 be such that
0<er <uj+ws.
Then, there exist positive constants My, M,, and K, depending only on M, cy, and c1, such that if

(52) Nep < K,
then foralln = 0,1,..., N and e € [0,&¢], we have

(53) T, = ufl + wi satisfies T, = Ty + ne3d,, with |0n| < Ms,
and

(54) Uy, + 1wy, = \/ITOeiSD‘H"‘62 SiZo VAT (1 + n8377n) ,
where g is given by

(55) w = e,
and

(56) 7| < M.

5/2

(ii) For n small enough so that ne°/= < 1, and for ¢ small enough, Formula (54) simplifies to

(57) Uy + tw, = /T exp [i(po +ine?/h? — Ty + in25577,'1} (1 + nz-:?’nn) ,

where1),,, n, are bounded by constants depending only on M, ¢, ¢1. Separating the real and imaginary
parts in (57), we obtain

U, = /Ty cos (cpo +ne?\/h2 — Ty + O(n2€5)) + negéin,
wy, = \/Tp sin (gpo +ne?y/h? — Ty + O(n255)) +ne’dy

where d; 5, 5;771 are bounded by constants depending only on M, co, c;.
(iii) If ug = wo = 0, then u,,w, are O(ne?), in the sense that there exist positive constants Mg, K,

depending only on M, cy, such that if Ne3 < K, then forn = 0,1,..., N,
T, = nes,, with |0n| < Ms,

(58)

and wuy,, wy, are O(ne?).

Proof. (i) Let M and ¢q be as in (51). We choose M; large enough so that the following holds

(59) eh* + 4Mh(1 + €2h) + 32M2% < %Mé.
for all € < g9. We then choose K small enough so that

(60) eoh’K < 1

and also

thc%
2

1
(61) KMs < 51 and KM;s < = Ca.

14



1. Estimate of T,,. We deduce a recurrence relation for 7}, from which we prove, by induction, the estimate
(53).
Squaring both sides in equations (49) and adding them we obtain

(62) Tpy1 =T, +e'T, (h* —T,) +°R,
where R, = —2R,, (un — 2uw/hE — Tn) 128, (wn + 2u/hE — Tn> + 3R 4+ 352

We prove the estimate (53) for all n < N where NV satisfies (52) by induction on n.

Of course, §p = 0, so (53) holds for n = 0. Next, we assume that for some n with 1 < n < N we have
Ty, = Ty + ke36y, with |6;| < Ms forallk = 0,1,...n — 1 and prove this estimate for T},. In view of (61),
(10), and (52) we have

1
(63) Tk>§cl>0 and W2 =T, > >0 fork=0,1,...,n—1
We sum for n from 0 to n — 1 in (62) and obtain
n—1 n—1 _
Tn:Tg+€4ZTk (h2—Tk) +€32Rk.
k=0 k=0

Therefore, using the fact that 7}, > 0 and h? — T, > 0, it follows that

n—1 n—1
(64) Ty = Tol <023 T+ Y | Rl
k=0 k=0
Using the fact that |ug|, |wg| < /T < h we have
(65) (Rk‘ < AMA(1 + 2h) + 23 M2,
Hence

n—1
3 ‘Rk‘ < AnMh(1 + £2h) + 32n M2,
k=0
Also, by the induction hypothesis, ZZ;& T, <n (TO + K %M(;) Using this and (65) in (64) we obtain

. 1 .
(66) |T;, — Tp| < ne® [ah2 (Tg + K2M5> + 4Mh(1 + ) + e32M? | < ne® M;
where the last inequality holds for € < ¢ since we chose K so that (60) holds, and since, by (59), we have
1
(67) eh®Ty + 4Mh(1 + e2h) + e32M? < §M5

Therefore, by (66), the estimate (53) holds for T;,, with the same bound Mj; for d,, as for 61, ...,5,—1.
The induction step is proved. ‘
2. Estimate of u,, + iw,,. Denote u,, + tw, = /1, A, (of course, A,, = e"?™ for some real ,,). From (49)

we obtain
Vi1 Ans1 = T Ap +ie2 Ap/Tu/h2 — Ty + €3(—=R,, +4S,,)
or, dividing by /15,41 (since Ty, > 0 for all k < N),

VI, —R,, + 1S5,
(68) Apst = L Cp A, 4 32000
Tn+1 Tn+1

with C,, = 1 +ie?/h2 —T,,.
Denote, forn > 0, C,, = VT C,, andlet By := Ag and A,, = B, H?:_ol Cyforn > 1.

V Tn+1

15



The recursion (68) becomes, upon changing n ton — 1,
1 _Rnfl + 'L'Snfl

69 By, = By_1+¢3S,_1, where S, 1 =
() n n—1 n—1, WNEre onp_1 22_0106 \/IT()

Summing (69) from 1 to n it follows that

n—1

(70) B =Ag+e*y Sy
k=0

ug + two

VTp

n—1 n—1 .
1 . —Ry, + Sk
(71) A, = H Cy <uo + dwg + & k) .
VIn =0 im0 1le=o Cl

Noting that |Cy| > 1 the last sum is less, in absolute value, than ned M+/2.
For an upper estimate of | In Cy| note that we have RIn(1 + ic?z) = Inv1+¢e%22 = O(e?) and
SIn(1 +ic%x) = ic?z + O(£5) where for x € (0, h) the terms O(c*) have an absolute bound. Therefore

n—1 n—1 n—1
(72) H Cy = exp <Z In Ck) = exp (i52 Z h? — Ty + n€477,'1>

k=0 k=0 k=0

and therefore, using the fact that Ay =

where 7/, has a uniform bound.
Further noting that by (53) we have

(73) VT = Ty +neds, = /Ty + O (ne?)

Using (72) and (55) in (71) we obtain (54).
To keep track of 1, from (71), (72), (73) we have

n—1

— Ry + 1Sk
vTo = H?:o Cy

where |1/| < 1 and 7/, has a bound in terms of T} only.

3 eiigo()

1+ nedn, = (1 +e ) " (1 + e‘wonegM\/ﬁng) e

3. The case ne®/? < 1. We show that \/h2 — T}, is close to v/h2 — Tp: using (63) we have

1
74 W2 — Ty — ked0y, — h?—T’gk?’M
(74) ‘\/ o — kedop —/ 0 € 52\/5
therefore
n—1
1
2 2.5
h?2 —T, —/h?2—Tpy| < M
€ Z\/ k \/ o| s n'e 52\@
k=0

and we obtain (57).

(iii) If up = wg = 0 then Ty = 0 and the arguments above in (i) for estimating 7;, are still valid and it
follows that T}, = O(ne3) forn = 0,1, ..., N where N satisfies N 58 < K. Moreover, a direct iteration of
(49) gives that |u,|, |w,| < Cne? for a suitable C' > 0 (which is easily proven by induction). O

Lemma 4.4. Fix h > 0. Consider the recurrence (49) with initial conditions ug, wo satisfying
(75) 0 < ud +wk < h?.
Let cg, c1 be positive constants so that

0<ecr <ud+wi<ct<h?
16



Then there exist positive constants £, Ko, M which depend only on cy, c; so that for any N satisfying Ne3 <
K, the remainders R,, and S,, in (49) satisfy |R,| < M, |S,| < M foralln =0,1,..., N — 1 and for all
e € [0, ).

Proof. Denote
T, = u? + w?.
We first fix the constants €q, Ko, M.
Let a1, as be such that

(76) 0<ecr <ap <ug+wi<ag<ck<h?

Applying Lemma 4.2 for the initial conditions vg = h — ug and wy there exist ¢, and M, dependent only
on ¢, so that | Ry| and | S| are bounded by M, for all € € [0, ]

Applying Lemma 4.3(i) for NV = 1, there exist positive constants M, K depending on M, ¢y, ¢1, namely
satisfying (59), (60), (61), such that if ¢ < K (that is, we choose ¢ such that it satisfies ¢y < £} and e} < K)
then T} = Ty + 307 with |61] < M; for all € € [0, &g).

Let

Ty — —T
(77) Ko ::min{K, 04 42 0}.

Ms ~  Ms

We now prove by induction that if T}, satisfies 0 < ¢1 < a1 < T, < az < ¢ < h? and |R,,|, |S,|, are
bounded by M for all positive € < €g and for all n < N — 1 then the inequalities hold for n = N (with
the same M and ¢) as long as Nag < K.

(i) The step N = 1 is valid by the choice of M, Ky, g above.

(if) Now assume the inequalities hold for n < N — 1 and prove them for n = IV, under the assumption
ng < K. By the induction hypothesis we have | R,, |, |S,,| < M forn < N —1. By lemma 4.3, (i) with the
same K, Mj as at (i) (since the quantities depend only on cg), we have Ty = Ty + Ne36n with [dx] < Ms
if Nag < K (which is clearly satisfied since Ky < K). Then Ty < Ty + KoMy < Tp + (ag — Tp) = aq
and similarly, Ty > Ty — KoM > aj. Then ¢y < Ty < cg and Lemma 4.2 can be applied, yielding then
|Rn|, |Sn| are bounded by the same M for € < .

O
4.7. End of the proof of Theorem 3.1.
4.7.1. Proof of (i). This follows by a straightforward calculation, see the Appendix D.
4.7.2. Proof of (ii). This was proved in Lemma 4.3 (iii).
4.7.3. Proof of (iii). By Lemma 4.4, Lemma 4.3, and the rescaling (48) the theorem follows.

4.7.4. Proof of (iii). When ne®? <« 1, we use the rescaling (48) and proof of Lemma 4.3 (ii).

5. COMPARISON BETWEEN THE APPROXIMATE SOLUTIONS (58) AND NUMERICAL SOLUTIONS

The agreement between our perturbative formulas for v and w and their numerical simulations is shown
in figure 4. We found empirically that the numerical solver is accurate with at least ten digits. The numer-
ical values were calculated using Wolfram Mathematica with WorkingPrecision = 32, AccuracyGoal = 30
and MaxSteps = 10%.

Figure 6 shows that the maximal error stays small for hundreds of thousands of oscillations.

5.1. Open questions. The first question is whether better approximations, for longer times, can be ob-
tained by using a higher order truncation, or perhaps by using other slow variables. The question of
determining, rigorously, the region that the trajectory fills densely, as seen in figure 1 (C) remains open,
as well as the question of existence of regions of order in the phase space.
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FIGURE 6. Error Analysis: maximum value of the difference between the numerical and
theoretical value of v, on the interval [0, n] as a function of n.

APPENDIX A. SOLUTION THROUGH PERTURBATION EXPANSION

The ¢ term in the perturbation expansion for x(t) and y(t) are

4 t . L .. ..
re(t) = ~3 sin” <2> ((l‘oyo + yodo) sint + (xoyo — LoPo) cost + 2woyo + onyo),

2 . t . . . N . .
ye(t) = -3 sin? <2> ( (z§ — v§ — 45 + 95 cost + 2(zodo — yoyo) sint + &5 — g + 225 — 2y§).

The £? term in the perturbation expansion for z(t) and y(t) are z.2(t) = f1(t) + tf2(t), yo2(t) = g1(t) +
tga(t), where

filt) = ﬁ (16 cos(2t) (z§ + oyg + dwodg + dyoToyo) + 297 cos(t) + 3x§ cos(3t) — 48z
+ 652320 sin(t) — 162240 sin(2t) + 92340 sin(3t) + 2920y2 cos(t) 4 3zoyg cos(3t)
— 48m0y(2) + 86z0yoyo sin(t) + 32zoyoyo sin(2t) + 6zoyoyo sin(3t) — 55acoa':g cos(t)
— 93 cos(3t) — 189z¢y cos(t) — 3xoyd cos(3t) 4+ 192x0y2 — 21ydig sin(t)
— 48y2i0 sin(2t) + 3ydio sin(3t) + 134ygdomo cos(t) — 6yoiogo cos(3t) + 32y sin(2t)
— 192yoZog0 + 53 sin(t) + 3247 sin(2t) — 3d§ sin(3t) + 5ioyg sin(t) — 3doyg sin(3t)),

1
fa(t) = Tad (60 sin(t) — 60x5d0 cos(t) + 60zoyg sin(t) — 168zoyoio cos(t) + 168yodoo sin()
+ 60z sin(t) — 108zoyg sin(t) + 108ygig cos(t) — 60 (i + 95 ) cos(t)),

g1(t) = ﬁ (16 cos(2t) (azgyo + 4zl + yg + 4y0y§) + 2990%3;0 cos(t) + 3x%y0 cos(3t) — 489533/0
— 21adg0 sin(t) — 482350 sin(2t) + 3x35o sin(3t) + 862¢yodo sin(t) + 3293 sin(2t)
+ 32zgyodo sin(2t) + 6zoyoxo sin(3t) + 134xdoyo cos(t) — 6xoZoyo cos(3t)
— 192x02070 + 29y cos(t) + 3yg cos(3t) — 48yp + 65y2yo sin(t) — 16ya g0 sin(2t)
+ 9y sin(3t) — yo (18947 + 5593 ) cos(t) — 3yodg cos(3t) + 192yoig — 3y sin(3t)
— 9yoyd cos(3t) + Bagyo sin(t) + 3243y sin(2t) — 3370 sin(3t) + 5y sin(t)), and
6022yo sin(t) 4+ 10843y cos(t) — 168xoyoio cos(t) + 168z0io5o sin(t)
18
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+ 60y sin(t) — 60y370 cos(t) — 108yodd sin(t) + 60yoyg sin(t) — 6050 (4§ + I3 ) cos(t)).

APPENDIX B. HIGHER ORDER EXPANSIONS FOR THE SLOW VARIABLES

Let v(y) = vl (y) + evlt (y) + 20l (y) + €3 R(y) and w(y) = w(y) + cwl (y) + 2wl (y) + 35 (y)
(where the remainders R, S also depend on ¢). Clearly, v[%(3) = vg, w% (yy) = wo. To calculate the next
two terms, we expand 25(—x2 + y2):

2e(—a” + y*) = eT1(y) + 2 Ta(y) + O(?)

where

2rg  4y? (hvo — wg)  drowoy/vo — y2
(78) Ti(y) = ——+ ( 5 ) 5
V0 v g

where we used the notation

ro = \/Zhvo — U% — w%

and
(79) To(y) = oM () A(y) + vl (y) B(y) + C(y)
where the exact expressions of A(y), B(y), C(y) are found in the Appendix C.
Similarly,
(22 —y?) @ 27 3
|V | = efiy) + ) + O
V=Y
where
(80)
- 2wy (—Shvo + 2118 + 2w3) oY (y2 (T(Q] — v% — 3w8) + vg (—T(Q] + 21/8 + 2w(2))) r%wo
T (y) = - 3 - 3 5 - 5
Yo VoV Vo — Y Yo
and
(81) Bh(y) = v(y) Aly) + wl') (1) Bly) + C(y)
where the exact expressions 0 fl( ), B(y), C(y) are found in the Appendix C.
Using (78) in v (y = [ T1(€)d¢ we obtain
-2
(82) ol (y) = W ( — 2wy ( ) 3/27“0 + 2?}3/21007“0 - 2hv0y3 + 6hv(2)y — 3v0w(2]y — 3vg’y + 2w8y3) )
0
Using (80) in wlt fo T1 &)dE, we get
(83)
1
wll] (y) =33 (Ghvowoy3 — 6hv8w0y — 411(2)w0y3 — 505/27“0 + SUgwoy — v§/2w(2)7‘0 + 2hv8/2r0 + 3U0wgy
0

— 4w3y3 + vy — y2(—2v(2)y27‘0 - 2hv§ro + 5@87‘0 + vowgro + 2hvgy2r0 - 4w(2)y27“0)>.

In the above, we find the integrals using the fact that each term of T} (¢) and T} (¢) has an analytic anti-
derivative and therefore we substitute the integration limits y and O in the antiderivative function.
Substituting (82), (83) in (78) and integrating from 0 to y along C,,, we obtain:

(84) 0[2}( _ 7’[1)07‘0

+ Polynomial(y, \/vo — y?).

/ ds
0 Vg — s2
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Substituting (82), (83) in (80) and integrating from O to y along C,,,, we obtain:

7(h—wo)ro [Y ds Polynomial(y, v/vo — y?)
85 wll(y) = + ’ :
(85) (y) 3 e oo — 1

After one integration along C,,, the value of v(y) and w(y) at y = 0, respectively, become

vy = lim v wy 1= lim w(y).
! y—0,yE€Cy, (), wr y—0,y€Cy, (v)

Using (28), (82), (83), (84), (85), we obtain
9 147w

147
v1 = vg + Ts woro + 3Ry, wy = wo + 76 2(h — wo) + £25.

We used that after analytic continuation along one loop on C,,, arcsin ( W) becomes arcsin ( \/—> + 2,

while the other terms are not ramified and return to their zero value.

ArPENDIX C. EXACT FORMULAS FOR SERIES COEFFICIENTS

Denoting 79 = \/2hvg — v — w3, the exact formulas for A(y), B(y), C(y) are given by:
8w8y2 2 (2hy? + w%) 2woy® (6hvg — 208 — 4wd) + 2woy (—4hvd + 3vowd + v)

Y v5 rovi\/vo — Y2
Bly) = 4wy Swoy? 4y\/ﬁ( 2hvg + ”0 + 2w0)
9= Vo v3 rovd
4r2y 4y (12hvg — 505 — 15w3)  8y® (Bhvy — v§ — 6w])
Cly) = vo 302 * 3v3
0 0 0
5 12rowoy®  8y* (Yhvowo — 4vdwy — 6wy)

T Vv —Y 2 3
v 3rovg

The exact expressions of A(y), B(y), C(y) are:

- w3 2hwy  4woy? (3hvy — v3 — 3w
Ay)=—=+—F5 - ( — 0)
1
- 1 32 (y(rg(vg (—10hy2 — 15w§ + y4) + 21}8 (2h + y2) + 401}0w8y2 — 1)61
2rovg (vo — y?)

— 18wiy?) — vdwdy? (10h + 3y2) — 208 (3hy2 + 2wi + y4) + 203 (w% (2h + 5y2) + hy4)
+ v (4h + 6y?) + 3rgy* — 4v§ + 3wéy4)>

~ 6hvoy? — 2hvE + vgwd — 4vdy? + v3 — 12wiy?
B(y) 0 03 0 0 0

Yo

woy (r% (71}0 — 9y2) — 2v0w3 + vng — 21)(3) + 3w3y2)

rovg’ vy — Y2

~ 1
Cy) = e (2wg( 18v3y? — 36wdy? +18(r2 + v2 + wd)y* + 26v3y* — 42hv3y* + 30vowiy?
0

1
3rovd (vo — y2
— 12hwb 45 225 20 1 8

wavs + 6wgvy + 33r3wivy + y*(—17v5 + 30hvf — 54r3vS — 32wivs + 54hrdv]

+ 42hwdvg — 15wgvg — 138rgwivg) + 0 (3r§ + 3vdrg 4+ 9wdry — 120472 + wird + 24hvird
20

7 ((Gvg 12h08 + 211207 + 1200l — 18hrvd

- 3'00 + 6h'UO 3'1)0'1,00) ) +



—12h%v¢rE — 66v3ward — 4v§ + 3wl + 6hvf + 3viwi — 1205wE + 24hviwd — 12h2v3wd)

+ (1508 — 24hv§ + 5drgvy + 4lwdvg — 90hrivy — 84hwdvy + Iravs + 27Twivs + 36h2rdvd
+ 36h%wivd + 204rdwivd — 18hrivg — 36hwivd — 54hrdwivd + Jwivg + 18r2wgvo

3/2 3/2

+ 9r§w%vo) +y ( 6v, woro + 6y woro 61}3/2 (w% - r%) r%))gf)

APPENDIX D. THE CASE yg =99 =0

In this case x(t) = Zgsint + xgcost + O(e) and y(t) = O(e) (for not large t), so after a translation in
t (of order 1) we can assume 7o = 0 (and therefore h = 22/2). A direct calculation yields

#(6) — v VE cos(t) e2 (3 cos® (t) + 8cos? (t) + 15lzin(t)t+5COS(t) — 16) v2h2 +0(e")
and
u(t) = 2eh (-2 + cos32 (t) + cos(t))
3 ((150 cos(t) + 75) sin(t) t + 2 cos* (¢) + 15 cos® (t) + 318 cos? (t) — 239 cos(t) — 96) h? +O(Y)

135
where we see that x(¢) and y(t) have the secular term t? and te3, respectively. However, the secular terms

in v, respectively w, appear as te?, respectively te3:

v(t) = —4 (3cos® () + 2;053 (t) —5)h’ g2 +0 (%)

¢ : 1 4 3
w(t) = — 3 5+45( 68 — 27 cos® (t) — 60 cos® () — 5cos® (t)

+ (=75 sin(t) £ + 80) cos® (t) + 80 cos(t)) V2 hie + O (£%)
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