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Abstract

We consider the problem of Federated Q-learning, where M agents aim to col-
laboratively learn the optimal Q-function of an unknown infinite horizon Markov
Decision Process with finite state and action spaces. We investigate the trade-off
between sample and communication complexity for the widely used class of inter-
mittent communication algorithms. We first establish the converse result, where
we show that any Federated Q-learning that offers a linear speedup with respect to
number of agents in sample complexity needs to incur a communication cost of
at least Ω( 1

1−γ ), where γ is the discount factor. We also propose a new Federated

Q-learning algorithm, called Fed-DVR-Q, which is the first Federated Q-learning
algorithm to simultaneously achieve order-optimal sample and communication
complexities. Thus, together these results provide a complete characterization of
the sample-communication complexity trade-off in Federated Q-learning.

1 Introduction

Reinforcement Learning (RL) [Sutton and Barton, 2018] refers to an online sequential decision
making paradigm where the learning agent aims to learn an optimal policy, i.e., a policy that
maximizes the long-term reward, through repeated interactions with an unknown environment. RL
finds applications across a diverse array of fields including, but not limited to, autonomous driving,
games, recommendation systems, robotics and Internet of Things (IoT) [Kober et al., 2013, Yurtsever
et al., 2020, Silver et al., 2016, Lim et al., 2020].

The primary hurdle in RL applications is often the high-dimensional nature of the decision space
that necessitates the learning agent to have to access to an enormous amount of data in order to have
any hope of learning the optimal policy. Moreover, the sequential collection of such an enormous
amount of data through a single agent is extremely time-consuming and often infeasible in practice.
Consequently, practical implementations of RL involve deploying multiple agents to collect data
in parallel. This decentralized approach to data collection has fueled the design and development
of distributed or federated RL algorithms that can collaboratively learn the optimal policy without
actually transferring the collected data to a centralized server. Such a federated approach to RL, which
does not require the transfer of local data, is gaining interest due to lower bandwidth requirements
and lower security and privacy risks. In this work, we focus on federated variants of Q-learning
algorithms where the agents collaborate to directly learn the optimal Q-function without forming an
estimate of the underlying unknown environment.

A particularly important aspect of designing Federated RL algorithms, including Federated Q-learning
algorithms, is to address the natural tension between sample and communication complexity. At
one end of the spectrum lies the naïve approach of running a centralized algorithm with optimal
sample complexity after transferring and combining all the collected data at a central facility/server.
Such an approach trivially achieves the optimal sample complexity while suffering from a very
high and infeasible communication complexity. On the other hand, several recently proposed
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algorithms [Khodadadian et al., 2022, Woo et al., 2023] operate in more practical regimes, offering
significantly lower communication complexities as compared to the naïve approach at the cost of
sub-optimal sample complexities. These results suggest the existence of underlying trade-off between
sample and communication complexities of Federated RL algorithms. The primary goal of this
work is to better understand this trade-off in context of Federated Q-learning by investigating these
following fundamental questions:

• Fundamental limit of communication: What is the minimum amount of communication required by
a federated Q-learning algorithm to achieve any statistical benefit of collaboration?

• Optimal algorithm design: How does one design a federated Q-Learning algorithm that simultane-
ously offers optimal order sample and communication complexity guarantees i.e., operates on the
optimal frontier of sample-communication complexity trade-off?

1.1 Main Results

We consider a setup where M distributed agents collaborate to learn the optimal Q-function of an
infinite horizon Markov Decision Process which is defined over a finite state space S and a finite
action set A, and has a discount factor of γ ∈ (0, 1). We consider a commonly considered setup in
federated learning called the intermittent communication setting, where the clients intermittently
share information among themselves with the help of a central server. In this work, we provide a
complete characterization of the trade-off between sample and communication complexity under the
aforementioned setting by providing answers to both the questions. The main result of this work is
twofold and is summarized below.

• Fundamental bounds on communication complexity of Federated Q-learning: We establish lower
bounds on the communication complexity of Federated Q-learning, both in terms of number of
communication rounds and the overall number of bits that need to be transmitted in order to
achieve any speed up in convergence with respect to the number of agents. Specifically, we show
that in order for an intermittent communication algorithm to obtain any benefit of collaboration,
i.e., any order of speed up w.r.t. the number of agents, the number of communication rounds
must be least Ω( 1

(1−γ) log2 N
) and the number of bits sent by each agent to the server must be

least Ω( |S||A|
(1−γ) log2 N

), where N denotes the number of samples taken by the algorithm for each

state-action pair.

• Achieving the optimal sample-communication complexity trade-off : We propose a new Federated
Q-Learning algorithm called Federated Doubly Variance Reduced Q Learning, Fed-DVR-Q for
short, that simultaneously achieves optimal order of sample complexity and the minimal order of
communication as dictated by the lower bound. We show that Fed-DVR-Q learns an ε-optimal

Q-function in the ℓ∞ sense with Õ
(

|S||A|
Mε2(1−γ)3

)
i.i.d. samples from the generative model at each

agent while incurring a total communication cost of Õ
(

|S||A|
(1−γ)

)
bits per agent across Õ

(
1

(1−γ)

)

rounds of communication. Thus, Fed-DVR-Q not only improves upon both the sample and
communication complexities of existing algorithms, but also is the first algorithm to achieve both
order-optimal sample and communication complexities (See Table 1 for a comparison).

1.2 Related Work

Single agent Q-Learning. Q-Learning has been extensively studied in the single-agent setting in
terms of both its asymptotic convergence [Jaakkola et al., 1993, Tsitsiklis, 1994, Szepesvári, 1997,
Borkar and Meyn, 2000] and its finite-time sample complexity in both synchronous [Even-Dar and
Mansour, 2004, Beck and Srikant, 2012, Wainwright, 2019a, Chen et al., 2020, Li et al., 2023] and
asynchronous settings [Chen et al., 2021b, Li et al., 2023, 2021, Qu and Wierman, 2020].

Distributed RL. There has also been a considerable effort towards developing distributed and
federated RL algorithms. The distributed variants of the classical TD learning algorithm have been
investigated in a series of studies [Chen et al., 2021c, Doan et al., 2019, 2021, Sun et al., 2020,
Wai, 2020, Wang et al., 2020, Zeng et al., 2021b]. The impact of environmental heterogeneity
in federated TD learning was studied in Wang et al. [2023]. A distributed version of actor-critic
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Algorithm/Reference
Number of

Agents
Sample

Complexity

Communication
Complexity

Q-learning [Li et al., 2023] 1
|S||A|

(1− γ)4ε2
N/A

Variance Reduced Q-learning [Wainwright, 2019b] 1
|S||A|

(1− γ)3ε2
N/A

Fed-SynQ [Woo et al., 2023] M
|S||A|

M(1− γ)5ε2
M

1− γ

Fed-DVR-Q (This work) M
|S||A|

M(1− γ)3ε2
1

1− γ

Lower bound ([Azar et al., 2013], This work) M
|S||A|

M(1− γ)3ε2
1

1− γ

Table 1: Comparison of sample and communication complexity of various single-agent and Federated
Q-learning algorithms for learning an ε-optimal Q-function under the synchronous setting. We hide
logarithmic factors and burn-in costs for all results for simplicity of presentation. In the above
table, S and A represent state and action spaces respectively and γ denotes the discount factor. We
report the communication complexity only in terms of number of rounds as other algorithms assume
transmission of real numbers and hence do not report bit level costs. For the lower bound, Azar et al.
[2013] and this work establish the bound for sample and communication complexity respectively.

algorithms was studied by Shen et al. [2023] where the authors established convergence of their
algorithm and demonstrated a linear speed up in the number of agents in their sample complexity
bound. Chen et al. [2022] proposed a new distributed actor-critic algorithm which improved the

dependence of sample complexity on the error ε and incurs a communication cost of Õ(ε−1). Chen
et al. [2021a] have proposed a communication efficient distributed policy gradient algorithm and have
analyzed its convergence and established a communication complexity of O(1/(Mε)). Xie and Song
[2023] adopts a distributed policy optimization perspective, which is different from the Q-learning
paradigm considered in this work. Moreover, the algorithm in Xie and Song [2023] obtains a linear
communication cost, which is worse than that obtained in our work. Similarly, Zhang et al. [2024]
focuses on on-policy learning and incurs a communication cost that depends polynomially on the
required error ε. Several other studies [Yang et al., 2023, Zeng et al., 2021a, Lan et al., 2024]
have also developed and analyzed other distributed/federated variants of the classical natural policy
gradient method [Kakade, 2001]. Assran et al. [2019], Espeholt et al. [2018], Mnih et al. [2016] have
developed distributed algorithms to train deep RL networks more efficiently.

Distributed Q-learning. Federated Q-learning has been explored relatively recently. Khodadadian
et al. [2022] proposed and analyzed a federated Q-learning algorithm in the asynchronous setting

with a sample complexity of Õ
(

|S|2
Mµ5

min(1−γ)9ε2

)
, where µmin is the minimum entry of the stationary

state-action occupancy distribution of the sample trajectories over all agents. Jin et al. [2022]
study the impact of environmental heterogeneity across clients in Federated Q-learning. They
propose an algorithm where the local environments are different at each client but each client
knows their local environment. Under this setting, they propose an algorithm that achieves a
sample and communication complexity of O( 1

(1−γ)3ε ) and O( 1
(1−γ)3ε ) rounds respectively. Woo

et al. [2023] proposed new algorithms with improved analysis for Federated Q-learning under both
synchronous and asynchronous settings. Their proposed algorithm achieves a sample complexity and

communication complexity of Õ( |S||A|
M(1−γ)5ε2 ) and Õ(M |S||A|

1−γ ) real numbers respectively under the

synchronous setting and that of Õ( 1
Mµavg(1−γ)5ε2 ) and Õ

(
M |S||A|

1−γ

)
real numbers respectively under

the asynchronous setting. Here, µavg denotes the minimum entry of the average stationary state-action
occupancy distribution of all agents. In a follow up work, Woo et al. [2024] propose a Federated Q-
learning for offline RL in finite horizon setting and establish a sample and communication complexity

of Õ(H
7|S|Cavg

Mε2 ) and Õ(H), where H denotes the length of the horizon and Cavg denotes the average
single-policy concentrability coefficient of all agents.
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Accuracy-Communication Trade-off in Federated Learning. The trade-off between commu-
nication complexity and accuracy (equivalently, sample complexity) has been studied in various
federated and distributed learning problems, including stochastic approximation algorithms for con-
vex optimization. Duchi et al. [2014], Braverman et al. [2016] establish the celebrated inverse linear
relationship between the error and the communication cost the problem of distributed mean estimation.
Similar trade-off for distributed stochastic optimization, multi-armed bandits and linear bandits has
been studied and established across numerous studies [Woodworth et al., 2018, 2021, Tsitsiklis and
Luo, 1987, Shi and Shen, 2021, Salgia and Zhao, 2023].

2 Problem Formulation and Preliminaries

In this section, we provide a brief background of Markov Decision Processes, outline the performance
measures for Federated Q-learning algorithms and describe the class of intermittent communication
algorithms considered in this work.

2.1 Markov Decision Processes

In this work, we focus on an infinite-horizon Markov Decision Process (MDP), denoted byM, over
a state space S and an action space A and with a discount factor γ ∈ (0, 1). Both the state and action
spaces are assumed to be finite sets. In an MDP, the state s evolves dynamically under the influence
of actions based on a probability transition kernel, P : (S ×A)× S → [0, 1]. The entry P (s′|s, a)
denotes the probability of moving to state s′ when an action a is taken in the state s. An MDP
is also associated with a deterministic reward function r : S × A → [0, 1], where r(s, a) denotes
the immediate reward obtained for taking the action a in the state s. Thus, the transition kernel P
along with the reward function r completely characterize an MDP. In this work, we consider the
synchronous setting, where each agent has access to an independent generative model or simulator
from which they can draw independent samples from the unknown underlying distribution P (·|s, a)
for each state-action pair (s, a) [Kearns and Singh, 1998].

A policy π : S → ∆(A) is a rule for selecting actions across different states, where ∆(A) denotes
the simplex overA and π(a|s) denotes the probability of choosing action a in a state s. Each policy π
is associated with a state value function and a state-action value function, or the Q-function, denoted
by V π and Qπ respectively. V π and Qπ measure the expected discounted cumulative reward attained
by π starting from a particular state s and state-action pair (s, a) respectively. Mathematically, V π

and Qπ are given as

V π(s) := E

[ ∞∑

t=0

γtr(st, at)

∣∣∣∣ s0 = s

]
; Qπ(s, a) := E

[ ∞∑

t=0

γtr(st, at)

∣∣∣∣ s0 = s, a0 = a

]
, (1)

where at ∼ π(·|st) and st+1 ∼ P ( · |st, at) for all t ≥ 0. The expectation is taken w.r.t. the
randomness in the trajectory {st, at}∞t=1. Since the rewards lie in [0, 1], it follows immediately that
both the value function and Q-function lie in the range [0, 1

1−γ ].

An optimal policy π⋆ is a policy that maximizes the value function uniformly over all the states and it
has been shown that such an optimal policy π⋆ always exists [Puterman, 2014]. The optimal value

and Q-functions are those corresponding to that of an optimal policy π⋆ are denoted as V ⋆ := V π⋆

and Q⋆ := Qπ⋆

respectively. The optimal Q-function, Q⋆, is also the unique fixed point of the
Bellman operator T : S ×A → S ×A, given by

(T Q)(s, a) = r(s, a) + γ · Es′∼P (·|s,a)

[
max
a′∈A

Q(s′, a′)

]
. (2)

Q-learning [Watkins and Dayan, 1992] aims to learn the optimal policy by first learning Q⋆ as the
solution to the fixed point equation T Q = Q and then obtain a deterministic optimal policy via the
maximization π⋆(s) = argmaxa Q

⋆(s, a).

Let Z ∈ S |S||A| be a random vector whose (s, a)th coordinate is drawn from the distribution P (·|s, a),
independently of all other coordinates. We define the random operator TZ : (S ×A)→ (S ×A) as

(TZQ)(s, a) = r(s, a) + γV (Z(s, a)), (3)
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where V (s′) = maxa′∈A Q(s′, a′). The operator TZ can be interpreted as the sample Bellman
Operator, where we have the relation T Q = EZ [TZQ] for all Q-functions.

Lastly, the federated learning setup considered in this work consists of M agents, where all the agents
face a common, unknown MDP, i.e., the transition kernel and the reward functions are the same across
agents, which is popularly known as the homogeneous setting. For a given value of ε ∈ (0, 1

1−γ ), the

objective of agents is to collaboratively learn an ε-optimal estimate (in the ℓ∞ sense) of the optimal
Q-function of the unknown MDP.

2.2 Performance Measures

We measure the performance of a Federated Q-learning algorithm A using two metrics — sample

complexity and communication complexity. For a given MDPM, let Q̂M(A , N,M) denote the
estimate of Q⋆

M, the optimal Q-function of the MDPM, returned by an algorithm A , when given
access to N i.i.d. samples from the generative model for each (s, a) pair at all the M agents. The
minimax error rate of the algorithm A , denoted by ER(A ;N,M), is defined as

ER(A ;N,M) := sup
M=(P,r)

E

[
∥Q̂M(A , N,M)−Q⋆

M∥∞
]
, (4)

where the expectation is taken over the samples and any randomness in the algorithm. Given a value
of ε > 0, the sample complexity of A , denoted by SC(A ; ε,M) is given as

SC(A ; ε,M) := |S||A| ·min{N ∈ N : ER(A ;N,M) ≤ ε}. (5)

Similarly, we can also define a high-probability version for any δ ∈ (0, 1) as follows:

SC(A ; ε,M, δ) := |S||A| ·min{N ∈ N : Pr(sup
M
∥Q̂M(A , N,M)−Q⋆

M∥∞ ≤ ε) ≥ 1− δ}.

We measure the communication complexity of any federated learning algorithm both in terms of
frequency of information exchange and total number of bits uploaded by the agents. For each agent m,
let Cm

round
(A ;N) and Cm

bit
(A ;N) respectively denote the number of times agent m sends a message

to the server and the total number of bits uploaded by agent m to the server when an algorithm
A is run with N i.i.d. samples from the generative model for each (s, a) pair at each agent. The
communication complexity of A , when measured in terms of frequency of communication and total
number of bits exchanged, is given by

CCround(A ;N) :=
1

M

M∑

m=1

Cm
round(A ;N); CCbit(A ;N) :=

1

M

M∑

m=1

Cm
bit(A ;N), (6)

respectively. Similarly, for a given value of ε ∈ (0, 1
1−γ ), we can also define CCround(A ; ε) and

CCbit(A ; ε) based on when A is run to guarantee a minimax error of at most ε.

2.3 Intermittent Communication Algorithms

Algorithm 1: A generic algorithm A

1: Input : T,R, {ηt}Tt=1, C = {tr}Rr=1, B
2: Set Qm

0 ← 0 for all agents m
3: for t = 1, 2, . . . , T do
4: for m = 1, 2, . . . ,M do
5: Compute Qm

t− 1
2

according to Eqn. 7

6: Compute Qm
t according to Eqn. 8

7: end for
8: end for
9: return QT

In this work, we consider a popular class of
federated learning algorithms referred to as al-
gorithms with intermittent communication. The
intermittent communication setting provides a
natural framework to extend single agent Q-
learning algorithms to the distributed setting.
As the name suggests, under this setting, the
agents intermittently communicate with each
other, sharing their updated beliefs about Q⋆.
Between two communication rounds, each agent
updates their belief about Q⋆ using stochas-
tic fixed point iteration based on the locally
available data, similar to a single agent setup.
Such intermittent communication algorithms
have been extensively studied and used to establish lower bounds on communication complexity of
distributed stochastic convex optimization [Woodworth et al., 2018, 2021].
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A generic Federated Q-learning algorithm with intermittent communication is outlined in Algorithm 1.
It is characterized by the following five parameters: (i) total number of updates T ; (ii) the number of
communication rounds R; (iii) a step size schedule {ηt}Tt=1; (iv) a communication schedule {tr}Rr=1;

(v) batch size B. During the tth iteration, each agent m computes {T̂Zb
(Qm

t−1)}Bb=1, a minibatch of
sample Bellman operators at the current estimate Qm

t−1, using B samples from the generative model
for each (s, a) pair, and obtains an intermediate local estimate using the Q-learning update as follows:

Qm
t− 1

2
= (1− ηt)Q

m
t−1 +

ηt
B

B∑

b=1

TZb
(Qm

t−1). (7)

Here ηt ∈ (0, 1] is the step-size chosen corresponding to the tth time step. The intermediate estimates
are averaged based on a communication schedule C = {tr}Rr=1 consisting of R rounds, i.e.,

Qm
t =

{
1
M

∑M
j=1 Q

j

t− 1
2

if t ∈ C,
Qm

t− 1
2

otherwise.
(8)

In the above equation, the averaging step can also be replaced with any distributed mean estimation
routine that includes compression to control the bit level costs. Without loss of generality, we
assume that Qm

0 = 0 for all agents m and tR = T , i.e., the last iterates are always averaged. It is
straightforward to note that the number of samples taken by an intermittent communication algorithm
is BT , i.e, N = BT and the communication complexity CCround = R.

3 Lower Bound

In this section, we investigate the first of the two questions regarding the lower bound on communica-
tion complexity. The following theorem establishes a lower bound on the communication complexity
of a Federated Q-learning algorithm with intermittent communication.

Theorem 1. Assume that γ ∈ [5/6, 1) and the state and action spaces satisfy |S| ≥ 4 and |A| ≥
2. Let A be a Federated Q-learning algorithm with intermittent communication that is run for
T ≥ max{16, 1

1−γ } steps with a step size schedule of either ηt := 1
1+cη(1−γ)t or ηt := η for all

1 ≤ t ≤ T . If

R = CCround(A ;N) ≤ c0

(1− γ) log2 N
; or CCbit(A ;N) ≤ c1|S||A|

(1− γ) log2 N

for some universal constants c0, c1 > 0 then, for all choices of communication schedule, batch size
B, cη > 0 and η ∈ (0, 1), the minimax error of A satisfies

ER(A ;N,M) ≥ Cγ

log3 N
√
N

,

for all M ≥ 2 and N = BT . Here Cγ > 0 is a constant that depends only on γ.

The above theorem states that in order for an intermittent communication algorithm to obtain any
benefit of collaboration, i.e., for the error rate ER(A ;N,M) to decrease w.r.t. number of agents, the
number of communication rounds must be least Ω( 1

(1−γ) log2 N
). This implies that any Federated

Q-learning algorithm that offers order optimal sample complexity, and thereby also a linear speed up
with respect to the number of agents, must have at least Ω( 1

(1−γ) log2 N
) rounds of communication

and transmit Ω( |S||A|
(1−γ) log2 N

) bits of information per agent. This characterizes the converse relation

for the sample-communication tradeoff in Federated Q-learning. We would like to point out that our
lower bound extends to the asynchronous setting as the assumption of i.i.d. noise corresponding to a
generative model is a special case of Markovian noise observed in asynchronous setting.

The lower bound on the communication complexity of Federated Q-learning is a consequence of
the bias-variance trade-off that governs the convergence of the algorithm. While a careful choice
of step-sizes alone is sufficient to balance this trade-off in the centralized setting, the choice of
communication schedule also plays an important role in balancing this trade-off in the federated
setting. The local steps between two communication rounds induce a positive estimation bias that
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depends on the standard deviation of the iterates and is a well-documented issue of “over-estimation”
in Q-learning [Hasselt, 2010]. Since such a bias is driven by local updates, it does not reflect any
benefit of collaboration. During a communication round, the averaging of iterates across agents
allows the algorithm an opportunity to counter this bias by reducing the effective variance of the
updates through averaging. In our analysis, we show that if the communication is infrequent, the
local bias becomes the dominant term and averaging of iterates is insufficient to counter the impact
of the positive bias induced by the local steps. As a result, we do not observe any statistical gains
when the communication is infrequent. The analysis is inspired the analysis of Q-learning by Li et al.
[2023] and is based on analyzing the convergence of an intermittent communication algorithm on a
specifically chosen “hard” instance of MDP. Please refer to Appendix B for a detailed proof.

Remark 1 (Communication complexity of policy evaluation). Several recent studies [Liu and Ol-
shevsky, 2023, Tian et al., 2024] established that a single round of communication is sufficient to
achieve linear speedup of TD learning for policy evaluation, which do not contradict with our results
focusing on Q-learning for policy learning. The latter is more involved due to the nonlinearity of the
Bellman optimality operator. Specifically, if the operator whose fixed point is to be found is linear in
the decision variable (e.g., the value function in TD learning) then the fixed point update only induces
a variance term corresponding to the noise. However, if the operator is non-linear, then in addition to
the variance term, we also obtain a bias term in the fixed point update. While the variance term can
be controlled with one-shot averaging, more frequent communication is necessary to ensure that the
bias term is small enough.

Remark 2 (Extension to asynchronous Q-learning). We would like to point out that our lower bound
extends to the asynchronous setting [Li et al., 2023] as the assumption of i.i.d. noise corresponding to
a generative model is a special case of Markovian noise observed in the asynchronous setting.

4 The Fed-DVR-Q algorithm

Having characterized the lower bound on the communication complexity of Federated Q-learning, we
explore our second question of interest — designing a federated Q-learning algorithm that achieves
this lower bound while simultaneously offering an optimal order of sample complexity.

We propose a new Federated Q-learning algorithm, Fed-DVR-Q, that achieves not only a communica-

tion complexity of CCround = Õ( 1
1−γ ) and CCbit = Õ( |S||A|

1−γ ) but also the optimal order of sample

complexity (upto logarithmic factors), thereby providing a tight characterization of the achievability
frontier that matches with the converse result derived in the previous section.

4.1 Algorithm Description

Algorithm 2: Fed-DVR-Q

1: Input : Error bound ε > 0, failure probability
δ > 0

2: k ← 1, Q(0) ← 0

3: // Set parameters as described in
Sec. 4.1.3

4: for k = 1, 2, . . . ,K do
5: Q(k) ←

REFINEESTIMATE(Q(k−1), B, I, Lk, Dk, J)
6: k ← k + 1
7: end for
8: return Q(K)

Fed-DVR-Q proceeds in epochs. Dur-
ing an epoch k ≥ 1, the agents collab-

oratively update Q(k−1), the estimate of
Q⋆ obtained at the end of previous epoch,

to a new estimate Q(k), with the aid of
the sub-routine called REFINEESTIMATE.
The sub-routine REFINEESTIMATE is de-
signed to ensure that the suboptimality gap,

∥Q(k) −Q⋆∥∞, reduces by a factor of 2 at
the end of every epoch. Thus, at the end
of K = O(log(1/ε)) epochs, Fed-DVR-Q

obtains a ε-optimal estimate of Q⋆, which
is then set to be the output of the algorithm.
Please refer to Alg. 2 for a pseudocode.

4.1.1 The REFINEESTIMATE sub-routine

REFINEESTIMATE, starting from Q, an initial estimate of Q⋆, uses variance reduced Q-learning
updates to obtain an improved estimate of Q⋆. It is characterized by four parameters — the initial

estimate Q, the number of local iterations I , the recentering sample size L and the batch size B,
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which can be appropriately tuned to control the quality of the returned estimate. Additionally, it also
takes input two parameters D and J required by the compressor.

The first step in REFINEESTIMATE is to collaboratively approximate T Q for the variance reduced

updates. To this effect, each agent m builds an approximation of T Q as follows:

T̃ (m)
L (Q) :=

1

⌈L/M⌉

⌈L/M⌉∑

l=1

T
Z

(m)
l

(Q), (9)

where {Z(m)
1 , Z

(m)
2 , . . . , Z

(m)
⌈L/M⌉} are ⌈L/M⌉ i.i.d. samples with Z

(m)
1 ∼ Z. Each agent sends

C

(
T̃ (m)
L (Q)−Q;D, J

)
, a compressed version of the difference T̃ (m)

L (Q)−Q, to the server, which

collects all the estimates from the agents and constructs the estimate

T̃L(Q) = Q+
1

M

M∑

m=1

C

(
T̃ (m)
L (Q)−Q;D, J

)
(10)

and sends it back to the agents for the variance reduced updates. We defer the description of the

compression routine to the end of this section. Equipped with the estimate T̃L(Q), REFINEESTIMATE

constructs a sequence {Qi}Ii=1 using the following iterative update scheme initialized with Q0 = Q.

During the ith iteration, each agent m carries out the following update:

Qm
i− 1

2
= (1− η)Qi−1 + η

[
T̂ (m)
i Qi−1 − T̂ (m)

i Q+ T̃L(Q)
]
. (11)

In the above equation, η ∈ (0, 1) is the step size and T̂ (m)
i Q := 1

B

∑
z∈Z(m)

i

TzQ, where Z(m)
i is the

minibatch of B i.i.d. random variables drawn according to Z, independently at each agent m for all

iterations i. Each agent then sends a compressed version of the update, i.e., C
(
Qm

i− 1
2

−Qi−1;D, J
)

,

to the server, which uses them to compute the next iterate

Qi = Qi−1 +
1

M

M∑

m=1

C

(
Qm

i− 1
2
−Qi−1;D, J

)
, (12)

and broadcast it to the clients. After I such updates, the obtained iterate QI is returned by the routine.
A pseudocode of the REFINEESTIMATE routine is given in Algorithm 3 in Appendix A.

4.1.2 The Compression Operator

The compressor, C (·;D, J), used in the proposed algorithm Fed-DVR-Q is based on the popular
stochastic quantization scheme. In addition to the input vector Q to be quantized, the quantizer
C takes two input parameters D and J . D corresponds to an upper bound on ℓ∞ norm of Q, i.e.,
∥Q∥∞ ≤ D. J corresponds to the resolution of the compressor, i.e., number of bits used by the
compressor to represent each coordinate of the output vector.

The compressor first splits the interval [0, D] into 2J − 1 intervals of equal length where 0 = d1 <
d2, · · · < d2J = D correspond to end points of the intervals. Each coordinate of Q is then separately
quantized as follows. The value of the nth coordinate, C (Q)[n], is set to be djn−1 with probability
djn−Q[n]
djn−djn−1

and to djn with the remaining probability, where jn := min{j : dj < Q[i] ≤ dj+1}. It is

straightforward to note that each coordinate of C (Q) can be represented using J bits.

4.1.3 Setting the parameters

The desired convergence of the iterates {Q(k)} is obtained by carefully choosing the parameters of
the sub-routine REFINEESTIMATE and the compression operator C . For all epochs k ≥ 1, we set the
number of iterations I and the batch size B of REFINEESTIMATE and the number of bits J of the com-

pressor C to be ⌈ 2
η(1−γ)⌉, ⌈ 2

M ( 12γ
(1−γ) )

2 log( 8KI|S||A|
δ )⌉ and ⌈log2( 70

η(1−γ)

√
2
M log( 8KI|S||A|

δ ))⌉ re-

spectively. The total number of epochs is set to K = ⌈ 12 log2( 1
1−γ )⌉ + ⌈ 12 log2( 1

(1−γ)ε2 )⌉. The

recentering sample sizes Lk and bounds Dk are set to be the following functions of epoch index k:

Lk :=
19600

(1− γ)2
log

(
8KI|S||A|

δ

)
·
{
4k if k ≤ K0

4k−K0 if k > K0
; Dk := 16 · 2−k

1− γ
, (13)
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where K0 = ⌈ 12 log2( 1
1−γ )⌉. The piecewise definition of Lk is crucial to obtain the optimal depen-

dence with respect to 1
1−γ , similar to the two-step procedure outlined in Wainwright [2019b].

4.2 Performance Guarantees

The following theorem characterizes the sample and communication complexity of Fed-DVR-Q.

Theorem 2. Consider any δ ∈ (0, 1) and ε ∈ (0, 1]. Under the federated learning setup described
in Section 2.1, the sample and communication complexities of the Fed-DVR-Q algorithm, when
run with the choice of parameters described in Sec. 4.1.3 and a learning rate η ∈ (0, 1), satisfy the
following relations for some universal constant C1 > 0:

SC(Fed-DVR-Q; ε,M, δ) ≤ C1

ηM(1− γ)3ε2
log2

(
1

(1− γ)ε

)
log

(
8KI|S||A|

δ

)
,

CCround(Fed-DVR-Q; ε, δ) ≤ 16

η(1− γ)
log2

(
1

(1− γ)ε

)
,

CCbit(Fed-DVR-Q; ε, δ) ≤ 32|S|A|
η(1− γ)

log2

(
1

(1− γ)ε

)
log2

(
70

η(1− γ)

√
2

M
log

(
8KI|S||A|

δ

))
.

A proof of Theorem 2 can be found in Appendix C. A few implications of the theorem are in order.

Optimal Sample-Communication complexity trade-off. As shown by the above theorem, Fed-

DVR-Q offers a linear speed up in the sample complexity with respect to the number of agents while
simultaneously achieving the same order of communication complexity as dictated by the lower bound
derived in Theorem 1, both in terms of frequency and bit level complexity. Moreover, Fed-DVR-Q is
the first Federated Q-Learning algorithm that achieves a sample complexity with optimal dependence
on all the salient parameters, i.e., |S|, |A| and 1

1−γ , in addition to linear speedup w.r.t. to number of

agents and thereby bridges the existing gap between upper and lower bounds on sample complexity
for Federated Q-learning. Thus, Theorem 1 and 2 together provide a characterization of optimal
operating point of the sample-communication complexity trade-off in Federated Q-learning.

Role of Minibatching. The commonly adopted approach in intermittent communication algorithm
is to use a local update scheme that takes multiple small (i.e., B = O(1)), noisy updates between
communication rounds, as evident from the algorithm design in Khodadadian et al. [2022], Woo
et al. [2023] and even numerous FL algorithms for stochastic optimization McMahan et al. [2017],
Haddadpour et al. [2019], Khaled et al. [2020]. In Fed-DVR-Q, we replace the local update scheme
of taking multiple small, noisy updates by a single, large update with smaller variance, obtained by
averaging the noisy updates over a minibatch of samples. The use of updates with smaller variance
in variance reduced Q-learning yields the algorithm its name. While both the approaches result in
similar sample complexity guarantees, the local update scheme requires more frequent averaging
across clients to ensure that the bias of the estimate, also commonly referred to as “client drift”,
is not too large. On the other hand, the minibatching approach does not encounter the problem
of bias accumulation from local updates and hence can afford more infrequent averaging allowing
Fed-DVR-Q to achieve optimal order of communication complexity.

Compression. Fed-DVR-Q is the first algorithm in Federated Q-Learning to analyze and establish
communication complexity at the bit level. All existing studies on Federated RL focus only on the
frequency of communication and assume transmission of real numbers with infinite bit precision. On
the other hand, the our analysis provides a more holistic view point of communication complexity
and provides bounds at the bit level, which is of great practical significance. While some recent other
studies [Wang et al., 2023] also consider quantization in Federated RL, their objective is to understand
the impact of message size on convergence with no constraint on the frequency of communication,
unlike the holistic viewpoint adopted in this work.
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5 Conclusion and Future Directions

We presented a complete characterization of the sample-communication trade-off for Federated
Q-learning algorithms with intermittent communication. We showed that no Federated Q-learning
algorithm with intermittent communication can achieve a linear speedup with respect to the number of
agents if its number of communication rounds are sublinear in 1

1−γ . We also proposed a new Federated

Q-learning algorithm called Fed-DVR-Q that uses variance reduction along with minibatching to
achieve optimal-order sample and communication complexities. In particular, we showed that Fed-

DVR-Q has a sample complexity of Õ( |S||A|
M(1−γ)3ε2 ), which is order-optimal in all salient problem

parameters, and a communication complexity of Õ( 1
1−γ ) rounds and Õ( |S||A|

1−γ ) bits.

The results in this work raise several interesting questions that are worth exploring. While we focus
on the tabular setting in this work, it is of great interest to investigate to the trade-off in other settings
where we use function approximation to model the Q⋆ and V ⋆ functions. Moreover, it is interesting
to explore the trade-off in the finite horizon setting, where there is no discount factor. Furthermore,
it is also worthwhile to explore if the communication complexity can be further reduced by going
beyond the class of intermittent communication algorithms.
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T. Chen, K. Zhang, G. B. Giannakis, and T. Başar. Communication-efficient policy gradient methods
for distributed reinforcement learning. IEEE Transactions on Control of Network Systems, 9(2):
917–929, 2021a.

Z. Chen, S. T. Maguluri, S. Shakkottai, and K. Shanmugam. Finite-sample analysis of contractive
stochastic approximation using smooth convex envelopes. In Proceedings of the 34th Annual
Conference on Neural Information Processing Systems, volume 33, pages 8223–8234, 2020.

Z. Chen, S. T. Maguluri, S. Shakkottai, and K. Shanmugam. A lyapunov theory for finite-sample
guarantees of asynchronous q-learning and td-learning variants, 2021b.

Z. Chen, Y. Zhou, and R. Chen. Multi-agent off-policy tdc with near-optimal sample and commu-
nication complexity. In Proceedings of the 55th Asilomar Conference on Signals, Systems, and
Computers, pages 504–508, 2021c.

10



Z. Chen, Y. Zhou, R.-R. Chen, and S. Zou. Sample and communication-efficient decentralized actor-
critic algorithms with finite-time analysis. In Proceedings of the 39th International Conference on
Machine Learning, pages 3794–3834. PMLR, 2022.

T. Doan, S. Maguluri, and J. Romberg. Finite-time analysis of distributed td (0) with linear function
approximation on multi-agent reinforcement learning. In Proceedings of the 36th International
Conference on Machine Learning, pages 1626–1635. PMLR, 2019.

T. T. Doan, S. T. Maguluri, and J. Romberg. Finite-time performance of distributed temporal-
difference learning with linear function approximation. SIAM Journal on Mathematics of Data
Science, 3(1):298–320, 2021.

J. C. Duchi, M. I. Jordan, M. J. Wainwright, and Y. Zhang. Optimality guarantees for distributed
statistical estimation, 2014. URL http://arxiv.org/abs/1405.0782.

L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron, V. Firoiu, T. Harley,
I. Dunning, et al. Impala: Scalable distributed deep-rl with importance weighted actor-learner
architectures. In Proceedings of the 35th International conference on machine learning, pages
1407–1416. PMLR, 2018.

E. Even-Dar and Y. Mansour. Learning rates for q-learning. Journal of Machine Learning Research,
5, 2004. ISSN 1532-4435.

D. A. Freedman. On tail probabilities for martingales. The Annals of Probability, 3(1):100–118,
1975.

F. Haddadpour, M. M. Kamani, M. Mahdavi, and V. R. Cadambe. Local SGD with periodic averaging:
Tighter analysis and adaptive synchronization. In Proceedings of the 33rd Annual Conference on
Neural Information Processing Systems, volume 32, 2019.

H. v. Hasselt. Double q-learning. In Proceedings of the 23rd International Conference on Neural
Information Processing Systems, page 2613–2621. Curran Associates Inc., 2010.

T. Jaakkola, M. Jordan, and S. Singh. Convergence of stochastic iterative dynamic programming
algorithms. In Proceedings of the 7th Annual Conference on Neural Information Processing
Systems, volume 6, 1993.

H. Jin, Y. Peng, W. Yang, S. Wang, and Z. Zhang. Federated reinforcement learning with environment
heterogeneity. In Proceedings of the 25th International Conference on Artificial Intelligence and
Statistics, pages 18–37. PMLR, 2022.

S. M. Kakade. A natural policy gradient. Proceedings of the 15th Annual Conference on Neural
Information Processing Systems, 14, 2001.

M. Kearns and S. Singh. Finite-sample convergence rates for q-learning and indirect algorithms. In
Proceedings of the 12th Annual Conference on Neural Information Processing Systems, 1998.

A. Khaled, K. Mishchenko, and P. Richtárik. Tighter Theory for Local SGD on Identical and
Heterogeneous Data. In Proceedings of the 22nd International Conference on Artificial Intelligence
and Statistics, AISTATS, pages 4519–4529. PMLR, 2020. URL http://arxiv.org/abs/1909.
04746.

S. Khodadadian, P. Sharma, G. Joshi, and S. T. Maguluri. Federated reinforcement learning: Linear
speedup under markovian sampling. In Proceedings of the 39th International Conference on
Machine Learning, pages 10997–11057. PMLR, 2022.

J. Kober, J. A. Bagnell, and J. Peters. Reinforcement learning in robotics: A survey. The International
Journal of Robotics Research, 32(11):1238–1274, 2013.

G. Lan, D.-J. Han, A. Hashemi, V. Aggarwal, and C. G. Brinton. Asynchronous federated rein-
forcement learning with policy gradient updates: Algorithm design and convergence analysis,
2024.

G. Li, Y. Wei, Y. Chi, Y. Gu, and Y. Chen. Sample complexity of asynchronous q-learning: Sharper
analysis and variance reduction. IEEE Transactions on Information Theory, 68(1):448–473, 2021.

11



G. Li, C. Cai, Y. Chen, Y. Wei, and Y. Chi. Is q-learning minimax optimal? a tight sample complexity
analysis. Operations Research, 2023.

H.-K. Lim, J.-B. Kim, J.-S. Heo, and Y.-H. Han. Federated reinforcement learning for training control
policies on multiple iot devices. Sensors, 20(5), 2020. ISSN 1424-8220. doi: 10.3390/s20051359.

R. Liu and A. Olshevsky. Distributed TD(0) with almost no communication. IEEE Control Systems
Letters, 7:2892–2897, 2023.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-efficient
learning of deep networks from decentralized data. In Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics, AISTATS, pages 1273–1282. PMLR, 2017.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu.
Asynchronous methods for deep reinforcement learning. In Proceedings of the 33rd International
Conference on Machine Learning, pages 1928–1937. PMLR, 2016.

M. Puterman. Markov decision processes: Discrete Stochastic Dynamic Programming. John Wiley
& Sons, 2014.

G. Qu and A. Wierman. Finite-time analysis of asynchronous stochastic approximation and q-learning.
In Proceedings of the 33rd Conference on Learning Theory, pages 3185–3205. PMLR, 2020.

S. Salgia and Q. Zhao. Distributed linear bandits under communication constraints. In Proceedings
of the 40th International Conference on Machine Learning, ICML, pages 29845–29875. PMLR,
2023.

H. Shen, K. Zhang, M. Hong, and T. Chen. Towards understanding asynchronous advantage actor-
critic: Convergence and linear speedup. IEEE Transactions on Signal Processing, 2023.

C. Shi and C. Shen. Federated Multi-Armed Bandits. In Proceedings of the 35th AAAI Conference
on Artificial Intelligence, pages 9603–9611, 2021. URL http://arxiv.org/abs/2101.12204.

D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershalvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the
game of go with deep neural networks and tree search. Nature, 529:484–489, 2016.

J. Sun, G. Wang, G. B. Giannakis, Q. Yang, and Z. Yang. Finite-time analysis of decentralized
temporal-difference learning with linear function approximation. In Proceedings of the 23rd
International Conference on Artificial Intelligence and Statistics, pages 4485–4495. PMLR, 2020.

R. Sutton and A. Barton. Reinforcement learning: An introduction. MIT Press, 2018.

C. Szepesvári. The asymptotic convergence-rate of q-learning. Proceedings of the 11th Annual
Conference on Neural Information Processing Systems, 10, 1997.

H. Tian, I. C. Paschalidis, and A. Olshevsky. One-shot averaging for distributed TD (λ) under Markov
sampling. IEEE Control Systems Letters, 2024.

J. N. Tsitsiklis. Asynchronous stochastic approximation and q-learning. Machine learning, 16:
185–202, 1994.

J. N. Tsitsiklis and Z. Q. Luo. Communication complexity of convex optimization. Journal of
Complexity, 3(3):231–243, 1987. ISSN 10902708. doi: 10.1016/0885-064X(87)90013-6.

R. Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

H.-T. Wai. On the convergence of consensus algorithms with markovian noise and gradient bias. In
Proceedings of 59th IEEE Conference on Decision and Control, pages 4897–4902. IEEE, 2020.

M. Wainwright. Stochastic approximation with cone-contractive operators: Sharp l-infinity-bounds
for q -learning, 2019a.

12



M. Wainwright. Variance-reduced q-learning is minimax optimal, 2019b.

G. Wang, S. Lu, G. Giannakis, G. Tesauro, and J. Sun. Decentralized td tracking with linear function
approximation and its finite-time analysis. Proceedings of the 34th Annual Conference on Neural
Information Processing Systems, 33:13762–13772, 2020.

H. Wang, A. Mitra, H. Hassani, G. J. Pappas, and J. Anderson. Federated temporal difference learning
with linear function approximation under environmental heterogeneity, 2023.

C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8:279–292, 1992.

J. Woo, G. Joshi, and Y. Chi. The blessing of heterogeneity in federated q-learning: Linear speedup
and beyond. In Proceedings of the 40th International Conference on Machine Learning, page
37157–37216, 2023.

J. Woo, L. Shi, G. Joshi, and Y. Chi. Federated offline reinforcement learning: Collaborative
single-policy coverage suffices, 2024.

B. Woodworth, J. Wang, A. Smith, B. McMahan, and N. Srebro. Graph oracle models, lower bounds,
and gaps for parallel stochastic optimization. In Proceedings of the 32nd Annual Conference on
Neural Information Processing Systems, volume 31, 2018.

B. Woodworth, B. Bullins, O. Shamir, and N. Srebro. The min-max complexity of distributed
stochastic convex optimization with intermittent communication. In Proceedings of the 34th
Conference on Learning Theory, COLT, pages 4386–4437. PMLR, 2021.

Z. Xie and S. Song. Fedkl: Tackling data heterogeneity in federated reinforcement learning by
penalizing kl divergence. IEEE Journal on Selected Areas in Communications, 41(4):1227–1242,
2023.

T. Yang, S. Cen, Y. Wei, Y. Chen, and Y. Chi. Federated natural policy gradient methods for multi-task
reinforcement learning, 2023.

E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda. A survey of autonomous driving: Common
practices and emerging technologies. IEEE access, 8:58443–58469, 2020.

S. Zeng, M. A. Anwar, T. T. Doan, A. Raychowdhury, and J. Romberg. A decentralized policy
gradient approach to multi-task reinforcement learning. In Proceedings of the 37th Conference on
Uncertainty in Artificial Intelligence, UAI, pages 1002–1012. PMLR, 2021a.

S. Zeng, T. T. Doan, and J. Romberg. Finite-time analysis of decentralized stochastic approxima-
tion with applications in multi-agent and multi-task learning. In Proceedings of the 60th IEEE
Conference on Decision and Control, pages 2641–2646. IEEE, 2021b.

C. Zhang, H. Wang, A. Mitra, and J. Anderson. Finite-time analysis of on-policy heterogeneous
federated reinforcement learning, 2024.

13



A Additional details about REFINEESTIMATE

We outline below the pseudocode of the REFINEESTIMATE routine described in Sec. 4.1.1.

Algorithm 3: REFINEESTIMATE(Q,B, I, L,D, J)

1: Input: Initial estimate Q, batch size B, Number of iterations I , recentering sample size L,
quantization bound D, message size J

2: // Build an approximation for T Q which is to be used for variance
reduced updates

3: for m = 1, 2, . . . ,M do
4: Draw ⌈L/M⌉ i.i.d. samples from the generative model for each (s, a) pair and evaluate

T̃ (m)
L (Q) according to Eqn. (9)

5: Send C (T̃ (m)
L (Q)−Q;D, J) to the server

6: Receive 1
M

∑M
m=1 C (T̃ (m)

L (Q)−Q;D, J) from the server and compute T̃L(Q) according to
Eqn. (10)

7: end for
8: Q0 ← Q
9: // Variance reduced updates with minibatching

10: for i = 1, 2, . . . , I do
11: for m = 1, 2, . . . ,M do
12: Draw B i.i.d. samples from the from the generative model for each (s, a) pair
13: Compute Qm

i− 1
2

according to Eqn. (11)

14: Send C (Qm
i− 1

2

−Qi−1;D, J) to the server

15: Receive 1
M

∑M
m=1 C (Qm

i −Qi−1;D, J) from the server and compute Qi according to
Eqn. (12)

16: end for
17: end for
18: return QI

B Proof of Theorem 1

In this section, we prove the main result of the paper, the lower bound on the communication
complexity of federated Q-learning algorithms. At a high level, the proof consists of the following
three steps.

Introducing the “hard” MDP instance. The proof builds upon analyzing the behavior of a generic
algorithm A outlined in Algorithm 1 over a particular instance of MDP. The particular choice of
MDP is inspired by, and borrowed from, other lower bound proofs in the single-agent setting [Li et al.,
2023] and helps highlight core issues that lie at the heart of the sample-communication complexity
trade-off. Following Li et al. [2023], the construction is first over a small state-action space that
allows us to focus on a simpler problem before generalizing it to larger state-action spaces.

Establishing the performance of intermittent communication algorithms. In the second step,
we analyze the error of the iterates generated by an intermittent communication algorithm A . The
analysis is inspired by the single-agent analysis in Li et al. [2023], which highlights the underlying
bias-variance trade-off. Through careful analysis of the algorithm dynamics in the federated setting,
we uncover the impact of communication on the bias-variance trade-off and the resulting error of the
iterates to obtain the lower bound on the communication complexity.

Generalization to larger MDPs. As the last step, we generalize our construction of the “hard”
instance to more general state-action space and extend our insights to obtain the statement of the
theorem.
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B.1 Introducing the “hard” instance

We first introduce an MDP instanceMh that we will use throughout the proof to establish the result.
Note that this MDP is identical to the one considered in Li et al. [2023] to establish the lower bounds
on the performance of single-agent Q-learning algorithm. It consists of four states S = {0, 1, 2, 3}.
Let As denote the action set associated with the state s. The probability transition kernel and the
reward function ofMh is given as follows:

A0 = {1} P (0|0, 1) = 1 r(0, 1) = 0, (14a)

A1 = {1, 2} P (1|1, 1) = p P (0|1, 1) = 1− p r(1, 1) = 1, (14b)

P (1|1, 2) = p P (0|1, 2) = 1− p r(1, 2) = 1, (14c)

A2 = {1} P (2|2, 1) = p P (0|2, 1) = 1− p r(2, 1) = 1, (14d)

A3 = {1} P (3|3, 1) = 1 r(3, 1) = 1, (14e)

where the parameter p =
4γ − 1

3γ
. We have the following results about the optimal Q and V functions

of this hard MDP instance.

Lemma 1 ([Li et al., 2023, Lemma 3]). Consider the MDPMh constructed in Eqn. (14). We have,

V ⋆(0) = Q⋆(0, 1) = 0

V ⋆(1) = Q⋆(1, 1) = Q⋆(1, 2) = V ⋆(2) = Q⋆(2, 1) =
1

1− γp
=

3

4(1− γ)

V ⋆(3) = Q⋆(3, 1) =
1

1− γ
.

Throughout the next section of the proof, we focus on this MDP with four states and two actions. In
Appendix B.4, we generalize the proof to larger state-action spaces.

B.2 Notation and preliminary results

For convenience, we first define some notation that will be used throughout the proof.

Useful relations of the learning rates. We consider two kinds of step size sequences that are
commonly used in Q-learning — the constant step size schedule, i.e., ηt = η for all t ∈ {1, 2, . . . , T}
and the rescaled linear step size schedule, i.e., ηt =

1
1+cη(1−γ)t , where cη > 0 is a universal constant

that is independent of the problem parameters.

We define the following quantities:

η
(t)
k = ηk

t∏

i=k+1

(1− ηi(1− γp)) for all 0 ≤ k ≤ t, (15)

where we take η0 = 1 and use the convention throughout the proof that if a product operation does
not have a valid index, we take the value of that product to be 1. For any integer 0 ≤ τ < t, we have
the following relation, which will be proved at the end of this subsection for completeness:

t∏

k=τ+1

(1− ηk(1− γp)) + (1− γp)

t∑

k=τ+1

η
(t)
k = 1. (16)

Similarly, we also define,

η̃
(t)
k = ηk

t∏

i=k+1

(1− ηi) for all 0 ≤ k ≤ t, (17)

which satisfies the relation

t∏

k=τ+1

(1− ηk) +
t∑

k=τ+1

η̃
(t)
k = 1. (18)
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for any integer 0 ≤ τ < t. The claim follows immediately by plugging p = 0 in (16). Note that for

constant step size, the sequence η̃
(t)
k is clearly increasing. For the rescaled linear step size, we have,

η̃
(t)
k−1

η̃
(t)
k

=
ηk

ηk−1(1− ηk)
= 1− (1− cη(1− γ))ηk

1− cη(1− γ)ηk
≤ 1 (19)

whenever cη ≤ 1
1−γ . Thus, η̃

(t)
k is an increasing sequence as long as cη ≤ 1

1−γ . Similarly, η
(t)
k is also

clearly increasing for the constant step size schedule. For the rescaled linear step size schedule, we
have,

η
(t)
k−1

η
(t)
k

=
ηk

ηk−1(1− ηk(1− γp))
≤ ηk

ηk−1(1− ηk)
≤ 1,

whenever cη ≤ 1
1−γ . The last bound follows from Eqn. (19).

Proof of (16). We can show the claim using backward induction. For the base case, note that,

(1− γp)η
(t)
t + (1− γp)η

(t)
t−1 = (1− γp)ηt + (1− γp)ηt−1(1− (1− γp)ηt)

= 1− (1− ηt(1− γp))(1− ηt−1(1− γp)) = 1−
t∏

k=t−1

(1− ηk(1− γp)),

as required. Assume (16) is true for some τ . We have,

(1− γp)
t∑

k=τ

η
(t)
k = (1− γp)ηtτ + (1− γp)

t∑

k=τ+1

η
(t)
k

= (1− γp)ητ

t∏

k=τ+1

(1− ηk(1− γp)) + 1−
t∏

k=τ+1

(1− ηk(1− γp))

= 1−
t∏

k=τ

(1− ηk(1− γp)),

thus completing the induction step.

Sample transition matrix. Recall Z ∈ S |S||A| is a random vector whose (s, a)-th coordinate is

drawn from the distribution P (·|s, a). We use P̂m
t to denote the sample transition at time t and agent

m obtained by averaging B i.i.d. samples from the generative model. Specifically let {Zm
t,b}Bb=1

denote a collection of B i.i.d. copies of Z collected at time t at agent m. Then, for all s, a, s′,

P̂m
t (s′|s, a) = 1

B

B∑

b=1

Pm
t,b(s

′|s, a), (20)

where Pm
t,b(s

′|s, a) = 1{Zm
t,b(s, a) = s′} for s′ ∈ S .

Preliminary relations of the iterates. We state some preliminary relations regarding the evolution
of the Q-function and the value function across different agents that will be helpful for the analysis
later.

We begin with the state 0, where we have Qm
t (0, 1) = V m

t (0) = 0 for all agents m ∈ [M ] and
t ∈ [T ]. This follows almost immediately from the fact that state 0 is an absorbing state with
zero reward. Note that Qm

0 (0, 1) = V m
0 (0) = 0 holds for all clients m ∈ [M ]. Assuming that

Qm
t−1(0, 1) = V m

t−1(0) = 0 for all clients for some time instant t− 1, by induction, we have,

Qm
t−1/2(0, 1) = (1− ηt)Q

m
t−1(0, 1) + ηt(γV

m
t−1(0)) = 0.

Consequently, Qm
t (0, 1) = 0 and V m

t (0) = 0, for all agents m, irrespective of whether there is
averaging.
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For state 3, the iterates satisfy the following relation:

Qm
t−1/2(3, 1) = (1− ηt)Q

m
t−1(3, 1) + ηt(1 + γV m

t−1(3))

= (1− ηt)Q
m
t−1(3, 1) + ηt(1 + γQm

t−1(3, 1))

= (1− ηt(1− γ))Qm
t−1(3, 1) + ηt,

where the second step follows by noting V m
t (3) = Qm

t (3, 1). Once again, one can note that averaging
step does not affect the update rule implying that the following holds for all m ∈ [M ] and t ∈ [T ]:

V m
t (3) = Qm

t (3, 1) =
t∑

k=1

ηk

(
t∏

i=k+1

(1− ηi(1− γ))

)
=

1

1− γ

[
1−

t∏

i=1

(1− ηi(1− γ))

]
,

(21)

where the last step follows from Eqn. (16) with p = 1.

Similarly, for state 1 and 2, we have,

Qm
t−1/2(1, 1) = (1− ηt)Q

m
t−1(1, 1) + ηt(1 + γP̂m

t (1|1, 1)V m
t−1(1)), (22)

Qm
t−1/2(1, 2) = (1− ηt)Q

m
t−1(1, 2) + ηt(1 + γP̂m

t (1|1, 2)V m
t−1(1)), (23)

Qm
t−1/2(2, 1) = (1− ηt)Q

m
t−1(2, 1) + ηt(1 + γP̂m

t (2|2, 1)V m
t−1(2)). (24)

Since the averaging makes a difference in the update rule, we further analyze the update as required
in later proofs.

B.3 Main analysis

We first focus on establishing a bound on the number of communication rounds, i.e., CCround(A )
(where we drop the dependency with other parameters for notational simplicity), and then use this
lower bound to establish the bound on the bit level communication complexity CCbit(A ).

To establish the lower bound on CCround(A ) for any intermittent communication algorithm A , we
analyze the convergence behavior of A on the MDPMh. We assume that the averaging step in line 6
of Algorithm 1 is carried out exactly. Since the use of compression only makes the problem harder, it
is sufficient for us to consider the case where there is no loss of information in the averaging step for
establishing a lower bound. Lastly, throughout the proof, without loss of generality we assume that

logN ≤ 1

1− γ
, (25)

otherwise, the lower bound in Theorem 1 reduces to the trivial lower bound.

We divide the proof into following three parts based on the choice of learning rates and batch sizes:

1. Small learning rates: For constant learning rates, 0 ≤ η < 1
(1−γ)T and for rescaled linear

learning rates, the constant cη satisfies cη ≥ log T .

2. Large learning rates with small ηT /(BM): For constant learning rates, η ≥ 1
(1−γ)T and for

rescaled linear learning rates, the constant cη satisfies 0 ≤ cη ≤ log T ≤ 1
1−γ (c.f. (25)).

Additionally, the ratio ηT

BM satisfies ηT

BM ≤
1−γ
100 .

3. Large learning rates with large ηT /(BM): We have the same condition on the learning rates

as above. However, in this case the ratio ηT

BM satisfies ηT

BM > 1−γ
100 .

We consider each of the cases separately in the following three subsections.

B.3.1 Small learning rates

In this subsection, we prove the lower bound for small learning rates, which follow from similar
arguments in Li et al. [2023].
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For this case, we focus on the dynamics of state 2. We claim that the same relation established in Li
et al. [2023] continues to hold, which will be established momentarily:

E[V m
T (2)] =


 1

M

M∑

j=1

E[V j
T (2)]


 =

T∑

k=1

η
(t)
k =

1− η
(T )
0

1− γp
. (26)

Consequently, for all m ∈ [M ], we have

V ⋆(2)− E[V m
T (2)] =

η
(T )
0

1− γp
. (27)

To obtain lower bound on V ⋆(2)− E[V m
T (2)], we need to obtain a lower bound on η

(T )
0 , which from

[Li et al., 2023, Eqn. (120)] we have

log(η
(T )
0 ) ≥ −1.5

T∑

t=1

η(1− γp) ≥ −2
T∑

t=1

1

t log T
≥ −2 =⇒ η

(T )
0 ≥ e−2

when T ≥ 16 for both choices of learning rates. On plugging this bound in (27), we obtain,

E[∥Qm
T −Q⋆∥∞] ≥ E[|Q⋆(2)−Qm

T (2)|] ≥ V ⋆(2)− E[V m
T (2)] ≥ 3

4e2(1− γ)
√
N

(28)

holds for all m ∈ [M ], N ≥ 1 and M ≥ 2. Thus, it can be noted that the error rate ER(A ;N,M)
is bounded away from a constant value irrespective of the number of agents and the number of
communication rounds. Thus, even with CCround = Ω(T ), we will not observe any collaborative
gain if the step size is too small.

Proof of (26). Recall that from (24), we have,

Qm
t−1/2(2, 1) = (1− ηt)V

m
t−1(2) + ηt(1 + γP̂m

t (2|2, 1)V m
t−1(2)).

Here, Qm
t−1(2, 1) = V m

t−1(2) as the second state has only a single action.

• When t is not an averaging instant, we have,

V m
t (2) = Qm

t (2, 1) = (1− ηt)V
m
t−1(2) + ηt(1 + γP̂m

t (2|2, 1)V m
t−1(2)). (29)

On taking expectation on both sides of the equation, we obtain,

E[V m
t (2)] = (1− ηt)E[V

m
t−1(2)] + ηt(1 + γE[P̂m

t (2|2, 1)V m
t−1(2)])

= (1− ηt)E[V
m
t−1(2)] + ηt

(
1 + γE[P̂m

t (2|2, 1)]E[V m
t−1(2)]

)

= (1− ηt)E[V
m
t−1(2)] + ηt

(
1 + γpE[V m

t−1(2)]
)

= (1− ηt(1− γp))E[V m
t−1(2)] + ηt. (30)

In the second step, we used the fact that P̂m
t (2|2, 1) is independent of V m

t−1(2).

• Similarly, if t is an averaging instant, we have,

V m
t (2) = Qm

t (2, 1) =
1

M

M∑

j=1

Qj
t−1/2(2, 1)

= (1− ηt)
1

M

M∑

j=1

V j
t−1(2) +

1

M

M∑

j=1

ηt(1 + γP̂ j
t (2|2, 1)V j

t−1(2)). (31)

Once again, upon taking expectation we obtain,

E[V m
t (2)] = (1− ηt)

1

M

M∑

j=1

E[V j
t−1(2)] +

1

M

M∑

j=1

ηt(1 + γE[P̂ j
t (2|2, 1)V j

t−1(2)])
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= (1− ηt)
1

M

M∑

j=1

E[V j
t−1(2)] +

1

M

M∑

j=1

ηt(1 + γpE[V j
t−1(2)])

= (1− ηt(1− γp))


 1

M

M∑

j=1

E[V j
t−1(2)]


+ ηt. (32)

Eqns. (30) and (32) together imply that for all t ∈ [T ],
(

1

M

M∑

m=1

E[V m
t (2)]

)
= (1− ηt(1− γp))

(
1

M

M∑

m=1

E[V m
t−1(2)]

)
+ ηt. (33)

On unrolling the above recursion with V m
0 = 0 for all m ∈ [M ], we obtain the desired claim (26).

B.3.2 Large learning rates with small ηT

BM

In this subsection, we prove the lower bound for case of large learning rates when the ratio ηT

BM is
small. For the analysis in this part, we focus on the dynamics of state 1. Unless otherwise specified,
throughout the section we implicitly assume that the state is 1.

We further define a key parameter that will play a key role in the analysis:

τ := min{k ∈ N : ∀ t ≥ k, ηt ≤ ηk ≤ 3ηt}. (34)

It can be noted that for constant step size sequence τ = 1 and for rescaled linear stepsize τ = T/3.

Step 1: introducing an auxiliary sequence. We define an auxiliary sequence Q̂m
t (a) for a ∈

{1, 2} and all t = 1, 2, . . . , T to aid our analysis, where we drop the dependency with state s =

1 for simplicity. The evolution of the sequence Q̂m
t is defined in Algorithm 4, where V̂ m

t =

maxa∈{1,2} Q̂
m
t (a). In other words, the iterates {Q̂m

t } evolve exactly as the iterates of Algorithm 1

except for the fact that sequence {Q̂m
t } is initialized at the optimal Q-function of the MDP. We would

like to point out that we assume that the underlying stochasticity is also identical in the sense that the

evolution of both Qm
t and Q̂m

t is governed by the same P̂m
t matrices. The following lemma controls

the error between the iterates Qm
t and Q̂m

t , allowing us to focus only on Q̂m
t .

Algorithm 4: Evolution of Q̂

1: Input : T,R, {ηt}Tt=1, C = {tr}Rr=1, B

2: Set Q̂m
0 (a)← Q⋆(1, a) for a ∈ {1, 2} and all agents m // Different

initialization
3: for t = 1, 2, . . . , T do
4: for m = 1, 2, . . . ,M do

5: Compute Q̂m
t− 1

2

according to Eqn. (7)

6: Compute Q̂m
t according to Eqn. (8)

7: end for
8: end for

Lemma 2. The following relation holds for all agents m ∈ [M ], all t ∈ [T ] and a ∈ {1, 2}:

Qm
t (1, a)− Q̂m

t (a) ≥ − 1

1− γ

t∏

i=1

(1− ηi(1− γ)).

By Lemma 2, bounding the error of the sequence Q̂m
t allows us to obtain a bound on the error of Qm

t .
To that effect, we define the following terms for any t ≤ T and all m ∈ [M ]:

∆m
t (a) := Q̂m

t (a)−Q⋆(1, a); a = 1, 2;
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∆m
t,max = max

a∈{1,2}
∆m

t (a).

In addition, we use ∆t =
1
M

∑M
m=1 ∆

m
t to denote the error of the averaged iterate1, and similarly,

∆t,max := max
a∈{1,2}

∆t(a). (35)

We first derive a basic recursion regarding ∆m
t (a). From the iterative update rule in Algorithm 4, we

have,

∆m
t (a) = (1− ηt)∆

m
t−1(a) + ηt(1 + γP̂m

t (1|1, a)V̂ m
t−1 −Q⋆(1, a))

= (1− ηt)∆
m
t−1(a) + ηtγ(P̂

m
t (1|1, a)V̂ m

t−1 − pV ⋆(1))

= (1− ηt)∆
m
t−1(a) + ηtγ(p(V̂

m
t−1 − V ⋆(1)) + (P̂m

t (1|1, a)− p)V̂t−1)

= (1− ηt)∆
m
t−1(a) + ηtγ(p∆

m
t−1,max + (P̂m

t (1|1, a)− p)V̂ m
t−1).

Here in the last line, we used the following relation:

∆m
t,max = max

a∈{1,2}
(Q̂m

t (a)−Q⋆(1, a)) = max
a∈{1,2}

Q̂m
t (a)− V ⋆(1) = V̂ m

t−1 − V ⋆(1),

as Q⋆(1, 1) = Q⋆(1, 2) = V ⋆(1).

Recursively unrolling the above expression, and using the expression (17), we obtain the following
relation: for any t′ < t when there is no averaging during the interval (t′, t)

∆m
t (a) =

(
t∏

k=t′+1

(1− ηk)

)
∆m

t′ (a) +

t∑

k=t′+1

η̃
(t)
k γ(p∆m

k−1,max + (P̂m
k (1|1, a)− p)V̂ m

k−1). (36)

For any t′, t with t′ < t, we define the notation

φt′,t :=

t∏

k=t′+1

(1− ηk), (37)

ξmt′,t(a) :=

t∑

k=t′+1

η̃
(t)
k γ(P̂m

k (1|1, a)− p)V̂ m
k−1, a = 1, 2; (38)

ξmt′,t,max := max
a∈{1,2}

ξmt′,t(a). (39)

Note that by definition, E[ξmt′,t(a)] = 0 for a ∈ {1, 2} and all m, t′ and t. Plugging them into the
previous expression leads to the simplified expression

∆m
t (a) = φt′,t∆

m
t′ (a) +

[
t∑

k=t′+1

η̃
(t)
k γp∆m

k−1,max

]
+ ξmt′,t(a).

We specifically choose t′ and t to be the consecutive averaging instants to analyze the behaviour of
∆m

t across two averaging instants. Consequently, we can rewrite the above equation as

∆m
t (a) = φt′,t∆t′(a) +

[
t∑

k=t′+1

η̃
(t)
k γp∆m

k−1,max

]
+ ξmt′,t(a). (40)

Furthermore, after averaging, we obtain,

∆t(a) = φt′,t∆t′(a) +
1

M

M∑

m=1

[
t∑

k=t′+1

η̃
(t)
k γp∆m

k−1,max

]
+

1

M

M∑

m=1

ξmt′,t(a). (41)

1We use this different notation in appendix as opposed to the half-time indices used in the main text to
improve readability of the proof.
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Step 2: deriving a recursive bound for E[∆t,max]. Bounding (40), we obtain,

∆m
t,max ≥ φt′,t∆t′,max +

[
t∑

k=t′+1

η̃
(t)
k γp∆m

k−1,max

]
+ ξmt′,t,max − φt′,t|∆t′(1)−∆t′(2)|, (42a)

∆m
t,max ≤ φt′,t∆t′,max +

[
t∑

k=t′+1

η̃
(t)
k γp∆m

k−1,max

]
+ ξmt′,t,max, (42b)

where in the first step we used the fact that

max{a1 + b1, a2 + b2} ≥ min{a1, a2}+max{b1, b2} = max{a1, a2}+max{b1, b2} − |a1 − a2|.
(43)

On taking expectation, we obtain,

E[∆m
t,max] ≥ φt′,tE[∆t′,max] +

[
t∑

k=t′+1

η̃
(t)
k γpE[∆m

k−1,max]

]
+ E[ξmt′,t,max]− φt′,tE[|∆t′(1)−∆t′(2)|],

(44a)

E[∆m
t,max] ≤ φt′,tE[∆t′,max] +

[
t∑

k=t′+1

η̃
(t)
k γpE[∆m

k−1,max]

]
+ E[ξmt′,t,max]. (44b)

Similarly, using (41) and (43) we can write,

∆t,max ≥ φt′,t∆t′,max +
1

M

M∑

m=1

[
t∑

k=t′+1

η̃
(t)
k γp∆m

k−1,max

]
− φt′,t|∆t′(1)−∆t′(2)|

+max

{
1

M

M∑

m=1

ξmt′,t(1),
1

M

M∑

m=1

ξmt′,t(2)

}
(45a)

=⇒ E[∆t,max] ≥ φt′,tE[∆t′,max] +
1

M

M∑

m=1

[
t∑

k=t′+1

η̃
(t)
k γpE[∆m

k−1,max]

]
− φt′,tE[|∆t′(1)−∆t′(2)|]

+ E

[
max

{
1

M

M∑

m=1

ξmt′,t(1),
1

M

M∑

m=1

ξmt′,t(2)

}]
. (45b)

On combining (44b) and (45b), we obtain,

E[∆t,max] ≥
1

M

M∑

m=1

[
E[∆m

t,max]− E[ξmt′,t,max]
]
− φt′,tE[|∆t′(1)−∆t′(2)|]

+ E

[
max

{
1

M

M∑

m=1

ξmt′,t(1),
1

M

M∑

m=1

ξmt′,t(2)

}]
. (46)

In order to simplify (46), we make use of the following lemmas.

Lemma 3. Let t′ < t be two consecutive averaging instants. Then for all m ∈ [M ],

E[∆m
t,max]− E[ξmt′,t,max] ≥

(
t∏

k=t′+1

(1− ηk(1− γp))

)
E[∆t′,max] + E[ξmt′,t,max]

[
t∑

k=t′+1

η
(t)
k − 1

]

+

− φt′,tE[|∆t′(1)−∆t′(2)|],
where [x]+ = max{x, 0}.
Lemma 4. For all consecutive averaging instants t′, t satisfying t − max{t′, τ} ≥ 1/ητ and all
m ∈ [M ], we have,

E[ξmt′,t,max] ≥
1

240 log
(

180B
ηT (1−γ)

) · ν

ν + 1
,
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E

[
max

{
1

M

M∑

m=1

ξmt′,t(1),
1

M

M∑

m=1

ξmt′,t(2)

}]
≥ 1

240 log
(

180BM
ηT (1−γ)

) · ν

ν +
√
M

,

where ν :=

√
20ηT

B(1− γ)
.

Lemma 5. For all t ∈ {tr}Rr=1, we have

E[|∆t(1)−∆t(2)|] ≤
√

8ηT
3BM(1− γ)

.

Thus, on combining the results from Lemmas 3, 4, and 5 and plugging them into (46), we obtain the
following relation for t, t′ ≥ τ :

E[∆t,max] ≥
(

t∏

k=t′+1

(1− ηk(1− γp))

)
E[∆t′,max] + E[ξmt′,t,max]

[
t∑

k=t′+1

η
(t)
k − 1

]

+

− 2φt′,tE[|∆t′(1)−∆t′(2)|] + E

[
max

{
1

M

M∑

m=1

ξmt′,t(1),
1

M

M∑

m=1

ξmt′,t(2)

}]

≥ (1− ητ (1− γp))t−t′
E[∆t′,max] +


 1− (1− ητ (1− γp))t−t′

5760 log
(

180B
ηT (1−γ)

)
(1− γp)


 · ν

ν + 1
· 1
{
t− t′ ≥ 8

ητ

}

− 2(1− ηT )
t−t′

√
8ηT

3BM(1− γ)
+

1

240 log
(

180BM
ηT (1−γ)

) · ν

ν +
√
M
· 1
{
t− t′ ≥ 8

ητ

}
,

(47)

where we used the relation φt′,t ≤ (1 − ηT )
t−t′ , as well as the value of ν as defined in Lemma 4

along with the fact

t∑

k=t′+1

η
(t)
k − 1 ≥ 1− (1− ητ (1− γp))t−t′

24(1− γp)
(48)

for all t, t′ ≥ τ such that t− t′ ≥ 8/ητ .

Proof of (48). We have,

t∑

k=t′+1

η
(t)
k − 1 =

t∑

k=t′+1

(
ηk

t∏

i=k+1

(1− ηi(1− γp))

)
− 1

≥
t∑

k=t′+1

(
ηt

t∏

i=k+1

(1− ητ (1− γp))

)
− 1

≥ ηt

t∑

k=t′+1

(1− ητ (1− γp))t−k − 1

≥ ηt ·
(
1− (1− ητ (1− γp))t−t′

ητ (1− γp)

)
− 1

≥ 1− (1− ητ (1− γp))t−t′

3(1− γp)
− 1. (49)

To show (48), it is sufficient to show that
1− (1− ητ (1− γp))t−t′

3(1− γp)
≥ 8

7
for t− t′ ≥ 8/ητ . Thus,

for t− t′ ≥ 8/ητ we have,

1− (1− ητ (1− γp))t−t′

3(1− γp)
≥ 1− exp(−ητ (1− γp) · (t− t′))

3(1− γp)
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≥ 1− exp(−8(1− γp))

3(1− γp)
. (50)

Since γ ≥ 5/6, 1− γp ≤ 2/9. For x ≤ 2/9, the function f(x) = 1−e−8x

3x ≥ 8/7, proving the claim.

Step 3: lower bounding E[∆T,max]. We are now interested in evaluating E[∆T,max] based on the
recursion (47). To this effect, we introduce some notation to simplify the presentation. Let

Rτ := min{r : tr ≥ τ}. (51)

For r = Rτ , . . . , R, we define the following terms:

xr := E[∆tr,max],

αr := (1− ητ (1− γp))tr−tr−1 ,

βr := (1− ηT )
tr−tr−1 ,

Ir := {r ≥ r′ > Rτ : tr′ − tr′−1 ≥ 8/ητ},

C1 :=
1

5760 log
(

180B
ηT (1−γ)

)
(1− γp)

· ν

ν + 1
,

C2 :=

√
32ηT

3BM(1− γ)
,

C3 :=
1

240 log
(

180BM
ηT (1−γ)

) · ν

ν +
√
M

.

With these notations in place, the recursion in (47) can be rewritten as

xr ≥ αrxr−1 − βrC2 + C31{r ∈ Ir}+ (1− αr)C11{r ∈ Ir}, (52)

for all r ≥ Rτ . We claim that xr satisfies the following relation for all r ≥ Rτ + 1 (whose proof is
deferred to the end of this step):

xr ≥
(

r∏

i=Rτ+1

αi

)
xRτ
−

r∑

k=Rτ+1

βk

(
r∏

i=k+1

αi

)
C2 +

r∑

k=Rτ+1

(
r∏

i=k+1

αi

)
1{k ∈ Ik}C3

+ C1


∏

i/∈Ir

αi



(
1−

∏

i∈Ir

αi

)
, (53)

where we recall that if there is no valid index for a product, its value is taken to be 1.

Invoking (53) for r = R and using the relation xRτ−1 ≥ 0, we obtain,

xR ≥ −
R∑

k=Rτ

βk

(
R∏

i=k+1

αi

)
C2 +

R∑

k=Rτ

(
R∏

i=k+1

αi

)
C31{k ∈ Ik}+ C1


∏

i/∈IR

αi



(
1−

∏

i∈IR

αi

)

≥ −RC2 + C1


∏

i/∈IR

αi



(
1−

∏

i∈IR

αi

)

≥ −R ·
√

32ηT
3BM(1− γ)

+


∏

i/∈IR

αi



(
1−

∏

i∈IR

αi

)
· 1

5760 log
(

180B
ηT (1−γ)

)
(1− γp)

· ν

ν + 1
,

(54)

where we used the fact βk

(∏R
i=k+1 αi

)
≤ 1 and that C3 ≥ 0. Consider the expression

∏

i/∈IR

αi =
∏

i/∈IR

(1− ητ (1− γp))ti−ti−1 ≥ 1− ητ (1− γp) ·
∑

i/∈IR

(ti − ti−1)

︸ ︷︷ ︸
=:T1

. (55)
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Consequently,
(
1−

∏

i∈IR

αi

)
= 1− (1− ητ (1− γp))T−τ−T1 ≥ 1− exp (−ητ (1− γp) (T − τ − T1)) . (56)

Note that T1 satisfies the following bound

T1 :=
∑

i/∈IR

(ti − ti−1) ≤ (R− |IR|) ·
8

ητ
≤ 8R

ητ
. (57)

We split the remainder of the analysis based on the step size schedule.

• For the constant step size schedule, i.e., ηt = η ≥ 1
(1−γ)T , we have, Rτ = 0, with τ = 0 and

t0 = 0 (as all agents start at the same point). If R ≤ 1

96000(1−γ) log( 180B
η(1−γ) )

, then, (55), (56)

and (57) yield the following relations:

T1 ≤
8R

η
≤ T

12000 log(180N)
,

∏

i/∈IR

αi ≥ 1− η(1− γp) · T1 ≥ 1− 32R(1− γ)

3
≥ 1− 1

9000 log(180N)
,

(
1−

∏

i∈IR

αi

)
≥ 1− exp (−η(1− γp) (T − T1)) ≥ 1− exp

(
−4

3

(
1− 1

9000 log(180N)

))
.

On plugging the above relations into (54), we obtain

xR ≥
√
40

96000 log
(

180B
η(1−γ)

)
(1− γ)

·
(

ν

ν + 1
− ν

5
√
M

)
(58)

where recall that ν :=

√
20η

3B(1− γ)
. Consider the function f(x) = x

x+1 − x
5
√
M

. We

claim that for x ∈ [0,
√
M ] and all M ≥ 2,

f(x) ≥ 7

20
min{x, 1}. (59)

The proof of the above claim is deferred to the end of the section. In light of the above claim,
we have,

xR ≥
√
40

96000 log
(

180B
η(1−γ)

)
(1− γ)

· 7
20
·min

{
1,

√
20η

3B(1− γ)

}

≥
√
40

96000 log (180N)
· 7
20
·min

{
1

1− γ
,

√
20

3(1− γ)4N

}
, (60)

where we used the fact that M ≥ 2,
√
x

log(1/x) is an increasing function and the relation

ν

M
=

20η

3BM(1− γ)
≤ 1

15
≤ 1.

• Next, we consider the rescaled linear step size schedule, where τ = T/3 (cf. (34)). To begin,

we assume tRτ
≤ max{ 3T4 , T − 1

6ητ (1−γp)}. It is straightforward to note that

max

{
3T

4
, T − 1

6ητ (1− γp)

}
=

{
3T
4 if cη ≥ 3

T − 1
6ητ (1−γp) if cη < 3.

If R ≤ 1

384000(1−γ) log
(

180B
ηT (1−γ)

)

·(5+cη)
then, (55), (56) and (57) yield the following rela-

tions:

T1 ≤
8R

ητ
,

∏

i/∈IR

αi ≥ 1− ητ (1− γp) · T1 ≥ 1− 32R(1− γ)

3
≥ 1− 1

36000
.
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For cη ≥ 3, we have,

(
1−

∏

i∈IR

αi

)
≥ 1− exp (−ητ (1− γp) (T − tRτ

− T1))

≥ 1− exp

(
− (1− γ)T

(3 + cη(1− γ)T )
+

32R(1− γ)

3

)

≥ 1

2(3 + cη)
,

where we used T ≥ 1
1−γ in the second step. Similarly, for cη < 3, we have,

(
1−

∏

i∈IR

αi

)
≥ 1− exp (−ητ (1− γp) (T − tRτ

− T1))

≥ 1− exp

(
−1

6
+

32R(1− γ)

3

)

≥ 1

10
.

On plugging the above relations into (54), we obtain

xR ≥
18
√
1.6

384000 log
(

180B
ηT (1−γ)

)
(1− γ)(5 + cη)

·
(

ν

ν + 1
− ν

18
√
M

)

≥ 18
√
1.6

384000 log
(

180B
ηT (1−γ)

)
(1− γ)(5 + cη)

· 7
20
·min

{
1,

√
20ηT

3B(1− γ)

}

≥ 18
√
1.6

384000 log
(

180B
ηT (1−γ)

)
(5 + cη)

· 7
20
·min

{
1

1− γ
,

√
20ηT

3B(1− γ)3

}

≥ 18
√
1.6

384000 log (180N(1 + logN)) (5 + logN)
· 7
20
·min

{
1

1− γ
,

√
20

3B(1 + logN)(1− γ)4N

}
,

(61)

where we again used the facts that M ≥ 2, cη ≤ logN ,
√
x

log(1/x) is an increasing function

and the relation
ν

M
=

20ηT
3BM(1− γ)

≤ 1.

• Last but not least, let us consider the rescaled linear step size schedule case when tRτ
>

max{ 3T4 , T − 1
6ητ (1−γp)}. The condition implies that the time between the communication

rounds Rτ − 1 and Rτ is at least T0 := max{ 5T12 , 2T
3 − 1

6ητ (1−γp)}. Thus, (47) yields that

E[∆tRτ
] ≥


 1− (1− ητ (1− γp))T0

5760 log
(

180
BηT (1−γ)

)
(1− γp)


 · ν

ν + 1
− 2(1− ηT )

T0

√
8ηT

3BM(1− γ)
.

(62)

Using the above relation along with (53), we can conclude that

xR ≥ (1− ητ (1− γp))T−tRτ


 1− (1− ητ (1− γp))T0

5760 log
(

180
BηT (1−γ)

)
(1− γp)


 · ν

ν + 1

− 2(1− ηT )
T0 · (1− ητ (1− γp))T−tRτ

√
8ηT

3BM(1− γ)
−RC2. (63)
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In the above relation, we used the trivial bounds C1, C3 ≥ 0 and a crude bound on the term
corresponding to C2, similar to (54). Let us first consider the case of cη ≥ 3. We have,

1− (1− ητ (1− γp))T0 ≥ 1− exp (−ητ (1− γp)5T/12) ≥ 1− exp

(
− 5(1− γ)T

3(3 + cη(1− γ)T )

)
≥ 1

3 + cη
,

(1− ητ (1− γp))T−tRτ ≥ 1− ητ (1− γp)
T

4
≥ 1− (1− γ)T

(3 + cη(1− γ)T )
≥ 1− 1

cη
≥ 2

3
.

Similarly, for cη < 3, we have,

1− (1− ητ (1− γp))T0 ≥ 1− exp

(
−ητ (1− γp)

2T

3
+

1

6

)

≥ 1− exp

(
− 8(1− γ)T

3(3 + cη(1− γ)T )
+

1

6

)
≥ 1− e−5/18,

(1− ητ (1− γp))T−tRτ ≥ 1− ητ (1− γp)

6ητ (1− γp)
≥ 5

6
.

The above relations implies that (1 − ητ (1 − γp))T−tRτ (1 − (1 − ητ (1 − γp))T0) ≥ c
for some constant c, which only depends on cη. On plugging this into (63), we obtain a
relation that is identical to that in (54) up to leading constants. Thus, by using a similar
sequence of argument as used to obtain (61), we arrive at the same conclusion as for the
case of tRτ

≤ max{ 3T4 , T − 1
6ητ (1−γp)}.

Step 4: finishing up the proof. Thus, (60), (61) along with the above conclusion together imply
that there exists a numerical constant c0 > 0 such that

E[|V̂ m
T (1)− V ⋆(1)|] ≥ E[∆T,max] ≥

c0

log3 N
·min

{
1

1− γ
,

√
1

(1− γ)4N

}
. (64)

The above equation along with Lemma 2 implies

E[|V m
T − V ⋆(1)|] ≥ c0

log3 N
·min

{
1

1− γ
,

√
1

(1− γ)4N

}
− 1

1− γ

T∏

i=1

(1− ηi(1− γ)). (65)

On the other hand, from (21) we know that

E[|V m
T (3)− V ⋆(3)|] ≥ 1

1− γ

T∏

i=1

(1− ηi(1− γ)). (66)

Hence,

E[∥Qm
T −Q⋆∥∞] ≥ E [max {|V m

T (3)− V ⋆(3)|, |V m
T (1)− V ⋆(1)|}]

≥ max {E [|V m
T (3)− V ⋆(3)|] ,E [|V m

T (1)− V ⋆(1)|]}

≥ max

{
1

1− γ

T∏

i=1

(1− ηi(1− γ)),min

{
1

1− γ
,

√
1

(1− γ)4N

}
− 1

1− γ

T∏

i=1

(1− ηi(1− γ))

}

≥ 1

2
min

{
1

1− γ
,

√
1

(1− γ)4N

}
, (67)

where the third step follows from (65) and (66) and the fourth step uses max{a, b} ≥ (a+ b)/2.

Thus, from (28) and (67) we can conclude that whenever CCround = O
(

1
(1−γ) log2 N

)
,

ER(A ;N,M) = Ω
(

1
log3 N

√
N

)
for all values of M ≥ 2. In other words, for any algo-

rithm to achieve any collaborative gain, its communication complexity should satisfy CCround =

Ω
(

1
(1−γ) log2 N

)
, as required.
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Proof of (53). We now return to establish (53) using induction. For the base case, (52) yields

xRτ+1 ≥ αRτ+1xRτ
− βRτ+1C2 + C31{Rτ + 1 ∈ IRτ+1}+ (1− αRτ+1)C11{Rτ + 1 ∈ IRτ+1}.

(68)

Note that this is identical to the expression in (53) for r = Rτ + 1 as
 ∏

i/∈IRτ+1

αi




1−

∏

i∈IRτ+1

αi


 = (1− αRτ+1)1{Rτ + 1 ∈ IRτ+1}

based on the adopted convention for products with no valid indices. For the induction step, assume
(53) holds for some r ≥ Rτ + 1. On combining (52) and (53), we obtain,

xr+1 ≥ αr+1xr − βr+1C2 + C31{(r + 1) ∈ Ir+1}+ (1− αr+1)C11{r + 1 ∈ Ir+1}

≥ αr+1

(
r∏

i=Rτ+1

αi

)
xRτ
− αr+1

r∑

k=Rτ+1

βk

(
r∏

i=k+1

αi

)
C2 + αr+1

r∑

k=Rτ+1

(
r∏

i=k+1

αi

)
C31{k ∈ Ik}

+ αr+1C1


∏

i/∈Ir

αi



(
1−

∏

i∈Ir

αi

)
− βr+1C2 + C31{(r + 1) ∈ Ir+1}+ (1− αr+1)C11{(r + 1) ∈ Ir+1}

≥
(

r+1∏

i=Rτ+1

αi

)
xRτ
−

r+1∑

k=Rτ+1

βk

(
r+1∏

i=k+1

αi

)
C2 +

r+1∑

k=Rτ+1

(
r+1∏

i=k+1

αi

)
C31{k ∈ Ik}

+ αr+1C1


∏

i/∈Ir

αi



(
1−

∏

i∈Ir

αi

)
+ (1− αr+1)C11{(r + 1) ∈ Ir+1}. (69)

If (r + 1) /∈ Ir+1, then
(
1−∏i∈Ir

αi

)
=

(
1−∏i∈Ir+1

αi

)
and αr+1

(∏
i/∈Ir

αi

)
=

(∏
i/∈Ir+1

αi

)
. Consequently,

αr+1C1


∏

i/∈Ir

αi



(
1−

∏

i∈Ir

αi

)
+ (1− αr+1)C11{(r + 1) ∈ Ir+1} = C1


 ∏

i/∈Ir+1

αi




1−

∏

i∈Ir+1

αi


 .

(70)

On the other hand, if (r + 1) ∈ Ir+1, then
(∏

i/∈Ir
αi

)
=
(∏

i/∈Ir+1
αi

)
. Consequently, we have,

αr+1C1


∏

i/∈Ir

αi



(
1−

∏

i∈Ir

αi

)
+ (1− αr+1)C11{(r + 1) ∈ Ir+1}

= αr+1C1


 ∏

i/∈Ir+1

αi



(
1−

∏

i∈Ir

αi

)
+ (1− αr+1)C1

≥ C1


 ∏

i/∈Ir+1

αi



[
αr+1

(
1−

∏

i∈Ir

αi

)
+ (1− αr+1)

]

≥ C1


 ∏

i/∈Ir+1

αi




1−

∏

i∈Ir+1

αi


 . (71)

Combining (69), (70) and (71) proves the claim.

Proof of (59). To establish this result, we separately consider the cases x ≤ 1 and x ≥ 1.

• When x ≤ 1, we have

f(x) =
x

x+ 1
− 1

5
√
M
≥ x ·

(
1

2
− x

5
√
M

)
≥ 7x

20
, (72)

where in the last step, we used the relation M ≥ 2.
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• Let us now consider the case x ≥ 1. The second derivative of f is given by f ′′(x) =
− 1

2(x+1)3 . Clearly, for all x ≥ 1, f ′′ < 0 implying that f is a concave function. It is

well-known that a continuous, bounded, concave function achieves its minimum values over
a compact interval at the end points of the interval (Bauer’s minimum principle). For all
M ≥ 2, we have,

f(1) =
1

2
− 1

5
√
M
≥ 7

20
; f(

√
M) =

√
M√

M + 1
− 1

5
≥ 7

20
.

Consequently, we can conclude that for all x ∈ [1,
√
M ],

f(x) ≥ 7

20
. (73)

Combining (72) and (73) proves the claim.

B.3.3 Large learning rates with large ηT

BM

In order to bound the error in this scenario, note that ηT

BM controls the variance of the stochastic
updates in the fixed point iteration. Thus, when ηT

BM is large, the variance of the iterates is large,
resulting in a large error. To demonstrate this effect, we focus on the dynamics of state 2. This part of
the proof is similar to the large learning rate case of Li et al. [2023]. For all t ∈ [T ], define:

V t(2) :=
1

M

M∑

m=1

V m
t (2). (74)

Thus, from (33), we know that E[V t(2)] obeys the following recursion:

E[V t(2)] = (1− ηt(1− γp))E[V t−1(2)] + ηt.

Upon unrolling the recursion, we obtain,

E[V T (2)] =

(
T∏

k=t+1

(1− ηk(1− γp))

)
E[V t(2)] +

T∑

k=t+1

η
(T )
k .

Thus, the above relation along with (16) and the value of V ⋆(2) yields us,

V ⋆(2)− E[V T (2)] =
T∏

k=t+1

(1− ηk(1− γp))

(
1

1− γp
− E[V t(2)]

)
. (75)

Similar to Li et al. [2023], we define

τ ′ := min

{
0 ≤ t′ ≤ T − 2

∣∣∣∣ E[(V t)
2] ≥ 1

4(1− γ)2
for all t′ + 1 ≤ t ≤ T

}
.

If such a τ ′ does not exist, it implies that either E[(V T )
2] < 1

4(1−γ)2 or E[(V T−1)
2] < 1

4(1−γ)2 . If

the former is true, then,

V ⋆(2)− E[V T (2)] =
3

4(1− γ)
−
√
E[(V T )2] >

1

4(1− γ)
. (76)

Similarly, if E[(V T−1)
2] < 1

4(1−γ)2 , it implies E[V T−1] <
1

2(1−γ) . Using (33), we have,

E[V T (2)] = (1− ηT (1− γp))E[V T−1(2)] + ηT ≤ E[V T−1(2)] + 1 <
1

2(1− γ)
+

1

6(1− γ)
=

2

3(1− γ)
.

Consequently,

V ⋆(2)− E[V T (2)] >
3

4(1− γ)
− 2

3(1− γ)
>

1

12(1− γ)
. (77)

For the case when τ ′ exists, we divide the proof into two cases.
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• We first consider the case when the learning rates satisfy:

T∏

k=τ ′+1

(1− ηk(1− γp)) ≥ 1

2
. (78)

The analysis for this case is identical to that considered in Li et al. [2023]. We explicitly
write the steps for completeness. Specifically,

V ⋆(2)− E[V T (2)] =

(
T∏

k=τ ′+1

(1− ηk(1− γp))

)(
1

1− γp
− E[V τ ′(2)]

)

≥ 1

2
·
(

3

4(1− γ)
−
√
E[(V τ ′(2))2]

)

≥ 1

2
·
(

3

4(1− γ)
− 1

2(1− γ)

)
≥ 1

8(1− γ)
, (79)

where the first line follows from (75), the second line from the condition on step sizes and
the third line from the definition of τ ′.

• We now consider the other case where,

0 ≤
T∏

k=τ ′+1

(1− ηk(1− γp)) <
1

2
. (80)

Using [Li et al., 2023, Eqn.(134)], for any t′ < t and all agents m, we have the relation

V m
t (2) =

1

1− γp
−

t∏

k=t′+1

(1− ηk(1− γp))

(
1

1− γp
− V m

t′ (2)

)

+
∑

k=t′+1

η
(t)
k γ(P̂m

k (2|2)− p)V m
k−1(2).

The above equation is directly obtained by unrolling the recursion in (24) along with noting
that Qt(2, 1) = Vt(2) for all t. Consequently, we have,

V T (2) =
1

1− γp
−

T∏

k=t′+1

(1− ηk(1− γp))

(
1

1− γp
− V t′(2)

)

+
1

M

M∑

m=1

T∑

k=t′+1

η
(T )
k γ(P̂m

k (2|2)− p)V m
k−1(2). (81)

Let {Ft}Tt=0 be a filtration such that Ft is the σ-algebra corre-

sponding to {{P̂m
s (2|2)}Mm=1}ts=1. It is straightforward to note that{

1
M

∑M
m=1 η

(T )
k γ(P̂m

k (2|2)− p)V m
k−1(2)

}
k

is a martingale sequence adapted to the

filtration Fk. Thus, using the result from [Li et al., 2023, Eqn.(139)], we can conclude that

Var(V T (2)) ≥ E

[
T∑

k=τ ′+2

Var

(
1

M

M∑

m=1

η
(T )
k γ(P̂m

k (2|2)− p)V m
k−1(2)

∣∣∣∣Fk−1

)]
. (82)

We have,

Var

(
1

M

M∑

m=1

η
(T )
k γ(P̂m

k (2|2)− p)V m
k−1(2)

∣∣∣∣Fk−1

)

=
1

M2

M∑

m=1

Var

(
η
(T )
k γ(P̂m

k (2|2)− p)V m
k−1(2)

∣∣∣∣Fk−1

)

=
(η

(T )
k )2

BM
γ2p(1− p)

(
1

M

M∑

m=1

(V m
k−1(2))

2

)
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≥ (1− γ)(4γ − 1)

9BM
· (η(T )

k )2 · (V k−1(2))
2, (83)

where the first line follows from that fact that variance of sum of i.i.d. random variables is
the sum of their variances, the second line from variance of Binomial random variable and
the third line from Jensen’s inequality. Thus, (82) and (83) together yield,

Var(V T (2)) ≥
(1− γ)(4γ − 1)

9BM
·

T∑

k=τ ′+2

(η
(T )
k )2 · E[(V k−1(2))

2]

≥ (1− γ)(4γ − 1)

9BM
· 1

4(1− γ)2
·

T∑

k=max{τ,τ ′}+2

(η
(T )
k )2, (84)

where the second line follows from the definition of τ ′. We focus on bounding the third
term in the above relation. We have,

T∑

k=max{τ ′,τ}+2

(
η
(T )
k

)2
≥

T∑

k=max{τ ′,τ}+2

(
ηk

T∏

i=k+1

(1− ηi(1− γp)

)2

≥
T∑

k=max{τ ′,τ}+2

(
ηT

t∏

i=k+1

(1− ητ (1− γp))

)2

= η2T

T∑

k=max{τ ′,τ}+2

(1− ητ (1− γp))2(t−k)

≥ η2T ·
1− (1− ητ (1− γp))2(T−max{τ ′,τ}−1)

ητ (1− γp)(2− ητ (1− γp))

≥ ηT ·
1

4(1− γ)
· c′, (85)

where the second line follows from monotonicity of ηt and the numerical constant c′ in the
fifth step is given by the following claim whose proof is deferred to the end of the section:

1− (1− ητ (1− γp))2(T−max{τ ′,τ}−1) ≥
{
1− e−8/9 for constant step sizes,

1− exp
(
− 8

3max{1,cη}

)
for linearly rescaled step sizes

.

(86)

Thus, (84) and (85) together imply

Var(V T (2)) ≥
(4γ − 1)

36BM(1− γ)
·

T∑

k=τ ′+2

(η
(T )
k )2

≥ c′(4γ − 1)

144(1− γ)
· ηT
BM(1− γ)

≥ c′(4γ − 1)

144(1− γ)
· 1

100
, (87)

where the last inequality follows from the bound on ηT

BM .

Thus, for all N ≥ 1, we have,

E[(V ⋆(2)− V T (2))
2] = E[(V ⋆(2)− E[V T (2)])

2] + Var(V T (2)) ≥
c′′

(1− γ)N
,

for some numerical constant c′′. Similar to the small learning rate case, the error rate is bounded away
from a constant value irrespective of the number of agents and the number of communication rounds.
Thus, even with CCround = Ω(T ), we will not observe any collaborative gain in this scenario.

Proof of (86). To establish the claim, we consider two cases:
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• τ ′ ≥ τ : Under this case, we have,

(1− ητ (1− γp))2(T−max{τ ′,τ}−1) = (1− ητ (1− γp))2(T−τ ′−1)

≤ (1− ητ (1− γp))T−τ ′ ≤
T∏

k=τ ′+1

(1− ηk(1− γp)) ≤ 1

2
,

(88)

where the last inequality follows from (80).

• τ ≥ τ ′: For this case, we have

(1− ητ (1− γp))2(T−max{τ ′,τ}−1) = (1− ητ (1− γp))2(T−τ−1)

≤ (1− ητ (1− γp))T−τ ≤ exp

(
−2Tητ (1− γp)

3

)
.

(89)

For the constant stepsize schedule, we have,

exp

(
−2Tητ (1− γp)

3

)
≤ exp

(
−2T

3
· 1

(1− γ)T
· 4(1− γ)

3

)
= exp

(
−8

9

)
(90)

For linearly rescaled stepsize schedule, we have,

exp

(
−2Tητ (1− γp)

3

)
≤ exp

(
−2T

3
· 1

1 + cη(1− γ)T/3
· 4(1− γ)

3

)
= exp

(
− 8

3max{1, cη}

)

(91)

On combining (88), (89), (90) and (91), we arrive at the claim.

B.4 Generalizing to larger state action spaces

We now elaborate on how we can extend the result to general state-action spaces along with the
obtaining the lower bound on the bit level communication complexity. For the general case, we
instead consider the following MDP. For the first four states {0, 1, 2, 3}, the probability transition
kernel and reward function are given as follows.

A0 = {1} P (0|0, 1) = 1 r(0, 1) = 0, (92a)

A1 = {1, 2, . . . , |A|} P (1|1, a) = p P (0|1, a) = 1− p r(1, a) = 1, ∀ a ∈ A (92b)

A2 = {1} P (2|2, 1) = p P (0|2, 1) = 1− p r(2, 1) = 1, (92c)

A3 = {1} P (3|3, 1) = 1 r(3, 1) = 1, (92d)

where the parameter p =
4γ − 1

3γ
. The overall MDP is obtained by creating |S|/4 copies of the above

MDP for all sets of the form {4r, 4r+1, 4r+2, 4r+3} for r ≤ |S|/4−1. It is straightforward to note
that the lower bound on the number of communication rounds immediately transfers to the general

case as well. Moreover, note that the bound on CCround implies the bound CCbit = Ω
(

1
(1−γ) log2 N

)

as every communication entails sending Ω(1) bits.

To obtain the general lower bound on bit level communication complexity, note that we can carry
out the analysis in the previous section for all |A|/2 pairs of actions in state 1 corresponding to the
set of states {0, 1, 2, 3}. Moreover, the algorithm A , needs to ensure that the error is low across
all the |A|/2 pairs. Since the errors are independent across all these pairs, each of them require

Ω
(

1
(1−γ) log2 N

)
bits of information to be transmitted during the learning horizon leading to a lower

bound of Ω
(

|A|
(1−γ) log2 N

)
. Note that since we require a low ℓ∞ error, A needs to ensure that

the error is low across all the pairs, resulting in a communication cost linearly growing with |A|.
Upon repeating the argument across all |S|/4 copies of the MDP, we arrive at the lower bound of

CCbit = Ω
(

|S||A|
(1−γ) log2 N

)
.
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B.5 Proofs of auxiliary lemmas

B.5.1 Proof of Lemma 2

Note that a similar relationship is also derived in Li et al. [2023], but needing to take care of the
averaging over multiple agents, we present the entire arguments for completeness. We prove the
claim using an induction over t. It is straightforward to note that the claim is true for t = 0 and all
agents m ∈ {1, 2, . . . ,M}. For the inductive step, we assume that the claim holds for t− 1 for all

clients. Using the induction hypothesis, we have the following relation between V m
t−1(1) and V̂ m

t−1:

V m
t−1(1) = max

a∈{1,2}
Qm

t−1(1, a) ≥ max
a∈{1,2}

Q̂m
t−1(a)−

1

1− γ

t−1∏

i=1

(1− ηi(1− γ)) = V̂ m
t−1 −

1

1− γ

t−1∏

i=1

(1− ηi(1− γ)).

(93)

For t /∈ {tr}Rr=1 and a ∈ {1, 2}, we have,

Qm
t (1, a)− Q̂m

t (a) = Qm
t−1/2(1, a)− Q̂m

t−1/2(a)

= (1− ηt)Q
m
t−1(1, a) + ηt(1 + γP̂m

t (1|1, a)V m
t−1(1))

−
[
(1− ηt)Q̂

m
t−1(a) + ηt(1 + γP̂m

t (1|1, a)V̂ m
t−1)

]

= (1− ηt)(Q
m
t−1(1|1, a)− Q̂m

t−1(a)) + ηtγP̂
m
t (1|1, a)(V m

t−1(1)− V̂ m
t−1)

≥ − (1− ηt)

1− γ

t−1∏

i=1

(1− ηi(1− γ))− P̂m
t (1|1, a) · ηtγ

1− γ

t−1∏

i=1

(1− ηi(1− γ))

≥ − (1− ηt)

1− γ

t−1∏

i=1

(1− ηi(1− γ))− ηtγ

1− γ

t−1∏

i=1

(1− ηi(1− γ))

≥ − 1

1− γ

t∏

i=1

(1− ηi(1− γ)). (94)

For t ∈ {tr}Rr=1 and a ∈ {1, 2}, we have,

Qm
t (1, a)− Q̂m

t (a) =
1

M

M∑

m=1

Qm
t−1/2(1, a)−

1

M

M∑

m=1

Q̂m
t−1/2(a)

=
1

M

M∑

m=1

[
(1− ηt)Q

m
t−1(1, a) + ηt(1 + γP̂m

t (1|1, a)V m
t−1(1))

]

− 1

M

M∑

m=1

[
(1− ηt)Q̂

m
t−1(a) + ηt(1 + γP̂m

t (1|1, a)V̂ m
t−1)

]

=
1

M

M∑

m=1

[
(1− ηt)(Q

m
t−1(1, a)− Q̂m

t−1(a)) + ηtγP̂
m
t (1|1, a)(V m

t−1(1)− V̂ m
t−1)

]

≥ − 1

1− γ

t∏

i=1

(1− ηi(1− γ)), (95)

where the last step follows using the same set of arguments as used in (94). The inductive step follows
from (94) and (95).

B.5.2 Proof of Lemma 3

In order to bound the term E[∆m
t,max]− E[ξmt′,t,max], we make use of the relation in (44a), which we

recall

E[∆m
t,max] ≥ φt′,tE[∆t′,max] +

[
t∑

k=t′+1

η̃
(t)
k γpE[∆m

k−1,max]

]
+ E[ξmt′,t,max]− φt′,tE[|∆t′(1)−∆t′(2)|].
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• To aid the analysis, we consider the following recursive relation for any fixed agent m:

yt = (1− ηt)yt−1 + ηt(γpyt−1 + E[ξmt′,t,max]). (96)

Upon unrolling the recursion, we obtain,

yt =

(
t∏

k=t′+1

(1− ηk)

)
yt′ +

t∑

k=t′+1

(
ηk

t∏

i=k+1

(1− ηi)

)
γpyk−1

+

t∑

k=t′+1

(
ηk

t∏

i=k+1

(1− ηi)

)
E[ξmt′,t,max]

= φt′,tyt′ +

t∑

k=t′+1

η̃
(t)
k γpyk−1 +

t∑

k=t′+1

η̃
(t)
k E[ξmt′,t,max]. (97)

Initializing yt′ = E[∆t′,max] in (97) and plugging this into (44a), we have

E[∆m
t,max] ≥ yt − φt′,tE[|∆t′(1)−∆t′(2)|],

where we used
∑t

k=t′+1 η̃
(t)
k ≤ 1 (cf. (18)). We now further simply the expression of yt.

By rewriting (96) as

yt = (1− ηt(1− γp))yt−1 + ηtE[ξ
m
t′,t,max],

it is straight forward to note that yt is given as

yt =

(
t∏

k=t′+1

(1− ηk(1− γp))

)
yt′ + E[ξmt′,t,max]

[
t∑

k=t′+1

η
(t)
k

]
. (98)

Consequently, we have,

E[∆m
t,max]− E[ξmt′,t,max] ≥

(
t∏

k=t′+1

(1− ηk(1− γp))

)
E[∆t′,max]

+ E[ξmt′,t,max]

[
t∑

k=t′+1

η
(t)
k − 1

]
− φt′,tE[|∆t′(1)−∆t′(2)|].

(99)

• We can consider a slightly different recursive sequence defined as

wt = (1− ηt)wt−1 + ηt(γpwt−1). (100)

Using a similar sequence of arguments as outlined in (96)-(98), we can conclude that if

wt′ = E[∆t′,max], then E[∆m
t,max] ≥ wt + E[ξmt′,t,max] − φt′,tE[|∆t′(1) − ∆t′(2)|] and

consequently,

E[∆m
t,max] ≥

(
t∏

k=t′+1

(1− ηk(1− γp))

)
E[∆t′,max] + E[ξmt′,t,max]− φt′,tE[|∆t′(1)−∆t′(2)|].

(101)

On combining (99) and (101), we arrive at the claim.

B.5.3 Proof of Lemma 4

We begin with bounding the first term E[ξmt′,t,max]; the second bound follows in an almost identical
derivation.
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Step 1: applying Freedman’s inequality. Using the relation max{a, b} = a+b+|a−b|
2 , we can

rewrite E[ξmt′,t,max] as

E[ξmt′,t,max] = E

[
ξmt′,t(1) + ξmt′,t(2)

2
+

∣∣∣∣
ξmt′,t(1)− ξmt′,t(2)

2

∣∣∣∣
]

=
1

2
E

[∣∣∣∣
ξmt′,t(1)− ξmt′,t(2)

2

∣∣∣∣
]

=
1

2
E

[∣∣∣∣∣

t∑

k=t′+1

η̃
(t)
k γ(P̂m

k (1|1, 1)− P̂m
k (1|1, 2))V̂ m

k−1

︸ ︷︷ ︸
=:ζm

t′,t

∣∣∣∣∣

]
, (102)

where we used the definition in (38) and the fact that E[ξmt′,t(1)] = E[ξmt′,t(2)] = 0. Decompose ζmt′,t
as

ζmt′,t =

t∑

k=t′+1

B∑

b=1

η̃
(t)
k

γ

B
(Pm

k,b(1|1, 1)− Pm
k,b(1|1, 2))V̂ m

k−1 =:

L∑

l=1

zl, (103)

where for all 1 ≤ l ≤ L

zl :=
γ

B
(Pm

k(l),b(l)(1|1, 1)− Pm
k(l),b(l)(1|1, 2))V̂ m

k(l)−1

with

k(l) := ⌊l/B⌋+ t′ + 1; b(l) = ((l − 1) mod B) + 1; L = (t− t′)B.

Let {Fl}Ll=1 be a filtration such that Fl is the σ-algebra corresponding to

{Pm
k(j),b(j)(1|1, 1), Pm

k(j),b(j)(1|1, 2)}lj=1. It is straightforward to note that {zl}Ll=1 is a mar-

tingale sequence adapted to the filtration {F}Ll=1. We will use the Freedman’s inequality [Freedman,
1975, Li et al., 2023] to obtain a high probability bound on |ζmt′,t|.

• To that effect, note that

sup
l
|zl| ≤ sup

l

∣∣∣η̃(t)k(l) ·
γ

B
· (Pm

k(l),b(l)(1|1, 1)− Pm
k(l),b(l)(1|1, 2)) · V̂ m

k(l)−1

∣∣∣

≤ η̃
(t)
k(l) ·

γ

B(1− γ)

≤ ηt
B(1− γ)

, (104)

where the second step follows from the bounds |(Pm
k(l),b(l)(1|1, 1)− Pm

k(l),b(l)(1|1, 2))| ≤ 1

and V̂ m
k(l)−1 ≤ 1

1−γ and the third step uses cη ≤ 1
1−γ and the fact that η̃

(T )
k is increasing in

k in this regime. (cf. (19)).

• Similarly,

Var(zl|Fl−1) ≤
(
η̃
(t)
k(l)

)2 γ2

B2
·
(
V̂ m
k(l)−1

)2
· Var(Pm

k(l),b(l)(1|1, 1)− Pm
k(l),b(l)(1|1, 2))

≤
(
η̃
(t)
k(l)

)2 γ2

B2(1− γ)2
· 2p(1− p)

≤
2
(
η̃
(t)
k(l)

)2

3B2(1− γ)
. (105)

Using the above bounds (104) and (105) along with Freedman’s inequality yield that

Pr


|ζmt′,t| ≥

√√√√ 8 log(2/δ)

3B2(1− γ)

L∑

l=1

(
η̃
(t)
k(l)

)2
+

4ηt log(2/δ)

3B(1− γ)


 ≤ δ. (106)
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Setting δ0 = (1−γ)2

2 · E[|ζmt′,t|2], with probability at least 1− δ0, it holds

|ζmt′,t| ≥

√√√√8 log(2/δ0)

3B(1− γ)

t∑

k=t′+1

(
η̃
(t)
k

)2
+

4ηt log(2/δ0)

3B(1− γ)
=: D. (107)

Consequently, plugging this back to (102), we obtain

E[ξmt′,t,max] =
1

2
E[|ζmt′,t|]

≥ 1

2
E[|ζmt′,t|1{|ζmt′,t| ≤ D}]

≥ 1

2D
E[|ζmt′,t|21{|ζmt′,t| ≤ D}]

≥ 1

2D

(
E[|ζmt′,t|2]− E[|ζmt′,t|21{|ζmt′,t| > D}]

)

≥ 1

2D

(
E[|ζmt′,t|2]−

Pr(|ζmt′,t| > D)

(1− γ)2

)
≥ 1

4D
· E[|ζmt′,t|2]. (108)

Here, the penultimate step used the fact that |ζmt′,t| ≤
t∑

k=t′+1

η̃
(t)
k

(1− γ)
≤ 1

(1− γ)
, and the last step

used the definition of δ0. Thus, it is sufficient to obtain a lower bound on E[|ζmt′,t|2] in order obtain a

lower bound for E[ξmt′,t,max].

Step 2: lower bounding E[|ζmt′,t|2]. To proceed, we introduce the following lemma pertaining to

lower bounding V̂ m
t that will be useful later.

Lemma 6. For all time instants t ∈ [T ] and all agent m ∈ [M ]:

E

[(
V̂ m
t

)2]
≥ 1

2(1− γ)2
.

We have,

E[|ζmt′,t|2] = E

[
L∑

l=1

Var (zl|Fl−1)

]
= E

[
L∑

l=1

E
[
z2l |Fl−1

]
]

≥
L∑

l=1

(
η̃
(t)
k(l)

)2 γ2

B2
· 2p(1− p) · E

[(
V̂ m
k(l)−1

)2]

≥
L∑

l=1

(
η̃
(t)
k(l)

)2 γ2

B2
· 2p(1− p) · 1

2(1− γ)2

≥ 2

9B(1− γ)
·

t∑

k=max{t′,τ}+1

(
η̃
(t)
k

)2
, (109)

where the third line follows from Lemma 6 and the fourth line uses γ ≥ 5/6.

Step 3: finishing up. We finish up the proof by bounding
∑t

k=max{t′,τ}+1

(
η̃
(t)
k

)2
for t −

max{t′, τ} ≥ 1/ητ . We have

t∑

k=max{t′,τ}+1

(
η̃
(t)
k

)2
≥

t∑

k=max{t′,τ}+1

(
ηk

t∏

i=k+1

(1− ηi)

)2
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(i)

≥
t∑

k=max{t′,τ}+1

(
ηt

t∏

i=k+1

(1− ητ )

)2

= η2t

t∑

k=max{t′,τ}+1

(1− ητ )
2(t−k)

≥ η2t ·
1− (1− ητ )

2(t−max{t′,τ})

ητ (2− ητ )

≥ ηt ·
1− exp(−2)

6
≥ ηt

10
≥ ηT

10
, (110)

where (i) follows from the monotonicity of ηk. Plugging (110) into the expressions of D (cf. (107))
we have

D =

√√√√8 log(2/δ0)

3B(1− γ)

t∑

k=t′+1

(
η̃
(t)
k

)2
+

4ηt log(2/δ0)

3B(1− γ)

≤ 9

2
E[|ζmt′,t|2] ·

√
8 log(2/δ0)

3

(
1

B(1− γ)

t∑

k=t′+1

(
η̃
(t)
k

)2
)−1/2

+ 60 · E[|ζmt′,t|2] · log(2/δ0)

≤ 3E[|ζmt′,t|2] · log(2/δ0)
[√

60B(1− γ)

ηt
+ 20

]

≤ 60E[|ζmt′,t|2] · log(2/δ0)
[√

3B(1− γ)

20ηT
+ 1

]
,

where the second line follows from (109) and (110), and the third line follows from (110). On
combining the above bound with (108), we obtain,

E[ξmt′,t,max] ≥
1

240 log(2/δ0)
· ν

ν + 1
, (111)

where ν :=

√
20ηT

3B(1− γ)
. Note that we have,

δ0 =
(1− γ)2

2
· E[|ζmt′,t|2] ≥

(1− γ)

9B
·

t∑

k=t′+1

(
η̃
(t)
k

)2
≥ ηT (1− γ)

90B
.

Combining the above bound with (111) yields us the required bound.

Step 4: repeating the argument for the second claim. We note that second claim in the theorem,

i.e., the lower bound on E

[
max

{
1
M

∑M
m=1 ξ

m
t′,t(1),

1
M

∑M
m=1 ξ

m
t′,t(2)

}]
follows through an identi-

cal series of arguments where the bounds in Eqns. (104) and (105) contain an additional factor of M
in the denominator (effectively replacing B with BM ), which is carried through in all the following
steps.

B.5.4 Proof of Lemma 5

Using Eqns. (41) and (38), we can write

∆t(1)−∆t(2) =

(
t∏

k=t′+1

(1− ηk)

)
(∆t′(1)−∆t′(2))

+
1

M

M∑

m=1

t∑

k=t′+1

(
ηk

t∏

i=k+1

(1− ηi)

)
γ(P̂m

k (1|1, 1)− P̂m
k (1|1, 2))V̂ m

k−1.
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Upon unrolling the recursion, we obtain,

∆t(1)−∆t(2) =

t∑

k=1

M∑

m=1

(
ηk

t∏

i=k+1

(1− ηi)

)
γ

M
(P̂m

k (1|1, 1)− P̂m
k (1|1, 2))V̂ m

k−1.

If we define a filtration Fk as the σ-algebra corresponding to

{P̂ 1
l (1|1, 1), P̂ 1

l (1|1, 2), . . . , P̂M
l (1|1, 1), P̂M

l (1|1, 2)}kl=1, then it is straightforward to note

that {∆t(1) − ∆t(2)}t is a martingale sequence adapted to the filtration {Ft}t. Using Jensen’s
inequality, we know that if {Zt}t is a martingale adapted to a filtration {Gt}t, then for a convex
function f such that f(Zt) is integrable for all t, {f(Zt)}t is a sub-martingale adapted to {Gt}t.
Since f(x) = |x| is a convex function, {|∆t(1) − ∆t(2)|}t is a submartingale adapted to the
filtration {Ft}t. As a result,

sup
1≤t≤T

E[|∆t(1)−∆t(2)|] ≤ E[|∆T (1)−∆T (2)|] ≤
(
E[(∆T (1)−∆T (2))

2]
)1/2

. (112)

We use the following observation about a martingale sequence {Xi}ti=1 adapted to a filtration {Gi}ti=1
to evaluate the above expression. We have,

E



(

t∑

i=1

Xi

)2

 = E


E



(

t∑

i=1

Xi

)2 ∣∣∣∣Gt−1






= E


E


X2

t + 2Xt

(
t−1∑

i=1

Xi

)
+

(
t−1∑

i=1

Xi

)2 ∣∣∣∣Gt−1






= E
[
X2

t

]
+ E



(

t−1∑

i=1

Xi

)2



=

t∑

i=1

E
[
X2

i

]
, (113)

where the third step uses the facts that
(∑t−1

i=1 Xi

)
is Gt−1 measure and E[Xt|Gt−1] = 0 and fourth

step is obtained by recursively applying second and third steps. Using the relation in Eqn. (113) in
Eqn. (112), we obtain,

sup
1≤t≤T

E[|∆t(1)−∆t(2)|] ≤
(
E[(∆T (1)−∆T (2))

2]
)1/2

≤




T∑

k=1

E



(

M∑

m=1

η̃
(T )
k · γ

M
· (P̂m

k (1|1, 1)− P̂m
k (1|1, 2))V̂ m

k−1

)2





1/2

≤
(

T∑

k=1

(
η̃
(T )
k

)2
· 2γ

2p(1− p)

BM2
·

M∑

m=1

E

[(
V̂ m
k−1

)2]
)1/2

≤
(

T∑

k=1

(
η̃
(T )
k

)2
· 2γ

2p(1− p)

BM(1− γ)2

)1/2

. (114)

Let us focus on the term involving the step sizes. We separately consider the scenario for constant
step sizes and linearly rescaled step sizes. For constant step sizes, we have,

T∑

k=1

(
η̃
(T )
k

)2
=

T∑

k=1

(
ηk

T∏

i=k+1

(1− ηi)

)2

=
T∑

k=1

η2(1− η)2(T−k) ≤ η2

1− (1− η)2
≤ η. (115)

Similarly, for linearly rescaled step sizes, we have,

T∑

k=1

(
η̃
(T )
k

)2
=

τ∑

k=1

(
η̃
(T )
k

)2
+

T∑

k=τ+1

(
ηk

T∏

i=k+1

(1− ηi)

)2
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≤
τ∑

k=1

(
η̃(T )
τ

)2
+

T∑

k=τ+1

η2k(1− ηT )
2(T−k)

≤ η2τ (1− ηT )
2(T−τ) · τ + η2τ ·

1

ηT (2− ηT )

≤ 3ηT · ηT · T · exp
(
−4TηT

3

)
+ 3ηT

≤ 9

4e
ηT + 3ηT

≤ 4ηT , (116)

where the second step uses cη ≤ logN ≤ 1
1−γ and the fact that η̃

(T )
k is increasing in k in this regime.

(See Eqn. (19)) and fifth step uses xe−4x/3 ≤ 3/4e. On plugging results from Eqns. (115) and (116)
into Eqn. (114) along with the value of p, we obtain,

sup
1≤t≤T

E[|∆t(1)−∆t(2)|] ≤
√

8ηT
3BM(1− γ)

, (117)

as required.

B.5.5 Proof of Lemma 6

For the proof, we fix an agent m. In order to obtain the required lower bound on V̂ m
t , we define

an auxiliary sequence Q
m

t that evolves as described in Algorithm 5. Essentially, Q
m

t evolves in a

manner almost identical to Q̂m
t except for the fact that there is only one action and hence there is no

maximization step in the update rule.

Algorithm 5: Evolution of Q

1: r ← 1, Q
m

0 = Q⋆(1, 1) for all m ∈ {1, 2, . . . ,M}
2: for t = 1, 2, . . . , T do
3: for m = 1, 2, . . . ,M do

4: Q
m

t−1/2 ← (1− ηt)Q
m

t−1(a) + ηt(1 + P̂m
t (1|1, 1)Qm

t−1)

5: Compute Q
m

t according to Eqn. (8)
6: end for
7: end for

It is straightforward to note that Q̂m
t (1) ≥ Q

m

t , which can be shown using induction. From the

initialization, it follows that Q̂m
0 (1) ≥ Q

m

0 . Assuming the relation holds for t− 1, we have,

Q̂m
t−1/2(1) = (1− ηt)Q̂

m
t−1(1) + ηt(1 + γP̂m

t (1|1, 1)V̂ m
t−1)

≥ (1− ηt)Q̂
m
t−1(1) + ηt(1 + γP̂m

t (1|1, 1)Q̂m
t−1(1))

≥ (1− ηt)Q
m

t−1 + ηt(1 + γP̂m
t (1|1, 1)Qm

t−1)

= Q
m

t−1/2.

Since Q̂m
t and Q

m

t follow the same averaging schedule, it immediately follows from the above

relation that Q̂m
t (1) ≥ Q

m

t . Since V̂ m
t ≥ Q̂m

t (1) ≥ Q
m

t , we will use the sequence Q
m

t to establish

the required lower bound on V̂ m
t .

We claim that for all time instants t and all agents m,

E[Q
m

t ] =
1

1− γp
. (118)

Assuming (118) holds, we have

E[(V̂ m
t )2] ≥

(
E[V̂ m

t ]
)2
≥
(
E[Q

m

t ]
)2
≥
(

1

1− γp

)2

≥ 1

2(1− γ)2
,
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as required. In the above expression, the first inequality follows from Jensen’s inequality, the second

from the relation V̂ m
t ≥ Q

m

t ≥ 0 and the third from (118).

We now move now to prove the claim (118) using induction. For the base case, E[Q
m

0 ] = 1
1−γp holds

by choice of initialization. Assume that E[Q
m

t−1] =
1

1−γp holds for some t− 1 for all m.

• If t is not an averaging instant, then for any client m,

Q
m

t = (1− ηt)Q
m

t−1 + ηt(1 + γP̂m
t (1|1, 1)Qm

t−1)

=⇒ E[Q
m

t ] = (1− ηt)E[Q
m

t−1] + ηt(1 + γE[P̂m
t (1|1, 1)Qm

t−1])

= (1− ηt)E[Q
m

t−1] + ηt(1 + γpE[Q
m

t−1])

=
(1− ηt)

1− γp
+ ηt

(
1 +

γp

1− γp

)
=

1

1− γp
. (119)

The third line follows from the independence of P̂m
t (1|1, 1) and Q

m

t−1 and the fourth line
uses the inductive hypothesis.

• If t is an averaging instant, then for all clients m,

Q
m

t =
(1− ηt)

M

M∑

j=1

Q
j

t−1 + ηt
1

M

M∑

j=1

(1 + γP̂ j
t (1|1, 1)Q

j

t−1)

=⇒ E[Q
m

t ] =
(1− ηt)

M

M∑

j=1

E[Q
j

t−1] + ηt
1

M

M∑

j=1

(1 + γE[P̂ j
t (1|1, 1)Q

j

t−1])

=
(1− ηt)

M

M∑

j=1

1

1− γp
+ ηt

1

M

M∑

j=1

(
1 +

γp

1− γp

)
=

1

1− γp
, (120)

where we again make use of independence and the inductive hypothesis.

Thus, (119) and (120) taken together complete the inductive step.

C Analysis of Fed-DVR-Q

In this section, we prove Theorem 2 that outlines the performance guarantees of Fed-DVR-Q. There
are two main parts of the proof. The first part deals with establishing that for the given choice of
parameters described in Section 4.1.3, the output of the algorithm is an ε-optimal estimate of Q⋆ with
probability 1− δ. The second part deals with deriving the bounds on the sample and communication
complexity based on the choice of prescribed parameters. We begin with the second part, which is
easier of the two.

C.1 Establishing the sample and communication complexity bounds

Establishing the communication complexity. We begin with bounding CCround. From the de-
scription of Fed-DVR-Q, it is straightforward to note that each epoch, i.e., each call to the REFINEES-

TIMATE routine, involves I + 1 rounds of communication, one for estimating T Q and the remaining
ones during the iterative updates of the Q-function. Since there are a total of K epochs,

CCround(Fed-DVR-Q; ε,M, δ) ≤ (I + 1)K ≤ 16

η(1− γ)
log2

(
1

(1− γ)ε

)
,

where the second bound follows from the prescribed choice of parameters in Sec. 4.1.3. Similarly,
since the quantization step is designed to compress each coordinate into J bits, each message
transmitted by an agent has a size of no more than J · |S||A| bits. Consequently,

CCbit(Fed-DVR-Q; ε,M, δ) ≤ J · |S||A| · CCround(Fed-DVR-Q; ε,M, δ)

≤ 32|S|A|
η(1− γ)

log2

(
1

(1− γ)ε

)
log2

(
70

η(1− γ)

√
4

M
log

(
8KI|S||A|

δ

))
,

where once again in the second step we plugged in the choice of J from Sec. 4.1.3.
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Establishing the sample complexity. In order to establish the bound on the sample complexity,
note that during epoch k, each agent takes a total of ⌈Lk/M⌉+ I ·B samples, where the first term

corresponds to approximating T̃L(Q(k−1)) and the second term corresponds to the samples taken
during the iterative update scheme. Thus, the total sample complexity is obtained by summing up
over all the K epochs. We have,

SC(Fed-DVR-Q; ε,M, δ) ≤
K∑

k=1

(⌈
Lk

M

⌉
+ I ·B

)
≤ I ·B ·K +

1

M

K∑

k=1

Lk +K.

To continue, notice that

1

M

K∑

k=1

Lk ≤
39200

M(1− γ)2
log

(
8KI|S||A|

δ

)(K0∑

k=1

4k +

K∑

k=K0+1

4k−K0

)

≤ 39200

3M(1− γ)2
log

(
8KI|S||A|

δ

)(
4K0 + 4K−K0

)

≤ 156800

3M(1− γ)2
log

(
8KI|S||A|

δ

)(
1

1− γ
+

1

(1− γ)ε2

)
,

where the first line follows from the choice of Lk in Sec. 4.1.3 and the last line follows from
K0 = ⌈ 12 log2( 1

1−γ )⌉. Plugging this relation and the choices of I and B (cf. Sec. 4.1.3) into the

previous bound yields

SC(Fed-DVR-Q; ε,M, δ) ≤ 4608

ηM(1− γ)3
log2

(
1

(1− γ)ε

)
log

(
8KI|S||A|

δ

)
+K

+
156800

3M(1− γ)2
log

(
8KI|S||A|

δ

)(
1

1− γ
+

1

(1− γ)ε2

)

≤ 313600

ηM(1− γ)3ε2
log2

(
1

(1− γ)ε

)
log

(
8KI|S||A|

δ

)
+K.

Plugging in the choice of K finishes the proof.

C.2 Establishing the error guarantees

In this section, we show that the Q-function estimate returned by the Fed-DVR-Q algorithm is
ε-optimal with probability at least 1− δ. We claim that the estimates of the Q-function generated by
the algorithm across different epochs satisfy the following relation for all k ≤ K with probability
1− δ:

∥Q(k) −Q⋆∥∞ ≤
2−k

1− γ
. (121)

The required bound on ∥Q(K) −Q⋆∥∞ immediately follows by plugging in the value of K. Thus,
for the remainder of the section, we focus on establishing the above claim.

Step 1: fixed-point contraction of REFINEESTIMATE. Firstly, note that the variance-reduced
update scheme carried out during the REFINEESTIMATE routine resembles that of the classic Q-
learning scheme, i.e., fixed-point iteration, with a different operator defined as follows:

H(Q) := T (Q)− T (Q) + T̃L(Q), for some fixed Q. (122)

Thus, the update scheme at step i ≥ 1 in (11) can then be written as

Qm
i− 1

2
= (1− η)Qi−1 + ηĤ(m)

i (Qi−1), (123)

where Ĥ(m)
i (Q) := T̂ (m)

i (Q)− T̂ (m)
i (Q) + T̃L(Q) is a stochastic, unbiased estimate of the operator

H, similar to T̂ (m)
i (Q). Let Q⋆

H denote the fixed point of H. Then the update scheme in (123)
drives the sequence {Qm

i }i≥0 to Q⋆
H; further, as long as ∥Q⋆ −Q⋆

H∥∞ is small, the required error
∥Qi −Q⋆∥∞ can also be controlled. The following lemmas formalize these ideas and pave the path
to establish the claim in (121). The proofs are deferred to Appendix C.3.
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Lemma 7. Let δ ∈ (0, 1). Consider the REFINEESTIMATE routine described in Algorithm 3 and

let Q⋆
H denote the fixed point of the operatorH defined in (122) for some fixed Q. Then the iterates

generated by REFINEESTIMATE QI satisfy

∥QI −Q⋆
H∥∞ ≤

1

6

(
∥Q−Q⋆∥∞ + ∥Q⋆ −Q⋆

H∥∞
)
+

D

70

with probability 1− δ
2K .

Lemma 8. Consider the REFINEESTIMATE routine described in Alg. 3 and let Q⋆
H denote the fixed

point of the operator H defined in Eqn. (122) for a fixed Q. The following relation holds with

probability 1− δ
2K :

∥Q⋆
H −Q⋆∥∞ ≤ ∥Q−Q⋆∥∞ ·

√
16κ′

L(1− γ)2
+

√
64κ′

L(1− γ)3
+

2κ′√2
3L(1− γ)2

+
D

70
,

whenever L ≥ 32κ′, where κ′ = log
(

12K|S||A|
δ

)
.

Step 2: establishing the linear contraction. We now leverage the above lemmas to establish
the desired contraction in (121). Instantiating the operator (122) at each k-th epoch by setting

Q := Q(k−1) and L := Lk, we define

Hk(Q) := T (Q)− T (Q(k−1)) + T̃Lk
(Q(k−1)), (124)

whose fixed point is denoted as Q⋆
Hk

. Using the results from Lemmas 7 and 8 with D := Dk and
H = Hk, we obtain

∥Q(k) −Q⋆∥∞ ≤ ∥Q(k) −Q⋆
Hk
∥∞ + ∥Q⋆

H −Q⋆
Hk
∥∞

≤ 1

6

(
∥Q(k−1) −Q⋆∥∞ + ∥Q⋆ −Q⋆

Hk
∥∞
)
+

Dk

70
+ ∥Q⋆

Hk
−Q⋆∥∞

=
1

6

(
∥Q(k−1) −Q⋆∥∞ + 7∥Q⋆ −Q⋆

Hk
∥∞
)
+

Dk

70

≤ ∥Q(k−1) −Q⋆∥∞
(
1

6
+

7

6

√
16κ′

Lk(1− γ)2

)
+

7

6

(√
64κ′

Lk(1− γ)3
+

2
√
2κ′

3Lk(1− γ)2

)
+

13Dk

420

≤ ∥Q(k−1) −Q⋆∥∞
(
1

6
+

7

6

√
16κ′

Lk(1− γ)2

)
+

7

6

√
100κ′

Lk(1− γ)3
+

13Dk

420
,

(125)

holds with probability 1 − δ
K . Here, we invoke Lemma 7 in the second step and Lemma 8 in the

fourth step corresponding to the REFINEESTIMATE routine during the k-th epoch. In the last step, we

used the fact that
Lk(1−γ)2

κ′ ≥ 1.

We now use induction along with the recursive relation in (125) to establish the required claim (121).

Let us first consider the case 0 ≤ k ≤ K0. The base case, ∥Q(0)−Q⋆∥∞ ≤ 1
1−γ , holds by definition.

Let us assume the relation holds for k − 1. Then, from (125) and choice of Lk (Sec. 4.1.3), we have

∥Q(k) −Q⋆∥∞ ≤ ∥Q(k−1) −Q⋆∥∞
(
1

6
+

7

6

√
16κ′

Lk(1− γ)2

)
+

7

6

√
100κ′

Lk(1− γ)3
+

13Dk

420

≤ 2−(k−1)

1− γ

(
1

6
+ 2−k · 7

6

√
8

19600

)
+ 2−k · 7

6

√
50

19600(1− γ)
+

104

420
· 2

−(k−1)

1− γ

≤ 2−(k−1)

1− γ

(
1

6
+

7

6

√
91

39200
+

1

4

)

≤ 2−k

1− γ
. (126)
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Now we move to the second case, for k > K0. From (125) and choice of Lk (Sec. 4.1.3), we have

∥Q(k) −Q⋆∥∞ ≤ ∥Q(k−1) −Q⋆∥∞
(
1

6
+

7

6

√
16κ′

Lk(1− γ)2

)
+

7

6

√
100κ′

Lk(1− γ)3
+

13Dk

420

≤ 2−(k−1)

1− γ

(
1

6
+ 2−(k−K0) · 7

6

√
8

19600

)
+ 2−(k−K0) · 7

6

√
50

19600(1− γ)
+

104

420
· 2

−(k−1)

1− γ

≤ 2−(k−1)

1− γ

(
1

6
+

7

6

√
1

196
+

1

4

)

≤ 2−k

1− γ
. (127)

By a union bound argument, we can conclude that the relation ∥Q(k) −Q⋆∥∞ ≤ 2−k

1−γ holds for all

k ≤ K with probability at least 1− δ.

Step 3: confirm the compressor bound. The only thing left to verify is that the inputs to the
compressor are always bounded by Dk during the k-th epoch, for all 1 ≤ k ≤ K. The following
lemma provides a bound on the input to the compressor during any run of the REFINEESTIMATE

routine.

Lemma 9. Consider the REFINEESTIMATE routine described in Algorithm 3 with some for some

fixed Q. For all i ≤ I and all agents m, the following bound holds with probability 1− δ
2K :

∥Qm
i− 1

2
−Qi−1∥∞ ≤ η∥Q−Q⋆

H∥∞
(
7

6
· (1 + γ) + 2γ

)
+

ηD(1 + γ)

70
.

For the k-th epoch, it follows that

η∥Q(k−1) −Q⋆
Hk
∥∞
(
7

6
· (1 + γ) + 2γ

)
+

ηDk(1 + γ)

70

≤ 13

3

(
∥Q(k−1) −Q⋆∥∞ + ∥Q⋆ −Q⋆

Hk
∥∞
)
+

Dk(1 + γ)

70

≤ 13

3
· 15
14
· ∥Q(k−1) −Q⋆∥∞ +

2Dk

70

≤
(
195

42
+

16

70

)
· 2

−(k−1)

1− γ

≤ 8 · 2
−(k−1)

1− γ
:= Dk.

In the third step, we used the same sequence of arguments as used in (126) and (127) and, in the

fourth step, we used the bound on ∥Q(k−1) −Q⋆∥∞ from (121) and the prescribed value of Dk.

C.3 Proof of auxiliary lemmas

C.3.1 Proof of Lemma 7

Let us begin with analyzing the evolution of the sequence {Qi}Ii=1 during a run of the REFINEESTI-

MATE routine. The sequence {Qi}Ii=1 satisfies the following recursion:

Qi = Qi−1 +
1

M

M∑

m=1

C

(
Qm

i− 1
2
−Qi−1;D, J

)

= Qi−1 +
1

M

M∑

m=1

(
Qm

i− 1
2
−Qi−1 + ζmi

)
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=
1

M

M∑

m=1

(
Qm

i− 1
2
+ ζmi

)
= (1− η)Qi−1 +

η

M

M∑

m=1

Ĥ(m)
i (Qi−1) +

1

M

M∑

m=1

ζmi

︸ ︷︷ ︸
=:ζi

. (128)

In the above expression, ζmi denotes the quantization noise introduced at agent m in the i-th update.

Subtracting Q⋆
H from both sides of (128), we obtain

Qi −Q⋆
H = (1− η)(Qi−1 −Q⋆

H) +
η

M

M∑

m=1

(
Ĥ(m)

i (Qi−1)−Q⋆
H

)
+ ζi

= (1− η)(Qi−1 −Q⋆
H) +

η

M

M∑

m=1

(
Ĥ(m)

i (Qi−1)− Ĥ(m)
i (Q⋆

H)
)

+
η

M

M∑

m=1

(
Ĥ(m)

i (Q⋆
H)−H(Q⋆

H)
)
+ ζi. (129)

Consequently,

∥Qi −Q⋆
H∥∞ ≤ (1− η)∥Qi−1 −Q⋆

H∥∞ +
η

M

M∑

m=1

∥∥∥Ĥ(m)
i (Qi−1)− Ĥ(m)

i (Q⋆
H)
∥∥∥
∞

+

∥∥∥∥∥
η

M

M∑

m=1

(
Ĥ(m)

i (Q⋆
H)−H(Q⋆

H)
)∥∥∥∥∥

∞

+ ∥ζi∥∞ ,

(130)

which we shall proceed to bound each term separately.

• Regarding the second term, it follows that
∥∥∥Ĥ(m)

i (Q)− Ĥ(m)
i (Q⋆

H)
∥∥∥
∞

=
∥∥∥T̂ (m)

i (Q)− T̂ (m)
i (Q⋆

H)
∥∥∥
∞
≤ γ ∥Q−Q⋆

H∥∞ , (131)

which holds for all Q since T̂ (m)
i is a γ-contractive operator.

• Regarding the third term, notice that

1

M

M∑

m=1

(
Ĥ(m)

i (Q⋆
H)−H(Q⋆

H)
)
=

1

MB

M∑

m=1

∑

z∈Z(m)
i

(
Tz(Q⋆

H)− Tz(Q)− T (Q⋆
H) + T (Q)

)
.

Note that Tz(Q⋆
H)− Tz(Q)− T (Q⋆

H) + T (Q) is a zero-mean random vector satisfying

∥Tz(Q⋆
H)− Tz(Q)− T (Q⋆

H) + T (Q)∥∞ ≤ 2γ∥Q−Q⋆
H∥∞. (132)

Thus, each of its coordinate is a (2γ∥Q−Q⋆
H∥∞)2-sub-Gaussian vector. Applying the tail

bounds for a maximum of sub-Gaussian random variables [Vershynin, 2018], we obtain that
∥∥∥∥∥
1

M

M∑

m=1

(
Ĥ(m)

i (Q⋆
H)−H(Q⋆

H)
)∥∥∥∥∥

∞

≤ 2γ∥Q−Q⋆
H∥∞ ·

√
2

MB
log

(
8KI|S||A|

δ

)

(133)

holds with probability at least 1− δ
4KI .

• Turning to the last term, by the construction of the compression routine described in
Section 4.1.2, it is straightforward to note that ζmi is a zero-mean random vector whose

coordinates are independent, D2 · 4−J -sub-Gaussian random variables. Thus, ζi is also a

zero-mean random vector whose coordinates are independent, D2

M ·4J -sub-Gaussian random
variables. Hence, we can similarly conclude that

∥ζi∥∞ ≤ D · 2−J ·
√

2

M
log

(
8KI|S||A|

δ

)
(134)

holds with probability at least 1− δ
4KI .
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Combining the above bounds into (130), and introducing the short-hand notation κ :=

log
(

8KI|S||A|
δ

)
, we obtain with probability at least 1− δ

2KI ,

∥Qi −Q⋆
H∥∞ ≤ (1− η(1− γ))∥Qi−1 −Q⋆

H∥∞ + 2ηγ∥Q−Q⋆
H∥∞ ·

√
2κ

MB
+D · 2−J ·

√
2κ

M
.

Unrolling the above recursion over i = 1, . . . , I yields the following relation, which holds with

probability at least 1− δ
2K :

∥QI −Q⋆
H∥∞ ≤ (1− η(1− γ))

I ∥Q0 −Q⋆
H∥∞ +

√
2κ

M

(
2ηγ√
B
∥Q−Q⋆

H∥∞ +D · 2−J

)
·

I∑

i=1

(1− η(1− γ))
I−i

≤ (1− η(1− γ))
I ∥Q−Q⋆

H∥∞ +
1

η(1− γ)

√
2κ

M

(
2ηγ√
B
∥Q−Q⋆

H∥∞ +D · 2−J

)

≤ ∥Q−Q⋆
H∥∞

(
(1− η(1− γ))

I
+

2γ

(1− γ)

√
2κ

MB

)
+

D · 2−J

η(1− γ)
·
√

2κ

M
(135)

≤ ∥Q−Q⋆
H∥∞

6
+

D

70
≤ 1

6

(
∥Q−Q⋆∥∞ + ∥Q⋆ −Q⋆

H∥∞
)
+

D

70
. (136)

Here, the fourth step is obtained by plugging in the prescribed values of B, I and J in Sec. 4.1.3.

C.3.2 Proof of Lemma 8

Intuitively, the error ∥Q⋆
H −Q⋆∥∞ depends on the error term T̃L(Q)− T (Q). If the latter is small,

thenH(Q) is close to T (Q) and consequently so are Q⋆
H and Q⋆. Thus, we begin with bounding the

term T̃L(Q)− T (Q). We have,

T̃L(Q)− T (Q)

= Q+
1

M

M∑

m=1

C

(
T̃ (m)
L (Q)−Q

)
− T (Q)

=
1

M

M∑

m=1

(
T̃ (m)
L (Q) + ζ̃

(m)
L

)
− T (Q)

=
1

M

M∑

m=1

(
T̃ (m)
L (Q)− T̃ (m)

L (Q⋆)− T (Q) + T (Q⋆)
)
+

1

M

M∑

m=1

ζ̃
(m)
L +

1

M

M∑

m=1

(
T̃ (m)
L (Q⋆)− T (Q⋆)

)
,

(137)

where once again ζ̃
(m)
L := T̃ (m)

L (Q) − Q − C

(
T̃ (m)
L (Q)−Q

)
denotes the quantization error at

agent m. Similar to the arguments of (133) and (134), we can conclude that each of the following

relations hold with probability at least 1− δ
6K :

∥∥∥∥∥
1

M

M∑

m=1

(
T̃ (m)
L (Q)− T̃ (m)
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)
,

(138)
∥∥∥∥∥
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12K|S||A|
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)
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(139)

For the third term, we can rewrite it as

1

M

M∑

m=1

(
T̃ (m)
L (Q⋆)− T (Q⋆)

)
=

1

M⌈L/M⌉

M∑
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(
T
Z

(m)
l

(Q⋆)− T (Q⋆)
)
.
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We will use Bernstein inequality element wise to bound the above term. Let σ⋆ ∈ R
|S|×|A| be such

that [σ⋆(s, a)]2 = Var(TZ(Q⋆)(s, a)), i.e., (s, a)-th element of σ denotes the standard deviation of
the random variable TZ(Q⋆)(s, a). Since ∥TZ(Q⋆) − T (Q⋆)∥∞ ≤ 1

1−γ a.s., Bernstein inequality

gives us that

∣∣∣∣∣
1

M

M∑

m=1

(
T̃ (m)
L (Q⋆)(s, a)− T (Q⋆)(s, a)

)∣∣∣∣∣ ≤ σ
⋆(s, a)

√
2

L
log

(
6K|S||A|

δ

)
+

2

3L(1− γ)
log

(
6K|S||A|

δ

)
.

(140)

holds simultaneously for all (s, a) ∈ S × A with probability at least 1 − δ
6K . On combining

(137), (138), (139) and (140), we obtain that

∣∣∣T̃L(Q)(s, a)− T (Q)(s, a)
∣∣∣ = ∥Q−Q⋆∥∞ ·

√
8κ′

L
+ σ

⋆(s, a)

√
2κ′

L
+

2κ′

3L(1− γ)
+D · 2−J ·

√
2κ′

M
,

(141)

holds simultaneously for all (s, a) ∈ S × A with probability at least 1 − δ
2K , where κ′ =

log
(

12K|S||A|
δ

)
. We use this bound in (141) to obtain a bound on ∥Q⋆

H − Q⋆∥∞ using the fol-

lowing lemma.

Lemma 10 (Wainwright [2019b]). Let π⋆ and π⋆
H respectively denote the optimal policies w.r.t. Q⋆

and Q⋆
H. Then,

∥Q⋆
H −Q⋆∥∞ ≤ max

{
(I − γPπ⋆

)−1
∣∣∣T̃L(Q)− T (Q)

∣∣∣ , (I − γPπ⋆
H)−1

∣∣∣T̃L(Q)− T (Q)
∣∣∣
}
.

Here, for any deterministic policy π, Pπ ∈ R
|S||A|×|S||A| is given by (PπQ)(s, a) =∑

s′∈S P (s′|s, a)Q(s′, π(s′)).

Furthermore, it was shown in Wainwright [2019b, Proof of Lemma 4] that if the error |T̃L(Q)(s, a)−
T (Q)(s, a)| satisfies

∣∣∣T̃L(Q)(s, a)− T (Q)(s, a)
∣∣∣ ≤ z0∥Q−Q⋆∥∞ + z1σ

⋆(s, a) + z2 (142)

for some z0, z1, z2 ≥ 0 with z1 < 1, then the bound in Lemma 10 can be simplified to

∥Q⋆
H −Q⋆∥∞ ≤

1

1− z1

(
z0

1− γ
∥Q−Q⋆∥∞ +

z1
(1− γ)3/2

+
z2

1− γ

)
. (143)

On comparing, (141) with (142), we obtain

z0 ≡
√

8κ′

L
; z1 ≡

√
2κ′

L
; z2 ≡

2κ′

3L(1− γ)
+D · 2−J ·

√
2κ′

M
.

Moreover, the condition L ≥ 32κ′ implies that z1 < 1 and 1
1−z1

≤
√
2. Thus, on plugging in the

above values in (143), we can conclude that

∥Q⋆
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√
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D

40
, (144)

where once again we use the value of J in the last step.

C.3.3 Proof of Lemma 9

From the iterative update rule in (123), for any agent m we have,

Qm
i− 1

2
−Qi−1 = η(Ĥ(m)

i−1(Qi−1)−Qi−1)
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communication complexity trade-off in Federated Q-learning and derive both converse
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much the results can be expected to generalize to other settings.
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Answer: [Yes]

Justification: We consider an infinite horizon MDP in the tabular setting and derive the
results for the class of intermittent communication algorithms. We acknowledge that these
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Justification: Both Theorem 1 and 2 clearly state all assumptions used in the statement of
main result. The proofs for both the theorems can be found in the appendix.
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well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
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be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
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In the case of closed-source models, it may be that access to the model is limited in
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
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Justification: The error bars associated with the plots are small and hence we omit them.
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• The answer NA means that the paper does not include experiments.
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dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

50
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• The method for calculating the error bars should be explained (closed form formula,
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• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
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of Normality of errors is not verified.
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they were calculated and reference the corresponding figures or tables in the text.
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
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Answer: [Yes]

Justification: The empirical studies require no specific compute resources can be easily
completed on a regular laptop.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
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NeurIPS Code of Ethics.
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eration due to laws or regulations in their jurisdiction).
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societal impacts of the work performed?

Answer: [NA]

Justification: The paper is concerned with foundational research and is theoretical in nature
with no direct societal impact.
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• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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from (intentional or unintentional) misuse of the technology.
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mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
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11. Safeguards
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image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper is theoretical is nature and does not involve release of data or code
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• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
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that users adhere to usage guidelines or restrictions to access the model or implementing
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• We recognize that providing effective safeguards is challenging, and many papers do
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Justification: The paper does not release any new assets.
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
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