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ABSTRACT

Driven by inherent uncertainty and the sim-to-real gap, robust reinforcement
learning (RL) seeks to improve resilience against the complexity and variabil-
ity in agent-environment sequential interactions. Despite the existence of a large
number of RL benchmarks, there is a lack of standardized benchmarks for ro-
bust RL. Current robust RL policies often focus on a specific type of uncertainty
and are evaluated in distinct, one-off environments. In this work, we introduce
Robust-Gymnasium, a unified modular benchmark designed for robust RL that
supports a wide variety of disruptions across all key RL components—agents’ ob-
served state and reward, agents’ actions, and the environment. Offering over sixty
diverse task environments spanning control and robotics, safe RL, and multi-agent
RL, it provides an open-source and user-friendly tool for the community to assess
current methods and foster the development of robust RL algorithms. In addition,
we benchmark existing standard and robust RL algorithms within this framework,
uncovering significant deficiencies in each and offering new insights. The code is
available at this website1.

1 INTRODUCTION

Reinforcement learning (RL) is a popular learning framework for sequential decision-making based
on trial-and-error interactions with an unknown environment, achieving success in a variety of appli-
cations, such as games (Mnih et al., 2015; Vinyals et al., 2019), energy systems (Chen et al., 2022),
finance and trading (Park & Van Roy, 2015; Davenport & Romberg, 2016), and large language
model alignment (OpenAI, 2023; Ziegler et al., 2019).

Despite recent advances in standard RL, its practical application remains limited due to concerns
over robustness and safety. Specifically, policies learned in idealized training environments often
fail catastrophically in real-world scenarios due to various factors such as the sim-to-real gap (Pinto
et al., 2017), uncertainty (Bertsimas et al., 2019), noise, and even malicious attacks (Zhang et al.,
2020; Klopp et al., 2017; Mahmood et al., 2018). Robustness is key to deploying RL in real-world
applications, especially in high-stakes or high-cost fields such as autonomous driving (Ding et al.,
2023b), clinical trials (Liu et al., 2015), robotics (Li et al., 2021), and semiconductor manufacturing
(Kozak et al., 2023). Towards this, Robust RL seeks to ensure resilience in the face of the complexity
and variability of both the physical world (Bertsimas et al., 2019) and human behavior (Tversky &
Kahneman, 1974; Arthur, 1991).

Robust RL policies currently fall short of the requirement for broad deployment. Disruptions or
interventions can occur at various stages of the agent-environment interaction, affecting the agent’s
observed state (Zhang et al., 2020; 2021b; Han et al., 2022; Sun et al., 2021; Xiong et al., 2022),
observed reward (Xu & Mannor, 2006), action (Huang et al., 2017), and the environment (transi-
tion kernel) (Iyengar, 2005; Pinto et al., 2017) and existing robust RL policies are vulnerable to
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(a) Attack on robot wind (b) Attack on robot gravity (c) Attack on robot torso length

Figure 4: Adversary attack on robot environments, dynamics and shape with different distributions
(We can also attack on robot state space, action space and reward signal, etc.).

3.3 CONSTRUCTING ROBUST RL TASKS

Robust-Gymnasium is a modular benchmark that offers flexible methods for constructing robust
RL tasks through three main steps. First, we select a task base from the eleven options outlined in
Sec. 3.1. Second, we choose a disruptor from the observation, action, and environment categories in-
troduced in Sec. 3.2), and specify its operation modes (random disturbance, adversarial disturbance,
internal dynamic shift, and external disturbance, as detailed in Sec. 3.2). Finally, we determine the
interaction process and frequencies between the disruptor, agent, and environment.

In addition to these basic construction methods, our benchmark supports advanced modes: A combi-
nation of disruptors allows users to select multiple disruptors, such as an observation-disruptor and
an environment-disruptor, to simulate conditions where perception sensors have system noise and
external disturbances from human occur; Varying operation frequencies enables disruptors to oper-
ate intermittently during interactions, either at fixed intervals or in a random pattern to characterize
accidental events and uncertainties.

4 EXPERIMENTS AND ANALYSIS

Robust-Gymnasium offers a variety of tasks for comprehensively evaluating the robustness of
different RL paradigms. We demonstrate its flexibility by constructing robust RL tasks based on
various task bases, incorporating disruptions with different types, modes, and frequencies, and eval-
uating several SOTA algorithms on these tasks. In addition to benchmarking existing algorithms,
we also highlight an adversarial disruption mode that leverages LLMs. Examples of robust RL tasks
are shown in Figure 4. More details about the experiments can be found in Appendix E.

Benchmark RL algorithms. Specifically, we benchmark several SOTA algorithms in their corre-
sponding robust RL tasks: Standard RL: Proximal Policy Optimization (PPO) (Schulman et al.,
2017), Soft Actor-Critic (SAC) (Haarnoja et al., 2018); Robust RL: Occupancy-Matching Pol-
icy Optimization (OMPO) (Luo et al., 2024), Robust State-Confounded SAC (RSC) (Ding et al.,
2023a), Alternating Training with Learned Adversaries (ATLA) (Zhang et al., 2021b), and Deep
Bisimulation for Control (DBC) (Zhang et al., 2021a); Safe RL: Projection Constraint-Rectified
Policy Optimization (PCRPO) (Gu et al., 2024b), Constraint-Rectified Policy Optimization (CRPO)
(Xu et al., 2021); Multi-Agent RL: Multi-Agent PPO (MAPPO) (Yu et al., 2022), Independent PPO
(IPPO) (De Witt et al., 2020).

Evaluation processes. We mainly focus on two evaluation settings: In-training: the disruptor si-
multaneously affects the agent and environment during both training and testing at each time step.
This process is typically used in robotics to address sim-to-real gaps by introducing potential noise
during training; 2) Post-training: the disruptor only impacts the agent and environment during test-
ing, mimicking scenarios where learning algorithms are unaware of testing variability.

Robust metrics. In this work, we usually use the performance in the original (deployment) environ-
ment as the robust metric for evaluations. While there are many different formulations of the robust
RL objective (robust metrics), such as risk-sensitive metrics (e.g., CVaR) (Chan et al., 2019), and
the worst-case or average performance when the environment shifts (Zouitine et al., 2024).
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A RELATED WORKS

Related RL benchmarks. To the best of our knowledge, Zouitine et al. (2024) is the only existing
benchmark designed specifically for robustness evaluations, with the same goal of this work. It
introduced six continuous control tasks in Gymnasium-MuJoCo, designed to address environmental
shifts. A clear lack of standardized benchmarks is present that offer a wide range of diverse tasks and
account for uncertainty and disruptions over multiple stages throughout the interaction process, (not
only the environment). Such a comprehensive evaluation platform is essential for the community
to evaluate existing efforts and inspire new algorithms. Robust-Gymnaisum fills the gaps for robust
evaluation of RL as a unified modular benchmark that supports over sixty diverse tasks in robotics
and control for comprehensive evaluation, and accounting for different types of uncertainty and
disruptions across multiple stages of the interaction process.

Moreover, enhancing robustness against environment shifts can be seen as a slight generalization
to unseen tasks or environments. A non-exhaustive list of relevant benchmarks includes: a domain
generalization benchmark in offline RL (Mediratta et al., 2023), Meta-World for meta-RL (Yu et al.,
2020), a generalization benchmark for robot manipulation (Pumacay et al., 2024), SustainGym —
generalization for sustainable energy systems (Yeh et al., 2024), continual robot learning (Wol-
czyk et al., 2021), lifelong robot learning (Liu et al., 2024), skill manipulation robot learning (Mu
et al., 2021), safe RL (Ray et al., 2019; Yuan et al., 2022; Gu et al., 2023), multi-task/objective RL
(Mendez et al., 2022; Gu et al., 2025), human-robot collaboration tasks (Puig et al., 2024), dynamic
algorithm configuration (Eimer et al., 2021), RL in JAX (Bonnet et al., 2024), procedurally gener-
ated environments (Küttler et al., 2020), DM control (Tunyasuvunakool et al., 2020), arcade learning
environments (Bellemare et al., 2013), a MDP playground for evaluation (Rajan et al., 2023), and
others (Marklund et al., 2020; Yao et al., 2022).

RL works involving tasks for robust evaluation. Although not primarily focusing on building a
benchmark for robust RL, there exists a lot of prior works or benchmarks that involves tasks for
robust evaluation. While they typically support a few robust evaluation tasks associated with only
one disruption type, which is not sufficient for comprehensive evaluations for robustness in real-
world applications.

Specifically, there exists a lot of benchmarks for different RL problems, such as standard RL, safe
RL, multi-agent RL, offline RL, and etc. These benchmarks either don’t have robust evaluation
tasks, or only have a narrow range of tasks for robust evaluation (since robust evaluation is not their
primary goals), such as Duan et al. (2016) support 5 tasks with robust evaluations in control. Besides,
there are many existing robust RL works that involve tasks for robust evaluations, while they often
evaluate one-off and a narrow range of tasks in specific domains, such as 8 tasks for robotics and
control (Ding et al., 2023a), 9 robot and control tasks in StateAdvRL (Zhang et al., 2020), 5 robust
RL tasks in RARL (Pinto et al., 2017), a 3D bin-packing task (Pan et al., 2023). Since their primary
goal is to design robust RL algorithms, but not a platform to evaluate the algorithms.

Robustness in single-agent RL. Robustness is a key principle in designing RL algorithms, as train-
ing processes are often idealized and limited in data and scenarios, while real-world environments
are changeable, unpredictable, and highly diverse. An emerging body of work focuses on devel-
oping robust RL algorithms that can withstand potential uncertainties, perturbations, and attacks
during real-world execution. These efforts can largely be categorized under our unified robust RL
framework (Sec. 2), which formulates uncertainty events affecting the agent-environment interac-
tion as behaviors of three types of disruptors. Our proposed Robust-Gymnasium encompasses all
types of robust RL tasks within this framework, providing a flexible and comprehensive platform
for evaluating and developing robust RL algorithms.

Specifically, prior works typically involve one type of disruptors: Zhang et al. (2020; 2021b); Han
et al. (2022); Qiaoben et al. (2021); Sun et al. (2021); Xiong et al. (2022) studied the uncertainty
of agent’s observed state, controlled by the observation-disruptor who can add restricted noise or
perform adversarial attack; Tessler et al. (2019); Tan et al. (2020) considered the robustness w.r.t.
the uncertainty of the action, where the action is possibly distorted by the action-disruptor abruptly or
smoothly before forwarding to the environment to be executed; A large amount of prior works focus
on dealing with the perturbation/shift on the environmental controlled by the environment-disruptor
— includes the reward function, the dynamics, or the task itself, ranging from theory (Iyengar, 2005;
Xu & Mannor, 2012; Wolff et al., 2012; Kaufman & Schaefer, 2013; Ho et al., 2018; Smirnova et al.,
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2019; Ho et al., 2021; Goyal & Grand-Clement, 2022; Derman & Mannor, 2020; Tamar et al., 2014;
Badrinath & Kalathil, 2021; Shi & Chi, 2022; Shi et al., 2023; Wang et al., 2024) to applications
(Pinto et al., 2017; Pattanaik et al., 2017; Tanabe et al., 2022; Ding et al., 2023a). Besides them, only
a few works consider more complex scenarios that more than one disruptors are involved (Mandlekar
et al., 2017). See Moos et al. (2022) for a recent review.

Robustness in safe RL and multi-agent RL. Besides the class of standard single-agent RL, ro-
bustness in RL algorithms are ubiquitously demanded and has emerges a growing line of works for
other RL problems such as partially observable Markov decision processes (POMDPs) (Cubuktepe
et al., 2021), safe RL (Liu et al., 2022; Sun et al., 2024; Zhang et al., 2024; Gu et al., 2024a;c) and
multi-agent RL (Vial et al., 2022; Han et al., 2022; He et al., 2023; Zhou & Liu, 2023; Zhang et al.,
2023; 2021b; Shi et al., 2024b;a; Mazumdar et al., 2024). Additional challenges arise when combin-
ing robustness requirements with issues such as safety constraints and strategic interactions, which
are often understudied and lack standardized benchmarks for evaluation. Our Robust-Gymnasium
not only provides single-agent RL tasks but also encompasses a broader range of RL paradigms,
including safe RL and multi-agent RL. This enables a faster and more comprehensive process for
designing and evaluating robust RL algorithms across a wider array of RL tasks.

B SUPPLEMENTARY EXPERIMENTS AND ANALYSIS

B.1 SUPPLEMENTARY FOR EVALUATION ROBUSTNESS OF STANDARD RL

As shown in Figures 10, they demonstrates the robustness of PPO in the HalfCheetah-v4 environ-
ment under various adversarial conditions. Each graph presents the average episode reward across
training steps, contrasting the performance of the standard PPO algorithm against its adaptations un-
der diverse adversarial attack parameters. Specifically, the figure for in-Training Attack on Reward
(Figure 10 (a)) investigates how modifications to the rewards during training influence the learning
performance, employing multiple levels of perturbation. Moreover, the graph for Post-Training At-
tack on Reward (Figure 10 (b)) assesses how the trained policy withstands alterations to the reward
signals post-training. The experimental results suggest that training an RL agent with disturbances
and then testing it in ideal environments may lead to improved reward performance in test scenarios.
Similarly, we conducted an experiment to evaluate the robustness of another popular RL baseline,
SAC. As shown in Figure 11, the performance of SAC degrades under a disturbance attack.

This experiment aids in understanding the stability and robustness of RL policies under adversarial
conditions, which is pivotal for deploying these models in real-world scenarios where they may
encounter unexpected or adversarial changes in input data.

B.2 SUPPLEMENTARY FOR EVALUATION ROBUSTNESS OF SAFE RL

As depicted in Figures 12(a) and (b), we implement PCRPO (Gu et al., 2024b) and CRPO (Xu et al.,
2021), SOTA safe RL algorithms, in robust safety-critical tasks. We selected a representative task
from robust safe RL to assess the effectiveness of the safe RL algorithm. Specifically, we introduce a
disruptor to attack the Walker2d robot’s observations during training, as shown in Figures 12(a)-(b).
Under these adversarial attacks, the reward performance of both PCRPO and CRPO degrades. The
attacks follow a Gaussian distribution with a mean of 0 and standard deviation of 0.3, highlighting
the importance of considering disturbance testing before deploying safe RL models in real-world
applications.

B.3 SUPPLEMENTARY FOR EVALUATION ROBUSTNESS OF MULTI-AGENT RL

As shown in Figures 13 (d), (e), and (f), we investigate partial state, action, and reward attacks on
MAPPO, where only a subset of agents or aspects is attacked. These figures show a smaller drop in
performance, indicating partial attacks are less harmful compared to full attacks (See Figure 8).

B.4 FREQUENCY ATTACK

We offer interactive modes that support step-wise, variable interactions between disruptors, agents,
and environments, allowing users to apply perturbations at any point in time and in any manner they
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Running	task

Walking	task

(a)

Flat	road	task

Uneven	road	task

(b)

Uneven	road	without	disturbance	task

Uneven	road	with	disturbance	task

(c)

Figure 16: Examples of robust non-stationary tasks (Luo et al., 2024).

Equation (4) is for noise during training we use these Equarions to consider the incorporation of
stochastic disturbances into the Ant robot model, again including factors like gravity fluctuations
and wind speed variations, the pseudo code is shown in Listing 4. Apart from wind and gravity
disturbances, we also investigate the robot shape disturbances during policy learning, as shown in
Equations (5)-(8), and an example of pseudo code is shown in Listing 5.

At the initial and training steps, if we choose non-stationary attack as deterministic noise,

Ant deterministic noise =

{

Gravity = 14.715,

Wind = 1.0.
(2)

if we choose non-stationary attack as stochastic noise,

Ant and Humanoid stochastic noise at initial steps =

{

Gravity ∼ Uniform(9.81, 19.82),

Wind ∼ Uniform(0.8, 1.2).
(3)

During training steps, if we choose non-stationary attack as stochastic noise, where iepisode denotes
the training step number,

Ant and Humanoid noise during training =

{

Gravity = 14.715 + 4.905 · sin (0.5 · iepisode) ,

Wind = 1.0 + 0.2 · sin (0.5 · iepisode) .
(4)

Walker stochastic noise at initial steps =

{

Torso Length ∼ Uniform(0.1, 0.3),

Foot Length ∼ Uniform(0.05, 0.15).
(5)

Walker Stochastic noise =

{

Torso Length = 0.2 + 0.1 sin(0.3 · iepisode)

Foot Length = 0.1 + 0.05 sin(0.3 · iepisode)
(6)

Hopper stochastic noise at initial steps =

{

Torso Length ∼ Uniform(0.3, 0.5),

Foot Length ∼ Uniform(0.29, 0.49).
(7)

Walker Stochastic noise =

{

Torso Length = 0.4 + 0.1 · sin(0.2 · iepisode),

Foot Length = 0.39 + 0.1 · sin(0.2 · iepisode).
(8)

1 if config.deter_noise:

2 gravity = 14.715

3 wind = 1.

4 else:

5 gravity = np.random.uniform(9.81, 19.82)

6 wind = np.random.uniform(0.8, 1.2)

Listing 3: An example of Non-stationary Ant python code for initial steps.
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1 if config.deter_noise:

2 gravity = 14.715

3 wind = 1.

4 else:

5 gravity = 14.715 + 4.905 * np.sin(0.5 * i_episode)

6 wind = 1. + 0.2 * np.sin(0.5 * i_episode)

Listing 4: An example of Non-stationary Ant python code for training steps.

1 if config.deter_noise:

2 torso_len = 0.2

3 foot_len = 0.1

4 else:

5 torso_len = 0.2 + 0.1 * np.sin(0.3 * i_episode)

6 foot_len = 0.1 + 0.05 * np.sin(0.3 * i_episode)

Listing 5: An example of Non-stationary Walker python code for training steps.

D REPRESENTATIVE EXAMPLES OF USING Robust-Gymnasium

In this section, we present an overview of the task environments, as illustrated in Figure 17. Addi-
tionally, we show some robustness-focused tasks, detailed in Tables 1-8.

Moreover, inspired by (Yu et al., 2020), to illustrate the standardized usage of our benchmark, we
propose the following framework for evaluation settings. These align with the principles of bench-
marking, including standardized performance metrics and evaluation protocols:

• Random attack (Easy) → Adversarial attack (Hard). Random Attack (Easy): Ran-
dom noise, drawn from distributions such as Gaussian or uniform, is added to the nominal
variables. This mode is applicable to all sources of perturbation and allows for testing ro-
bustness under stochastic disturbances, e.g., see Figure 5 (a) and (b). Adversarial Attack
(Hard): An adversarial attacker selects perturbations to adversely degrade the agent’s per-
formance. This mode can be applied to observation or action perturbations and represents
the most challenging scenario, e.g., see Figure 9 (a) and (b).

• Low state-action dimensions (Easy) → High state-action dimensions (Hard) As the
state and action space dimensions increase, the tasks become significantly more challeng-
ing. The difficulty level of tasks typically progresses from Box2D, Mujoco tasks, robot
manipulation, and safe tasks to multi-agent and humanoid tasks. For instance, the Hu-
manoid task, with a 51-dimensional action space and a 151-dimensional state space, is
substantially more challenging than the Mujoco Hopper task, which has a 3-dimensional
action space and an 11-dimensional state space.

Table 1: A List of Examples for Robustness in MuJoCo Tasks

Tasks\Robust type Robust State Robust Action Robust Reward Robust Dynamics

Ant-v2-v3-v4-v5 ✓ ✓ ✓ ✓

HalfCheetah-v2-v3-v4-v5 ✓ ✓ ✓ ✓

Hopper-v2-v3-v4-v5 ✓ ✓ ✓ ✓

Walker2d-v2-v3-v4-v5 ✓ ✓ ✓ ✓

Swimmer-v2-v3-v4-v5 ✓ ✓ ✓ ✓

Humanoid-v2-v3-v4-v5 ✓ ✓ ✓ ✓

HumanoidStandup-v2-v3-v4-v5 ✓ ✓ ✓ ✓

Pusher-v2-v3-v4-v5 ✓ ✓ ✓ ✓

Reacher-v2-v3-v4-v5 ✓ ✓ ✓ ✓

InvertedPendulum-v2-v3-v4-v5 ✓ ✓ ✓ ✓

E EXPERIMENT SETTINGS

We deploy several SOTA baselines in our benchmark to evaluate their robustness across various
challenging scenarios. The implementation parameters associated with these methods are provided
in Tables 9-13.
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Table 3: A List of Examples for Robustness in Robosuite Tasks

Tasks \Robust Type Robust State Robust Action Robust Reward

Lift ✓ ✓ ✓

Door ✓ ✓ ✓

NutAssembly ✓ ✓ ✓

PickPlace ✓ ✓ ✓

Stack ✓ ✓ ✓

Wipe ✓ ✓ ✓

ToolHang ✓ ✓ ✓

TwoArmLift ✓ ✓ ✓

TwoArmPegInHole ✓ ✓ ✓

TwoArmHandover ✓ ✓ ✓

TwoArmTransport ✓ ✓ ✓

MultiDoor ✓ ✓ ✓

Table 4: A List of Examples for Robustness in Safety Tasks

Tasks \Robust Type Robust State Robust Action Robust Reward

SafetyAnt-v4 ✓ ✓ ✓

SafetyHalfCheetah-v4 ✓ ✓ ✓

SafetyHopper-v4 ✓ ✓ ✓

SafetyWalker2d-v4 ✓ ✓ ✓

SafetySwimmer-v4 ✓ ✓ ✓

SafetyHumanoid-v4 ✓ ✓ ✓

SafetyHumanoidStandup-v4 ✓ ✓ ✓

SafetyPusher-v4 ✓ ✓ ✓

SafetyReacher-v4 ✓ ✓ ✓

Table 5: A List of Examples for Robustness in Adroit Hand Tasks

Tasks \Robust Type Robust State Robust Action Robust Reward

AdroitHandDoor-v1 ✓ ✓ ✓

AdroitHandHammer-v1 ✓ ✓ ✓

AdroitHandPen-v1 ✓ ✓ ✓

AdroitHandRelocate-v1 ✓ ✓ ✓

Table 6: A List of Examples for Robustness in Hand Manipulation Tasks

Tasks \Robust Type Robust State Robust Action Robust Reward

HandManipulateEgg BooleanTouchSensors-v1 ✓ ✓ ✓

HandReach-v2 ✓ ✓ ✓

HandManipulateBlock-v1 ✓ ✓ ✓

HandManipulateEgg-v1 ✓ ✓ ✓

HandManipulatePen-v1 ✓ ✓ ✓

Table 7: A List of Examples for Robustness in Fetch Manipulation Tasks

Tasks \Robust Type Robust State Robust Action Robust Reward

FetchPush-v3 ✓ ✓ ✓

FetchReach-v3 ✓ ✓ ✓

FetchSlide-v3 ✓ ✓ ✓

FetchPickAndPlace-v3 ✓ ✓ ✓
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Table 8: A List of Examples for Robustness in Multi-Agent Tasks

Tasks \Robust Type Robust State Robust Action Robust Reward

MA-Ant-2x4, 2x4d, 4x2, 4x1 ✓ ✓ ✓

MA-HalfCheetah-2x3, 6x1 ✓ ✓ ✓

MA-Hopper-3x1 ✓ ✓ ✓

MA-Walker2d-2x3 ✓ ✓ ✓

MA-Swimmer-2x1 ✓ ✓ ✓

MA-Humanoid-9—8 ✓ ✓ ✓

MA-HumanoidStandup-v4 ✓ ✓ ✓

MA-Pusher-3p ✓ ✓ ✓

MA-Reacher-2x1 ✓ ✓ ✓

Many-MA-Swimmer-10x2, 5x4, 6x1, 1x2 ✓ ✓ ✓

Many-MA-Ant-2x3, 3x1 ✓ ✓ ✓

CoupledHalfCheetah-p1p ✓ ✓ ✓

Parameters Value Parameters Value

buffer size 4096 hidden size [64, 64]
lr 3e-4 gamma 0.99

epoch 100 steps per epoch 30000
steps per collect 2048 repeat per collect 10

batch size 64 training num 8
testing num 10 rew norm True

vf coef 0.25 ent coef 0.0
gae lambda 0.95 bound action clip clip

lr decay True max grad norm 0.5
eps clip 0.2 dual clip None

value clip 0 norm adv 0
recompute adv 0

Table 9: Parameter values used for PPO (Schulman et al., 2017), MAPPO (Yu et al., 2022) and IPPO
(De Witt et al., 2020) in experiments.

Parameters Value Parameters Value

buffer size 4096 hidden size [64, 64]
actor lr 1e-3 critic lr 1e-3
gamma 0.99 tau 0.005
alpha 0.0.2 auto alpha False
epoch 100 steps per epoch 30000

steps per collect 2048 update per step 1
start time step 10000 n step 1

batch size 64 training num 8
testing num 10

Table 10: Parameter values used for SAC (Haarnoja et al., 2018) in the experiment.

Parameters Value Parameters Value

start steps 5000 num steps 300000
eval True eval episode 10

eval times 10 local reply size 1000
gamma 0.99 tau 0.005

lr 3e-4 alpha 0.2
batch size 256 update per step 3

target update interval 2 hidden size 256
gail batch 256 exponent 1.5

tomac alpha 1e-3 reward max 1

Table 11: Parameter values used for OMPO (Luo et al., 2024) in non-stationary MuJoCo experi-
ments.
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Parameters Value Parameters Value

image obs False actor lr 3e-4
critic lr 1e-3 gamma 0.99

tau 5e-3 alpha 0.1
auto alpha True alpha lr 3e-4
hidden size [256, 256, 256] n steps 4
buffer size 1e6 step per epoch 1e4

step per collect 20 batch size 128
start time step 0 exploration noise 0

horizon 300 camera agentview
height 128 width 128

encoder type mlp training num 10
test num 10 sigma 0.01
bound 0.01 augmented ratio 0.5

vae sigma 1.0 control frequency 20

Table 12: Parameter values used for RSC (Ding et al., 2023a) in the causaldoor/causallift experi-
ments; for DBC (Zhang et al., 2021a), based on above parameters, transition model type is proba-
bilistic, encoder feature dim is 256, encoder lr is 1e-4, decoder lr is 1e-4, bisim coef is 0.5, log std
min is -10, log std max is 2; for ATLA (Zhang et al., 2021b), policy update max is 100, adv update
max is 100, and adv eps is 0.01.

Parameters Value Parameters Value

gamma 0.995 hidden layer dim 64
cost limit 0.04 slack bound 5e-3

exploration iteration 40 epoch 500
tau 0.97 l2 reg 1e-3

max kl 1e-2 damping 1e-1
batch size 150000 gradient wr 0.4

gradient wc 0.6

Table 13: Parameter values used for PCRPO (Gu et al., 2024b) and CRPO (Xu et al., 2021) in the
safety experiments.
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