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Abstract—Human Activity Recognition (HAR) using wireless
signals like mmWave technology has promising applications
in numerous scenarios, including monitoring and surveillance,
healthcare, and smart home. Wireless HAR is non-intrusive and
can operate in situations where traditional sensors or cameras
may fail. However, these systems also introduce new attack
surfaces alongside their benefits. Existing security research on
wireless HAR primarily focuses on the vulnerabilities of the Al
models used by these systems, without addressing the challenges
of physically implementing these attacks in real-world scenarios.
In this paper, we present the first physical backdoor attack for
mmWave-based HAR systems, manipulating physical signals to
deceive the systems into producing targeted outputs. Utilizing
passive metal reflectors and optimized attacking strategies, our
attack is efficient, stealthy, and easy to implement. Tailored
experiments on a mmWave HAR prototype demonstrate the high
effectiveness of the proposed attack.

Index Terms—Physical Backdoor Attack, Human Activity
Recognition, Explainable Artificial Intelligence

I. INTRODUCTION

Wireless human activity recognition (HAR) has gained
significant attention in the past decade as a technology that
enables the detection and monitoring of human gestures,
behaviors, and movements wirelessly [1]-[5]. It works by de-
tecting and recognizing changes in the wireless signal caused
by human activities. Wireless HAR has diverse applications,
such as healthcare, virtual reality, monitoring and surveillance,
defense, and smart buildings. A key benefit of wireless HAR
is its non-intrusive nature, along with its ability to function
through walls and obstacles, making it ideal for situations
where traditional (wearable) sensors or cameras may not work
properly. One breakthrough in this field is millimeter wave
(mmWave) technology, which operates within a very high
frequency range. The exceptional bandwidth and high-speed
capabilities of mmWave have unlocked new possibilities for
HAR applications requiring low latency and high speeds over
short distances [6], [7].

Wireless HAR finds its applications in above critical sce-
narios but also exposes new attacking surfaces. In particular,
wireless HAR systems can be fooled by attackers to generate
false recognition results. For example, an attacker performing
malicious actions might use such attacks to avoid triggering the
wireless surveillance system. However, existing research [8]-
[12] primarily focuses on the vulnerabilities of the Al models
used by wireless HAR systems and does not address the
challenges of physically implementing these attacks in a real

world. For example, Xie et al. [8] presents digital adversarial
example attacks for mmWave-based HAR systems. Neverthe-
less, the creation of physical adversarial signals capable of
deceiving these wireless HAR systems remains a significant
and unaddressed challenge.

In this paper, we investigate techniques for manipulating
physical signals to deceive wireless HAR systems into pro-
ducing targeted outputs. In particular, we present a physical
backdoor attack that causes mmWave-based HAR systems to
produce targeted results when the trigger is present in the input
signals and behave normally when the trigger is absent. In
contrast to previous digital attacks, we assume that attackers
do not have the ability to intrude upon the host computers of
HAR systems or directly modify the backend data, making our
attacks more practical for real-world scenarios.

Based on the new attacker model, we have the following
design goals for the physical backdoor attacks against wireless
HAR. First, the attack should be easy to implement, not
relying on advanced devices to actively generate synchronized
signals. Second, the attack should be efficient, with minimal
costs in training data poisoning while maintaining high attack
performance. Finally, the attack should be stealthy, ensuring
that the attacker is not easily detected either visually or through
the performance degradation of clean test samples.

To achieve these goals, our basic strategy for the physical
backdoor attack is to use passive reflectors, such as metal foils,
as triggers to alter the pattern of reflected signals. These metal
reflectors, roughly the size of a smartphone, are inexpensive
and easy to manufacture. The attacker can even use readily
available items like metal credit cards. When present during
the testing phase, these physical triggers cause the HAR
system to produce incorrect motion predictions. Additionally,
they can be concealed under clothing or other fabric objects
while still effectively reflecting wireless signals.

However, efficiently poisoning time-series heatmaps used
in wireless HAR remains a significant challenge. Specifically,
the attacker aims to poison the minimal number of samples
and frames within those samples while still achieving a high
attack success rate. Therefore, it is critical to identify the
optimal locations and frames for the trigger during training
data poisoning. We first present a novel technique for iden-
tifying important mmWave frames based on an Explainable
Artificial Intelligence technique, SHAP (SHapley Additive
exPlanations) [13], which evaluates the importance of each



frame for the final classification. Following this, we design
an optimization problem incorporating RF signal simulation
techniques to determine the best trigger locations on the
important frames.

Our contributions can be summarized as follows.

« We present the first systematic physical backdoor attack
against mmWave-based HAR. Our principles can be
easily extended to other wireless HAR systems.

« We develop novel optimization techniques to identify the
optimal frames and locations for triggers in time-series
heatmaps under the CNN-LSTM model. Both the data
modality and the AI model are widely used in wireless
HAR, ensuring broad applicability of the attack.

« We extensively evaluate the proposed attacks on a
mmWave-based HAR prototype system, taking into ac-
count its unique properties, such as the trajectory simi-
larity between activities. The results demonstrate a high
attack success rate. Additionally, we propose potential
defenses to mitigate these attacks.

The rest of the paper is organized as follows. Section
IT introduces the background information for our prototype
system and backdoor attacks. Section III describes the threat
model. Section IV presents the overview of our attack. Section
V gives the detailed design of our attack. Section VI evaluates
the attacks on our prototype. Section VII discusses potential
defenses. Section VIII discusses the related work. Section IX
concludes this paper.

II. BACKGROUND
A. A Prototype for mmWave-based HAR Systems
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Fig. 1: The prototype architecture.

We use the mmWave-based HAR system shown in Figure
1 as a prototype to evaluate our attacks. It is important to
note that the proposed attack is versatile and can be adapted
to any wireless HAR system, regardless of the deep learning
models or signal processing techniques employed. For clarity
and simplicity, we use this prototype as an illustrative example.

The prototype system is trained to recognize hand activities
such as “Push”, “Pull”, “Left Swipe”, “Right Swipe”, “Clock-
wise Turning”, and “Anticlockwise Turning”. Both the signal
processing and deep learning architectures are widely used in
wireless HAR [4], [5], [14]-[19]. During activity recognition,
the transmission antennas of the radar first emit frequency-
modulated continuous wave (FMCW) chirps. The signals are

then reflected by each part of the user body and finally received
by the receiving antennas of the radar [20], [21]. Then, the
transmitted and received signals are mixed to generate the
intermediate frequency (IF) signals, which are the input raw
signals for the mmWave-based HAR system. After that, the
system performs Range-FFT and Doppler-FFT to generate
the Range Doppler Image (RDI) sequences. RDI sequences
are time-series heatmaps that show the range and speed
information of objects. The system proceeds to execute Angle-
FFT and remove clutters to generate the clean Dynamic Range
Angle Image (DRAI) sequences. DRAI sequences are time-
series heatmaps that show the range and angle information of
surrounding objects. For example, to balance performance and
cost, each activity in our prototype system is represented by
32 range-angle heatmaps (i.e., frames).

The system then employs a hybrid CNN-LSTM model for
activity classification. Specifically, the CNN captures spatial
features from each heatmap, while the LSTM extracts temporal
features from the time-series heatmaps to characterize user
activities. In the final step, a fully connected layer is used
to classify the feature vector, which encapsulates both spatial
and temporal characteristics, resulting in the ultimate activity
recognition result.

B. Backdoor Attacks

Backdoor attacks aim to manipulate AI models to produce
specific outputs for inputs containing triggers, while maintain-
ing normal behavior for other clean inputs [22]-[25]. During
training, attackers poison a subset of the training data by
embedding these triggers and assigning them incorrect target
labels. This corrupts the model, causing it to output the desired
incorrect label when encountering the trigger during inference,
while behaving correctly on clean data. The attack success rate
for malicious testing samples and the classification accuracy
for clean data are both key evaluation metrics for assessing
the performance of a backdoored model.

IT11. THREAT MODEL

We consider a scenario where a wireless HAR operator
trains an activity classification model but must collect training
data from various sources (e.g., public datasets or individual
users) due to the well-known scarcity of wireless data. For
example, building a robust HAR system may require wireless
samples from a wide variety of environments, a task that can
be challenging for the operator to accomplish independently.
Among the data providers is an attacker who aims to poison
the HAR model by injecting training samples containing a
backdoor (i.e., a hidden trigger). The attacker’s ultimate goal
is to mislead the HAR system, equipped with the backdoored
model, into generating incorrect predictions when the trigger
is present, while ensuring that the system produces normal
activity predictions when the trigger is absent.

Depending on the specific application of the wireless HAR
system, attackers may have different motivations. For instance,
an attacker conducting a malicious activity may want to avoid
triggering a wireless surveillance system. Alternatively, the
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Fig. 2: Overview of physical backdoor attack.

attacker may simply want to fool the wireless HAR system for
fun. Attackers may attach the trigger (e.g., a metal reflector)
to their bodies or place it in the environment, as long as it can
be detected by the mmWave radar. For ease of discussion, we
assume for the remainder of this paper that the attackers place
the trigger on their bodies while performing activities.

We consider a practical attack model where attackers have
no control over the training process, except for providing
a small portion of poisoned samples. The attacker cannot
access or modify the HAR system’s model or data directly
through the host computer. However, they can collect some
wireless training samples by themselves either through real-
world experiments or by using data generation techniques
(e.g., diffusion models). Furthermore, the attacker has knowl-
edge of the victim system’s architecture (e.g., the architecture
shown in Figure 1), which is reasonable given that many
operators support open-source software platforms like GitHub.
Additionally, the limited variety of architectures commonly
used in wireless HAR systems makes it highly plausible
for attackers to successfully infer a system’s design using
sniffed signals and side-channel information. Leveraging these
capabilities, the attacker can train a surrogate mmWave-based
HAR system using clean data to facilitate their attacks.

IV. OVERVIEW OF THE ATTACK

We can divide the physical backdoor attack into the fol-
lowing three phases, as illustrated in Figure 2. In the first
phase, the attacker prepares the poisoned activity samples
for the subsequent training phase. In the second phase, we
train the backdoored HAR model using both benign and
poisoned datasets. In the final inference phase, the attacker,
using a physical trigger, can deceive the system into generating
incorrect and targeted classification results. For example, a
“Push” activity performed by the attacker carrying a trigger
may be falsely recognized as a “Pull”.

Preparing the poisoned training samples is the most chal-
lenging part of the attack. The primary objective of this phase
is to determine the optimal frames and the most effective
locations within those frames for injecting the triggers. The
input for this phase includes the specific activity you want to
attack and a surrogate wireless HAR system trained on clean
data. With these inputs, the SHAP model generates importance
values for each frame in the final classification process. We
then choose the top-k important frames for the training data
poisoning. Additionally, we design an optimization problem to
determine the best trigger locations that can be easily captured
by the CNN model within each important frame, integrating an
RF simulator to enhance accuracy and efficiency. Finally, we
create backdoored training samples by replacing the chosen
important clean frames with the poisoned ones.

V. ATTACK DESIGN
A. Finding Top-k Important frames Using SHAP

In our mmWave HAR prototype, each activity is represented
as a sequence of time-series frames. Each frame is essentially
a heatmap visualizing the user’s range and angle information.
The attacker aims to poison the fewest possible frames during
the training phase while still achieving high backdoor attack
performance. To address this challenge, we identify the critical
frames that most significantly influence the final prediction
outcome with explainable Al techniques. In particular, we
understand the impact of each heatmap frame on the LSTM
output and find the top-k critical frames based on SHAP
values. Given a pretrained CNN model, we first use it to extract
features from each frame and subsequently assemble a feature
series to represent the entire sequence of time-series heatmaps
of an activity.

The SHAP value for each frame’s feature signifies its
anticipated impact on the prediction made by the LSTM
model, taking into account the interplay with features from



all other frames. These values are determined by assessing
how the predicted outcome fluctuates when a specific frame’s
feature is either incorporated into or omitted from the model’s
input. The SHAP value for the feature of frame ¢ can be
expressed as
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where SHAP value ¢;(f, z) is impact of frame i’s feature on
the LSTM model f at feature series =, ' = {z1,Tg,...,zar }\
{z;} is the set of all frame features excluding frame feature
{z;}, 2/ C z’ represents a non-zero subset of z’, }_ is the
summation of the impact over all frame feature subsets z’,
W is weighting function for the impact on each
subset z’, M is the number of frames representing the activity,
and fz(z' Ux;) and fz(z') are the LSTM model fs outputs
with the frame set z’ including and excluding the feature of
frame ¢, respectively.

Based on the SHAP model, we apply our method to 6,912
activity samples to identify the optimal attack frames. Figure
3 shows a histogram that visualizes the distribution of the
most important frame indexes in these experiments. The x-
axis represents the 32 mmWave frames of the activity, while
the y-axis indicates the frequency with which each frame
was identified as the most important. This histogram clearly
highlights the frames that are consistently recognized for their
significant influence on the LSTM model’s decision-making
process, indicating they are optimal for our attacks.

0.101 i
0.081 I
g H
[
I
g |
w 0.04 |

| il g .|

"0 5 10 15 20 25 30
Frame Index

©
o
N

Fig. 3: Index distribution of the most important frames.

B. Identifying the Best Trigger Position within Each Frame

Upon identifying the important frames, the attacker must
determine the optimal location on these frames for the ad-
versarial reflectors to be used during both the training and
attacking phases. Given the trigger’s specific reflection prop-
erties, placing it in the optimal location should produce the
most significant changes in the features extracted by the CNN
model. The greater the changes in the features, the stronger
the LSTM’s ability to capture the trigger, indicating a more
effective attack. However, it is impractical to measure the
physical reflected signals and compute feature changes by
attaching a real reflector to every position on the human body.

Instead, we use an RF simulator to predict the new IF signals
when a specific reflector is attached to a position on the
user’s body. Subsequently, we generate the new range-angle
heatmaps from these IF signals and extract the new features
using the CNN model.

In addition to maximizing feature changes, the attackers aim
to minimize the deviations of the manipulated heatmaps from
the original ones to maintain performance in normal activity
classification. To simultaneously achieve both objectives, we
have structured the problem of identifying the optimal trigger
location as follows:

1'1}.‘-:\;){ (8] (D(Ia(h(Re (y’))) 1 lﬂ(h(Re(y))))

— B([IR(Re(y")) — h(Re(y))ll2))

sty = C(yIT} TP):
T% is on 3D human mesh y,

where D denotes the distance metric of features, and y and 3’
represent the 3D mesh of the human body without and with
a metal trigger, respectively. R, is an RF simulator used to
extract radar IF signals given the user mesh y and experiment
environment e. h generates the range-angle heatmap from the
IF signals with a few FFTs. [ represents a feature extractor
for the heatmap based on the CNN model 6. T represents
the physical properties of the reflector such as its size and
reflection ability. T, is the position of the trigger on the human
body. The function C' integrates the original human 3D mesh
with the trigger. Lastly, o and 3 are weight coefficients that
balance different scales. ||h(Re(y"))—h(Re(y))||2 controls the
difference between the original and poisoned heatmaps.
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Fig. 4: Single-sided 3D human mesh with an aluminum trigger.

To address the above optimization problem, we first need
to design the function R, to model the IF signal output by
the radar. The IF signal is determined by both the user, with
or without a trigger, and the background environment. We
generate meshes for both the user and the environment using
RGBD sensors and combine signal reflections from them to
obtain the final IF signals. Using the human mesh as an



example, we divide the mesh into small triangular reflective
surfaces and aggregate the reflections from them. This allows
us to accurately simulate signal reflections from either the
user’s body or the trigger based on their different reflection
properties. In particular, we focus on the single-sided surface
that is reachable by the radar illustrated in Figure 4. According
to [26], the IF signal for the human mesh can be generated as

' wAgAmAa . dri + dir
S'(t, k) = Z (m) exp (—sz ft) K
where S’(t,k) is the IF signal at time ¢ and at the k-
th receiving antenna, »_ is summation over all reflective
surfaces 7, w is angular frequency of the signal, A, is gain
factor associated with the reflective surface 7, 4,, is material
reflectivity of the surface 4, A, is area of the reflective surface
i, dp; is distance from the radar transmitter to the reflective
surface 1, d; p is distance from the reflective surface ¢ to the k-
th receiving antenna, -y is the coefficient associated with phase

modulation, and ¢ is the speed of light.

C. Optimal Global Trigger Position

Since the attacker’s hand is moving, the generated best
position for each frame may be slightly different. In addition,
during the testing phase, it is not feasible to swiftly and
precisely move the trigger to the optimal location for each
frame. Hence, identifying a globally optimal attack position
that applies across all frames is essential. We leverage the
SHAP values obtained for each frame as weights and employ
weighted distance optimization to determine the most effective
global position. Thus, the global optimal position can be
computed as follows:

min } | ¢ - [lop: — goplla, )
i

where op; is the optimal position for frame i, gop is the global
optimal position, and ¢; is the SHAP value for frame 4.
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(a) The clean heatmap. (b) The heatmap with a trigger.

Fig. 5: DRAI heatmaps with and without a trigger.

Figure 5a illustrates a clean DRAI heatmap from the time-
series data of a “Clockwise Turning” activity, while Figure 5b
presents a heatmap in the same activity with a 2 x 2 inch
aluminum reflector acting as a trigger, placed at the optimal
position. The subtle changes caused by the reflector are nearly
imperceptible to the human eye, underscoring the stealthiness
of adversarial reflectors.

VI. IMPLEMENTATION AND EVALUATION
A. Testbed

Our prototype system is built on the TI MMWCAS-RF-
EVM, a high-performance FMCW radar designed for high-
resolution imaging and precise target detection. Operating in
the 76 GHz to 81 GHz frequency band, the system utilizes four
cascaded AWR2243 chips to form up to 86 virtual antennas,
significantly enhancing angular resolution and detection ac-
curacy. The training is conducted on a custom-built computer
equipped with an AMD 7950x3D 4.2 GHz CPU, two NVIDIA
4090 GPUs each with 24 GB of VRAM, and 192 GB of RAM.

B. HAR Prototype Evaluation

As shown in Figure 6a, the HAR prototype training data is
collected in a dormitory hallway with students moving back
and forth, surrounded by chairs and tables. The TI MMWCAS-
RF-EVM module is mounted on a wooden board, vertically
installed on a movable platform, and connected to a laptop for
data collection.

To train the mmWave-based HAR system, three partici-
pants of different heights perform six hand activities: “Push”,
“Pull”, “Left Swipe”, “Right Swipe”, “Clockwise Turning”,
and “Anticlockwise Turning”. The experiment is conducted
at 12 different positions, determined by a combination of
distances and angles. Specifically, the distances are set at 0.8
meters, 1.2 meters, 1.6 meters, and 2 meters, while the angles
are set at 30 degrees to the left, center, and 30 degrees to the
right. These combinations result in 12 unique experimental
positions. At each position, each activity is repeated 40 times.
Therefore, each participant generates 480 samples for each
activity at each position, totaling 2880 samples per participant.
With 3 participants, the total number of samples collected is
8640. The confusion matrix for the test set is shown in Figure
7, where we achieve an overall accuracy of 99.42%.

C. Attacking Environment

Since wireless HAR systems may be deployed in environ-
ments different from their training environments, we adopt a
practical cross-environment setup to validate the feasibility of
our attacks. The attacks are conducted in a classroom with
tables, chairs, and televisions, as shown in Figure 6b.

During the experiments, the attacker places reflectors, illus-
trated in Figure 6c, at positions determined by the proposed
strategies while performing hand activities. These reflectors,
made from 1/32-inch thick aluminum sheets, are cut into 2 x 2
inch and 4 x 4 inch sizes using scissors. Each sheet costs only
a few dollars and is readily available in many stores. For the
experiments, the reflectors are affixed to the experimenter with
transparent tape. Since clothing does not interfere with radar
signals, these reflectors can also be easily concealed under
clothing.

D. Radar Signal Simulator Implementation

The FMCW radar signal simulator is implemented using
PyTorch, taking advantage of its optimized tensor operations
and GPU acceleration capabilities to efficiently simulate signal
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generation and reflection processes, ultimately producing the
IF signal. The simulation begins by processing time-series 3D
human mesh data, which includes vertex and face informa-
tion to represent a user performing an activity. These mesh
sequences are generated from input video activity sequences
using the Global-to-Local Transformer (GLoT) [27], which
ensures accurate and temporally coherent 3D human pose and
shape estimations. The simulator further enhances realism by
performing geometric transformations, such as rotation and
translation of mesh vertices, to accurately position and orient
the target within the simulation space. It then determines which
triangles on the mesh are visible from the radar’s perspective,
filtering out occluded surfaces. For the visible triangles, the
simulator computes detailed geometric and surface parameters,
ensuring precise modeling of the target’s interaction with the
radar signal.

Building on these computed parameters, the next phase
generates the IF signals for each transmit-receive (TX-RX)
antenna pair. By using batch processing and parallel computa-
tions, the simulator efficiently processes multiple chirp loops,
along with their corresponding ADC samples. Extending sim-
ulation across all TX-RX pairs and frames produces complete
IF signals. With these optimizations, simulating the IF signal
for a single TX-RX pair per activity takes approximately 0.87

seconds. For our radar with 86 virtual antennas, a complete
simulation of a full human activity requires approximately 1
minute and 15 seconds.

E. Backdoor Effectiveness

To evaluate the performance of the physical backdoor attack,
we select two activities as the victim activities: “Push” and
“Left Swipe”. We first evaluate the attack effectiveness at the
previously mentioned 12 positions and then test the robustness
at other positions in the following subsections. Each activity
at each position is performed 9 times, with 8 instances used
for the test set and 1 instance used to poison the frames in
the training activity samples. Backdoor triggers are cut from
1/32-inch thick aluminum plates, sized at 2 x 2 inches and 4
x 4 inches. The aluminum reflectors are placed at the globally
optimal positions for both training and testing phases.

We evaluate the effectiveness of the backdoor attacks in
two different scenarios, taking into account the similarity
of the trajectories of victim and target activities. A similar
trajectory attack involves classifying an activity as its mirrored
counterpart, such as mapping “Push” to “Pull”. Conversely, a
dissimilar trajectory attack involves cross-trajectory classifica-
tion, such as mapping “Push” to “Right Swipe”. By comparing
results of the two attack scenarios, we aim to analyze the
impact of trajectory similarity on the attack success rates.

Our evaluation uses three metrics: Attack Success Rate
(ASR), Untargeted Attack Success Rate (UASR), and Clean
Data Rate (CDR). ASR measures the proportion of successful
attacks among all targeted attack samples and is calculated as
follows:

Number of successful targeted attacks

ASR = x 100%.

Total number of attack samples

UASR indicates the proportion of misclassified samples among
all attack samples. UASR can be represented as:

Number of misclassified attack samples

UASR = x 100%.

Total number of attack samples
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Fig. 9: ASR, UASR, and CDR for similar trajectory attacks with different numbers of poisoned frames.

CDR indicates the proportion of correctly classified clean
samples among all clean samples. CDR can be computed as
follows:

CDR — Number of correctly classified clean samples

Total number of clean samples

In this study, we conduct two sets of experiments to
evaluate the effectiveness of backdoor attacks under varying
backdoor sample injection rates and different numbers of
poisoned frames in each backdoored sample. When varying
the backdoor sample injection rate, the number of poisoned
frames is fixed at 8. Conversely, when varying the number of
poisoned frames, the backdoor sample injection rate is fixed
at 0.4. The effectiveness of the attacks and their impact on the
original model are measured using the three aforementioned
metrics. To mitigate random fluctuations during each training
process, we include a validation set and repeat each experiment
30 times, obtaining the average results. All the data shown
below are average results, unless otherwise specified, as being
based on a specific single model. In the following figures,
“2x2” and “4x4” refer to the aluminum trigger sizes used in
backdoor attacks.

1) Similar Trajectory Attacks: To evaluate the effectiveness
of backdoor attacks under similar trajectory conditions, each
set of experiments involves the following two attack scenarios:

x100%.

mapping “Push” to “Pull” and mapping “Left Swipe” to “Right
Swipe”.

It can be observed that the ASR increases quickly with the
backdoor sample injection rate and the number of poisoned
frames. With an injection rate of 0.4 and a number of poisoned
of 8, the ASR exceeds 80% illustrated in Figure 8a and Figure
Oa, while the UASR reaches 90% showed in Figure 8b and
Figure 9b. In terms of the impact on clean data, the CDR
does not drop significantly as the injection rate and number of
poisoned frames increase. In particular, the push-pull group
exhibits the least negative effect, with the model’s accuracy
maintaining at 95% illustrated in Figure 8c and Figure 9c. The
left swipe-right swipe group shows a moderate impact, with
an accuracy of about 90%. The experiment results demonstrate
high stealthiness of our attacks.

2) Dissimilar Trajectory Attacks: To evaluate the effective-
ness of backdoor attacks under dissimilar trajectory condi-
tions, each set of experiments involves two attack scenarios:
mapping “Push” to “Right Swipe” and mapping “Push” to
“Anticlockwise Turning”. The effectiveness of the attacks and
their impact on the original model are also measured using the
above three metrics.

Compared to Similar Trajectory Attacks, backdoor attacks
that map an activity to another with dissimilar trajectories
are more challenging to succeed. With an injection rate of
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Fig. 10: ASR, UASR, and CDR for dissimilar trajectory attacks with different injection rates.
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Fig. 11: ASR, UASR, and CDR for dissimilar trajectory attacks with different numbers of poisoned frames.

0.4 and a number of poisoned frames at 8, the ASR exceeds
60% and 70% for the two scenarios illustrated in Figure 10a
and Figure 11a, respectively. The UASR still achieves high
accuracy, reaching 85% and 90% as shown in Figure 10b and
Figure 11b, respectively. In terms of its impact on clean data,
the CDR of the backdoor model maintains high performance
despite increased injection rates and more poisoned frames,
as illustrated in Figure 10c¢ and Figure 11c. The CDR for
both scenarios exceeds 90%. This experiment concludes that
scenarios with higher ASR tend to have lower CDR, and
activities that are easier to attack have a greater impact on
clean data.

F. Robustness Evaluation

1) Impact of the Trigger Size: To evaluate the effectiveness
of backdoor attacks under different trigger sizes, we conduct
experiments using two trigger sizes: 2 x 2 inches and 4 x
4 inches. The experiments focus on a single type of attack,
mapping “Push” to “Pull”. We evaluate the effectiveness of
attacks and their impact on clean data using the three metrics
mentioned earlier. The results indicate that the two trigger sizes
have minimal impact on the outcomes, with differences falling
within the typical fluctuation range observed during training.
The results for both trigger sizes are quite similar across all
three metrics, regardless of whether the injection rate or the

number of poisoned frames is varied, as illustrated in Figure
12 and Figure 13.

2) Impact of the Angle and Distance: We conduct exper-
iments to evaluate the effectiveness of backdoor attacks with
attackers positioned at different angles and distances. The
angles tested are -30, -20, -10, 0, 10, 20, and 30 degrees,
and the distances tested are 0.8, 1, 1.2, 1.4, 1.6, 1.8, and 2
meters. Among these, the angles of -30, 0, and 30 degrees
and the distances of 0.8, 1.2, 1.6, and 2 meters are included
in the training set, while the remaining are zero-shot samples.
This setup allow us to compare the response of the backdoored
model to familiar angles and distances with those it has never
encountered. The experiments are conducted with an injection
rate of 0.4 and the number of poisoned frames of 8. We select
our best-trained model for the subsequent testing at different
angles and distances. When testing the impact of distance, the
angle is fixed at 0 degrees, and when testing the impact of
angle, the distance is fixed at 1.6 meters.

Using ASR and UASR metrics, we can observe that the
backdoored model can be effectively triggered on samples
with both seen and unseen angles and distances. For angles,
the attack success rate reaches 100%, as illustrated in Figure
14. However, for distances, a few triggers fail to activate
successfully, as shown in Figure 15. This may be due to the
radar signal strength varying with distance, which affects the
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Fig. 12: ASR, UASR, and CDR for attacks using two trigger sizes with different injection rates.
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heatmap and leads to unsuccessful attacks on the model.

G. Effectiveness of Each Module and Under-Clothing Attacks

We conduct the following experiments to evaluate the
effectiveness of each module in the attack and to assess the
performance when placing the trigger under clothing:

1) Placing the trigger (i.e., the aluminum reflector) in a
suboptimal location (e.g., on the leg) instead of the
optimal position.
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Fig. 15: Impact of the distance on ASR.

2) Poisoning the first eight frames, instead of the optimal
frames.

3) Attacking HAR with neither optimal positions nor opti-
mal frames.

4) Hiding the aluminum piece inside clothing to make the
backdoor attack trigger visually undetectable, achieving
a stealthy attack effect.

We use ASR to evaluate the impact of these factors on the
backdoor attack performance. The experiments are conducted



with an injection rate of 0.4 and the number of poisoned
frames of 8. As shown in Table I, our method with optimal
frames and positions achieves an ASR of 84%. In comparison,
attacking without the optimal location results in an ASR of
only 66%. When we do not poison the optimal frames, the
ASR significantly drops to 57%, highlighting its substantial
impact on the results. Furthermore, when neither optimal
frames nor positions are utilized, the ASR decreases further
to 48%, underscoring the combined importance of our mech-
anisms. When placing the trigger under clothing, the attack
still achieves an ASR of 82%, which falls within the typical
fluctuation range. The experiment demonstrates that the radar
signal can easily penetrate fabric, making the trigger just
as effective when hidden. In conclusion, selecting both the
optimal frames and positions is crucial, as these choices play
vital roles in enhancing the attack success rate.

Experiments Attack Success Rate
With Optimal Frames and Positions 84%
Without Optimal Trigger Position 66%
Without Optimal Frames 57%
Without Optimal Frames and Positions 48%
With Under Clothing Stealthy Trigger 82%

TABLE I: Impact of each module and under-clothing triggers.

VII. DEFENSE

A straightforward countermeasure to the physical backdoor
attack is to integrate data from additional sensors such as
cameras and Lidar. However, these sensors are also susceptible
to similar physical backdoor attacks. Since the triggers may
not be visible to human eyes, we primarily address the attacks
by analyzing the mmWave heatmaps. Specifically, we can
develop a trigger detection model to identify attackers and
augment the data to mitigate the impact of the attack.

Since the attacker uses metal reflectors as triggers, we can
develop a trigger detection model to identify attackers during
both the training and testing phases. The challenge is that
attackers with different orientations and relative positions to
the radar may generate different reflection patterns. To enable
the orientation- and position- independent trigger detection,
we can combine the orientation and relative position of the
attacker with the original heatmap in the detection model.

Another potential defense is data augmentation which in-
cludes more data in the training process. In particular, we can
include heatmaps with triggers in the training data but assign
correct labels. To enhance the effectiveness of the defense,
we include more heatmaps with triggers at critical locations
used in the attack. We can use generative models, such as the
diffusion model, to create heatmaps with various orientations
and relative positions.

VIII. RELATED WORK

Traditional wireless human activity recognition (HAR) sys-
tems [1] rely on Channel State Information (CSI) [14], [17],
Received Signal Strength Indicator (RSSI) [28], or Doppler
Profiles [29]. Compared to traditional cameras and wearable

devices, wireless HAR offers the advantages of penetrating
obstacles and protecting privacy. Recently, mmWave technol-
ogy has gained attention for its high precision and speed in
human motion detection. By analyzing frequency changes in
signals, mmWave FMCW radar can effectively capture human
movements and displacements, enabling the recognition of
various activities [6], [18], [19], [30]-[32].

While wireless HAR offers numerous benefits, it also intro-
duces new attack surfaces. HAR systems can be vulnerable to
various forms of attacks such as adversarial example attacks
[8], signal interference [33], data poisoning [19], [34], and pri-
vacy inference [35]. However, existing research either focuses
on attacking upper-layer Al models without considering phys-
ical signal generation or only perturbs physical signals without
studying targeted attacks against AI models. Consequently,
systematic and holistic attacks on Al-based wireless HAR,
especially mmWave-based HAR, remain an open challenge.

Backdoor attacks were originally studied in the field of
image recognition [23], [36]. In these attacks, the attacker
embeds a trigger (e.g., a specific pattern) into the images in
the training set, resulting in a backdoored model. This model
then produces a targeted recognition result when the same
trigger appears in an image during the testing phase. However,
such digital triggers can be easily detected. To address this,
[37] proposes using physical objects, such as eye glasses,
as triggers for backdoor attacks against facial recognition
systems. Recently, physical backdoor attacks [24] and other
adversarial attacks [38]-[40] have been investigated in au-
tonomous vehicle (AV) object detection, utilizing either Lidar
or mmWave technology. However, object detection systems in
AVs typically involve only a single CNN making decisions
based on individual frames of Lidar or mmWave signals. In
addition to the vastly different application scenario, physical
backdoor attacks in wireless human activity recognition are
technically more challenging. They require optimal attack
strategies for the hybrid CNN-LSTM model, which generates
predictions based on numerous dynamic time-series frames
and deals with a much larger set of output labels.

This paper presents the first systematic and holistic physical
backdoor attacks for wireless HAR systems. It is also the first
to study optimal backdoor strategies for classifiers that rely on
time-series mmWave frames.

IX. CONCLUSION

This paper proposes the first physical backdoor attack
targeting mmWave-based Human Activity Recognition (HAR)
systems. Using an aluminum reflector as the trigger, we
determine its optimal positions with RF simulators and em-
ploy Explainable Artificial Intelligence techniques (specifically
SHAP) to identify the best attack frames. Tailored experiments
demonstrate that a credit card-sized aluminum reflector can
achieve significant attack effects, making the attack low-cost,
easy to implement, and efficient.
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