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Abstract

To overcome the sim-to-real gap in reinforce-

ment learning (RL), learned policies must main-

tain robustness against environmental uncertain-

ties. While robust RL has been widely stud-

ied in single-agent regimes, in multi-agent en-

vironments, the problem remains understudied—

despite the fact that the problems posed by en-

vironmental uncertainties are often exacerbated

by strategic interactions. This work focuses on

learning in distributionally robust Markov games

(RMGs), a robust variant of standard Markov

games, wherein each agent aims to learn a policy

that maximizes its own worst-case performance

when the deployed environment deviates within

its own prescribed uncertainty set. This results in

a set of robust equilibrium strategies for all agents

that align with classic notions of game-theoretic

equilibria. Assuming a non-adaptive sampling

mechanism from a generative model, we propose

a sample-efficient model-based algorithm (DR-

NVI) with finite-sample complexity guarantees

for learning robust variants of various notions

of game-theoretic equilibria. We also establish

an information-theoretic lower bound for solving

RMGs, which confirms the near-optimal sample

complexity of DR-NVI with respect to problem-

dependent factors such as the size of the state

space, the target accuracy, and the horizon length.

1. Introduction

Many real-world applications of artificial intelligence nat-

urally involve multiple agents in dynamically evolving en-

1Department of Computing Mathematical Sciences, Califor-
nia Institute of Technology, CA 91125, USA. 2Department of
Electrical and Computer Engineering, Carnegie Mellon Univer-
sity, Pittsburgh, PA 15213, USA.. Correspondence to: Laixi Shi
<laixis@caltech.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

vironments. Examples include ecosystem protection (Fang

et al., 2015), board games (Silver et al., 2017), strategic man-

agement (Saloner, 1991), and autonomous driving (Zhou

et al., 2020) among many others. One of the most promis-

ing algorithmic paradigms for addressing these problems is

that of (deep) multi-agent reinforcement learning (MARL)

(Silver et al., 2017; Vinyals et al., 2019; Lanctot et al., 2019)

through a decision-making perspective. In full generality, it

allows for agents with misaligned and possibly conflicting

interests to optimize their own long-term rewards in an un-

known dynamic environment, while taking one another into

account. As such, MARL can often be modeled as learning

in Markov games (MGs) (Littman, 1994; Shapley, 1953).

Due to the game-theoretic nature of MGs, one often relies on

solution concepts which take the form of equilibria — strate-

gies/policies that are stable under rational deviations for all

agents — like Nash equilibria (NE) (Nash, 1951; Shap-

ley, 1953), correlated equilibria (CE) (Aumann, 1987), and

coarse correlated equilibra (CCE) (Aumann, 1987; Moulin

& Vial, 1978).

1.1. Environmental uncertainty in MARL

However, the equilibria of MGs can be very sensitive to

environmental perturbations. Environmental uncertainties

caused by system noise, model mismatch, and sim-to-real

gaps can cause dramatic changes to both the qualitative

outcomes of the game as well as agents’ payoffs. While

this problem is present in single-agent RL, the need for

robustness is even more acute in the multi-agent setting

where the game-theoretic interactions can cause instabili-

ties (Slumbers et al., 2023). Indeed, playing an equilibrium

solution learned in the simulated environment might lead

to a catastrophic drop in a single agent’s payoff or even all

agents’ payoffs when the deployed environment deviates

slightly from what is expected (Balaji et al., 2019; Zhang

et al., 2020c; Zeng et al., 2022; Yeh et al., 2021), a point we

illustrate in the following example.

Example: fishing protection. To emphasize the impact

of model uncertainty in MARL, in Figure 1, we present a con-

crete example of a simple two-player game that models the

interaction between a fisherman and law enforcement trying

to prevent illegal fishing. The state s ∈ {0, 1, · · · , 100} rep-
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Concretely, our study focuses on finite-horizon RMGs with

n agents. We denote the episode length by H , the size of the

state space by S, the size of the i-th agent’s action space by

Ai, and use σi ∈ (0, 1] to represent the uncertainty level of

the i-th agent. We assume access to a generative model that

can draw samples from the nominal environment in a non-

adaptive manner. The goal is to find an ε-approximate equi-

librium for RMGs — a joint policy such that each agent’s

benefit is at most ε away under rational deviations. The

main contributions are summarized as follows.

• Near-optimal sample complexity upper bound. We de-

sign a model-based algorithm — distributionally robust

Nash value iteration (DR-NVI), which can provably

find any solution among ε-approximate robust-{NE,

CCE, CE} with high probability, when the sample size

exceeds

Õ

(
SH3

∏n
i=1 Ai

ε2
min

{
H,

1

min1≤i≤n σi

})
. (1)

This significantly improves upon prior art (Blanchet

et al., 2023) Õ
(
S4 (

∏n
i=1 Ai)

3
H4/ε2

)
1 (Blanchet

et al., 2023) by at least a factor of Õ
(
S3 (

∏n
i=1 Ai)

2 )
,

and further delineates the impact of the uncertainty lev-

els. Our results are derived by addressing the intricate

statistical dependencies arising from game-theoretical

interactions among agents, a challenge not present in

robust single-agent RL. Additionally, we employ distri-

butionally robust optimization to address the nonlinear

payoffs of agents in RMGs, which lack a closed form.

• Information-theoretic lower bound. To understand the

optimality of our algorithm we establish a lower bound

for solving RMGs, showing that no algorithm can

learn any of ε-approximate robust-{NE, CCE, CE}
with fewer samples than

Õ

(
SH3 max1≤i≤n Ai

ε2
min

{
H,

1

min1≤i≤n σi

})
.

(2)

To the best of our knowledge, this is the first

information-theoretic lower bound for RMGs, regard-

less of the distance metric in use. We construct

new hard scenarios for tightness, differing from ex-

isting ones in both robust single-agent RL and stan-

dard MGs, which may be of independent interest.

This in turn establishes that the sample complexity

of DR-NVI is optimal for all RMGs with respect

to many critical problem-dependent parameters such

1Note that Blanchet et al. (2023) targets a different (and more
challenging) setting with offline data. We translate the results of
Blanchet et al. (2023) to the generative setting we consider.

as S,H, {σi}1≤i≤n, making DR-NVI the first near-

optimal finite-sample guarantee for robust MGs, re-

gardless of the divergence metric in use.

Notation. Throughout this paper, we introduce the nota-

tion [T ] := {1, · · · , T} for any positive integer T > 0. We

denote by ∆(S) the probability simplex over a set S and

x =
[
x(s, a)

]
(s,a)∈S×A

∈ R
SA (resp. x =

[
x(s)

]
s∈S
∈

R
S) as any vector that constitutes certain values for each

state-action pair (resp. state).

2. Background: Standard Markov Games

We begin by covering the foundational aspects of multi-

agent general-sum standard Markov games in a finite-

horizon setting.

Standard Markov games. A finite-horizon multi-agent

general-sum Markov game can be represented asMG ={
S, {Ai}1≤i≤n, P, r,H

}
. This game involves n agents

who optimizes their own benefits in a shared environment,

consisting of the following key components.

• State space S = {1, · · · , S} of the shared environment

with S different states.

• Joint action spaceA: for each 1 ≤ i ≤ n, we represent

Ai = {1, · · · , Ai} as the action space of the i-th agent

that contains Ai different actions. In addition, we de-

note the joint action space for all agents (or a subset of

agents) asA := A1×· · ·×Am (orA−i :=
∏

j:j 6=iAj

for all 1 ≤ i ≤ n). For convenience, we denote the

boldface letter a ∈ A (resp. a−i ∈ A−i) as a joint

action profile for all agents (resp. all agents excluding

the i-th agent).

• Probability transition kernel P = {Ph}1≤h≤H with

Ph : p). Specifically, Ph(s
′ | s,a) represents the prob-

ability ofMG transitioning from current state s ∈ S
to the next state s′ ∈ S at time step h, given the agents

choose the joint action profile a ∈ A.

• Reward function r = {ri,h}1≤i≤n,1≤h≤H with ri,h :
S × A 7→ [0, 1]. Specifically, for any (i, h, s,a) ∈
[n] × [H] × S × A, let ri,h(s,a) be the immediate

(deterministic) reward received by the i-th agent in

state s when the joint action profile is a, which is

normalized to [0, 1] without loss of generality.

• H is the horizon length of the standard MG.

Markov policies and value functions. Throughout the

paper, we focus on the class of Markov policies, namely,

the action selection rule is solely determined by the current

state s, independent from previous trajectories (including
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visited states, executed actions, and received rewards) of

all agents. Specifically, for any 1 ≤ i ≤ n, the i-th agent

executes actions according to a policy πi = {πi,h : S 7→
∆(Ai)}1≤h≤H , with πi,h(a | s) the probability of selecting

action a in state s at time step h. The joint Markov policy of

all agents can be defined as π = (π1, . . . , πn) : S × [H] 7→
∆(A), namely, the joint action profile a of all agents is

chosen according to the distribution specified by πh(· | s) =
(π1,h, π2,h . . . , πn,h)(· | s) ∈ ∆(A) conditioned on state s
at time step h.

With the above notation in mind, for any given joint policy

π and transition kernel P of theMG, we characterize the

long-term cumulative reward by defining the value function

V π,P
i,h : S 7→ R (resp. Q-function Qπ,P

i,h : S × A 7→ R) of

the i-th agent as follows: for all (h, s, a) ∈ [H]× S ×A,

V π,P
i,h (s) := Eπ,P

[
H∑

t=h

ri,t
(
st,at

)
| sh = s

]
,

Qπ,P
i,h (s,a) := Eπ,P

[
H∑

t=h

ri,t
(
st,at

)
| sh = s,ah = a

]
,

(3)

where the expectation is taken over the Markovian tra-

jectory {(st,at)}h≤t≤H by executing the joint policy π
under the transition kernel P , i.e., at ∼ πt(· | st) and

st+1 ∼ P (· | st,at).

Best-response policy. For any given joint policy π, we

employ π−i to represent the policies of all agents excluding

the i-th agent. We define the maximum value function of

the i-th agent at time step h against the joint policy π−i of

the other agents as

V
?,π−i,P
i,h (s) := max

π′
i:S×[H]→∆(Ai)

V
π′
i×π−i,P

i,h (s), (4)

where π′
i×π−i represents the joint policy of all agents when

the i-th agent executes policy π′
i. It is well-known (Filar

& Vrieze, 2012) that there exists at least one Markovian

policy, the best-response policy, that achieves V
?,π−i,P
i,h (s)

for all s ∈ S and all h ∈ [H] simultaneously. We denote the

best-response policy using π?,P
i

(
π−i

)
: S × [H] 7→ ∆(Ai).

Solution concepts: equilibria. In MGs, strategic agents

are modeled in a possibly competitive framework and focus

on finding some sort of equilibrium strategies. Here, we

consider three common types of equilibria — NE, CE, and

CCE for MGs.

• Nash equilibrium (NE). A product policy π = π1 ×
· · · ×πn ∈ ∆(A1)×∆(A2)× · · · ×∆(An) is said to

be a (mixed-strategy Markov) NE if

for all (s, i) ∈ S × [n] : V π,P
i,1 (s) = V

?,π−i,P
i,1 (s).

(5)

Namely, as long as all players act independently, no

player can benefit by unilaterally diverging from its

present policy, given the current policies of the oppo-

nents.

• Coarse correlated equilibrium (CCE). A joint policy

π ∈ ∆(A) is said to be a CCE (Moulin & Vial, 1978;

Aumann, 1987) if it holds that

for all (s, i) ∈ S × [n] : V π,P
i,1 (s) ≥ V

?,π−i,P
i,1 (s).

(6)

As a relaxation of NE, CCE also guarantees that no

player has incentive to unilaterally deviated from the

current policy. The key difference from the NE defini-

tion is that it permits policies to be interrelated among

players.

• Correlated equilibrium (CE). Before proceeding, for

each 1 ≤ i ≤ n, we define a set of function fi :=
{fi,h,s}h∈[H],s∈S with fi,h,s : Ai 7→ Ai, and denot-

ing Fi as the set of possible fi. Armed with this,

we can combine such fi with any joint policy π to

reach a new policy fi � π, where fi � π will choose

(a1, . . . , ai−1, fi(ai), ai+1, . . . , an) when policy π se-

lects (a1, . . . , ai−1, ai, ai+1, . . . , an). With these in

place, a joint policy π ∈ ∆(A) is said to be a CE

(Moulin & Vial, 1978; Aumann, 1987) if it holds that

for all (s, i) ∈ S×[n] : V π,P
i,1 (s) ≥ max

fi∈Fi

V fi�π,P
i,1 (s).

(7)

CE is a also a relaxation of NE, which does not require

the joint policy π to be a product policy.

3. Distributionally Robust Markov Games

We consider a robust variant of standard MGs incorporat-

ing environmental uncertainties — termed distributionally

robust Markov games (RMGs). RMGs represent a richer

class than standard MGs, allowing for different prescribed

environmental uncertainty sets as long as they meet a rect-

angularity condition, detailed below.

3.1. Distributionally robust Markov games

A distributionally robust multi-agent general-sum Markov

game (RMG) in the finite-horizon setting is defined by

MGrob =
{
S, {Ai}1≤i≤n, {U

σi
ρ (P 0)}1≤i≤n, r,H

}
,

where S, {Ai}, r, and H are identical to those of standard

MGs (see Section 2). A notable deviation from standard

MGs is that: for 1 ≤ i ≤ n, instead of assuming a fixed

transition kernel, each i-th agent anticipates that the tran-

sition kernel is allowed to be chosen arbitrarily from a

prescribed uncertainty set Uσi
ρ (P 0). Here, the uncertainty

set Uσi
ρ (P 0) is constructed centered on a nominal kernel
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P 0 : S × A 7→ ∆(S), with its size and shape defined by

a certain distance metric ρ and a radius parameter σi > 0.

Note that, for generality, to accommodate individual robust-

ness preferences, each agent is permitted to tailor its own

uncertainty set Uσi
ρ (P 0) by choosing different size σi and

even the shape determined by different divergence function

ρ. Here, we consider the same divergence function for all

agents for simplicity. And we focus on the discussion of

the transition kernel’s uncertainty in this work, it’s worth

noting that similar uncertainty can also be considered for

each agent’s reward function.

Uncertainty set with agent-wise (s, a)-rectangularity.

In the following, we specify the construction of the tran-

sition kernel uncertainty sets Uρ(P
0) = {Uσi

ρ (P 0)}1≤i≤n

for RMGs. Drawing inspiration from the rectangularity con-

dition advocated in robust single-agent RL (Iyengar, 2005;

Wiesemann et al., 2013; Zhou et al., 2021; Shi et al., 2023),

we consider a multi-agent variant of rectangularity in RMGs

— agent-wise (s, a)-rectangularity. This condition enables

the robust counterpart of Bellman recursions and computa-

tional tractability of the problems. It allows for each agent

to independently choose its own uncertainty set that can be

decomposed into a product of subsets over each state-action

pair.

In particular, we assume all agents use the same distance

metric ρ for their uncertainty sets.2 Each i-th agent can

choose their own uncertainty level σi > 0 independently.

With ρ and {σi}1≤i≤n in hand, the uncertainty set Uρ(P
0)

of all agents obeying agent-wise (s, a)-rectangularity is

mathematically specified as: for all i ∈ [n],

Uσi
ρ (P 0) := ⊗ Uσi(P 0

h,s,a) with (8)

Uσi
ρ (P 0

h,s,a) :=
{
Ph,s,a ∈ ∆(S) : ρ

(
Ph,s,a, P

0
h,s,a

)
≤ σi

}
,

where ⊗ represents the Cartesian product and we denote a

vector of the transition kernel P or P 0 at any state-action

pair (s,a) ∈ S ×A respectively as

Ph,s,a := Ph(· | s,a) ∈ R
1×S ,

P 0
h,s,a := P 0

h (· | s,a) ∈ R
1×S . (9)

Here, the ‘distance’ function ρ for each agent’s uncertainty

set can be chosen from many candidate functions that mea-

sure the difference between two probability vectors, such

as f -divergence (including total variation (TV), chi-square,

and Kullback-Leibler (KL) divergence) (Yang et al., 2022),

`q norm (Clavier et al., 2023), and Wasserstein distance (Xu

et al., 2023). In this work, we focus on the uncertainty sets

that are constructed using TV distance:

ρTV
(
Ph,s,a, P

0
h,s,a

)
:=

1

2

∥∥Ph,s,a − P 0
h,s,a

∥∥
1
. (10)

2Generally, each agent can decide their own (possibly different)
distance metric for the uncertainty set. We consider the same ρ for
simplicity.

Robust value functions. For a RMG, each agent aims to

maximize its own worst-case performance over all possible

transition kernels in its own (possibly different) prescribed

uncertainty set Uσi
ρ (P 0). For any joint policy π ∈ ∆(A),

the worst-case performance of the i-th agent at time step h
can be measured by the robust value function V π,σi

i,h and the

robust Q-function Qπ,σi

i,h , defined as

V π,σi

i,h (s) := inf
P∈U

σi
ρ (P 0)

V π,P
i,h (s)

Qπ,σi

i,h (s,a) := inf
P∈U

σi
ρ (P 0)

Qπ,P
i,h (s,a) (11)

for all (i, h, s,a) ∈ [n]× [H]×S ×A. Similar to standard

MGs, given a fixed joint policy π−i for all agents but the

i-th agent, by optimizing over π′
i : S × [H]→ ∆(Ai) that

is executed independently from π−i, we can further define

the maximum of the robust value function for each agent as

follows: for all (i, h, s) ∈ [n]× [H]× S :

V
?,π−i,σi

i,h (s) := max
π′
i:S×[H] 7→∆(Ai)

V
π′
i×π−i,σi

i,h (s)

= max
π′
i:S×[H] 7→∆(Ai)

inf
P∈U

σi
ρ (P 0)

V
π′
i×π−i,P

i,h (s).

(12)

Similar to standard MGs, it can be easily verified that there

exists at least one policy (Blanchet et al., 2024, Section A.2),

denoted by π?,σi

i

(
π−i

)
: S × [H] → ∆(Ai) and referred

to as the robust best-response policy for the i-th agent, that

can simultaneously attain V
?,π−i,σi

i,h (s) for all s ∈ S and

h ∈ [H].

Robust Bellman equations. Analogous to standard MGs,

RMGs feature a robust counterpart of the Bellman equation

— robust Bellman equation. In particular, the robust value

functions {V π,σi

i,h } of RMGs associated with any joint policy

π obey: for all (i, h, s) ∈ [n]× [H]× S ,

V π,σi

i,h (s)

= E
a∼πh(s)

[
ri,h(s,a) + inf

P∈U
σi
ρ (P 0

h,s,a
)
PV π,σi

i,h+1

]
.

(13)

We emphasize that the above robust Bellman equation is

fundamentally linked to the agent-wise (s, a)-rectangularity

condition (cf. (8)) imposed on the designed uncertainty set.

Specifically, this condition decouples the dependency of

uncertainty subsets across different agents, each state-action

pair, and different time steps, leading to the Bellman recur-

sive equation.

3.2. Solution concepts for robust Markov games

For RMGs, the games are no longer n-agent games, but

become 2n-agent games between agents and n natural ad-

versaries to choose the worst-case transitions. Given the
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possibly conflicting objectives, finding an equilibrium be-

comes a core goal for RMGs. Below, we introduce three

robust variants of widely considered standard solution con-

cepts — robust NE, robust CE, and robust CCE for any

RMG.

• Robust NE. A product policy π = π1 × π2 × · · · × πn

is said to be a robust NE if (cf. (5))

∀(i, s) ∈ [n]×S : V π,σi

i,1 (s) = V
?,π−i,σi

i,1 (s). (14)

Robust NE indicates that given the current strategy

of the opponents π−i, when each agent considers the

worst-case performance over its own uncertainty set

Uσi
ρ (P 0), no player can benefit by unilaterally diverg-

ing from its present strategy.

• Robust CCE. A (possibly correlated) joint policy π ∈
S × [H] 7→ ∆(A) is said to be a robust CCE if it holds

that (cf. (6))

∀(i, s) ∈ [n]× S : V π,σi

i,1 (s) ≥ V
?,π−i,σi

i,1 (s). (15)

As a relaxation of robust NE, robust CCE also guaran-

tees that no player has incentive to unilaterally deviate

from the current policy, where the policies are not nec-

essarily independent among players.

• Robust CE. A joint policy π ∈ ∆(A) is said to be a

robust CE if it holds that (cf. (7))

∀(s, i) ∈ S × [n] : V π,σi

i,1 (s) ≥ max
fi∈Fi

V fi�π,σi

i,1 (s).

(16)

It is known that computing exact robust equilibria is chal-

lenging and may not be necessary in practice. As a result,

people usually search for approximate equilibria. Toward

this, as a slightly relaxation from (14), a product policy

π ∈ ∆(A1)× · · · ×∆(An) is said to be an ε-robust NE if

gapNE(π) := max
s∈S,1≤i≤n

{
V

?,π−i,σi

i,1 (s)− V π,σi

i,1 (s)
}
≤ ε.

(17)

Similarly, relaxing (15) or (16), a (possibly correlated) joint

policy π ∈ ∆(A) is said to be an ε-robust CCE if

gapCCE(π) := max
s∈S,1≤i≤n

{
V

?,π−i,σi

i,1 (s)− V π,σi

i,1 (s)
}
≤ ε,

(18)

or an ε-robust CE if

gapCE(π)

:= max
s∈S,1≤i≤n

{
max
fi∈Fi

V fi�π,σi

i,1 (s)− V π,σi

i,1 (s)

}
≤ ε.

(19)

The existence of robust NE has been verified (Blanchet

et al., 2023) under general divergence functions for the

uncertainty set. Indeed, the robust equilibria defined here

can be reduced to the standard equilibria associated with

the robust variant of standard payoffs (robust Q-functions),

which have been verified obeying {NE} ⊆ {CE} ⊆ {CCE}
(Roughgarden, 2010). Therefore, the existence of robust

NE directly indicates the existence of robust CE and robust

CCE.

3.3. Non-adaptive sampling from a generative model

Given the formulation of distributionally robust Markov

games, a question of prime interest is how to learn the

robust equilibria without knowing the model exactly in a

sample-efficient manner.

Sampling mechanism: a generative model. As a widely

used sampling mechanism in standard MARL (Zhang et al.,

2020b; Li et al., 2022a), in this paper, we assume access

to a generative model (simulator) (Kearns & Singh, 1999)

and collect samples in a non-adaptive manner. Specifically,

for each tuple (s,a, h) ∈ S × A × [H], we collect N
independent samples generated based on the true nominal

transition kernel P 0:

si,h,s,a
i.i.d
∼ P 0

h (· | s,a), i = 1, 2, . . . , N. (20)

The total number of samples is thus Nall = NS
∏n

i=1 Ai.

Armed with the collected dataset from the nominal environ-

ment, the goal is to learn a solution among ε-robust-{NE,

CCE, CE} for the gameMGrob — w.r.t. some prescribed

uncertainty set U(P 0) around the nominal kernel — using

as few samples as possible.

4. Algorithm and Theory

In this and the following sections, we focus on the class of

robust MGs with uncertainty set measured by TV distance,

namely, the uncertainty set Uσi
ρ (·) = Uσi

ρTV
(·) w.r.t the TV

distance ρ = ρTV defined in (10). For convenience, we

abbreviate Uσi(·) := Uσi
ρTV

(·).

4.1. Distributionally robust Nash value iteration

We develop a model-based approach tailored to solve robust

Markov games, which involves two separate steps. First,

we construct an empirical nominal transition kernel P̂ 0 us-

ing the collected samples from the generative model. Then

armed with P̂ 0, we propose to apply distributionally ro-

bust Nash value iteration (DR-NVI) to compute a robust

equilibrium solution for all agents.

Nominal model estimation. Based on the empirical fre-

quency of state transitions, we estimate the empirical nom-
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inal transition kernel P̂ 0 = {P̂ 0
h}h∈[H], where the entries

of P̂ 0
h ∈ R

S
∏n

i=1
Ai×S at each time step h is constructed as

follows: for all (h, s,a) ∈ S ×A,

P̂ 0
h (s

′ | s,a) :=
1

N

N∑

i=1

1
{
si,h,s,a = s′

}
. (21)

Distributionally robust Nash value iteration (DR-NVI).

With the empirical nominal kernel P̂ 0 in hand, to compute a

robust equilibrium solution, we propose DR-NVI by adapt-

ing a model-based algorithm for standard Markov games

— Nash value iteration (Liu et al., 2021), summarized in

Algorithm 1.

The process starts from the last time step h = H and pro-

ceeds with h = H − 1, H − 2, · · · , 1. At each time step

h ∈ [H], the robust Q-function can be estimated as Q̂i,h

(see line 4.1) as: for all (i, h, s,a) ∈ [n]× [H]× S ×A,

Q̂i,h(s,a) = ri,h(s,a) + inf
P∈Uσi (P̂ 0

h,s,a
)
PV̂i,h+1. (22)

Directly solving (22) presents significant computational

challenges due to the need to optimize over an S-

dimensional probability simplex, a task whose complexity

increases exponentially with the state space size S. Fortu-

nately, leveraging strong duality enables us to solve (22)

equivalently via its dual problem (Iyengar, 2005):

Q̂i,h(s,a) = ri,h(s,a) + max
α∈[mins V̂i,h+1(s),maxs V̂i,h+1(s)]{

P̂ 0
h,s,a

[
V̂i,h+1

]
α
− σi

(
α−min

s′

[
V̂i,h+1

]
α
(s′)
)}

,

(23)

where [V ]α denotes the clipped version of any vector V ∈
R

S determined by some level α ≥ 0, namely,

[V ]α(s) :=

{
α, if V (s) > α,

V (s), otherwise.
(24)

With robust Q-function estimates {Q̂i,h}i∈[n] available

for all agents at time step h, the sub-routine in line 4.1

Equilibrium ∈ Compute−{Nash,CE,CCE} represents

the algorithm for computing the corresponding robust-

{NE, CE, CCE}, respectively. Note that for the stud-

ied RMGs, a robust-NE/CE/CCE is equivalent to a corre-

sponding NE/CE/CCE associated with the payoff matrices

{Q̂i,h}i∈[n]. On the computing and learning front of the

sub-routine Equilibrium(·), for a general standard MG, the

NE has been proved PPAD-hard to compute (Daskalakis,

2013), even for two-player matrix games (except for two-

player zero-sum games). Notably, even when the non-robust

standard MG associated with the nominal transition kernel is

a two-player zero-sum game, the corresponding robust MG

Algorithm 1 Distributionally robust equilibrium value iter-

ation (DR-NVI).

1: input: empirical nominal transition kernel P̂ 0; reward

function r; uncertainty levels {σi}i∈[n].

2: initialization: Q̂i,h(s, a) = 0, V̂i,h(s) = 0 for all

(s,a, h) ∈ S ×A× [H + 1].
3: for h = H,H − 1, · · · , 1 do

4: for i = 1, 2, · · · , n and s ∈ S,a ∈ A do

5: Set Q̂i,h(s,a) according to (22).

6: end for

7: for s ∈ S do

8: Get πh(s) = {πi,h(s)}1≤i≤n

← Equilibrium
(
{Q̂i,h(s, ·)}1≤i≤n

)
.

9: Set V̂i,h(s) = Ea∼πh
[Q̂i,h(s,a)].

10: end for

11: end for

12: output: {Q̂i,h}, {V̂i,h}, and π̂ = {πh}1≤h≤H .

is generally not because agents may select different worst-

case transition kernels. Conversely, computing CE/CCE is

computationally tractable within polynomial time through

linear programming (Liu et al., 2021).

4.2. Sample complexity: upper and lower bounds

We now present our main theoretical results regarding the

sample complexity of learning robust equilibria of robust

Markov games, including an upper bound of DR-NVI (Algo-

rithm 1) and an information-theoretic lower bound. First, we

introduce the finite-sample guarantee for DR-NVI, which is

proven in Appendix C.

Theorem 4.1 (Upper bound for DR-NVI). Recall the

TV uncertainty set Uσi(·) = Uσi
ρTV

(·) defined in (9).

Consider any δ ∈ (0, 1) and any RMG MGrob ={
S, {Ai}1≤i≤n, {U

σi(P 0)}1≤i≤n, r,H
}

with σi ∈ (0, 1]

for all i ∈ [n]. For any ε ≤
√
min

{
H, 1

min1≤i≤n σi

}
,

Algorithm 1 can output any robust equilibrium among

ε-robust {NE, CCE, CE} by executing different sub-

routine Equilibrium ∈ Compute−{Nash,CE,CCE} in

line 4.1. Namely, for some constant C1 and ξ :=

log
(

18S
∏n

i=1
AinHN

δ

)
, we can achieve any of the following

results

gapNE(π̂) ≤ ε,

gapCCE(π̂) ≤ ε,

gapCE(π̂) ≤ ε

with probability at least 1− δ, as long as the total number

of samples obeys

Nall ≥
C1ξSH

3
∏

1≤i≤n Ai

ε2
min

{
H,

1

min1≤i≤n σi

}
.
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Before delving into the implications of Theorem 4.1, we

provide a lower bound for solving robust Markov games.

The proof is provided in Appendix D.

Theorem 4.2 (Lower bound for solving robust MGs). Con-

sider any tuple
{
S, {Ai}1≤i≤n, {σi}1≤i≤n, H

}
obeying

σi ∈ (0, 1− c0] with 0 < c0 ≤
1
4 being any small enough

positive constant, and H > 16 log 2. Let

ε ≤

{
c0
2H , if σ1 ≤

c0
4H ,

1 otherwise
(25)

We can construct a set of RMGs— denoted as M =
{MGi}i∈[I], such that for any dataset with in total Nall

independent samples over all state-action pairs generated

from the nominal environment (for any gameMGi ∈M):

one has

inf
π̂

max
MGi∈M

{
PMGi

(
gapNE(π̂) > ε

)}
≥

1

8
,

inf
π̂

max
MGi∈M

{
PMGi

(
gapCCE(π̂) > ε

)}
≥

1

8
, (26)

inf
π̂

max
MGi∈M

{
PMGi

(
gapCE(π̂) > ε

)}
≥

1

8
,

provided that

Nall ≤
C2SH

3 max1≤i≤n Ai

ε2
min

{
H,

1

min1≤i≤n σi

}
.

(27)

Here, C2 is some small enough constant, the infimum is

taken over all estimators π̂, and PMGi
denotes the proba-

bility when the game isMGi for allMGi ∈M.

We now highlight several key implications and comparisons

that follow from the above results.

Near-optimal sample complexity for RMGs. Theo-

rem 4.1 shows that the proposed model-based algorithm

DR-NVI can achieve any robust solution among ε-robust

{NE, CCE, CE} when the total number of samples exceeds

the order of

Õ

(
SH3

∏
1≤i≤n Ai

ε2
min

{
H,

1

min1≤i≤n σi

})
. (28)

Combining this with the lower bound in (27) of The-

orem 4.2 confirms that the sample complexity of DR-

NVI is optimal with respect to many salient factors, in-

cluding ε, S,H, {σi}1≤i≤n. To the best of our knowl-

edge, this is the first near-optimal sample complexity up-

per bound for solving robust MGs. As illustrated in Fig-

ure 2, it uncovers that the sample requirement of DR-NVI

depends on all agents’ uncertainty levels {σi} and is in-

versely proportional to mini∈[n] σi when mini∈[n] σi &

1/H . Furthermore, the sample complexity of DR-NVI

(Theorem 4.1) significantly improve upon the prior art

Õ
(
S4 (

∏n
i=1 Ai)

3
H4/ε2

)
(Blanchet et al., 2023).

�1 for agent 1

Sample complexity

1

𝐻𝐻

�2 for agent 2

1

𝐻

1

𝐻

Figure 2. Illustration of the sample complexity of DR-NVI with

respect to the uncertainty levels σ1 and σ2 for two-player RMGs,

where we only highlight the dependency with respect to the horizon

length H .

Minimax-optimal sample complexity for single-agent

RMDP. We observe that when the size of the action space

reduces to one except one agent, i.e. A2 = A3 = · · · =
An = 1, the robust MG simplifies to a single-agent ro-

bust Markov decision process (known as RMDP) (Iyengar,

2005). Consequently, the upper bound of (cf. (28)) indicates

that a simplified DR-NVI learns an ε-optimal policy for the

RMDP associated with the first agent as soon as the sample

complexity is on the order of

Õ

(
SA1H

3

ε2
min

{
H,

1

σ1

})
, (29)

which is minimax-optimal in view of the lower bound (cf.

(27) of Theorem 4.2). To the best of our knowledge, these

findings introduce the first minimax-optimal sample com-

plexity for RMDPs in the finite-horizon setting, complemen-

tary to the infinite-horizon result established in Shi et al.

(2023).

Benchmarking with standard MGs under non-adaptive

sampling. Note that DR-NVI is based on a non-adaptive

sampling mechanism from the generative model. Focusing

on the same sampling mechanism, we compare the sample

complexity of DR-NVI for solving robust MGs with the

state-of-the-art approach (model-based NVI) (Zhang et al.,

2020a; Liu et al., 2021) for solving standard MGs as below3:

Standard MGs (by NVI): Õ

(
S
∏n

i=1 AiH
4

ε2

)

3Zhang et al. (2020a) considered a two-player zero-sum stan-
dard MGs in the infinite-horizon setting. Liu et al. (2021) con-
sidered both two-player zero-sum and multi-player general sum
standard MGs in online setting. We show the best possible out-
comes after transferring into our settings

8
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Robust MGs (by our DR-NVI in Theorem 4.1):



Õ
(

S
∏n

i=1
AiH

4

ε2

)
if 0 < min

1≤i≤n
σi .

1
H

Õ
(

S
∏n

i=1
AiH

3

ε2 min1≤i≤n σi

)
if 1

H . min
1≤i≤n

σi < 1
. (30)

It shows that DR-NVI achieves enhanced robustness against

model uncertainty in comparison to the prior art NVI for

standard MGs, using the same or even sometimes fewer

number of samples (min1≤i≤n σi & 1/H). In particular, as

illustrated in Figure 2,

• When 0 < min1≤i≤n σi .
1
H : the sample complexity

dependency of DR-NVI on H matches that of NVI in

the order of H4.

• When min1≤i≤n σi &
1
H : DR-NVI’s sample complex-

ity decreases towards H3 as min1≤i≤n σi increases,

which improves upon the sample complexity of NVI

for standard MGs by a factor of Hmin1≤i≤n σi that

goes to H when min1≤i≤n σi = O(1).

Technical challenges and insights. Compared to robust

single-agent RL, robust MARL introduces complex statis-

tical dependencies due to game-theoretical interactions be-

tween multiple agents and their natural adversaries to choose

the worst-case transitions for each agent. Additionally, ro-

bust MGs are more intricate than standard MGs since the

agents’ payoffs become highly nonlinear without closed

form, in contrast to being linear in standard MGs. To mit-

igate these challenges, we carefully control the statistical

errors and exploit technical tools from distributionally ro-

bust optimization to achieve a near-optimal upper bound.

Additionally, note that the established lower bound (Theo-

rem 4.2) is the first information-theoretic lower bound for

solving robust MGs, which is achieved by creating a new

class of hard instances for the tightness with respect to H
and uncertainty levels {σi}1≤i≤n.

5. Conclusion

Providing robustness guarantees is a pressing need for RL,

one that is especially crucial in multi-agent RL (MARL)

since game-theoretical interactions between agents bring in

extra instability. We address the vulnerability of MARL to

environmental uncertainty by focusing on robust Markov

games (RMGs) that consider robustness against worst-case

distribution shifts of the shared environment. We design a

provable sample-efficient model-based algorithm (DR-NVI)

with a finite-sample complexity guarantee. In addition, we

provide a lower bound for solving RMGs, which highlights

that DR-NVI has near-optimal sample complexity with re-

spect to the size of the state space, the target accuracy, and

the horizon length. To the best of our knowledge, this is

the first algorithm with near-optimal sample complexity for

RMGs. Our work opens up interesting future directions for

robust MARL including but not limited to taming the curse

of multi-agents and studying other divergence functions for

the uncertainty set.
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A. Related Works

In this section, we discuss a non-exhaustive set of related works, limiting our discussions primarily to provable RL algorithms

in the tabular setting, which are most related to this paper.

Finite-sample studies of standard Markov games. Multi-agent reinforcement learning (MARL), originated from the

seminal work (Littman, 1994), has been widely studied under the framework of standard Markov games (Shapley, 1953);

see Busoniu et al. (2008); Zhang et al. (2021b); Oroojlooy & Hajinezhad (2023) for detailed reviews. There has been no

shortage of provably convergent MARL algorithms with asymptotic guarantees (Littman & Szepesvári, 1996; Littman et al.,

2001).

A line of recent efforts have concentrated on understanding and developing algorithms for standard MGs with non-asymptotic

guarantees (finite-sample analysis). Within this field, Nash equilibrium (NE) is arguably one of the most compelling solution

concepts for standard MGs. Research on calculating NE primarily focuses on an important basic class: standard two-player

zero-sum MGs (Bai & Jin, 2020; Chen et al., 2022; Mao & Başar, 2022; Wei et al., 2017; Tian et al., 2021; Cui & Du,

2022a;b; Zhong et al., 2022; Jia et al., 2019; Yang & Ma, 2022; Yan et al., 2022b; Dou et al., 2022; Wei et al., 2021). This

focus arises because computing NEs in scenarios beyond the standard two-player zero-sum MGs is generally computationally

intractable (i.e., PPAD-complete) (Daskalakis, 2013; Daskalakis et al., 2009). For discounted infinite-horizon two-player

zero-sum Markov games, the state-of-the-art sample complexity for learning NE (Zhang et al., 2020e) remains suboptimal

due to the ”curse of multiple agents” issue (Zhang et al., 2020e). In contrast, for episodic finite-horizon two-player zero-sum

Markov games standard MGs, Bai et al. (2020); Jin et al. (2021a); Li et al. (2022a) have overcome this curse, progressively

achieving minimax-optimal sample complexity in the order of O(Smax1≤i≤n AiH
4/ε2). Besides NE, Jin et al. (2021a);

Daskalakis et al. (2022); Mao & Başar (2022); Song et al. (2021); Li et al. (2022a); Liu et al. (2021) have extended

this achievement to other computationally tractable solution concepts (e.g., CE/CCE) in general-sum multi-player MGs.

Focusing on the same non-adaptive sampling mechanism considered in this work, the sample complexity for learning

NE/CE/CCE in standard MGs with the state-of-the-art approaches (Zhang et al., 2020e; Liu et al., 2021) still suffers from

the curse of multiple agents, calculated as O(S
∏

1≤i≤n AiH
4/ε2).

Robustness in MARL. Despite significant advances in standard MARL, current algorithms may fail dramatically due

to perturbations or uncertainties in game components, resulting in significantly deviated equilibrium, as illustrated in

Figure 1. A growing body of research is now addressing the robustness of MARL algorithms against uncertainties in various

components of Markov games, such as state (Han et al., 2022; He et al., 2023; Zhou & Liu, 2023; Zhang et al., 2023c),

environment (reward and transition kernel), the type of agents (Zhang et al., 2021a), or other agents’ policies (Li et al., 2019;

Kannan et al., 2023); see Vial et al. (2022) for a recent review.

This work considers the robustness against environmental uncertainty, adopting distributionally robust optimization (DRO)

that has primarily been investigated in the context of supervised learning (Rahimian & Mehrotra, 2019; Gao, 2020; Bertsimas

et al., 2018; Duchi & Namkoong, 2018; Blanchet & Murthy, 2019). Applying DRO for single-agent RL (Iyengar, 2005)

to handle model uncertainty has garnered significant attention. When turning to MARL, the problem is conceptualized as

robust Markov games within the DRO framework, an area that remains relatively underexplored with only a few provable

algorithms developed (Zhang et al., 2020c; Kardeş et al., 2011; Ma et al., 2023; Blanchet et al., 2023). Notably, Kardeş et al.

(2011) verifies the existence of Nash equilibrium for robust Markov games under mild assumptions; Zhang et al. (2020c)

derives asymptotic convergence for a Q-learning type algorithm under certain conditions; Ma et al. (2023); Blanchet et al.

(2023) are the most related works that provide algorithms with finite-sample guarantees for various types of uncertainty

set. Especially, Ma et al. (2023) considers a restricted uncertainty level that could fail to bring robustness to MARL in

certain scenarios. In particular, as the required accuracy level (ε goes to zero or the robust MGs has a small minimal positive

transition probabilities (pmin → 0), the required uncertainty level becomes quite restrictive (obeying σi ≤ max{ ε
SH2 ,

pmin

H }
for all i ∈ [n]) — potentially reducing robust MARL to standard MARL and failing to maintain desired robustness.

Single-agent distributionally robust RL (robust MDPs). For single-agent RL, considering robustness to model un-

certainty using DRO framework — i.e., distributionally robust dynamic programming and robust MDPs — has gained

significant attention across both theoretical and practical domains (Iyengar, 2005; Xu & Mannor, 2012; Wolff et al., 2012;

Kaufman & Schaefer, 2013; Ho et al., 2018; Smirnova et al., 2019; Ho et al., 2021; Goyal & Grand-Clement, 2022; Derman

& Mannor, 2020; Tamar et al., 2014; Badrinath & Kalathil, 2021; Roy et al., 2017; Derman et al., 2018; Mankowitz et al.,

2019). Recently, a substantial body of work has been dedicated to exploring the finite-sample performance of provable
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robust single-agent RL algorithms, where different sampling mechanisms, diverse divergence function of the uncertainty set,

and other related problems/issues has been investigated a lot (Yang et al., 2022; Panaganti & Kalathil, 2022; Zhou et al.,

2021; Shi & Chi, 2022; Wang et al., 2023a; Blanchet et al., 2023; Liu et al., 2022; Wang et al., 2023c; Liang et al., 2023;

Shi et al., 2023; Wang & Zou, 2021; Xu et al., 2023; Dong et al., 2022; Badrinath & Kalathil, 2021; Ramesh et al., 2023;

Panaganti et al., 2022; Ma et al., 2022; Wang et al., 2023b; Li et al., 2022b; Kumar et al., 2023; Clavier et al., 2023; Yang

et al., 2023; Zhang et al., 2023a; Li & Lan, 2023; Wang et al., 2024).

Among the studies of robust MDPs, those particularly relevant to this paper employ the uncertainty set using total variation

(TV) distance in a tabular setting (Yang et al., 2022; Panaganti & Kalathil, 2022; Xu et al., 2023; Dong et al., 2022; Liu

& Xu, 2024). It has been established that solving robust MDPs requires no more samples than solving standard MDPs in

terms of the sample requirement (Shi et al., 2023) with a generative model. However, robust MARL involves additional

complexities compared to robust single-agent RL. It remains an open question whether the findings from robust MDPs can

be generalized to robust MARL, which includes more technical challenges and strategic interactions. Our work takes a step

towards the question, confirming that similar phenomena apply in robust MARL, albeit with increased difficulties due to the

multi-agent dynamics.

RL with a generative model. Access to a generative model (or simulator) serves as a fundamental and idealistic sampling

protocol that has been widely used to study finite-sample guarantees for diverse types of RL algorithms, such as various

model-based, model-free, and policy-based algorithms (Kearns et al., 2002; Agarwal et al., 2020; Azar et al., 2013; Li et al.,

2020; Sidford et al., 2018; Wainwright, 2019; Li et al., 2023; Kakade, 2003; Pananjady & Wainwright, 2020; Khamaru

et al., 2020; Even-Dar & Mansour, 2003; Beck & Srikant, 2012; Zanette et al., 2019; Yang & Wang, 2019; Woo et al., 2023).

This work follows this fundamental protocol with a non-adaptive sampling mechanism to understand and design algorithms

for robust Markov games. Besides generative model, there also exist other sampling protocols that involve more realistic

scenarios such as online exploration setting (Dong et al., 2019; Zhang et al., 2020d;e; Jafarnia-Jahromi et al., 2020; Liu &

Su, 2020; Yang et al., 2021; Zhang et al., 2023b; Li et al., 2021) or offline setting (Xie et al., 2021; Rashidinejad et al., 2021;

Jin et al., 2021b; Yin & Wang, 2021; Yan et al., 2022a; Uehara & Sun, 2021; Woo et al., 2024; Shi et al., 2022; Li et al.,

2024), which are interesting directions in the future.

B. Preliminaries

B.1. Details of the example shown in Figure 1

The standard Markov game for fishing protection. To simulate a scenario of defense against illegal fishing, we can

formulate a two-player general sum finite-horizon standard Markov game between a fisher (the first player) and a police

officer (the second player). This MG can be represented asMGe =
{
S, {Ai}1≤i≤2, p, r,H

}
. Here, S := {0, 1, · · · , 100}

is the state space, where each state s ∈ S represents the number of punishments received by the fisherman, with the license

being revoked at s = 100; A1 = A2 = {0, 1} is the action space. At each time step (round), the fisher chooses a1 among

space A1 = {legal fishing (0), illegal fishing (1)}, while the officer chooses a2 among A2 = {no patrols (0), go patrols

(1)}; H is the horizon-length; the transition kernel is governed by a model parameter p ∈ [0, 1], shown in Figure 3(a) (a

detailed version of Figure 1(a)), specified as

∀h ∈ [H] : Ph(s
′ | s, a1, a2) =

{
p1(s′ = s+ 1) + (1− p)1(s′ = s) if s ∈ S \ {100}, a1 = 1,
1(s′ = s) otherwise.

(31)

In words, the state s transit to s′ = s + 1 with probability p when a1 = 1, otherwise staying in s′ = s, i.e., In addition,

r = {ri,h}i∈{1,2},h∈[H] represents the immediate reward (benefit) function of two players at each time step h ∈ [H]. Here,

we consider time-invariant reward function ri,h = ri for all h ∈ [H]. In particular, at any time step h ∈ [H], r1(s, a1, a2, s
′)

(resp. r2(s, a1, a2, s
′)) denotes the immediate benefit that the first agent (resp. the second player) receives conditioned on

the current state s, the actions of two players (a1, a2), and the next state s′. The reward function for any state s ∈ S \ {100}
is defined in Figure 3(b). And the reward function at state s = 100 for two players is specified as below:

∀a2 ∈ {0, 1} : r1(100, 0, a2, 100) = −1 and r1(100, 1, a2, 100) = −20p

r2(100, 0, 0, 100) = 1 and r2(100, 0, 1, 100) = 0

r2(100, 1, 0, 100) = 1 and r2(100, 1, 1, 100) = 3− 2p. (32)
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Qπ?,P
2,H (s, 0, 0) = 1 and Qπ?,P

2,H (s, 0, 1) = 0

Qπ?,P
2,H (s, 1, 0) = 1 and Qπ?,P

2,H (s, 1, 1) = 3− 2p (37)

Similarly, when state s = 100, recalling the reward function in (32), we achieve the same Q-function on state s = 100.

Therefore, one has for all s ∈ S:

∀a2 ∈ {0, 1} : Qπ?,P
1,H (s, 0, a2) = −1 and Qπ?,P

1,H (s, 1, a2) = −20p

Qπ?,P
2,H (s, 0, 0) = 1 and Qπ?,P

2,H (s, 0, 1) = 0

Qπ?,P
2,H (s, 1, 0) = 1 and Qπ?,P

2,H (s, 1, 1) = 3− 2p. (38)

Consequently, in view of (44), it can be verified that if p < 0.05 (resp. p > 0.05), the unique NE of two agents on any

state s ∈ S at time step H is the policy pair π?
H(s) = (µ?

H(s), ν?H(s)) = (1, 1) (resp. π?
H(s) = (µ?

H(s), ν?H(s)) =
(0, 0)), leading to Nash πA := (1, 1) when p = pA = 0.049 (resp. Nash πB := (0, 0) when p = pB = 0.051).

In addition, we observe the optimal value function satisfies that:

∀s ∈ S :

{
V π?,P
1,H (s) = −1 and V π?,P

2,H (s) = 1 if p > 0.05

V π?,P
1,H (s) = −20p and V π?,P

2,H (s) = 3− 2p if p ≤ 0.05
. (39)

• Induction. The rest of this paragraph is to verify (36) for all (h, s) ∈ [H − 1]× S by induction. So suppose (36) holds

for time step h+ 1, then we will show that it also holds for time step h.

To begin with, we introduce the following claim which will be verified in Appendix B.1.1: for any policy π = (µ, ν)
and any s, s′ ∈ S:

∀(i, h) ∈ {1, 2} × [H] : V π,P
i,h (s) = V π,P

i,h (s′). (40)

To proceed, armed with the fact in (40), invoking the results in (34) and (35) yields that for all s ∈ S:

Qπ?,P
1,h (s, 0, 0) = −1 + V π?,P

1,h+1(s) and Qπ?,P
2,h (s, 0, 0) = 1 + V π?,P

2,h+1(s)

Qπ?,P
1,h (s, 0, 1) = −1 + V π?,P

1,h+1(s) and Qπ?,P
2,h (s, 0, 1) = 0 + V π?,P

2,h+1(s)

Qπ?,P
1,h (s, 1, 0) = −20p+ V π?,P

1,h+1(s) and Qπ?,P
2,h (s, 1, 0) = 1 + V π?,P

2,h+1(s)

Qπ?,P
1,h (s, 1, 1) = −20p+ V π?,P

1,h+1(s) and Qπ?,P
2,h (s, 1, 1) = 3− 2p+ V π?,P

2,h+1(s). (41)

The above fact directly indicates that at time step h, the NE of the matrix games associated with the payoff Qπ?,P
1,h (s)

and Qπ?,P
2,h (s) satisfies

∀s ∈ S :

{
π?
h(s) = (0, 0) if p > 0.05

π?
h(s) = (1, 1) if p ≤ 0.05.

(42)

Summing up the base case and the induction results, we complete the proof for (36).

The robust MG and computing the robust Nash equilibrium (robust NE). When turns to the robust formulation of

the fishing protection game, we construct a robust Markov game represented asMGerob =
{
S, {Ai}1≤i≤2, p

0, σ, r,H
}

,

where S, {Ai}1≤i≤2, r,H are the same as those defined in the standard MGMGe. Note that this example is designed to

illustrate general environmental uncertainty (includes both the reward and transition kernel uncertainty) and is not tailored to

the specific class of robust MGs defined in Section 3. For simplicity, let each agent consider that the model parameter p can

perturb around some nominal one p0 with uncertainty level σ = 0.005, i,e., p ∈ [p0 − σ, p0 + σ]. Other components of the

transition kernel is not allowed to perturb. With abuse of notation, for any joint policy π, we still denote the robust value

function (resp. robust Q-function) for i-th agent at time step h as V π,σ
i,h (resp. Qπ,σ

i,h ). In addition, we denote the robust NE of

MGerob as π?,σ = (µ?,σ, ν?,σ) = {µ?,σ
h , ν?,σh }h∈[H], where µ?,σ

h : S 7→ ∆(A1), ν
?,σ
h : S 7→ ∆(A2).
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Observe that in city A (resp. city B), the nominal model parameter p0 = 0.049 (resp. p0 = 0.051). Without loss of generality,

we first focus on city A. To proceed, we shall verify the following claim using the same routine for computing NE of the

standard MGMGe (cf. (36)):

In city A : (µ?,σ
h (s), ν?,σh (s)) = (0, 0), ∀(h, s) ∈ [H]× S. (43)

• Base case: when h = H . Recall the definitions of robust value/Q-function (cf. (11)), one has at time step H: for all

s ∈ S ,

∀a2 ∈ {0, 1} : Qπ?,σ
1,H (s, 0, a2) = −1 and Qπ?,σ

1,H (s, 1, a2) = −20(p
0 + σ) = −1.08

Qπ?,σ
2,H (s, 0, 0) = 1 and Qπ?,σ

2,H (s, 0, 1) = 0

Qπ?,σ
2,H (s, 1, 0) = 1 and Qπ?,σ

2,H (s, 0, 1) = 3− 2(p0 + σ) = 2.892. (44)

As a result, it is easily verified that the unique robust NE of two agents on any state s ∈ S at time step H is the policy

pair (µ?,σ
H (s), ν?,σH (s)) = (0, 0).

• Induction. First of all, for any policy π = (µ, ν) and s, s′ ∈ S , similar to (40)

∀(i, h) ∈ {1, 2} × [H] : V π,σ
i,h (s) = V π,σ

i,h (s′). (45)

which indicates that the worst-case performance are indeed influenced by the uncertainty of the reward function but not

the transition kernel perturbation. Armed with above fact, invoking the robust Bellman consistency equation, similar to

(41), we can achieve that for all h ∈ 1, 2, · · · , H − 1,

Qπ?,σ,σ
1,h (s, 0, 0) = −1 + V π?,σ,σ

1,h+1 (s) and Qπ?,σ,σ
2,h (s, 0, 0) = 1 + V π?,σ,σ

2,h+1 (s)

Qπ?,σ,σ
1,h (s, 0, 1) = −1 + V π?,σ,σ

1,h+1 (s) and Qπ?,σ,σ
2,h (s, 0, 1) = 0 + V π?,σ,σ

2,h+1 (s)

Qπ?,σ,σ
1,h (s, 1, 0) = −1.08 + V π?,σ,σ

1,h+1 (s) and Qπ?,σ,σ
2,h (s, 1, 0) = 1 + V π?,σ,σ

2,h+1 (s)

Qπ?,σ,σ
1,h (s, 1, 1) = −1.08 + V π?,σ,σ

1,h+1 (s) and Qπ?,σ,σ
2,h (s, 1, 1) = 2.892 + V π?,σ,σ

2,h+1 (s). (46)

As a consequence, the robust NE of the matrix games associated with the payoff Qπ?,σ,σ
1,h (s) and Qπ?,σ,σ

2,h (s) satisfies

(µ?,σ
h (s), ν?,σh (s)) = (0, 0) for all h ∈ 1, 2, · · · , H − 1.

Summing up the results in the base case and the induction, we verify the unique robust NE forMGerob in city A as (43). The

same unique robust NE can be verified in city B by following the same routine, which we omit for brevity. Thus, we show

the unique robust NE in two slightly different environments (city A and city B) are identical.

Deriving the states of executing different equilibrium solutions. In view of (36), we know that the NE of the standard

MGMGe in city A when p = pA = 0.049 (resp. city B when p = pB = 0.051) is πA = (1, 1) (resp. πB = (0, 0)) for all

(h, s) ∈ [H]× S. And the MGMGe has some one-way transition structure, namely state s can only transit to itself or a

larger state s+ 1, while not any states s′ < s. So as long as H is large enough, the final state of executing πA = (1, 1) will

be state s = 100 with the fishing license revoked since the fisher will always do illegal fishing (a1 = 1). The agents who

execute the joint policy πB = (0, 0) or the robust NE (µ?,σ
h (s), ν?,σh (s)) = (0, 0) will stay in s = 0 with no punishment

since the fisher will never choose illegal fishing (a1 = 1).

B.1.1. PROOF OF CLAIM (40)

We will proof (40) by induction. Note that the base case when h = H has already been verified in (39).

Then suppose the claim holds at time step h+ 1, i.e.,

∀(i, s, s′) ∈ {1, 2} × S × S : V π,P
i,h+1(s) = V π,P

i,h+1(s
′), (47)

it remains to show that the claim holds at time step h as well.
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Towards this, we first consider the cases when state s ∈ S \ {100}. Recall the recursion in (34), we arrive at

Qπ,P
1,h (s, 0, 0) = −1 + V π,P

1,h+1(s)

Qπ,P
1,h (s, 0, 1) = −1 + V π,P

1,h+1(s)

Qπ,P
1,h (s, 1, 0) = −20p+ pV π,P

1,h+1(s+ 1) + (1− p)V π?,P
1,h+1(s)

(i)
= −20p+ V π,P

1,h+1(s)

Qπ,P
1,h (s, 1, 1) = −20p+ pV π,P

1,h+1(s+ 1) + (1− p)V π?,P
1,h+1(s)

(ii)
= −20p+ V π,P

1,h+1(s), (48)

where (i) and (ii) holds by the induction assumption in (50).

Analogously, recalling (35) for the second player (protector), we arrive at for any state s ∈ S \ {100} and time step h ∈ [H],

Qπ,P
2,h (s, 0, 0) = 1 + V π,P

2,h+1(s)

Qπ,P
2,h (s, 0, 1) = 0 + V π,P

2,h+1(s),

Qπ,P
2,h (s, 1, 0) = 1 + V π,P

2,h+1(s),

Qπ,P
2,h (s, 1, 1) = 3− 2p+ V π,P

2,h+1(s). (49)

Combining (48) and (49) gives that for any s, s′ ∈ S \ {100},

∀(i, a1, a2) ∈ {1, 2} ×∆(A1)×∆(A2) : Qπ,P
i,h (s, a1, a2) = Qπ,P

i,h (s′, a1, a2), (50)

which indicates

V π,P
i,h (s) = E(a1,a2)∈µ(s)×µ(s)[Q

π,P
i,h (s, a1, a2)] = E(a1,a2)∈µ(s)×µ(s)[Q

π,P
i,h (s′, a1, a2)] = V π,P

i,h (s′). (51)

Similarly, when s = 100, it can be verified that (48) and (49) also hold. Therefore, we complete the induction argument by

observing that for all s, s′ ∈ S , V π,P
i,h (s) = V π,P

i,h (s′) is satisfied.

B.2. Additional notation and basic facts

For convenience, for any two vectors x = [xi]1≤i≤n and y = [yi]1≤i≤n, the notation x ≤ y (resp. x ≥ y) means xi ≤ yi
(resp. xi ≥ yi) for all 1 ≤ i ≤ n. We denote by x ◦ y =

[
x(s) · y(s)

]
s∈S

the Hadamard product of any two vectors

x, y ∈ R
S . And for any vecvor x, we let x◦2 =

[
x(s, a)2

]
(s,a)∈S×A

(resp. x◦2 =
[
x(s)2

]
s∈S

). With slight abuse of

notation, we denote 0 (resp. 1) as the all-zero (resp. all-one) vector, and ei ∈ R
S as a S-dimensional basis vector with the

i-th entry being 1 and others being 0. Recall that we abbreviate the subscript ρTV when the divergence function is specified

to TV distance to write Uσ(·) = Uσ
ρTV

(·).

Additional matrix notation. For any (i, h) ∈ [n] × [H], we recall or introduce some additional notation and matrix

notation that is useful throughout the analysis

• ri,h = [ri,h(s,a)](s,a)∈S×A ∈ R
S
∏n

i=1
Ai : a reward vector that represents the reward function for the i-th player at

time step h.

• Ππ
h ∈ R

S×S
∏n

i=1
Ai : a projection matrix associated with time step h and a given joint policy π = {πh}h∈[H] in the

following form

Ππ
h =




πh(1)
> 0> · · · 0>

0> πh(2)
> · · · 0>

.

.

.

.

.

.
. . .

.

.

.

0> 0> · · · πh(S)>


, (52)

where we recall πh(s) = [πh(s,a)]a∈A ∈ ∆(A) for all s ∈ S denote the joint policy vectors from all agents.

• rπi,h ∈ R
S : a reward vector associated with the distribution of actions chosen by any joint policy π = {πh}h∈[H] at

time step h. Here, rπi,h(s) = E
a∼πh(s)[ri,h(s,a)] for all s ∈ S , or equivalently rπi,h = Ππ

hri,h (see (52)).
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• P 0
h ∈ R

S
∏n

i=1
Ai×S : the matrix of the nominal transition kernel at time step h, with P 0

h,s,a ∈ R
1×S serves as the

(s,a)-th row for any (s,a) ∈ S ×A.

• P̂ 0
h ∈ R

S
∏n

i=1
Ai×S : the matrix of the estimated nomimal transition kernel at time step h, with P̂ 0

h,s,a ∈ R
1×S serves

as the (s,a)-th row for any (s,a) ∈ S ×A.

• PV
i,h ∈ R

S
∏n

i=1
Ai×S , P̂V

i,h ∈ R
S
∏n

i=1
Ai×S : at time step h, those matrices represent the worst-case probability

transition kernel within the i-th agent’s uncertainty set around the nominal/estimated nominal transition kernel,

associated with any vector V ∈ R
S . As a result, we denote PV

i,h,s,a (resp. P̂V
i,h,s,a) as the (s,a)-th row of the transition

matrix PV
i,h (resp. P̂V

i,h), defined by

PV
i,h,s,a = argminP∈U

σi
ρ (P 0

h,s,a
)PV, and P̂V

i,h,s,a = argminP∈U
σi
ρ (P̂ 0

h,s,a
)PV. (53a)

Similarly, we define the corresponding probability transition matrices for some special value vectors that are useful:

Pπ,V
i,h ∈ R

S
∏n

i=1
Ai×S , Pπ,V̂

i,h ∈ R
S
∏n

i=1
Ai×S , P̂π,V

i,h ∈ R
S
∏n

i=1
Ai×S and P̂π,V̂

i,h ∈ R
S
∏n

i=1
Ai×S . Here, we already

use the following short-hand notation:

Pπ,V
i,h := P

V
π,σi
i,h+1

i,h and Pπ,V
i,h,s,a := P

V
π,σi
i,h+1

i,h,s,a = argminP∈U
σi
ρ (P 0

h,s,a
)PV

π,σi

i,h+1,

Pπ,V̂
i,h := P

V̂
π,σi
i,h+1

i,h and Pπ,V̂
h,s,a := P

V̂
π,σi
i,h+1

h,s,a = argminP∈U
σi
ρ (P 0

h,s,a
)PV̂

π,σi

i,h+1,

P̂π,V
i,h := P̂

V
π,σi
i,h+1

i,h and P̂π,V
h,s,a := P̂

V
π,σi
i,h+1

h,s,a = argminP∈U
σi
ρ (P̂ 0

h,s,a
)PV π,σi

i,h+1,

P̂π,V̂
i,h := P̂

V̂
π,σi
i,h+1

i,h and P̂π,V̂
h,s,a := P̂

V̂
π,σi
i,h+1

h,s,a = argminP∈U
σi
ρ (P̂ 0

h,s,a
)PV̂ π,σi

i,h+1. (53b)

• Pπ
h ∈ R

S×S , P̂π
h ∈ R

S×S , Pπ,V
i,h ∈ R

S×S , Pπ,V̂
i,h ∈ R

S×S , P̂
π,V

i,h ∈ R
S×S and P̂

π,V̂

i,h ∈ R
S×S : at time step h, those

six square probability transition matrices w.r.t. a given joint policy π are defined by multiplying the projection matrix

in (52) as below, resepctively:

Pπ
h := Ππ

hP
0
h , P̂

π

h := Ππ
hP̂

0
h , Pπ,V

i,h := Ππ
hP

π,V
i,h , Pπ,V̂

i,h := Ππ
hP

π,V̂
i,h ,

P̂
π,V

i,h := Ππ
hP̂

π,V
i,h , and P̂

π,V̂

i,h := Ππ
hP̂

π,V̂
i,h . (54)

We then introduce two notations of the variance. First, for any probability vector P ∈ R
1×S and vector V ∈ R

S , we denote

the variance

VarP (V ) := P (V ◦ V )− (PV ) ◦ (PV ). (55)

Then in addition, for any transition kernel P ∈ R
S
∏n

i=1
Ai×S and vector V ∈ R

S , we denote VarP (V ) ∈ R
S
∏n

i=1
Ai as a

vector of variance whose (s,a)-th row of VarP (V ) is taken as

VarP (s,a) := VarPs,a
(V ). (56)

B.3. Preliminary facts of RMGs and empirical RMGs

Dual equivalence of robust Bellman operator with TV uncertainty set. Opportunely, when the prescribed uncertainty

set is in a benign form (such as using TV distance as the divergence function), the robust Bellman operator can be computed

efficiently by solving its dual formulation instead (Iyengar, 2005; Clavier et al., 2023; Shi et al., 2023). In particular, the

following lemma describes the equivalence between the robust Bellman operator and its dual form due to strong duality in

the case of TV distance.

Lemma B.1 (Lemma 4, Shi et al. (2023)). Consider any TV uncertainty set Uσ(P ) = Uσ
ρTV

(P ) associated with any

probability vector P ∈ ∆(S), fixed uncertainty level σ ∈ (0, 1]. For any vector V ∈ R
S obeying V ≥ 0, recalling the

definition of [V ]α in (24), one has

inf
P∈Uσ(P )

PV = max
α∈[mins V (s),maxs V (s)]

{
P [V ]α − σ

(
α−min

s′
[V ]α (s′)

)}
. (57)
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The above lemma ensures that the computation cost of applying robust Bellman operator is relatively the same as applying

standard Bellman operator (Iyengar, 2005) up to some logarithmic factors.

Notations and facts of RMGs and empirical RMGs. First, recall that for any robust Markov game MGrob ={
S, {Ai}1≤i≤n, {U

σi
ρ (P 0)}1≤i≤n, r,H

}
, according to robust Bellman equations in (13), one has for any joint policy

π : S × [H]→ ∆(A) and any (h, i, s,a) ∈ [H]× [n]× S ×A:

Qπ,σi

i,h (s,a) = ri,h(s,a) + inf
P∈U

σi
ρ (P 0

h,s,a
)
PV π,σi

i,h+1, where V π,σi

i,h (s) = Ea∼πh(s)[Q
π.σi

i,h (s,a)]. (58)

Combined with the matrix notation in Appendix B.2, we arrive at

V π,σi

i,h = rπi,h +Ππ
h inf

P∈U
σi
ρ (P 0

h
)
PV π,σi

i,h+1 = rπi,h + Pπ,V
i,h V π,σi

i,h+1. (59)

Then we denote the empirical robust Markov games based on the estimated nominal distribution P̂ 0 constructed in (21)

as M̂Grob =
{
S, {Ai}1≤i≤n, {U

σi
ρ (P̂ 0)}1≤i≤n, r,H

}
. Analogous to (11), we can define the corresponding robust value

function (resp. robust Q-function) of any joint policy π in M̂Grob as
{
V̂ π,σi

i,h

}
1≤i≤n

(resp.
{
Q̂π,σi

i,h

}
1≤i≤n

). In addition,

similar to (12), we can define the maximum of the robust value function for each agent over M̂Grob as follows :

∀s ∈ S : V̂
?,π−i,σi

i,h (s) := max
π′
i:S×[H]→∆(Ai)

V̂
π′
i×π−i,σi

i,h (s) = max
π′
i:S×[H]→∆(Ai)

inf
P∈Uσi (P̂ 0)

V̂
π′
i×π−i,P

i,h (s), (60)

which can be achieved by at least one robust best-response policy for all s ∈ S simultaneously (Blanchet et al., 2024,

Section A.2).

Moreover, applying the robust Bellman equation in (13) for the empirical RMG M̂Grob, for any joint policy π,

Q̂π,σi

i,h (s,a) = ri,h(s,a) + inf
P∈U

σi
ρ (P̂ 0

h,s,a
)
PV̂ π,σi

i,h+1, where V̂ π,σi

i,h (s) = Ea∼πh(s)[Q̂
π,σi

i,h (s,a)], (61)

which combined with the matrix notations in Appendix B.2 leads to the matrix form of the robust Bellman equation:

V̂ π,σi

i,h = rπi,h +Ππ
h inf

P∈Uσi (P̂ 0
h
)
PV̂ π,σi

i,h+1 = rπi,h + P̂
π,V̂

i,h V̂ π,σi

i,h+1. (62)

Encouragingly, the above property of the robust Bellman equations ensure that the policy π̂ output by the proposed method

DR-NVI (cf. Algorithm 1) is a robust-{NE,CE,CCE} of the empirical RMG M̂Grob when executing different corresponding

subroutines, summarized in the following lemma:

Lemma B.2. The output policy π̂ by DR-NVI (cf. Algorithm 1) is a robust-{NE,CE,CCE} of the empirical RMG M̂Grob ={
S, {Ai}1≤i≤n, {U

σi
ρ (P̂ 0)}1≤i≤n, r,H

}
when executing different subroutine Equilibrium ∈ Compute−{Nash,CE,CCE}

accordingly, namely

∀(i, h) ∈ [n]× [H] :





V̂i,h = V̂ π̂,σi

i,h = V̂
?,π̂−i,σi

i,h when Equilibrium = Compute− Nash

V̂i,h = V̂ π̂,σi

i,h ≥ V̂
?,π̂−i,σi

i,h when Equilibrium = Compute− CCE

V̂i,h = V̂ π̂,σi

i,h ≥ maxfi∈Fi
V fi�π̂,σi

i,h when Equilibrium = Compute− CE.

(63)

Proof. See Appendix C.3.1.

C. Proof of Theorem 4.1

Before starting, let us introduce an essential lemma that characterize the difference between robust MGs and standard MGs.

For each agent, the possible range of the robust value function shrinks as the uncertainty level σi of its own uncertainty set

increases, shown below.
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Lemma C.1. Consider the uncertainty set Uσi(·) = Uσi
ρTV

(·) and any robust Markov game MGrob ={
S, {Ai}1≤i≤n, {U

σi(P )}1≤i≤n, r,H
}

. The robust value function {V π,σi

i,h }i∈[n],h∈[H] associated with any joint policy π
satisfies:

∀(i, h) ∈ [n]× [H] : max
s∈S

V π,σi

i,h (s)−min
s∈S

V π,σi

i,h (s) ≤ min

{
1

σi
, H − h+ 1

}
.

Proof. See Appendix C.3.2

Equipped with the preceding lemma, we are now prepared to prove Theorem 4.1 for three different robust solution concepts,

respectively.

C.1. Proof of learning robust NE/robust CCE

In this subsection, we focus on the two equilibrium concepts — robust NE and robust CCE. The proof is separated into

several key steps as below.

Step 1: decomposing the error. Before proceeding, recall the goal is to prove that the output policy π̂ from Algorithm 1

is an ε-robust NE/CCE with corresponding subroutine (cf. line 4.1). Namely, π̂ ∈ ∆(A1)×∆(A2)×∆(An) is a product

policy satisfies

gapNE(π̂) := max
s∈S,i∈[n]

{
V

?,π̂−i,σi

i,1 (s)− V π̂,σi

i,1 (s)
}
≤ ε (64)

or π̂ ∈ ∆(A) is a (possibly correlated) policy obeys

gapCCE(π̂) := max
s∈Si∈[n]

{
V

?,π̂−i,σi

i,1 (s)− V π̂,σi

i,1 (s)
}
≤ ε. (65)

We note that gapNE and gapCCE exhibit similar properties, differing only in the feasible set of policy π̂. So we consider them

together.

To continue, we introduce the following best-response policy of the i-th player given other players policy π̂−i:

π̃?
i = {π̃?

i,h}1≤h≤H = argmaxπ′
i∈S×[H]→∆(Ai)

V
π′
i×π̂−i,σi

i,1 , (66)

which indicates that

V
π̃?
i ×π̂−i,σi

i,1 = V
?,π̂−i,σi

i,1 . (67)

Armed with above notations and facts, the term of interest V
?,π̂−i,σi

i,1 − V π̂,σi

i,1 for any i ∈ [n] can be decomposed as

V
?,π̂−i,σi

i,1 − V π̂,σi

i,1 =
(
V

?,π̂−i,σi

i,1 − V̂
π̃?
i ×π̂−i,σi

i,1

)
+
(
V̂

π̃?
i ×π̂−i,σi

i,1 − V̂ π̂,σi

i,1

)
+
(
V̂ π̂,σi

i,1 − V π̂,σi

i,1

)

(i)

≤
(
V

?,π̂−i,σi

i,1 − V̂
π̃?
i ×π̂−i,σi

i,1

)
+
(
V̂

π̃?
i ×π̂−i,σi

i,1 − V̂
?,π̂−i,σi

i,1

)
+
(
V̂ π̂,σi

i,1 − V π̂,σi

i,1

)

≤
(
V

?,π̂−i,σi

i,1 − V̂
π̃?
i ×π̂−i,σi

i,1

)
+
(
V̂ π̂,σi

i,1 − V π̂,σi

i,1

)
(68)

where (i) holds by V̂ π̂,σi

i,1 = V̂
?,π̂−i,σi

i,1 (resp. V̂ π̂,σi

i,1 ≥ V̂
?,π̂−i,σi

i,1 ) when the subroutine in line 4.1 is Compute −

Nash (resp. Compute − CCE) implied by Lemma B.2, and the last inequality follows from V̂
π̃?
i ×π̂−i,σi

i,1 ≤

maxπ′
i∈S×[H]→∆(Ai) V̂

π′
i×π̂−i,σi

i,1 = V̂
?,π̂−i,σi

i,1 by definition.
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Step 2: developing the recursion. We consider a more general form for any time step h ∈ [H] and any joint policy π.

Towards this, one has

V π,σi

i,h − V̂ π,σi

i,h

(i)
= rπi,h +Ππ

h inf
P∈Uσi (P 0

h,s,a
)
PV π,σi

i,h+1 −
(
rπi,h +Ππ

h inf
P∈Uσi (P̂ 0

h,s,a
)
PV̂ π,σi

i,h+1

)

(ii)
= Pπ,V

i,h V π,σi

i,h+1 − P̂
π,V̂

i,h V̂ π,σi

i,h+1 (69)

=
(
Pπ,V

i,h V π,σi

i,h+1 − Pπ,V̂
i,h V̂ π,σi

i,h+1

)
+

(
Pπ,V̂

i,h V̂ π,σi

i,h+1 − P̂
π,V̂

i,h V̂ π,σi

i,h+1

)

(iii)

≤ Pπ,V̂
i,h

(
V π,σi

i,h+1 − V̂ π,σi

i,h+1

)
+

∣∣∣∣P
π,V̂
i,h V̂ π,σi

i,h+1 − P̂
π,V̂

i,h V̂ π,σi

i,h+1

∣∣∣∣
︸ ︷︷ ︸

=:aπ
i,h

(70)

where (i) and (ii) hold by the matrix version of robust Bellman consistency equations in (59) and (62), and (iii) follows from

the observation

Pπ,V
i,h V π,σi

i,h+1 ≤ Pπ,V̂
i,h V π,σi

i,h+1

due to the definition of Pπ,V
i,h = Ππ

h argminP∈Uσi (P 0
h,s,a

) PV π,σi

i,h+1 ≤ Ππ
h argminP∈Uσi (P 0

h,s,a
) PV̂ π,σi

i,h+1 (cf. (53) and (54)).

Recursively applying (70) leads to

V π,σi

i,h − V̂ π,σi

i,h

≤ Pπ,V̂
i,h Pπ,V̂

i,h+1

(
V π,σi

i,h+2 − V̂ π,σi

i,h+2

)
+ Pπ,V̂

i,h

∣∣∣∣P
π,V̂
i,h+1V̂

π,σi

i,h+2 − P̂
π,V̂

i,h+1V̂
π,σi

i,h+2

∣∣∣∣+
∣∣∣∣P

π,V̂
i,h V̂ π,σi

i,h+1 − P̂
π,V̂

i,h V̂ π,σi

i,h+1

∣∣∣∣

≤ · · · ≤
H∑

j=h

(
j−1∏

k=h

Pπ,V̂
i,k

)
aπi,j , (71)

where the last inequality holds by adopting the following notations

(
h−1∏

k=h

Pπ,V̂
i,k

)
= I and

(
j−1∏

k=h

Pπ,V̂
i,k

)
= Pπ,V̂

i,h · P
π,V̂
i,h+1 · · ·P

π,V̂
i,j−1. (72)

Next, similar to (70), we can achieve

V̂ π,σi

i,h − V π,σi

i,h

(i)
= P̂

π,V̂

i,h V̂ π,σi

i,h+1 − Pπ,V
i,h V π,σi

i,h+1

=

(
P̂

π,V̂

i,h V̂ π,σi

i,h+1 − Pπ,V̂
i,h V̂ π,σi

i,h+1

)
+
(
Pπ,V̂

i,h V̂ π,σi

i,h+1 − Pπ,V
i,h V π,σi

i,h+1

)

≤ Pπ,V
i,h

(
V̂ π,σi

i,h+1 − V π,σi

i,h+1

)
+

∣∣∣∣P
π,V̂
i,h V̂ π,σi

i,h+1 − P̂
π,V̂

i,h V̂ π,σi

i,h+1

∣∣∣∣ (73)

where (i) holds by (69), and the last inequality follows from the fact Pπ,V̂
i,h V̂ π

i,h+1 ≤ Pπ,V
i,h V̂ π

i,h+1 (see the definition of Pπ,V̂
i,h ,

i.e., (53) and (54)).

Then following the routine of achieving (71), we arrive at

V̂ π,σi

i,h − V π,σi

i,h ≤

H∑

j=h

(
j−1∏

k=h

Pπ,V
i,k

)
aπi,j . (74)

Summing up (71) and (74), one has for any joint policy π,

∣∣∣V̂ π,σi

i,h − V π,σi

i,h

∣∣∣ ≤ max{V π,σi

i,h − V̂ π,σi

i,h , V̂ π,σi

i,h − V π,σi

i,h }
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≤ max





H∑

j=h

(
j−1∏

k=h

Pπ,V̂
i,k

)
aπi,j ,

H∑

j=h

(
j−1∏

k=h

Pπ,V
i,k

)
aπi,j



 , (75)

where the max operator is taken entry-wise for the vectors.

To continue, we introduce an important concentration result about the value estimation error as follows:

Lemma C.2. Consider any δ ∈ (0, 1). With probability at least 1− δ, one has for any joint policy π,

∀(h, i) ∈ [H]× [n] : aπi,h =

∣∣∣∣P
π,V̂
i,h V̂ π,σi

i,h+1 − P̂
π,V̂

i,h V̂ π,σi

i,h+1

∣∣∣∣

≤ 2

√
log(

18S
∏

n
i=1

AinHN

δ )

N

√
VarPπ

h
(V̂ π

i,h+1) +
log(

18S
∏n

i=1
AinHN

δ )H

N
1

≤ 3

√
H2 log(

18S
∏

n
i=1

AinHN

δ )

N
1 (76)

where VarPπ
h
(·) is defined in (56).

Proof. See Appendix C.3.3.

Step 3: controlling the first term in (75). Let us introduce some additional notations for convenience. Recall es denote

a S-dimensional standard basis supported on the s-th element. We denote

dhh = es and djh = e>s

(
j−1∏

k=h

Pπ,V̂
i,k

)
∀j = h+ 1, · · · , H. (77)

Armed with above notations and facts, for any s ∈ S , we have

V π,σi

i,h (s)− V̂ π,σi

i,h (s) =
〈
es, V

π,σi

i,h − V̂ π,σi

i,h

〉
=

H∑

j=h

〈
djh, a

π
i,j

〉

≤

H∑

j=h

〈
djh,


2

√
log(

18S
∏

n
i=1

AinHN

δ )

N

√
VarPπ

j
(V̂ π,σi

i,j+1) +
log(

18S
∏n

i=1
AinHN

δ )H

N
1



〉

≤
log(

18S
∏n

i=1
AinHN

δ )H2

N
+ 2

√
log(

18S
∏

n
i=1

AinHN

δ )

N

H∑

j=h

〈
djh,
√
VarPπ

j
(V̂ π,σi

i,j+1)

〉

(i)

≤
log(

18S
∏n

i=1
AinHN

δ )H2

N
+ 2

√
log(

18S
∏

n
i=1

AinHN

δ )

N

√√√√H

H∑

j=h

〈
djh,VarPπ

j
(V̂ π,σi

i,j+1)
〉

≤
log(

18S
∏n

i=1
AinHN

δ )H2

N
+ 2

√
H log(

18S
∏

n
i=1

AinHN

δ )

N

√√√√
H∑

j=h

〈
djh,VarPπ,V̂

i,j

(V̂ π,σi

i,j+1)

〉

︸ ︷︷ ︸
=:B1

+ 2

√
log(

18S
∏

n
i=1

AinHN

δ )

N

√√√√H

H∑

j=h

〈
djh,

∣∣∣∣VarPπ
j
(V̂ π,σi

i,j+1)− Var
Pπ,V̂

i,j

(V̂ π,σi

i,j+1)

∣∣∣∣
〉

︸ ︷︷ ︸
=:B2

(78)

where (i) holds by the Cauchy-Schwarz inequality.

Then we control the two main terms in (78) separately.
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• Controlling B1. To begin with, we introduce the following lemma about
∑H

j=h

〈
djh,VarPπ,V̂

i,j

(V̂ π,σi

i,j+1)

〉
whose proof

is postponed to Appendix C.3.4.

Lemma C.3. Consider any δ ∈ (0, 1). With probability at least 1− δ, one has for any joint policy π,

∀(h, i) ∈ [H]× [n] :

H∑

j=h

〈
djh,VarPπ,V̂

i,j

(V̂ π,σi

i,j+1)

〉

≤ 3H

(
max
s∈S

V̂ π,σi

i,j+1(s)−min
s∈S

V̂ π,σi

i,j+1(s)

)
1 + 2H

√
log(

18S
∏

n
i=1

AinHN

δ )

N


 . (79)

Applying Lemma C.3 to B1 in (78), we arrive at

B1 = 2

√√√√H log
(

18S
∏

n
i=1

AinHN

δ

)

N

√√√√
H∑

j=h

〈
djh,VarPπ,V̂

i,j

(V̂ π,σi

i,j+1)

〉

≤ 2

√√√√H log
(

18S
∏

n
i=1

AinHN

δ

)

N

√√√√√
3H

(
max
s∈S

V̂ π,σi

i,j+1(s)−min
s∈S

V̂ π,σi

i,j+1(s)

)(
1 + 2H

√√√√ log
(

18S
∏

n
i=1

AinHN

δ

)

N

)

(i)

≤ 2

√√√√√3H2 log
(

18S
∏

n
i=1

AinHN

δ

)

N
min

{
1

σi
, H − h+ 1

}(
1 + 2H

√√√√ log
(

18S
∏

n
i=1

AinHN

δ

)

N

)

≤ 6

√√√√H2 min {1/σi, H} log
(

18S
∏

n
i=1

AinHN

δ

)

N
, (80)

where (i) holds by applying Lemma C.3.2, and the last inequality follows by taking N ≥ 4H2 log
( 18S ∏n

i=1
AinHN

δ

)
.

• Controlling B2. We introduce another lemma; refer to the proof in Appendix C.3.5.

Lemma C.4. Consider the standard RMG MG =
{
S, {Ai}1≤i≤n, {U

σi(P 0)}1≤i≤n, r,H
}

and empirical RMG

MGrob =
{
S, {Ai}1≤i≤n, {U

σi(P̂ 0)}1≤i≤n, r,H
}

. Considering any joint policy π, any transition kernel P ′ ∈ R
S

and any P̃ ∈ R
S obeying P̃ ∈ Uσi(P ), one has

∀(i, j) ∈ [n]× [H] :
∣∣∣VarP ′(V̂ π,σi

i,j+1)− VarP̃ (V̂
π,σi

i,j+1)
∣∣∣ ≤ min

{
1

σi
, H − h+ 1

}
, (81a)

∣∣VarP ′(V π,σi

i,j+1)− VarP̃ (V
π,σi

i,j+1)
∣∣ ≤ min

{
1

σi
, H − h+ 1

}
. (81b)

Armed with above lemma, we observe that

∣∣∣∣VarPπ
j
(V̂ π,σi

i,j+1)− Var
Pπ,V̂

i,j

(V̂ π,σi

i,j+1)

∣∣∣∣
(i)
=

∣∣∣∣Ππ
j

(
VarP 0

j
(V̂ π,σi

i,j+1)− Var
Pπ,V̂

i,j

(V̂ π,σi

i,j+1)

)∣∣∣∣
(ii)

≤

∥∥∥∥VarP 0
j
(V̂ π,σi

i,j+1)− Var
Pπ,V̂

i,j

(V̂ π,σi

i,j+1)

∥∥∥∥
∞

1

≤ min

{
1

σi
, H − h+ 1

}
1, (82)

where (i) and (ii) follows from the matrix notations Ππ
j (cf (52)) and Pπ

j , P
π,V̂
i,j (cf (54)), and the last inequality holds

by applying Lemma C.4 with P ′ = P 0
j,s,a, P̃ = Pπ,V̂

i,j,s,a for all (s,a) ∈ S ×A.
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Plugging back (82) to (78), it can be verified that

B2 = 2

√
log(

18S
∏

n
i=1

AinHN

δ )

N

√√√√H
H∑

j=h

〈
djh,

∣∣∣∣VarPπ
j
(V̂ π,σi

i,j+1)− Var
Pπ,V̂

i,j

(V̂ π,σi

i,j+1)

∣∣∣∣
〉

≤ 2

√
H log(

18S
∏

n
i=1

AinHN

δ )

N

√√√√
H∑

j=h

〈
djh,min

{
1

σi
, H − h+ 1

}
1

〉

≤ 2

√
H2 min {1/σi, H} log(

18S
∏

n
i=1

AinHN

δ )

N
. (83)

Consequently, combining (80) and (83), (78) can be bounded by

V π,σi

i,h (s)− V̂ π,σi

i,h (s) ≤
log(

18S
∏n

i=1
AinHN

δ )H2

N
+ 6

√√√√H2 min {1/σi, H} log
(

18S
∏

n
i=1

AinHN

δ

)

N

+ 2

√
H2 min {1/σi, H} log(

18S
∏

n
i=1

AinHN

δ )

N

≤ 9

√
H2 min {1/σi, H} log(

18S
∏

n
i=1

AinHN

δ )

N
, (84)

where the last inequality holds by taking N ≥ 4H2 log(
18S

∏n
i=1

AinHN

δ ).

Step 4: controlling the second term in (75). To do so, similar to (77), we define

wh
h = es and wj

h = e>s

(
j−1∏

k=h

Pπ,V
i,k

)
∀j = h+ 1, · · · , H. (85)

With the above notations in mind, following the routine of (78) gives: for any s ∈ S ,

V̂ π,σi

i,h (s)− V π,σi

i,h (s)

≤
log(

18S
∏n

i=1
AinHN

δ )H2

N
+ 2

√
log(

18S
∏

n
i=1

AinHN

δ )

N

H∑

j=h

〈
wj

h,
√

VarPπ
j
(V̂ π,σi

i,j+1)

〉

(i)

≤
log(

18S
∏n

i=1
AinHN

δ )H2

N
+ 2

√
log(

18S
∏

n
i=1

AinHN

δ )

N

H∑

j=h

〈
wj

h,

(√∣∣VarPπ
j
(V̂ π,σi

i,j+1 − V π,σi

i,j+1)
∣∣+
√∣∣VarPπ

j
(V π,σi

i,j+1)− VarPπ,V
i,j

(V π,σi

i,j+1)
∣∣+
√

VarPπ,V
i,j

(V π,σi

i,j+1)
)〉

≤
H2 log

(
18S

∏n
i=1

AinHN

δ

)

N
+ 2

√
H log(

18S
∏

n
i=1

AinHN

δ )

N

√√√√
H∑

j=h

〈
wj

h,VarPπ,V
i,j

(V π,σi

i,j+1)
〉

︸ ︷︷ ︸
=:B3

+ 2

√
H log(

18S
∏

n
i=1

AinHN

δ )

N

√√√√
H∑

j=h

〈
wj

h,
∣∣∣VarPπ

j
(V π,σi

i,j+1)− VarPπ,V
i,j

(V π,σi

i,j+1)
∣∣∣
〉

︸ ︷︷ ︸
=:B4

+ 2

√
H log(

18S
∏

n
i=1

AinHN

δ )

N

√√√√
H∑

j=h

〈
wj

h,
∣∣∣VarPπ

j
(V̂ π,σi

i,j+1 − V π,σi

i,j+1)
∣∣∣
〉

︸ ︷︷ ︸
=:B5

, (86)
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where (i) holds by the triangle inequality and the elementary inequality
√
VarP (V + V ′) ≤

√
VarP (V ) +

√
VarP (V ′) for

any transition kernel P ∈ R
S and vectors V, V ′ ∈ R

S , and the last inequality follows from applying the Cauchy-Schwarz

inequality to those terms.

We can control the three main terms in (86) separately as below:

• Controlling B3. First, we introduce the following lemma for
∑H

j=h

〈
wj

h,VarPπ,V
i,j

(V π,σi

i,j+1)
〉

.

Lemma C.5. Consider any δ ∈ (0, 1). For any joint policy π, with probability at least 1− δ,

∀(h, i) ∈ [H]× [n] :
H∑

j=h

〈
wj

h,VarPπ,V̂
i,j

(V π,σi

i,j+1)

〉
≤ 3H

(
max
s∈S

V π,σi

i,h (s)−min
s∈S

V π,σi

i,h (s)

)
. (87)

Proof. See Appendix C.3.6.

Then applying Lemma C.5 yields

B3 = 2

√√√√H log
(

18S
∏

n
i=1

AinHN

δ

)

N

√√√√
H∑

j=h

〈
wj

h,VarPπ,V
i,j

(V π,σi

i,j+1)
〉

≤ 2

√√√√H log
(

18S
∏

n
i=1

AinHN

δ

)

N

√
3H

(
max
s∈S

V̂ π,σi

i,h (s)−min
s∈S

V̂ π,σi

i,h (s)

)

≤ 4

√√√√H2 min {1/σi, H} log
(

18S
∏

n
i=1

AinHN

δ

)

N
, (88)

where the last inequality follows from Lemma C.1.

• Controlling B4 and B5 . First, it is easily verified that B4 can be controlled as the same as that for B2 (see (83)) by

applying Lemma (81b), namely

B4 ≤ 2

√
H2 min {1/σi, H} log(

18S
∏

n
i=1

AinHN

δ )

N
. (89)

Then the remainder of the proof shall focus on B5. Recalling the definition in (86), one has

B5 = 2

√
H log(

18S
∏

n
i=1

AinHN

δ )

N

√√√√
H∑

j=h

〈
wj

h,
∣∣∣VarPπ

j
(V̂ π,σi

i,j+1 − V π,σi

i,j+1)
∣∣∣
〉

≤ 2

√
H2 log(

18S
∏

n
i=1

AinHN

δ )

N

√
max

h≤j≤H

∥∥∥VarPπ
j
(V̂ π,σi

i,j+1 − V π,σi

i,j+1)
∥∥∥
∞

≤ 2

√
H2 log(

18S
∏

n
i=1

AinHN

δ )

N
max

h≤j≤H

∥∥∥V̂ π,σi

i,j+1 − V π,σi

i,j+1

∥∥∥
∞

. (90)

Summing up (88), (89), and (90) and inserting back to (86), we conclude

V̂ π,σi

i,h (s)− V π,σi

i,h (s)

≤
log(

18S
∏n

i=1
AinHN

δ )H2

N
+ 4

√
H2 min {1/σi, H} log(

18S
∏

n
i=1

AinHN

δ )

N
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+ 2

√
H2 min {1/σi, H} log(

18S
∏

n
i=1

AinHN

δ )

N
+ 2

√
H2 log(

18S
∏

n
i=1

AinHN

δ )

N
max

h≤j≤H

∥∥∥V̂ π,σi

i,j+1 − V π,σi

i,j+1

∥∥∥
∞

≤ 7

√
H2 min {1/σi, H} log(

18S
∏

n
i=1

AinHN

δ )

N
1

+ 2

√
H2 log(

18S
∏

n
i=1

AinHN

δ )

N
max

h≤j≤H

∥∥∥V̂ π,σi

i,j+1 − V π,σi

i,j+1

∥∥∥
∞

1, (91)

as long as N ≥ H2 log
( 18S ∏n

i=1
AinHN

δ

)
.

Step 5: summing up the results. Inserting (84) and (91) back into (75), we observe that
∣∣∣V̂ π,σi

i,h − V π,σi

i,h

∣∣∣

≤ max
{
V π,σi

i,h − V̂ π,σi

i,h , V̂ π,σi

i,h − V π,σi

i,h

}

≤ max
{
9

√
H2 min {1/σi, H} log(

18S
∏

n
i=1

AinHN

δ )

N
1,

7

√
H2 min {1/σi, H} log(

18S
∏

n
i=1

AinHN

δ )

N
1 + 2

√
H2 log(

18S
∏

n
i=1

AinHN

δ )

N
max

h≤j≤H

∥∥∥V̂ π,σi

i,j+1 − V π,σi

i,j+1

∥∥∥
∞

1
}
, (92)

which indicates

max
h∈[H]

∥∥∥V̂ π,σi

i,h − V π,σi

i,h

∥∥∥
∞

≤ 9

√
H2 min {1/σi, H} log(

18S
∏

n
i=1

AinHN

δ )

N
1 + 2

√
H2 log(

18S
∏

n
i=1

AinHN

δ )

N
max
h∈[H]

∥∥∥V̂ π,σi

i,h+1 − V π,σi

i,h+1

∥∥∥
∞

(i)

≤ 9

√
H2 min {1/σi, H} log(

18S
∏

n
i=1

AinHN

δ )

N
1 +

1

2
max
h∈[H]

∥∥∥V̂ π,σi

i,h − V π,σi

i,h

∥∥∥
∞

≤ 18

√
H2 min {1/σi, H} log(

18S
∏

n
i=1

AinHN

δ )

N
, (93)

where (i) holds by taking N ≥ 16H2 log(
18S

∏n
i=1

AinHN

δ ) and invoking the basic fact that V̂ π,σi

i,H+1 = V π,σi

i,H+1 = 0.

Finally, we complete the proof by showing that the performance gap in (68) is bounded by

V
?,π̂−i

i,1 − V π̂
i,1 ≤

(
V

?,π̂−i

i,1 − V̂
π̃?
i ×π̂−i

i,1

)
+
(
V̂ π̂
i,1 − V π̂

i,1

)

≤
∥∥∥V ?,π̂−i

i,1 − V̂
π̃?
i ×π̂−i

i,1

∥∥∥
∞

1 +
∥∥∥V̂ π̂

i,1 − V π̂
i,1

∥∥∥
∞

1

≤ max
h∈[H]

∥∥∥V ?,π̂−i

i,h − V̂
π̃?
i ×π̂−i

i,h

∥∥∥
∞

1 + max
h∈[H]

∥∥∥V̂ π̂
i,h − V π̂

i,h

∥∥∥
∞

1

≤ 36

√
H2 min {1/σi, H} log(

18S
∏

n
i=1

AinHN

δ )

N
1, (94)

where the last inequality holds by applying (93) to two different cases when π = π̃?
i × π̂−i or π = π̂, respectively.

As a result, to achieve maxs∈S,i∈[n]

{
V

?,π̂−i,σi

i,1 (s)− V π̂,σi

i,1 (s)
}
≤ ε with probability at least 1− δ, we require the total

number of samples

Nall = HS
∏

i∈[n]

AiN ≥
C1SH

3
∏

1≤i≤n Ai log
(

18S
∏n

i=1
AinHN

δ

)

ε2
min

{
H,

1

min1≤i≤n σi

}
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≥
C0SH

3
∏

1≤i≤n Ai log
(

18S
∏n

i=1
AinHN

δ

)

ε2
min

{
H,

1

min1≤i≤n σi

}

+ 16H3S
∏

i∈[n]

Ai log(
18S

∏n
i=1 AinHN

δ
), (95)

providing C1 > C0 are larger enough universal constant, and ε ≤

√
min

{
H, 1

min1≤i≤n σi

}
.

C.2. Proof of learning robust CE

This section is analogous to the proof for learning robust NE/CCE in Appendix C.1.

The goal is to prove that the policy π̂ output from Algorithm 1 is an ε-robust CE when executing subroutine Compute−CE(·)
for line 4.1, i.e.,

gapCE(π̂) = max
s∈S,1≤i≤n

{
max
fi∈Fi

V fi�π̂,σi

i,1 (s)− V π̂,σi

i,1 (s)

}
≤ ε. (96)

So we define the following best perturbation policy of the i-th player as

π?
i = {π?

i,h}1≤h≤H =
(

argmaxfi∈Fi
V fi�π̂,σi

i,1

)
� π̂ (97)

which leads to

V
π?
i ,σi

i,1 = max
fi∈Fi

V fi�π̂,σi

i,1 . (98)

With above notations in mind, for any 1 ≤ i ≤ n, the term of interest can be decomposed as

max
fi∈Fi

V fi�π̂,σi

i,1 − V π̂,σi

i,1 =
(
V

π?
i ,σi

i,1 − V̂
π?
i ,σi

i,1

)
+
(
V̂

π?
i ,σi

i,1 − V̂ π̂,σi

i,1

)
+
(
V̂ π̂,σi

i,1 − V π̂,σi

i,1

)

(i)

≤
(
V

π?
i ,σi

i,1 − V̂
π?
i ,σi

i,1

)
+

(
V̂

π?
i ,σi

i,1 − max
fi∈Fi

V̂ fi�π̂,σi

i,1

)
+
(
V̂ π̂,σi

i,1 − V π̂,σi

i,1

)

≤
(
V

π?
i ,σi

i,1 − V̂
π?
i ,σi

i,1

)
+
(
V̂ π̂,σi

i,1 − V π̂,σi

i,1

)
(99)

where (i) holds by V̂ π̂,σi

i,1 ≥ maxfi∈Fi
V fi�π̂,σi

i,1 when the subroutine in line 4.1 is Compute−CE(·) implied by Lemma B.2,

and the last inequality follows from V̂
π?
i ,σi

i,1 = V̂
fi�π̂,σi

i,1 ≤ maxfi∈Fi
V̂ fi�π̂,σi

i,1 for some f i ∈ Fi.

Observing that (99) is similar to (68), it can be verified that following the same pipeline routine and the same facts developed

from Step 2 to Step 5 in Appendix C.1, we can achieve similar results as below:

∀i ∈ [n] : max
fi∈Fi

V fi�π̂,σi

i,1 − V π̂,σi

i,1 ≤ 36

√
H2 min {1/σi, H} log(

18S
∏

n
i=1

AinHN

δ )

N
1, (100)

which yields (95) and complete the proof. We omit the details here for conciseness.

C.3. Proof of the auxiliary lemmas

C.3.1. PROOF OF LEMMA B.2

We will prove each line of (63) separately with an induction argument. Note that Blanchet et al. (2023) provides the proof of

the first line of (63) for robust NE. For completeness, we offer the whole proof for all of the three robust solution concepts

(including robust-NE).
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Proof for robust NE. First, we focus on the first line of (63) and provide the following induction argument:

• Base case when h = H . Note that V̂ π,σi

i,H+1 = 0 for all i ∈ [n] are satisfied by definition. As a result, the robust

Q-function for any joint policy π and the estimate from Algorithm 1 satisfy

∀(i, s, a) ∈ [n]× S ×A : Q̂π,σi

i,H (s,a) = ri,H(s,a) and Q̂i,H(s,a) = ri,H(s,a) (101)

which directly leads to

V̂ π,σi

i,H = V̂i,H (102)

and the output πH obeying

∀s ∈ S : π̂H(· | s)← Compute− Nash (r1,H(s,a), r2,H(s,a), · · · , rn,H(s,a)) . (103)

Consequently, invoking line 4.1 of Algorithm 1 gives that for all s ∈ S ,

V̂i,H(s) = E
a∼π̂H(s)

[
Q̂i,H(s,a)

]
(i)
= E

a∼π̂H(s)

[
Q̂π̂,σi

i,H (s,a)
]

(ii)
= E

a∼π̂H(s)[ri,H(s,a)] (104)

(iii)
= max

π̃i,H(s)∈∆(Ai)
E
a∼π̃i,H(s)×π̂−i,H(s)[ri,H(s,a)] (105)

(iv)
= max

π̃i,H(s)∈∆(Ai)
E
a∼π̃i,H(s)×π̂−i,H(s)

[
Q̂

π̃i×π̂−i,σi

i,H (s,a)
]

= max
π̃i:S×[H]→∈∆(Ai)

V̂
π̃i×π̂−i,σi

i,H (s) = V̂
?,π̂−i,σi

i,H , (106)

where (i) and (ii) hold by (101), (iii) arises from the definition of robust-NE (see (103)) associated with {ri,H}i∈[n],

(iv) holds by applying (101) for policy π = π̃i × π̂−i, and the penultimate equality follows from the fact that only the

policy of the time step H will influence V̂ π,σi

i,H (s) due to Markov property. Thus we complete the proof for the base

case.

• Induction. To continue, suppose the first line in (63) holds for step h+ 1, we shall proof that it also holds for time step

h. To proceed, applying the robust Bellman equation in (61) for the TV uncertainty set Uσi(·), we observe that

∀(s, a) ∈ S ×A : Q̂π̂,σi

i,h (s,a) = ri,h(s,a) + inf
P∈Uσi (P̂ 0

h,s,a
)
PV̂ π̂,σi

i,h+1. (107)

In addition, line 4.1 of Algorithm 1 gives that for all (s, a) ∈ S ×A,

Q̂i,h(s,a) = ri,h(s,a) + inf
P∈Uσi (P̂ 0

h,s,a
)
PV̂i,h+1

= ri,h(s,a) + inf
P∈Uσi (P̂ 0

h,s,a
)
PV̂ π̂,σi

i,h+1 = Q̂π̂,σi

i,h (s,a), (108)

where the penultimate equality holds by the induction assumption and the final equality follows from (107). It indicates

∀s ∈ S : V̂i,h(s) = E
a∼π̂h(s)

[
Q̂i,h(s,a)

]
= E

a∼π̂h(s)

[
Q̂π̂,σi

i,h (s,a)
]
= V̂ π̂,σi

i,h (s) (109)

and that the output policy obeys

∀s ∈ S : π̂h(· | s)← Compute− Nash
(
Q̂π̂,σi

1,h (s, ·), Q̂π̂,σi

2,h (s, ·), Q̂π̂,σi

n,h (s, ·)
)
. (110)

Then the term of interest satisfies that for any s ∈ S ,

V̂
?,π̂−i,σi

i,h (s) = max
π̃i:S×[H]→∆(Ai)

E
a∼π̃i,h(s)×π̂−i,h(s)

[
Q̂

π̃i×π̂−i,σi

i,h (s,a)
]
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= max
π̃i:S×[H]→∆(Ai)

E
a∼π̃i,h(s)×π̂−i,h(s)

[
ri,h(s,a) + inf

P∈Uσi (P̂ 0
h,s,a

)
PV̂

π̃i×π̂−i,σi

i,h+1

]

(i)
= max

π̃i,h∈∆(Ai)
E
a∼π̃i,h(s)×π̂−i,h(s)

[
ri,h(s,a) + max

π̃i:S×[H]→∆(Ai)
inf

P∈Uσi (P̂ 0
h,s,a

)
PV̂

π̃i×π̂−i,σi

i,h+1

]

(ii)
= max

π̃i,h(s)∈∆(Ai)
E
a∼π̃i,h(s)×π̂−i,h(s)

[
ri,h(s,a) + inf

P∈Uσi (P̂ 0
h,s,a

)
PV̂ π̂,σi

i,h+1

]

= max
π̃i,h(s)∈∆(Ai)

E
a∼π̃i,h(s)×π̂−i,h(s)

[
Q̂π̂,σi

i,h (s,a)
]
, (111)

where (i) holds by ri,h(s, a) is independent from all other time steps h′ 6= h, (ii) is due to the exchangabil-

ity of maxπ̃i:S×[H]→∆(Ai) and infP∈Uσi (P̂ 0
h,s,a

), along with the induction assumption V̂ π̂,σi

i,h+1 = V̂
?,π̂−i,σi

i,h+1 =

maxπ̃i:S×[H]→∆(Ai) V̂
π̃i×π̂−i,σi

i,h+1 , and the last equality can be verified by (107). To continue, applying (110) with the

definition of robust NE, one has

V̂
?,π̂−i,σi

i,h (s) = max
π̃i,h(s)∈∆(Ai)

E
a∼π̃i,h(s)×π̂−i,h(s)

[
Q̂π̂,σi

i,h (s,a)
]

= E
a∈π̂h(s)

[
Q̂π̂,σi

i,h (s,a)
]
= E

a∈π̂h(s)

[
Q̂i,h(s,a)

]
= V̂i,h(s), (112)

where the penultimate equality follows from (108). Finally, it is easily observed that

∀s ∈ S : V̂i,h(s) = E
a∈π̂h(s)

[
Q̂i,h(s,a)

]
= E

a∈π̂h(s)

[
Q̂π̂,σi

i,h (s,a)
]
= V̂ π̂,σi

i,h (s). (113)

Combined this fact with (115) shows that V̂i,h = V̂ π̂,σi

i,h = V̂
?,π̂−i,σi

i,h , which complete the induction argument.

Proof for robust CCE. The proof is analogous to the above argument for robust NE. According to the different subroutine

Compute−CCE and the corresponding output policy π̂, the proof only differs in two steps. First, for the base case, following

the same routine in (106) but replacing the robust NE property by the one of robust CCE, one has

V̂i,H(s) = E
a∼π̂H(s)[Q̂i,H(s,a)] = E

a∼π̂H(s)[ri,H(s,a)]

≥ max
π̃i,H(s)∈∆(Ai)

E
a∼π̃i,H(s)×π̂−i,H(s)[ri,H(s,a)]

= max
π̃i,H(s)∈∆(Ai)

E
a∼π̃i,H(s)×π̂−i,H(s)

[
Q̂

π̃i×π̂−i,σi

i,H (s,a)
]

= max
π̃i:S×[H]→∈∆(Ai)

V̂
π̃i×π̂−i,σi

i,H (s) = V̂
?,π̂−i,σi

i,H . (114)

Secondly, following (115) in induction step, we can achieve

V̂
?,π̂−i,σi

i,h ≤ V̂i,h (115)

and V̂i,h = V̂ π̂,σi

i,h ≥ V̂
?,π̂−i,σi

i,h , which complete the proof.

Proof for robust CE. The proof is similar to the one of robust NE as well. According to the different subroutine

Compute− CE and the corresponding output policy π̂, the parallel claims to (106) and (115) are shown below, which we

omit the process for brevity:

V̂i,H(s) = E
a∼π̂H(s)[Q̂i,H(s,a)] = E

a∼π̂H(s)[ri,H(s,a)]

≥ max
fi,H,s:Ai→Ai

E
a∼fi,H,s�π̂H(s)[ri,H(s,a)] = max

fi∈Fi

V̂ fi�π̂,σi

i,H , (116)

and

max
fi∈Fi

V̂ fi�π̂,σi

i,h ≤ V̂ π̂,σi

i,h = V̂i,h. (117)

Thus we complete the proof.
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C.3.2. PROOF OF LEMMA C.1

To begin with, we observe that

min
s∈S

V π,σi

i,h (s) = min
s∈S

Ea∼πh(s)[Q
π,σi

i,h (s,a)] = min
s∈S

Ea∼πh(s)[ri,h(s,a) + inf
P∈Uσi (Ph,s,a)

PV π,σi

i,h+1]

≥ 0 + min
s∈S

V π,σi

i,h+1(s), (118)

where the second equality holds by the robust Bellman equation (cf. (13)). Similarly, one has

max
s∈S

V π,σi

i,h (s) = max
s∈S

Ea∼πh(s)[Q
π,σi

i,h (s,a)] = max
s∈S

Ea∼πh(s)[ri,h(s,a) + inf
P∈Uσi (Ph,s,a)

PV π,σi

i,h+1]

≤ 1 + max
(s,a)∈S×A

inf
P∈Uσi (Ph,s,a)

PV π,σi

i,h+1. (119)

Armed with above results, we are ready to prove Lemma C.1. Towards this, we introduce some additional notations for

convenience. Fixing any joint policy π, note that for any (i, h) ∈ [n]× [H], there exist at least one state s?i,h that satisfies

V π,σi

i,h (s?i,h) = mins∈S V π,σi

i,h (s).

Then, it is observed that for any (s,a) ∈ S ×A and accessible uncertainty set σi > 0, we can construct an auxiliary vector

P ′
h,s,a ∈ R

S by strictly reducing the values of some elements of Ph,s,a so that

0 ≤ P ′
h,s,a ≤ Ph,s,a and

∑

s′∈S

Ph,s,a(s
′)− P ′

h,s,a(s
′) =

∥∥P ′
h,s,a − Ph,s,a

∥∥
1
= σi. (120)

Recalling es?
i,h

denote a S-dimensional standard basis supported on s?i,h, the above fact directly indicates that

1

2

∥∥∥P ′
h,s,a + σi

[
es?

i,h

]>
− Ph,s,a

∥∥∥
1
≤

1

2

∥∥P ′
h,s,a − Ph,s,a

∥∥
1
+

1

2

∥∥∥σi

[
es?

i,h

]>∥∥∥
1
≤ σi, (121)

where the first inequality holds by that TV distance enjoys the triangle inequality.

The above results in (121) imply that P ′
h,s,a + σi

[
es?

i,h

]>
is a distribution vector and P ′

h,s,a + σi

[
es?

i,h

]>
∈ Uσi(Ph,s,a),

which leads to

inf
P∈Uσi (Ph,s,a)

PV π,σi

i,h+1 ≤
(
P ′
h,s,a + σi

[
es?

i,h

]>)
V π,σi

i,h+1 ≤
∥∥P ′

h,s,a

∥∥
1

∥∥V π,σi

i,h+1

∥∥
∞

+ σiV
π,σi

i,h+1(s
?
i,h+1)

≤ (1− σi)max
s∈S

V π,σi

i,h+1(s) + σi min
s∈S

V π,σi

i,h+1(s), (122)

where the last inequality can be verified by (see (120))
∥∥P ′

h,s,a

∥∥
1
=
∑

s′

P ′
h,s,a(s

′) = −
∑

s′

(
Ph,s,a(s

′)− P ′
h,s,a(s

′)
)
+
∑

s′

Ph,s,a(s
′) = 1− σi. (123)

Inserting (122) back to (119) yields

max
s∈S

V π,σi

i,h (s) ≤ 1 + max
(s,a)∈S×A

inf
P∈Uσi (Ph,s,a)

PV π,σi

i,h+1

≤ 1 + (1− σi)max
s∈S

V π,σi

i,h+1(s) + σi min
s∈S

V π,σi

i,h+1(s). (124)

Combined above fact with (118) shows that

max
s∈S

V π,σi

i,h (s)−min
s∈S

V π,σi

i,h (s) ≤ 1 + (1− σi)max
s∈S

V π,σi

i,h+1(s) + σi min
s∈S

V π,σi

i,h+1(s)−min
s∈S

V π,σi

i,h+1(s)

≤ 1 + (1− σi)

(
max
s∈S

V π,σi

i,h+1(s)−min
s∈S

V π,σi

i,h+1(s)

)

≤ 1 + (1− σi)

[
1 + (1− σi)

(
max
s∈S

V π
i,h+2(s)−min

s∈S
V π
i,h+2(s)

)]

≤ · · · ≤
1− (1− σi)

H−h

σi
≤

1

σi
. (125)

Combining above result with the basic fact maxs∈S V π,σi

i,h (s)−mins∈S V π,σi

i,h (s) ≤ H − h+ 1, we complete the proof.
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C.3.3. PROOF OF LEMMA C.2

The proof is adapted from the routine for proving Shi et al. (2023, Lemma 9).

Step 1: a point-wise bound. Consider any fixed (independent from P̂ 0) value vector V , combined with the definitions in

(53), the (s,a)-th row of the term of interest can be written out as

∣∣∣PV
i,h,s,aV − P̂V

i,h,s,aV
∣∣∣ =

∣∣∣∣∣ inf
P∈Uσi (P 0

h,s,a
)
PV − inf

P∈Uσi (P̂ 0
h,s,a

)
PV

∣∣∣∣∣
(i)
=
∣∣∣ max
α∈[mins V (s),maxs V (s)]

{
P 0
h,s,a [V ]α − σi

(
α−min

s′
[V ]α (s′)

)}

− max
α∈[mins V (s),maxs V (s)]

{
P̂ 0
h,s,a [V ]α − σi

(
α−min

s′
[V ]α (s′)

)} ∣∣∣

≤ max
α∈[mins V (s),maxs V (s)]

∣∣∣P 0
h,s,a [V ]α − P̂ 0

h,s,a [V ]α

∣∣∣

≤ max
α∈[0,H]

∣∣∣P 0
h,s,a [V ]α − P̂ 0

h,s,a [V ]α

∣∣∣ , (126)

where (i) holds by applying Lemma B.1, and the last inequality can be verified by the fact that the maximum operator is

1-Lipschitz.

To continue, recalling the definition of variance in (55) and using the Bernstein’s inequality, one has for a fixed α ∈ [0, H]
and (s,a) ∈ S ×A, with probability at least 1− δ,

∣∣∣
(
P 0
h,s,a − P̂ 0

h,s,a

)
[V ]α

∣∣∣ ≤

√
2 log( 2δ )

N

√
VarP 0

h,s,a
([V ]α) +

2H log( 2δ )

3N

≤

√
2 log( 2δ )

N

√
VarP 0

h,s,a
(V ) +

2H log( 2δ )

3N
, (127)

where the first inequality holds by the fact that ‖V ‖∞ ≤ H , and the last inequality can be easily verified by noticing that

VarP 0
h,s,a

([V ]α) ≤ VarP 0
h,s,a

(V ) for all α ∈ [0,maxs V (s)].

Step 2: the union bound. Then to obtain the union bound, we first notice that the function

∣∣∣
(
P 0
h,s,a − P̂ 0

h,s,a

)
[V ]α

∣∣∣ is

1-Lipschitz w.r.t. α for any V obeying 0 ≤ V (s) ≤ H . Therefore, we can construct an ε1-net Nε1 for α over [0, H] with the

size up to |Nε1 | ≤
3H
ε1

(Vershynin, 2018). So applying the uniform concentration argument combined with (127) yields that

for all (α, s,a) ∈ Nε1 × S ×A, with probability at least 1− δ,

∣∣∣
(
P 0
h,s,a − P̂ 0

h,s,a

)
[V ]α

∣∣∣ ≤

√√√√2 log
(

2S
∏

n
i=1

Ai|Nε1
|

δ

)

N

√
VarP 0

h,s,a
(V ) +

2H log
(

2S
∏n

i=1
Ai|Nε1

|

δ

)

3N
. (128)

Inserting the above fact back to (126), we arrive at: for all (s,a) ∈ S ×A,

∣∣∣PV
i,h,s,aV − P̂V

i,h,s,aV
∣∣∣ ≤ max

α∈[0,H]

∣∣∣P 0
h,s,a [V ]α − P̂ 0

h,s,a [V ]α

∣∣∣

(i)

≤ sup
α∈Nε1

∣∣∣P 0
h,s,a [V ]α − P̂ 0

h,s,a [V ]α

∣∣∣+ ε1

(ii)

≤

√√√√2 log
(

2S
∏

n
i=1

Ai|Nε1
|

δ

)

N

√
VarP 0

h,s,a
(V ) +

2 log
(

2S
∏n

i=1
Ai|Nε1

|

δ

)
H

3N
+ ε1 (129)

(iii)

≤

√√√√2 log
(

2S
∏

n
i=1

Ai|Nε1
|

δ

)

N

√
VarP 0

h,s,a
(V ) +

log
(

2S
∏n

i=1
Ai|Nε1

|

δ

)
H

N
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(iv)

≤ 2

√√√√ log
(

18S
∏

n
i=1

AiN

δ

)

N

√
VarP 0

h,s,a
(V ) +

log
(

18S
∏n

i=1
AiN

δ

)
H

N
(130)

≤ 2

√√√√ log
(

18S
∏

n
i=1

AiN

δ

)

N
‖V ‖∞ +

log
(

18S
∏n

i=1
AiN

δ

)
H

N

≤ 3

√√√√H2 log
(

18S
∏

n
i=1

AiN

δ

)

N
(131)

where (i) arises from the fact that the solution α? = argmaxα∈[0,H]

∣∣∣P 0
h,s,a [V ]α − P̂ 0

h,s,a [V ]α

∣∣∣ falls into the ε1-ball

centered around some point inside Nε1 and

∣∣∣P 0
h,s,a [V ]α − P̂ 0

h,s,a [V ]α

∣∣∣ is 1-Lipschitz w.r.t. α, (ii) holds by (128), (iii)

follows from taking ε1 =
log(

2S
∏n

i=1
Ai|Nε1

|

δ
)H

3N , (iv) is verified by |Nε1 | ≤
3H
ε1
≤ 9N , and the last inequality is due to the

fact ‖V ‖∞ ≤ H and letting N ≥ log(
18S

∏n
i=1

AiN

δ ).

Invoking the matrix form (see (53) and (54)) and applying the above result with V = V̂ π,σi

i,h+1 for a union bound over all

(h, i, s,a) ∈ [H]× [n]× S ×A, we complete the proof: with probability at least 1− δ,

∀(h, i) ∈ [H]× [n] : aπi,h =

∣∣∣∣P
π,V̂
i,h V̂ π,σi

i,h+1 − P̂
π,V̂

i,h V̂ π,σi

i,h+1

∣∣∣∣

=
∣∣∣Ππ

hP
π,V̂
i,h V̂ π,σi

i,h+1 −Ππ
hP̂

π,V̂
i,h V̂ π,σi

i,h+1

∣∣∣
(i)

≤ Ππ
h

∣∣∣Pπ,V̂
i,h V̂ π,σi

i,h+1 − P̂π,V̂
i,h V̂ π,σi

i,h+1

∣∣∣ (132)

≤ 2

√
log(

18S
∏

n
i=1

AinHN

δ )

N
Ππ

h

√
VarP 0

h
(V̂ π

i,h+1) +
log(

18S
∏n

i=1
AinHN

δ )H

N
1

(ii)

≤ 2

√
log(

18S
∏

n
i=1

AinHN

δ )

N

√
VarPπ

h
(V̂ π

i,h+1) +
log(

18S
∏n

i=1
AinHN

δ )H

N
1

≤ 3

√
H2 log(

18S
∏

n
i=1

AinHN

δ )

N
1, (133)

where (i) and (ii) hold by the Jensen’s inequality, Var(·) is defined in (56), and P 0
h , P

π
h are defined in (54).

C.3.4. PROOF OF LEMMA C.3

In this section, we want to take the accessible range of the robust value function V̂ π,σi

i,j+1 into consideration when controlling

∑H
j=h

〈
djh,VarPπ,V̂

i,j

(V̂ π,σi

i,j+1)

〉
. Towards this, we introduce some auxiliary values and reward functions as below. For any

time step h ∈ [H] and the i-th agent:

• V̂ min
h := mins∈S V̂ π,σi

i,h (s): V̂ min
h denote the minimum value of all the entries in vector V̂ π,σi

i,h .

• V̂ ′
h := V̂ π,σi

i,h − V̂ min
h 1: truncated value function.

• r̂min
i,h = rπi,h +

(
V̂ min
h+1 − V̂ min

h

)
1: truncated reward function.

With above notations, we introduce the following fact of V ′
h:

V̂ ′
h = V̂ π,σi

i,h − V̂ min
h 1

(i)
= rπi,h + P̂

π,V̂

i,h V̂ π,σi

i,h+1 − V̂ min
h 1
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= rπi,h + Pπ,V̂
i,h V̂ π,σi

i,h+1 +
(
P̂

π,V̂

i,h − Pπ,V̂
i,h

)
V̂ π,σi

i,h+1 − V̂ min
h 1

= rπi,h +
(
V̂ min
h+1 − V̂ min

h

)
1 + Pπ,V̂

i,h V̂ ′
h+1 +

(
P̂

π,V̂

i,h − Pπ,V̂
i,h

)
V̂ π,σi

i,h+1

= r̂min
i,h + Pπ,V̂

i,h V̂ ′
h+1 +

(
P̂

π,V̂

i,h − Pπ,V̂
i,h

)
V̂ π,σi

i,h+1, (134)

where (i) holds by the robust Bellman’s consistency equation in (62).

With the above fact in hand, we can verify that

Var
Pπ,V̂

i,h

(V̂ π,σi

i,h+1)
(i)
= Var

Pπ,V̂
i,h

(V̂ ′
h+1) = Pπ,V̂

i,h

(
V̂ ′
h+1 ◦ V̂

′
h+1

)
−
(
Pπ,V̂

i,h V̂ ′
h+1

)
◦
(
Pπ,V̂

i,h V̂ ′
h+1

)

(ii)
= Pπ,V̂

i,h

(
V̂ ′
h+1 ◦ V̂

′
h+1

)
−
(
V̂ ′
h − r̂min

i,h −
(
P̂

π,V̂

i,h − Pπ,V̂
i,h

)
V̂ π,σi

i,h+1

)◦2

= Pπ,V̂
i,h

(
V̂ ′
h+1 ◦ V̂

′
h+1

)
− V̂ ′

h ◦ V̂
′
h + 2V̂ ′

h ◦
(
r̂min
i,h +

(
P̂

π,V̂

i,h − Pπ,V̂
i,h

)
V̂ π,σi

i,h+1

)

−
(
r̂min
i,h +

(
P̂

π,V̂

i,h − Pπ,V̂
i,h

)
V̂ π,σi

i,h+1

)◦2

(iii)

≤ Pπ,V̂
i,h

(
V̂ ′
h+1 ◦ V̂

′
h+1

)
− V̂ ′

h ◦ V̂
′
h + 2

∥∥V̂ ′
h

∥∥
∞

(
1 +

∣∣∣
(
P̂

π,V̂

i,h − Pπ,V̂
i,h

)
V̂ π,σi

i,h+1

∣∣∣
)

(135)

≤ Pπ,V̂
i,h

(
V̂ ′
h+1 ◦ V̂

′
h+1

)
− V̂ ′

h ◦ V̂
′
h + 2

∥∥V̂ ′
h

∥∥
∞
1 + 6‖V ′

h‖∞

√√√√H2 log
(

18S
∏

n
i=1

AinHN

δ

)

N
1 (136)

holds with probability at least 1− δ, where (i) follows from the fact that Var
Pπ,V̂

i,h

(V − b1) = Var
Pπ,V̂

i,h

(V ) for any value

vector V ∈ R
S and scalar b, (ii) holds by (134), (iii) arises from r̂min

i,h ≤ rπi,h ≤ 1 since V min
h+1 − V min

h ≤ 0 by definition, and

the last inequality holds by (133).

Finally, combining (136) and the definition of djh in (77), the term of interest can be controlled as

H∑

j=h

〈
djh,VarPπ,V̂

i,j

(V̂ π,σi

i,j+1)

〉

=
H∑

j=h

(djh)
>


Pπ,V̂

i,j

(
V̂ ′
j+1 ◦ V̂

′
j+1

)
− V̂ ′

j ◦ V̂
′
j + 2‖V̂ ′

j ‖∞1 + 6‖V̂ ′
j ‖∞

√√√√H2 log
(

18S
∏

n
i=1

AinHN

δ

)

N
1




(i)

≤

H∑

j=h

[
(djh)

>
(
Pπ,V̂

i,j

(
V̂ ′
j+1 ◦ V̂

′
j+1

)
− V̂ ′

j ◦ V̂
′
j

)]
+ 2H‖V̂ ′

h‖∞ + 6H2‖V̂ ′
h‖∞

√√√√ log
(

18S
∏

n
i=1

AinHN

δ

)

N

=

H∑

j=h

[
(dj+1

h )>
(
V̂ ′
j+1 ◦ V̂

′
j+1

)
− (djh)

>
(
V̂ ′
j ◦ V̂

′
j

)]
+ 2H‖V̂ ′

h‖∞ + 6H2‖V̂ ′
h‖∞

√√√√ log
(

18S
∏

n
i=1

AinHN

δ

)

N

≤
∥∥dH+1

h

∥∥
1

∥∥∥V̂ ′
H+1 ◦ V̂

′
H+1

∥∥∥
∞

+ 2H‖V̂ ′
h‖∞ + 6H2‖V̂ ′

h‖∞

√√√√ log
(

18S
∏

n
i=1

AinHN

δ

)

N

≤ 3H‖V̂ ′
h‖∞ + 6H2‖V̂ ′

h‖∞

√√√√ log
(

18S
∏

n
i=1

AinHN

δ

)

N

= 3H‖V̂ ′
h‖∞


1 + 2H

√
log(

18S
∏

n
i=1

AinHN

δ )

N


 , (137)
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where (i) holds by the fact ‖V̂ ′
h‖∞ ≥ ‖V̂

′
h+1‖∞ ≥ · · · ≥ ‖V̂

′
H‖∞ and basic calculus.

C.3.5. PROOF OF LEMMA C.4

We start with the proof about the empirical MGMGrob. To begin with, for any policy π and the i-th agent, we define

∀h ∈ [H] : V span
i,h := V̂ π,σi

i,h − min
s′∈S

V̂ π,σi

i,h (s′)1, (138)

which leads to

∥∥∥V span
i,h

∥∥∥
∞
≤ min

{
1

σi
, H − h+ 1

}
. (139)

which holds by applying Lemma C.1.

Armed with above notation and facts, considering any transition kernel P ′ ∈ R
S and any P̃ ∈ R

S obeying P̃ ∈ Uσi(P ′),
we have for all (i, h) ∈ [n]× [H]

∣∣VarP ′(V̂ π,σi

i,h )− VarP̃ (V̂
π,σi

i,h )
∣∣ =

∣∣VarP ′(V span
i,h )− VarP̃ (V

span
i,h )

∣∣

≤
∥∥P̃ − P ′

∥∥
1

∥∥V span
i,h

∥∥
∞

≤ σi

(
min

{
1

σi
, H − h+ 1

})2

≤ min

{
1

σi
, H − h+ 1

}
. (140)

Similar facts can be verified for standard MGMG analogously.

C.3.6. PROOF OF LEMMA C.5

Analogous to Appendix C.3.4, we introduce some auxiliary values and reward functions to control

H∑

j=h

〈
wj

h,VarPπ,V
i,j

(V π,σi

i,j+1)
〉

as below: for any time step h and the i-th agent

• V min
h := mins∈S V π,σi

i,h (s): V min
h denote the minimum value of all the entries in vector V π,σi

i,h .

• V ′
h := V π,σi

i,h − V min
h 1: truncated value function.

• rmin
i,h = rπi,h +

(
V min
h+1 − V min

h

)
1: truncated reward function.

Then applying the robust Bellman’s consistency equation in (59) gives

V ′
h = V π,σi

i,h − V min
h 1 = rπi,h + Pπ,V

i,h V π,σi

i,h+1 − V min
h 1

= rπi,h +
(
V min
h+1 − V min

h

)
1 + Pπ,V

i,h V ′
h+1 = rmin

i,h + Pπ,V
i,h V ′

h+1. (141)

The above fact leads to

VarPπ,V
i,h

(V π,σi

i,h+1)
(i)
= VarPπ,V

i,h
(V ′

h+1) = Pπ,V
i,h

(
V ′
h+1 ◦ V

′
h+1

)
−
(
Pπ,V

i,h V ′
h+1

)
◦
(
Pπ,V

i,h V ′
h+1

)

(ii)
= Pπ,V

i,h

(
V ′
h+1 ◦ V

′
h+1

)
−
(
V ′
h − rmin

i,h

)◦2

= Pπ,V
i,h

(
V ′
h+1 ◦ V

′
h+1

)
− V ′

h ◦ V
′
h + 2V ′

h ◦ r
min
i,h − rmin

i,h ◦ r
min
i,h

≤ Pπ,V
i,h

(
V ′
h+1 ◦ V

′
h+1

)
− V ′

h ◦ V
′
h + 2‖V ′

h‖∞1 (142)
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where (i) follows from the fact that VarPπ,V
i,h

(V − b1) = Var
Pπ,V̂

i,h

(V ) for any value vector V ∈ R
S and scalar b, (ii) holds

by (141), and the last inequality arises from rmin
i,h ≤ rπi,h ≤ 1 since V min

h+1 − V min
h ≤ 0 by definition.

Consequently, combining (142) and the definition of wj
h in (85), we arrive at

H∑

j=h

〈
wj

h,VarPπ,V
i,j

(
V π,σi

i,j+1

) 〉

=
H∑

j=h

(wj
h)

>
(
Pπ,V

i,j

(
V ′
j+1 ◦ V

′
j+1

)
− V ′

j ◦ V
′
j + 2‖V ′

h‖∞1
)

(i)

≤

H∑

j=h

[
(wj

h)
>
(
Pπ,V

i,j

(
V ′
j+1 ◦ V

′
j+1

)
− V ′

j ◦ V
′
j

)]
+ 2H‖V ′

h‖∞

=
H∑

j=h

[
(wj+1

h )>
(
V ′
j+1 ◦ V

′
j+1

)
− (wj

h)
>
(
V ′
j ◦ V

′
j

)]
+ 2H‖V ′

h‖∞

≤ ‖wH+1
h ‖1

∥∥V ′
H+1 ◦ V

′
H+1

∥∥
∞

+ 2H‖V ′
h‖∞

≤ 3H‖V ′
h‖∞, (143)

where (i) and the last inequality hold by the fact ‖V ′
h‖∞ ≥ ‖V

′
h+1‖∞ ≥ · · · ≥ ‖V

′
H‖∞ and basic calculus.

D. Proof of Theorem 4.2

In this section, the proof will focus on a special and simpler class of RMGs: distributionally robust Markov decision

processes (RMDPs) — single-agent RMGs.

Before proceeding, to keep self-contained, we first briefly introduce the definition of a RMDP in finite-horizon episodic

setting. Recall that a multi-agent general-sum robust Markov games (RMG) with TV uncertainty set can be represented

asMG =
{
S, {Ai}1≤i≤n, {U

σi(P 0)}1≤i≤n, r,H
}

. Resorting to the same notations for RMGs, a finite-horizon episodic

distributionally robust MDP (RMDP) can be represented asMrob =
(
S,A1,U

σ1(P 0), {r1,h}1≤h≤H , H
)
, i.e., let n = 1.

Then we can show an essential fact between RMGs and RMDPs that allow us to turn to RMDPs for proving Theorem 4.2.

Without loss of generality, we consider the class of RMGs with n players that obey |A1| ≥ max{|A2|, · · · , |Am|}.
Moreover, let |A2| = |A3| = · · · = |Am| = 1 for simplicity, which leaves those agents’ (i = 2, 3, · · · , n) choices of

actions having no randomness or effects on the transitions or rewards for any agents. Consequently, it is clear that finding a

robust NE/CE/CCE of such RMGs degrades to finding the optimal policy of the first agent over a corresponding RMDP

Mrob =
{
S,A1,U

σ1(P 0), {r1,h}1≤h≤H , H
}

.

Therefore, in this section, we turn to construct the lower bound for finding the optimal policy over RMDPs instead, which

directly imply a lower bound for finding equilibriums (robust NE/CE/CCE) of RMGs.

Before continuing, we make note of the following useful property about the KL divergence in Tsybakov (2009, Lemma 2.7)

which is useful in this section.

Lemma D.1. For any p, q ∈ (0, 1), it holds that

KL(p ‖ q) ≤
(p− q)2

q(1− q)
. (144)

D.1. Constructing hard robust MDP instances

The hard instances developed here are different from standard MDP since we need to consider that the transition kernel can

be perturbed in robust MDPs. This is the first lower bound for robust MDPs in episodic setting.

Step 1: constructing hard robust MDP instances. To begin with, we first introduce an auxiliary collection Θ ⊆ {0, 1}H ,

consisting of H-dimensional vectors. In addition, resorting to the Gilbert-Varshamov lemma (Gilbert, 1952), we notice that

39



Sample-Efficient Robust Multi-Agent Reinforcement Learning in the Face of Environmental Uncertainty

there exists a set Θ ⊆ {0, 1}H such that:

for any θ, θ̃ ∈ Θ obeying θ 6= θ̃ : ‖θ − θ̃‖1 ≥
H

8
and |Θ| ≥ eH/8. (145)

Without loss of generality, we denote the first component of Θ as θbase and denote Θ? as Θ \ {θbase}. With this in mind, we

construct a set of RMDPs as below:

M(W,Θ) :=
{
Mθ

w =
(
S,A,Uσ(Pw,θ), {rh}

H
h=1, H

)
| w ∈ W = {0, 1, · · · , SA− 1}, θ = [θh]1≤h≤H ∈ Θ?

}
,

(146)

where

S = {0, 1, . . . , S − 1}, and A = {0, 1, · · · , A− 1},

and σ will be introduced momentarily.

In words, the collection ofM(W,Θ) consists of |W| = SA subsets, with each includes |Θ?| different RMDPs associated

with some w ∈ W . The state space of each RMDPMθ
w ∈ M(W,Θ) is denoted as SM, includes two classes of states

X = {xi | i ∈ W} and Y = {yi | i ∈ W}. Each state in X and Y only have two possible actions AM = {0, 1}. So we

have totally 2|W| = 2SA states and there is in total |SM||AM| = 4SA state-action pairs.

We shall define the nominal transition kernels forM(W,Θ), where any state xi ∈ X only transits to the corresponding

yi ∈ Y or itself. For convenience, for any s = xi ∈ X , we denote the corresponding state yi ∈ Y as sx→y .

Armed with above notations, we define a basic nominal transition kernel associated with θbase as below: for all (h, s, a) ∈
[H]× SM ×AM,

P ?
h (s

′ | s, a) =





(p+∆)1(s′ = sx→y) + (1− p−∆)1(s′ = s) if s ∈ X , a = θbaseh

p1(s′ = sx→y) + (1− p)1(s′ = s) if s ∈ X , a = 1− θbaseh

1(s′ = s) if s ∈ Y.
(147)

In addition, for any RMDPMθ
w ∈ M(W,Θ), the transition kernel Pw,θ = {Pw,θ

h }Hh=1 is specified as follows: for any

(s, a, s′, h) ∈ SM ×AM × SM × [H],

Pw,θ
h (s′ | s, a) =





p1(s′ = yw) + (1− p)1(s′ = s) if s = xw, a = θh
q1(s′ = yw) + (1− q)1(s′ = s) if s = xw, a = 1− θh
P ?
h (s

′ | s, a) otherwise

(148)

Here, p and q are set according to

0 ≤ p ≤ p+∆ ≤ 1 and 0 ≤ q = p−∆ (149)

for some p and ∆ > 0 that will be introduced momentarily. In words, the transition kernel of eachMθ
w ∈ M(W,Θ)

only differs slightly from the basic nominal transition kernel P ?
h when s = xw, which makes all the components within

M(W,Θ) closed to each other.

To continue, the reward function is defined as

∀(h, s, a) ∈ [H]× SM × {0, 1} : rh(s, a) =

{
1 if s ∈ Y
0 otherwise.

(150)

Uncertainty set of the transition kernels. Denote the transition kernel vector as

∀(h, s, a) ∈ [H]× SM × {0, 1} : Pw,θ
h,s,a := Pw,θ

h (· | s, a) ∈ ∆(S). (151)

Recalling the uncertainty set defined in (8), we know Uσ(Pw,θ) represents:

Uσ(Pw,θ) := ⊗ Uσ(Pw,θ
h,s,a), Uσ(Pw,θ

h,s,a) :=
{
P̃w,θ
h,s,a ∈ ∆(S) :

1

2

∥∥P̃w,θ
h,s,a − Pw,θ

h,s,a

∥∥
1
≤ σ

}
, (152)
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where ⊗ represents the Cartesian product over (h, s, a) ∈ [H]× SM ×AM.

For such TV uncertainty set, without loss of generality, let the uncertainty level to be σ ∈ (0, 1− c0] for some 0 < c0 < 1.

Then taking c2 ≤
1
4 amd c1 := c0

2 ≤
1
4 , p and ∆ are set as

p =

{
c2
H , if σ ≤ c2

2H(
1 + c1

H

)
σ otherwise

and ∆ ≤

{
c2
2H , if σ ≤ c2

2H
c1
H σ otherwise

(153)

Combined with H ≥ 2, it is easily verified that 0 ≤ p+∆ ≤ 1 as follows:

when σ >
c2
2H

:
(
1 +

c1
H

)
σ +

c1
H

σ ≤ 1− c0 +
2c1
H

σ ≤ 1−
c0(H − 1)

H
< 1,

when σ ≤
c2
2H

:
3c2
2H
≤ 1. (154)

Then we introduce some useful notations and facts throughout this section. First, for any RMDPMθ
w ∈M(W,Θ) and any

(h, s, a, s′) ∈ [H]× SM ×AM × SM, we denote the minimum probability of transiting from (s, a) to s′ determined by

any perturbed transition kernel Ph,s,a ∈ U
σ(Pw,θ

h,s,a) as

Pw,θ
h (s′ | s, a) := inf

Ph,s,a∈Uσ(Pw,θ
h,s,a

)
Ph(s

′ | s, a) = max{Ph(s
′ | s, a)− σ, 0}, (155)

where the last equation can be easily verified by the definition of Uσ(·) in (152) and distributing the probability on s′ to

other states.

Especially, for convenience, we denote the transition from each s ∈ X to the corresponding state sx→y ∈ Y of anyMθ
w as

below, which plays an important role in the analysis: for all h ∈ [H],

for xw : p
h
:= Pw,θ

h (yw |xw, θh) = p− σ, q
h
:= Pw,θ

h (yw |xw, 1− θh) = q − σ,

for s ∈ X \ {xw} : p′
h
:= Pw,θ

h (sx→y | s, θbaseh ) = p+∆− σ, q′
h
:= Pw,θ

h (sx→y | s, 1− θbaseh ) = p− σ, (156)

which follows from the following fact that is clear from (153)

p+∆ ≥ p ≥ q = p−∆ ≥ max
{ c2
2H

,σ
}
. (157)

Then it is obvious that

p
1
= p

2
= · · · p

H
, q

1
= q

2
= · · · q

H
, p′

1
= p′

2
= · · · p′

H
, q′

1
= q′

2
= · · · q′

H
, (158)

which motivates us to abbreviate them consistently as p := p
1
, q := q

1
, p′ := p′

1
, and q′ := q′

1
later.

Robust value functions and optimal policies. Now we are ready to characterize the corresponding robust value functions

and identify the optimal policies for RMDP instances. With abuse of notations, for any RMDPMθ
w ∈ M(W,Θ), we

denote π?,w,θ = {π?,w,θ
h }Hh=1 as the optimal policy. In addition, at each step h, we let V π,σ,w,θ

h (resp. V ?,σ,w,θ
h ) represent

the robust value function of any policy π (resp. π?,w,θ) with uncertainty level σ. Armed with these notations, the following

lemma shows some essential properties concerning the robust value functions and optimal policies; the proof is postponed to

Appendix D.3.1.

Lemma D.2. Consider anyMθ
w ∈M(W,Θ) and any policy π. Defining

xπ,w,θ
h = pπh(θh |xw) + qπh(1− θh |xw), (159)

it holds that

∀h ∈ [H] : V π,σ,w,θ
h (xw) = xπ,w,θ

h V π,σ,w,θ
h+1 (yw) + (1− xπ,w,θ

h )V π,σ,w,θ
h+1 (xw), (160a)

∀(s, h) ∈ Y × [H] : V π,σ,w,θ
h (s) = 1 + (1− σ)V π,σ,w,θ

h+1 (s) + σV π,σ,w,θ
h+1 (xw). (160b)
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In addition, for all h ∈ [H], the optimal policy and the optimal value function obey

π?,w,θ
h (θh |xw) = π?,w,θ

h (θh | yw) = 1,

π?,w,θ
h (θbaseh | s) = π?,w,θ

h (θbaseh | sx→y) = 1, ∀s ∈ X \ {xw} (161a)

and

V ?,σ,w,θ
h (xw) = pV π,σ,w,θ

h+1 (yw) + (1− p)V π,σ,w,θ
h+1 (xw). (162)

D.2. Establishing the lower bound

Recall our goal: for any policy estimator π̂ computed based on the dataset with N samples, we plan to control the quantity

max
(w,θ)∈W×Θ?

max
s∈X∪Y

{
V ?,σ,w,θ
1 (s)− V π̂,σ,w,θ

1 (s)
}
≥ max

(w,θ)∈W×Θ?
max
s∈X

{
V ?,σ,w,θ
1 (s)− V π̂,σ,w,θ

1 (s)
}
. (163)

Step 1: converting the goal to estimate (w, θ). Towards this, we make the following essential claim which shall be

verified in Appendix D.3.2: letting

ε ≤

{
c2
H , if σ ≤ c2

2H

1 otherwise
(164)

and

∆ = c5

{
ε

H2 , if σ ≤ c2
2H

σε
H otherwise

(165)

which satisfies (153), it leads to that for any policy π obeying

H∑

h=1

∥∥π̂h(· |xw)− π?,w,θ
h (· |xw)

∥∥
1
≥

H

8
, (166)

one has

V ?,σ,w,θ
1 (xw)− V π̂,σ,w,θ

1 (xw) > ε. (167)

Now we are ready to convert the estimation of an optimal policy to estimate (w, θ). Towards this, we denote Pw,θ as the

probability distribution when the RMDP isMθ
w for any (w, θ) ∈ W×Θ?. In addition, we represent the subset ofM(W,Θ)

excluding the ones associated with some w ∈ W as below:

G−w :=W \ {w} ×Θ?. (168)

Then, for any (w, θ) ∈ W ×Θ?, suppose there exists a policy π̂ that achieves

Pw,θ

{
V ?,σ,w,θ
1 (xw)− V π̂,σ,w,θ

1 (xw) ≤ ε
}
≥

3

4
, (169)

which in view of (167) indicates that we necessarily have

Pw,θ

{
H∑

h=1

∥∥π̂h(· |xw)− π?,w,θ
h (· |xw)

∥∥
1
<

H

8

}
≥

3

4
. (170)

Consequently, taking θ̃ = argminθ∈Θ

∑H
h=1

∥∥π̂h(· |xw)− π?,w,θ
h (· |xw)

∥∥
1
, we are motivated to construct the following

estimate of (w, θ):

(
ŵ, θ̂

)
{
= (w, θ̃) if θ̃ ∈ Θ?

∈ G−w if θ̃ = Θ \Θ? = θbase.
(171)
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Then let us focus on the first kind of scenarios in (171) when θ̃ ∈ Θ? so that we have the hope to estimate (w, θ) correctly.

Namely, if
∑H

h=1

∥∥π̂h(· |xw)− π?,w,θ
h (· |xw)

∥∥
1
< H

8 holds for some θ ∈ Θ?, then for any θ′ ∈ Θ? obeying θ′ 6= θ, one

has

H∑

h=1

∥∥π̂h(· |xw)− π?,w,θ′

h (· |xw)
∥∥
1
≥

H∑

h=1

∥∥π?,w,θ
h (· |xw)− π?,w,θ′

h (· |xw)
∥∥
1
−

H∑

h=1

∥∥π̂h(· |xw)− π?,w,θ
h (· |xw)

∥∥
1

>
H

4
−

H

8
=

H

8
, (172)

where the first inequality holds by the triangle inequality, and the last inequality follows from the assumption∑H
h=1

∥∥π̂h(· |xw)− π?,w,θ
h (· |xw)

∥∥
1
< H

8 and the separation property of θ ∈ Θ (see (145)). Similarly, It shows that we

have (ŵ, θ̂) = (w, θ) if

H∑

h=1

∥∥π̂h(· |xw)− π?,w,θ
h (· |xw)

∥∥
1
<

H

8
<

H∑

h=1

∥∥π̂h(· |xw)− π?,w,θ′

h (· |xw)
∥∥
1

(173)

holds for all (w′, θ′) ∈ W × Θ that (w′, θ′) 6= (w, θ). It is clear that the above equation can be directly achieved when∑H
h=1

∥∥π̂h(· |xw)− π?,w,θ
h (· |xw)

∥∥
1
< H

8 , which gives

Pw,θ

[
(ŵ, θ̂) = (w, θ)

]
≥ Pw,θ

{
H∑

h=1

∥∥π̂h(· |xw)− π?,w,θ
h (· |xw)

∥∥
1
<

H

8

}
≥

3

4
. (174)

Step 2: developing the probability of error in testing multiple hypotheses. Before proceeding, we discuss the data

generation choices of the dataset D. Recall that each RMDP inside the setM(W,Θ) under testing has two classes of states

X and Y , with each has |W| = SA components. Noticing that accordingly,M(W,Θ) consists of |W| subset, with each

{Mθ
w}θ∈Θ? constructed symmetrically around one pair of state (xw, yw) ∈ X × Y , respectively. Therefore, at each time

step h, it is clear that the dataset are supposed to be generated uniformly by the transition kernels on each pair of states

(xw, yw) ∈ X × Y to maximize the information gain. Namely, the dataset D has in total N
|W|H = N

SAH samples for the two

states (xw, yw) ∈ X × Y at each time step h ∈ [H].

Now we turn to the hypothesis testing problem over (w, θ) ∈ W ×Θ?. We shall develop the information theoretical lower

bound for the probability of error. In particular, we consider the minimax probability of error defined as follows:

pe := inf
(ŵ,θ̂)

max
(w,θ)∈W×Θ?

{
Pw,θ

(
(ŵ, θ̂) 6= (w, θ)

)}
, (175)

where the infimum is taken over all possible tests (ŵ, θ̂) constructed from the dataset.

To continue, armed with the dataset D with N samples generated independently, we denote µw,θ (resp. µw,θ
h (s, a)) as the

distribution vector (resp. distribution) of each sample tuple (sh, ah, s
′
h) at time step h under the nominal transition kernel

Pw,θ associated withMθ
w. With this in mind, combined with Fano’s inequality from Tsybakov (2009, Theorem 2.2) and the

additivity of the KL divergence (cf. Tsybakov (2009, Page 85)), we obtain

pe ≥ 1−N

max
(w,θ),(w̃,θ̃)∈W×Θ?,(w,θ) 6=(w̃,θ̃)

KL
(
µw,θ |µw,θ

)
+ log 2

log |W||Θ?|

(i)

≥ 1−
8N

H
max

(w,θ),(w̃,θ̃)∈W×Θ?,(w,θ) 6=(w̃,θ̃)
KL
(
µw,θ |µw,θ

)
−

log 2

H

(ii)

≥
1

2
−

8N

H
max

(w,θ),(w̃,θ̃)∈W×Θ?,(w,θ) 6=(w̃,θ̃)
KL
(
µw,θ |µw,θ

)
(176)

where (i) and (ii) holds by |W||Θ?| ≥ 2(eH/8 − 1) ≥ eH/8 as long as H ≥ 16 log 2.

43



Sample-Efficient Robust Multi-Agent Reinforcement Learning in the Face of Environmental Uncertainty

To continue, applying the chain rule of the KL divergence (Duchi, 2018, Lemma 5.2.8) with the dataset D generated

independently yields:

KL
(
µw,θ |µw,θ

)
=

H∑

h=1

E
(s,a)∼µw,θ

h
(s,a)

[
KL
(
Pw,θ
h (· | s, a) ‖ P w̃,θ̃

h (· | s, a)
)]

(i)
=

H∑

h=1

∑

s∈{xw,xw̃},a∈{0,1}

µw,θ
h (s, a)

[
KL
(
Pw,θ
h (· | , s, a) ‖ P w̃,θ̃

h (· | , s, a)
)]

≤
1

SAH

H∑

h=1

∑

s∈{xw,xw̃},a∈{0,1}

[
KL
(
Pw,θ
h (· | , s, a) ‖ P w̃,θ̃

h (· | , s, a)
)]

, (177)

where (i) follows from the fact Pw,θ
h (· | , s, a) and P w̃,θ̃

h (· | , s, a) only differs from each other on state xw, xw̃ (see the

definitions in (147)), and the last inequality holds by noticing µw,θ
h (s, a) ≤

∑
a∈{0,1} µ

w,θ
h (s, a) = 1

SAH .

Consequently, now we turn to focus on terms in (177) in different cases of the uncertainty level σ.

• When 0 < σ ≤ c2
2H . When w = w̃, it is clear that

∑

s∈{xw,xw̃},a∈{0,1}

KL
(
Pw,θ
h (· | , s, a) ‖ P w̃,θ̃

h (· | , s, a)
)
= 0 (178)

as long as θh = θ̃h. Then if θh 6= θ̃h, without loss of generality, we suppose θh = 0 and θ̃h = 1, which indicates

Pw,θ
h (0 |xw, 0) = 1− p and Pw,θ̃

h (0 |xw, 0) = 1− q. (179)

Applying Lemma D.1 gives

KL
(
Pw,θ
h (0 |xw, 0) ‖ P

w,θ̃
h (0 |xw, 0)

)
≤

(p− q)2

q(1− q)

(i)
=

∆2

q(1− q)

(ii)
=

(c5)
2ε2

H4q(1− q)
≤

4(c5)
2ε2

c2H3
, (180)

where (i) and (ii) follows from the definitions in (149) or (165), and the last inequality arises from q = p−∆ ≥ c2
2H

(see (153)) and 1− q ≥ 1− p ≥ 1− c2
H ≥

1
2 .

The same bound can be established for KL
(
Pw,θ
h (0 |xw, 1) ‖ P

w,θ̃
h (0 |xw, 1)

)
. In addition, it is easily verified that when

w 6= w̃ and θh 6= θbaseh (resp. θ̃h 6= θbaseh ), the same bound can be developed for KL
(
Pw,θ
h (0 |xw, 0) ‖ P

w̃,θ̃
h (0 |xw, 0)

)

and KL
(
Pw,θ
h (0 |xw, 1) ‖ P w̃,θ̃

h (0 |xw, 1)
)

(resp. KL
(
Pw,θ
h (0 |xw̃, 0) ‖ P w̃,θ̃

h (0 |xw̃, 0)
)

and KL
(
Pw,θ
h (0 |xw̃, 1) ‖

P w̃,θ̃
h (0 |xw̃, 1)

)
).

Summing up the results with the fact in (180), we arrive at

∑

s∈{xw,xw̃},a∈{0,1}

KL
(
Pw,θ
h (· | , s, a) ‖ P w̃,θ̃

h (· | , s, a)
)
≤

16(c5)
2ε2

c2H3
. (181)

• When c2
2H < σ ≤ 1− c0. Following the same pipeline, it then boils down to control the main term as below:

KL
(
Pw,θ
h (0 |xw, 0) ‖ P

w,θ̃
h (0 |xw, 0)

)
≤

(p− q)2

q(1− q)

(i)
=

∆2

q(1− q)

(ii)
=

(c5)
2σ2ε2

H2q(1− q)
≤

2(c5)
2σε2

c0H2
, (182)
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where (i) and (ii) follows from the definitions in (149) or (165). Here, the last inequality arises from

1− q ≥ 1− p = 1− (1 +
c1
H

)σ
(i)

≥ c0 −
c1
H

(ii)

≥
c0
2

p ≥ q = p−∆
(iii)

≥ σ, (183)

where (ii) holds by the definition of c1 = c0
2 , and (iii) follows from (157). Consequently, we arrive at

∑

s∈{xw,xw̃},a∈{0,1}

KL
(
Pw,θ
h (· | , s, a) ‖ P w̃,θ̃

h (· | , s, a)
)
≤

8(c5)
2σε2

c0H2
. (184)

Summing up (181) and (184), we achieve for any (w, θ), (w̃, θ̃) ∈ W ×Θ? with (w, θ) 6= (w̃, θ̃) and any time step h ∈ [H]

∑

s∈{xw,xw̃},a∈{0,1}

KL
(
Pw,θ
h (· | , s, a) ‖ P w̃,θ̃

h (· | , s, a)
)
≤

16(c5)
2ε2

c0c2H2
max{σ, 1/H}. (185)

Plugging (185) back to (177) and then (176) leads to the following fact:

pe ≥
1

2
−

8N

H
max

(w,θ),(w̃,θ̃)∈W×Θ?,(w,θ) 6=(w̃,θ̃)
KL
(
µw,θ |µw,θ

)

≥
1

2
−

8N

H
max

(w,θ),(w̃,θ̃)∈W×Θ?,(w,θ) 6=(w̃,θ̃)

1

SAH

H∑

h=1

∑

s∈{xw,xw̃},a∈{0,1}

[
KL
(
Pw,θ
h (· | , s, a) ‖ P w̃,θ̃

h (· | , s, a)
)]

≥
1

2
−

128N(c5)
2ε2

c0c2SAH3
max{σ, 1/H} ≥

1

4
(186)

as long as the sample size N of the dataset is selected as

N ≤
c0c2SAH3 min{1/σ,H}

512(c5)2ε2
. (187)

Step 3: summing up the results together. We suppose that there exists an estimator π̂ such that

max
(w,θ)∈W×Θ?

Pw,θ

[
max

s∈X∪Y

{
V ?,σ,w,θ
1 (s)− V π̂,σ,w,θ

1 (s)
}
≥ ε

]
<

1

4
, (188)

then according to (163), we necessarily have

∀w ∈ W : max
θ∈Θ?

Pw,θ

[{
V ?,σ,w,θ
1 (xw)− V π̂,σ,w,θ

1 (xw)
}
≥ ε
]
<

1

4
. (189)

To meet (189) for any w ∈ W , we require

∀θ ∈ Θ? : Pw,θ

{
V ?,σ,w,θ
1 (xw)− V π̂,σ,w,θ

1 (xw) < ε
}
≥

3

4
, (190)

which in view of (167) indicates that we necessarily have

∀θ ∈ Θ? : Pw,θ

{
H∑

h=1

∥∥π̂h(· |xw)− π?,w,θ
h (· |xw)

∥∥
1
<

H

8

}
≥

3

4
. (191)

As a consequence, (174) indicates

∀θ ∈ Θ? : Pw,θ

[
(ŵ, θ̂) = (w, θ)

]
≥

3

4
. (192)
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Applying the fact in (192) to all w ∈ W leads to one necessarily has

∀(w, θ) ∈ W ×Θ? : Pw,θ

[
(ŵ, θ̂) = (w, θ)

]
≥

3

4
(193)

to achieve (188).

However, this would contract with (186) as long as the sample size condition in (187) is satisfied. Thus, if the sample size

obeys the condition (187), we can’t achieve an estimate π̂ that satisfies (188), which complete the proof.

D.3. Proof of the auxiliary facts

D.3.1. PROOF OF LEMMA D.2

As all RMDPs withinM(W,Θ) are constructed analogously over each w ∈ W and θ ∈ Θ?, in this section, we shall focus

on one specific RMDPMθ
w ∈M(W,Θ), whose facts can be carried on for all other RMDPs inM(W,Θ) directly.

Step 1: ordering the robust value function over different states. Before proceeding, we introduce several facts and

notations that are useful throughout this section. First, we observe that for anyMθ
w and any policy π: at the final step H +1,

∀s ∈ X ∪ Y : V π,σ,w,θ
H+1 (s) = 0. (194)

Then for the step H , we can easily verified that

∀s ∈ Y : V π,σ,w,θ
H (s) = Ea∼πH(· | s)

[
rH(s, a) + inf

P∈Uσ(Pw,θ
H,s,a

)
PV π,σ,w,θ

H+1

]
= 1

∀s ∈ X : V π,σ,w,θ
H (s) = Ea∼πH(· | s)

[
rH(s, a) + inf

P∈Uσ(Pw,θ
H,s,a

)
PV π,σ,w,θ

H+1

]
= 0, (195)

which holds by (194) and the definition of the reward function (see (150)). The above fact directly indicates that

∀(s, s′) ∈ X \ {xw} × Y : min
s̃∈S

V π,σ,w,θ
H (s̃) = V π,σ,w,θ

H (xw) ≤ V π,σ,w,θ
H (s) < V π,σ,w,θ

H (s′),

∀(s, s′) ∈ Y × Y : V π,σ,w,θ
H (s) = V π,σ,w,θ

H (s′). (196)

Then we introduce a claim which we will proof by induction in a moment as below:

∀(h, s, s′) ∈ [H]×X \ {xw} × Y : V π,σ,w,θ
h (xw) ≤ V π,σ,w,θ

h (s) < V π,σ,w,θ
h (s′)

∀(s, s′) ∈ Y × Y : V π,σ,w,θ
h (s) = V π,σ,w,θ

h (s′). (197)

Note that the base case when the time step is H + 1 is verified in (196). Assuming that the following fact at time step h+ 1
holds

∀(s, s′) ∈ X \ {xw} × Y : min
s̃∈S

V π,σ,w,θ
h+1 (s̃) = V π,σ,w,θ

h+1 (xw) ≤ V π,σ,w,θ
h+1 (s) < V π,σ,w,θ

h+1 (s′),

∀(s, s′) ∈ Y × Y : V π,σ,w,θ
h+1 (s) = V π,σ,w,θ

h+1 (s′), (198)

the rest of the proof focuses on proving the same property for time step h. For RMDPMθ
w ∈M(W,Θ) and any policy π,

we characterize the robust value function of different states separately:

• For state s ∈ Y . We observe that for any s ∈ Y ,

V π,σ,w,θ
h (s) = Ea∼πh(· | s)

[
rh(s, a) + inf

P∈Uσ(Pw,θ
h,s,a

)
PV π,σ,w,θ

h+1

]

(i)
= 1 + Ea∼πh(· | s)

[
Pw,θ

h (s | s, a)V π,σ,w,θ
h+1 (s)

]
+ σV π,σ,w,θ

h+1 (xw)
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= 1 + (1− σ)V π,σ,w,θ
h+1 (s) + σV π,σ,w,θ

h+1 (xw), (199)

where (i) holds by rh(s, a) = 1 for all s ∈ Y (see (150)), the fact that mins̃∈S V π,σ,w,θ
h+1 (s̃) = V π,σ,w,θ

h+1 (xw) induced

by the induction assumption (cf. (198)) and the definition of Pw,θ
h (s | s, a) in (155), and the last equality follows from

Pw,θ(s | s, a) = 1 for all (s, a) ∈ Y ×AM. Resorting to the induction assumption in (198), we have

∀(s, s′) ∈ Y × Y : V π,σ,w,θ
h (s) = V π,σ,w,θ

h (s′). (200)

• For state xw. First, the robust value function at state xw obeys

V π,σ,w,θ
h (xw)

= Ea∼πh(· | xw)

[
rh(xw, a) + inf

P∈Uσ(Pw,θ
h,xw,a

)
PV π,σ,w,θ

h+1

]

(i)
= 0 + πh(θh |xw) inf

P∈Uσ(Pw,θ
h,xw,θh

)
PV π,σ,w,θ

h+1 + πh(1− θh |xw) inf
P∈Uσ(Pw,θ

h,xw,1−θh
)
PV π,σ,w,θ

h+1

(ii)
= πh(θh |xw)

[
pV π,σ,w,θ

h+1 (yw) +
(
1− p

)
V π,σ,w,θ
h+1 (xw)

]

+ πh(1− θh |xw)
[
qV π,σ,w,θ

h+1 (yw) +
(
1− q

)
V π,σ,w,θ
h+1 (xw)

]

(iii)
= xπ,w,θ

h V π,σ,w,θ
h+1 (yw) + (1− xπ,w,θ

h )V π,σ,w,θ
h+1 (xw) (201)

≤ (1− σ)V π,σ,w,θ
h+1 (yw) + σV π,σ,w,θ

h+1 (xw). (202)

where (i) uses the definition of the robust value function and the reward function in (150), (ii) uses the induction

assumption in (198) so that the minimum is attained by picking the choice specified in (156) to absorb probability mass

to state xw, and (iii) holds by plugging in the definition (159) of xπ,w,θ
h in (iii). Finally, the last inequality follows

from the fact that function f(x) := xV π,σ,w,θ
h+1 (yw) + (1− x)V π,σ,w,θ

h+1 (xw) is monotonically increasing with x since

V π,σ,w,θ
h+1 (yw) > V π,σ,w,θ

h+1 (xw) (see the induction assumption (198)), and the fact xπ,w,θ
h ≤ 1− σ.

• For state s ∈ X \ {xw}. Then we consider other states s ∈ X \ {xw}. Before proceeding, analogous to (159), we

define

xs
base = (p+∆)πh(θ

base
h | s) + (q +∆)πh(1− θbaseh | s). (203)

Recall that the nominal transition kernel at any state s ∈ X \ {xw} are the same {P ?
h,s,a}h∈[H] for all a ∈ AW

associated with the basic θbase ∈ Θ (see the definitions of the transition kernels in (147) and (148)). Consequently, for

any s ∈ X \ {xw}, following the same argument pipeline of (202), we arrive at

V π,σ,w,θ
h (s) = πh(θ

base
h | s)

[
(p+∆)V π,σ,w,θ

h+1 (sx→y) + (1− p−∆)V π,σ,w,θ
h+1 (s) + σV π,σ,w,θ

h+1 (xw)
]

+ πh(1− θbaseh | s)
[
(q +∆)V π,σ,w,θ

h+1 (sx→y) + (1− p)V π,σ,w,θ
h+1 (s) + σV π,σ,w,θ

h+1 (xw)
]

= xs
baseV

π,σ,w,θ
h+1 (sx→y) + (1− xs

base − σ)V π,σ,w,θ
h+1 (s) + σV π,σ,w,θ

h+1 (xw) (204)

(i)
= xs

baseV
π,σ,w,θ
h+1 (yw) + (1− xs

base − σ)V π,σ,w,θ
h+1 (s) + σV π,σ,w,θ

h+1 (xw) (205)

< (1− σ)V π,σ,w,θ
h+1 (sx→y) + σV π,σ,w,θ

h+1 (s), (206)

where (i) holds by V π,σ,w,θ
h+1 (s) = V π,σ,w,θ

h+1 (s′) for any two states s, s′ ∈ Y (see (202)), and the last inequality holds by

V π,σ,w,θ
h+1 (s) < V π,σ,w,θ

h+1 (sx→y) induced by the induction assumption in (198).

In addition, to compare the robust value function V π,σ,w,θ
h (xw) to that of other states s ∈ X \ {xw}, we recall the

definitions in (159) and then introduce the following fact

xπ,w,θ
h = pπh(θh |xw) + qπh(1− θh |xw)

≤ p ≤ (p+∆)πh(θ
base
h | s) + pπh(1− θbaseh | s)
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= (p+∆)πh(θ
base
h | s) + (q +∆)πh(1− θbaseh | s) = xs

base, (207)

which comes from the fact p ≥ q and the facts in (156) and (157).

With this in mind, continuing from (201), we arrive at that for any s ∈ X :

V π,σ,w,θ
h (xw) = xπ,w,θ

h V π,σ,w,θ
h+1 (yw) + (1− xπ,w,θ

h )V π,σ,w,θ
h+1 (xw)

≤ xs
baseV

π,σ,w,θ
h+1 (yw) + (1− xs

base)V
π,σ,w,θ
h+1 (xw)

≤ xs
baseV

π,σ,w,θ
h+1 (yw) + (1− xs

base − σ)V π,σ,w,θ
h+1 (s) + σV π,σ,w,θ

h+1 (xw)

= V π,σ,w,θ
h (s) (208)

where the last equality holds by (205).

Summing up (208), then (199), and (206), we verify the induction property at time step h as below

∀(s, s′) ∈ X \ {xw} × Y : V π,σ,w,θ
h (xw) ≤ V π,σ,w,θ

h (s) < V π,σ,w,θ
h (s′). (209)

Combined above results with (200), we confirm the claim in (197).

Step 2: deriving the optimal policy and optimal robust value function. We shall characterize the optimal policy and

corresponding optimal robust value function for different states separately:

• For states in X . Recall (201)

V π,σ,w,θ
h (xw) = xπ,w,θ

h V π,σ,w,θ
h+1 (yw) + (1− xπ,w,θ

h )V π,σ,w,θ
h+1 (xw) (210)

and the fact V π,σ,w,θ
h+1 (yw) > V π,σ,w,θ

h+1 (xw) in (197). We observe that (210) is monotonicity increasing with respect

to xπ,w,θ
h , and xπ,w,θ

h is also increasing in πh(θh |xw) (refer to the fact p ≥ q since p ≥ q; see (149) and (156)).

Consequently, the optimal policy and optimal robust value function in state xw thus obey

∀h ∈ [H] : π?,w,θ
h (θh |xw) = 1

V ?,σ,w,θ
h (xw) = pV ?,σ,w,θ

h+1 (yw) +
[
1− p

]
V ?,σ,w,θ
h+1 (xw). (211)

Similarly, for any state s ∈ X \ {xw}, recalling (205) yields

V π,σ,w,θ
h (s) = xs

baseV
π,σ,w,θ
h+1 (yw) + (1− xs

base − σ)V π,σ,w,θ
h+1 (s) + σV π,σ,w,θ

h+1 (xw), (212)

which indicates V π,σ,w,θ
h (s) achieves the maximum when xs

base = (p + ∆)πh(θ
base
h | s) + (q + ∆)πh(1 − θbaseh | s)

attain the maximum. Therefore, the optimal policy in state s satisfies

π?,w,θ
h (θbaseh | s) = 1. (213)

• For states s ∈ Y . Recall the transitions in (147) and (148). Considering that the action does not influence the state

transition for all states s ∈ Y , without loss of generality, we choose the robust optimal policy obeying

∀s ∈ Y : π?,w,θ
h (θh | s) = 1. (214)

D.3.2. PROOF OF CLAIM (167)

Recalling (160a) and (162), we first consider a more general form

V ?,σ,w,θ
h (xw)− V π,σ,w,θ

h (xw)

= pV ?,σ,w,θ
h+1 (yw) + (1− p)V ?,σ,w,θ

h+1 (xw)−
(
xπ,w,θ
h V π,σ,w,θ

h+1 (yw) +
[
1− xπ,w,θ

h

]
V π,σ,w,θ
h+1 (xw)

)
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=
(
p− xπ,w,θ

h

)
V ?,σ,w,θ
h+1 (yw) + xπ,w,θ

h

(
V ?,σ,w,θ
h+1 (yw)− V π,σ,w,θ

h+1 (yw)
)

+ (1− p)
(
V ?,σ,w,θ
h+1 (xw)− V π,σ,w,θ

h+1 (xw)
)
−
(
p− xπ,w,θ

h

)
V π,σ,w,θ
h+1 (xw)

= xπ,w,θ
h

(
V ?,σ,w,θ
h+1 (yw)− V π,σ,w,θ

h+1 (yw)
)
+ (1− p)

(
V ?,σ,w,θ
h+1 (xw)− V π,σ,w,θ

h+1 (xw)
)

+
(
p− xπ,w,θ

h

)(
V ?,σ,w,θ
h+1 (yw)− V ?,σ,w,θ

h+1 (xw)
)

≥ (1− p)
(
V ?,σ,w,θ
h+1 (xw)− V π,σ,w,θ

h+1 (xw)
)
+
(
p− xπ,w,θ

h

)(
V ?,σ,w,θ
h+1 (yw)− V ?,σ,w,θ

h+1 (xw)
)

≥ (1− p)
(
V ?,σ,w,θ
h+1 (xw)− V π,σ,w,θ

h+1 (xw)
)

+
1

2
(p− q)

∥∥π?,w,θ
h (· |xw)− πh(· |xw)

∥∥
1

(
V ?,σ,w,θ
h+1 (yw)− V ?,σ,w,θ

h+1 (xw)
)

(215)

where the last inequality holds by applying (156) and deriving as follows:

p− xπ,w,θ
h =

(
p− q

)(
1− πh(θh |xw)

)
= (p− q)

(
1− πh(θh |xw)

)

=
1

2
(p− q)

(
1− πh(θh |xw) + πh(1− θh |xw)

)
=

1

2
(p− q)

∥∥π?,w,θ
h (· |xw)− πh(· |xw)

∥∥
1
. (216)

To further control (215), applying Lemma D.2 yields

V ?,σ,w,θ
h (yw)− V ?,σ,w,θ

h (xw)

= 1 + (1− σ)V ?,σ,w,θ
h+1 (yw) + σV ?,σ,w,θ

h+1 (xw)−
(
pV ?,σ,w,θ

h+1 (yw) + (1− p)V ?,σ,w,θ
h+1 (xw)

)

= 1 + (1− p− σ)
(
V ?,σ,w,θ
h+1 (yw)− V ?,σ,w,θ

h+1 (xw)
)

= 1 + (1− p)
(
V ?,σ,w,θ
h+1 (yw)− V ?,σ,w,θ

h+1 (xw)
)

= · · · =

H−h∑

j=0

(1− p)j , (217)

where the penultimate equality holds by (156). Then, we consider two cases with respect to the uncertainty level σ to control

(217), respectively:

• When 0 < σ ≤ c2
2H . Recall p =

{
c2
H , if σ ≤ c2

2H

1 + c1
H σ otherwise

. In this case, applying (217), we have

V ?,σ,w,θ
h (yw)− V ?,σ,w,θ

h (xw)

=

H−h∑

j=0

(1− p)j ≥

H−h∑

j=0

(
1−

c2
H

)j
=

1−
(
1− c2

H

)H−h+1

c2/H
≥

2c2(H − h+ 1)

3
(218)

Here, the final inequality holds by observing

(
1−

c2
H

)H−h+1

≤ exp

(
−
c2(H − h+ 1)

H

)
≤ 1−

2c2(H − h+ 1)

3H
(219)

where the first inequality holds by noticing c2 < 0.5 and then 1 − x ≤ exp(−x), and the last inequality holds by

exp(−x) ≤ 1− 2x
3 for any 0 ≤ x ≤ 1/2.

Plugging above fact in (218) back to (215), we arrive at

V ?,σ,w,θ
h (xw)− V π,σ,w,θ

h (xw)

≥ (1− p)
(
V ?,σ,w,θ
h+1 (xw)− V π,σ,w,θ

h+1 (xw)
)
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+
1

2
(p− q)

∥∥π?,w,θ
h (· |xw)− πh(· |xw)

∥∥
1

2c2(H − h+ 1)

3
. (220)

Then invoking the assumption

H∑

h=1

∥∥πh(· |xw)− π?,w,θ
h (· |xw)

∥∥
1
≥

H

8
(221)

in (166) and applying (220) recursively for h = 1, 2, · · · , H yields

V ?,σ,w,θ
1 (xw)− V π,σ,w,θ

1 (xw) ≥
c2
3

H∑

h=1

(1− p)h−1(p− q)(H − h+ 1)
∥∥π?,w,θ

h (· |xw)− πh(· |xw)
∥∥
1

(i)

≥
c2
3

H∑

h=1

(1−
c2
H

)h−1(p− q)(H − h+ 1)
∥∥π?,w,θ

h (· |xw)− πh(· |xw)
∥∥
1

(ii)

≥
c2
6

H∑

h=1

(p− q)(H − h+ 1)
∥∥π?,w,θ

h (· |xw)− πh(· |xw)
∥∥
1

(iii)
=

c2∆

6

H∑

h=1

h
∥∥π?,w,θ

H−h+1(· |xw)− πH−h+1(· |xw)
∥∥
1

(iv)

≥
c2∆

6

bH/16c∑

h=1

2h ≥
c2∆

6
bH/16c (bH/16c+ 1) , (222)

where (i) follows from 1− p ≥ 1− p = 1− c2
H , and (ii) holds by

∀h ∈ [H] : (1−
c2
H

)h−1 ≥ (1−
c2
H

)H ≥
1

2
(223)

as long as c2 ≤
1
2 . Here, (iii) arises from the definition of p, q in (149); (iv) can be verified by the fact that for any

series 0 ≤ x1, x2, · · · , xH ≤ xmax that obeys
∑H

h=1 xh ≥ y, one has

H∑

h=1

xhh ≥

bxmax/yc∑

h=1

xmaxh, (224)

and taking xh =
∥∥πH−h+1(· |xw)− π?,w,θ

H−h+1(· |xw)
∥∥
1
≤ 2 = xmax and y = H

8 .

Consequently, observed from (222), we have

V ?,σ,w,θ
1 (xw)− V π,σ,w,θ

1 (xw) ≥
c2∆

6
bH/16c (bH/16c+ 1) ≥ c3∆H2 > ε (225)

holds for some small enough constant c3 and letting ∆ = ε
c3H2 .

• When c2
2H < σ ≤ 1− c0. Similarly, recalling p =

{
c2
H , if σ ≤ c2

2H(
1 + c1

H

)
σ otherwise

and invoking (217) gives

V ?,σ,w,θ
h (yw)− V ?,σ,w,θ

h (xw)

=

H−h∑

j=0

(1− p)j =

H−h∑

j=0

(
1−

(
1 +

c1
H

)
σ
)j

≥
1−

(
1− (1 + c1

H )σ
)H−h+1

(1 + c1
H )σ

≥
c2(H − h+ 1)

3σH
, (226)
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where the final inequality holds by observing

(
1−

(
1 +

c1
H

)
σ
)H−h+1

≤ exp
(
−
(
1 +

c1
H

)
σ(H − h+ 1)

)

(i)

≤ exp
(
−

c2
2H

(
1 +

c1
H

)
(H − h+ 1)

)
≤ 1−

(
1 +

c1
H

) c2(H − h+ 1)

3H
. (227)

Here, (i) holds by observing c2
2H < σ, and the last inequality holds by

(
1 + c1

H

)
≤ 2, c2 ≤ 0.5, and the fact

exp(−x) ≤ 1− 2x
3 for any 0 ≤ x ≤ 1/2.

Plugging above fact in (226) back to (215) gives

V ?,σ,w,θ
h (xw)− V π,σ,w,θ

h (xw)

≥ (1− p)
(
V ?,σ,w,θ
h+1 (xw)− V π,σ,w,θ

h+1 (xw)
)

+
1

2
(p− q)

∥∥π?,w,θ
h (· |xw)− πh(· |xw)

∥∥
1

c2(H − h+ 1)

3σH
. (228)

Following the same routine to achieve (222), applying (228) recursively for h = 1, 2, · · · , H gives

V ?,σ,w,θ
1 (xw)− V π,σ,w,θ

1 (xw) ≥

H∑

h=1

(1− p)h−1(p− q)
c2(H − h+ 1)

6σH

∥∥π?,w,θ
h (· |xw)− πh(· |xw)

∥∥
1

(i)
=

c2(p− q)

6σH

H∑

h=1

(1−
c1
H

)h−1(H − h+ 1)
∥∥π?,w,θ

h (· |xw)− πh(· |xw)
∥∥
1

(ii)

≥
c2∆

12σH
bH/16c (bH/16c+ 1) (229)

where (i) follows from 1− p = 1− (p−σ) = 1− c1
H σ, and (ii) holds by letting c1 ≤

1
2 and following the same routine

of (222).

Consequently, (229) yields

V ?,σ,w,θ
1 (xw)− V π,σ,w,θ

1 (xw) ≥
c2∆

12σH
bH/16c (bH/16c+ 1) ≥

c4∆H

σ
> ε (230)

holds for some small enough constant c4 and letting ∆ = σε
c4H

.
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