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Abstract

To overcome the sim-to-real gap in reinforce-
ment learning (RL), learned policies must main-
tain robustness against environmental uncertain-
ties. While robust RL has been widely stud-
ied in single-agent regimes, in multi-agent en-
vironments, the problem remains understudied—
despite the fact that the problems posed by en-
vironmental uncertainties are often exacerbated
by strategic interactions. This work focuses on
learning in distributionally robust Markov games
(RMGs), a robust variant of standard Markov
games, wherein each agent aims to learn a policy
that maximizes its own worst-case performance
when the deployed environment deviates within
its own prescribed uncertainty set. This results in
a set of robust equilibrium strategies for all agents
that align with classic notions of game-theoretic
equilibria. Assuming a non-adaptive sampling
mechanism from a generative model, we propose
a sample-efficient model-based algorithm (DR-
NVI) with finite-sample complexity guarantees
for learning robust variants of various notions
of game-theoretic equilibria. We also establish
an information-theoretic lower bound for solving
RMGs, which confirms the near-optimal sample
complexity of DR-NVI with respect to problem-
dependent factors such as the size of the state
space, the target accuracy, and the horizon length.

1. Introduction

Many real-world applications of artificial intelligence nat-
urally involve multiple agents in dynamically evolving en-
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vironments. Examples include ecosystem protection (Fang
etal., 2015), board games (Silver et al., 2017), strategic man-
agement (Saloner, 1991), and autonomous driving (Zhou
et al., 2020) among many others. One of the most promis-
ing algorithmic paradigms for addressing these problems is
that of (deep) multi-agent reinforcement learning (MARL)
(Silver et al., 2017; Vinyals et al., 2019; Lanctot et al., 2019)
through a decision-making perspective. In full generality, it
allows for agents with misaligned and possibly conflicting
interests to optimize their own long-term rewards in an un-
known dynamic environment, while taking one another into
account. As such, MARL can often be modeled as learning
in Markov games (MGs) (Littman, 1994; Shapley, 1953).
Due to the game-theoretic nature of MGs, one often relies on
solution concepts which take the form of equilibria — strate-
gies/policies that are stable under rational deviations for all
agents — like Nash equilibria (NE) (Nash, 1951; Shap-
ley, 1953), correlated equilibria (CE) (Aumann, 1987), and
coarse correlated equilibra (CCE) (Aumann, 1987; Moulin
& Vial, 1978).

1.1. Environmental uncertainty in MARL

However, the equilibria of MGs can be very sensitive to
environmental perturbations. Environmental uncertainties
caused by system noise, model mismatch, and sim-to-real
gaps can cause dramatic changes to both the qualitative
outcomes of the game as well as agents’ payoffs. While
this problem is present in single-agent RL, the need for
robustness is even more acute in the multi-agent setting
where the game-theoretic interactions can cause instabili-
ties (Slumbers et al., 2023). Indeed, playing an equilibrium
solution learned in the simulated environment might lead
to a catastrophic drop in a single agent’s payoff or even all
agents’ payoffs when the deployed environment deviates
slightly from what is expected (Balaji et al., 2019; Zhang
et al., 2020c; Zeng et al., 2022; Yeh et al., 2021), a point we
illustrate in the following example.

Example: fishing protection. 7o emphasize the impact
of model uncertainty in MARL, in Figure 1, we present a con-
crete example of a simple two-player game that models the
interaction between a fisherman and law enforcement trying
to prevent illegal fishing. The state s € {0,1,--- ,100} rep-
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(a) Markov game: fishing protection
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(b) Nash equilibria of standard and robust MARL

Figure 1. A two-player general-sum Markov game modeling preventing illegal fishing. (a) shows the state space (circles) and the simplified
transitions; the fisherman arrives at distinct states by executing different Nash equilibrium solutions 74 (from city A) or wp (from city B).
(b) in two slightly different environments (city A versus city B), it shows the solutions 74, g of the standard game, and the consistent
solution robust Nash o, of a robust variant of the game (detailed in Appendix B.1).

resents the number of punishments received by the fisherman,
with the license being revoked at s = 100. The environment
is governed by a model parameter p. We observe from Fig-
ure 1(b) that for slightly perturbed environments, city A
(p = 0.049) and city B (p = 0.051), the solutions of the
MGs are two Nash equilibria with drastically different out-
comes: no punishment under policy g learned from city B
(in red) and a revoked license under policy T 4 learned from
city A (in blue). More details are presented in Appendix B. 1.
The example above illustrates how the standard formulation
of a MG can be vulnerable to model uncertainties and result
in unstable solutions with divergent outcomes. As such,
robustness and stability become a pressing need and key
challenge for the deployment of MARL algorithms.

To address this, we consider robust MARL problems as
(distributionally) robust Markov games (RMGs) — a robust
counterpart of standard MGs (Zhang et al., 2020c; Kardes
et al., 2011). The natural solution concepts for RMGs are
equilibria not only between agents, but also between multi-
ple natural adversaries that choose the worst-case environ-
ments within some prescribed uncertainty set for each agent.
By design, they exhibit more robustness and consistency in
the face of unmodeled disturbances. To illustrate this, con-
sider the example in Figure 1, where one can observe that
the solutions of a RMG (7,4 in gray) remains consistent
and stable across similar environments city A and city B.

Despite some recent efforts (Zhang et al., 2020c; Kardes
et al., 2011; Ma et al., 2023; Blanchet et al., 2023), a fun-
damental understanding of learning in RMGs is lacking.
Indeed, while the robust formulation of single-agent RL has
been well studied (Iyengar, 2005; Nilim & El Ghaoui, 2005;
Shi et al., 2023; Xu et al., 2023), understanding how to effi-

ciently learn equilibrium policies in robust Markov games
remains an open question. We focus on understanding and
achieving near-optimal sample efficiency in robust MGs, re-
flecting the fact that in many large-scale applications, agents
must learn from samples from an unknown but potentially
extremely large environment (Silver et al., 2016; Vinyals
et al., 2019; Achiam et al., 2023). While some attempts
have been made to design sample-efficient algorithms for
robust MARL (Wang et al., 2023a; Blanchet et al., 2023),
the current solutions are still far from optimal. With that in
mind, we investigate the following open question:

Can we achieve robustness and near-optimal sam-
ple efficiency in MARL simultaneously?

1.2. Main contributions

To address the open question, this work concentrates on
designing algorithms for robust MGs with near-optimal
sample complexity guarantees. We consider three solution
concepts for RMGs, which are robust variants of standard
equilibria — robust NE, robust CE, and robust CCE. We
focus on a class of RMGs, where the uncertainty sets of
the environment are constructed following an agent-wise
(s,a)-rectangularity condition for computational tractability
(Iyengar, 2005; Wiesemann et al., 2013) (see Section 3).
Such a condition allows each agent to independently con-
sider its uncertainty set according to their personal interest.
We consider total variation (TV) distance as the distance
metric for the uncertainty set, motivated by its practical
(Pan et al., 2023; Lee et al., 2021) and theoretical appeal
(Panaganti & Kalathil, 2022; Shi et al., 2023; Blanchet et al.,
2023).
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Concretely, our study focuses on finite-horizon RMGs with
n agents. We denote the episode length by H, the size of the
state space by S, the size of the i-th agent’s action space by
A;, and use o; € (0, 1] to represent the uncertainty level of
the ¢-th agent. We assume access to a generative model that
can draw samples from the nominal environment in a non-
adaptive manner. The goal is to find an e-approximate equi-
librium for RMGs — a joint policy such that each agent’s
benefit is at most € away under rational deviations. The
main contributions are summarized as follows.

e Near-optimal sample complexity upper bound. We de-
sign a model-based algorithm — distributionally robust
Nash value iteration (DR-NVI), which can provably
find any solution among e-approximate robust-{NE,
CCE, CE} with high probability, when the sample size
exceeds

~ (SH3T[', A;
O(S H;:l ! min {H 1 }) 1)
13 ming <;<n 0;

This significantly improves upon prior art (Blanchet
et al,, 2023) O(S*([[1, A;)* H*/e%)! (Blanchet
etal., 2023) by at least a factor of O (S® (]}, A;)° )
and further delineates the impact of the uncertainty lev-
els. Our results are derived by addressing the intricate
statistical dependencies arising from game-theoretical
interactions among agents, a challenge not present in
robust single-agent RL. Additionally, we employ distri-
butionally robust optimization to address the nonlinear
payoffs of agents in RMGs, which lack a closed form.

e [nformation-theoretic lower bound. To understand the
optimality of our algorithm we establish a lower bound
for solving RMGs, showing that no algorithm can
learn any of e-approximate robust-{NE, CCE, CE}
with fewer samples than

5 (SH3 maxi<j<n A; min {H, 1})
ming <;<n 0;

22
2)

To the best of our knowledge, this is the first
information-theoretic lower bound for RMGs, regard-
less of the distance metric in use. We construct
new hard scenarios for tightness, differing from ex-
isting ones in both robust single-agent RL and stan-
dard MGs, which may be of independent interest.
This in turn establishes that the sample complexity
of DR-NVI is optimal for all RMGs with respect
to many critical problem-dependent parameters such

"Note that Blanchet et al. (2023) targets a different (and more
challenging) setting with offline data. We translate the results of
Blanchet et al. (2023) to the generative setting we consider.

as S, H,{o;}1<i<n, making DR-NVI the first near-
optimal finite-sample guarantee for robust MGs, re-
gardless of the divergence metric in use.

Notation. Throughout this paper, we introduce the nota-
tion [T] :== {1,--- , T} for any positive integer T' > 0. We
denote by A(S) the probability simplex over a set S and
x = [x(s,a)](sﬂ)eSXA € R4 (resp. v = [x(s)]ses €
R®) as any vector that constitutes certain values for each
state-action pair (resp. state).

2. Background: Standard Markov Games

We begin by covering the foundational aspects of multi-
agent general-sum standard Markov games in a finite-
horizon setting.

Standard Markov games. A finite-horizon multi-agent
general-sum Markov game can be represented as MG =
{S, {Aiti<i<n, P, r,H}. This game involves n agents
who optimizes their own benefits in a shared environment,
consisting of the following key components.

e State space S = {1, -, S} of the shared environment
with S different states.

e Joint action space A: for each 1 < i < n, we represent
A; ={1,---, A;} as the action space of the i-th agent
that contains A; different actions. In addition, we de-
note the joint action space for all agents (or a subset of
agents) as A == Ay x - X Ay, (or A =[], A;
for all 1 < ¢ < n). For convenience, we denote the
boldface letter @ € A (resp. a_; € A_;) as a joint
action profile for all agents (resp. all agents excluding
the i-th agent).

e Probability transition kernel P = {Pj,}1<p<p with
P, : p). Specifically, Py (s’ | s, a) represents the prob-
ability of MG transitioning from current state s € S
to the next state s’ € S at time step h, given the agents
choose the joint action profile a € A.

e Reward function r = {r;  11<i<n,i<h<m With r; p, :
S x A — [0,1]. Specifically, for any (i, h,s,a) €
[n] x [H] x & x A, let r; (s, a) be the immediate
(deterministic) reward received by the i-th agent in
state s when the joint action profile is a, which is
normalized to [0, 1] without loss of generality.

e H is the horizon length of the standard MG.

Markov policies and value functions. Throughout the
paper, we focus on the class of Markov policies, namely,
the action selection rule is solely determined by the current
state s, independent from previous trajectories (including
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visited states, executed actions, and received rewards) of
all agents. Specifically, for any 1 < ¢ < n, the i-th agent
executes actions according to a policy m; = {m;p : S —
A(A;) hi<n<m, with ;5 (a | ) the probability of selecting
action a in state s at time step h. The joint Markov policy of
all agents can be defined as m = (m1,...,7,) : S X [H] —
A(A), namely, the joint action profile a of all agents is
chosen according to the distribution specified by 7, (- | s) =
(T1h, T2 -« Tn) (-] 8) € A(A) conditioned on state s
at time step h.

With the above notation in mind, for any given joint policy
7 and transition kernel P of the MG, we characterize the
long-term cumulative reward by defining the value function
vE .S = R (resp. Q-function Q7 : S x A+ R) of
the i-th agent as follows: for all (h,s,a) € [H] X S x A,

H
ZT’z‘,t(Snat) | sp = 8] )

t=h

H
Zﬁ,t(snat) | Sp = §,ap = a} ,
t=h

(3)

where the expectation is taken over the Markovian tra-
jectory {(s¢,a;)}n<i<m by executing the joint policy 7
under the transition kernel P, i.e., a; ~ m(-|s:) and
St41 ™~ P( | St, at).

Vil (s) = Enp

Q:,hp(sv a) = EW,P

Best-response policy. For any given joint policy 7, we
employ 7_; to represent the policies of all agents excluding
the i-th agent. We define the maximum value function of
the ¢-th agent at time step h against the joint policy 7_; of
the other agents as

VT (s) =

o R O RO

max
w:Sx[H]—=A(A;)
where 7, x m_; represents the joint policy of all agents when
the i-th agent executes policy 7). It is well-known (Filar
& Vrieze, 2012) that there exists at least one Markovian
policy, the best-response policy, that achieves Vz*hmp(s)
forall s € S and all h € [H] simultaneously. We denote the
best-response policy using 7" (m—i) : S x [H] — A(A;).

Solution concepts: equilibria. In MGs, strategic agents
are modeled in a possibly competitive framework and focus
on finding some sort of equilibrium strategies. Here, we
consider three common types of equilibria — NE, CE, and
CCE for MGs.

e Nash equilibrium (NE). A product policy m = m X
s Xy € A(A) X A(Ag) x -+ x A(A,,) is said to
be a (mixed-strategy Markov) NE if

forall (s,7) € S x [n] : Vi’fl’P(s) = Vifl’”’i’P(s).
&)

Namely, as long as all players act independently, no
player can benefit by unilaterally diverging from its
present policy, given the current policies of the oppo-
nents.

o Coarse correlated equilibrium (CCE). A joint policy
m € A(A) is said to be a CCE (Moulin & Vial, 1978;
Aumann, 1987) if it holds that

forall (s,i) € S X [n] : Vflp(s) > V:l’ﬂ_i’P(s).
(6)
As a relaxation of NE, CCE also guarantees that no
player has incentive to unilaterally deviated from the
current policy. The key difference from the NE defini-
tion is that it permits policies to be interrelated among
players.

e Correlated equilibrium (CE). Before proceeding, for
each 1 < i < n, we define a set of function f; =
{finstheim,ses with fin s © A = A;, and denot-
ing F; as the set of possible f;. Armed with this,
we can combine such f; with any joint policy 7 to
reach a new policy f; ¢ m, where f; o m will choose
(a1,...,ai-1, fi(a;),ait1,...,a,) when policy 7 se-
lects (a1,...,a;—1,0i,Qiy1,---,a,). With these in
place, a joint policy 7 € A(A) is said to be a CE
(Moulin & Vial, 1978; Aumann, 1987) if it holds that

for all (s,i) € Sx[n] : V5F(s) > max viem P (s).
’ SN ’
)

CE is a also a relaxation of NE, which does not require
the joint policy 7 to be a product policy.

3. Distributionally Robust Markov Games

We consider a robust variant of standard MGs incorporat-
ing environmental uncertainties — termed distributionally
robust Markov games (RMGs). RMGs represent a richer
class than standard MGs, allowing for different prescribed
environmental uncertainty sets as long as they meet a rect-
angularity condition, detailed below.

3.1. Distributionally robust Markov games

A distributionally robust multi-agent general-sum Markov
game (RMG) in the finite-horizon setting is defined by

MGrob = {S, {Aihr<icn {UT (P*) }1<i<n. T H},

where S, {4;},r, and H are identical to those of standard
MGs (see Section 2). A notable deviation from standard
MGs is that: for 1 < ¢ < n, instead of assuming a fixed
transition kernel, each i-th agent anticipates that the tran-
sition kernel is allowed to be chosen arbitrarily from a
prescribed uncertainty set Uy’ (P%). Here, the uncertainty
set UZ#(PP) is constructed centered on a nominal kernel
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PY: 8 x A~ A(S), with its size and shape defined by
a certain distance metric p and a radius parameter o; > 0.
Note that, for generality, to accommodate individual robust-
ness preferences, each agent is permitted to tailor its own
uncertainty set Uy (P?) by choosing different size o; and
even the shape determined by different divergence function
p. Here, we consider the same divergence function for all
agents for simplicity. And we focus on the discussion of
the transition kernel’s uncertainty in this work, it’s worth
noting that similar uncertainty can also be considered for
each agent’s reward function.

Uncertainty set with agent-wise (s,a)-rectangularity.
In the following, we specify the construction of the tran-
sition kernel uncertainty sets U, (P%) = {UJ" (P°)}1<i<n
for RMGs. Drawing inspiration from the rectangularity con-
dition advocated in robust single-agent RL (Iyengar, 2005;
Wiesemann et al., 2013; Zhou et al., 2021; Shi et al., 2023),
we consider a multi-agent variant of rectangularity in RMGs
— agent-wise (s, a)-rectangularity. This condition enables
the robust counterpart of Bellman recursions and computa-
tional tractability of the problems. It allows for each agent
to independently choose its own uncertainty set that can be
decomposed into a product of subsets over each state-action
pair.

In particular, we assume all agents use the same distance
metric p for their uncertainty sets.> Each i-th agent can
choose their own uncertainty level o; > 0 independently.
With p and {c; }1<i<,, in hand, the uncertainty set U, (P°)
of all agents obeying agent-wise (s, a)-rectangularity is
mathematically specified as: for all i € [n],

U (P°) = U7 (Py,,) with (8)
ugi (P}(l],s,a) = {ths7a‘ € A(S) P (Phw?»av P}(L),s,a) < Ui}
where @ represents the Cartesian product and we denote a
vector of the transition kernel P or P at any state-action
pair (s,a) € S x A respectively as

Pisa = Py(]s,a) e RV,
P oo =P(|s a)eR>5.

h,s,a

©))

Here, the ‘distance’ function p for each agent’s uncertainty
set can be chosen from many candidate functions that mea-
sure the difference between two probability vectors, such
as f-divergence (including total variation (TV), chi-square,
and Kullback-Leibler (KL) divergence) (Yang et al., 2022),
¢4 norm (Clavier et al., 2023), and Wasserstein distance (Xu
et al., 2023). In this work, we focus on the uncertainty sets
that are constructed using TV distance:

1
TV (Ph,s,av P}?,s,a) = 5 HPh.,s,a - P£751a|‘1 . (10)

?Generally, each agent can decide their own (possibly different)
distance metric for the uncertainty set. We consider the same p for
simplicity.

)

Robust value functions. For a RMG, each agent aims to
maximize its own worst-case performance over all possible
transition kernels in its own (possibly different) prescribed
uncertainty set U (P%). For any joint policy 7 € A(A),
the worst-case performance of the i-th agent at time step i
can be measured by the robust value function V;;* and the
robust Q-function Q7°", defined as

ih

Vo (s) = inf v (s

i,h ( ) Peugi(PO) ih ( )
Toi(s,a) = inf ~P(s,a 11
Qi (s 0) PeUy (PY) i (5,) (an

forall (i, h,s,a) € [n] x [H] x S x A. Similar to standard
MGs, given a fixed joint policy w_; for all agents but the
i-th agent, by optimizing over 7} : S x [H] — A(A;) that
is executed independently from 7_;, we can further define
the maximum of the robust value function for each agent as
follows: for all (¢, h, s) € [n] x [H] X S :

/7
V*Jr,i,oi s ma Vﬂ'iXﬂ_i,Gi s
ih (5) ﬂ;:5x[H]i§A(Ai) i,k ()

. I, P
max inf VT (s).
nj:SX[H]=A(A;) PeuJi (Po)

(12)

Similar to standard MGs, it can be easily verified that there
exists at least one policy (Blanchet et al., 2024, Section A.2),
denoted by 77" (7_;) : S x [H] — A(A;) and referred
to as the robust best-response policy for the i-th agent, that
can simultaneously attain V;;"~*7"(s) for all s € S and

h € [H].

Robust Bellman equations. Analogous to standard MGs,
RMGs feature a robust counterpart of the Bellman equation
— robust Bellman equation. In particular, the robust value
functions {V;”" } of RMGs associated with any joint policy

7 obey: for all (i, h,s) € [n] x [H] x S,
Vi (s)

inf
PeUg (PP

h,s,a)

= EGNWh(S) ’I“i’h(s, a) + PV:};Z;I

13)

We emphasize that the above robust Bellman equation is
fundamentally linked to the agent-wise (s, a)-rectangularity
condition (cf. (8)) imposed on the designed uncertainty set.
Specifically, this condition decouples the dependency of
uncertainty subsets across different agents, each state-action
pair, and different time steps, leading to the Bellman recur-
sive equation.

3.2. Solution concepts for robust Markov games

For RMGs, the games are no longer n-agent games, but
become 2n-agent games between agents and n natural ad-
versaries to choose the worst-case transitions. Given the
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possibly conflicting objectives, finding an equilibrium be-
comes a core goal for RMGs. Below, we introduce three
robust variants of widely considered standard solution con-
cepts — robust NE, robust CE, and robust CCE for any
RMG.

e Robust NE. A product policy m = 71 X mg X - - -
is said to be a robust NE if (cf. (5))

X Ty,

Y(i,s) € [n] xS : fo‘” (s) = Vifl’”’i’”i(s). (14)
Robust NE indicates that given the current strategy
of the opponents 7_;, when each agent considers the
worst-case performance over its own uncertainty set
us (PY), no player can benefit by unilaterally diverg-
ing from its present strategy.

e Robust CCE. A (possibly correlated) joint policy m €
S x [H] — A(A) is said to be a robust CCE if it holds
that (cf. (6))

V(i,s) € [n] x S V% (s) > V:iw’“g"(s). (15)

As a relaxation of robust NE, robust CCE also guaran-
tees that no player has incentive to unilaterally deviate
from the current policy, where the policies are not nec-
essarily independent among players.

e Robust CE. A joint policy m € A(A) is said to be a
robust CE if it holds that (cf. (7))

. : 0 > fiom,oi )
Vis.i) €8 x [n] : Vi (s) 2 maax VI (s)
(16)

It is known that computing exact robust equilibria is chal-
lenging and may not be necessary in practice. As a result,
people usually search for approximate equilibria. Toward
this, as a slightly relaxation from (14), a product policy
m e A(A1) X -+ x A(A,,) is said to be an e-robust NE if

(Vi () - VT ()} < e
(17)

max

gapNE(ﬂ-) = s€8,1<i<n

Similarly, relaxing (15) or (16), a (possibly correlated) joint
policy m € A(.A) is said to be an e-robust CCE if

*, T 4,04 T,04
gapcce(m) = seﬁaégn {Vi,l (s) = V5 (s)} <e,
(18)
or an e-robust CE if

gapce(m)

0,04
= max max V™7 () —
s€8,1<i<n

Vi” (s)} <e

fieFi 7 ’

The existence of robust NE has been verified (Blanchet
et al., 2023) under general divergence functions for the
uncertainty set. Indeed, the robust equilibria defined here
can be reduced to the standard equilibria associated with
the robust variant of standard payoffs (robust Q-functions),
which have been verified obeying {NE} C {CE} C {CCE}
(Roughgarden, 2010). Therefore, the existence of robust
NE directly indicates the existence of robust CE and robust
CCE.

3.3. Non-adaptive sampling from a generative model

Given the formulation of distributionally robust Markov
games, a question of prime interest is how to learn the
robust equilibria without knowing the model exactly in a
sample-efficient manner.

Sampling mechanism: a generative model. As a widely
used sampling mechanism in standard MARL (Zhang et al.,
2020b; Li et al., 2022a), in this paper, we assume access
to a generative model (simulator) (Kearns & Singh, 1999)
and collect samples in a non-adaptive manner. Specifically,
for each tuple (s,a,h) € S x A x [H], we collect N
independent samples generated based on the true nominal
transition kernel P:

i.4.d

Sihsa ~ PY(|s a), i=1,2,...,N. (20

The total number of samples is thus Ny = N.S H?Il A;.

Armed with the collected dataset from the nominal environ-
ment, the goal is to learn a solution among e-robust-{NE,
CCE, CE} for the game MG, — W.r.t. some prescribed
uncertainty set U/ (P°) around the nominal kernel — using
as few samples as possible.

4. Algorithm and Theory

In this and the following sections, we focus on the class of
robust MGs with uncertainty set measured by TV distance,
namely, the uncertainty set U (-) = Ug: (-) w.r.t the TV
distance p = pry defined in (10). For convenience, we
abbreviate U7 () == Ui (-).

PTV

4.1. Distributionally robust Nash value iteration

We develop a model-based approach tailored to solve robust
Markov games, which involves two separate steps. First,
we construct an empirical nominal transition kernel P° us-
ing the collected samples from the generative model. Then
armed with P°, we propose to apply distributionally ro-
bust Nash value iteration (DR-NVI) to compute a robust
equilibrium solution for all agents.

Nominal model estimation. Based on the empirical fre-
quency of state transitions, we estimate the empirical nom-
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inal transition kernel P? = {]3}?};16[ > where the entries

of PO € RSTIi=: 4i%S at each time step h is constructed as
follows: for all (h,s,a) € S x A,

N
PY(s'|s,a) = %Z]l{siyh,s,a =s'}. @D
i=1

Distributionally robust Nash value iteration (DR-NVI).
With the empirical nominal kernel PP in hand, to compute a
robust equilibrium solution, we propose DR-NVI by adapt-
ing a model-based algorithm for standard Markov games
— Nash value iteration (Liu et al., 2021), summarized in
Algorithm 1.

The process starts from the last time step h = H and pro-
ceeds with h = H —1,H — 2,--- ;1. At each time step
h € [H], the robust Q-function can be estimated as @; 5,
(see line 4.1) as: for all (4, h, s,a) € [n] x [H] x S x A,

~

Qin(s,a) =rip(s,a)+ inf P‘Z,h+1- (22)
Peui(py

h,s,a

Directly solving (22) presents significant computational
challenges due to the need to optimize over an S-
dimensional probability simplex, a task whose complexity
increases exponentially with the state space size S. Fortu-
nately, leveraging strong duality enables us to solve (22)
equivalently via its dual problem (Iyengar, 2005):

~

Qin(s,a) =r;n(s,a)+ max

a€[ming ‘/Ziyh,‘*,l (s),maxs \71-,;1+1 ()]

(e o], o (o min [P ) )
(23)

where [V],, denotes the clipped version of any vector V' €
RS determined by some level o > 0, namely,

Q, if V(s) > a, (24)
otherwise.

With robust Q-function estimates {@i,h}ie[n] available
for all agents at time step h, the sub-routine in line 4.1
Equilibrium € Compute—{Nash, CE, CCE} represents
the algorithm for computing the corresponding robust-
{NE, CE, CCE}, respectively. Note that for the stud-
ied RMGs, a robust-NE/CE/CCE is equivalent to a corre-
sponding NE/CE/CCE associated with the payoff matrices
{Qi,n}icn)- On the computing and learning front of the
sub-routine Equilibrium(-), for a general standard MG, the
NE has been proved PPAD-hard to compute (Daskalakis,
2013), even for two-player matrix games (except for two-
player zero-sum games). Notably, even when the non-robust
standard MG associated with the nominal transition kernel is
a two-player zero-sum game, the corresponding robust MG

Algorithm 1 Distributionally robust equilibrium value iter-
ation (DR-NVI).
1: input: empirical nominal transition kernel ]30; reward
function r; uncertainty levels {o; }ic[y,)-
2: initialization: Q; ,(s,a) = 0, Vi,(s) = 0 for all
(s,a,h) €S x Ax[H+1].

3: forh=H,H—1,---,1do
4 fori=1,2,--- ,nands € S,a € Ado
5: Set Q.1 (s, @) according to (22).
6: end for
7. forse Sdo
8: Get 7Th(8) = {Wi’h(s)}lgign
— Equilibrium ({Q\i7h(8, ')}1§i§n>‘
9: Set Vi n(s) = Eqer, [Qin(s, a)].
10:  end for
11: end for

12: output: {@@h}, {‘Zﬁ}, and 7T = {7 }1<n<m.

is generally not because agents may select different worst-
case transition kernels. Conversely, computing CE/CCE is
computationally tractable within polynomial time through
linear programming (Liu et al., 2021).

4.2. Sample complexity: upper and lower bounds

We now present our main theoretical results regarding the
sample complexity of learning robust equilibria of robust
Markov games, including an upper bound of DR-NVI (Algo-
rithm 1) and an information-theoretic lower bound. First, we
introduce the finite-sample guarantee for DR-NVI, which is
proven in Appendix C.

Theorem 4.1 (Upper bound for DR-NVI). Recall the
TV uncertainty set U7 () = UZ: () defined in (9).
Consider any 6 € (0,1) and any RMG MG, =

{S, {Ai}1<icn, {UT (P°)}1<icn,m, H} with o; € (0,1]
for all i € [n]. \/min{H —L 1

P miny<;<p 0

For any ¢ <

Algorithm 1 can output any robust equilibrium among
e-robust {NE, CCE, CE} by executing different sub-
routine Equilibrium € Compute—{Nash, CE, CCE} in

line 4.1. Namely, for some constant Cy and & =
log (M) we can achieve any of the following
results
gapne(T) < ¢,
gapcce(T) < ¢,
gapce(m) < ¢

with probability at least 1 — 6, as long as the total number
of samples obeys

C1(SH? [licicn 4
o2

1
all > mln{H, _ }
MmN <i<n O3
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Before delving into the implications of Theorem 4.1, we
provide a lower bound for solving robust Markov games.
The proof is provided in Appendix D.

Theorem 4.2 (Lower bound for solving robust MGs). Con-
sider any tuple {57 {Ai}1<i<n, {O’i}lgign,H} obeying
0; € (0,1 —co] with0 < ¢y < i being any small enough
positive constant, and H > 161og 2. Let

Co_
e < 2H>
Bt

We can construct a set of RMGs— denoted as M =
{MG}icin), such that for any dataset with in total Ny
independent samples over all state-action pairs generated
from the nominal environment (for any game MG; € M):
one has

lfo-l S :7[0{7 (25)
otherwise

i%f Jhax, {Prog, (gapne(T) > )} >

inf max {]P)Mgi (gapCCE(%) > 5)} > (26)

T MG,eM

| — 0o — |+

i%f Jpax {Prog, (gapce(®) > €)} >

provided that

CgSHg maxj<i<n A;

Ny < . min{fi

—)
ming<j<pn 05
(27)

e2

Here, C5 is some small enough constant, the infimum is
taken over all estimators T, and P yg, denotes the proba-
bility when the game is MG; for all MG, € M.

We now highlight several key implications and comparisons
that follow from the above results.

Near-optimal sample complexity for RMGs. Theo-
rem 4.1 shows that the proposed model-based algorithm
DR-NVI can achieve any robust solution among e-robust
{NE, CCE, CE} when the total number of samples exceeds
the order of

6(SH3 ngign Ai

1
: min{H, }) (28)
13 minj<;<n 0;

Combining this with the lower bound in (27) of The-
orem 4.2 confirms that the sample complexity of DR-
NVI is optimal with respect to many salient factors, in-
cluding ¢, S, H,{0;}1<i<n. To the best of our knowl-
edge, this is the first near-optimal sample complexity up-
per bound for solving robust MGs. As illustrated in Fig-
ure 2, it uncovers that the sample requirement of DR-NVI
depends on all agents’ uncertainty levels {c;} and is in-
versely proportional to min;e,) 0; when minep,) oy 2
1/H. Furthermore, the sample complexity of DR-NVI
(Theorem 4.1) significantly improve upon the prior art

O(S*([T", Ai)* H*/<?) (Blanchet et al., 2023).

Sample complexity

o9 for agent 2

H3

01 foragent 1

Figure 2. Tlustration of the sample complexity of DR-NVI with
respect to the uncertainty levels o1 and o2 for two-player RMGs,
where we only highlight the dependency with respect to the horizon
length H.

Minimax-optimal sample complexity for single-agent
RMDP. We observe that when the size of the action space
reduces to one except one agent, i.e. Ay = A3 = --- =
A, = 1, the robust MG simplifies to a single-agent ro-
bust Markov decision process (known as RMDP) (Iyengar,
2005). Consequently, the upper bound of (cf. (28)) indicates
that a simplified DR-NVI learns an e-optimal policy for the
RMDP associated with the first agent as soon as the sample
complexity is on the order of

~(SAH® 1
0< = mln{H,Ul}), (29)

which is minimax-optimal in view of the lower bound (cf.
(27) of Theorem 4.2). To the best of our knowledge, these
findings introduce the first minimax-optimal sample com-
plexity for RMDPs in the finite-horizon setting, complemen-
tary to the infinite-horizon result established in Shi et al.
(2023).

Benchmarking with standard MGs under non-adaptive
sampling. Note that DR-NVI is based on a non-adaptive
sampling mechanism from the generative model. Focusing
on the same sampling mechanism, we compare the sample
complexity of DR-NVI for solving robust MGs with the
state-of-the-art approach (model-based NVI) (Zhang et al.,
2020a; Liu et al., 2021) for solving standard MGs as below?:

_/STI, AH*
Standard MGs (by NVI): O (SH_;QAZH>

3Zhang et al. (2020a) considered a two-player zero-sum stan-
dard MGs in the infinite-horizon setting. Liu et al. (2021) con-
sidered both two-player zero-sum and multi-player general sum
standard MGs in online setting. We show the best possible out-
comes after transferring into our settings
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Robust MGs (by our DR-NVI in Theorem 4.1):
if0 < min 0; S &

5(51_[%;”14) 1<i<n - (30)

~( ST, A;H® o1 .
O(SMests) 14 S win o<1
It shows that DR-NVI achieves enhanced robustness against
model uncertainty in comparison to the prior art NVI for
standard MGs, using the same or even sometimes fewer
number of samples (min<,;<,, 0; 2 1/H). In particular, as
illustrated in Figure 2,

o When 0 < mini<;<pn 05 S L+ the sample complexity
dependency of DR-NVI on H matches that of NVI in
the order of H*.

~

ity decreases towards H? as min;<;<y, 0; increases,
which improves upon the sample complexity of NVI
for standard MGs by a factor of H min;<;<,, o; that
goes to H when min; <;<, 0; = O(1).

e When mini<;<y, 0; 2 %: DR-NVI’s sample complex-

Technical challenges and insights. Compared to robust
single-agent RL, robust MARL introduces complex statis-
tical dependencies due to game-theoretical interactions be-
tween multiple agents and their natural adversaries to choose
the worst-case transitions for each agent. Additionally, ro-
bust MGs are more intricate than standard MGs since the
agents’ payoffs become highly nonlinear without closed
form, in contrast to being linear in standard MGs. To mit-
igate these challenges, we carefully control the statistical
errors and exploit technical tools from distributionally ro-
bust optimization to achieve a near-optimal upper bound.
Additionally, note that the established lower bound (Theo-
rem 4.2) is the first information-theoretic lower bound for
solving robust MGs, which is achieved by creating a new
class of hard instances for the tightness with respect to H
and uncertainty levels {o; }1<i<n.

5. Conclusion

Providing robustness guarantees is a pressing need for RL,
one that is especially crucial in multi-agent RL (MARL)
since game-theoretical interactions between agents bring in
extra instability. We address the vulnerability of MARL to
environmental uncertainty by focusing on robust Markov
games (RMGs) that consider robustness against worst-case
distribution shifts of the shared environment. We design a
provable sample-efficient model-based algorithm (DR-NVI)
with a finite-sample complexity guarantee. In addition, we
provide a lower bound for solving RMGs, which highlights
that DR-NVI has near-optimal sample complexity with re-
spect to the size of the state space, the target accuracy, and
the horizon length. To the best of our knowledge, this is
the first algorithm with near-optimal sample complexity for

RMGs. Our work opens up interesting future directions for
robust MARL including but not limited to taming the curse
of multi-agents and studying other divergence functions for
the uncertainty set.
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A. Related Works

In this section, we discuss a non-exhaustive set of related works, limiting our discussions primarily to provable RL algorithms
in the tabular setting, which are most related to this paper.

Finite-sample studies of standard Markov games. Multi-agent reinforcement learning (MARL), originated from the
seminal work (Littman, 1994), has been widely studied under the framework of standard Markov games (Shapley, 1953);
see Busoniu et al. (2008); Zhang et al. (2021b); Oroojlooy & Hajinezhad (2023) for detailed reviews. There has been no
shortage of provably convergent MARL algorithms with asymptotic guarantees (Littman & Szepesvari, 1996; Littman et al.,
2001).

A line of recent efforts have concentrated on understanding and developing algorithms for standard MGs with non-asymptotic
guarantees (finite-sample analysis). Within this field, Nash equilibrium (NE) is arguably one of the most compelling solution
concepts for standard MGs. Research on calculating NE primarily focuses on an important basic class: standard two-player
zero-sum MGs (Bai & Jin, 2020; Chen et al., 2022; Mao & Basar, 2022; Wei et al., 2017; Tian et al., 2021; Cui & Du,
2022a;b; Zhong et al., 2022; Jia et al., 2019; Yang & Ma, 2022; Yan et al., 2022b; Dou et al., 2022; Wei et al., 2021). This
focus arises because computing NEs in scenarios beyond the standard two-player zero-sum MGs is generally computationally
intractable (i.e., PPAD-complete) (Daskalakis, 2013; Daskalakis et al., 2009). For discounted infinite-horizon two-player
zero-sum Markov games, the state-of-the-art sample complexity for learning NE (Zhang et al., 2020e) remains suboptimal
due to the “curse of multiple agents” issue (Zhang et al., 2020e). In contrast, for episodic finite-horizon two-player zero-sum
Markov games standard MGs, Bai et al. (2020); Jin et al. (2021a); Li et al. (2022a) have overcome this curse, progressively
achieving minimax-optimal sample complexity in the order of O(S max;<;<, A;H*/?). Besides NE, Jin et al. (2021a);
Daskalakis et al. (2022); Mao & Basar (2022); Song et al. (2021); Li et al. (2022a); Liu et al. (2021) have extended
this achievement to other computationally tractable solution concepts (e.g., CE/CCE) in general-sum multi-player MGs.
Focusing on the same non-adaptive sampling mechanism considered in this work, the sample complexity for learning
NE/CE/CCE in standard MGs with the state-of-the-art approaches (Zhang et al., 2020e; Liu et al., 2021) still suffers from
the curse of multiple agents, calculated as O(S [[,<;<,, AiH*/e?).

Robustness in MARL. Despite significant advances in standard MARL, current algorithms may fail dramatically due
to perturbations or uncertainties in game components, resulting in significantly deviated equilibrium, as illustrated in
Figure 1. A growing body of research is now addressing the robustness of MARL algorithms against uncertainties in various
components of Markov games, such as state (Han et al., 2022; He et al., 2023; Zhou & Liu, 2023; Zhang et al., 2023c),
environment (reward and transition kernel), the type of agents (Zhang et al., 2021a), or other agents’ policies (Li et al., 2019;
Kannan et al., 2023); see Vial et al. (2022) for a recent review.

This work considers the robustness against environmental uncertainty, adopting distributionally robust optimization (DRO)
that has primarily been investigated in the context of supervised learning (Rahimian & Mehrotra, 2019; Gao, 2020; Bertsimas
et al., 2018; Duchi & Namkoong, 2018; Blanchet & Murthy, 2019). Applying DRO for single-agent RL (Iyengar, 2005)
to handle model uncertainty has garnered significant attention. When turning to MARL, the problem is conceptualized as
robust Markov games within the DRO framework, an area that remains relatively underexplored with only a few provable
algorithms developed (Zhang et al., 2020c; Kardes et al., 2011; Ma et al., 2023; Blanchet et al., 2023). Notably, Kardes et al.
(2011) verifies the existence of Nash equilibrium for robust Markov games under mild assumptions; Zhang et al. (2020c)
derives asymptotic convergence for a Q-learning type algorithm under certain conditions; Ma et al. (2023); Blanchet et al.
(2023) are the most related works that provide algorithms with finite-sample guarantees for various types of uncertainty
set. Especially, Ma et al. (2023) considers a restricted uncertainty level that could fail to bring robustness to MARL in
certain scenarios. In particular, as the required accuracy level (€ goes to zero or the robust MGs has a small minimal positive
transition probabilities (pmin — 0), the required uncertainty level becomes quite restrictive (obeying o; < max{ g5z, 25

for all ¢ € [n]) — potentially reducing robust MARL to standard MARL and failing to maintain desired robustness.

Single-agent distributionally robust RL (robust MDPs). For single-agent RL, considering robustness to model un-
certainty using DRO framework — 1i.e., distributionally robust dynamic programming and robust MDPs — has gained
significant attention across both theoretical and practical domains (Iyengar, 2005; Xu & Mannor, 2012; Wolff et al., 2012;
Kaufman & Schaefer, 2013; Ho et al., 2018; Smirnova et al., 2019; Ho et al., 2021; Goyal & Grand-Clement, 2022; Derman
& Mannor, 2020; Tamar et al., 2014; Badrinath & Kalathil, 2021; Roy et al., 2017; Derman et al., 2018; Mankowitz et al.,
2019). Recently, a substantial body of work has been dedicated to exploring the finite-sample performance of provable
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robust single-agent RL algorithms, where different sampling mechanisms, diverse divergence function of the uncertainty set,
and other related problems/issues has been investigated a lot (Yang et al., 2022; Panaganti & Kalathil, 2022; Zhou et al.,
2021; Shi & Chi, 2022; Wang et al., 2023a; Blanchet et al., 2023; Liu et al., 2022; Wang et al., 2023c; Liang et al., 2023;
Shi et al., 2023; Wang & Zou, 2021; Xu et al., 2023; Dong et al., 2022; Badrinath & Kalathil, 2021; Ramesh et al., 2023;
Panaganti et al., 2022; Ma et al., 2022; Wang et al., 2023b; Li et al., 2022b; Kumar et al., 2023; Clavier et al., 2023; Yang
et al., 2023; Zhang et al., 2023a; Li & Lan, 2023; Wang et al., 2024).

Among the studies of robust MDPs, those particularly relevant to this paper employ the uncertainty set using total variation
(TV) distance in a tabular setting (Yang et al., 2022; Panaganti & Kalathil, 2022; Xu et al., 2023; Dong et al., 2022; Liu
& Xu, 2024). It has been established that solving robust MDPs requires no more samples than solving standard MDPs in
terms of the sample requirement (Shi et al., 2023) with a generative model. However, robust MARL involves additional
complexities compared to robust single-agent RL. It remains an open question whether the findings from robust MDPs can
be generalized to robust MARL, which includes more technical challenges and strategic interactions. Our work takes a step
towards the question, confirming that similar phenomena apply in robust MARL, albeit with increased difficulties due to the
multi-agent dynamics.

RL with a generative model. Access to a generative model (or simulator) serves as a fundamental and idealistic sampling
protocol that has been widely used to study finite-sample guarantees for diverse types of RL algorithms, such as various
model-based, model-free, and policy-based algorithms (Kearns et al., 2002; Agarwal et al., 2020; Azar et al., 2013; Li et al.,
2020; Sidford et al., 2018; Wainwright, 2019; Li et al., 2023; Kakade, 2003; Pananjady & Wainwright, 2020; Khamaru
et al., 2020; Even-Dar & Mansour, 2003; Beck & Srikant, 2012; Zanette et al., 2019; Yang & Wang, 2019; Woo et al., 2023).
This work follows this fundamental protocol with a non-adaptive sampling mechanism to understand and design algorithms
for robust Markov games. Besides generative model, there also exist other sampling protocols that involve more realistic
scenarios such as online exploration setting (Dong et al., 2019; Zhang et al., 2020d;e; Jafarnia-Jahromi et al., 2020; Liu &
Su, 2020; Yang et al., 2021; Zhang et al., 2023b; Li et al., 2021) or offline setting (Xie et al., 2021; Rashidinejad et al., 2021;
Jin et al., 2021b; Yin & Wang, 2021; Yan et al., 2022a; Uehara & Sun, 2021; Woo et al., 2024; Shi et al., 2022; Li et al.,
2024), which are interesting directions in the future.

B. Preliminaries
B.1. Details of the example shown in Figure 1

The standard Markov game for fishing protection. To simulate a scenario of defense against illegal fishing, we can
formulate a two-player general sum finite-horizon standard Markov game between a fisher (the first player) and a police
officer (the second player). This MG can be represented as MG® = {S, {Aiti<i<2,p, 7, H} Here, S :={0,1,---,100}
is the state space, where each state s € S represents the number of punishments received by the fisherman, with the license
being revoked at s = 100; .A; = Ay = {0, 1} is the action space. At each time step (round), the fisher chooses a; among
space A; = {legal fishing (0), illegal fishing (1)}, while the officer chooses a3 among As = {no patrols (0), go patrols
(1)}; H is the horizon-length; the transition kernel is governed by a model parameter p € [0, 1], shown in Figure 3(a) (a
detailed version of Figure 1(a)), specified as

pl(s'=s+1)+(1—-p)l(s =s) if seS\{100},a1 =1,

1(s' = s) otherwise. S

Vh € [H]: Pu(s'|s,a1,a2) = {

In words, the state s transit to s’ = s + 1 with probability p when a; = 1, otherwise staying in s’ = s, i.e., In addition,
r={r;, h}ie{l,Z},hG[ ) represents the immediate reward (benefit) function of two players at each time step h € [H]. Here,
we consider time-invariant reward function r; ;, = r; for all h € [H]. In particular, at any time step h € [H]|, 71(s, a1, a2, s")
(resp. r2(s, a1, az, s')) denotes the immediate benefit that the first agent (resp. the second player) receives conditioned on
the current state s, the actions of two players (a1, az), and the next state s’. The reward function for any state s € S\ {100}
is defined in Figure 3(b). And the reward function at state s = 100 for two players is specified as below:

Vay € {0,1} : 71(100,0,a9,100) = —=1 and r1(100,1,as,100) = —20p
r2(100,0,0,100) = 1 and 72(100,0,1,100) = 0
r2(100,1,0,100) = 1 and 75(100,1,1,100) = 3 — 2p. (32)
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a; =1
otherwise %
1 - 1 14 Ol 14 Agent 2: Officer %

a, = 0 [no patrols] a; = 1 [go patrols]
@ . _> hgent 1: =0 11 1,0
Fisher legal fishing 1D (=10
5

;’Ql O O E

flshlng license
revoked after
100 punishment

(a) States and Transitions (b) Reward: (11 (s, a3, az,5"),72(s,a1,a2,5")) fors ={0,1,-+,99}

a; =1 (=20,1) ifs'=s+1 (-20,1)  ifs'=s=1
. illegal fishing = (0,3) ifs' =s

s = 0times
punishment

Figure 3. (a) shows the transition kernels of the game at each time step h. (b) illustrates the immediate reward function of two agents.

Computing the Nash equilibrium (NE). Notice that the NE of a standard Markov game is indeed a series of NE of the
matrix games associated with the Q-function at each time step i € [H]. We denote the NE of MG* as m* = (u*,v*) =
{ug, vy thepm with iy + S — A(Ay), vy + S — A(Az) for all h € [H]. To proceed, we start from characterizing the
Q-function and Bellman consistency equation of the fishing protection game.

It is easily verified that for time step H + 1, one has for any joint policy = = (p, v),

V(i,a1,a9) € {1,2} x A} X As : QZ’I§+1(S,CL1,G2) = QZT’HH(S ay,az) = 0. (33)

Then, we characterize the Bellman consistency equation at time step h = H, H — 1, - - - , 1 for the optimal policy 7*. Notice
that the rewards and the transition kernels have similar structures for all states except s = 100. So we start from the cases
when s € S\ {100}. Recalling the definition of Q-function in (3), the reward function r (defined in Figure 3(b)) and the
transition kernel in (31), we have for any state s € S\ {100} and any time step h € [H], the Q-function of the fisher (the
first player) obeys

Q7 (5,0,0) = —1+ Vf;ifl( 5)
Tl (5,0,1) = =14 V71 (s)
T (5,1,0) = =20p+ pV (s + 1) + (1= )V ()
il (s,1,1) = =20p + pV (s 4+ 1) + (1= p)Vi (). (34)

Similarly, for the officer (the second player), we observe that for any state s € S \ {100} and any time step h € [H]:
F(5,0,0) =1+ V7 F(s)
T, P
(5 1) =0+ V2,h,+1(3)7
T, P P
7 (5,1,0) =14+ pVy 0 (s +1) + (1= p)Vy (),
W (s 11) =3 =2+ pVy (s 1) + (1= p)V5 L (9), (35)

Armed with above results, we are now ready to show that the NE for all (h, s) € [H] x S are the same, which determined
by the model parameter p as below:

mi(s) =mp = (0,0) ifp>0.05 (36)
A=

V(h,s) € [H] xS : { * (1,1) ifp <0.05.

We will verify it by induction as below:

e Base case: when h = H. Applying (34) and (35) for h = H with the fact in (33), we arrive at for any state
s €S\ {100}:

Vas € {0,1} 1 Q7 (s.0,a2) = —1 and QF ;(s,1,as) = —20p
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5i(5,0,00=1 and QF 4 (5,0,1) =0
Q37 (51,00 =1 and Qj ;7(s,1,1) =3—2p (37)

Similarly, when state s = 100, recalling the reward function in (32), we achieve the same Q-function on state s = 100.
Therefore, one has for all s € S:

Vas € {0,1} : QT 7 (s,0,a2) = —1 and Q7 ;”(s,1,a2) = —20p
Q37 (5,0,00=1 and Q3 ;7(5,0,1)=0
Si(5,1,00=1 and QF ; (s,1,1) =3 — 2p. (38)

Consequently, in view of (44), it can be verified that if p < 0.05 (resp. p > 0.05), the unique NE of two agents on any
state s € S at time step H is the policy pair 7}, (s) = (u§;(s), v} (s)) = (1,1) (resp. w5 (s) = (i (s), v (s)) =
(0,0)), leading to Nash w4 := (1, 1) when p = p4 = 0.049 (resp. Nash 7 := (0,0) when p = pg = 0.051).

In addition, we observe the optimal value function satisfies that:

Vil (s) = =1 and Vi (s) =1 if p > 0.05
VseS: o p H D . . (39)
Vi (s)=—20p and Vy,"(s)=3-2p  ifp<0.05

Induction. The rest of this paragraph is to verify (36) for all (h, s) € [H — 1] x S by induction. So suppose (36) holds
for time step h + 1, then we will show that it also holds for time step h.

To begin with, we introduce the following claim which will be verified in Appendix B.1.1: for any policy 7 = (u, v)
and any s,s’ € S:

(i, h) € {1,2} x [H]: V5 (s) = V(). (40)

To proceed, armed with the fact in (40), invoking the results in (34) and (35) yields that for all s € S:

Q7" (5,0,0) = -1+ V7 li(s) and Q5,7 (5,0,0) =1+ V[ (s)
T P T P T P P
1h (8,0,1) ==1+V7, 7 (s) and Q5" (s,0,1) =04 V5,77 (s)
T (51,00 = =200+ V() and Q5" (s.1,0) = 14+ Vi (s)
T, P
1,h (s,1,1) =

s,1,1) = —=20p+ V[, [ (s) and Q5 ;T (s,1,1) =3 —2p+ V7, (). 1)

The above fact directly indicates that at time step 5, the NE of the matrix games associated with the payoff Qf*h’P(s)

and Q;r’*,l’P(s) satisfies

(s) =(0,0) ifp>0.05
(s)=(1,1) ifp <0.05.

%

VseS: {ﬂ- (42)

™

St s

Summing up the base case and the induction results, we complete the proof for (36).

The robust MG and computing the robust Nash equilibrium (robust NE). When turns to the robust formulation of
the fishing protection game, we construct a robust Markov game represented as MG;, = {S AAi 1<i<o, 0%, 0, H }
where S, {A4; }1<i<2, 7, H are the same as those defined in the standard MG MG®. Note that this example is designed to
illustrate general environmental uncertainty (includes both the reward and transition kernel uncertainty) and is not tailored to
the specific class of robust MGs defined in Section 3. For simplicity, let each agent consider that the model parameter p can
perturb around some nominal one p® with uncertainty level o = 0.005, i,e., p € [p° — o, p° + o]. Other components of the
transition kernel is not allowed to perturb. With abuse of notation, for any joint policy 7, we still denote the robust value
function (resp. robust Q-function) for 4-th agent at time step h as V;;” (resp. QZ’h”). In addition, we denote the robust NE of

MGrp as 7 = (u*7,v*7) = {uy 7, vy bnerm), where 17 0 S A(Ay), 07+ S A(Ay).
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Observe that in city A (resp. city B), the nominal model parameter p® = 0.049 (resp. p® = 0.051). Without loss of generality,
we first focus on city A. To proceed, we shall verify the following claim using the same routine for computing NE of the
standard MG MG°® (cf. (36)):

Incity A: (7 (s),v;7(s)) = (0,0), V(h,s) € [H]xS. (43)

e Base case: when h = H. Recall the definitions of robust value/Q-function (cf. (11)), one has at time step H: for all
se S,

Vay € {0,1}: f}f(s,o,ag) =—-1 and QT;’I”(S, 1,a3) = —20(p° 4+ o) = —1.08
577(5,0,00=1 and Q5 (5,0,1)=0
Q577 (51,00 =1 and QF ;7 (5,0,1) =3 —2(p° + o) = 2.892. (44)
As a result, it is easily verified that the unique robust NE of two agents on any state s € S at time step H is the policy
pair (13 (s),v53” (s)) = (0,0).
e Induction. First of all, for any policy 7 = (p, ) and s, s’ € S, similar to (40)
V(i h) € {1,2} x [H]: Vi’}f(s) = V;,f(s'). (45)

which indicates that the worst-case performance are indeed influenced by the uncertainty of the reward function but not
the transition kernel perturbation. Armed with above fact, invoking the robust Bellman consistency equation, similar to
(41), we can achieve that forallh € 1,2,--- ,H — 1,

Q7 7(5,0,0) = —1+ V7, 7(s) and  QF, "(s,0,0) = 1+ V57, 11 (s)

QT 7 (,0,1) = =14+ V[, [7(s) and  QF,"7(s,0,1) = 0+ V5, {7 (s)

Q7,7 (5,1,0) = —L.08 + V{7, [17(s) and  QF, 7(s,1,0) = 1+ V57, 17 (s)

QT 7 (s,1,1) = —L08+ V[ 17(s) and  QF, (s, 1,1) = 2.802 + V;, 1 (s). (46)

As a consequence, the robust NE of the matrix games associated with the payoff Qf;d’g (s) and Q;;o’a (s) satisfies
(7 (s), v (s)) = (0,0) forallh € 1,2,--- | H — 1.

Summing up the results in the base case and the induction, we verify the unique robust NE for MG¢, in city A as (43). The
same unique robust NE can be verified in city B by following the same routine, which we omit for brevity. Thus, we show
the unique robust NE in two slightly different environments (city A and city B) are identical.

Deriving the states of executing different equilibrium solutions. In view of (36), we know that the NE of the standard
MG MG° in city A when p = p4 = 0.049 (resp. city B when p = pp = 0.051) is 74 = (1, 1) (resp. 7 = (0,0)) for all
(h,s) € [H] x S. And the MG MG® has some one-way transition structure, namely state s can only transit to itself or a
larger state s + 1, while not any states s’ < s. So as long as H is large enough, the final state of executing w4 = (1, 1) will
be state s = 100 with the fishing license revoked since the fisher will always do illegal fishing (a; = 1). The agents who
execute the joint policy 75 = (0, 0) or the robust NE (7 (s), v (s)) = (0,0) will stay in s = 0 with no punishment
since the fisher will never choose illegal fishing (a1 = 1).

B.1.1. PROOF OF CLAIM (40)
We will proof (40) by induction. Note that the base case when h = H has already been verified in (39).

Then suppose the claim holds at time step i + 1, i.e.,
V(i,s,8') € {1,2} x Sx & VRY () = VT (s), (47)

3

it remains to show that the claim holds at time step h as well.
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Towards this, we first consider the cases when state s € S \ {100}. Recall the recursion in (34), we arrive at

QT (5,0,0) = =14+ V52 (s)

Q;’:(S, 0,1)=-1+ Vl,h+1(5)

QUL (5,1,0) = —20p + pV (s + 1) + (L= )Vl (s) £ —20p + V7T (s)

QUL (5,1,1) = —20p + pV (s + 1) + (1= )Vl () © —20p + V77 (s), (48)

where (i) and (ii) holds by the induction assumption in (50).

Analogously, recalling (35) for the second player (protector), we arrive at for any state s € S \ {100} and time step h € [H],

ng(&& 0)=1+ Vzﬂ}’f~_1(5)
Q5 r(5,0,1) =0+ Vzwhi1< ),
Qg,}lj(&l? ) =1 +V2 h+1( )
Q7 (5,1,1) = 3= 2p + V511, (s). (49)
Combining (48) and (49) gives that for any s, s’ € S\ {100},
V(i,a1,a2) € {1,2} x A(A1) x A(Az) : QZ}?(&(M,GQ) = QZ’hP(S/,al,az)a (50)
which indicates
‘/:};P(S) = ]E(al,az)eu(s)xu(s) [Q::hp(sa ay, a2)] = ]E(ahaz)EM(s)xu(s) [Q:f(5/7 ag, a2)] = ‘/:};P(S/) (1)

Similarly, when s = 100, it can be verified that (48) and (49) also hold. Therefore, we complete the induction argument by
observing that for all s,s" € S, Viﬂ;LP(s) = VZ;’LP(S/) is satisfied.

B.2. Additional notation and basic facts

For convenience, for any two vectors & = [z;]1<;<n and y = [y;]1<i<n. the notation z < y (resp. z > y) means z; < y;

(resp. x; > y;) forall 1 < ¢ < n. We denote by z oy = [:17(5) . y(s)]se s the Hadamard product of any two vectors

z,y € R¥. And for any vecvor z, we let 2°2 = [x(s, a)Q](S ayesxa (Tesp. 2°? = [2(s)?],_g)- With slight abuse of
notation, we denote O (resp. 1) as the all-zero (resp. all-one) vector, and e; € R% as a S-dimensional basis vector with the
i-th entry being 1 and others being 0. Recall that we abbreviate the subscript ptyv when the divergence function is specified
to TV distance to write U7 (-) = U (-).

Additional matrix notation. For any (i, h) € [n] x [H], we recall or introduce some additional notation and matrix
notation that is useful throughout the analysis

o 7in = [rin(s,a)](sa)esxa € RS ITiz1 4i: a reward vector that represents the reward function for the i-th player at
time step h.

o II7 ¢ RS*SILiz1 4 3 projection matrix associated with time step h and a given joint policy 7 = {7n}her in the
following form

(1) 7 0" e o’
o’ m(2)T . o’
m=| R (52)
0T 0T . wh,(é)T

where we recall 7y, (s) = [ (s,a)],c4 € A(A) forall s € S denote the joint policy vectors from all agents.

iy € R¥: a reward vector associated with the distribution of actions chosen by any joint policy 7 = {7h}hepm at
time step h. Here, rgh(s) = Egr,(s)[73,n(5, @)] forall s € S, or equivalently ] = 1177 (see (52)).
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. P}? € RSIIZ1 4iXS: the matrix of the nominal transition kernel at time step h, with P}? sa € R1%5 gserves as the
(s,a)-th row for any (s,a) € S x A.

o PV e RS- Ai%S: the matrix of the estimated nomimal transition kernel at time step h, with P}L) € R serves
as the (s, a)-th row for any (s,a) € S x A

° PV € RSIizy AixS 13V € RSILZ: 4ixS: at time step h, those matrices represent the worst-case probability
transition kernel W1th1n the i-th agent’s uncertainty set around the nominal/estimated nominal transition kernel,
associated with any \ vector V € RY. As aresult, we denote P, 'h,s,a (TESP. P 'h.s.a) @ the (s, a)-th row of the transition

matrix P 5, (resp. P 1), defined by

Pi‘,/h,s,a = argminpeugi(P}??w)PV, and Pi‘,/h,s,a = argmlnpeu Py, Q)PV. (53a)

Similarly, we define the corresponding probability transition matrices for some special value vectors that are useful:
PRV e RSIIL, Aixs | prV ¢ RSIIL, 48| prV ¢ RSTIL, 4ixS and PV € RSTIZ A5, Here, we already
use the following short hand notation:

P P and BT P = seeminpag PV

PLY = P and P = P = avgming g ey PV,

ﬁfﬁv = PX;:hil and Pg Sva = ]3::’13 "= argming ;e B ) PV,

}3&‘7 = P ‘Wh?l and ]3[ :A/a = }3}‘?&3 ' =argminp e ﬁijs’a)Pth% (53b)

o PT € RS%S, Pr ¢ RS, P”VERSXS ”VGRSXS P, ERSXSandP”L € RS*S: at time step h, those
Six square probability transition matrices w.r.t. a given joint pohcy m are defined by multiplying the projection matrix
in (52) as below, resepctively:

T T ST, T D , V 7 pm,V T, V T,V
n=T5P),  P,=TGP),  PL=TG5P%",  PL =TGP57,

=V S,V ATr’V A7r7\7
Pl =P, and P, =P (54)

We then introduce two notations of the variance. First, for any probability vector P € RS and vector V € R, we denote
the variance

Varp(V) := P(VoV)— (PV)o (PV). (55)

Then in addition, for any transition kernel P € RS I1iz1 4% and vector V € R®, we denote Varp (V) € RS Ili=1 4i a5 a
vector of variance whose (s, a)-th row of Varp (V) is taken as

Varp(s,a) = Varp, , (V). (56)

B.3. Preliminary facts of RMGs and empirical RMGs

Dual equivalence of robust Bellman operator with TV uncertainty set. Opportunely, when the prescribed uncertainty
set is in a benign form (such as using TV distance as the divergence function), the robust Bellman operator can be computed
efficiently by solving its dual formulation instead (Iyengar, 2005; Clavier et al., 2023; Shi et al., 2023). In particular, the
following lemma describes the equivalence between the robust Bellman operator and its dual form due to strong duality in
the case of TV distance.

Lemma B.1 (Lemma 4, Shi et al. (2023)). Consider any TV uncertainty set U°(P) = U (P) associated with any

PTV

probability vector P € A(S), fixed uncertainty level o € (0,1]. For any vector V € R® obeying V > 0, recalling the
definition of V] in (24), one has

inf PV = PV| - — min [V ! . 57
PG%/I{}’(P) a€[ming Vlgé)l,)fnaxs V(s)]{ [ ]a o (a Hgn[ LX (S ))} 57
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The above lemma ensures that the computation cost of applying robust Bellman operator is relatively the same as applying
standard Bellman operator (Iyengar, 2005) up to some logarithmic factors.

Notations and facts of RMGs and empirical RMGs. First, recall that for any robust Markov game MG, =
{S, {Aithi<i<n, {Z/[gi (P} <i<n, T, H}, according to robust Bellman equations in (13), one has for any joint policy
w:8 x [H] — A(A) and any (h,i,s,a) € [H] x [n] x S x A:

™ (s a) =1 n(s,a) + inf PV, where V7 (s) = Egur, () [Q7 ) (5, @)]. 58
szh( ) (s a) Peu; (PP, ) i,ht1 ih (5) hr()[Q%h( ) (58)

Combined with the matrix notation in Appendix B.2, we arrive at

i . i Vi m,oi
Ve =T + 107 inf PV =T, + PTVOL 59
ih i,h h PEZAZi (P}?) i,h+1 i,h =i,h "i,h+1 ( )

Then we denote the empirical robust Markov games based on the estimated nominal distribution P constructed in 21
as MGop = {S, {Aiti<ic<n, (U] (P} <i<n, T, H} Analogous to (11), we can define the corresponding robust value

™I ). In addition,

function (resp. robust Q-function) of any joint policy 7 in MG}, as {‘tha }1 <i<n (resp. {@L h f1<i<n

similar to (12), we can define the maximum of the robust value function for each agent over MG}, as follows :

x50 S XT_i,0; . Srixmw_;, P
VseS: V5T7(s) = max VXTI () = max inf  V5ETT(s),  (60)
’ m:SX[H]=A(A;) 7 wl:Sx[H]—=A(A;) PEM”i(ﬁO) ’

which can be achieved by at least one robust best-response policy for all s € S simultaneously (Blanchet et al., 2024,
Section A.2).

Moreover, applying the robust Bellman equation in (13) for the empirical RMG MG rob», fOI any joint policy m,

@ff"(s, a) =r;n(s,a)+ inf PIZZ;TP where XA/;T,;“ (8) = Eqromp (s) [@f,f(& a)l, (61)
’ Peuyt (PP ’ ' ’

,s,a)
which combined with the matrix notations in Appendix B.2 leads to the matrix form of the robust Bellman equation:

oTop o T . 7o T Aﬂ"?/\‘n',on
Vin =rip+ Uy inf PV =rf, + Py Vi, (62)
Peusi (PY)

Encouragingly, the above property of the robust Bellman equations ensure that the policy 7 output by the proposed method
DR-NVI (cf. Algorithm 1) is a robust-{NE, CE, CCE} of the empirical RMG MG, when executing different corresponding
subroutines, summarized in the following lemma:

Lemma B.2. The output policy T by DR-NVI (cf: Algorithm 1) is a robust-{NE, CE, CCE} of the empirical RMG ./\//l\grob =

{S, {Aihi<i<n, U] (130)}19'91, T, H} when executing different subroutine Equilibrium € Compute—{Nash, CE, CCE}
accordingly, namely

Vin = \A/f};‘“ = ‘A/:,’f’“m when Equilibrium = Compute — Nash
V(i,h) € [n] x [H] : X/A/\;»,h = 1:/&;‘” > XA/Z.T;;T’“W ) when Equilibrium = Compute — CCE (63)
= VT > maxper, Vif;f”"’?‘ when Equilibrium = Compute — CE.
Proof. See Appendix C.3.1. [

C. Proof of Theorem 4.1

Before starting, let us introduce an essential lemma that characterize the difference between robust MGs and standard MGs.
For each agent, the possible range of the robust value function shrinks as the uncertainty level o; of its own uncertainty set
increases, shown below.
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Lemma C.1. Consider the uncertainty set U%(-) = UJ: (-) and any robust Markov game MG.p =

{S, {Aiti<i<n, {U7 (P)}1<i<n, T, H} The robust value function {th‘” Yien),he[H) associated with any joint policy 7
satisfies:

) . 1
V(i,h) € [n] x [H] : ma‘;(Vﬁ;Ul(s) - migi,’Lol(s) < min{,H —h+ 1} .
se ’ se ’ 3

Proof. See Appendix C.3.2 O

Equipped with the preceding lemma, we are now prepared to prove Theorem 4.1 for three different robust solution concepts,
respectively.

C.1. Proof of learning robust NE/robust CCE
In this subsection, we focus on the two equilibrium concepts — robust NE and robust CCE. The proof is separated into

several key steps as below.

Step 1: decomposing the error. Before proceeding, recall the goal is to prove that the output policy 7 from Algorithm 1
is an e-robust NE/CCE with corresponding subroutine (cf. line 4.1). Namely, 7 € A(A;) x A(A3) x A(A,) is a product
policy satisfies

gapne(T) = max (Vi) = Vi) < (64)

or 7 € A(A) is a (possibly correlated) policy obeys

gapcce(7) = max {V7T7(s) = V()| <. (65)
seSi€[n] ’

We note that gapyg and gapccg exhibit similar properties, differing only in the feasible set of policy 7. So we consider them
together.

To continue, we introduce the following best-response policy of the i-th player given other players policy 7_;:

o~
T, X T 4,04

;= {%;:h}lﬁhSH = argmaXﬂQESx[H]ﬁA(Ai)Vi,ll ) (66)
which indicates that
VT e (67)
Armed with above notations and facts, the term of interest V:f’“ai — Vii"” for any ¢ € [n] can be decomposed as

T —i,0 7,00 _ T ,0 T XT 4,04 X 4,04 7,0 7,0 T,0;
VAT = Ve = (VT - VT ) 4 (VT - 0 4 (VT - )

o~

*TT_q,0% GTIXT 4,04 SGTEXT 4,04 x, T i,05 w0 7,00
S(Vil - Viq >+<Vi,1 - Vi1 )+<Vi,1 —Viq )

< (Vi‘fl,;l'\fiaai _ ‘Zi?fxﬁfi,di) + (A;Arl,oi . V;i,m) (68)
where (i) holds by 171-7’?1’”" = 17;1’%’“07‘ (resp. 171-7’?1’”" > ‘A/iflﬁ’“m) when the subroutine in line 4.1 is Compute —
- ; ; : 7 XT—i,0;
Nash (resp. Compute — CCE) implied by Lemma B.2, and the last inequality follows from V[fl e
maxXyesxmlsaa) Vii 0 =V {7 by definition.

24



Sample-Efficient Robust Multi-Agent Reinforcement Learning in the Face of Environmental Uncertainty

Step 2: developing the recursion. We consider a more general form for any time step » € [H]| and any joint policy .
Towards this, one has

~

VIS =V Sy it PV = (b G ind o PUS)

: P Jh+1
7 Peuol(P}?wsﬁa) PEMUi(PI?,s,a)
(i) Hm, Vi, 705 Aﬂ—"?/\ﬂ',o'i
- Bz’,h Vi,h+1 _Ei,h Vz‘,h,+1 (69)

o T,V ,mo; T,V mos T,V mos Am‘?’\mai
- (Bi,h Vi,h-&-l _Ei,h Vi,h+1) + (Pi,h Vi,h+1 _Bi,h Vi,h+1>

(70)

(iii) % ~ T 7,V ~
7w,V T,0; T,0; 7w,V im0 ’ T,0;
< P (Vi,h-i-l - Vi,h+1> +\Bin Vinia —Bin Vinia

::a;’y h
where (i) and (ii) hold by the matrix version of robust Bellman consistency equations in (59) and (62), and (iii) follows from
the observation

T,V mo; 7r,l7 T,0;
Py Vind1 < Liy Ving

due to the definition of BZ’hV = I} argminpeyo:(po | ) PV < I} arg minpeya: (po

a1 < IR ) PV (cf. (53) and (54)).

i,ht

Recursively applying (70) leads to

~

T,04 T,04
Vin " = Vil
xV pm,V 04 Lo vV Vo STV o 7, Vim0 ’\7"7‘7’\77,@
S B Bihia (Vi,h-i-2 - Vi,h+2) T2 | BinVintz = LineiViga| + ’szh Vintr = Lin Viga
H /i-1
< <> | TLES ) afs (71)
i=h \k=h

where the last inequality holds by adopting the following notations

h—1 N J—1 N N N N
(HPZ%V> = (HP?X) PP e

k=h k=h
Next, similar to (70), we can achieve

Vo — PV

® 5™V
i, i,h+1 ~ b Vih+1

{700 T,04
Vin ' = Vin " = Lin

Aﬂ"‘?/\ﬂ',oi 71',\7’\7\'701- 71',\7’\7\'701- T,V m,0o;
= <Pi,h ‘/;,h+1 _Bi,h Vz‘,h+1 + (Bi,h Vz‘,h+1 _Bz‘,h Vi,h+1

T,V ({70 04 7wV mos A7r7VA7r7ai
< Bi,h (V;,thl -V ) + ’Pi,h V; Pi,h Vv

i,h+1 sht1 L i,ht1 (73)

where (i) holds by (69), and the last inequality follows from the fact EZ’,? IA/fh 1 < EZ’hV Aifrh 1 (see the definition of EZ"?,
i.e., (53) and (54)).

Then following the routine of achieving (71), we arrive at

H J—1

om0, T,0; ™,V

AR>S (Hm ) )
j=h \k=h

Summing up (71) and (74), one has for any joint policy 7,
VT = VT | < max{ VT = VT VT VT
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H /j-1 N H [j—1
<ot S (TL 2 ) X0 (T2t ) s

j=h \k=h j=h \k=h

where the max operator is taken entry-wise for the vectors.

To continue, we introduce an important concentration result about the value estimation error as follows:

Lemma C.2. Consider any ¢ € (0, 1). With probability at least 1 — §, one has for any joint policy ,

. , 71' O Aﬂ"‘/}’\w,ai
i) € () x ool = [PV - 2O T
log( 185 H:lzl A,LTIHN) Aﬂ' log( 183 H:L:1 A,,TLHN)H
S 2\/ N6 VarE;Ir(Vith)—F ]\? 1
H? log( 185 7, AinHN)
<3 8 1 76
< \/ N (76)
where Var pr (-) is defined in (56).
Proof. See Appendix C.3.3. [

Step 3: controlling the first term in (75). Let us introduce some additional notations for convenience. Recall e denote
a S-dimensional standard basis supported on the s-th element. We denote

j—1
di =e, and d =e/ (HPj,X) Vj=h+1,---, H. (77)
k=h

Armed with above notations and facts, for any s € S, we have

H
04 .o _ T,Oi {708\ g T
Vi,h (s) — Vz’,h (s) = <€s, Vi,h Vi,h > = § :<dh’ z]>

j=h
log( 18S T3, AinHN) o log( 185 HLSS A;nHN VH
j=h
log( 18SIIi; AinHN mHN log( 185 [T mHN H '
<l gl — Z<di7\/Varpw(V;;ia>>
j=h
) loo( 88 IIi, AinHN nHN log( 18S 12, AinHN 1A nHN H
e — — 4 oy HZ dj, Varpr ( 1/[;13)>
j=h
log(ISSH AnHN HlOg 185’1_[ AnHN) H o
< ]‘i] +2 0 divvarpwv(vuﬂ)
j=h
=:B

log( 185 1‘[;;(ls AinHN) ;
+ 2\/ ¥ HY <dh,

i=h

VarB’“ (Vz jiﬁ) Vaer_V (Vfgiﬁ)
PT

> (78)

=:8B
where (i) holds by the Cauchy-Schwarz inequality.

Then we control the two main terms in (78) separately.
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~
Vﬂ',o'i

o Controlling 3. To begin with, we introduce the following lemma about ZJH: h <di, VarPﬁ_‘V (Vi

)> whose proof
is postponed to Appendix C.3.4.

Lemma C.3. Consider any ¢ € (0, 1). With probability at least 1 — §, one has for any joint policy T,

)

H

D

j=h

i) € [ x s 30 () Var,e 0 (V75

185 [[7, AinHN
- I?eagc i+118 fggl i,j+1\8 N
Applying Lemma C.3 to B; in (78), we arrive at
4 j o
B =2 ¥ > <d§L,Vaer,0(vmz+3)>
J_
Hlog (1551 At log (5L Aunrt)
= N 3t (ma V7574(5) - min V755 () (1 T 2H - )
@ |3H?log (w) ) log (w>
ine— H—-—h+1 14+2H
R S O :
H2min {1/0;, H} log (M)
=0 N : (80)

18S ], AinHN

where (i) holds by applying Lemma C.3.2, and the last inequality follows by taking N > 4H? log ( +

e Controlling B,. We introduce another lemma; refer to the proof in Appendix C.3.5.
Lemma C.4. Consider the standard RMG MG = {S, {Aiti<i<n, U (PO <i<n, T, H} and empirical RMG
MGop = {S, {Aihi<i<n, {U7 (130)}19;9,,, T, H} Considering any joint policy w, any transition kernel P’ € RS
and any P € R® obeying P € U°:(P), one has

~ ~ 1
V(i,5) € [n] x [H] : ‘Varp,(vgyfl) _ Varﬁ(ij’fl)‘ < min { H—h+ 1} , (81a)
, ; o4
. 1
‘Varp/(X/;Z’iil) — VarI;(Vi?ill) < min {, H—-h+ 1} ) (81b)
) ? Ui
Armed with above lemma, we observe that
oo, m,o (i) s o oo,
Varp= (V;/74) — VarBiW,]f,(Vi,jH) = ‘Hj <Var37;u(1/;,j+1) - Varpf;v(Vi’jH)) ‘
(i) T .o
< Vafp;’(vi,jﬁrl) - Varp:;f/(vi,gjﬂ) 1
. 1
gmln{,H—h-l-l}l, (82)
g

where (i) and (ii) follows from the matrix notations H;-r (cf (52)) and B}H BTJ‘A/ (cf (54)), and the last inequality holds
by applying Lemma C.4 with P’ = Pjoysya7 P= Pf]‘ga forall (s,a) € S x A.
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Plugging back (82) to (78), it can be verified that

log(l&gl—[f’:lAinHN) H ‘
By = 2\/ N5 HZ:, <d§l,
j=h

Hlog(lss 1‘[:':(15 AinHN) H o 1
o M S ()
J=

(3

ij+1

Varpr (V%) — Var

)

< 2\/H2min{1/ai,H}log(W)
< 5 .

Consequently, combining (80) and (83), (78) can be bounded by

o log( 135 1‘[:;;(1; AmHN ) o

H2min{1/0;, H}log (—183 i AmHN)
ViRt (s) = Vi (s) < ~ +6

)
N

H2 min {1/0;, H} log( 35l AN )
+ 2 ¥

\/HQ min {1/0;, H} log(w)
<9 7
B N

where the last inequality holds by taking N > 4 2 log (w)

Step 4: controlling the second term in (75). To do so, similar to (77), we define
. ']71
wp =es and w) =e, <HPZ’]€V> Vj=h+1,--,H.
k=h

With the above notations in mind, following the routine of (78) gives: for any s € S,

~

Vi (s) = Vi7" (s)

18S T, AinHN 18S[[*, AinHN\ H
log (13Tl AIIN ) 2 2\/1og<m;;> NN vy
N N 4 h> PTAVi 541

.
Il

—

) log(wsmﬁg AinHN)Hg N 2\/10g(185H;"1AinHN)

: ,
N N W

M-

Il
-

IN

J 13

+/IVare; (VT 73) = Var e (VT3

(/IVares (V73 = Vi)

+ Nargs v V5T))

H21 (M) 18STI, AmHN, | H
Sp— d IR e i ) (], Var e v (V7554))
< N N h? BZ"’] 7,7+1
j=h
=:8B3
Hlog(w) H , o o
+ # 7 > (i [Varer (V73) = Varge v (V73] )
J=h
=:By
Hlog(w) _ o .
+ 2\/ N Z <wfl, Varp= (V707 = Vii5h) >7
J=h
=:B5
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where (i) holds by the triangle inequality and the elementary inequality \/Varp(V + V') < /Varp(V) + y/Varp(V’) for
any transition kernel P € R and vectors V, V'’ € R, and the last inequality follows from applying the Cauchy-Schwarz
inequality to those terms.

We can control the three main terms in (86) separately as below:
e Controlling 5. First, we introduce the following lemma for Zf: L <w{b, Var pr.v (Vf]j_l)>
Lemma C.5. Consider any § € (0, 1). For any joint policy 7, with probability at least 1 — 0,

H

V(h,i) € [H] X [n] : Z; <wa,Vaer}‘7(Vi7f]ziil)> < 3H (Teag VI (s) — Is%ig V;ﬂ@) . (87)
j=h
Proof. See Appendix C.3.6. O
Then applying Lemma C.5 yields
Hlog (185 1‘[;”/:(15 AinHN) e _ |
83 = 2\ N Z <wi7 VarB;’jV (‘/z,37+71)>
j=h
Hlog (18S 1‘[;;(1s AinHN) R ~
< 471‘,0‘7; _ . '7T,O‘i
<2 N 3H (Iglea‘;( Vi (s) min V; (s)>
H2wmin {1/0;, H} log (—185 LIy Ai"HN)
<4 N ; (88)

where the last inequality follows from Lemma C.1.

e Controlling B, and B; . First, it is easily verified that 54 can be controlled as the same as that for B (see (83)) by
applying Lemma (81b), namely

H2 min {1/0;, B} log( 381 AmHN
349\/ win {1/, H) log( T A2%) ©

Then the remainder of the proof shall focus on Bs. Recalling the definition in (86), one has

Hlog(w) H , - o
o 2\/ N 3 (ko Varz; (V574 — Vi)
j=h
H2 log($3 L ANy ———
= 2\/ N \/hr<nja<XH HVarE;(X/;Jf;l - Vi,j’+11)Hoo
H? 1og(w) o o
=2 N hISHJ%XH Vij+1 = Vi - (90)

Summing up (88), (89), and (90) and inserting back to (86), we conclude

~

VI ) = V)

log( 185 H;L:(ls AinHN )H2 H2 min {1/(% H} log( 185 1‘[;;(1S AmHN)
< N +4 ~
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H?min{1/0;, H} 10g(—18s H?:js AmHN) H? 10g(—18s H?:js AmHN)
+ 2 N +2

7m0 T,0;
max |\Vi i1~ Vija

N h<j<H

oo

. 185 17", AinHN
<7\/H2m1n{l/ai,H}log($)

1
N
H2 log (IS AR A
"2 I e o
as long as N > H?log (w).
Step 5: summing up the results. Inserting (84) and (91) back into (75), we observe that
VI =V
< max { V7 = V5, Ve = v}
H2 min {1/0;, H} log(X22 1Lz AN
< max {9 1,
N
oy HEmin {1/0i, H}log( P At) - [ H2 log(REHEL AN pre_ymel 1) oo
N + N nB || Viaer T Viga ’oo }a (92)
which indicates
max \ Vi = Vi
H2min {1/07, H}log (L5 28 - [H2log (IS AER) o,
<9 N 1+2 N e ’ Vigrr = Vins|
() |H2min{1/0;, H}log(B L= ANy o .
<9 ’ ] 14 = ‘ Yo T
= \/ N g Vi oh
H?min {1/0;, H} log(32 1z AinHIN [Li, AN
<18\/ (1/01, HY log (25Tl sty )
N
where (i) holds by taking N > 16H? log(w) and invoking the basic fact that Aifr;j’rl =V, =0
Finally, we complete the proof by showing that the performance gap in (68) is bounded by
Vi =V < (Vi =0T + (VA - V)
< ‘ V:lﬁ_i - ‘Z?X%% - 1+ ‘ ‘71%1 - Vfl - 1
*, g ST XT_4 SR 7
S,{g[ag]\m Vi 001+}£I€1[31§{]“/;,h_‘/;,h001
H2min {1/0;, H} log( 281l AnHN
SW {1/, 1} log(BS T AntIN) o
N
where the last inequality holds by applying (93) to two different cases when m = 7} x T_; or m = T, respectively.
As aresult, to achieve max,¢s icn] {Vl*lﬁ_cr (5) — Vflg (s)} < ¢ with probability at least 1 — J, we require the total

number of samples

CiSH?[1,<;<, Ailog (M) 1
Na”:HSHAiNZ — 2 min{H,%}
: minj<;<, 0;

1€[n]
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18S 17, AinHN
COSH3 ngign Az 1Og <m+) . 1
> 5 min {H, 7}
9 ming <;<n 0j
18ST[, A;nHN
+16H3S H A; log( HZ::S n ), (95)
1€[n]
providing C; > () are larger enough universal constant, and ¢ < \/ min {H , m}

C.2. Proof of learning robust CE
This section is analogous to the proof for learning robust NE/CCE in Appendix C.1.

The goal is to prove that the policy 7 output from Algorithm 1 is an e-robust CE when executing subroutine Compute — CE(+)
for line 4.1, i.e.,

gapce(m) = _max {}-neairx VIiemoi(s) — VI (s)} <e. (96)

So we define the following best perturbation policy of the i-th player as

7w =T pt1<h<n = (argmaxfiefi Vlflwg> oT 97)
which leads to
O fio®,o
Vii'' = heE Vi (98)

With above notations in mind, for any 1 < ¢ < n, the term of interest can be decomposed as

max vaioﬁ’o'i N Vfﬁi _ VF;»‘U . ‘7”1‘ A ‘7?2,01, . "}f,ai + "/\-f,ai . V%\,ai
fiEF; i,1 2,1 1 ,1 1 i,1 ,1 ,1
1E€Fi

< (Vi -V + (Ve - v 99)

where (i) holds by ‘Zﬁlg > maxy,cr, szlo%a when the subroutine in line 4.1 is Compute — CE(+) implied by Lemma B.2,

= Sfiom,o 5 fioR,04 T
= Vlf1 ' <maxyer, Vl’c1 ™7 for some f; € F;.

f* o

and the last inequality follows from V; ;'

Observing that (99) is similar to (68), it can be verified that following the same pipeline routine and the same facts developed
from Step 2 to Step 5 in Appendix C.1, we can achieve similar results as below:

18S I, AinHN
(—=——)

Vi€ [n]: max V;ioﬁ’[” —

1, 100
fi€F; (100)

= H?2min{1/0;, H} 1

which yields (95) and complete the proof. We omit the details here for conciseness.

C.3. Proof of the auxiliary lemmas
C.3.1. PROOF OF LEMMA B.2

We will prove each line of (63) separately with an induction argument. Note that Blanchet et al. (2023) provides the proof of
the first line of (63) for robust NE. For completeness, we offer the whole proof for all of the three robust solution concepts
(including robust-NE).
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Proof for robust NE. First, we focus on the first line of (63) and provide the following induction argument:

e Base case when h = H. Note that ‘A/ZWH”jrl = 0 for all ¢ € [n] are satisfied by definition. As a result, the robust
Q-function for any joint policy 7 and the estimate from Algorithm 1 satisfy

V(i,s,a) € [n] x S x A: Q\Z’gi(s,a) =71 u(s,a) and @i’H(s,a) =7, (s, a) (101)

which directly leads to

)

Vi =Vin (102)
and the output g obeying

VseS: 7u(-|s) < Compute — Nash (r1,m(s,a),r2,u(s,a), - ,rn (s, a)). (103)

Consequently, invoking line 4.1 of Algorithm 1 gives that for all s € S,

~ ~

A (i) 7,04 (ii)
Vir(s) = Eanzy(s) [Qi,H(S,G)} = Eanzn(s) [QIH (Saa‘):| = Eanzy(s)[rim(s,a)l (104)

(iit)
= By B xmo T (5 )] (105)

(iV) T X/TFfi,O'i
= DB 4 BT (xR () {Q@H (s, a)}

~

7

VI T ) = Vi (106)

max
FiSx[H]—€A(A;)

where (i) and (ii) hold by (101), (iii) arises from the definition of robust-NE (see (103)) associated with {r;, H}ie[n],
(iv) holds by applying (101) for policy m = 7; X T_;, and the penultimate equality follows from the fact that only the
policy of the time step H will influence V;”; “(s) due to Markov property. Thus we complete the proof for the base
case.

e [nduction. To continue, suppose the first line in (63) holds for step h + 1, we shall proof that it also holds for time step
h. To proceed, applying the robust Bellman equation in (61) for the TV uncertainty set /7 (-), we observe that

V(s,a) eSx A: QT (s,a) =rip(s,a)+  inf PV (107)
’ PeUi(PY | ) ’

In addition, line 4.1 of Algorithm 1 gives that for all (s,a) € S x A,

Qin(s,a) =rip(s,a)+  inf PV
Pewz’(Pg,S’a)
=rin(s,a) + inf Pf/j;fl = Q17 (s, ), (108)
PEZ/{"i(P,?’,S’a) ’ ’

where the penultimate equality holds by the induction assumption and the final equality follows from (107). It indicates

.

VseS: Vin(s) =Eanry(o {@i,h(&a)} = Eqnrn(s) [Qi}fi(&a)} = ‘A/f;;ai(s) (109)

and that the output policy obeys

A~

Vs€S: 7a(-|s) < Compute — Nash (Af;;;i(s, 0, Q5 (s,), Q7 (s, -)) : (110)

Then the term of interest satisfies that for any s € S,

VAT (5) = max Eo 7, . [A?iX%‘“‘” s a}
ih ( ) Fo:SX[H]— A(A;) a7 n(S)XT i n(s) Qz,h ( ’ )
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Ea,\,ﬁi’h(s)xﬁ_i:h(s) {7‘1-7;1(3, a) + inf PV;}ZLiT—um}

_ max ~
Ti:SX[H]—=A(A;) Peui (PP | )

—~

max o 7, (5)x7in(s) {Tz‘,h(s, a)+ inf PV%M%”"’?}

max .
Fin€A(A:) FiSx[HISAM) peuss(pp )

(ii) . T,

p max Eoms (Y%7 1 (s {Ti,h s,a)+ inf PV L}
Fl9ERay FeTun e F @ [Tenls ) T B PV

= max  Egoz  (o)x7_ s (s [A.ﬁ’ai s,a } , 111
Ti,n(8)EA(A;) ih(8)XT—in(s) Ql’h ( ) ( )

where (i) holds by 7; (s, a) is independent from all other time steps i’ # h, (ii) is due to the exchangabil-

. . . . . . T 7%, —i,04 _
ity of maxz,.sxm—a(a,) and infp o po - along with the induction assumption VIS = VAT =
?%tX%—tagi ’

MaX7,:Sx [H]»A(A) Vit , and the last equality can be verified by (107). To continue, applying (110) with the
definition of robust NE, one has

P~
04

Ean#, (s)x7_i 1 (s) [Qi,h (8’“)}

VT (s)

max
Ti,n(s)EA(A;)

~ —~

= Eaen, (s) {Qih“i(s,a)} = Eacny(s) {@i,h(sﬂ)} = Vin(s), (112)

where the penultimate equality follows from (108). Finally, it is easily observed that
VseS: ‘//\;7}1(8) = Eaeﬁh(s) {@i’h(s, a):| = Eaeﬁh(s) [@i}fl (87 a)} = ‘//\;7,?};0‘(8) (113)
Combined this fact with (115) shows that ‘71 h= IA/th = 17;,’?’“01', which complete the induction argument.

Proof for robust CCE. The proof is analogous to the above argument for robust NE. According to the different subroutine
Compute — CCE and the corresponding output policy 7, the proof only differs in two steps. First, for the base case, following
the same routine in (106) but replacing the robust NE property by the one of robust CCE, one has

Viir(8) = Bany (9)[Qi.1 (5, @)] = Bamsy (o) [rim (s, a)]

e Eans, ()71 (s) 70,1 (5, @)]

v

A~

an%in(S) X%\—i,H(S) [inj—?ﬂ-ii’ai (87 a)

max
i, 1 (8)EA(A;)

_ ‘7%1%?71,701' — ‘7*,%,1',011. 114
%icsx[g}ixeA(.Ai) i, H (3) i, H ( )

Secondly, following (115) in induction step, we can achieve

)

Vi < Vi (115)
and ‘A/l h = f/fé‘” > ‘A/i*;f""g"', which complete the proof.

Proof for robust CE. The proof is similar to the one of robust NE as well. According to the different subroutine
Compute — CE and the corresponding output policy 7, the parallel claims to (106) and (115) are shown below, which we
omit the process for brevity:

Viir(8) = Baay () Qi1 (5, @)] = Bamsy (o) [rim (s, @)

_ {7 fioT,o4
> max Bang o .ofa(s[rin (s, a)] = max Vi ™™, (116)
and
{7 fiom, 04 U001y
glea% Vi’h < Vz}h =Vin. (117)

Thus we complete the proof.
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C.3.2. PROOF OF LEMMA C.1

To begin with, we observe that

i V" (5) = g B, ([ Q7 (5 @)] = i By o [ron (s @) + ) dnf - PVT)
>O—|—m1nV7Th$1( s), (118)

where the second equality holds by the robust Bellman equation (cf. (13)). Similarly, one has

max ViTi(s) = max Eom, ()@ (s,0)] = max Eqrm, () [7i,n (s, @) + Peuaiil(l}i’w ) PV
<1+ max inf th?l (119)

(5,)ESXAPEU (Ph s.0)

Armed with above results, we are ready to prove Lemma C.1. Towards this, we introduce some additional notations for
convenience. Fixing any joint policy 7, note that for any (¢, h) € [n] x [H], there exist at least one state s}, that satisfies

V77 (st ) = minges V7 (s).

Then, it is observed that for any (s, a) € S x A and accessible uncertainty set o; > 0, we can construct an auxiliary vector

P oa € RS by strictly reducing the values of some elements of P 5 4 so that
OS Pllz,s,a S Ph,s,a and Z Ph,s,a ) Phsa - HPhsa Ph,s,aH1 = 0. (120)
s'eS

Recalling e,: , denote a S-dimensional standard basis supported on s7 ;,, the above fact directly indicates that

1 1
3Pt oilent, ] = Proall, <5 1P Prall, + 5

-
oiles, ]|, < o (121)
where the first inequality holds by that TV distance enjoys the triangle inequality.

The above results in (121) imply that P; _ , + 0 [es: | | " is a distribution vector and Py o +oiles, ] T ey (Ph.s.a)s
which leads to 1 ‘

Pelxt"iir(llf’h s.a) PV s (P];’S’“ toi [eszvh}T) Viidh < ||P}/L5‘1||1H‘/zﬂ;zj-1

ATV (5 )

<(1- O',L) max thi‘l( s) + oy mln thf;l( s), (122)
where the last inequality can be verified by (see (120))
||Pf/L,s,aH1 :ZPfIL,s,a(S/) = 7Z(Ph,5-,(l(s/) 7Pfll,sa, +thsa - 170-1 (123)
Inserting (122) back to (119) yields
T,04 < 1 f P 471'70'7;
meagv (5) + (s, ggngPeuw(Phw) Vit
§1+(1—01)mEaXVlh+1( )—i—olmanl,;Jr’l( s). (124)

Combined above fact with (118) shows that

max VT (s) — rrgn Viii(s) <1+ (1 —03) max Vi (s) +oi rrém Vo (s) = mm Vi3 (s)
< 1+ (- 00) (mag V209 - min V)

<1+ (1-0y) {1+ (1—0y) < xVh+2 néi‘lglth_‘_Q(s)ﬂ
1

1—(1—o,)H"

g;

- < = (125)

Combining above result with the basic fact maxses V;'”" (s) — minges V;7; 7" (s) < H — h + 1, we complete the proof.
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C.3.3. PROOF OF LEMMA C.2

The proof is adapted from the routine for proving Shi et al. (2023, Lemma 9).

Step 1: a point-wise bound. Consider any fixed (independent from ]30) value vector V', combined with the definitions in
(53), the (s, a)-th row of the term of interest can be written out as

inf ~ PV—  inf PV
PeUi(PY ) Peu“i(Py, )

P,?_’S)a V], —oi (a — min V1., (s’))}

S

PYhcaV = PlhaV| =

i,h,s,a

—~

i)

max {
a€[ming V(s),maxs V(s)]

_ max {PhoalVle—oi (a=minV],(s))}]

a€[ming V (s),maxs V(s)]

< max
a€[ming V (s),maxs V (s)]

- P}?,s,a [V]

PoalVle = PrlsalV]

h,s,a a h,s,a

< max Pf?,&a V]

< , (126)
a€l0,H]

[e3% e}

where (i) holds by applying Lemma B.1, and the last inequality can be verified by the fact that the maximum operator is
1-Lipschitz.

To continue, recalling the definition of variance in (55) and using the Bernstein’s inequality, one has for a fixed « € [0, H]
and (s,a) € S x A, with probability at least 1 — 0,

210g(%) 2H10g(%)
<2285 Ry (V] + )
210g(%) 2H log(%)
<1/ T\/Varpgyw(v) + BN (127)

where the first inequality holds by the fact that ||V||, < H, and the last inequality can be easily verified by noticing that
Varpo ([V]a) < Varpo (V) forall o € [0, max, V (s)].

(Poa = Phoa) Vi

Step 2: the union bound. Then to obtain the union bound, we first notice that the function

(Pf?,s,a - ﬁl?,s,a) [V]Oé’ is
1-Lipschitz w.r.t. « for any V obeying 0 < V(s) < H. Therefore, we can construct an €1-net N, for « over [0, H| with the
sizeup to [N, | < % (Vershynin, 2018). So applying the uniform concentration argument combined with (127) yields that
forall (o, s,a) € N, x § x A, with probability at least 1 — J,

o ~ 2log (%) 2H log (M)
‘ (Ph,s,a - Phﬁg’a) Vl]a| < N Varpo (V) + IV (128)
Inserting the above fact back to (126), we arrive at: for all (s,a) € S x A,
Pivhsa,vv_f\)ivhsavv‘S max ‘Pi?sa[v]a_ﬁf?sa[v]a

a0 H] |~ e 8,
@ 0 50
< sup ‘PhAs,a [V]a - Ph,s,a [V]a +é1

a€Ne,; '

Gy | 2log <M) 2log (M) H
< ~ Varpo V) + N +e1 (129)
Gi) | 2log (w) log (w) o
< ~ Varp}?,sya(V) + ~
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) log (185 1‘[;;:1 AiN)

log (1851‘[;;:1 AiN) H

<2 ~ Varpo (V) + N (130)
log (185H[;L=1AiN) log (18,5‘ 1‘[;:$=1 A,-,N) H
<2 Ve + ki
H?log (183 1‘[%1 AiN)
<3 131
< N (131)
where (i) arises from the fact that the solution a* = arg max,e(o, ) ’P,?,S’ oV, — ]3,3’5,& [V],| falls into the e;-ball
centered around some point inside N, and ‘P,?,& V1, — ﬁ{isj o V], | is 1-Lipschitz w.r.t. «, (ii) holds by (128), (iii)

2SI | AilNe |
follows from taking €; = Log( 311% —) , (iv) is verified by | N, | < % < 9N, and the last inequality is due to the

fact ||V |o < H and letting N > log(*23 izt AV

Invoking the matrix form (see (53) and (54)) and applying the above result with V' = ‘A/fhfr’l for a union bound over all
(h,i,s,a) € [H] x [n] x § x A, we complete the proof: with probability at least 1 — 4,

. Vimas 5TV 5 Ref
V(h,i) € [H] x [n] s aTy = \P;ih Vo — BT U

_Nypr pm Vim,00 7 B,V im0
- ‘thi,h Vi,h+1 - thi,h Vz‘,h+1

(2 ur | poVyme: _ prVimoes

= h P4k Vihtl T T ik Vi kAl (132)
SQ\/log(W)Hz\/\mﬂog(w)Hl

- 3\/H2 log(w) 1 (133)

where (i) and (ii) hold by the Jensen’s inequality, Var(-) is defined in (56), and P}L), Pj are defined in (54).

C.3.4. PROOF OF LEMMA C.3

In this section, we want to take the accessible range of the robust value function ‘A/:T]_T_l into consideration when controlling

H j S0 . . . .
> = { dy, Var ¥ vy ; 71) ). Towards this, we introduce some auxiliary values and reward functions as below. For any
LIV

time step h € [H] and the i-th agent:

O

o VN = minges V7" (s): V™" denote the minimum value of all the entries in vector V;";7".
o V/ :=V77 — V™1 truncated value function.

~min __ .7 {7min {7min . :
o T =T, T+ (VhJrl -V ) 1: truncated reward function.

7‘7

With above notations, we introduce the following fact of V,;:

SRR 3o o2 Sming O 7 AW’VAW,U' {rmin
V=V =V l=riy+ Py Vi — Vil
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7'rV T,0; ﬂ—"/} 71',‘7 {7,054 {7min
=rin+ L2, Vh+1+(ch Py )Vi,h+1*Vh 1

T min min 7, Vi SV Vom0
=Tt (Vh+1 V ) 1 +£i h Vher + (Bi,h Py )Vi,thl
= e P+ (BL B )0, (134)
where (i) holds by the robust Bellman’s consistency equation in (62).

With the above fact in hand, we can verify that

Var Vo (thgﬁ) Vafpw V(Vh+1) BZ}LV (Véﬂ © Vfi+1> - (EZ’hVVi;ﬂ) °© (Ez}zvvi;Jrl)

=i, =—i,h

(11) . in 5™V LB e o2
Py hv (Vh+1 ° Vh+1) - (Vh — T - (Bi,h - b ;I/)V )

— ﬂ',V i ] ~min Aﬂ-"’} 7F,‘7 o
=P (Vh+1 ° Vh+1> VioVi+2Vo ( Tin T <Bi,h - P )Vi,h+1)
% - 2
~min 5TV oV o \©
- (Ti,h + (Ei,h Py )\Vinia

(111)

< P (Vo Vi)~ o T 20 (1| (B — 20 )0 (135)
R H2log (185 H?:(ls AmHN)
< PIY (Vw0 Vi) = Vio V42| W o1+ 611V R 1a36)
holds with probability at least 1 — J, where (i) follows from the fact that Var . ¢ (V — b1) = Var . v (V) for any value

71 h =—i,h
vector V' € RS and scalar b, (ii) holds by (134), (iii) arises from T m <rT " < 1 since Vh”j’f th‘“ < 0 by definition, and
the last inequality holds by (133).

Finally, combining (136) and the definition of d{b in (77), the term of interest can be controlled as

M=

<da,Var <v;;ia>>

h

<.
I

H2log ( 188 H?:(ls AinHN>

1
N

£ij

I
.Mm

<
Il
>

@) | 2L (Va0 Via) = Vo W 42010 llaol + 61l

—~
=

H lo
- ~ ~ o~ ~ ~ 5
<3 [@) T (B5Y (Vi o Vi) = 97 0 7)] + 2BV loe + 6H2( P71 ( ~
j=h
4 j+1\T iNT (177 1/ i 20117 IOg(ISSHL‘%AmHN>
! ! !/ !
=3 [@T (Va0 Vi) = @) (7 0 97) | + 2H1Viloo + 6H2 [l ~
j=h
log (183 I, AinHN)
~ ~ ~ ~ 3
< N, ([P o Vi |+ 2H1 o + 6H2( Vi -
18S 17, AinHN
! 217/ log( ‘15 )
< 3H||Vylloo + 6H? | Vy ]l N
R 18S 1%, AinHN
=3H||V/ ||~ 1+2H\/ o8 ~ ) , (137)
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where (i) holds by the fact ||‘A/}Z||OO > HXA/,:HHDO > > ||‘7I’1,H0O and basic calculus.

C.3.5. PROOF OF LEMMA C.4

We start with the proof about the empirical MG MG,,;,. To begin with, for any policy 7 and the i-th agent, we define

Vhe[H: VRN =VT" - min VI, (138)
which leads to
1
‘V;;’f" gmin{_,H—h+1}. (139)

which holds by applying Lemma C.1.

Armed with above notation and facts, considering any transition kernel P’ € RS and any P € RS obeying P € U° (P,
we have for all (i, h) € [n] X [H]

Var p (V77) — Var 5(V,7,77)

= [Varp: (V™) — Var (V™|
< |[|P =P [Vl

1 2 1
<o <min{,Hh+1}> Smin{,HhH}- (140)
o; oF)

Similar facts can be verified for standard MG MG analogously.

C.3.6. PROOF OF LEMMA C.5

Analogous to Appendix C.3.4, we introduce some auxiliary values and reward functions to control

H
J T,0%
>~ (w], Varpe v (V7))
i=h '

as below: for any time step h and the i-th agent

o VM= minges V7 (s): V™" denote the minimum value of all the entries in vector V,7;7".
° V,{ = Vi”}f“ — thinlz truncated value function.

min __ .7 min min . :
o =77, + (V5 — Virin) 1: truncated reward function.

Then applying the robust Bellman’s consistency equation in (59) gives

! _ YyT0 minq __ .7 7w, Vy,moi min
Vi=Vin = Vi l=riy + Py Vipth = Vil

=i+ (Vi = V™) 14+ P Vi, = i + P Vi (141)
The above fact leads to

T,0; (i) T,V T,V T,V
Varg;}:’(vz,hﬁ»l) = Vargh"(vfiﬂ) =P, (Vf;+1 © Vfi+1) - (Bi,h V}i+1> °© (Bi,h VI:Jrl)

1
(1_1) PTF7V V/ V/ V/ min o2
= Zih ( h+1 © h+1> —\VYR T Tin
_ pm,V / / / / / min min min
=P (VigroVigy) = VioVi 42V o Tih —Tih ©Tin

< PTY (Vi1 o Vi) = Vi o Vi + 2| Vi [loo1 (142)
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where (i) follows from the fact that Var v (V' — bl) = Var (V) for any value vector V € RS and scalar b, (ii) holds
—i,h

v
by

by (141), and the last inequality arises from rg}ibn <r7, < lsince Vh“i‘ll — V;min < () by definition.

Consequently, combining (142) and the definition of wi in (85), we arrive at

M=

<wi, Varprv (Vi) >

<.
Il

Il
M=
s
—
—~

~
Il
>

PV (Vs o Vi) = Vi o Vi 4+ 2V 1)

£ij

INZ
<Mm

<
Il
=

[T (B (Va0 Vi) =) 0 V7)] + 2811V

|
.Mm

<
Il
>

(@) (Vo Vi) = @) (V] 0 V)] + 28R

lwn ™ ([ Vizea © Vil + 2H Vil

<
< 3H||V} oo, (143)

where (i) and the last inequality hold by the fact ||V} [[oc > |V} | 1llcc > -+ > [|[VE |00 and basic calculus.

D. Proof of Theorem 4.2

In this section, the proof will focus on a special and simpler class of RMGs: distributionally robust Markov decision
processes (RMDPs) — single-agent RMGs.

Before proceeding, to keep self-contained, we first briefly introduce the definition of a RMDP in finite-horizon episodic
setting. Recall that a multi-agent general-sum robust Markov games (RMG) with TV uncertainty set can be represented
as MG = {S, {Aiti<i<n, {UT (P") }i<i<n, T, H} Resorting to the same notations for RMGs, a finite-horizon episodic
distributionally robust MDP (RMDP) can be represented as Mo = (S, A, U (PY), {rinti<n<m, H), ie., letn = 1.
Then we can show an essential fact between RMGs and RMDPs that allow us to turn to RMDPs for proving Theorem 4.2.
Without loss of generality, we consider the class of RMGs with n players that obey |A;| > max{|As], - ,|Amnl}-
Moreover, let |Az| = |A3| = -+ = | A,,,| = 1 for simplicity, which leaves those agents’ (i = 2,3,--- ,n) choices of
actions having no randomness or effects on the transitions or rewards for any agents. Consequently, it is clear that finding a
robust NE/CE/CCE of such RMGs degrades to finding the optimal policy of the first agent over a corresponding RMDP
Miob = {8, A1, U (P°), {r1n }r<n<m. H}.

Therefore, in this section, we turn to construct the lower bound for finding the optimal policy over RMDPs instead, which
directly imply a lower bound for finding equilibriums (robust NE/CE/CCE) of RMGs.

Before continuing, we make note of the following useful property about the KL divergence in Tsybakov (2009, Lemma 2.7)
which is useful in this section.

Lemma D.1. Forany p,q € (0, 1), it holds that

(p—q)?

KL(p || q) < =g

(144)

D.1. Constructing hard robust MDP instances

The hard instances developed here are different from standard MDP since we need to consider that the transition kernel can
be perturbed in robust MDPs. This is the first lower bound for robust MDPs in episodic setting.

Step 1: constructing hard robust MDP instances. To begin with, we first introduce an auxiliary collection © C {0, 1}H s
consisting of H-dimensional vectors. In addition, resorting to the Gilbert-Varshamov lemma (Gilbert, 1952), we notice that
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there exists a set © C {0, 1}# such that:

and  |©] > /5, (145)

~ ~ — _H
forany 0,0 € © obeying £ 6: |60 —0|, > 5

Without loss of generality, we denote the first component of © as ¢ and denote ©* as © \ {¢#2¢}. With this in mind, we
construct a set of RMDPs as below:

M(W,@) = {MZ) = (S,A,UG(Pw’e), {Th}le,H) | weW = {O, 1, cee ,SA — 1},0 = [‘%z]lﬁhﬁH S @*} s
(146)
where

§=1{0,1,....,8—1}, and A=1{0,1,---,A—1},

and o will be introduced momentarily.

In words, the collection of M (W, ©) consists of [W| = S A subsets, with each includes |©*| different RMDPs associated
with some w € W. The state space of each RMDP MY € M (W, ©) is denoted as Sy, includes two classes of states
X ={x;|ieW}and Y = {y; | i € W}. Each state in X and Y only have two possible actions Axq = {0,1}. So we
have totally 2|W| = 25 A states and there is in total |Sxq||Arm| = 45 A state-action pairs.

We shall define the nominal transition kernels for M (W, ©), where any state z; € X" only transits to the corresponding
y; € Y or itself. For convenience, for any s = x; € X, we denote the corresponding state y; € ) as s* Y.

Armed with above notations, we define a basic nominal transition kernel associated with §°3¢ as below: for all (h, s,a) €
[H] X SM X ./4/\/(,

(p+A)(s'=s"7Y)+ (1 —p—A)(s' =5) if s€X,a=0
Pr(s'|s,a) =< pl(s' =s"7Y)+ (1 —p)l(s' = s) if s€X,a=1-0b> (147)
1(s' = s) if sel.

In addition, for any RMDP M? € M (W, ©), the transition kernel P = {P," ’e}fl[:l is specified as follows: for any
(s,a,8',h) € Sp X Apm X Sy x [H,

pl(s' =yw) + (1 —p)L(s' =3) if s=waxy,a=04
/
s

B(s'[s,a) = § ql(s =yu) + (L= q)(s' = s) if s=wya=1-6; (148)
Pr(s'|s,a) otherwise
Here, p and q are set according to
0<p<p+A<1l and 0<g=p-A (149)

for some p and A > 0 that will be introduced momentarily. In words, the transition kernel of each M?% ¢ M(W, )
only differs slightly from the basic nominal transition kernel P;’ when s = x,,, which makes all the components within
M(W, ©) closed to each other.

To continue, the reward function is defined as

) ] 1 ifse)y
V(h,s,a) € [H] x Sp x {0,1} 2 7p(s,a) = { 0 otherwise. (150)
Uncertainty set of the transition kernels. Denote the transition kernel vector as
V(h,s,a) € [H] x Sp x {0,1}: B0 = P0(+ | 5,a) € A(S). (151)
Recalling the uncertainty set defined in (8), we know U/ (P*-?) represents:
o w o w,0 o w,0 Dw,0 1 Hw,0 w,0
u (P 79) =ou (Ph,:s,a)’ Uu (Ph,s,a) = {Ph,s,a € A(S) : §HP}z,s,a - Ph,s,a”l = U}’ (152)
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where ® represents the Cartesian product over (h, s,a) € [H] X Spr X Apq.

For such TV uncertainty set, without loss of generality, let the uncertainty level to be o € (0,1 — ¢g] for some 0 < ¢y < 1.
Then taking ¢ < 1 amd ¢; == € < 1, pand A are set as

p= fo<off g A< o 0S50 (153)
(1+%)o otherwise ~ | %o otherwise

Combined with H > 2, it is easily verified that 0 < p + A < 1 as follows:

C2 C1 C1 261 CQ(H*l)
h — (1 —) —0o<1-— —0c<]l—-——=<1
Wena>2H +H U+Ha_ coJrHa_ T <1,
Co 3ca
h < —: — <1 154
Wena_2H o = (154)

Then we introduce some useful notations and facts throughout this section. First, for any RMDP M% € M (W, ©) and any
(h,s,a,s") € [H] x Spm X Ap X Spq, we denote the minimum probability of transiting from (s, a) to s’ determined by
any perturbed transition kernel Py, 5 , € Z/I”(P“”e ) as

h,s,a

PYO(s' | 5,a) = inf Py(s'| s,a) = max{Py(s' | 5,a) — 0,0}, (155)
Py s a€Uo (P2

h,s,a

where the last equation can be easily verified by the definition of /7 (-) in (152) and distributing the probability on s’ to
other states.

Especially, for convenience, we denote the transition from each s € X’ to the corresponding state s* =¥ € ) of any M? as
below, which plays an important role in the analysis: for all h € [H],
for zy : p, = PV (g |5sO0) =p— 0, q, = P (g | 2 1 — 04) = g — 0,
forse X \ {xw} : B;I = Bgﬁ(sw—ry | 8’92858) =p+A—o, g;l — B#@(sx—ry | s,1— ezase) —p—o, (156)

which follows from the following fact that is clear from (153)

p+Azpg=p-Azmax{ . o} (157)

Then it is obvious that

which motivates us to abbreviate them consistently as p = PL4=4, BI = Bll’ and g’ = g/l later.

Robust value functions and optimal policies. Now we are ready to characterize the corresponding robust value functions
and identify the optimal policies for RMDP instances. With abuse of notations, for any RMDP M% ¢ M(W,0), we
denote 70 = {ﬂ,*L’“”g}thl as the optimal policy. In addition, at each step h, we let V' 2w (regp. |79 0.0y represent
the robust value function of any policy 7 (resp. 7**-?) with uncertainty level o. Armed with these notations, the following
lemma shows some essential properties concerning the robust value functions and optimal policies; the proof is postponed to

Appendix D.3.1.
Lemma D.2. Consider any M? € M(W,©) and any policy w. Defining

ey = pra(On | 20) + qrn (1 — On | 24), (159)
it holds that
. T,0,w,0 _ _maw,0y,m0w,0 T,w,0 T,0,w,0
Vhe[H]: V, (zw) =2, V0T (Yw) + (L= 27 )VE T (20), (160a)
V(s,h) €Y x [H]: V;P7%s) =1+ (1 - o)V;n 7% (s) + oVin T (w). (160b)
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In addition, for all h € [H], the optimal policy and the optimal value function obey

*,W,0 *, 0,0
™ (On | 7w) =Ty (On | yw) =1,

Tl (g8 | s) = a P (95| s77Y) = 1, Vs € X\ {2} (161a)
and
Vo (1) = pVili T (yw) + (1= )V T (2). (162)

D.2. Establishing the lower bound

Recall our goal: for any policy estimator T computed based on the dataset with N samples, we plan to control the quantity

o o B VAT 2 ey s {9 A ) a6

Step 1: converting the goal to estimate (w, ). Towards this, we make the following essential claim which shall be
verified in Appendix D.3.2: letting

2 ifg < L2
e M= (164)
1 otherwise
and
£ ifo < L2
A=cd B N9 =20 (165)
% otherwise

which satisfies (153), it leads to that for any policy m obeying

H
— 166
3 (166)

H
3 a1 2w) — 70 2w)]|, =

h=1

one has
Vi () = VT (2,) > e (167)
Now we are ready to convert the estimation of an optimal policy to estimate (w, §). Towards this, we denote P, ¢ as the

probability distribution when the RMDP is M? for any (w, #) € W x ©*. In addition, we represent the subset of M (W, ©)
excluding the ones associated with some w € W as below:

G =W\ {w} x O (168)
Then, for any (w, 8) € W x ©*, suppose there exists a policy 7 that achieves

*,0,W, T, 0w 3
Puo { V"7 (20) = V77" (wa) S ) > 3, (169)

which in view of (167) indicates that we necessarily have
H
H 3
~ *, 0,0
Pw.o {Z 7 (- | 2w) = 70 () ||, < 8} > (170)
h=1

Consequently, taking 6 = arg mingce Zthl |7n (| zw) — (| To)|
estimate of (w, 6):

1, We are motivated to construct the following

o =0 if feeor
o 9 171
(w, /> {6 G w if 0=6 \ O* — gbase_ ( )
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Then let us focus on the first kind of scenarios in (171) when 6 € ©* so that we have the hope to estimate (w, 6) correctly.
*,w,0

Namely, if Ethl H?rh(- | 2w) — 7, 7 (¢ |xw)H1 < 4 holds for some § € ©*, then for any 6’ € ©* obeying ¢’ # 6, one
has

H H
Z [ L) = L)y 2 30 ) = m )|, - ZHM |2w) = w3,

) (172)

where the first inequahty holds by the triangle inequality, and the last inequality follows from the assumption
Zle H%h( | Ty) — 7" 0( | ) ||1 < % and the separation property of 6 € © (see (145)). Similarly, It shows that we

have (@,0) = (w, 0) if

H
S OFERC 2w) — 70 2], < <ZH7rh (lzw) — 7™ () zw)|, (173)
h=1

holds for all (w’,8’) € W x O that (w',0") # (w,8). It is clear that the above equation can be directly achieved when
H ~ *,w,0 H . .
D ohe ||7Th(~ | Tw) — 77 (- |a:w)||1 < 7 » which gives

~

~ x ~ *,w,0 H 3
L) [(w, ) = (w,@)} > Py {Z (7R | @) — 7 (- 2|, < 8} > (174)

h=1

Step 2: developing the probability of error in testing multiple hypotheses. Before proceeding, we discuss the data
generation choices of the dataset D. Recall that each RMDP inside the set M ()}, ©) under testing has two classes of states
X and Y, with each has [W| = S A components. Noticing that accordingly, M (W, ©) consists of |W| subset, with each
{M? }yco~ constructed symmetrically around one pair of state (7, %,,) € X x ), respectively. Therefore, at each time
step h, it is clear that the dataset are supposed to be generated uniformly by the transition kernels on each pair of states
(Zw, Yw) € X X ) to maximize the information gain. Namely, the dataset D has in total % = SALH samples for the two

states (T, Yw) € X x Y at each time step h € [H].

Now we turn to the hypothesis testing problem over (w, ) € W x ©*. We shall develop the information theoretical lower
bound for the probability of error. In particular, we consider the minimax probability of error defined as follows:

-~

b (gl,g) (wﬂ%%{x@* {Pw’e((w’ 0) # (w79))}’ (175)

where the infimum is taken over all possible tests (w, 5) constructed from the dataset.

To continue, armed with the dataset D with N samples generated independently, we denote ¢ (resp. ;/,“1”’0(.9, a)) as the
distribution vector (resp. distribution) of each sample tuple (s, ay, s},) at time step h under the nominal transition kernel
P9 associated with MY . With this in mind, combined with Fano’s inequality from Tsybakov (2009, Theorem 2.2) and the
additivity of the KL divergence (cf. Tsybakov (2009, Page 85)), we obtain

_ max _KL(p? | p?) + log 2
Pe > 1 _N(w,0)7(75,9)€W><@*,(w,@);ﬁ(ﬁ,@)
‘- log [W]|©~]
() N log 2
>1- 8N max KL(u“”‘9 |uw’0) _ 082
H  (w,0),(@,0)ewx0,(w,0)#(@.9) H
(i) 1 N
> - — 8V max KL(;L“”G |uw’0) (176)

2 H (w,0),(@,0)ewx0r,(w,0)#(w.0)
where (i) and (ii) holds by |W||©*| > 2(ef1/8 — 1) > ef1/% aslong as H > 161log 2.

43



Sample-Efficient Robust Multi-Agent Reinforcement Learning in the Face of Environmental Uncertainty

To continue, applying the chain rule of the KL divergence (Duchi, 2018, Lemma 5.2.8) with the dataset D generated
independently yields:

KL(/Lw’G | Mw,G)

Il
s

[KL(PE ¢l s,a) | PP s,a0)

O Y e [KUEE s | s )]

h=1se{zw,zz},ac{0,1}

H
1 B s
SIS KL ys.0) | PP s0))] (177)
h=1se{xw,x5},a€{0,1}

where (i) follows from the fact P;f"g(- |,s,a) and Pf’9(~ |,s,a) only differs from each other on state z,,, x5 (see the

definitions in (147)), and the last inequality holds by noticing 12’ (s, a) < 2 ae{o1} 1 (s, a) = a7

Consequently, now we turn to focus on terms in (177) in different cases of the uncertainty level o.
e When(0 <o < 2% When w = w, it is clear that

> KL(PP(-],s,a) | B0, 5,a)) =0 (178)
s€{xw,xg },a€{0,1}

as long as 6}, = §h. Then if 6, # gh, without loss of generality, we suppose 0, = 0 and §h = 1, which indicates
P01 20,0) =1—p and PY?(0]2,,0) =1—q. (179)

Applying Lemma D.1 gives

“ql-q9) q(1-9)
() (cs)%e? < 4(c5)?e?

= 1
H*q(1—q) = cH3 "’ (180)

where (i) and (ii) follows from the definitions in (149) or (165), and the last inequality arises from ¢ = p — A > 72
(see(153)and1 —¢>1-p>1—-2 > 1.
The same bound can be established for KL (P, 0] 24,1) | Py ’5(0 | 2., 1)). Inaddition, itis easily verified that when
w # w and O, # 052 (resp. 0, # 6b2s¢), the same bound can be developed for KL(P;L”’O(O | Z4,0) || P;?’e(() | £4,0))
and KL(P% (0] 2, 1) || P90 24, 1)) (resp. KL(P?(0|24,0) || P7%(0]25,0)) and KL(P%(0 | za,1) ||
P}?)e(o |z, 1)))
Summing up the results with the fact in (180), we arrive at

16(65)262

3 KL(P (-], s,0) | PO |, 8,a)) < — 2. (181)
coH
s€{zw,rg},a€{0,1}

e When 5% < 0 <1 — ¢o. Following the same pipeline, it then boils down to control the main term as below:

~ _ 2 . A2
KL(B(0 | 20,0) || P2(0] 2, 0)) < L9 O
(P 0120:0) | (0] 2,,0) < P20 0 S0
() (c5)20%e? 2(c5)?0e?
- H%(1—¢q) = coH?

(182)
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where (i) and (ii) follows from the definitions in (149) or (165). Here, the last inequality arises from

c (i) cqp () ¢
1fq21fp:1*(1+ﬁl)0200fﬁl > 50
(iii)

p>qg=p—A > o, (183)
where (ii) holds by the definition of ¢; = %, and (iii) follows from (157). Consequently, we arrive at

8(c5)?0¢e?

w,0 @75 )
> KB CLsa) | B s ) < SO0

se{xw,zg},a€{0,1}

(184)

Summing up (181) and (184), we achieve for any (w, ), (w,0) € W x ©* with (w, ) # (w, #) and any time step h € [H|

w, 0 @,0 16(05)252
> KL(P (-], s,a) | P, 8,a)) < ——>—— max{o,1/H}. (185)
C()CQH2
s€{Tw,xs },ac{0,1}
Plugging (185) back to (177) and then (176) leads to the following fact:
1 8N
Po > = — — _ max ~KL(pf | pe?
T2 H (w,0),(@,0)eWwx6r,(w,0)£(@,0) ( | )
H
1 8N 1 w.0 @.0
> -2 _ max e KL s.a) | PP s,0))]
2 H (w,0),(@,0)eWwx0,(w,0)£(w,0) SAH;;se{xw,x%ae{o,l} " }
1 128N(c5)2%e? 1
> — — 1/H} > - 186
-2 COCQSAH3 maX{(L / }_ 4 ( )

as long as the sample size IV of the dataset is selected as

coc2SAH? min{1/o, H}

N < 187
- 512(c5)2e? (187)
Step 3: summing up the results together. 'We suppose that there exists an estimator 7 such that
= 1
]P)w { *,0,W,0 _ y/7m0w,0 } > - 188
(woewxer 0 ngy Vi (s) =V () ze| < 4’ (188)
then according to (163), we necessarily have
= 1
v : P, HV*Wﬁ w) = Vo0 (g } > } 2 189
weW: maxPug ||V (Tw) = Wi (@w)y e <3 (189)
To meet (189) for any w € W, we require
* *,0,w,0 T, 0,w,0 3
¥ € © :]P’wﬁ{Vl”’(xw)—Vl”’(xw)<5}21, (190)
which in view of (167) indicates that we necessarily have
H
H 3
Voe©*: P, | 2w) — 700 2|, < = 5 > 2. 191
A bt 0wl < 5} > ao)
As a consequence, (174) indicates
P 3
Vo€ 0% : Py, [(w,@) - (w,@)} > 2. (192)
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Applying the fact in (192) to all w € WV leads to one necessarily has

Y(w,0) e Wx 0 : By [(@, 0) = (w,e)} >

=~ w

(193)

to achieve (188).

However, this would contract with (186) as long as the sample size condition in (187) is satisfied. Thus, if the sample size
obeys the condition (187), we can’t achieve an estimate 7 that satisfies (188), which complete the proof.

D.3. Proof of the auxiliary facts
D.3.1. PROOF OF LEMMA D.2

As all RMDPs within M (W, ©) are constructed analogously over each w € W and § € ©*, in this section, we shall focus
on one specific RMDP M? € M (W, ©), whose facts can be carried on for all other RMDPs in M (W, ©) directly.

w

Step 1: ordering the robust value function over different states. Before proceeding, we introduce several facts and
notations that are useful throughout this section. First, we observe that for any M? and any policy 7: at the final step H + 1,

Vse XUY: Vi“f(s)=0. (194)

Then for the step H, we can easily verified that

Vse): Vg’o’w’e(s) =Eqny(|s) |TH(S0) + inf PVE’_&“”Q =1
Peuc (Pl )

Vse X : Vg’g’w’a(s) =Eonry(|s) |TH(S,0) + inf Pvgff“v" =0, (195)
Peu (Pl )
which holds by (194) and the definition of the reward function (see (150)). The above fact directly indicates that
V(s,5) € X\ {wa} x Vi min VTl R) = Vot @) < VO (s) < VTS,
sE

V(s,s) e Y xY: VETl(s) = vEowh (), (196)

Then we introduce a claim which we will proof by induction in a moment as below:

V(h,s,8') € [H] x X\ {zu} xV: V7O (x,) <V (s) < Vo)
V(s,s) e Y xY: VT (s) = Vol (s, (197)

Note that the base case when the time step is H + 1 is verified in (196). Assuming that the following fact at time step i + 1
holds

V(S, 8/) cXx \ {xw} x Y Iglelg V}ZTJ:?w,@(g) — Vf;ﬁ’wﬁ(xw) < Vhﬂ?w"g(s) < V}Zl;,r(?u},a(sl)7

V(s,s) e Y xY: VT"s) = Vin (s, (198)

the rest of the proof focuses on proving the same property for time step h. For RMDP M% € M (W, ©) and any policy T,
we characterize the robust value function of different states separately:

e For state s € ). We observe that for any s € ),

Vhﬂ,a,w,()(s) = Ea,\,ﬂ.h(‘ 's) |:’I’h(s, a) + inf PVhﬂ_;j’w’e]
Peus (P,

0,0 T,0,w,0 T,0,w,0
D14 By [BE (515, 00V (5)] + Vi3 ()
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=1+ (1 - )V s) + oV (w), (199)

where (i) holds by 71,(s,a) = 1 for all s € Y (see (150)), the fact that minges Vhﬂﬁ’w’e(g) = Vhﬂﬁ’w’g(xw) induced

by the induction assumption (cf. (198)) and the definition of BZ)’O(S | s,a) in (155), and the last equality follows from
Pw9(s|s,a) = 1forall (s,a) €Y x A Resorting to the induction assumption in (198), we have

V(s,s) e YxY: VFols) =vromi (). (200)
For state x,,. First, the robust value function at state x,, obeys

Vhﬂ,a,w,()(xw)

=Eonm(- | 2w) |f’h (Tw,a) + inf 0 thw+76?w79‘|
PeU (P o)

h,xqy,a
® . .
20+ 7(0n | Tw) inf PV + ma(1 = 0y | 24) inf AR
peuc (Pl Peus (Pl )
T Op sTaw h

(ii) m,0,W, 0w,
= 7T'h(eh | xw) |:p h+1 G(yw) =+ (1 - B) Vh+1 6(:1711))]

(L= 0 | w) [V () + (1= @) Vi7" ()

(iii) T,w,01 70,0 T,w,0 m,0,w,0
= 2 VT () + (1 =2 ) VT (@) (201)
< (1= o)V (yo) + oVin T (24). (202)

where (i) uses the definition of the robust value function and the reward function in (150), (ii) uses the induction
assumption in (198) so that the minimum is attained by picking the choice specified in (156) to absorb probability mass
to state x,,, and (iii) holds by plugging in the definition (159) of :cZ’w’e in (iii). Finally, the last inequality follows
from the fact that function f(z) :== 2V} jj’w’e(yw) +(1—2)V" jj’w’a(acw) is monotonically increasing with z since
Vi (yw) > Vi7" (24 (see the induction assumption (198)), and the fact 2% < 1 — 0.

For state s € X \ {x,,}. Then we consider other states s € X \ {z,,}. Before proceeding, analogous to (159), we
define

Thase = (P + A)mR(057°°] 5) + (g + A)mp(1 — 0775 | s). (203)

Recall that the nominal transition kernel at any state s € X'\ {z,,} are the same { P},  }ne(m) for all a € Ay
associated with the basic #°2%° € © (see the definitions of the transition kernels in (147) and (148)). Consequently, for
any s € X \ {z, }, following the same argument pipeline of (202), we arrive at

Vhﬂ,a,w,e(s) _ 71_h(ggase ‘ S) [(E + A)Vhw_:;,wﬂ(sa:%y) + (1 —p— A) Vhﬂ_;_ci,wﬂ(s) + UVhw_:;,w,G(xw)}

+ 7Th(1 _ QZase S) {(g + A)V};,»Twﬂ(szﬁy) 4 (1 _ p) Vhﬂjﬁ,wﬁ(s) + O_V};fr:;ﬂuﬂ(xw)}

= Thase Vi7" (877Y) + (1= hase — )V T () + ViR () (204)
(i) ,0,w,0 ; T,0,w,0 T,0,w,0

= ‘TﬁasthJrl (yw) + (1 - xgase - U)Vh+1 (S) + UVh+1 (SCw) (205)
< (1= o)V (s™7Y) + oV (s), (206)

where (i) holds by Wf_ﬂ’w’e(s) = Vh’rﬁ’w"e (s') for any two states s, s" € Y (see (202)), and the last inequality holds by
Vi (s) < Vi (s"~Y) induced by the induction assumption in (198).

In addition, to compare the robust value function Vh”’”’“”e(xw) to that of other states s € X'\ {z,,}, we recall the
definitions in (159) and then introduce the following fact

m,w,0

xp " = prp(On | Tw) + qma(l — On | 2y)
<p < (p+ A)ma (05| s) + pra(1 — 072%| 5)
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= (p+ A)m (0775 |5) + (g + A)ma(1 — ;7% [ 5) = T, (207)
which comes from the fact p > ¢ and the facts in (156) and (157).
With this in mind, continuing from (201), we arrive at that for any s € X
Vo () = ap VI () + (1 — 2 VT ()

0w, 0 ,ow,0
S xl:s)asev};jw (yw) + (1 - ZEia\se)‘/}z‘—-t,-alw (l'w)

: T,0,w,0 s T,0,w,0 T,0,w,0
< xliasth+1 (yw> + (1 — Thase — U)Vh+1 (S) + UVh+1 (‘rw)
= ol () (208)

where the last equality holds by (205).

Summing up (208), then (199), and (206), we verify the induction property at time step h as below

V(S,S/) cxX \ {xw} x Y V];r,a,wﬂ(xw) < V};rr,rr,wﬂ(s) < Vhﬂ,a,quﬂ(s/). (209)
Combined above results with (200), we confirm the claim in (197).

Step 2: deriving the optimal policy and optimal robust value function. We shall characterize the optimal policy and
corresponding optimal robust value function for different states separately:

e For states in X. Recall (201)

,0,w,0 ,2w,0y ,mow,0 w,0 T,0,w,0
Vi (7)) = Th, Vh+1 (Yuw) + (1 — Ly )Vh+1 (Tw) (210)

and the fact Vhfr_ﬁ’w’e(yw) > Vhﬂﬁ’w’e (24) in (197). We observe that (210) is monotonicity increasing with respect
to :Z}Z"w’e, and xZ’w’e is also increasing in 7, (6}, | z,) (refer to the fact p > ¢ since p > g¢; see (149) and (156)).

Consequently, the optimal policy and optimal robust value function in state x,, thus obey
Vhe [H]: 7% 0n | 2) =1

*,0,W,0 *,0,W,0 *,0,w,0
Vi (zw) =PV, i7" (w) + [1 - E] Vil (Tw). 21D

Similarly, for any state s € X'\ {z,,}, recalling (205) yields

T,0,w,0 s ™,0w,0 s m,0,w,0 m,ow,0
Vh (S) = xbasth+1 (yw) + (1 — Tphase — U)Vh+1 (5) + 0Vh+1 (ZL‘w)7 (212)
which indicates th,a,w,e(s) achieves the maximum when z,., = (p + A)7m, (022 | s) + (g + A)mp(1 — 652 | 5)

attain the maximum. Therefore, the optimal policy in state s satisfies

el (g | s) = 1. (213)

e For states s € ). Recall the transitions in (147) and (148). Considering that the action does not influence the state
transition for all states s € ), without loss of generality, we choose the robust optimal policy obeying

VseY: m%0n]s) =1. (214)

D.3.2. PROOF OF CLAIM (167)
Recalling (160a) and (162), we first consider a more general form
V}:,J,w,ﬁ(xw) B V]zr,a,wﬂ(xw)

— Bv}fjr?wﬂ(yw) + (1 _ p)V;fl’w’a(a:w) _ (xZ’“”eV;fﬁ’w’e(yw) + [1 _ xgw,@} Vhﬂ?w’e(l'w))
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_ (B _ xzr,w,@) V}::fw’g(yw) + x‘f}?wﬂ (V}Zlafwﬁ(yw) _ V}ZTJS,UJ,G(yw))

,o,w,0 T,0,w,0 T,w,0 ,0,w,0
+(1=p) (Vi @) = Vi @a)) = (2= 27" ) VT ()

w,0 *,0,W,0 ,0,w,0 *,0,,0 T,0,w,0
= a7 (Vi ) = Vi )) + (1= p) (V3™ () = Vi ()

,w,0 ,o,w,0 ,0,w,0
(o= o) (Vi ) = Vi ()

,o,w,0 T,0,w,0 T,w,0 ,o,w,0 *,0,w,0
> (1=p) (Vi) = Vi @) ) + (2= 27 ) (Vi ) = Vi (o)

> (1= p) (Vi @) = Vi7" ()

1

50— Ol Claw) = mal e, (Vi o) = Vi ™ @) @215)

where the last inequality holds by applying (156) and deriving as follows:
p=a"" = (p=a) (1= m(On|20)) = (0 — ) (1 = 7 (O | 2))

1 1 o w
= 5(1? —q)(1 = mh(On | 20) + Th(1 = Op | 20)) = 5(27 — Q|| (| 2w) — (- | zw)|,- (216)

To further control (215), applying Lemma D.2 yields
*,0,w,0 *,0,w,0
Vi 7 () = Vi ()

,o,w,0 *,0,w,0 ,o,w,0 ,o,w,0
=1+(1- U)V}Z(J,-l (Yw) + th+1 () — (p }:(.1.1 (yw) + (1 *B)V}L-l (xw))

=1+ (1 =p—0) (V35" () = Vi7" @)

=1+ (1-p) (Viﬁ’w’e(yw) = V;fﬁ’w’e(xw))
—h 4

==Y (1-p), 217)
=0

J

where the penultimate equality holds by (156). Then, we consider two cases with respect to the uncertainty level o to control
(217), respectively:

c ok ifo < 3% . .
o When(0 < o < 5. Recall p = > . In this case, applying (217), we have
1+ %o otherwise

Vh*,ﬂ,wﬂ(yw) _ V}:,o‘,w,e(xw)

—h H—h , H—h+1
‘ cayd 1—(1-%) 2c2(H — h+ 1)
— 1—p) > ( _ 7) - >

> (1-p)Y > Z 1- = o > . 218)

J=0 Jj=0
Here, the final inequality holds by observing
[65) H—-h+1 62(H —h + 1) 262(H —h + 1)
1— 7) < IS 2 RS T AN 21
( 7] = P < 7] = 3H 19)

where the first inequality holds by noticing co < 0.5 and then 1 — 2 < exp(—z), and the last inequality holds by
exp(—z) <1— 2 forany 0 < < 1/2.

Plugging above fact in (218) back to (215), we arrive at
*,0,w,0 w,0,w,0
Vh (Zw) - Vh (zw)

> (1= p) (Vi7" (ew) = Vi7" (o)
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2CQ(H —h + 1)

*w9

1
+ 30 =T aw) = (-2 3 (220)
Then invoking the assumption
H
H
*,w,60
Dl ww) = m e > 221)
h=1
in (166) and applying (220) recursively for h = 1,2,--- | H yields
H
*,0,,0 T,0,w,0 C2 — *,w,0
|4 (Tw) = Vi (mw)232(1—2)h "o —H = h+D)||my ([ 2w) = 7l [ 2w) |,
h=1
@ C2 u Co\p—
Z 5 > - ﬁ)h Yp—q)(H = h+ D)||m (| 2w) = 7al-[2a)||,
h=1
@ C2 u *,w,0
Z Z(p —@)H = h+ D[|mp ([ 2w) = 7l J2w) ||
(111) CQA *,w,
ZhHwH i 12w) = Tronia (2w,
i LH/16J
(iv) A A
> % Y o> % |H/16] (|H/16] + 1), (222)
h=1
where (i) follows from 1 —p > 1 — p =1 — 3, and (ii) holds by
1
Vhel[H): (1- %)h—l >(1- %)H > (223)

as long as c5 < % Here, (iii) arises from the definition of p, ¢ in (149); (iv) can be verified by the fact that for any
series 0 < 1, %2, -,y < Tmax that obeys Zthl xp >y, one has

\_l max /yJ

Z Z}-Lh > Z xmax (224)

and taking 21 = 11411 2) = 7501 (120, < 2 = e andy = 2.

Consequently, observed from (222), we have

Vl*,cr,wﬂ(zw) N Vlﬂ',a,wﬁ( ) Z

22 H/6) (LH/16] 4 1) > A > ¢ (225)

holds for some small enough constant c3 and letting A = ﬁ

e . . &, ifo <% . . .
o When 5% < o <1 — cq. Similarly, recalling p = (1 n Cl) h and invoking (217) gives
7r) o otherwise

V};,U,w,e(yw) _ V}:,U’,w,e(xw)

I
—
=

|

=
Nl
<

Il
—~
—

|
—
—
_|_
‘ o
A%
N
~——
<

j=0 §=0
1=+ 50)" s —ht 1) 226
= 1+ %o - 30H ’



Sample-Efficient Robust Multi-Agent Reinforcement Learning in the Face of Environmental Uncertainty

where the final inequality holds by observing

(1— (1—|—%) U)H7h+1 < exp (— (1+%) 0(H—h—|—1)>
%)exp< o (1+H)(H—h+1)) g1—(1+%)%. (227)

Here, (i) holds by observing 7% < o, and the last inequality holds by (1 + %) < 2, ca < 0.5, and the fact
exp(—z) <1— 2 forany 0 <z < 1/2.

Plugging above fact in (226) back to (215) gives
V}?U’wﬁ(ﬂ?w) _ V}:r,o,w,e(xw)

> (1= p) (Vg™ @) = V3™ (ww)

1 *,w,0 02(H —h + 1)
+ 50— QT ww) = mn (- J2w) |, =g (228)
Following the same routine to achieve (222), applying (228) recursively for h = 1,2,--- | H gives
u (H—h+1)
Vl*,a,wﬂ(xw) Vfr(rwf) xw > Z q)in *11)9 |33w _7Th( ‘xw)Hl
( H
*,w,0
QP S 0= DY = ek 1)) — )
60 H =
(11) co /A
> 122 |H/16] (| H/16] + 1) (229)
where (i) follows from 1 —p = 1 — (p — o) = 1 — %o, and (ii) holds by letting c; < 3 1 and following the same routine
of (222).
Consequently, (229) yields
A AH
Vo () — VO (g,) > 1022 - LH/16] (LH/16] + 1) > “ass S . (230)
o

holds for some small enough constant ¢, and letting A = 2%,
4
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