
Federated Offline Reinforcement Learning:

Collaborative Single-Policy Coverage Suffices

Jiin Woo 1 Laixi Shi 2 Gauri Joshi 1 Yuejie Chi 1

Abstract

Offline reinforcement learning (RL), which seeks

to learn an optimal policy using offline data, has

garnered significant interest due to its potential

in critical applications where online data collec-

tion is infeasible or expensive. This work ex-

plores the benefit of federated learning for offline

RL, aiming at collaboratively leveraging offline

datasets at multiple agents. Focusing on finite-

horizon episodic tabular Markov decision pro-

cesses (MDPs), we design FedLCB-Q, a variant

of the popular model-free Q-learning algorithm

tailored for federated offline RL. FedLCB-Q up-

dates local Q-functions at agents with novel learn-

ing rate schedules and aggregates them at a cen-

tral server using importance averaging and a care-

fully designed pessimistic penalty term. Our sam-

ple complexity analysis reveals that, with appro-

priately chosen parameters and synchronization

schedules, FedLCB-Q achieves linear speedup

in terms of the number of agents without requir-

ing high-quality datasets at individual agents, as

long as the local datasets collectively cover the

state-action space visited by the optimal policy,

highlighting the power of collaboration in the fed-

erated setting. In fact, the sample complexity al-

most matches that of the single-agent counterpart,

as if all the data are stored at a central location, up

to polynomial factors of the horizon length. Fur-

thermore, FedLCB-Q is communication-efficient,

where the number of communication rounds is

only linear with respect to the horizon length up

to logarithmic factors.
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1. Introduction

Offline RL (Levine et al., 2020), also known as batch RL, ad-

dresses the challenge of learning a near-optimal policy using

offline datasets collected a priori, without further interac-

tions with an environment. Fueled by the cost-effectiveness

of utilizing pre-collected datasets compared to real-time

explorations, offline RL has received increasing attention.

However, the performance of offline RL crucially depends

on the quality of offline datasets due to the lack of addi-

tional interactions with the environment, where the quality

is determined by how thoroughly the state-action space is

explored during data collection.

Encouragingly, recent research (Rashidinejad et al., 2021;

Shi et al., 2022; Xie et al., 2021b; Li et al., 2024b) indi-

cates that being more conservative on unseen state-action

pairs, known as the principle of pessimism, enables learning

of a near-optimal policy even with partial coverage of the

state-action space, as long as the distribution of datasets

encompasses the trajectory of the optimal policy. However,

acquiring high-quality datasets that have good coverage

of the optimal policy poses challenges because it requires

the state-action visitation distribution induced by a behav-

ior policy employed for data collection to be very close to

the optimal policy. Alternatively, multiple datasets can be

merged into one dataset to supplement insufficient cover-

age of one other, but this may be impractical when offline

datasets are scattered and cannot be easily shared due to

privacy and communication constraints.

Federated offline RL. Driven by the need to harvest mul-

tiple datasets to address insufficient coverage, there is a

growing interest in implementing offline RL in a federated

manner without the need to share datasets (Zhou et al., 2024;

Woo et al., 2023; Khodadadian et al., 2022). For model-

based RL, a study has proposed a federated variant of pes-

simistic value iteration (Zhou et al., 2024), which requires

sharing of model estimates. On the other hand, for model-

free RL, while Woo et al. (2023) introduced a federated Q-

learning algorithm that achieves linear speedup with collab-

orative coverage of agents, due to the absence of pessimism,

it still carries the risk of overestimation on state-action pairs

that are insufficiently covered by the agents. Indeed, it re-

mains unknown whether the principle of pessimism can be
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type reference
number of

coverage
sample communication

agents complexity rounds

model-based

VI-LCB (Xie et al., 2021b) 1 single H6SC⋆

ε2 -

PEVI-Adv (Xie et al., 2021b) 1 single H4SC⋆

ε2 -

VI-LCB (Li et al., 2024b) 1 single H4SC⋆

ε2 -

model-free

LCB-Q (Shi et al., 2022) 1 single H6SC⋆

ε2 -

LCB-Q-Adv (Shi et al., 2022) 1 single H4SC⋆

ε2 -

FedAsynQ (Woo et al., 2023) M collaborative H6

Mdavgε2
HM
davg

FedLCB-Q (Theorem 3.1) M collaborative
H7SC⋆

avg

Mε2 H

Table 1: Comparison of sample complexity upper bounds of model-based and model-free algorithms for offline RL to learn

an ε-optimal policy in finite-horizon non-stationary MDPs, where logarithmic factors and burn-in costs are hidden. Here, S
is the size of state space, A is the size of action space, H is the horizon length, M is the number of agents, C⋆ and C⋆avg
denote the single-policy concentrability and the average single-policy concentrability, respectively (cf. (8) and (9)), and

davg is the minimum entry of the average stationary state-action occupancy distribution of all agents. We follow standard

conversion to translate the best sample complexity in Woo et al. (2023) to the finite-horizon setting for comparison.

implemented in federated offline RL to eliminate the risk of

overestimation, while fully utilizing the collaborative cov-

erage provided by agents, and without sharing datasets or

model estimates.

Our goal in this paper is to develop a federated variant

of Q-learning (Watkins & Dayan, 1992) for offline RL,

which allows agents to learn a near-optimal Q-function with

improved sample efficiency and relaxed coverage assump-

tion. In the single-agent case, pessimism is implemented

by penalizing the value estimates by subtracting a penalty

term measuring the uncertainty of the estimates (Yan et al.,

2023; Shi et al., 2022). However, federated settings are

communication-constrained, implying that agents only have

a limited chance of synchronization and they perform mul-

tiple local updates without knowing other agents’ training

progress. Allowing multiple local updates leads to higher

uncertainty of local Q-estimates beyond the control of the

pessimism penalty, potentially impacting both sample com-

plexity and communication efficiency. This underscores

the technical challenge of incorporating pessimism while

managing local updates and raises the question:

How to judiciously incorporate the principle of pessimism

in federated RL without hurting its sample and

communication efficiency?

1.1. Our contribution

This work presents a federated Q-learning algorithm with

pessimism for offline RL, which achieves linear speedup

and low communication cost, while requiring only collabo-

rative coverage of the optimal policy. Formally, we consider

episodic finite-horizon tabular Markov decision processes

(MDPs) with S states, A actions, and horizon length H . A

total number of M agents, each with K trajectories (col-

lected using its local behavior policy), collaborate in a fed-

erated setting with the help of a central server to learn the

optimal policy. Our main contributions are summarized as

below; see also Table 1 for a detailed comparison.

• Federated Q-learning for offline RL. We propose a fed-

erated offline Q-learning algorithm named FedLCB-Q,

which involves iterative local updates at agents and global

aggregation at a central server with scheduled synchro-

nizations. We introduce essential components that im-

plement pessimism compensating for the uncertainty in

both local and global Q-function updates. First, to address

the uncertainty arising from independent local updates,

we employ learning rate rescaling at local agents and

importance averaging at server aggregation. The for-

mer restricts the drifts of local Q-estimates by rapidly

decreasing the learning rates during local updates, and the

latter reduces uncertainty of the aggregated Q-estimates

by assigning smaller weights to rarely updated local val-
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ues. Additionally, for every global aggregation, a global

penalty calculated based on aggregated visitation counts is

subtracted from the aggregated global Q-estimate. These

design choices play a crucial role in achieving both sam-

ple and communication efficiency while preventing the

overestimation of the Q-function.

• Linear speedup with collaborative single-policy cover-

age. Our analysis of sample complexity of FedLCB-Q

(see Theorem 3.1) demonstrates that FedLCB-Q finds an

ε-optimal policy, as long as the total number of samples

per agent T = KH exceeds

Õ

(
H7SC⋆avg
Mε2

)
,

where C⋆avg denotes the average single-policy concentra-

bility coefficient of all agents (see (10) for the formal

definition). This shows linear speedup in terms of number

agents M , which is achieved with a significantly weaker

data requirement at individual agents than prior art. In

truth, each agent affords to have a non-expert dataset

collected by a sub-optimal behavior policy, as long as

all agents collectively cover the state-action pairs visited

by the optimal policy, even they don’t cover the entire

state-action space as in Woo et al. (2023). The bound

nearly matches the sample complexity obtained for a

single-agent pessimistic Q-learning algorithm (Shi et al.,

2022) with a similar Hoeffding-style penalty, up to a fac-

tor of H , as if all the datasets are processed at a central

location.

• Low communication cost. Under appropriate choices of

synchronization schedules, FedLCB-Q requires approxi-

mately Õ(H) rounds of synchronizations to achieve the

targeted accuracy (see Corollary 3.2), which is almost

independent with the size of the state-action space and

the number of agents. The analysis suggests that frequent

synchronizations are not necessary, outperforming prior

art (Woo et al., 2023).

1.2. Related work

Offline RL. Offline RL addresses the problem of learning

improved policies from a logged static dataset. The main

challenge of offline RL is how to reliably estimate the val-

ues of unseen or rarely visited state-action pairs. To tackle

this challenge, most offline RL algorithms prevent agents

from taking uncertain actions by regularizing the policy

to be close to the behavior policy (Fujimoto et al., 2019;

Siegel et al., 2020; Fujimoto & Gu, 2021) or penalizing

value estimates on out-of-distribution state-action pairs (Ku-

mar et al., 2020; Liu et al., 2020; Kostrikov et al., 2022; Wu

et al., 2019), which is also known as the principle of pes-

simism. Recently, the pessimistic approach has been devel-

oped and theoretically studied for various RL settings, such

as model-based approaches (Xie et al., 2021b; Rashidine-

jad et al., 2021; Kidambi et al., 2020; Yu et al., 2020; Jin

et al., 2021; Li et al., 2024b; Yin & Wang, 2021; Kim & Oh,

2023; Shi & Chi, 2022), policy-based approaches (Xie et al.,

2021a; Zanette et al., 2021), and model-free approaches (Shi

et al., 2022; Yan et al., 2023; Uehara et al., 2023). Most of

these works have focused on the single-agent case and sug-

gested that the state-action visitation distribution induced

by the behavior policy should cover that of the optimal pol-

icy (Rashidinejad et al., 2021; Shi et al., 2022; Yan et al.,

2023), and the distribution mismatch among the two visi-

tation distributions governs the hardness of offline RL (Li

et al., 2024b). Another interesting work (Shi et al., 2023)

considered offline RL from multiple perturbed data sources,

requiring a centralized setting in which an agent has full

access to all the datasets.

Federated RL. There has been an increasing interest in

federated and distributed RL, driven by the need to address

more realistic constraints, including privacy, communica-

tion efficiency, and data heterogeneity, as well as training

speedup. Recent works have investigated federated RL from

various perspectives, such as robustness to adversarial at-

tacks (Wu et al., 2021; Fan et al., 2021), environment or task

heterogeneity (Yang et al., 2023; Jin et al., 2022; Wang et al.,

2023; Zhou et al., 2024), as well as sample and communica-

tion complexities under asynchronous sampling (Khodada-

dian et al., 2022; Woo et al., 2023) and online sampling

(Zheng et al., 2024; Zhang et al., 2024). In addition, to

address unreliable estimation on unseen state-action pairs in

local batch datasets under the federated setting, Shen et al.

(2023) proposed a federated offline policy gradient algo-

rithm that regularizes the distribution of an estimated policy

to be close to the averaged visitation distributions of agents

with regularization loss, and Zhou et al. (2024) studied a

federated variant of pessimistic value iteration. However,

for model-free RL, although Woo et al. (2023) provided a

federated Q-learning algorithm that achieves linear speedup

in terms of the number of agents with relaxed coverage

assumption for individual agents, it still requires agents to

cover the entire state-action space uniformly due to the lack

of pessimism.

Q-learning. Characterizing the finite-sample complexity

of single-agent Q-learning has been examined extensively

under various data collection and function approximation

schemes, including but not limited the synchronous setting

(Even-Dar & Mansour, 2003; Beck & Srikant, 2012; Li

et al., 2024a; Wainwright, 2019), the asynchronous and

offline setting (Li et al., 2021; 2024a; Qu & Wierman, 2020;

Yan et al., 2023; Shi et al., 2022), the online setting (Jin et al.,

2018; Bai et al., 2019; Wang et al., 2019), under function

approximation (Fan et al., 2020; Chen et al., 2019; Xu &

Gu, 2020), to mention just a few.

3



Federated Offline Reinforcement Learning

Notation. In this paper, we use ∆(S) to refer to the prob-

ability simplex over a set S, and [K] := {1, · · · ,K} for

any positive integer K > 0. In addition, f(·) = Õ(g(·)) or

f ≲ g (resp. f(·) = Ω̃(g(·)) or f ≳ g) indicates that f(·) is

order-wise not larger than (resp. not smaller than) g(·) up to

some logarithmic factors. The notation f ≍ g signifies that

both f ≲ g and f ≳ g simultaneously hold.

2. Background and problem formulation

2.1. Background

Basics of episodic finite-horizon MDPs. Consider an

episodic finite-horizon MDP represented by

M =
(
S,A, H, {Ph}Hh=1, {rh}Hh=1

)
,

where S is the state space of size S, A is the action space of

size A, H is the horizon length, Ph : S × A → ∆(S) and

rh : S ×A → [0, 1] denote the probability transition kernel

and the reward function at the h-th time step (1 ≤ h ≤ H),
respectively.

A policy is denoted by π = {πh}Hh=1, where πh : S →
∆(A) specifies the probability distribution over the action

space at time step h in state s. With slight abuse of notation,

we use πh(s) to denote the selected action when the policy

πh is deterministic. For h = 1, . . . , H , the value function

V πh (s) of policy π is defined as the expected cumulative

rewards starting from state s at step h by following π, i.e.,

V πh (s) := E

[
H∑

t=h

rt
(
st, at

) ∣∣∣ sh = s

]
, (1)

where the expectation is taken over the randomness of the

trajectory {st, at, rt}Ht=h induced by the policy π as well

as the MDP transitions according to at ∼ πt(· | st) and

st+1 ∼ Pt(· | st, at). Similarly, the Q-function Qπh(s, a) of

a policy π at step h in state-action pair (s, a) is defined as

Qπh(s, a) := rh(s, a) + E

[
H∑

t=h+1

rt(st, at)
∣∣∣ sh = s, ah = a

]
,

(2)

where the expectation is again over the randomness induced

by π and the MDP transitions.

It is well-known (Puterman, 2014) that one can always find

a deterministic optimal policy π⋆ = {π⋆h}Hh=1, which maxi-

mizes the value function (resp. the Q-function) simultane-

ously over all states (resp. state-action pairs) among all poli-

cies. The resulting optimal value function V ⋆ = {V ⋆h }Hh=1

and optimal Q-functions Q⋆ = {Q⋆h}Hh=1 are denoted re-

spectively by

V ⋆h (s) := V π
⋆

h (s) = max
π

V πh (s),

Q⋆h(s, a) := Qπ
⋆

h (s, a) = max
π

Qπh(s, a)

for any (s, a, h) ∈ S × A × [H]. Given an initial state

distribution ρ ∈ ∆(S), the expected value of a given policy

π and that of the optimal policy π⋆ at the initial step are

defined respectively by

V π1 (ρ) := Es1∼ρ

[
V π1 (s1)

]
, V ⋆1 (ρ) := Es1∼ρ

[
V ⋆1 (s1)

]
.

(3)

Bellman equations. Of crucial importance are the Bellman

equations that connect the value functions across different

time steps (Bertsekas, 2017). For any policy π, it follows

that

Qπh(s, a) = rh(s, a) + Es′∼Ph,s,a

[
V πh+1(s

′)
]

(4)

for all (s, a, h) ∈ S × A × [H], where V πH+1(s) = 0 for

any s ∈ S. Moreover, Bellman’s optimality equation says

that

Q⋆h(s, a) = rh(s, a) + Es′∼Ph,s,a

[
V ⋆h+1(s

′)
]

(5)

for all (s, a, h) ∈ S × A × [H], and the optimal policy

satisfies π⋆h(s) = argmaxa∈AQ
⋆
h(s, a).

2.2. Problem formulation: federated offline RL

In offline RL, one has access to a offline dataset containing

episodes collected by following some behavior policy. Here,

we formulate a federated version of the offline RL problem

withM agents, where each agent has access to a local offline

dataset. For 1 ≤ m ≤M , the offline dataset Dm at agentm
is composed of K episodes,1 each generated independently

according to a behavior policy µm = {µmh }Hh=1, resulting

in

Dm :=
{(
smk,1, a

m
k,1, r

m
k,1, . . . , s

m
k,H , a

m
k,H , r

m
k,H

)}K
k=1

,

where the initial state smk,1 ∼ ρ is drawn from some initial

state distribution ρ ∈ ∆(S), smk,h amk,h, rmk,h are the state,

action and reward at step h in the k-th episode, amk,h ∼
µmh (· | smk,h) and rmk,h = rh(s

m
k,h a

m
k,h).

Goal. The goal of federated offline RL is to learn an ε-
optimal policy π̂ = {π̂h}Hh=1 satisfying

V ⋆1 (ρ)− V π̂1 (ρ) ≤ ε

using the history dataset D =
{
Dm
}
1≤m≤M

without shar-

ing the local offline datasets, with the help of a parameter

server. Furthermore, it is greatly desirable to achieve as high

1For simplicity, we assume all the agents have the same number
of episodes. It is straightforward to generalize to the scenario when
the local offline datasets have different sizes.
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fashion at a central server. To facilitate flexible communica-

tion patterns, we follow a synchronization schedule T (K),
which contains the indices of episodes where communica-

tion occurs between the agents and the server.

To begin, FedLCB-Q initializes the local estimate (Qm0,h
and V m0,h) at each agent m ∈ [M ] and the global estimates

(Q0,h and V0,h) for all (s, a, h) ∈ S × A × [H + 1] at the

server as follows:

Qm0,h(s, a) = 0, V m0,h(s, a) = 0, (11a)

Q0,h(s, a) = 0, V0,h(s, a) = 0. (11b)

Then, FedLCB-Q proceeds the following steps for each

episode k ∈ [K].

1. Local updates: Each agent m samples the kth trajectory

{(smk,h, amk,h, rmk,h)}Hh=1 from its local offline datasets

Dm. For each step h ∈ [H], agent m updates its lo-

cal Q-estimate Qmk,h for (s, a) = (smk,h, a
m
k,h) as follows:

Qmk,h(s, a)

= (1− ηmk,h(s, a))Q
m
k−1,h(s, a)

+ ηmk,h(s, a)(r
m
k,h + V mk−1,h+1(s

m
k,h+1)), (12)

where ηmk,h(s, a) is the learning rate, whose schedule will

be specified later, and V mk−1,h(s) is set as

V mk−1,h(s) = V mι(k),h(s) = Vι(k),h(s),

where ι(k) denotes the most recent episode where aggre-

gation occurs before the kth episode, i.e.,

ι(k) := max
k′

{1 ≤ k′ < k : k′ ∈ T (K)} .

2. Pessimistic aggregation: If synchronization is sched-

uled at episode k, i.e., k ∈ T (K), each agent sends its

local Q-estimate to a central server for aggregation after

finishing the local update for the kth episode. Then, the

server updates the global Q-estimate Qk,h by averaging

the local Q-estimates and subtracting a penalty for all

(s, a) ∈ S ×A as follows:

Qk,h(s, a) =

(
M∑

m=1

αmk,h(s, a)Q
m
k,h(s, a)

)
−Bk,h(s, a),

(13)

where αmk,h = [αmk,h(s, a)](s,a)∈S×A ∈ [0, 1]SA is an

entry-wise weight matrix assigned to agent m for each

h ∈ [H], andBk,h(s, a) is a penalty term (to be specified

later below) that introduces the pessimism preventing the

overestimation of unseen state-action pairs. Accordingly,

for all (s, a) ∈ S × A, the global value estimate is

updated as

Vk,h(s) = max

{
Vι(k),h(s), max

a∈A
Qk,h(s, a)

}
, (14)

where the outer maximum ensures a monotonic up-

date, as we explain later in the analysis. If

Vk,h(s) = maxa∈AQk,h(s, a), the global policy is up-

dated as πk,h(s) = argmaxa∈AQk,h(s, a), otherwise

πk,h(s) = πι(k),h(s). After aggregation, the server

sends the global Q-function and value estimates to ev-

ery agent, where Qmk,h = Qk,h, V
m
k,h = Vk,h for all

(k,m) ∈ T (K)× [M ].

At the end of K episodes, FedLCB-Q outputs a global Q-

estimate Q̂h(s, a) = QK,h(s, a) for all (s, a, h) ∈ S×A×
[H] and a solution policy π̂h(s) = πK,h(s) for all (s, h) ∈
S× [H]. For simplicity, we assume that the aggregation step

always occurs after the last episode K, i.e., K ∈ T (K).

3.2. Choices of key parameters

The success of FedLCB-Q relies on careful and judicious

selections of key algorithmic parameters, in a data-driven

manner, which we detail below. To begin, let us introduce

the following useful notation, which pertains to the counters

for visits of agents on each state-action pair (s, a) ∈ S ×A.

For any (m, k, h) ∈ [M ]× [K]× [H],

• nmk,h(s, a): the number of episodes in the interval

(ι(k), k] during which agent m visits (s, a) at step h, i.e.,

nmk,h(s, a) := |{ι(k) < i ≤ k : (smi,h, a
m
i,h) = (s, a)}|.

• Nm
k,h(s, a): the number of episodes in the interval

[1, k] during which agent m visits (s, a) at step h, i.e.,

Nm
k,h(s, a) := |{1 ≤ i ≤ k : (smi,h, a

m
i,h) = (s, a)}|.

• nk,h(s, a): the cumulative count of local episodes

across all agents within the interval (ι(k), k], wherein

each agent visits (s, a) at step h, i.e., nk,h(s, a) :=∑M
m=1 n

m
k,h(s, a) =

∑M
m=1 |{ι(k) < i ≤ k :

(smi,h, a
m
i,h) = (s, a)}|.

• Nk,h(s, a): the cumulative count of local episodes

across all agents within the interval [1, k], wherein

each agent visits (s, a) at step h, i.e., Nk,h(s, a) :=∑M
m=1N

m
k,h(s, a) =

∑M
m=1 |{1 ≤ i ≤ k : (smi,h, a

m
i,h) =

(s, a)}|.

Pessimism in the federated RL. In offline RL, pessimism

is key to preventing the overestimation of Q-function on

unseen state-action space. For a single-agent case, the pes-

simism is implemented by subtracting a penalty term com-

puted based on the visiting counter of an agent for each

state-action pair, which makes the estimation highly depen-

dent on the quality of agents’ datasets (Rashidinejad et al.,

2021). For example, when an agent has non-expert data

collected using a highly sub-optimal behavior policy, it is

inevitable to subtract a large penalty for optimal actions that

cannot be reached with the agent’s behavior policy, and this
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leads to slow convergence or convergence to a sub-optimal

policy close to the behavior policy. In the federated set-

ting, from the perspective of a server, as the aggregated

information from multiple agents increases confidence, it

is natural to be less pessimistic compared to an individual

agent. Based on this intuition, given some prescribed prob-

ability δ ∈ (0, 1), we suggest a global penalty computed

with the aggregated counters of agents at k ∈ T (K):

Bk,h(s, a) :=
(H + 1)nk,h(s, a)

Nk,h(s, a) +Hnk,h(s, a)

√
cBζ21H

4

Nk,h(s, a)
,

(15)

where Bk,h(s, a) = 0 if Nk,h(s, a) = 0, and ζ1 =

log
(
SAMK2H

δ

)
and cB is some positive constant. Here,

the penalty for each state-action pair decreases as long as

the agents collectively explore the state-action pair enough.

This relaxes the dependency on an individual agent and pre-

vents the estimated policy from being restricted to a local

behavior policy.

Local update uncertainty. To guarantee that the pessimism

introduced by the global penalty is enough to prevent over-

estimation on rarely seen state-action pairs, the penalty

should dominate the uncertainty of the Q-estimates. How-

ever, when agents independently update their own local

Q-estimates without frequent communication, the global

penalty, which is subtracted only at the aggregation step,

may fail to cover the increasing uncertainty of the local Q-

estimates during local updates. To handle this, we propose

a choice of key parameters (learning rates ηmk,h and averag-

ing weights αmk,h) that effectively controls the uncertainty

arising from the local updates as follows.

• Importance averaging. In the federated setting, agents

have offline datasets with heterogeneous distributions in-

duced by different behavior policies, leading to imbal-

anced uncertainty of local Q-estimates.To minimize the

uncertainty of the averaged estimate, we propose the fol-

lowing entrywise weighting scheme for averaging:

αmk,h(s, a) :=
Nι(k),h(s, a) + (H + 1)Mnmk,h(s, a)

M(Nk,h(s, a) +Hnk,h(s, a))
,

(16)

where αmk,h(s, a) = 1
M if nk,h(s, a) = 0. By assign-

ing smaller weights to less frequently updated local Q-

estimates with smaller nmk,h(s, a), which has high uncer-

tainty, the averaged Q-estimate can always maintain an un-

certainty level low enough to be dominated by the global

penalty, regardless of the heterogeneity in local data dis-

tributions. The idea aligns with the notion of importance

averaging introduced by Woo et al. (2023), which favors

frequently updated local Q-values. Nevertheless, our ap-

proach differs in that, unlike Woo et al. (2023), where

the assigned weights are determined solely based on local

counters nmk,h in a myopic manner, our weights, factoring

in the global counter Nι(k),h, limit bias towards specific

agents as the training of local Q-estimates stabilizes. The

weighting scheme, mindful of the entire training progress,

prevents some local values that have undergone intense

updates recently from dominating the global learning of

the Q-function, preserving the information accumulated

through old updates.

• Learning rates rescaling. Local updates without syn-

chronization increase the deviation of local Q-estimates,

and this increases the variance of the global Q-estimate at

aggregation. However, requiring agents to communicate

frequently may be too stringent for many applications in

the federated setting. To address this issue, we propose

a novel choice of learning rate that exhibits slower decay

based on a global counterNι(k),h, and faster decay during

local updates according to the local counter nmk,h:

ηmk,h(s, a) :=
M(H + 1)

Nι(k),h(s, a) +M(H + 1)nmk,h(s, a)
.

(17)

The rescaling of the learning rate is crucial to obtain linear

speedup without frequent synchronizations. The grad-

ual decay with a global counter allows more aggressive

updates of the Q-estimates once collective information

from all agents is aggregated, which enables convergence

speedup. On the other hand, the fast decrease in learning

rates during local updates ensures that agents adaptively

slow down their drifts and maintain low variance of their

local Q-estimates, without overly restricting the length of

local updates. We will further discuss how this effectively

reduces the variance of local estimates in Appendix B.1.

The computation of the global penalty (15) and importance

averaging (16) at a server requires local counters nmk,h(s, a)
from every agent, and determining the learning rates (17)

at each agent requires access to recently aggregated global

counters Nι(k),h(s, a). Therefore, for FedLCB-Q with the

specified parameters choices, agents and a server addition-

ally exchange the updated local and global counters at every

aggregation step.

3.3. Theoretical guarantees

Given the parameters described above, we now give sample

complexity guarantees on the performance of the proposed

FedLCB-Q algorithm.

Theorem 3.1. Consider δ ∈ (0, 1) and let π̂ be the solution

policy of FedLCB-Q. If a synchronization schedule T (K)
is independent of trajectories in datasets D and satisfies

τ1 ≤
√
H2SC⋆avgK

M
and

τu+1

τu
≤ 1 +

2

H
(18)
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We now analyze the number of communication rounds re-

quired to achieve a target accuracy for the above schedules.

Corollary 3.2. For any given δ ∈ (0, 1) and target error

ε ∈ (0,min{H, H
3SC⋆

avg

M }], suppose the total number of

samples per agent T = KH satisfies

T ≍
H7SC⋆avg
Mε2

,

and FedLCB-Q performs under the periodic synchroniza-

tion scheduling, i.e., T (K) = Tperiod(K, τ), with τ ≍√
HSC⋆

avgT

M , or the exponential synchronization scheduling,

i.e., T (K) = Texp(K, γ), with γ = 2
H . Then, each schedule

requires the number of synchronizations at most

(Periodic) |Tperiod(K, τ)| ≲
√

MK

H2SC⋆avg
, (20a)

(Exponential) |Texp(K, γ)| ≲ H, (20b)

respectively, and the solution policy π̂ of FedLCB-Q is an

ε-optimal policy at least with probability 1− δ.

Corollary 3.2 implies that FedLCB-Q requires only Õ(H)
aggregations to achieve the target accuracy under appro-

priate synchronization schedules, such as the exponential

synchronization schedule. Notably, the number of commu-

nication rounds is nearly independent of the size of the state-

action space, the total number of episodes, or the number

of agents, and this outperforms prior art (Woo et al., 2023).

Furthermore, analysis suggests that exponential synchro-

nization with a modest rate γ = 2/H is a key to achieving

such communication efficiency. With our strategic choices

of learning rates, local Q-estimates stabilize as training pro-

ceeds, and thus agents can perform more local updates than

previous rounds without increasing uncertainty beyond the

control of the global pessimism penalty. Exponential syn-

chronization reduces the number of synchronizations by

capturing the additional room for local updates arising from

the stabilization of Q-estimates. On the other hand, periodic

synchronization does not exploit this benefit, even if we set

the period τ maximally under (18) due to which it necessi-

tates more communication rounds, which increase with K
and M .

4. Discussions

We investigated federated offline RL, which enables multi-

ple agents with history datasets to collaboratively learn an

optimal policy, without sharing datasets. We proposed a

federated offline Q-learning algorithm called FedLCB-Q,

which iteratively performs local updates with rescaled learn-

ing rates at agents, and global aggregation with weighted

averaging and global penalty at a server, which effectively

controls the uncertainty in both local and global Q-estimates.

Our sample complexity analysis demonstrates that FedLCB-

Q achieves linear speedup in terms of the number of agents

requiring only collective coverage of agents’ datasets over

the distribution of the optimal policy, not restricted to the

quality of individual datasets. Furthermore, we showed

that FedLCB-Q is communication-efficient, requiring only

Õ(H) synchronizations under the exponential synchroniza-

tion scheduling. For future exploration, this work paves

the way for many interesting directions, some of which are

outlined below.

• TighteningH dependency. Although our sample complex-

ity bound is nearly optimal with respect to most salient

problem parameters, such as state space size and single-

policy concentrability coefficient, it falls short of optimal-

ity in terms of horizon length compared to the minimax

sample complexity lower bound in the single-agent set-

ting (Xie et al., 2021b). Closing this gap and improving

sample complexity with variance reduction techniques,

as proposed by Shi et al. (2022), will be an interesting

avenue for future exploration.

• Beyond episodic tabular MDPs. Extending episodic tabu-

lar MDPs, it would be interesting to broaden our analysis

framework to encompass other RL settings, including, the

infinite-horizon setting (Woo et al., 2023; Yan et al., 2023),

infinite state-action space setting (Bose et al., 2024), and

the integration of function approximation.

• Improving robustness. Our work focuses on a scenario

in which agents collect datasets from a common MDP

without any disturbances. Yet, in real-world scenarios,

some agents may possess datasets collected from per-

turbed MDPs. This introduces the need for additional

considerations regarding robustness, as discussed in Shi

et al. (2023). Therefore, enhancing our work to effectively

handle the variability or noisiness of MDPs would be a

compelling avenue for improvement.

• Multi-task RL. In many applications where various clients

pursue different objectives, multi-task reinforcement

learning holds a significant interest. It will be of great

interest to extend our work to the multi-task RL setting

(Yang et al., 2023; Jin et al., 2022; Zhou et al., 2024),

which enables agents to learn their own optimal policies

for their personalized goals while benefiting from collab-

oration by sharing common features of tasks.
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A. Complete description of FedLCB-Q

We provide the complete description of FedLCB-Q in Algorithm 1, with its agent-end and server-end subroutines described

in Algorithm 2 and Algorithm 3 respectively.

Algorithm 1 Federated pessimistic Q-learning (FedLCB-Q)

1: Parameters: horizon length H , number of agents M , total number of episodes per agent K, synchronization schedule

T (K), target error δ ∈ (0, 1), ζ1 = log
(
SAK2MH

δ

)
, cB > 0.

2: Initialization: set Qm0,h(s, a) = 0, V m0,h(s) = 0, Nm
0,h(s, a) = 0, nm0,h(s, a) = 0, N0,h(s, a) = 0, n0,h(s, a) = 0 for all

(m, s, a, h) ∈ [M ]× S ×A× [H + 1].
3: for k = 1, · · · ,K do

4: // Update the local Q-estimate and visitation counts at each agent

5: (Qmk,h, n
m
k,h) = Local-Q-learning();

6: if k ∈ T (K) then

7: // Agent-to-server communication

8: Agents communicate Qmk,h and nmk,h to the server;

9: // Global pessimistic averaging in a server

10: (Qk,h, Vk,h, πk,h) = Global-pessimistic-averaging();

11: // Server-to-agent communication

12: Server communication Qk,h, Vk,h and Nk,h to agents;

13: // Synchronize local Q-estimates

14: for (m, s, a, h) ∈ [M ]× S ×A× [H] do

15: Qmk,h(s, a) = Qk,h(s, a), V
m
k,h(s) = Vk,h(s)

16: end for

17: end if

18: end for

return: Q̂ = {QK,h}h∈[H] and π̂ = {πK,h}h∈[H].

Algorithm 2 Local-Q-learning (agents)

1: for m = 1, · · · ,M do

2: Sample the k-th trajectory {(smk,h, amk,h, rmk,h, smk,h+1)}Hh=1 from Dm

3: for h = 1, · · · , H do

4: for (s, a) ∈ S ×A do

5: Qmk,h(s, a) = Qmk−1,h(s, a), V
m
k,h(s) = V mk−1,h(s)

6: end for

7: // Update the local counters and learning rates

8: nmk,h(s
m
k,h, a

m
k,h) = nmk−1,h(s

m
k,h, a

m
k,h) + 1

9: ηmk,h(s
m
k,h, a

m
k,h) =

M(H+1)
Nι(k),h(s

m
k,h

,am
k,h

)+M(H+1)nm
k,h

(sm
k,h

,am
k,h

)

10: // Update local Q-estimates

11: Qmk,h(s
m
k,h, a

m
k,h) =

(
1− ηmk,h(s

m
k,h, a

m
k,h)

)
Qmk−1,h(s

m
k,h, a

m
k,h) + ηmk,h(s, a)(r

m
k,h + V mk−1,h+1(s

m
k,h+1))

12: end for

13: end for
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Algorithm 3 Global-pessimistic-averaging (server)

1: for (s, a, h) ∈ S ×A× [H] do

2: // Update the average counter

3: nk,h(s, a) =
∑M
m=1 n

m
k,h(s, a), Nk,h(s, a) = Nι(k),h(s, a) + nk,h(s, a)

4: // Compute global penalty and averaging weights

5: Bk,h(s, a) =
(H+1)nk,h(s,a)

Nk,h(s,a)+Hnk,h(s,a)

√
cBζ21H

4

Nk,h(s,a)
if Nk,h(s, a) > 0, otherwise, Bk,h(s, a) = 0

6: for m = 1 · · ·M do

7: αmk,h(s, a) =
1
M

Nι(k),h(s,a)+M(H+1)nm
k,h(s,a)

Nk,h(s,a)+Hnk,h(s,a)
if nmk,h(s, a) > 0, otherwise, αmk,h(s, a) =

1
M

8: end for

9: // Update global Q-estimates

10: Qk,h(s, a) =
∑M
m=1 α

m
k,h(s, a)Q

m
k,h(s, a)−Bk,h(s, a)

11: Vk,h(s) = max
{
Vι(k),h(s),maxa∈AQk,h(s, a)

}

12: πk,h(s) = argmaxa∈AQk,h(s, a) if Vk,h(s) = maxa∈AQk,h(s, a), otherwise, πk,h(s) = πι(k),h(s)
13: end for

B. Analysis

In this section, we will outline useful properties of FedLCB-Q and the key steps of the proof of Theorem 3.1, deferring the

details, such as proofs of supporting lemmas, to Appendix C and D.

Throughout the paper, we adopt the following shorthand notation

Ph,s,a := Ph(· | s, a) ∈ [0, 1]1×S , (21)

which represents the transition probability vector given the current state-action pair (s, a) at step h. In addition, define

Pmk,h ∈ {0, 1}1×S as the empirical transition vector at step h of the k-th episode at agent m, namely

Pmk,h(s) = I(s = smk,h+1), for all s ∈ S. (22)

These are the notations pertaining to the counters for visits of agents on each state-action pair (s, a) ∈ S × A. For any

(m, k, h) ∈ [M ]× [K]× [H],

• lmk,h(s, a): a set of episodes in the interval (ι(k), k] during which agent m visits (s, a) at step h, i.e., lmk,h(s, a) :=
{ι(k) < i ≤ k : (smi,h, a

m
i,h) = (s, a)}.

• Lmk,h(s, a): a set of episodes in the interval [1, k] during which agent m visits (s, a) at step h, i.e. Lmk,h(s, a) := {1 ≤
i ≤ k : (smi,h, a

m
i,h) = (s, a)}.

We also introduce the following notation related to the synchronization schedule T (K). For any positive integer k and u,

• tu: the index of episodes, after which the uth synchronization occurs.

• τu: the number of local updates (episodes) taken between the (u− 1)th and the uth synchronizations.

• ι(k): the most recent episode where the aggregation occurs before the kth episode.

• ϕ(k): the minimum index of aggregation occurring after k-th episode.

B.1. Basic facts

Error recursion of Q-estimates. We begin with the following key error decomposition of the Q-estimate at each

synchronization, whose proof is provided in Appendix D.1.
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Lemma B.1 (Q-estimation error decomposition). Consider a Q-function Qπ = {Qπh(s, a)}[H]×S×A and value function

V π = {V πh (s)}[H]×S induced by a policy π. Then, for any [H]×S ×A and k ∈ T (K), the error between Qπh and Qk,h is

decomposed as follows:

Qπh(s, a)−Qk,h(s, a) = ω0,k,h(s, a)(Q
π
h(s, a)−Q0,h(s, a))︸ ︷︷ ︸

=:Dπ
1 (s,a,k,h): initialization error

+

M∑

m=1

∑

i∈Lm
k,h

(s,a)

ωmi,k,h(s, a)(Ph,s,a − Pmi,h)V
m
i−1,h+1

︸ ︷︷ ︸
=:D2(s,a,k,h): transition variance

+

ϕ(k)∑

u=1

Btu,h(s, a)

ϕ(k)∏

u′=u+1

λu′,h(s, a)

︸ ︷︷ ︸
=:D3(s,a,k,h): global penalty

+

M∑

m=1

∑

i∈Lm
k,h

(s,a)

ωmi,k,h(s, a)Ph,s,a(V
π
h+1 − V mi−1,h+1)

︸ ︷︷ ︸
=:Dπ

4 (s,a,k,h): recursion

, (23)

where Lmk,h(s, a) := {1 ≤ i ≤ k : (smi,h, a
m
i,h) = (s, a)} and lmk,h(s, a) := {ι(k) < i ≤ k : (smi,h, a

m
i,h) = (s, a)}. And, for

simplicity, we use the shortened notations defined as

λv,h(s, a) =

{
1 if Nk,h(s, a) = 0

Nι(k),h(s,a)

Nk,h(s,a)+Hnk,h(s,a)
otherwise

, v = ϕ(k), (24a)

ωm0,k,h(s, a) =

{
1 if Nk,h(s, a) = 0

0 otherwise
, (24b)

ωmi,k,h(s, a) =
H + 1

Nk,h(s, a) +Hnk,h(s, a)



ϕ(k)−1∏

x=ϕ(i)

Ntx,h(s, a)

Ntx,h(s, a) +Hntx,h(s, a)


 , i ∈ Lmk,h(s, a). (24c)

Equally favoring episodes within the same local update round. According to the decomposition (23) in Lemma B.1, for

any (s, a, h) ∈ S ×A× [H], the Q-estimation error at episode k significantly depends on the weighted sum of transition

difference for each episode where the local update occurs, namelyD2(s, a, k, h). Intuitively, the weight ωmi,k,h(s, a) assigned

to each episode i balances the accumulation of information from old and new updates. Our choice of learning rates, which

decreases fast during local updates, as illustrated in Figure 3a, ensures that the weight ωmi,k,h(s, a) within the same local

update round is always equal for all episodes and agents, as shown in (24c) and Figure 3b. The uniform weights allow

the transition information of each episode to be accumulated evenly, regardless of other transitions that occur in future

episodes or other agents’ episodes. This is essential to keep variance arising from local updates low, especially when a

synchronization period is long. Assigning equal weight to every episode allows to fully utilize transitions observed during

local updates without forgetting old information, regardless of the length of the synchronization period.

Bounded visitation counters. We introduce the following lemma regarding the visitation counters, whose proof is provided

in Appendix D.2.

Lemma B.2 (Concentration bound on the visitation counters). Consider any δ ∈ (0, 1) and some universal constant c1 > 0,

and let

ζ0 := log

(
2|S||A|KH

δ

)
and K0(s, a, h) :=

4ζ0
c1Mdavgh (s, a)

. (25)

Then, for all (s, a, h) ∈ S ×A× [H], the following holds

when k ≥ K0(s, a, h) :
1

2
kMdavgh (s, a) ≤ Nk,h(s, a) ≤ 2kMdavgh (s, a), (26a)

15
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(i)

≤ Es1∼ρ [V
⋆
1 (s1)]− Es1∼ρ [VK,1(s1)]

(ii)

≤ 1

K

ϕ(K)∑

v=1

τv
(
Es1∼ρ [V

⋆
1 (s1)]− Es1∼ρ [Vtv,1(s1)]

)

=
1

K

ϕ(K)∑

v=1

τv
∑

s∈S

dπ
⋆

1 (s)︸ ︷︷ ︸
=ρ(s)

(V ⋆1 (s)− Vtv,1(s))

≤ 1

K
max
h∈[H]

ϕ(K)∑

v=1

τv
∑

s∈S

dπ
⋆

h (s) (V ⋆h (s)− Vtv,h(s)) , (29)

where (i) follows from Lemma B.3, and (ii) follows from the monotonicity property in (27) and
∑ϕ(K)
v=1 τv = K.

Since π⋆ = {π⋆h}h∈[H] is deterministic, for any k ∈ T (K) and h ∈ [H], it follows that

∑

s∈S

dπ
⋆

h (s) (V ⋆h (s)− Vk,h(s)) =
∑

s∈S

dπ
⋆

h (s, π⋆h(s)) (V
⋆
h (s)− Vk,h(s))

≤
∑

s∈S

dπ
⋆

h (s, π⋆h(s))
(
Q⋆h(s, π

⋆
h(s))−Qk,h(s, π

⋆
h(s))

)
, (30)

where the inequality holds because Qk,h(s, π
⋆
h(s)) ≤ maxa∈AQk,h(s, a) ≤ Vk,h(s) due to (14).

To continue, applying Lemma B.1 by setting π = π⋆, the Q-estimate error after k episodes is decomposed as follows:

Q⋆h(s, a)−Qk,h(s, a) = Dπ⋆

1 (s, a, k, h) +D2(s, a, k, h) +D3(s, a, k, h) +Dπ⋆

4 (s, a, k, h)

≤ Dπ⋆

1 (s, a, k, h) +Dπ⋆

4 (s, a, k, h) + 2D3(s, a, k, h), (31)

where the second line follows from Lemma B.3. Finally, inserting the decomposition (31) and (30) back into (29), we

control the performance gap with the following terms:

V ⋆1 (ρ)− V π̂1 (ρ)

≤ 1

K
max
h∈[H]

ϕ(K)∑

v=1

τv
∑

s∈S

dπ
⋆

h (s)
[
Dπ⋆

1 (s, π⋆h(s), tv, h) +Dπ⋆

4 (s, π⋆h(s), tv, h) + 2D3(s, π
⋆
h(s), tv, h)

]

=:
1

K
max
h∈[H]

(D1,h +D4,h +D3,h) , (32)

for which we shall aim to bound each term individually, adopting the following short-hand notation:

Di,h :=

ϕ(K)∑

v=1

τv
∑

s∈S

dπ
⋆

h (s)Dπ⋆

i (s, π⋆h(s), tv, h) for i ∈ {1, 4},

D3,h :=

ϕ(K)∑

v=1

τv
∑

s∈S

dπ
⋆

h (s)D3(s, π
⋆
h(s), tv, h). (33)

Step 2: Bounding the decomposed terms. Here, we derive the bound of the decomposed terms separately as follows under

the event E0, which holds with probability at least 1− δ.

• Bounding D1,h. Using the fact that 0 ≤ Q⋆h(s, π
⋆
h(s)) −Q0,h(s, π

⋆
h(s)) ≤ H , which follows from Lemma B.3, it

follows

D1,h =

ϕ(K)∑

v=1

τv
∑

s∈S

dπ
⋆

h (s, π⋆h(s))ω0,tv,h(s, π
⋆
h(s))(Q

⋆
h(s, π

⋆
h(s))−Q0,h(s, π

⋆
h(s)))

17
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≤
ϕ(K)∑

v=1

τv
∑

s∈S

dπ
⋆

h (s, π⋆h(s))ω0,tv,h(s, π
⋆
h(s))H

= H
∑

s∈S

dπ
⋆

h (s, π⋆h(s))

ϕ(K)∑

v=1

τvI{Ntv,h(s, π⋆h(s)) = 0} (34)

where the last line follows from (24b). To continue, note that

ϕ(K)∑

v=1

τvI{Ntv,h(s, π⋆h(s)) = 0}

=
∑

v∈[ϕ(K)]:tv≤K0(s,π⋆
h
(s),h)

τvI{Ntv,h(s, π⋆h(s)) = 0}+
∑

v∈[ϕ(K)]:tv>K0(s,π⋆
h
(s),h)

I{Ntv,h(s, π⋆h(s)) = 0}

≤ K0(s, π
⋆
h(s), h),

where the last line follows since under the event E0, Ntv,h(s, π
⋆
h(s)) > 0 when tv > K0(s, π

⋆
h(s), h). Plugging the

above inequality and the definition of K0(s, π
⋆
h(s), h) back to (34) leads to

D1,h ≤ H
∑

s∈S

dπ
⋆

h (s, π⋆h(s))K0(s, π
⋆
h(s), h)

= H
∑

s∈S

min{dπ⋆

h (s, π⋆h(s)), 1/S}
davgh (s, π⋆h(s))

(
12ζ0
M

)
dπ

⋆

h (s, π⋆h(s))

min{dπ⋆

h (s, π⋆h(s)), 1/S}

≲
HC⋆avgS

M
, (35)

where the last line follows from the definition of C⋆avg and the fact that

∑

s∈S

dπ
⋆

h (s, π⋆h(s))

min{dπ⋆

h (s, π⋆h(s)), 1/S}
≤
∑

s∈S

(
1 + dπ

⋆

h (s, π⋆h(s))S
)
=
∑

s∈S

(
1 + dπ

⋆

h (s)S
)
= 2S.

• Bounding D3,h. The range of D3(s, a, k, h) is bounded as shown in the following Lemma, whose proof is provided

in Appendix D.5.

Lemma B.4. For any (s, a, h) ∈ S × A × [H] and k ∈ T (K), if Nk,h(s, a) = 0, D3(s, a, k, h) = 0, and if,

Nk,h(s, a) > 0, the following holds:

D3(s, a, k, h) ∈
[√

cBζ21H
4

Nk,h(s, a)
,

√
4cBζ21H

4

Nk,h(s, a)

]
. (36)

With the above lemma in hand, recalling (33) gives

D3,h =

ϕ(K)∑

v=1

τv
∑

s∈S

dπ
⋆

h (s, π⋆h(s))(2D3(s, π
⋆
h(s), tv, h))

≤
∑

s∈S

dπ
⋆

h (s, π⋆h(s))

ϕ(K)∑

v=1

2τv

√
4cBζ21H

4

max{Ntv,h(s, π⋆h(s)), 1}
(37)

According to Lemma B.2, Ntv,h(s, a) ≥ 1
2 tvMdavgh (s, a) holds if tv ≥ K0(s, a, h) under the event E0. Therefore,

ϕ(K)∑

v=1

τv

√
H4

max{Ntv,h(s, a), 1}
≲

∑

v:tv≤K0(s,a,h)

τvH
2 +

∑

v:tv>K0(s,a,h)

τv

√
H4

max{Ntv,h(s, a), 1}

18
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≲ H2K0(s, a, h) +
∑

v:tv>K0(s,a,h)

τv

√
H4

max{Ntv,h(s, a), 1}

≲ H2K0(s, a, h) +

ϕ(K)∑

v=1

τv

√
H4

Mtvd
avg
h (s, a)

. (38)

Plugging the above inequality and the definitions of K0(s, π
⋆
h(s), h) and C⋆avg to (37), we obtain

D3,h ≲
H2

M

∑

s∈S

dπ
⋆

h (s, π⋆h(s))

davgh (s, π⋆h(s))
+

ϕ(K)∑

v=1

∑

s∈S

dπ
⋆

h (s, π⋆h(s))τv

√
H4

Mtvd
avg
h (s, π⋆h(s))

≲
H2C⋆avg
M

∑

s∈S

dπ
⋆

h (s, π⋆h(s))

min{dπ⋆

h (s, π⋆h(s)), 1/S}
+

ϕ(K)∑

v=1

√
H4C⋆avgτ

2
v

Mtv

∑

s∈S

√
(dπ

⋆

h (s, π⋆h(s)))
2

min{dπ⋆

h (s, π⋆h(s)), 1/S}

(i)

≲
H2C⋆avgS

M
+

√
H4C⋆avgS

M

ϕ(K)∑

v=1

√
τv

√
τv
tv

(ii)

≲
H2C⋆avgS

M
+

√
H4SKC⋆avg

M
, (39)

where (i) holds due to Cauchy-Schwarz inequality and the fact that

∑

s∈S

dπ
⋆

h (s, π⋆h(s))

min{dπ⋆

h (s, π⋆h(s)), 1/S}
≤
∑

s∈S

(
1 + dπ

⋆

h (s, π⋆h(s))S
)
=
∑

s∈S

(
1 + dπ

⋆

h (s)S
)
= 2S,

and the last line (ii) follows from the Cauchy-Schwarz inequality and the fact that
∑ϕ(K)
v=1 τv = K and

∑ϕ(K)
v=1

τv
tv

≤
1 + logK, with the latter following from Lemma C.2.

• Bounding D4,h. In the following lemma, whose proof is provided in Section D.6, we extract the recursive formulation

of D4,h as follows:

Lemma B.5. Consider any δ ∈ (0, 1). For any h ∈ [H], the following holds with probability at least 1− δ:

ϕ(K)∑

v=1

τv
∑

(s,a)∈S×A

dπ
⋆

h (s, a)

M∑

m=1

∑

i∈Lm
tv,h

(s,a)

ωmi,tv,h(s, a)Ph,s,a(V
⋆
h+1 − Vι(i),h+1)

≲ σaux + (1 +
1

H
)

ϕ(K)∑

u=1

τu
∑

s∈S

dπ
⋆

h+1(s)(V
⋆
h+1(s)− Vtu−1,h+1(s)) (40)

where

σaux =

√
H2KSC⋆avg

M
+
H2SC⋆avg

M
. (41)

Step 3: Recursion. Combining the bounds of the decomposed errors ((35), (39), and (40)), for any h ∈ [H], we obtain the

following recursive relation:

ϕ(K)∑

v=1

τv
∑

s∈S

dπ
⋆

1 (s) (V ⋆h (s)− Vtv,h(s))

≲ θK + (1 +
1

H
)

ϕ(K)∑

u=1

τu
∑

s∈S

dπ
⋆

1 (s)
(
V ⋆h+1(s)− Vtu−1,h+1(s)

)
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(i)

≲ (θK +Hτ1) + (1 +
1

H
)

ϕ(K)−1∑

u=1

τu+1

∑

s∈S

dπ
⋆

1 (s)
(
V ⋆h+1(s)− Vtu,h+1(s)

)

(ii)

≲ (θK +Hτ1) + (1 +
2

H
)2
ϕ(K)−1∑

u=1

τu
∑

s∈S

dπ
⋆

1 (s)
(
V ⋆h+1(s)− Vtu,h+1(s)

)
(42)

where (i) holds because V ⋆h+1(s)−Vtu,h+1(s) ≤ H and (ii) holds due to the condition
τu+1

τu
≤ 1+ 2

H for all 1 ≤ u ≤ ϕ(K)
and the fact that V ⋆h+1(s) ≥ Vtu,h+1(s) shown in Lemma B.3, and we denote

θK :=
HC⋆avgS

M
+
H2C⋆avgS

M
+

√
H4SC⋆avgK

M
+

√
H2KSC⋆avg

M
+
H2SC⋆avg

M
. (43)

Then, by invoking the recursion (H − h+ 1) times, it follows that

ϕ(K)∑

v=1

τv
∑

s∈S

dπ
⋆

1 (s) (V ⋆h (s)− Vtv,h(s))

≲ (θK +Hτ1) + (1 +
2

H
)2(θtϕ(K)−1

+Hτ1) + (1 +
2

H
)4
ϕ(K)−2∑

u=1

τu
∑

s∈S

dπ
⋆

1 (s)
(
V ⋆h+2(s)− Vtu,h+2(s)

)

≲ (θK +Hτ1) + (1 +
2

H
)2(θtϕ(K)−1

+Hτ1) + · · ·+ (1 +
2

H
)2(H−h+1)(θtϕ(K)−H+h−1

+Hτ1)

≲ HθK +H2τ1 (44)

where the second line follows from the fact that V ⋆H+1(s)− Vk,H+1(s) = 0 for any k ∈ [K], and the last line holds because

θk ≤ θK for any k ≤ K and (1 + 1
H )2(H−h+1) ≤ (1 + 2

H )2H ≤ e4.

Finally, by plugging the above bound into (29), we obtain the bound of the performance gap as follows:

V ⋆1 (ρ)− V π̂1 (ρ) ≤ 1

K
max
h∈[H]

ϕ(K)∑

v=1

τv
∑

s∈S

dπ
⋆

h (s) (V ⋆h (s)− Vtv,h(s))

≲
1

K
(HθK +H2τ1)

≲
H3SC⋆avg
MK

+

√
H6SC⋆avg
MK

+
H2τ1
K

T=HK

≲

√
H7SC⋆avg
MT

+
H4SC⋆avg
MT

, (45)

where the last line holds if τ1 ≤
√

HSC⋆
avgT

M , and this completes the proof.

C. Technical lemmas

Freedman’s inequality. We provide a user-friendly version of Freedman’s inequality (Freedman, 1975). See Li et al.

(2024a, Theorem 6) for more details.

Theorem C.1 (Li et al. (2024a, Theorem 6)). Consider a filtration F0 ⊂ F1 ⊂ F2 ⊂ · · · , and let Ek stand for the

expectation conditioned on Fk. Suppose that Yn =
∑n
k=1Xk ∈ R, where {Xk} is a real-valued scalar sequence obeying

|Xk| ≤ R and Ek−1

[
Xk

]
= 0 for all k ≥ 1

for some quantity R <∞. We also define

Wn :=
n∑

k=1

Ek−1

[
X2
k

]
.
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In addition, suppose that Wn ≤ σ2 holds deterministically for some given quantity σ2 <∞. Then for any positive integer

m ≥ 1, with probability at least 1− δ one has

|Yn| ≤
√

8max
{
Wn,

σ2

2m

}
log

2m

δ
+

4

3
R log

2m

δ
. (46)

We next present a basic analytical result that is useful in the proof.

Lemma C.2. Consider any sequence {xz}z=1,··· ,Z where xz ≥ 1 for all z and let Xz =
∑z
z′=1 xz′ . Then, for any Z ≥ 1,

it follows that

X(Z) =

Z∑

z=1

xz
Xz

≤ 1 + logXZ .

Proof. For Z = 1, X(1) = x1

x1
= 1. For Z > 1, suppose the claim holds for Z − 1. Then, it holds for Z as follows:

X(Z) = X(Z − 1) +
xZ
XZ

≤ 1 + logXZ−1 + 1− XZ−1

XZ

≤ 1 + logXZ−1 − log

(
XZ−1

XZ

)
= 1 + logXZ , (47)

where the first inequality follows from the induction hypothesis and xZ = XZ −XZ−1, the second inequality follows from

log y ≤ y − 1 for any y > 0. By induction, this completes the proof.

Last but not least, we have the following useful properties regarding the parameters introduced in (24c).

Lemma C.3. For any (s, a, h) ∈ S ×A× [H], k′ ≤ k ∈ T (K), where we denote u = ϕ(k), and i ∈ Lmk,h(s, a). Then, it

follows that:

ωmi,k,h(s, a) ≤
2H

Nk,h(s, a) +Hnk,h(s, a)
, (48a)

M∑

m=1

∑

j∈Lm
k,h

(s,a)

ωmj,k,h(s, a) ≤ 1, (48b)

M∑

m=1

∑

j∈lm
k′,h

(s,a)

ωmj,k,h(s, a) ≤
(H + 1)nk′,h
Nk,h +Hnk,h

, (48c)

M∑

m=1

∑

j∈Lm
k,h

(s,a)

(ωmi,k,h(s, a))
2 ≤ 2H

Nk,h(s, a) +Hnk,h(s, a)
, (48d)

∞∑

v≥u

ntv,h(s, a)

M∑

m=1

∑

i∈lm
k,h

(s,a)

ωmi,tv,h(s, a) ≤ nk,h(s, a)

(
1 +

1

H

)
. (48e)

Proof. For notation simplicity, we will omit (s, a) for the following proofs. Moreover, u = ϕ(k) and tu = k.

Proof of (48a). Recalling the definition of ωmi,k,h in (24c) and using the fact that H ≥ 1,

ωmi,k,h =
H + 1

Nk,h +Hnk,h



ϕ(k)−1∏

x=ϕ(i)

Ntx,h
Ntx,h +Hntx,h


 ≤ 2H

Nk,h +Hnk,h
. (49)

Proof of (48b). By rearranging the terms,

M∑

m=1

∑

j∈Lm
k,h

(s,a)

ωmj,k,h =

ϕ(k)∑

v=1

M∑

m=1

∑

j∈lm
tv,h

H + 1

Ntv,h +Hntv,h




ϕ(k)∏

x=v+1

Ntx−1,h

Ntx,h +Hntx,h



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=

ϕ(k)∑

v=1

(H + 1)ntv,h
Ntv,h +Hntv,h




ϕ(k)∏

x=v+1

Ntx−1,h

Ntx,h +Hntx,h




=

ϕ(k)∑

v=1

(
1− Ntv−1,h

Ntv,h +Hntv,h

)


ϕ(k)∏

x=v+1

Ntx−1,h

Ntx,h +Hntx,h




=

ϕ(k)∑

v=1




ϕ(k)∏

x=v+1

Ntx−1,h

Ntx,h +Hntx,h
−
ϕ(k)∏

x=v

Ntx−1,h

Ntx,h +Hntx,h




= 1−
ϕ(k)∏

x=1

Ntx−1,h

Ntx,h +Hntx,h
≤ 1. (50)

Proof of (48c). Let v = ϕ(k′), i.e., k′ = tv . Similarly to the proof of (48b), by arranging some terms, we obtain the upper

bound as follows:

M∑

m=1

∑

j∈lm
k′,h

(s,a)

ωmj,k,h(s, a) =

M∑

m=1

∑

j∈lm
tv,h

(s,a)

H + 1

Ntv,h +Hntv,h




ϕ(k)∏

x=v+1

Ntx−1,h

Ntx,h +Hntx,h




=
(H + 1)ntv,h
Ntv,h +Hntv,h




ϕ(k)∏

x=v+1

Ntx−1,h

Ntx,h +Hntx,h




=
(H + 1)ntv,h
Nk,h +Hnk,h



ϕ(k)−1∏

x=v

Ntx,h
Ntx,h +Hntx,h




≤ (H + 1)nk′,h
Nk,h +Hnk,h

. (51)

Proof of (48d). Using the bound in (48a) and (48b),

M∑

m=1

∑

j∈Lm
k,h

(ωmj,k,h)
2 =

(
max

m∈[M ],j∈Lm
k,h

ωmj,k,h

)
M∑

m=1

∑

j∈Lm
k,h

ωmj,k,h ≤ max
m∈[M ],j∈Lm

k,h

ωmj,k,h ≤ 2H

Nk,h +Hnk,h
. (52)

Proof of (48e). Recall that k = tu. Then, reusing the intermediate result derived in (51),

∞∑

v≥u

ntv,h(s, a)

M∑

m=1

∑

i∈lm
tu,h

(s,a)

ωmi,tv,h(s, a) =

∞∑

v≥u

ntv,h
(H + 1)ntu,h
Ntv,h +Hntv,h




v−1∏

x=u

Ntx,h
Ntx,h +Hntx,h︸ ︷︷ ︸

:=βx,h




= (H + 1)ntu,h

∞∑

v≥u

ntv,h
Ntv,h +Hntv,h

(
v−1∏

x=u

βx,h

)

= (H + 1)ntu,h

∞∑

v≥u

1

H
(1− βv,h)

(
v−1∏

x=u

βx,h

)

≤ nk,h(1 +
1

H
). (53)
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D. Proofs for main results

D.1. Proof of Lemma B.1

For any (h, s, a) ∈ [H]× S ×A and k ∈ T (K), according to the pessimistic aggregation update rule in (13), the estimate

error of Q function at the k-th iteration can be written as follows:

Qπh(s, a)−Qk,h(s, a) = Qπh(s, a)−
(

M∑

m=1

αmk,h(s, a)Q
m
k,h(s, a)

)
+Bk,h(s, a)

=
M∑

m=1

αmk,h(s, a)
(
Qπh(s, a)−Qmk,h(s, a)

)
+Bk,h(s, a), (54)

where the last equality holds by the fact
∑M
m=1 α

m
k,h(s, a) = 1.

Then, invoking the local update rule in (12), for any i such that (smi,h, a
m
i,h) = (s, a), the local Q-estimate error at each agent

m can be written as follows:

Qπh(s, a)−Qmi,h(s, a)

= (1− ηmi,h(s, a))(Q
π
h(s, a)−Qmi−1,h(s, a)) + ηmi,h(s, a)(Q

π
h(s, a)− rh(s, a)− Pmi,hV

m
i−1,h+1)

= (1− ηmi,h(s, a))(Q
π
h(s, a)−Qmi−1,h(s, a)) + ηmi,h(s, a)(rh(s, a) + Ph,s,aV

π
h+1 − rh(s, a)− Pmi,hV

m
i−1,h+1)

= (1− ηmi,h(s, a))(Q
π
h(s, a)−Qmi−1,h(s, a))

+ ηmi,h(s, a)Ph,s,a(V
π
h+1 − V mi−1,h+1) + ηmi,h(s, a)(Ph,s,a − Pmi,h)V

m
i−1,h+1, (55)

where the second line follows from the Bellman’s equation. Then, by invoking the relation recursively, the local Q-estimate

error at each agent m obeys the following relation:

Qπh(s, a)−Qmk,h(s, a) =
∏

i∈lm
k,h

(s,a)

(1− ηmi,h(s, a))
(
Qπh(s, a)−Qι(k),h(s, a)

)

+
∑

i∈lm
k,h

(s,a)

ηmi,h(s, a)
∏

{j>i:j∈lm
k,h

(s,a)}

(1− ηmj,h(s, a))Ph,s,a(V
π
h+1 − V mi−1,h+1)

+
∑

i∈lm
k,h

(s,a)

ηmi,h(s, a)
∏

{j>i:j∈lm
k,h

(s,a)}

(1− ηmj,h(s, a))(Ph,s,a − Pmi,h)V
m
i−1,h+1, (56)

where lmk,h(s, a) denotes a set of episodes where agent m has visited (s, a) at step h within (ι(k), k].

By inserting (56) to (54) and letting v = ϕ(k), we obtain the following recursive relation for u-th local updates:

Qπh(s, a)−Qk,h(s, a)

=




M∑

m=1

αmk,h(s, a)
∏

i∈lm
k,h

(s,a)

(1− ηmi,h(s, a))




︸ ︷︷ ︸
:=λv,h(s,a)

(
Qπh(s, a)−Qι(k),h(s, a)

)
+Bk,h(s, a)

+

M∑

m=1

∑

i∈lm
k,h

(s,a)


αmk,h(s, a)ηmi,h(s, a)

∏

{j>i:j∈lm
k,h

(s,a)}

(1− ηmj,h(s, a))


Ph,s,a(V

π
h+1 − V mi−1,h+1)

+

M∑

m=1

∑

i∈lm
k,h

(s,a)


αmk,h(s, a)ηmi,h(s, a)

∏

{j>i:j∈lm
k,h

(s,a)}

(1− ηmj,h(s, a))


 (Ph,s,a − Pmi,h)V

m
i−1,h+1

= λv,h(s, a)
(
Qπh(s, a)−Qι(k),h(s, a)

)
+Bk,h(s, a)

+
(H + 1)

Ntv,h(s, a) +Hntv,h(s, a)

M∑

m=1

∑

i∈lm
k,h

(s,a)

Ph,s,a(V
π
h+1 − V mi−1,h+1)

23



Federated Offline Reinforcement Learning

+
(H + 1)

Ntv,h(s, a) +Hntv,h(s, a)

M∑

m=1

∑

i∈lm
k,h

(s,a)

(Ph,s,a − Pmi,h)V
m
i−1,h+1. (57)

Here, the last line holds by invoking the definitions in (16) and (17) and observing with abuse of notation (omit (s, a) when

it is clear)

αmk,h(s, a)η
m
i,h(s, a)

∏

{j>i:j∈lm
k,h

(s,a)}

(1− ηmj,h(s, a))

=
1

M

Nι(k),h +M(H + 1)nmk,h
Nk,h +Hnk,h

M(H + 1)

Nι(i),h +M(H + 1)nmi,h



nm
k,h−n

m
i,h∏

j=1

(Nι(i),h +M(H + 1)(nmi,h + j − 1)

Nι(i),h +M(H + 1)(nmi,h + j)

)



=
1

M

Nι(k),h +M(H + 1)nmk,h
Nk,h +Hnk,h

M(H + 1)

Nι(i),h +M(H + 1)nmi,h

Nι(i),h +M(H + 1)nmi,h
Nι(i),h +M(H + 1)nmk,h

=
(H + 1)

Nk,h +Hnk,h
=

(H + 1)

Ntv,h +Hntv,h
(58)

where the last line holds since ι(i) = ι(k) for i ∈ lmk,h(s, a) and k ∈ T (K) leads to k = tϕ(k) = tv .

Then, by invoking the above recursive relation for each aggregation, the Q-estimate error after k episodes is decomposed as

follows:

Qπh(s, a)−Qk,h(s, a)

=

ϕ(k)∏

u=1

λu,h(s, a)

︸ ︷︷ ︸
:=ω0,k,h(s,a)

(Qπh(s, a)−Q0,h(s, a)) +

ϕ(k)∑

u=1

Btu,h(s, a)

ϕ(k)∏

x=u+1

λx,h(s, a)

+

ϕ(k)∑

u=1

M∑

m=1

∑

i∈lm
tu,h

(s,a)


 H + 1

Ntu,h +Hntu,h

ϕ(k)∏

x=u+1

λx,h(s, a)




︸ ︷︷ ︸
:=ωi,k,h(s,a)

(Ph,s,a − Pmi,h)V
m
i−1,h+1

+

ϕ(k)∑

u=1

M∑

m=1

∑

i∈lm
tu,h

(s,a)


 H + 1

Ntu,h +Hntu,h

ϕ(k)∏

x=u+1

λx,h(s, a)


Ph,s,a(V

π
h+1 − V mi−1,h+1)

= ω0,k,h(s, a)(Q
π
h(s, a)−Q0,h(s, a))

+

M∑

m=1

∑

i∈Lm
k,h

(s,a)

ωmi,k,h(s, a)(Ph,s,a − Pmi,h)V
m
i−1,h+1

+

ϕ(k)∑

u=1

Btu,h(s, a)

ϕ(k)∏

x=u+1

λx,h(s, a)

+

M∑

m=1

∑

i∈Lm
k,h

(s,a)

ωmi,k,h(s, a)Ph,s,a(V
π
h+1 − V mi−1,h+1). (59)

Here, λu,h(s, a), ω0,k,h(s, a), and ωi,k,h(s, a) can be simply written as described in (24a), (24b), and (24c), respectively,

which will be proved momentarily. For notational simplicity, we omit (s, a) in the derivations.

Proof of (24a). Consider k = tv . First, consider a case that Nι(k),h = 0. If nk,h = 0, λv,h =
∑M
m=1 α

m
k,h = 1. Otherwise,

if nk,h > 0, where there exists at least one agent m ∈ [M ] that visits the state-action at least once until k-th episode, it

follows that

λv,h =

M∑

m=1

1

M

(H + 1)Mnmk,h
(H + 1)nk,h

nm
k,h∏

j=1

(
M(H + 1)(j − 1)

M(H + 1)j

)
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=

M∑

m∈[M ]:nm
k,h

=0

nmk,h
nk,h︸︷︷︸
=0

+

M∑

m∈[M ]:nm
k,h

>0

nmk,h
nk,h

nm
k,h∏

j=1

(
(H + 1)(j − 1)

(H + 1)j

)

︸ ︷︷ ︸
=0

= 0. (60)

On the other hand, when Nι(k),h > 0,

λv,h =
M∑

m=1

1

M

Nι(k),h +M(H + 1)nmk,h
Nι(k),h + (H + 1)nk,h

nm
k,h∏

j=1

(
Nι(k),h +M(H + 1)(j − 1)

Nι(k),h +M(H + 1)j

)

=
M∑

m=1

1

M

Nι(k),h +M(H + 1)nmk,h
Nι(k),h + (H + 1)nk,h

Nι(k),h

Nι(k),h +M(H + 1)nmk,h
=

Nι(k),h

Nk,h +Hnk,h
. (61)

Proof of (24b). According to (24a), if Nk,h(s, a) = 0, then λu,h(s, a) = 1 for all 1 ≤ u ≤ ϕ(k). Thus, ω0,k,h(s, a) = 1.

Otherwise, let the epsiode when (s, a) is visited at step h by any of the agents for the first time be j. Then, λϕ(j),h = 0

because Nι(j),h(s, a) = 0. Thus, if Nk,h(s, a) > 0, it always holds that ω0,k,h(s, a) =
∏ϕ(k)
u=1 λu,h(s, a) = 0.

Proof of (24c). For i such that ϕ(i) = u, by rearranging terms and applying (24a),

ωmi,k,h =
(H + 1)

Ntu,h +Hntu,h




ϕ(k)∏

x=u+1

Ntx−1,h

Ntx,h +Hntx,h




=
H + 1

Nk,h +Hnk,h



ϕ(k)−1∏

x=u

Ntx,h
Ntx,h +Hntx,h


 . (62)

D.2. Proof of Lemma B.2

Consider any given δ ∈ (0, 1) and (k, s, a, h) ∈ [K]× S ×A× [H]. Note that Nm
k,h(s, a) ∼ Binomial(k, dmh (s, a)) for all

m ∈ [M ]. Then recall the definition of Nk,h(s, a) in Section 3.2, we can view Nk,h(s, a) =
∑M
m=1N

m
k,h(s, a) as a sum of

kM independent Bernoulli variables with expectation ν := E[Nk,h(s, a)] = kMdavgh (s, a). Therefore, applying Chernoff

bound (see Mitzenmacher & Upfal (2005, Theorem 4.4)) yields:

∀t ∈ [0, 1] : P(
∣∣Nm

k,h(s, a)− ν
∣∣ ≥ νt) ≤ exp

(
−c1νt2

)
, (63a)

∀t ≥ 1 : P(Nm
k,h(s, a)− ν ≥ tν) ≤ exp (−c1νt) , (63b)

for some universal constant c1 > 0.

Armed with above facts and notations, now we are ready to prove (26). First, applying (63a) with t = 1
2 , we arrive at:

P(
∣∣Nm

k,h(s, a)− ν
∣∣ ≥ ν

2
≤ exp(−c1ν

4
) ≤ δ, (64)

where the last line follows from the condition that ν = kMdavgh (s, a) ≥ 4
c1

log ( 1δ ).

To continue, when ν = kMdavgh (s, a) ≤ 4
c1

log (1/δ), applying (63b) with t = 4 log (1/δ)
νc1

≥ 1 gives:

P(Nm
k,h(s, a)− ν ≥ 4 log (1/δ)

c1
) ≤ exp(−4 log (1/δ)) ≤ δ. (65)

Summing up (64) and (65) and taking the union bound over (k, s, a, h) ∈ [K]×S×A× [H] complete the proof by showing

that:

when k ≥ 4 log( |S||A|KH
δ )

c1Mdavgh
:

kMdavgh
2

=
ν

2
≤ Nm

k,h(s, a) ≤
3ν

2
≤ 2kMdavgh (66)

when k ≤ 4 log( |S||A|KH
δ )

c1Mdavgh
: Nm

k,h(s, a) ≤
8

c1
log(

|S||A|KH
δ

) (67)

holds with probability at least 1− 2δ.
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D.3. Proof of Lemma B.3

D.3.1. PROOF OF (28a).

Noticing that the (28a) involves two terms of interest, we start from the first one D2(s, a, k, h). For any (s, a, h) ∈
S ×A× [H] and any k ∈ T (K), we can rewrite D2(s, a, k, h) as

D2(s, a, k, h) =
k∑

i=1

M∑

m=1

Xm
i,k,h(s, a), (68)

where Xm
i,k,h(s, a) = ωmi,k,h(s, a)(Ph,s,a − Pmi,h)V

m
i−1,h+1I{(smi,h, ami,h) = (s, a)}. To further control

∑k
i=1

∑M
m=1X

m
i,k,h(s, a), we first introduce the following Lemma D.1, whose proof is provided in Appendix D.4, with

Nk,h(s, a) = N .

Lemma D.1. For any (k, s, a, h) ∈ S ×A× [H] and N ∈ [1,MK], let

X̃m
i,k,h(s, a;N) = ω̃mi,k,h(s, a;N)(Ph,s,a − Pmi,h)V

m
i−1,h+1I{(smi,h, ami,h) = (s, a)}, (69)

where

ω̃mi,k,h(s, a;N) :=
H + 1

N +Hnk,h(s, a)



ϕ(k)−1∏

x=ϕ(i)

Ntx,h(s, a)

Ntx,h(s, a) +Hntx,h(s, a)


 Imi,h(s, a;N), (70)

and Imi,h(s, a;N) := I{∑M
m′=1N

m′

i−1,h(s, a) +
∑m
m′=1 I{(sm

′

i,h, a
m′

i,h) = (s, a)} ≤ N}. Then, for any δ ∈ (0, 1), the

following holds:

∣∣∣∣∣

k∑

i=1

M∑

m=1

X̃m
i,k,h(s, a;N)

∣∣∣∣∣ ≤
√

81H4ζ21
N

(71)

at least with probability 1− δ, where we denote ζ1 = log
(

|S||A|MK2H
δ

)
.

Armed with above lemma, for any (s, a, k, h) ∈ S ×A× [K]× [H] where k ∈ T (K), the following holds:

when Nk,h(s, a) > 0 : |D2(s, a, k, h)| ≤
∣∣∣∣∣

k∑

i=1

M∑

m=1

X̃m
i,k,h(s, a;Nk,h(s, a))

∣∣∣∣∣ ≤
√

81H4ζ21
Nk,h(s, a)

(72)

with probability at least 1 − δ. As it is obvious that D2(s, a, k, h) = 0 when Nk,h(s, a) = 0 from the definition of

D2(s, a, k, h), we arrive at

|D2(s, a, k, h)| ≤
∣∣∣∣∣

k∑

i=1

M∑

m=1

X̃m
i,k,h(s, a;Nk,h(s, a))

∣∣∣∣∣ ≤
√

81H4ζ21
Nk,h(s, a)

. (73)

Finally, combining the results for D2(s, a, k, h) (cf. (73)) and D3(s, a, k, h) (cf. (36) in Lemma B.4), we conclude that for

any (s, a, k, h) ∈ S ×A× [K]× [H] with k ∈ T (K), it holds with probability at least 1− δ that

|D2(s, a, k, h)| ≤
√

81H4ζ21
Nk,h(s, a)

=

√
cBζ21H

4

Nk,h(s, a)
≤ D3(s, a, k, h). (74)

D.3.2. PROOF OF (28b) AND (28c).

For all (h, s, a, k) ∈ [H]×S ×A×T (K), it is clear that Qπk

h (s, a) ≤ Q⋆h(s, a) and V πk

h (s) ≤ V ⋆h (s) due to the definition.

So it suffices to show that

Qk,h(s, a) ≤ Qπk

h (s, a) and Vk,h(s) ≤ V πk

h (s)

for all (h, s, a, k) ∈ [H]× S ×A× T (K), which we will prove by an induction argument as below.
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• Base case. When h = H + 1, for all (s, a, k) ∈ S ×A×T (K), the relation always holds since Qk,H+1(s, a) = 0 ≤
Qπk

H+1(s, a) and Vk,H+1(s) = 0 ≤ V πk

H+1(s) according to the definition of Qk,H+1 and Vk,H+1, respectively.

• Induction. When h ∈ [H], suppose the relation holds for h+ 1, i.e., Qk,h+1(s, a) ≤ Qπk

h+1(s, a) and Vk,h+1(s) ≤
V πk

h+1(s) for all (s, a, k) ∈ S × A × T (K). First, we will verify Q-estimates at step h are pessimistic. For any

(s, a, k) ∈ S ×A× T (K), applying Lemma B.1,

Qπk

h (s, a)−Qk,h(s, a) = ω0,k,h(s, a)(Q
πk

h (s, a)−Q0,h(s, a))︸ ︷︷ ︸
D

πk
1 (s,a,k,h)

+

M∑

m=1

∑

i∈Lm
k,h

(s,a)

ωmi,k,h(s, a)(Ph,s,a − Pmi,h)V
m
i−1,h+1

︸ ︷︷ ︸
D2(s,a,k,h)

+

ϕ(k)∑

u=1

Btu,h(s, a)

ϕ(k)∏

u′=u+1

λu′,h(s, a)

︸ ︷︷ ︸
D3(s,a,k,h)

+
M∑

m=1

∑

i∈Lm
k,h

(s,a)

ωmi,k,h(s, a)Ph,s,a(V
πk

h+1 − Vι(i),h+1)

︸ ︷︷ ︸
D

πk
4 (s,a,k,h)

. (75)

Then we control the above four terms one at a time. Here, Dπk

1 (s, a, k, h) ≥ 0 since Qπk

h (s, a) ≥ Q0,h(s, a) = 0. In

addition, according to the fact (28a) in Lemma B.3, |D2(s, a, k, h)| ≤ D3(s, a, k, h). And it is clear that D4 ≥ 0 due

to

V πk

h+1 ≥ Vk,h+1 ≥ Vι(i),h+1, (76)

where the first inequality holds by the induction assumption, and the last inequality arises from the monotonicity

guarantee of the global update in (14). Therefore, it is clear that for any (s, a, k) ∈ S × A × T (K), Q-estimates at

step h are pessimistic, i.e.,

Qπk

h (s, a)−Qk,h(s, a) ≥ 0. (77)

Next, to show that value estimates at step h are pessimistic, recalling the global update in (14),

V πk

h (s)− Vk,h(s) = Qπk

h (s, πk,h(s))−max{max
a

Qk,h(s, a), Vι(k),h(s)}

= Qπk

h (s, πk,h(s))−max
a

Qk0,h(s, a)

= Qπk

h (s, πk0,h(s))−Qk0,h(s, πk0,h(s)) ≥ 0, (78)

where k0 denotes the most recent episode satisfying Vk,h(s) = maxaQk0,h(s, a) and k ≥ k0 ∈ T (K), and the

last inequality holds because πk,h(s) = πk0,h(s) and Qπk

h (s, a) − Qk0,h(s, a) ≥ 0 can be similarly verified using

(75) and (76) for k0. Now, we verify that Qπk

h (s, a) ≥ Qk,h(s, a) and V πk

h (s) ≥ Vk,h(s) holds at step h for any

(s, a, k) ∈ S ×A× T (K), and this directly completes the induction argument.

D.4. Proof of Lemma D.1

To begin with, for any time step h ∈ [H], we denote the expectation conditioned on the trajectories j ≤ i of all agent as

∀(i,m) ∈ [k]× [M ] : E(i,m)[·] = E
[
· |
{
sm

′

j,h, a
m′

j,h, V
m
j,h+1

}
j<i,m′∈[M ]

,
{
sm

′

i,h, a
m′

i,h

}
m′≤m

]
. (79)

Armed with this notation, fixing N , it is easily verified that E(i,m)[X̃
m
i,k(s, a;N)] = 0 since then V mi−1,h+1 can be regarded

as fixed and (Ph,s,a − Pmi,h) is independent from ω̃mi,k,h(s, a;N).
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Consequently, we can apply Freedman’s inequality (see the user-friendly version of Freedman’s inequality provided in

Theorem C.1) and control the term of interest for any (s, a, k, h) ∈ S ×A× [K]× [H] and N ∈ [1,MK] as below:

k∑

i=1

M∑

m=1

X̃m
i,k,h(s, a;N)

(i)

≤
√
8B1ζ1 +

4

3
B2ζ1

(ii)

≤
√

32H4ζ1
N

+
3H2ζ1
N

≤
√

81H4ζ21
N

(80)

at least with probability 1− δ. Here, (i) and (ii) arises from the following definition and facts about B1 and B2:

B1 :=

k∑

i=1

M∑

m=1

E(i,m)

[(
X̃m
i,k,h(s, a;N)

)2]
≤ 4H4

N
, (81)

B2 := max
(i,m)∈[k]×[M ]

∣∣∣X̃m
i,k,h(s, a;N)

∣∣∣ ≤ 2H2

N
(82)

where the proofs of (82) and (81) are provided as below, respectively.

Proof of (81). In view of that the events happen at any time step h is independent from the transitions in later time steps

including Pmi,h, we have ω̃mi,k,h(s, a;N) is independent from (Ph,s,a − Pmi,h)V
m
i−1,h+1, which yields

k∑

i=1

M∑

m=1

E(i,m)[(X̃
m
i,k,h(s, a;N))2] =

k∑

i=1

M∑

m=1

E(i,m)[(ω̃
m
i,k,h(s, a;N))2]VarPh,s,a

(V mi−1,h+1)

≤ H2
k∑

i=1

M∑

m=1

E(i,m)[(ω̃
m
i,k,h(s, a;N))2]

≤ H2N

(
2H

N

)2

=
4H4

N
. (83)

where the penultimate inequality holds by the fact that |ω̃mi,k,h(s, a;N)| ≤ 2H
N .

Proof of (82). For any (i,m, h) ∈ [k]× [M ]× [H] and fixed N ∈ [1,MK], it is observed that

∣∣∣X̃m
i,k,h(s, a;N)

∣∣∣ =
∣∣ω̃mi,k,h(s, a;N)(Ph,s,a − Pmi,h)V

m
i−1,h+1I{(smi,h, ami,h) = (s, a)}

∣∣

≤ |ω̃mi,k,h(s, a;N)|∥Ph,s,a − Pmi,h∥1∥V mi−1,h+1∥∞ ≤ 2H2

N
(84)

where the last inequality follows from the facts ∥V mi−1,h+1∥∞ ≤ H , ∥Ph,s,a − Pmi,h∥1 ≤ 1, and |ω̃mi,k,h(s, a;N)| ≤ H+1
N ≤

2H
N .

D.5. Proof of Lemma B.4

With slightly abuse of notation, we will omit (s, a) from some notations when it is clear for simplicity throughout this section.

Recall the definition of D3(s, a, k, h) in (23) and the global penalty defined in (15). When Nk,h(s, a) = 0, the global

penalties are all 0, which yields D3(s, a, k, h) = 0. Therefore, now it suffices to focus on the cases when Nk,h(s, a) > 0
and show that for cB = 81, cu = 4 and cl = 1,

D3(s, a, k, h) =

ϕ(k)∑

u=1

Btu,h(s, a)

ϕ(k)∏

u′=u+1

λu′,h(s, a) ∈
[√

clcBζ21H
4

Nk,h(s, a)
,

√
cucBζ21H

4

Nk,h(s, a)

]
. (85)

Towards this, for any (s, a) ∈ S ×A, we consider a more general term as below: for any integer z ≥ 1,

z∑

u=1

Btu,h

z∏

u′=u+1

λu′,h =

z∑

u=1

(H + 1)ntu,h
Nk,h +Hntu,h

√
cBζ21H

4

Ntu,h

z∏

u′=u+1

λu′,h
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=
√
cBζ21H

4

z∑

u=1

√
1

Ntu,h
(1− λu,h)

z∏

u′=u+1

λu′,h

=
√
cBζ21H

4Y (z) (86)

where the penultimate equality follows from
(H+1)ntu,h(s,a)

Ntu,h+Hntu,h(s,a)
= (1 − λu,h(s, a)) for all (s, a) ∈ S × A, and the last

equality arises by defining

Y (z) :=

z∑

u=1

√
1

Ntu,h
(1− λu,h)

z∏

u′=u+1

λu′,h. (87)

As a result, to show (85), it suffices to verify that

Y (z) ∈
[√

cl
Ntz,h(s, a)

,

√
cu

Ntz,h(s, a)

]
. (88)

Proof of (88) by induction. We will verify (88) by a induction argument. To begin with, for the basic case z = 1, it is easily

verified that

Y (1) =

{√
1

Nt1,h
if nt1,h > 0

0 if nt1,h = 0,
(89)

since when nt1,h > 0 we have λ1,h(s, a) = 0, and otherwise λ1,h(s, a) = 1. Then suppose (88) holds for z − 1, namely,

Y (z − 1) ∈
[√

cl
Ntz−1,h

,

√
cu

Ntz−1,h

]
(90)

we hope to show (88) holds for z. Towards this, we first show the upper bound in (88) holds for z as follows:

Y (z) = Y (z − 1)λz,h +

√
1

Ntz,h
(1− λz,h)

(i)

≤
√

cu
Ntz−1,h

Ntz−1,h

Ntz,h +Hntz,h
+

√
1

Ntz,h

(H + 1)ntz,h
Ntz,h +Hntz,h

≤
√

cu
Ntz,h

√
Ntz−1,h

Ntz,h +Hntz,h
+

√
1

Ntz,h

(H + 1)ntz,h
Ntz,h +Hntz,h

=

√
cu

Ntz,h

(√
Ntz−1,h

Ntz,h +Hntz,h
+

√
1

cu

(H + 1)ntz,h
Ntz,h +Hntz,h

)

=

√
cu

Ntz,h

(√
Ntz−1,h

Ntz,h +Hntz,h
+

√
1

cu

(
1−

√
Ntz−1,h

Ntz,h +Hntz,h

)(
1 +

√
Ntz−1,h

Ntz,h +Hntz,h

))

≤
√

cu
Ntz,h

, (91)

where (i) follows from the induction assumption and
(H+1)ntz,h(s,a)
Ntz,h+Hntz,h(s,a)

= (1 − λz,h(s, a)) for all (s, a) ∈ S × A, the

penultimate equality holds by 1− Ntz−1,h

Ntz,h+Hntz,h
=

Ntz,h−Ntz−1,h+Hntz,h

Ntz,h+Hntz,h
=

(H+1)ntz,h

Ntz,h+Hntz,h
, and the last inequality arises

from
√

1
cu

(
1 +

√
Ntz−1,h

Ntz,h+Hntz,h

)
≤ 1 as long as cu ≥ 4.

Analogous to (91), the lower bound of Y (z) is derived as below:

Y (z) = Y (z − 1)λz,h +

√
1

Ntz,h
(1− λz,h)
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≥
√

cl
Ntz−1,h

Ntz−1,h

Ntz,h +Hntz,h
+

√
1

Ntz,h

(H + 1)ntz,h
Ntz,h +Hntz,h

≥
√

cl
Ntz,h

Ntz−1,h

Ntz,h +Hntz,h
+

√
1

Ntz,h

(H + 1)ntz,h
Ntz,h +Hntz,h

≥
√

cl
Ntz,h

, (92)

where the first inequality follows from the induction assumption and
(H+1)ntz,h(s,a)
Ntz,h+Hntz,h(s,a)

= (1− λz,h(s, a)) for all (s, a) ∈
S × A, and the last equality holds when 1 ≥ cl. Finally, by induction arguments, (88) holds for any z ∈ ϕ(K), and this

completes the proof.

D.6. Proof of Lemma B.5

Recall the definition of D4,h (see (33) and (23)), D4,h can be rewritten as follows:

D4,h

ϕ(K)∑

v=1

τv
∑

(s,a)∈S×A

dπ
⋆

h (s, a)

M∑

m=1

∑

i∈Lm
tv,h

(s,a)

ωmi,tv,h(s, a)Ph,s,a(V
⋆
h+1 − Vι(i),h+1)

(i)
=

ϕ(K)∑

v=1

τv
∑

(s,a)∈S×A

dπ
⋆

h (s, a)

v∑

u=1

Ph,s,a(V
⋆
h+1 − Vtu−1,h+1)

M∑

m=1


 ∑

i∈lm
tu,h

(s,a)

ωmi,tv,h(s, a)




︸ ︷︷ ︸
:=ψu,v,h(s,a)

=

ϕ(K)∑

v=1

τv
∑

(s,a)∈S×A

dπ
⋆

h (s, a)

v∑

u=1

Ph,s,a(V
⋆
h+1 − Vtu−1,h+1)ψu,v,h(s, a)

=
1

M

∑

(s,a)∈S×A

M∑

m′=1

ϕ(K)∑

v=1

∑

tv−1<j≤tv

dπ
⋆

h (s, a)

v∑

u=1

Ph,s,a(V
⋆
h+1 − Vtu−1,h+1)ψu,v,h(s, a) (93)

where (i) holds by rewriting the sum as
∑
i∈Lm

tv,h
(s,a) =

∑v
u=1

∑
i∈lm

tu,h
(s,a) and the last equality holds by the definition of

τν .

To further control (93), we introduce the following lemma that bound the expectation form (93) by an empirical version; the

proof is postponed to Appendix D.7.

Lemma D.2. Consider any δ ∈ (0, 1). For any h ∈ [H], the following holds:

∑

(s,a)∈S×A

M∑

m′=1

ϕ(K)∑

v=1

∑

tv−1<j≤tv

dπ
⋆

h (s, a)

v∑

u=1

Ph,s,a(V
⋆
h+1 − Vtu−1,h+1)ψu,v,h(s, a)

≲
∑

(s,a)∈S×A

ϕ(K)∑

v=1

dπ
⋆

h (s, a)

davgh (s, a)
ntv,h(s, a)

v∑

u=1

Ph,s,a(V
⋆
h+1 − Vtu−1,h+1)ψu,v,h(s, a) +Mσaux,1 (94)

at least with probability 1− δ, where

σaux,1 ≲

√
H2KSC⋆avg

M
+
H2SC⋆avg

M
(95)

Then, applying concentration bounds, D4 is bounded as follows:

D4

(i)

≲
1

M

∑

(s,a)∈S×A

ϕ(K)∑

v=1

v∑

u=1

dπ
⋆

h (s, a)

davgh (s, a)
ntv,h(s, a)Ph,s,a(V

⋆
h+1 − Vtu−1,h+1)ψu,v,h(s, a) + σaux,1
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=
1

M

∑

(s,a)∈S×A

ϕ(K)∑

u=1

dπ
⋆

h (s, a)

davgh (s, a)
Ph,s,a(V

⋆
h+1 − Vtu−1,h+1)

ϕ(K)∑

v=u

ntv,h(s, a)ψu,v,h(s, a) + σaux,1

(ii)

≤ 1

M

∑

(s,a)∈S×A

ϕ(K)∑

u=1

dπ
⋆

h (s, a)

davgh (s, a)
Ph,s,a(V

⋆
h+1 − Vtu−1,h+1)ntu,h(s, a)(1 +

1

H
) + σaux,1 (96)

where (i) follows from Lemma D.2, and (ii) holds because

∞∑

v≥u

ntv,h(s, a)

M∑

m=1

∑

i∈lm
tu,h

(s,a)

ωmi,tv,h(s, a) ≤ ntu,h(s, a)(1 +
1

H
) (97)

according (48e) in Lemma C.3.

To continue, we introduce the following lemma that transfer the distribution at time step h to the distribution of h+ 1; the

proof is provided in Appendix D.8.

Lemma D.3. Consider any δ ∈ (0, 1). For any h ∈ [H], the following holds:

ϕ(K)∑

u=1

∑

(s,a)∈S×A

ntu,h(s, a)

Mdavgh (s, a)
dπ

⋆

h (s, a)Ph,s,a(V
⋆
h+1 − Vtu−1,h+1)

≲

ϕ(K)∑

u=1

τu
∑

s∈S

dπ
⋆

h+1(s)(V
⋆
h+1(s)− Vtu−1,h+1(s)) + σaux,2 (98)

at least with probability 1− δ, where

σaux,2 =

√
H2KSC⋆avg

M
+
HSC⋆avg
M

. (99)

Armed with above lemma, rearranging the terms in (96) and applying Lemma D.3,

D4 ≲ (1 +
1

H
)

ϕ(K)∑

u=1

∑

(s,a)∈S×A

ntu,h(s, a)

Mdavgh (s, a)
dπ

⋆

h (s, a)Ph,s,a(V
⋆
h+1 − Vtu−1,h+1) + σaux,1

≲ (1 +
1

H
)

ϕ(K)∑

u=1

τu
∑

s∈S

dπ
⋆

h+1(s)(V
⋆
h+1(s)− Vtu−1,h+1(s)) + σaux,1 + σaux,2︸ ︷︷ ︸

=:σaux

, (100)

and this completes the proof.

D.7. Proof of Lemma D.2

Consider any given (s, a) ∈ S ×A and v ∈ [1, ϕ(K)]. Before proceeding, we introduce some notations and auxiliary terms.

Let

Gv,h(s, a) :=

v∑

u=1

Ph,s,a(V
⋆
h+1 − Vtu−1,h+1)ψu,v,h(s, a). (101)

Then, for any tv−1 < j ≤ tv , we introduce the following auxiliary variables:

Y mj,h :=
∑

(s,a)∈S×A

(
davgh (s, a)− I{(s, a) = (smj,h, a

m
j,h)}

) dπ⋆

h (s, a)

davgh (s, a)
Gv,h(s, a) (102)

Ỹ mj,h :=
∑

(s,a)∈S×A

(
dmh (s, a)− I{(s, a) = (smj,h, a

m
j,h)}

) dπ⋆

h (s, a)

davgh (s, a)
G̃−j,m
v,h (s, a), (103)
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where we define

G̃−j,m
v,h (s, a) :=

{
ψ̃−j,m
v,v,h (s, a)Ph,s,a(V

⋆
h+1 − Vtv−1,h+1) + (1− ψ̃−j,m

v,v,h (s, a))Gv−1,h(s, a) if v > 1

Ph,s,a(V
⋆
h+1 − V0,h+1) if v = 1

(104)

and

ψ̃−j,m
v,v,h (s, a) :=

(H + 1)(ntv,h(s, a)− I{(s, a) = (smj,h, a
m
j,h)})

Ntv−1,h(s, a) + (H + 1)(ntv,h(s, a)− I{(s, a) = (smj,h, a
m
j,h)})

=
(H + 1)(

∑
(m′,j′)∈[M ]×(tv−1,tv ]\{(j,m)} I{(s, a) = (sm

′

j′,h, a
m′

j′,h)})
Ntv−1,h(s, a) + (H + 1)(

∑
(m′,j′)∈[M ]×(tv−1,tv ]\{(j,m)} I{(s, a) = (sm

′

j′,h, a
m′

j′,h)})
. (105)

We replaced Gv,h(s, a) with an approximate G̃−j,m
v,h (s, a), where the visits of agent m on (s, a) at the j-th episode are

masked regardless of the actual visits of agent m on (s, a). The approximate is carefully designed to remove the dependency

on the event I{(s, a) = (smj,h, a
m
j,h)} from Gv,h(s, a) while maintaining close distance to the original value Gv,h(s, a).

Before continuing, we introduce some useful properties of above defined auxiliary terms whose proofs are provided in

Section D.7.1:for any v ∈ [ϕ(K)],

Gv,h(s, a) =

{
ψv,v,h(s, a)Ph,s,a(V

⋆
h+1 − Vtv−1,h+1) + (1− ψv,v,h(s, a))Gv−1,h(s, a) if v > 1

Ph,s,a(V
⋆
h+1 − V0,h+1) if v = 1

, (106a)

0 ≤ G̃−j,m
v,h (s, a), Gv,h(s, a) ≤ H, (106b)

|G̃−j,m
v,h (s, a)−Gv,h(s, a)| ≤ min

{
H,

2H2

Ntv,h(s, a)

}
. (106c)

Now, we are ready to prove (94). Towards this, we first observe that putting the first term in the right hand side of (94) to the

left hand side yields

∑

(s,a)∈S×A

ϕ(K)∑

v=1




M∑

m=1

∑

tv−1<j≤tv

dπ
⋆

h (s, a)− dπ
⋆

h (s, a)

davgh (s, a)
ntv,h(s, a)




v∑

u=1

Ph,s,a(V
⋆
h+1 − Vtu−1,h+1)ψu,v,h(s, a)

(i)
=

∑

(s,a)∈S×A

ϕ(K)∑

v=1




M∑

m=1

∑

tv−1<j≤tv

davgh (s, a)−
M∑

m=1

nmtv,h(s, a)


 dπ

⋆

h (s, a)

davgh (s, a)
Gv,h(s, a)

(ii)
=

∑

(s,a)∈S×A

M∑

m=1




K∑

j=1

davgh (s, a)−
K∑

j=1

I{(s, a) = (smj,h, a
m
j,h)}


 dπ

⋆

h (s, a)

davgh (s, a)
Gv,h(s, a)

=

K∑

j=1

M∑

m=1

∑

(s,a)∈S×A

(
davgh (s, a)− I{(s, a) = (smj,h, a

m
j,h)}

) dπ⋆

h (s, a)

davgh (s, a)
Gv,h(s, a) =

K∑

j=1

M∑

m=1

Y mj,h (107)

where (i) holds by plugging in (101), (ii) follows from
∑ϕ(K)
v=1

∑
tv−1<j≤tv

1 = K and
∑ϕ(K)
v=1 nmtv,h(s, a) =

∑K
j=1 I{(s, a) = (smj,h, a

m
j,h)}, and the last equality arise from the definition of Y mj,h in (D.7).

Therefore, the above fact shows that to prove (94), it is suffices to show:
∣∣∣∣∣∣

K∑

j=1

M∑

m=1

Y mj,h

∣∣∣∣∣∣
≤

∣∣∣∣∣∣

K∑

j=1

M∑

m=1

Ỹ mj,h

∣∣∣∣∣∣
+

∣∣∣∣∣∣

K∑

j=1

M∑

m=1

(
Y mj,h − Ỹ mj,h

)
∣∣∣∣∣∣
≲Mσaux,1. (108)

We will control the two essential terms separately as below:

• Controlling

∣∣∣
∑K
j=1

∑M
m=1 Ỹ

m
j,h

∣∣∣. To begin with, we observe that the approximate G̃−j,m
v,h (s, a) (defined in (104)) is

independent of agent m’s visits on (s, a) at j-th episode since Vtv−1,h+1, Gv−1,h(s, a) are independent of the j-th

episode and ψ̃−j,m
v,v,h (s, a) is independent from agent m’s visits on (s, a) at the j-th episode (see (105)).
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Ej−1[Ỹ
m
j,h] = 0, where we denote

Ej−1[·] = E

[
· | {(sm′

i,h, a
m′

i,h), V
m′

i,h+1}i<j,m′∈[M ]

]
.

Thus, applying the Freedman’s inequality for each h ∈ [H], we can show that the following holds:

∣∣∣∣∣∣

K∑

j=1

M∑

m=1

Ỹ mj,h

∣∣∣∣∣∣
≤
√
8W log

2H

δ
+

8

3
B log

2H

δ

≲
√
H2MKSC⋆avg +HSC⋆avg (109)

at least with probability 1− δ, where B and W is obtained as follows:

∣∣∣Ỹ mj,h
∣∣∣ ≤ 2C⋆avg(1 + dπ

⋆

h (s, π⋆(s))S)max
s∈S

G̃−j,m
ϕ(j),h(s, π

⋆(s)) ≤ 4SC⋆avgH =: B (110)

K∑

j=1

M∑

m=1

Ej−1

[(
Ỹ mj,h

)2]
≤

K∑

j=1

M∑

m=1

E(sm
j,h
,am

j,h
)∼dm

h



(
dπ

⋆

h (smj,h, a
m
j,h)

davgh (smj,h, a
m
j,h)

G̃−j,m
ϕ(j),h(s

m
j,h, a

m
j,h)

)2



≤
K∑

j=1

M∑

m=1

∑

s∈S

dmh (s, π⋆(s))

(
dπ

⋆

h (s, π⋆(s))

davgh (s, π⋆(s))
G̃−j,m
ϕ(j),h(s, π

⋆(s))

)2

≤ H2C⋆avg

K∑

j=1

∑

s∈S

M∑

m=1

dmh (s, π⋆(s))
dπ

⋆

h (s, π⋆(s))

davgh (s, π⋆(s))
(1 + dπ

⋆

h (s, π⋆(s))S)

≤ H2C⋆avg

K∑

j=1

∑

s∈S

Mdπ
⋆

h (s, π⋆(s))(1 + dπ
⋆

h (s, π⋆(s))S)

≤ 2H2SC⋆avgMK =:W (111)

using the fact that |G̃−j,m
ϕ(j),h(s

m
j,h, a

m
j,h)| ≤ H shown in (106b) and

dπ
⋆

h (s,π⋆(s))

min{dπ
⋆

h
(s,π⋆(s)),1/S}

≤ 1 + dπ
⋆

h (s, π⋆(s))S.

• Bound on the approximation gap of Ỹ mj,h. The approximation gap of Ỹ mj,h is bounded as follows:

∣∣∣∣∣∣

K∑

j=1

M∑

m=1

(
Ỹ mj,h − Y mj,h

)
∣∣∣∣∣∣

=

∣∣∣∣∣∣

ϕ(K)∑

v=1

M∑

m=1

∑

tv−1<j≤tv

∑

(s,a)∈S×A

(
dmh (s, a)− I{(s, a) = (smj,h, a

m
j,h)}

) dπ⋆

h (s, a)

davgh (s, a)
(G̃−j,m

v,h (s, a)−Gv,h(s, a))

∣∣∣∣∣∣

(i)
=

ϕ(K)∑

v=1

M∑

m=1

∑

tv−1<j≤tv

∑

(s,a)∈S×A

I{(s, a) = (smj,h, a
m
j,h)} (1− dmh (s, a))

dπ
⋆

h (s, a)

davgh (s, a)

∣∣∣G̃−j,m
v,h (s, a)−Gv,h(s, a)

∣∣∣

(ii)

≤
ϕ(K)∑

v=1

M∑

m=1

∑

tv−1<j≤tv

∑

(s,a)∈S×A

I{(s, a) = (smj,h, a
m
j,h)}

dπ
⋆

h (s, a)

davgh (s, a)
min

{
2H2

Ntv,h(s, a)
, H

}

(iii)

≤ C⋆avg
∑

s∈S

ϕ(K)∑

v=1

ntv,h(s, π
⋆(s))

dπ
⋆

h (s, π⋆(s))

min{dπ⋆

h (s, π⋆(s)), 1/S} min

{
2H2

Ntv,h(s, π
⋆(s))

, H

}

(iv)

≤ 2H2C⋆avg
∑

s∈S

(1 + dπ
⋆

h (s, π⋆(s))S)

ϕ(K)∑

v=1

min

{
ntv,h(s, π

⋆(s))

Ntv,h(s, π
⋆(s))

, ntv,h(s, π
⋆(s))

}

(v)

≲ C⋆avgH
2S (112)
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where (i) holds because ψ̃−j,m
v,v,h (s, a) = ψ−j,m

v,v,h (s, a) if (smj,h, a
m
j,h) ̸= (s, a) and G̃−j,m

v,h (s, a) = Gv,h(s, a) according

to (106a), (ii) follows from (106c), (iii) naturally holds according to the definition of C⋆avg, (iv) holds because

dπ
⋆

h (s,π⋆(s))

min{dπ
⋆

h
(s,π⋆(s)),1/S}

≤ 1 + dπ
⋆

h (s, π⋆(s))S, and (v) holds because for any z ∈ [ϕ(K)],

z∑

v=1

ntv,h(s, π
⋆(s))

Ntv,h(s, π
⋆(s))

≤ 1 + log (Ntz,h(s, π
⋆(s))), (113)

according to Lemma C.2.

Now, combining the bounds obtained above ((109) and (112)) into (108), we conclude that

∣∣∣∣∣∣

K∑

j=1

M∑

m=1

Y mj,h

∣∣∣∣∣∣
≲
√
H2MKSC⋆avg +H2SC⋆avg =M

(√
H2KSC⋆avg

M
+
H2SC⋆avg

M

)
(114)

which completes the proof.

D.7.1. PROOF OF (106)

Proof of (106a). We will proof (106a) by considering different cases separately. When v = 1, we have

Gv,h(s, a) = Ph,s,a(V
⋆
h+1 − Vtv−1,h+1)ψ1,1,h(s, a)

= Ph,s,a(V
⋆
h+1 − V0,h+1)

M∑

m=1


 ∑

i∈lm
t1,h

(s,a)

ωmi,t1,h(s, a)


 = Ph,s,a(V

⋆
h+1 − V0,h+1) (115)

where the second equality follows from the definition of ψu,v,h(s, a) in (93), and the last equality holds since

M∑

m=1

∑

i∈lm
t1,h

(s,a)

ωmi,t1,h(s, a) =
(H + 1)nt1,h
Nt1,h +Hnt1,h

=
(H + 1)nt1,h
(H + 1)nt1,h

= 1.

When v > 1, invoking the definition of ωmi,tv,h in (24c) yields that for any u < v,

ψu,v,h(s, a) =

M∑

m=1

∑

i∈lm
tu,h

(s,a)

ωmi,tv,h(s, a)

=
(H + 1)ntu,h
Ntv,h +Hntv,h

(
v−1∏

x=u

Ntx,h
Ntx,h +Hntx,h

)

=
(H + 1)ntu,h

Ntv−1,h +Hntv−1,h

(
v−2∏

x=u

Ntx,h
Ntx,h +Hntx,h

)
Ntv−1,h

Ntv,h +Hntv,h

= ψu,v−1,h(s, a)(1− ψv,v,h(s, a)). (116)

where the second equality holds by ϕ(i) = u for all i ∈ lmtu,h(s, a) and the fact
∑M
m=1

∑
i∈lm

tu,h
(s,a) 1 = ntu,h, and the last

equality holds by 1− ψv,v,h(s, a) = 1− (H+1)ntv,h

Ntv,h+Hntv,h
=

Ntv−1,h+(H+1)ntv,h−(H+1)ntv,h

Ntv,h+Hntv,h
=

Ntv−1,h

Ntv,h+Hntv,h
.

Consequently, inserting above fact back into (101) complete the proof by showing that

Gv,h(s, a) =

v∑

u=1

Ph,s,a(V
⋆
h+1 − Vtu−1,h+1)ψu,v,h(s, a)

= Ph,s,a(V
⋆
h+1 − Vtv−1,h+1)ψv,v,h(s, a) +

v−1∑

u=1

Ph,s,a(V
⋆
h+1 − Vtu−1,h+1)ψu,v,h(s, a)
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= Ph,s,a(V
⋆
h+1 − Vtv−1,h+1)ψv,v,h(s, a) + (1− ψv,v,h(s, a))

v−1∑

u=1

Ph,s,a(V
⋆
h+1 − Vtu−1,h+1)ψu,v−1,h(s, a)

= Ph,s,a(V
⋆
h+1 − Vtv−1,h+1)ψv,v,h(s, a) + (1− ψv,v,h(s, a))Gv−1,h(s, a). (117)

Proof of (106b). First, applying (28c) in Lemma B.3 gives Gv,h(s, a) ≥ 0. Then we focus on deriving the upper bound

Gv,h(s, a). Towards this, we observe that

Gv,h(s, a) =

v∑

u=1

Ph,s,a(V
⋆
h+1 − Vtu−1,h+1)ψu,v,h(s, a)

≤ Ph,s,a(V
⋆
h+1 − V0,h+1)

v∑

u=1

ψu,v,h(s, a)

≤ H
v∑

u=1

ψu,v,h(s, a)

= H
v∑

u=1

M∑

m=1


 ∑

i∈lm
tu,h

(s,a)

ωmi,tv,h(s, a)


 ≤ H, (118)

where the first and second inequalities hold by the fact Ph,s,a(V
⋆
h+1 − Vtx,h+1) ≤ Ph,s,a(V

⋆
h+1 − V0,h+1) ≤ H for any

x ∈ [ϕ(K)] (see the monotonicity of the value estimates in (14) and the basic bound ∥V ⋆h+1∥∞ ≤ H), the last equality

arises from the definition of ψu,v,h(s, a) in (93), and the last inequality follows from (48b) in Lemma C.3.

Similarly, the same facts holds for G̃−j,m
v,h (s, a), which can be derived in the same manner. We omit it for conciseness.

Proof of (106c). Consider v = ϕ(j). If v = 1, combing (106a) and (104) directly gives G̃−j,m
v,h (s, a) = Gv,h(s, a). Then

we turn to the case when v > 1 and bound the term of interest in two different cases, respectively.

• When (smj,h, a
m
j,h) ̸= (s, a). In this case, invoking the definition in (105) gives

ψ̃−j,m
v,v,h (s, a) =

(H + 1)ntv,h(s, a)

Ntv−1,h(s, a) + (H + 1)ntv,h(s, a)
= ψ−j,m

v,v,h (s, a), (119)

which indicates (see the definition in (104))

G̃−j,m
v,h (s, a) = Gv,h(s, a) (120)

• When (smj,h, a
m
j,h) = (s, a). In view of (106a) and (104), it holds that:

|G̃−j,m
v,h (s, a)−Gv,h(s, a)|

=
∣∣∣(ψ̃−j,m

v,v,h (s, a)− ψv,v,h(s, a))Ph,s,a(V
⋆
h+1 − Vtv−1,h+1) + (ψv,v,h(s, a)− ψ̃−j,m

v,v,h (s, a))Gv−1,h(s, a)
∣∣∣

=
∣∣∣(ψv,v,h(s, a)− ψ̃−j,m

v,v,h (s, a))(Gv−1,h(s, a)− Ph,s,a(V
⋆
h+1 − Vtv−1,h+1)

∣∣∣

≤
∣∣∣ψv,v,h(s, a)− ψ̃−j,m

v,v,h (s, a)
∣∣∣max

{
Gv−1,h(s, a), ∥Ph,s,a∥1

∥∥V ⋆h+1 − Vtv−1,h+1

∥∥
∞

}

(i)

≤ H
∣∣∣ψv,v,h(s, a)− ψ̃−j,m

v,v,h (s, a)
∣∣∣

(ii)

≤ min

{
H,

2H2

Ntv,h(s, a)

}
, (121)

where (i) holds by (106b), ∥Ph,s,a∥1 = 1, and
∥∥V ⋆h+1 − Vtv−1,h+1

∥∥
∞

≤ H . Here, (ii) can be verified by

0
(iii)

≤ ψv,v,h(s, a)− ψ̃−j,m
v,v,h (s, a)
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=
(H + 1)ntv,h(s, a)

Ntv−1,h(s, a) + (H + 1)ntv,h(s, a)
−

(H + 1)(ntv,h(s, a)− I{(s, a) = (smj,h, a
m
j,h)})

Ntv−1,h(s, a) + (H + 1)(ntv,h(s, a)− I{(s, a) = (smj,h, a
m
j,h)})

=
(H + 1)ntv,h(s, a)

Ntv−1,h(s, a) + (H + 1)ntv,h(s, a)
− (H + 1)(ntv,h(s, a)− 1)

Ntv−1,h(s, a) + (H + 1)(ntv,h(s, a)− 1)

≤ (H + 1)

Ntv−1,h(s, a) + (H + 1)ntv,h(s, a)

≤ min

{
1,

2H

Ntv,h(s, a)

}
. (122)

where (iii) holds by the fact that x
a+x is monotone increasing with x when a, x > 0.

D.8. Proof of Lemma D.3

For each j ∈ [K], let

Zmj,h :=
∑

(s,a)∈S×A

(
I{(s, a) = (smj,h, a

m
j,h)} − dmh (s, a)

) dπ
⋆

h (s, a)

Mdavgh (s, a)
Ph,s,a(V

⋆
h+1 − Vtϕ(j)−1,h+1). (123)

Then, to prove Lemma D.3, it suffices to show

∣∣∣
∑K
j=1

∑M
m=1 Z

m
j,h

∣∣∣ ≲ σaux,2.

Since Vtϕ(j)−1,h+1 is fully determined by the events before j-th episode, Ej−1[Z
m
j,h] = 0 , where we denote

Ej−1[·] = E[·|{(sm′

i,h, a
m′

i,h), V
m′

i,h+1}i<j,m′∈[M ]].

Thus, we can apply the Freedman’s inequality as follows:

∣∣∣∣∣∣

K∑

j=1

M∑

m=1

Zmj,h

∣∣∣∣∣∣
≤
√
8W log

2H

δ
+

8

3
B log

2H

δ
≲

√
H2KSC⋆avg

M
+
HSC⋆avg
M

(124)

using the following properties:

|Zmj,h| ≤
2C⋆avgH

M

(
∑

s∈S

(1 + dπ
⋆

h (s, π⋆(s))S)

)
≤

4HSC⋆avg
M

=: B (125)

K∑

j=1

M∑

m=1

Ej−1[(Z
m
j,h)

2] ≤
K∑

j=1

M∑

m=1

E(sm
j,h
,am

j,h
)∼dm

h



(

dπ
⋆

h (smj,h, a
m
j,h)

Mdavgh (smj,h, a
m
j,h)

Ph,s,a(V
⋆
h+1 − Vtϕ(j)−1,h+1)

)2



≤ H2
K∑

j=1

M∑

m=1

∑

s∈S

dmh (s, π⋆(s))

(
dπ

⋆

h (s, π⋆(s))

Mdavgh (s, π⋆(s))

)2

≤
H2C⋆avg
M

∑

s∈S

K∑

j=1

(
dπ

⋆

h (s, π⋆(s))

Mdavgh (s, π⋆(s))

)
(1 + dπ

⋆

h (s, π⋆(s))S)
M∑

m=1

dmh (s, π⋆(s))

=
H2C⋆avg
M

∑

s∈S

K∑

j=1

dπ
⋆

h (s, π⋆(s))(1 + dπ
⋆

h (s, π⋆(s))S)

=
2H2KSC⋆avg

M
=:W, (126)

which follows from that fact 0 ≤ ∥V ⋆h+1 − Vtϕ(j)−1,h+1∥∞ ≤ H and
dπ

⋆

h (s,π⋆(s))

min{dπ
⋆

h
(s,π⋆(s)),1/S}

≤ 1 + dπ
⋆

h (s, π⋆(s))S.
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D.9. Proof of Corollary 3.2

Note that if T ≍ H7SC⋆
avg

Mε2 , it always holds that

MT ≳ H5SC⋆avg and H ≤
√
HSC⋆avgT

M
, (127)

as long as ε ≤ H and ε ≤ H3SC⋆
avg

M . Now, we obtain the number of communication rounds of the specified schedules,

periodic and exponential synchronization.

Periodic synchronization. Consider τ ≍
√

HSC⋆
avgT

M . Then, since MT ≳ HSC⋆avg, the value gap is bounded as

V ⋆1 (ρ)− V π̂1 (ρ) ≲
H4SC⋆avg
MT

+

√
H7SC⋆avg
MT

+
H3

T

√
HSC⋆avgT

M
≲

√
H7SC⋆avg
MT

. (128)

In this case, the number of synchronizations ϕ(K) = |Tperiod(K, τ)| is

ϕ(K) =
⌈K
τ

⌉
≲

√
MK

H2SC⋆avg
≍
√

MT

H3SC⋆avg
≍ H2

ε
.

Exponential synchronization. Using the fact that MT ≳ HSC⋆avg and τ1 = H ≤
√

HSC⋆
avgT

M when ε ≤ H3SC⋆
avg

M , the

value gap is bounded as

V ⋆1 (ρ)− V π̂1 (ρ) ≲
H4SC⋆avg
MT

+

√
H7SC⋆avg
MT

+
H3

T

√
HSC⋆avgT

M
≲

√
H7SC⋆avg
MT

. (129)

To continue, note that if γ = 2
H and τ1 = H , for any u ≥ 1, τu is bounded as

(1 +
1

H
)u−1H ≤ τu ≤ (1 +

2

H
)u−1H.

since

(1 +
1

H
)τi ≤ (1 +

2

H
)τi − 1 ≤ τi+1 = ⌊(1 + 2

H
)τi⌋ ≤ (1 +

2

H
)τi

given the fact that τi ≥ H for any i ≥ 1. Then, computing the minimum number of synchronizations ϕ(K) = |Texp(K, γ)|
satisfying

ϕ(K)∑

u=1

τu ≥ H

ϕ(K)∑

u=1

(1 +
1

H
)u−1 = H2((1 +

1

H
)ϕ(K) − 1) ≥ K,

we obtain

ϕ(K) =

⌈
log ( KH2 + 1)

log (1 + 1
H )

⌉
≤ 1 + (1 +H) log

( K
H2

+ 1
)
≲ H (130)

because x
x+1 ≤ log(1 + x) for any x > −1.
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