
Journal of Machine Learning Research 26 (2025) 1-85 Submitted 4/24; Published 1/25

The Blessing of Heterogeneity in Federated Q-Learning:
Linear Speedup and Beyond

Jiin Woo jiinw@andrew.cmu.edu

Department of Electrical and Computer Engineering
Carnegie Mellon University
Pittsburgh, PA 15213, USA

Gauri Joshi gaurij@andrew.cmu.edu

Department of Electrical and Computer Engineering
Carnegie Mellon University
Pittsburgh, PA 15213, USA

Yuejie Chi yuejiec@andrew.cmu.edu

Department of Electrical and Computer Engineering

Carnegie Mellon University

Pittsburgh, PA 15213, USA

Editor: Gergely Neu

Abstract

In this paper, we consider federated Q-learning, which aims to learn an optimal Q-function
by periodically aggregating local Q-estimates trained on local data alone. Focusing on
infinite-horizon tabular Markov decision processes, we provide sample complexity guaran-
tees for both the synchronous and asynchronous variants of federated Q-learning, which
exhibit a linear speedup with respect to the number of agents and near-optimal dependen-
cies on other salient problem parameters.

In the asynchronous setting, existing analyses of federated Q-learning, which adopt an
equally weighted averaging of local Q-estimates, require that every agent covers the entire
state-action space. In contrast, our improved sample complexity scales inverse proportion-
ally to the minimum entry of the average stationary state-action occupancy distribution of
all agents, thus only requiring the agents to collectively cover the entire state-action space,
unveiling the blessing of heterogeneity. However, its sample complexity still suffers when
the local trajectories are highly heterogeneous. In response, we propose a novel federated
Q-learning algorithm with importance averaging, giving larger weights to more frequently
visited state-action pairs, which achieves a robust linear speedup as if all trajectories are
centrally processed, regardless of the heterogeneity of local behavior policies.

Keywords: federated RL, Q-learning, sample complexity, linear speedup, heterogeneity

1. Introduction

Reinforcement Learning (RL) (Sutton and Barto, 2018) is an area of machine learning for
sequential decision making, aiming to learn an optimal policy that maximizes the total
rewards via interactions with an unknown environment. RL is widely used in many real-
world applications, such as autonomous driving, games, clinical trials, and recommendation
systems. However, due to the high dimensionality of the state-action space, training of RL
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agents typically requires a significant amount of computation and data to achieve desirable
performance. Moreover, data collection can be extremely time-consuming with limited
access in the wild, especially when performed by a single agent. On the other hand, it
is possible to leverage multiple agents to collect data simultaneously, under the premise
that they can learn a global policy collaboratively with the aid of a central server without
the need of sharing local data. As a result, there is a growing need to conduct RL in a
distributed or federated fashion.

Although there have been many studies analyzing federated learning (Kairouz et al.,
2021) in other areas such as supervised machine learning (McMahan et al., 2017; Bonawitz
et al., 2019; Wang et al., 2020b), there are only a few recent works focused on federated RL.
They consider issues such as robustness to adversarial attacks (Wu et al., 2021; Fan et al.,
2021), environment heterogeneity (Jin et al., 2022), as well as sample and communication
complexities (Doan et al., 2021; Khodadadian et al., 2022; Shen et al., 2022). Encouragingly,
some of these prior works offer non-asymptotic sample complexity analyses of federated RL
algorithms that highlight a linear speedup of the required sample size in terms of the number
of agents. However, the performance characterization of these federated algorithms is still
far from complete.

1.1 Federated Q-learning: prior art and limitations

This paper focuses on Q-learning (Watkins and Dayan, 1992), one of the most celebrated
model-free RL algorithms, which aims to learn the optimal Q-function directly without form-
ing an estimate of the model. Two sampling protocols are typically studied: synchronous
sampling and asynchronous sampling. With synchronous sampling, all state-action pairs
are updated uniformly assuming access to a generative model or a simulator (Kearns and
Singh, 1999). With asynchronous sampling, only the state-action pair that is visited by the
behavior policy is updated at each time (Tsitsiklis, 1994). Despite its long history of theo-
retical investigation, the tight sample complexity of Q-learning in the single-agent setting
has only recently been pinned down in Li et al. (2023). As we shall elucidate, there remains
a large gap in terms of the sample complexity requirement between the federated setting
and the single-agent setting in terms of dependencies on salient problem parameters.

To harness the power of multiple agents, Khodadadian et al. (2022) proposed and ana-
lyzed a federated variant of Q-learning with asynchronous sampling that periodically aggre-
gates the local Q-estimates trained on local Markovian trajectories collected over K agents.
To set the stage, consider an infinite-horizon tabular Markov decision process (MDP) with
state space S, action space A, and a discount factor γ ∈ [0, 1). To learn an ε-optimal Q-
function estimate (in the `∞ sense), Khodadadian et al. (2022) requires a per-agent sample
size on the order of

Õ

( |S|2
Kµ5

min(1− γ)9ε2

)
(1)

for sufficiently small ε, where µmin := min1≤k≤K min(s,a)∈S×A µk
b(s, a) is the minimum entry

of the stationary state-action occupancy distributions µk
b of the sample trajectories over

all agents, and Õ hides logarithmic terms. On the other hand, the sample requirement of
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single-agent Q-learning (Li et al., 2023) for learning an ε-optimal Q-function is

Õ

(
1

µmin(1− γ)4ε2

)
(2)

for sufficiently small ε. Comparing the two sample complexity bounds reveals several draw-
backs of existing analyses and raises the following natural questions.

• Near-optimal sample size. Despite the appealing linear speedup in terms of the number of
agents K shown in Khodadadian et al. (2022), it has unfavorable dependencies on other
salient problem parameters. In particular, since 1/µmin ≥ |S||A|, the sample complexity
in (1) will be better than that of the single-agent case in (2) only if K is at least above the

order of |S|6|A|4
(1−γ)5

, which may not be practically feasible with large state-action space and

long effective horizon. Can we improve the dependency on the salient problem parameters
for federated Q-learning while maintaining linear speedup?

• Benefits of heterogeneity. Existing analyses in Khodadadian et al. (2022) require that
each agent has a full coverage of the state-action space (i.e., µmin > 0), which is as
stringent as the single-agent setting. However, given that the insufficient coverage of
individual agents can be complemented by each other when agents have heterogeneous
local trajectories, it may not be necessary to require full coverage of the state-action
space from every agent. Can we exploit the heterogeneity in the agents’ local trajectories
and relax the coverage requirement on individual agents?

1.2 Summary of our contributions

In this paper, we answer these questions in the affirmative, by providing a sample complexity
analysis of federated Q-learning under both the synchronous and asynchronous settings. The
main contributions are summarized as follows, with Table 1 providing a comparison with
the prior art.

• Sample complexity of federated synchronous Q-learning with equal averaging. We show
that with high probability, the sample complexity of federated synchronous Q-learning
(FedSynQ) to learn an ε-optimal Q-function in the `∞ sense is (see Theorem 1)

Õ

( |S||A|
K(1− γ)5ε2

)
, (3)

which exhibits a linear speedup with respect to the number of agents K and nearly
matches the tight sample complexity bound of single-agent synchronous Q-learning up
to a factor of 1/(1− γ) in Li et al. (2023) for K = 1.

• Sample complexity of federated asynchronous Q-learning with equal averaging. We provide
a sharpened sample complexity analysis of the algorithm developed in Khodadadian et al.
(2022) for federated asynchronous Q-learning with equal averaging (FedAsynQ-EqAvg)
that leads to new insights. To learn an ε-optimal Q-function in the `∞ sense, FedAsynQ-
EqAvg requires at most (see Theorem 2)

Õ

(
Chet

Kµavg(1− γ)5ε2

)
(4)
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sampling reference
number of

coverage
sample

agents complexity

synchronous
Wainwright (2019a); Chen et al. (2020) 1 full |S||A|

(1−γ)5ε2

Li et al. (2023) 1 full |S||A|
(1−γ)4ε2

FedSynQ (Theorem 1) K full |S||A|
K(1−γ)5ε2

Qu and Wierman (2020) 1 full tmix

µ2
min

(1−γ)5ε2

asynchronous

Li et al. (2021b) 1 full 1
µmin(1−γ)5ε2

Li et al. (2023) 1 full 1
µmin(1−γ)4ε2

FedAsynQ-EqAvg (Khodadadian et al., 2022) K full |S|2
Kµ5

min
(1−γ)9ε2

FedAsynQ-EqAvg (Theorem 2) K partial Chet

Kµavg(1−γ)5ε2

FedAsynQ-ImAvg (Theorem 3) K partial 1
Kµavg(1−γ)5ε2

Table 1: Comparison of sample complexity upper bounds of single-agent and federated
Q-learning algorithms under synchronous and asynchronous sampling protocols to learn
an ε-optimal Q-function in the `∞ sense, where logarithmic factors and burn-in costs are
hidden. Here, S is the state space, A is the action space, γ is the discount factor, K is
the total number of agents, and tmix is the mixing time of the behavior policy. In addition,
µmin = mink,s,a µ

k
b(s, a) denotes the minimum entry of the stationary state-action occupancy

distributions µk
b of all agents, µavg := mins,a

1
K

∑K
k=1 µ

k
b(s, a) denotes the minimum entry

of the average stationary state-action occupancy distribution of all agents, and Chet :=
maxk,s,aKµk

b(s, a)/
(∑K

k=1 µ
k
b(s, a)

)
captures the heterogeneity across the agents.

samples per agent for sufficiently small ε (ignoring the burn-in cost that depends on the
mixing times of the Markovian trajectories over all agents), where µavg is the minimum
entry of the average stationary state-action occupancy distribution of all agents, i.e.,

µavg = mins,a
1
K

∑K
k=1 µ

k
b(s, a) ≥ µmin, and Chet = maxk,s,a

Kµk
b
(s,a)∑K

k=1 µ
k
b
(s,a)

∈ [1, 1/µavg]

captures the heterogeneity of the behavior policies across agents. This sample complexity
not only proves a linear speedup with respect to the number of agents, but also greatly
sharpens the dependency on all the salient problem parameters — including 1/(1−γ), |S|,
and 1/µmin — by orders of magnitudes compared to the bound obtained in Khodadadian
et al. (2022). More importantly, it uncovers that as long as the agents collectively cover
the entire state-action space (i.e., µavg > 0), FedAsynQ-EqAvg still enables learning even
when individual agents fail to cover the entire state-action space (i.e., µmin = 0), unveiling
the blessing of heterogeneity that was not elucidated in prior work (Khodadadian et al.,
2022).

• Sample complexity of federated asynchronous Q-learning with importance averaging. Al-
though heterogeneous behavior policies at agents may induce local trajectories cover-
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ing different parts of the state-action space and relax the coverage requirement, equally
weighting the local Q-estimates may hinder the convergence which is bottlenecked by
the slowest converging agent. This is evident by the dependency on Chet in the sample
complexity of FedAsynQ-EqAvg, which becomes larger when the local behavior policies
are highly disparate. To address this issue, we propose a novel importance averaging
scheme in federated Q-learning (FedAsynQ-ImAvg) that averages the local Q-estimates
by assigning larger weights to more frequently updated local estimates. To learn an
ε-optimal Q-function in the `∞ sense, FedAsynQ-ImAvg requires at most (see Theorem 3)

Õ

(
1

Kµavg(1− γ)5ε2

)
(5)

samples per agent for sufficiently small ε (ignoring the burn-in cost that depends on the
mixing times of the Markovian trajectories over all agents). This improves over that of
FedAsynQ-EqAvg by removing the dependency on Chet, which can be as large as 1/µavg.
More importantly, this suggests that FedAsynQ-ImAvg achieves stable linear speedup
with respect to the profile of the local behavior policies while maintaining the blessing of
heterogeneity that eases the burden of individual agents’ coverage.

1.3 Related work

Analysis of single-agent Q-learning. There has been extensive research on the con-
vergence guarantees of Q-learning, focusing on the single-agent case. Many initial studies
have analyzed the asymptotic convergence of Q-learning (Tsitsiklis, 1994; Szepesvári, 1998;
Jaakkola et al., 1994; Borkar and Meyn, 2000). Later, Even-Dar and Mansour (2003); Beck
and Srikant (2012); Wainwright (2019a); Chen et al. (2020); Li et al. (2023) have studied
the sample complexity of Q-learning under synchronous sampling, and Even-Dar and Man-
sour (2003); Beck and Srikant (2012); Qu and Wierman (2020); Li et al. (2023, 2021b);
Chen et al. (2021b) have investigated the finite-time convergence of Q-learning under asyn-
chronous sampling (also referred to as Markovian sampling). In addition, Jin et al. (2018);
Bai et al. (2019); Zhang et al. (2020); Li et al. (2021a); Yang et al. (2021) studied Q-learning
with optimism for online RL, and Shi et al. (2022); Yan et al. (2022) dealt with Q-learning
with pessimism for offline RL.

Distributed and federated RL. Several recent works have developed distributed ver-
sions of RL algorithms to accelerate training (Mnih et al., 2016; Espeholt et al., 2018;
Assran et al., 2019). Theoretical analysis of convergence and communication efficiency of
these distributed RL algorithms have also been considered in recent works. For example, a
collection of works (Doan et al., 2019; Sun et al., 2020; Wang et al., 2020a; Wai, 2020; Chen
et al., 2022a; Zeng et al., 2021) have analyzed the convergence of decentralized temporal dif-
ference (TD) learning. Furthermore, Chen et al. (2022b); Shen et al. (2022) have analyzed
the finite-time convergence of distributed actor-critic algorithms and Chen et al. (2021a)
proposed a communication-efficient policy gradient algorithm with provable convergence
guarantees.

Notation. Throughout this paper, we denote by ∆(S) the probability simplex over a set
S, and [K] := {1, · · · ,K} for any positive integer K > 0. In addition, f(·) = Õ(g(·)) or
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f . g (resp. f(·) = Ω̃(g(·)) or f & g) means that f(·) is orderwise no larger than (resp. no
smaller than) g(·) modulo some logarithmic factors. The notation f � g means f . g and
f & g hold simultaneously.

2. Model and background

In this section, we introduce the mathematical model and background of Markov decision
processes.

Infinite-horizon Markov decision process. We consider an infinite-horizon Markov
decision process (MDP), which is represented by M = (S,A, P, r, γ). Here, S and A denote
the state space and the action space, respectively, P : S × A × S → [0, 1] indicates the
transition kernel such that P (s′ | s, a) denotes the probability that action a in state s leads
to state s′, r : S × A → [0, 1] denotes a deterministic reward function, where r(s, a) is the
immediate reward for action a in state s, and γ ∈ [0, 1) is the discount factor.

Policy, value function, and Q-function. A policy is an action-selection rule denoted
by the mapping π : S → ∆(A), such that π(a|s) is the probability of taking action a in
state s. For a given policy π, the value function V π : S → R, which measures the expected
discounted cumulative reward from an initial state s, is defined as

∀s ∈ S : V π(s) := E

[ ∞∑

t=0

γtr(st, at)
∣∣ s0 = s

]
. (6)

Here, the expectation is taken with respect to the randomness of the trajectory {st, at, rt}∞t=0,
sampled based on the transition kernel (i.e., st+1 ∼ P (·|st, at)) and the policy π (i.e.,
at ∼ π(·|st)) for any t ≥ 0. Similarly, the state-action value function (i.e., Q-function)
Qπ : S × A → R, which measures the expected discounted cumulative reward from an
initial state-action pair (s, a), is defined as

∀(s, a) ∈ S ×A : Qπ(s, a) := r(s, a) + E

[ ∞∑

t=1

γtr(st, at)
∣∣ s0 = s, a0 = a

]
.

Again here, the expectation is taken with respect to the randomness of the trajectory
{st, at, rt}∞t=1 generated similarly as above. Since the rewards lie within [0, 1], it follows
that for any policy π,

0 ≤ V π ≤ 1

1− γ
, 0 ≤ Qπ ≤ 1

1− γ
. (7)

Optimal policy and Bellman’s principle of optimality. A policy that maximizes the
value function uniformly over all states is called an optimal policy and denoted by π?. Note
that the existence of such an optimal policy is always guaranteed (Puterman, 2014), which
also maximizes the Q-function simultaneously. The corresponding optimal value function
and Q-function are denoted by V ? := V π?

and Q? := Qπ?
, respectively. It is well-known

that the optimal Q-function Q? can be determined as the unique fixed point of the Bellman
operator T , given by

T (Q)(s, a) := r(s, a) + γ E
s′∼P (·|s,a)

[
max
a′∈A

Q(s′, a′)
]
. (8)
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Q-learning (Watkins and Dayan, 1992), perhaps the most widely used model-free RL algo-
rithm, seeks to learn the optimal Q-function based on samples collected from the underlying
MDP without estimating the model.

3. Federated synchronous Q-learning: algorithm and theory

In this section, we begin with understanding federated synchronous Q-learning, where all
the state-action pairs are updated simultaneously assuming access to a generative model or
simulator at all the agents.

3.1 Problem setting

In the synchronous setting, each agent k ∈ [K] has access to a generative model, and
generates a new sample

skt (s, a) ∼ P (·|s, a) (9)

for every state-action pair (s, a) ∈ S × A independently at every iteration t. Our goal
is to learn the optimal Q-function Q? collaboratively by aggregating the local Q-learning
estimates periodically.

Review: synchronous Q-learning with a single agent. To facilitate algorithmic
development, let us recall the synchronous Q-learning update rule with a single agent.
Starting with certain initialization Q0, at every iteration t ≥ 1, the Q-function is updated
according to

∀(s, a) ∈ S ×A : Qt(s, a) = (1− η)Qt−1(s, a) + η

(
r(s, a) + γmax

a′∈A
Qt−1(st(s, a), a

′)

)
,

(10)

where st(s, a) ∼ P (·|s, a) is drawn independently for every state-action pair (s, a) ∈ S ×A,
and η denotes the constant learning rate. The sample complexity of synchronous Q-learning
has been recently investigated and sharpened in a number of works, e.g. Li et al. (2023);
Wainwright (2019a); Chen et al. (2020).

3.2 Algorithm description

We propose a natural federated synchronous Q-learning algorithm called FedSynQ that
alternates between local updates at agents and periodic averaging at a central server. The
complete description is summarized in Algorithm 1. FedSynQ initializes a local Q-function
as Qk

0 = Q0 at each agent k ∈ [K]. Suppose at the beginning of each iteration t ≥ 1, each
agent maintains a local Q-function estimate Qk

t−1 and a local value function estimate V k
t−1,

which are related via

∀s ∈ S : V k
t (s) := max

a∈A
Qk

t (s, a). (11)

FedSynQ proceeds according to the following steps in the rest of the t-th iteration.
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1. Local updates: Each agent first independently updates all entries of its Q-estimate Qk
t−1

to reach some intermediate estimate following the update rule:

∀(s, a) ∈ S ×A : Qk
t− 1

2

(s, a) = (1− η)Qk
t−1(s, a) + η

(
r(s, a) + γV k

t−1(s
k
t (s, a))

)
,

(12)

where skt (s, a) is drawn according to (9), and η ≥ 0 is the learning rate.

2. Periodic averaging: These intermediate estimates will be periodically averaged by the
server to form the updated estimate Qk

t at the end of the t-th iteration. Formally,
denoting τ ≥ 1 as the synchronization period, it follows

∀(s, a) ∈ S ×A : Qk
t (s, a) =





1
K

∑K
k=1Q

k
t− 1

2

(s, a) if t ≡ 0 (mod τ)

Qk
t− 1

2

(s, a) otherwise
. (13)

Denoting the number of total iterations by T , the algorithm outputs the final Q-estimate
as the average of all local estimates, i.e. QT = 1

K

∑
k Q

k
T . Without loss of generality, we

assume the total number of iterations T is divisible by τ , where Cround = T/τ is the rounds
of communication.

Algorithm 1: Federated Synchronous Q-learning (FedSynQ)

1: inputs: learning rate η, discount factor γ, number of agents K, synchronization
period τ , number of iterations T .

2: initialization: Qk
0 = Q0 for all k.

3: for t = 1, · · · , T do
4: for k ∈ [K] do
5: Draw skt (s, a) ∼ P (· | s, a) for all (s, a) ∈ S ×A.
6: Compute Qk

t− 1
2

according to (12).

7: Compute Qk
t according to (13).

8: end for
9: end for

10: return: QT = 1
K

∑
k Q

k
T .

3.3 Performance guarantee

We are ready to provide the finite-time convergence analysis of Algorithm 1.

Theorem 1 (Finite-time convergence of FedSynQ) Consider any given δ ∈ (0, 1) and
ε ∈ (0, 1

1−γ ]. Suppose that the initialization of Algorithm 1 satisfies 0 ≤ Q0 ≤ 1
1−γ , and the

synchronization period τ obeys

τ ≤ 1 +
1

η
min

{
1− γ

8γ
,
1

K

}
. (14a)

8
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There exist some sufficiently large constant cT > 0 and sufficiently small constant cη > 0,
both independent of problem parameters, such that with probability at least 1− δ, the output
of Algorithm 1 satisfies ‖QT −Q?‖∞ ≤ ε, provided that the sample size per agent T and the
learning rate η satisfy

T ≥ cT
K(1− γ)5ε2

(log((1− γ)2ε))2 log
|S||A|KT

δ
, (14b)

η = cηK(1− γ)4ε2
1

log |S||A|KT
δ

. (14c)

Theorem 1 suggests that to achieve an ε-accurate Q-function estimate in an `∞ sense,
the number of samples required at each agent is no more than

Õ

( |S||A|
K(1− γ)5ε2

)
,

given that the agent collects |S||A| samples at each iteration. A few implications are in
order.

Linear speedup. The sample complexity exhibits an appealing linear speedup with re-
spect to the number of agents K. In comparison, the sharpest upper bound known for

single-agent Q-learning (Li et al., 2023) is Õ
(

|S||A|
(1−γ)4 min{ε,ε2}

)
, which matches with its

algorithmic-dependent lower bound when ε ∈ (0, 1). Therefore, our federated setting en-
ables faster learning as soon as the number of agents satisfies

K &
1

(1− γ)max {1, ε}

up to logarithmic factors. When K = 1, our bound nearly matches with the lower bound
of single-agent Q-learning up to a factor of 1/(1− γ), indicating its near-optimality.

Communication efficiency. One key feature of our federated setting is the use of peri-
odic averaging with the hope to improve communication efficiency. According to (14a), our
theory requires that the synchronization period τ be inversely proportional to the learn-
ing rate η, which suggests that more frequent communication is needed to compensate the
discrepancy of local updates when the learning rate is large. To provide insights, consider
the parameter regime when K & 1

1−γ and ε . 1
K(1−γ)2

. Plugging the choice of the learning

rate (14c) into the upper bound of τ in (14a), we can choose the synchronization period as
τ � 1

K2(1−γ)4ε2
up to logarithmic factors, leading to a communication complexity no larger

than Cround = T
τ . K

1−γ , which is almost independent of the final accuracy ε.

4. Federated asynchronous Q-learning: algorithm and theory

In this section, we study the sample complexity of federated asynchronous Q-learning,
where K agents sample local trajectories using different behavior policies. In particular, we
propose a novel aggregation algorithm FedAsynQ-ImAvg that leverages the heterogeneity of
these policies and dramatically improves the sample complexity.

9
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4.1 Problem setting

In the asynchronous setting, each agent k ∈ [K] independently collects a sample trajectory
{skt , akt , rkt }∞t=0 from the same underlying MDP M following some stationary local behavior
policy πk

b such that

akt ∼ πk
b(·|skt ), rkt = r(skt , a

k
t ), skt+1 ∼ P (·|skt , akt ) (15)

for all t ≥ 0, where the initial state is initialized as sk0 for each agent k. Note that the
behavior policies {πk

b}k∈[K] are heterogeneous across agents and can be different from the
optimal policy π?. Contrary to the generative model considered in the synchronous setting,
the samples collected under the asynchronous setting are no longer independent across
time but are Markovian, making the analysis significantly more challenging. The sample
trajectory at each agent can be viewed as sampling a time-homogeneous Markov chain
over the set of state-action pairs. Throughout this paper, we make the following standard
uniform ergodicity assumption (Paulin, 2015; Li et al., 2021b).

Assumption 1 (Uniform ergodicity) For every agent k ∈ [K], the Markov chain in-
duced by the stationary behavior policy πk

b is uniformly ergodic over the entire state-action
space S ×A.

Uniform ergodicity guarantees that the distribution of the state-action pair (st, at) of a
trajectory converges to the stationary distribution of the Markov chain geometrically fast
regardless of the initial state-action pair, and eventually, each state-action pair is visited in
proportion to the stationary distribution.

Key parameters. Two important quantities concerning the resulting Markov chains will
govern the performance guarantees. The first one is the stationary state-action distribution
µk
b, which is the stationary distribution of the Markov chain induced by πk

b over all state-
action pairs; the second one is tkmix, which is the mixing time of the same Markov chain
given by

tkmix := min
{
t
∣∣∣ max

(s0,a0)∈S×A
dTV

(
P k
t (· | s0, a0), µk

b

)
≤ 1

4

}
, (16)

where P k
t (· | s0, a0) denote the distribution of (st, at) conditioned on (s0, a0) for agent k,

and dTV(·, ·) is the total variation distance. Further, let the largest mixing time of all the
Markov chains induced by local behavior policies be

tmax
mix := max

k∈[K]
tkmix. (17)

In words, tmax
mix approximately indicates the time that the transition of every agent starts to

follow its stationary distribution regardless of its initial state.

Let us further define a few key parameters that measure the coverage and heterogeneity
of the stationary state-action distribution µk

b across agents. First, define

µmin := min
k∈[K]

µk
min, where µk

min := min
(s,a)∈S×A

µk
b(s, a). (18)

10
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State-action pairs with small stationary probabilities are visited less frequently, and there-
fore can become bottlenecks in improving the quality of Q-function estimates. Clearly,
µmin ≤ 1

|S||A| . In addition, denote

µavg := min
(s,a)∈S×A

1

K

K∑

k=1

µk
b(s, a). (19)

In words, µavg is the minimum entry of the average stationary state-action distribution
of all agents. The difference between µavg and µmin stands out when an individual agent
fails to cover the entire state-action space. While µmin = 0 in such a case, µavg can still
be positive as long as each state-action pair is explored by at least one of the agents, i.e.,∑K

k=1 µ
k
b(s, a) > 0. Note that µavg is always greater than or equal to µmin since

µavg = min
(s,a)∈S×A

1

K

K∑

k=1

µk
b(s, a) ≥ min

(s,a)∈S×A,k∈[K]
µk
b(s, a) = µmin. (20)

Last but not least, we measure the heterogeneity of the stationary state-action distributions
across agents by

Chet := max
k∈[K]

max
(s,a)∈S×A

µk
b(s, a)

1
K

∑K
k=1 µ

k
b(s, a)

, (21)

which satisfies 1 ≤ Chet ≤ min{K, 1/µavg}, and in particular, Chet = 1 when µk
b = µb are

all equal.

Review: asynchronous Q-learning with a single agent. Recall the update rule of
asynchronous Q-learning with a single agent, where at each iteration t ≥ 1, upon receiving
a transition (st−1, at−1, st), the Q-estimate is updated via

Qt(s, a) =

{
(1− η)Qt−1(s, a) + η (r(s, a) + γmaxa′∈AQt−1(st, a

′)) , if (s, a) = (st−1, at−1),
Qt(s, a) otherwise,

(22)

where η denotes the learning rate and Vt is defined in (11). The sample complexity of
asynchronous Q-learning has been recently investigated in Li et al. (2021b, 2023); Qu and
Wierman (2020).

4.2 Algorithm description

Similar to the synchronous setting, we describe a federated asynchronous Q-learning algo-
rithm, called FedAsynQ (see Algorithm 2), that learns the optimal Q-function by periodi-
cally averaging the local Q-estimates with the aid of a central server. See Figure 1 for an
illustration. Inheriting the notation of Qk

t and V k
t from the synchronous setting (cf. (11)),

FedAsynQ proceeds as follows in the rest of the t-th iteration.

1. Local updates: Each agent k samples a transition (skt−1, a
k
t−1, r

k
t−1, s

k
t ) from its Markovian

trajectory generated by the behavior policy πk
b according to (15) and updates a single

11
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Algorithm 2: Federated Asynchronous Q-learning (FedAsynQ)

1: inputs: learning rate {η}, discount factor γ, number of agents K, synchronization
period τ , total number of iterations T .

2: initialization: Qk
0 = Q0 for all k ∈ [K].

3: for t = 1, · · · , T do
4: for k ∈ [K] do
5: Draw action akt−1 ∼ πk

b(s
k
t−1), observe reward rkt−1 = r(skt−1, a

k
t−1), and draw next

state skt ∼ P (· | skt−1, a
k
t−1).

6: Compute Qk
t− 1

2

according to (23).

7: Compute Qk
t according to (24).

8: end for
9: end for

10: return: QT (s, a) =
∑K

k=1 α
k
T (s, a)Q

k
T (s, a), for all (s, a) ∈ S ×A.

4.3 Performance guarantees with equal averaging

We begin with the most natural choice, which equally weights the local Q-estimates, that
is,

αk
t (s, a) =

1

K
. (25)

We call the resulting scheme FedAsynQ-EqAvg, which is also analyzed in Khodadadian et al.
(2022). We have the following improved performance guarantee in the next theorem.

Theorem 2 (Finite-time convergence of FedAsynQ-EqAvg) Consider any given δ ∈ (0, 1)
and ε ∈ (0, 1

1−γ ]. Suppose that the initialization of FedAsynQ-EqAvg satisfies 0 ≤ Q0 ≤ 1
1−γ .

There exist some sufficiently large constant cT > 0 and sufficiently small constant cη > 0,
both independent of problem parameters, such that with probability at least 1− δ, the output
of FedAsynQ-EqAvg satisfies ‖QT −Q?‖∞ ≤ ε, provided that the synchronization period τ ,
the sample size per agent T , and the learning rate η satisfy

τ0 ≤ τ ≤ 1

4η
min

{
1− γ

4
,
1

K

}
, (26a)

T ≥ cT

(
Chet

Kµavg(1− γ)5ε2
+ T0

)
(log((1− γ)2ε))2 log (TK) log

|S||A|T 2K

δ
, (26b)

η = cη min

{
K(1− γ)4ε2

Chet

, η0

}
1

log (TK) log |S||A|T 2K
δ

, (26c)

where τ0 =
2176tmax

mix

µavg
log 8K log 4|S||A|T 2

δ , T0 = 1
µavg(1−γ)η0

, and η0 =
µavg min{1−γ,K−1}

tmax
mix

, inde-

pendent of ε.

Theorem 2 implies that to achieve an ε-accurate estimate (in the `∞ sense), the sample
complexity per agent of FedAsynQ-EqAvg is no more than

Õ

(
Chet

Kµavg(1− γ)5ε2

)

13



Woo, Joshi, and Chi

for sufficiently small ε, when the burn-in cost T0 — representing the impact of the mixing
times — is amortized over time. A few implications are in order.

Linear speedup without full coverage. The sample complexity of FedAsynQ-EqAvg
shows linear speedup with respect to the number of agents, which is especially pronounced
when the local behavior policies are similar, i.e., Chet ≈ 1. Notably, the guarantee holds as
long as all agents collectively cover the entire state-action space (i.e., µavg > 0), unveiling
the benefit of heterogeneity in local behavior policies. This is surprising in view of the
convergence guarantee provided in Khodadadian et al. (2022), which requires each agent
visits the entire state-action space (i.e., µmin = 0). Moreover, our sample complexity has
sharpened dependency on nearly all problem-dependent parameters compared to the bound

Õ
(

|S|2
Kµ5

min
(1−γ)9ε2

)
obtained in Khodadadian et al. (2022) by at least a factor of

µavg|S|2
Chetµ

5
min(1− γ)4

≥ |S|5|A|3
(1− γ)4

.

For K = 1, the bound nearly matches with the sharpest upper bound Õ
(

1
µmin(1−γ)4ε2

)
for

the single-agent case (Li et al., 2023) up to a factor of 1/(1− γ), when ignoring the burn-in
cost.

Communication efficiency. To provide further insights on the communication complex-
ity of FedAsynQ-EqAvg, consider the regime when ε is sufficiently small and the number of
agents is sufficiently large such that K & 1

1−γ . By plugging the choice of the learning rate
(26c) into the upper bound of τ in (26a), we can select the synchronization period as large
as τ � Chet

K2(1−γ)4ε2
up to logarithmic factors, which ensures the communication complexity

Cround = T/τ is no more than Õ
(

K
µavg(1−γ)

)
.

Burn-in cost and mixing times. In (26b), the second term T0 can be viewed as the
burn-in cost needed for asynchronous Q-learning to eliminate the impact of Markovian
noise and approximate synchronous Q-learning. The burn-in cost linearly scales with tmax

mix ,
the largest mixing time of all the Markov chains of agents induced by their local behavior
policies. Similarly, the convergence analysis in Khodadadian et al. (2022) also requires the
sample size T to exceed a certain mixing time to guarantee the convergence of all Markov
chains, similar to tmax

mix . However, in Khodadadian et al. (2022), the effect of the mixing time
on the convergence is not amortized over time, remaining non-negligible even for sufficiently
small target accuracy ε. In contrast, in our sample complexity analysis, the burn-in time T0

is independent of the target accuracy ε, implying that the cost associated with the mixing
times becomes negligible for sufficiently small ε and is amortized over time.

4.4 Performance guarantees with importance averaging

In the asynchronous setting, heterogeneous behavior policies induce local trajectories that
cover the state-action space in a non-uniform manner. As a result, agents may update the
Q-estimate for a state-action pair at different frequencies, resulting in noisier Q-estimates
of state-action pairs that an agent rarely visits. Equally-weighted averaging of such local
Q-estimates is not efficient, because the convergence speed to the optimal Q-function for

14
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each state-action pair is bottlenecked with the slowest converging agent that visits it least
frequently. This is highlighted by the impact of the heterogeneity factor Chet in the sample
complexity of FedAsynQ-EqAvg, which scales linearly with Chet, implying that increased
heterogeneity among agents’ trajectories may impede the convergence. For example, if only
one agent exclusively visits a certain state-action pair (s, a) with probability one, while
other agents never visit that particular state-action pair, the heterogeneity factor becomes
Chet = K when K ≤ 1/µavg, canceling out the linear speedup.

Our key idea to prevent such inefficiency is to increase the contribution of frequently
updated local Q-estimates, which are likely to have smaller errors. By assigning a weight
inversely proportional to the error of the corresponding local estimate, we can balance the
heterogeneous training progress of the local estimates and obtain an average estimate with
much lower error. Combining this idea with the property that the local error decreases
exponentially with the number of local visits, we propose an importance averaging scheme
FedAsynQ-ImAvg with weights given by

αk
t (s, a) =

(1− η)−Nk
t−τ,t(s,a)

∑K
k′=1(1− η)−Nk′

t−τ,t(s,a)
(27)

for all (s, a) ∈ S × A and k ∈ [K], where Nk
t−τ,t(s, a) represents the number of iterations

between [t − τ, t) when the agent k visits (s, a). The weights in (27) can be calculated
at the server based on the number of visits to each state-action pair by the agents in one
synchronization period. Therefore, each agent needs to send its Nk

t−τ,t(s, a) for each (s, a)
along with its local Q-estimate, and FedAsynQ-ImAvg incurs twice the communication cost
of FedAsynQ-EqAvg per iteration.

We have the following theorem on the finite-time convergence of FedAsynQ-ImAvg.

Theorem 3 (Finite-time convergence of FedAsynQ-ImAvg) Consider any given δ ∈ (0, 1)
and ε ∈ (0, 1

1−γ ]. Suppose that the initialization of FedAsynQ-ImAvg satisfies 0 ≤ Q0 ≤ 1
1−γ ,

and the synchronization period τ obeys

τ ≤ 1

4η
min

{
1− γ

4
,
1

K

}
. (28a)

There exist some sufficiently large constant cT > 0 and sufficiently small constant cη > 0,
both independent of problem parameters, such that with probability at least 1− δ, the output
of FedAsynQ-ImAvg satisfies ‖QT − Q?‖∞ ≤ ε, provided that the sample size per agent T
and the learning rate η satisfy

T ≥ cT

(
1

Kµavg(1− γ)5ε2
+ T̃0

)
(log((1− γ)2ε))2 log (TK) log

|S||A|T 2K

δ
, (28b)

η = cη min
{
K(1− γ)4ε2, η̃0

} 1

log (TK) log |S||A|T 2K
δ

, (28c)

where T̃0 =
1

µavg(1−γ)η0
and η̃0 = min

{
1

tmax
mix

, 1− γ,K−1
}
, independent of ε.
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Theorem 3 implies that to achieve an ε-accurate estimate (in the `∞ sense), the sample
complexity per agent of FedAsynQ-ImAvg is no more than

Õ

(
1

Kµavg(1− γ)5ε2

)

for sufficiently small ε, when the burn-in cost T̃0 — representing the impact of the mixing
times — is amortized over time. A few implications are in order.

Linear speedup without the curse of heterogeneity. The sample complexity of
FedAsynQ-ImAvg is better than that of FedAsynQ-EqAvg, since it no longer depends on Chet

which can be as large as 1/µavg. FedAsynQ-ImAvg not only overcomes potential insufficient
local coverage by exploiting the complementary coverage of agents’ behavior policies, but
also achieves linear speedup with respect to the number of agents without suffering from
the potential performance degradation due to the associated statistical heterogeneity as in
FedAsynQ-EqAvg. In fact, the performance of FedAsynQ-ImAvg matches with centralized
Q-learning as if we collect and process all data trajectories at the central server, up to the
burn-in cost and logarithmic factors.

Communication efficiency. To provide further insights on the communication complex-
ity of FedAsynQ-ImAvg, consider again the regime when ε is sufficiently small and K & 1

1−γ .
To minimize the communication frequency while preserving the sample efficiency, we again
plug the choice of the learning rate (28c) into (28a) and select the synchronization period
as large as τ � 1

K2(1−γ)4ε2
up to logarithmic factors. Then, this ensures the communication

complexity Cround = T/τ is no more than Õ
(

K
µavg(1−γ)

)
.

5. Numerical experiments

In this section, we conduct numerical experiments to demonstrate the performance of the
asynchronous Q-learning algorithms (FedAsynQ-EqAvg and FedAsynQ-ImAvg).

Experimental setup. Consider an MDPM = (S,A, P, r, γ) described in Figure 2, where
S = {0, 1} and A = {1, 2, · · · ,m}. The reward function r is set as r(s = 1, a) = 1
and r(s = 0, a) = 0 for any action a ∈ A, and the discount factor is set as γ = 0.9.
We now describe the transition kernel P . Here, we set the self-transitioning probabilities
pa := P (0|0, a) and qa := P (1|1, a) uniformly at random from [0.4, 0.6] for each a ∈ A, and
set the probability of transitioning to the other state as P (1 − s|s, a) = 1 − P (s|s, a) for
each s ∈ S.

We evaluate the proposed federated asynchronous Q-learning algorithms on the above
MDP with K agents selecting their behavior policies from Π = {π1, π2, · · · , πm}, where
the i-th policy always chooses action i for any state, i.e., πi(i|s) = 1 for all s ∈ S. Here, we
assign πi to agent k ∈ [K] if i ≡ k (mod m). Note that if an agent has a behavior policy
πi, it can visit only two state-action pairs, (s = 0, a = i) and (s = 1, a = i), as described in
Figure 2. Thus, each agent covers a subset of the state-action space, and at least K = m
agents are required to obtain local trajectories collectively covering the entire state-action
space. Under this setting with m = 20, we run the algorithms for 100 simulations using
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Letting Qt be the average of the local Q-estimates at the end of the t-th iteration, i.e.,
Qt =

1
K

∑K
k=1Q

k
t , it follows from (13) and (24) that for all t ≥ 0 that

Qt =
1

K

K∑

k=1

Qk
t =

1

K

K∑

k=1

Qk
t− 1

2

. (32)

Denote the error between Qt and Q? by

∆t = Q? −Qt,

which is the quantity we aim to control. From (30), it holds immediately that for all t ≥ 0,

‖∆t‖∞ ≤ 1

1− γ
. (33)

Next, we also introduce the following functions pertaining to periodic averaging. For
any t,

• define ι(t) := τb t
τ c as the most recent synchronization step until t;

• define φ(t) := b t
τ c as the number of synchronization steps until t.

6.2 Proof outline of Theorem 1

Define the local empirical transition matrix at the t-th iteration P k
t ∈ {0, 1}|S||A|×|S| as

P k
t ((s, a), s

′) :=

{
1, if s′ = skt (s, a)

0, otherwise
, (34)

then the local update rule (12) can be rewritten as

Qk
t− 1

2

= (1− η)Qk
t−1 + η

(
r + γP k

t V
k
t−1

)
. (35)

The proof of Theorem 1 consists of the following steps.

Step 1: error decomposition. To analyze the error ∆t, we first decompose the error
into three terms, each of which can be bounded in a simple form. From (32), it follows that

∆t =
1

K

K∑

k=1

(
Q? −Qk

t− 1
2

) (i)
=

1

K

K∑

k=1

(
(1− η)(Q? −Qk

t−1) + η(Q? − r − γP k
t V

k
t−1)

)

(ii)
= (1− η)∆t−1 + η

γ

K

K∑

k=1

(
PV ? − P k

t V
k
t−1

)

= (1− η)∆t−1 + η
γ

K

K∑

k=1

(
P − P k

t

)
V k
t−1 + η

γ

K

K∑

k=1

P
(
V ? − V k

t−1

)
,
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where (i) follows from (35), and (ii) follows from Bellman’s optimality equation Q? =
r + γPV ?. By recursion over the above relation, we obtain

∆t = (1− η)t∆0

︸ ︷︷ ︸
=:E1

t

+ η
γ

K

t∑

i=1

(1− η)t−i
K∑

k=1

(P − P k
i )V

k
i−1

︸ ︷︷ ︸
=:E2

t

+ η
γ

K

t∑

i=1

(1− η)t−i
K∑

k=1

P (V ? − V k
i−1)

︸ ︷︷ ︸
=:E3

t

.

(36)

Here, the first term E1
t denotes the initialization error stemming from the disparity between

the initial Q-values and the optimal Q-values, which diminishes exponentially throughout
iterations. The second term, E2

t , comprises a weighted sum accounting for the difference
between the true transition probability and the realized transition in each iteration, where
the difference arises from the randomness of transitions. Lastly, the final term, E3

t , repre-
sents a weighted sum of value estimation errors from preceding iterations, which introduces
a recursive relation.

Step 2: bounding the error terms. Now, we obtain a bound of each of the error terms
in (36) separately.

• Bounding ‖E1
t ‖∞. Using the fact that all agents start with the same initial Q-values,

i.e., Qk
0 = Q0, the first error term is bounded as follows:

‖E1
t ‖∞ = (1− η)t ‖∆0‖∞ ≤ (1− η)t

1− γ
, (37)

where the last inequality follows from (33).

• Bounding ‖E2
t ‖∞. Exploiting conditional independence across transitions in differ-

ent iterations and applying Freedman’s inequality (Freedman, 1975), the second error
term is bounded using Lemma 4 below, whose proof is provided in Appendix B.1.

Lemma 4 For any given δ ∈ (0, 1), the following holds

∥∥E2
t

∥∥
∞ ≤ 8γ

1− γ

√
η

K
log

|S||A|T
δ

(38)

for all 0 ≤ t ≤ T with probability at least 1−δ, as long as η satisfies η ≤ K
2 (log

|S||A|T
δ )−1.

• Bounding ‖E3
t ‖∞. For E3

t , we obtain the following recursive relation using Lemma 5
below, whose proof is provided in Appendix B.2.

Lemma 5 Let β be any integer that satisfies 0 ≤ β ≤ φ(T ). For any given δ ∈ (0, 1),
the following holds

‖E3
t ‖∞ ≤ 2γ

1− γ
(1− η)βτ +

16γη
√
τ − 1

(1− γ)

√
log

2|S||A|KT

δ

+ γ(1 + 4η(τ − 1)) max
ι(t)−βτ≤i<t

‖∆i‖∞ (39)

for all βτ ≤ t ≤ T with probability at least 1− δ, as long as η satisfies τη < 1/2.
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Step 3: solving a recursive relation. By putting all the bounds derived in the previous
step together, for any βτ ≤ t ≤ T , the total error bound can be written in a simple recursive
form as follows:

‖∆t‖∞ ≤ ζ + γ(1 + 4η(τ − 1)) max
ι(t)−βτ≤i<t

‖∆i‖∞ ≤ ζ +

(
1 + γ

2

)
max

ι(t)−βτ≤i<t
‖∆i‖∞, (40)

where in the first inequality we introduce the short-hand notation

ζ :=
4(1− η)βτ

1− γ
+

8γ

1− γ

√
η

K
log

|S||A|T
δ

+
16γη

√
τ − 1

(1− γ)

√
log

2|S||A|KT

δ
, (41)

and the second inequality follows from the assumption τ − 1 ≤ 1−γ
8γη .

By invoking the recursive relation in (40) L times, where the choices of β and L will be
made momentarily, it follows that for any Lβτ ≤ t ≤ T ,

‖∆t‖∞ ≤
L−1∑

i=0

(
1 + γ

2

)i

ζ +

(
1 + γ

2

)L

max
ι(t)−Lβτ≤i<t

‖∆i‖∞

≤ 2

1− γ
ζ +

(
1 + γ

2

)L( 1

1− γ

)
, (42)

where the second line uses the crude bound in (33).

Setting β =

⌊
1
τ

√
(1−γ)T

2η

⌋
and L =

⌈√
ηT
1−γ

⌉
, which ensures Lβτ ≤ T , and plugging their

choices into (41) and (42) at t = T , we obtain that

‖∆T ‖∞

≤ 8(1− η)βτ

(1− γ)2
+

16γ

(1− γ)2

√
η

K
log

|S||A|T
δ

+
32γη

√
τ − 1

(1− γ)2

√
log

2|S||A|KT

δ
+

(
1 + γ

2

)L( 1

1− γ

)

≤ 32

(1− γ)2

(
exp

(
−
√
(1− γ)ηT

2

)
+ γ

√
η

K
log

|S||A|T
δ

+ γη
√
τ − 1

√
log

|S||A|KT

δ

)

≤ 64

(1− γ)2

(
exp

(
−
√
(1− γ)ηT

2

)
+ γ

√
η

K
log

|S||A|KT

δ

)
, (43)

where the second line follows from

(1− η)βτ ≤ exp(−ηβτ) ≤ exp

(
−
√

(1− γ)ηT

2

)
,

(
1 + γ

2

)L

=

(
1− 1− γ

2

)L

≤ exp

(
−(1− γ)

2
L

)
≤ exp

(
−
√

(1− γ)ηT

2

)
,

and the third line follows from the choice of the synchronization period such that

τ − 1 ≤ 1

η
min

{
1− γ

8γ
,
1

K

}
. (44)
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Thus, for any given ε ∈ (0, 1
1−γ ), we can guarantee that ‖∆T ‖∞ ≤ ε if

T ≥ cT
1

K(1− γ)5ε2
(log((1− γ)2ε))2 log

|S||A|KT

δ
,

η = cηK(1− γ)4ε2
1

log |S||A|KT
δ

(45)

for some sufficiently large cT and sufficiently small cη.

6.3 Proof outline of Theorem 2

For simplicity, we introduce the following notation. Let Uk
v1,v2(s, a) represent a set of it-

eration indices between [v1, v2) for some 0 ≤ v1 ≤ v2 ≤ T where agent k visits (s, a),
i.e.,

Uk
v1,v2(s, a) :=

{
u ∈ [v1, v2) : (sku, a

k
u) = (s, a)

}
,

and Nk
v1,v2(s, a) denotes the number of visits of agent k on (s, a) during iterations between

[v1, v2), i.e.,
Nk

v1,v2(s, a) = |Uk
v1,v2(s, a)|.

Define the local empirical transition matrix at the t-th iteration P k
t ∈ {0, 1}|S||A|×|S| as

P k
t ((s, a), s

′) :=

{
1 if (s, a, s′) = (skt−1, a

k
t−1, s

k
t )

0 otherwise
. (46)

Then the local update rule (23) can be rewritten as

Qk
t− 1

2

(s, a) =

{
(1− η)Qk

t−1(s, a) + η(rkt−1 + γP k
t (s, a)V

k
t−1) if (s, a) = (skt−1, a

k
t−1)

Qk
t−1(s, a), otherwise

.

(47)

The proof of Theorem 2 consists of the following steps.

Step 1: error decomposition. Consider any 0 ≤ t ≤ T such that t ≡ 0 (mod τ), i.e., t is
a synchronization step. To analyze ∆t, we first decompose the error for each (s, a) ∈ S ×A
as follows:

∆t(s, a) =
1

K

K∑

k=1

(Q?(s, a)−Qk
t− 1

2

(s, a))

=

(
1

K

K∑

k=1

(1− η)N
k
t−τ,t(s,a)

)
∆t−τ (s, a)

+
γ

K

K∑

k=1

∑

u∈Uk
t−τ,t(s,a)

η(1− η)N
k
u+1,t(s,a)(P (s, a)− P k

u+1(s, a))V
k
u

+
γ

K

K∑

k=1

∑

u∈Uk
t−τ,t(s,a)

η(1− η)N
k
u+1,t(s,a)P (s, a)(V ? − V k

u ), (48)
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where we invoke the following recursive relation of the local error at iteration u such that
(su−1, au−1) = (s, a):

Q?(s, a)−Qk
u− 1

2

(s, a)

= (1− η)(Q?(s, a)−Qk
u−1(s, a)) + η(Q?(s, a)− rku−1 − γP k

u (s, a)V
k
u−1)

= (1− η)(Q?(s, a)−Qk
u−1(s, a)) + η(γP (s, a)V ? − γP k

u (s, a)V
k
u−1)

= (1− η)(Q?(s, a)−Qk
u−1(s, a)) + γη(P (s, a)− P k

u (s, a))V
k
u−1 + γP (s, a)(V ? − V k

u−1).(49)

Here, the second equality follows from Bellman’s optimality equation. Denoting

λv1,v2(s, a) :=
1

K

K∑

k=1

(1− η)N
k
v1,v2

(s,a) (50)

for any integer 0 ≤ v1 ≤ v2 ≤ T , we apply recursion to the relation (48) over the synchro-
nization periods, and obtain

∆t(s, a) =




φ(t)−1∏

h=0

λhτ,(h+1)τ (s, a)


∆0(s, a)

+
γ

K

φ(t)−1∑

h=0




φ(t)−1∏

l=(h+1)

λlτ,(l+1)τ (s, a)




×
K∑

k=1

∑

u∈Uk
hτ,(h+1)τ

(s,a)

η(1− η)
Nk

u+1,(h+1)τ
(s,a)

(P (s, a)− P k
u+1(s, a))V

k
u

+
γ

K

φ(t)−1∑

h=0




φ(t)−1∏

l=(h+1)

λlτ,(l+1)τ (s, a)




×
K∑

k=1

∑

u∈Uk
hτ,(h+1)τ

(s,a)

η(1− η)
Nk

u+1,(h+1)τ
(s,a)

P (s, a)(V ? − V k
u )

= ω0,t(s, a)∆0(s, a)

︸ ︷︷ ︸
=:E1

t (s,a)

+ γ

K∑

k=1

∑

u∈Uk
0,t(s,a)

ωk
u,t(s, a)(P (s, a)− P k

u+1(s, a))V
k
u

︸ ︷︷ ︸
=:E2

t (s,a)

+ γ

K∑

k=1

∑

u∈Uk
0,t(s,a)

ωk
u,t(s, a)P (s, a)(V ? − V k

u )

︸ ︷︷ ︸
=:E3

t (s,a)

, (51)

which is decomposed in a similar manner as (36). Here, we define

ω0,t(s, a) :=

φ(t)−1∏

h=0

λhτ,(h+1)τ (s, a), (52a)
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ωk
u,t(s, a) :=

1

K
η(1− η)

Nk
u+1,(φ(u)+1)τ

(s,a)
φ(t)−1∏

l=φ(u)+1

λlτ,(l+1)τ (s, a). (52b)

We record the following useful lemma whose proof is provided in Appendix C.2.

Lemma 6 Consider integers v1 and v2 such that 0 ≤ v1 ≤ v2 ≤ t ≤ T , where t ≡ 0 (mod τ),
and a state-action pair (s, a) ∈ S × A. Suppose that ητ ≤ 1. The parameters defined in
(52) satisfy

λv1,v2(s, a) ≤ exp

(
− η

2K

K∑

k=1

Nk
v1,v2(s, a)

)
, (53a)

ω0,t(s, a) +
K∑

k=1

∑

u∈Uk
0,t(s,a)

ωk
u,t(s, a) = 1, (53b)

K∑

k=1

∑

u∈Uk
0,h′τ

(s,a)

ωk
u,t(s, a) ≤ exp

(
− η

2K

K∑

k=1

Nk
h′τ,t(s, a)

)
, ∀0 ≤ h′ ≤ φ(t), (53c)

K∑

k=1

∑

u∈Uk
0,t(s,a)

(ωk
u,t(s, a))

2 ≤ 2η

K
. (53d)

Step 2: bounding the error terms. Here, we derive the bound of the error terms in
(51) separately for all the state-action pairs (s, a) ∈ S ×A.

• Bounding |E1
t (s, a)|. Using the initialization condition that Q0(s, a) = Qk

0(s, a) for
every agent k ∈ [K], we bound the first term for any (s, a) ∈ S ×A as follows:

|E1
t (s, a)| ≤ ω0,t(s, a)(‖Q0‖∞ + ‖Q?‖∞)

(i)

≤ 2ω0,t(s, a)

1− γ

(ii)

≤ 2

1− γ
exp

(
−ηµavgt

8

)
,

(54)

where (i) holds because ‖Q0‖∞, ‖Q?‖∞ ≤ 1
1−γ (cf. (30)) and (ii) follows from the

fact that

ω0,t(s, a) ≤ exp

(
− η

2K

K∑

k=1

Nk
0,t(s, a)

)
≤ exp

(
−ηµavgt

8

)
, (55)

where the first inequality holds according to (53a) of Lemma 6, and the last inequality

follows from the fact that
∑K

k=1N
k
0,t(s, a) ≥

Kµavgt
4 for all (s, a, k, h) ∈ S×A×[K]×[T ]

at least with probability 1− δ according to Lemma 15 and the union bound, as long
as t ≥ tth.

• Bounding |E2
t (s, a)|. By carefully treating the statistical dependency via a de-

coupling argument and applying Freedman’s inequality, we can obtain the following
bound, whose proof is provided in Appendix C.3.
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Lemma 7 For any given δ ∈ (0, 1), the following holds for any (s, a) ∈ S × A and
1 ≤ t ≤ T :

∣∣E2
t (s, a)

∣∣ ≤ 7241γ

(1− γ)

√
Chetη

K
log (TK) log

4|S||A|T 2K

δ
(56)

with probability at least 1− 4δ, as long as τ ≥ tth and

3

T
≤ η ≤ min

{ 1

16τ
,

1

4τK
,

1

128KChet log (TK) log 4|S||A|T 2K
δ

}
.

• Bounding |E3
t (s, a)|. For E3

t , we can obtain the following recursive relation, whose
proof is provided in Appendix C.4.

Lemma 8 Let β be any integer that satisfies 0 < β ≤ φ(T ). For any given δ ∈ (0, 1),
the following holds

|E3
t (s, a)| ≤

2γ

1− γ
exp

(
−ηµavgβτ

8

)
+

8γη
√
τ − 1

1− γ

√
log

2|S||A|TK
δ

+
1 + γ

2
max

φ(t)−β≤h≤φ(t)−1
‖∆hτ‖∞, (57)

for all βτ ≤ t ≤ T with probability at least 1 − δ, as long as βτ ≥ tth and η ≤
min{1−γ

4γτ ,
1
2τ }.

Step 3: solving a recursive relation. By putting all the bounds derived in the previous
step together, for any βτ ≤ t ≤ T , the total error bound can be written in a simple recursive
form as follows:

‖∆t‖∞ ≤ θ +
1 + γ

2
max

φ(t)−β≤h≤φ(t)−1
‖∆hτ‖∞, (58)

where we define

θ :=
4

1− γ
exp

(
−ηµavgβτ

8

)
+

7241γ

(1− γ)

√
Chetη

K
log (TK) log

4|S||A|T 2K

δ

+
8γη

√
τ − 1

1− γ

√
log

2|S||A|TK
δ

. (59)

Then, by invoking the recursive relation for L1 times, where the choices of β and L1 will
be made momentarily, it follows that for any L1βτ ≤ t ≤ T ,

‖∆t‖∞ ≤
L1−1∑

l=0

(
1 + γ

2

)l

θ +

(
1 + γ

2

)L1

max
φ(t)−βL≤i≤φ(t)−1

‖∆iτ‖∞ ≤ 2

1− γ

(
θ +

(
1 + γ

2

)L1
)
,

(60)

where the last inequality follows from (33).
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Setting β =
⌊
1
τ

√
2(1−γ)T
µavgη

⌋
and L1 =

⌈
1
2

√
µavgηT
(1−γ)

⌉
, which ensures L1βτ ≤ T , and

plugging the choices into (59) and (60) at t = T , we obtain

‖∆T ‖∞ ≤
8 exp

(
−ηµavgβτ

8

)

(1− γ)2
+

14481γ

(1− γ)2

√
Chetη

K
log (TK) log

4|S||A|T 2K

δ

+
16γη

√
τ − 1

(1− γ)2

√
log

2|S||A|TK
δ

+
2

1− γ

(
1 + γ

2

)L

≤ 16

(1− γ)2
exp

(
−
√
(1− γ)µavgηT

8

)
+

14481γ

(1− γ)2

√
Chetη

K
log (TK) log

4|S||A|T 2K

δ

+
16γη

√
τ − 1

(1− γ)2

√
log

2|S||A|TK
δ

≤ 14497

(1− γ)2

(
exp

(
−
√
(1− γ)µavgηT

8

)
+ γ

√
Chetη

K
log (TK) log

4|S||A|T 2K

δ

)
,

(61)

where the second line follows from

exp

(
−ηµavgβτ

8

)
≤ exp

(
−
√

(1− γ)µavgηT

8

)
,

(
1 + γ

2

)L1

=

(
1− 1− γ

2

)L1

≤ exp

(
−1− γ

2
L1

)
≤ exp

(
−
√

(1− γ)µavgηT

4

)
,

and the third line follows from the choice of the synchronization period such that

tth ≤ τ ≤ 1

4η
min

{
1− γ

4
,
1

K

}
. (62)

Thus, for any given ε ∈ (0, 1
1−γ ], we can guarantee that ‖∆T ‖∞ ≤ ε if

T ≥ cT (log((1− γ)2ε))2 log (TK) log
4|S||A|T 2K

δ

· 1

µavg

max

{
Chet

K(1− γ)5ε2
,

tmax
mix

µavg(1− γ)min{1− γ,K−1}

}
,

η = cη

(
log (TK) log

4|S||A|T 2K

δ

)−1

min

{
K(1− γ)4ε2

Chet

,
µavg min{1− γ,K−1}

tmax
mix

}

for some sufficiently large cT and sufficiently small cη.

6.4 Proof outline of Theorem 3

The proof of Theorem 3 consists of the following steps.
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Step 1: error decomposition. Consider any 0 ≤ t ≤ T such that t ≡ 0 (mod τ), i.e., t
is a synchronization step. To analyze ∆t, invoking the recursive relation of the local error
(cf. (49)), we first decompose the error for each (s, a) ∈ S ×A as follows:

∆t(s, a) =
K∑

k=1

αk
t (s, a)(Q

?(s, a)−Qk
t− 1

2

(s, a))

=

(
K∑

k=1

αk
t (s, a)(1− η)N

k
t−τ,t(s,a)

)
∆t−τ (s, a)

+ γ

K∑

k=1

αk
t (s, a)

∑

u∈Uk
t−τ,t(s,a)

η(1− η)N
k
u+1,t(s,a)(P (s, a)− P k

u+1(s, a))V
k
u

+ γ
K∑

k=1

αk
t (s, a)

∑

u∈Uk
t−τ,t(s,a)

η(1− η)N
k
u+1,t(s,a)P (s, a)(V ? − V k

u )

=

(
K

∑K
k′=1(1− η)−Nk′

t−τ,t(s,a)

)
∆t−τ (s, a)

+ γ

K∑

k=1

∑

u∈Uk
t−τ,t(s,a)

η(1− η)−Nk
t−τ,u+1(s,a)

∑K
k′=1(1− η)−Nk′

t−τ,t(s,a)
(P (s, a)− P k

u+1(s, a))V
k
u

+ γ
K∑

k=1

∑

u∈Uk
t−τ,t(s,a)

η(1− η)−Nk
t−τ,u+1(s,a)

∑K
k′=1(1− η)−Nk′

t−τ,t(s,a)
P (s, a)(V ? − V k

u ), (63)

where the last line uses the definition of αk
t (s, a) in (27). Denoting

λ̃v1,v2(s, a) :=
K

∑K
k=1(1− η)N

k
v1,v2

(s,a)
(64)

for any integer 0 ≤ v1 ≤ v2 ≤ T , we apply recursion to the relation (63) over the synchro-
nization period, and obtain

∆t(s, a) =




φ(t)−1∏

h=0

λ̃hτ,(h+1)τ (s, a)


∆0(s, a)

+

φ(t)−1∑

h=0




φ(t)−1∏

l=(h+1)

λ̃lτ,(l+1)τ (s, a)




× γ

K∑

k=1

∑

u∈Uk
hτ,(h+1)τ

(s,a)

η(1− η)−Nk
hτ,u+1(s,a)

∑K
k′=1(1− η)

−Nk′

hτ,(h+1)τ
(s,a)

(P (s, a)− P k
u+1(s, a))V

k
u

+

φ(t)−1∑

h=0




φ(t)−1∏

l=(h+1)

λ̃lτ,(l+1)τ (s, a)



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γ

K∑

k=1

∑

u∈Uk
hτ,(h+1)τ

(s,a)

η(1− η)−Nk
hτ,u+1(s,a)

∑K
k′=1(1− η)

−Nk′

hτ,(h+1)τ
(s,a)

P (s, a)(V ? − V k
u )

= ω̃0,t(s, a)∆0(s, a)

︸ ︷︷ ︸
=:E1

t (s,a)

+ γ
K∑

k=1

∑

u∈Uk
0,t(s,a)

ω̃k
u,t(s, a)(P (s, a)− P k

u+1(s, a))V
k
u

︸ ︷︷ ︸
=:E2

t (s,a)

+ γ
K∑

k=1

∑

u∈Uk
0,t(s,a)

ω̃k
u,t(s, a)P (s, a)(V ? − V k

u )

︸ ︷︷ ︸
=:E3

t (s,a)

, (65)

which is again decomposed similarly as (36). Here, we define

ω̃0,t(s, a) :=

φ(t)−1∏

h=0

λ̃hτ,(h+1)τ (s, a), (66a)

ω̃k
u,t(s, a) :=

η(1− η)
−Nk

φ(u)τ,u+1
(s,a)

∑K
k′=1(1− η)

−Nk′

φ(u)τ,(φ(u)+1)τ
(s,a)




φ(t)−1∏

l=φ(u)+1

λ̃lτ,(l+1)τ (s, a)


 . (66b)

We record the following useful lemma whose proof is provided in Appendix C.5.

Lemma 9 Consider any integers 0 ≤ v1 ≤ v2 ≤ t ≤ T where t ≡ 0 (mod τ) and any
state-action pair (s, a) ∈ S × A. Suppose that ητ ≤ 1, then the parameters defined in (66)
satisfy

1

3K
≤ αk

t (s, a) ≤
3

K
, (67a)

ω̃0,t(s, a) ≤ (1− η)
1
K

∑K
k=1 N

k
0,t(s,a), (67b)

ω̃0,t(s, a) +

K∑

k=1

∑

u∈Uk
0,t(s,a)

ω̃k
u,t(s, a) = 1, (67c)

K∑

k=1

∑

u∈Uk
0,h′τ

(s,a)

ω̃k
u,t(s, a) ≤ (1− η)

1
K

∑K
k=1 N

k
h′τ,t

(s,a)
, ∀0 ≤ h′ ≤ φ(t), (67d)

K∑

k=1

∑

u∈Uk
0,t(s,a)

(ω̃k
u,t(s, a))

2 ≤ 6η

K
. (67e)

Step 2: bounding the error terms. Here, we derive the bound of each error term in
(65) separately for all the state-action pairs (s, a) ∈ S ×A.

• Bounding |E1
t (s, a)|. Using the initialization condition that Q0(s, a) = Qk

0(s, a) for
every client k ∈ [K], we bound the first term for any (s, a) ∈ S ×A as follows:

|E1
t (s, a)| ≤ ω̃0,t(‖Q0‖∞ + ‖Q?‖∞)

(i)

≤ 2ω̃0,t

1− γ

(ii)

≤ 2

1− γ
(1− η)

1
K

∑K
k=1 N

k
0,t(s,a)
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(iii)

≤ 2

1− γ
(1− η)

1
4
µavgt, (68)

where (i) holds because ‖Q0‖∞, ‖Q?‖∞ ≤ 1
1−γ (cf. (30)), (ii) follows from (67b) of

Lemma 9, and (iii) holds for all (s, a, t) ∈ S ×A× [T ] with probability at least 1− δ
according to Lemma 15, as long as t ≥ tth.

• Bounding |E2
t (s, a)|. By carefully treating the statistical dependency via a de-

coupling argument and applying Freedman’s inequality, we can obtain the following
bound, whose proof is provided in Appendix C.6.

Lemma 10 For any given δ ∈ (0, 1), the following holds for any (s, a) ∈ S × A and
1 ≤ t ≤ T :

∣∣E2
t (s, a)

∣∣ ≤ 2064γ

(1− γ)

√
η

K
log (TK) log

4|S||A|T 2K

δ
(69)

with probability at least 1− 2δ, as long as

3

T
< η ≤ min

{ 1

16τ
,

K

256 log (TK) log 4|S||A|T 2K
δ

,
1

34816tmax
mix log (8K) log 4|S||A|T 2

δ

}
.

• Bounding |E3
t (s, a)|. For E3

t , similarly to Lemma 8, we can obtain the following
recursive relation, whose proof is provided in Appendix C.7.

Lemma 11 Let β be any integer that satisfies tth
τ ≤ β ≤ φ(T ). For any given δ ∈

(0, 1), the following holds

|E3
t (s, a)| ≤

2(1− η)
µavgβτ

4

1− γ
+

8γη
√
τ − 1

1− γ

√
log

2|S||A|TK
δ

+
1 + γ

2
max

φ(t)−β≤h≤φ(t)−1
‖∆hτ‖∞, (70)

for all βτ ≤ t ≤ T with probability at least 1− δ, as long as η ≤ min{1−γ
4γτ ,

1
2τ }.

Step 3: solving a recursive relation. By putting all the bounds derived in the previous
step together, for any βτ ≤ t ≤ T , the total error bound can be written in a simple recursive
form as follows:

‖∆t‖∞ ≤ θ +
1 + γ

2
max

φ(t)−β≤h≤φ(t)−1
‖∆hτ‖∞, (71)

where we define

θ̃ :=
4

1− γ
(1− η)

µavgβτ

4 +
2064γ

(1− γ)

√
η

K
log (TK) log

4|S||A|T 2K

δ

+
8γη

√
τ − 1

1− γ

√
log

2|S||A|TK
δ

. (72)
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Then, by invoking the recursive relation for L2 times, where the choices of β and L2 will
be made momentarily, it follows that for any L2βτ ≤ t ≤ T ,

‖∆t‖∞ ≤
L2−1∑

l=0

(
1 + γ

2

)l

θ̃ +

(
1 + γ

2

)L2

max
φ(t)−βL≤i≤φ(t)−1

‖∆iτ‖∞ ≤ 2

1− γ

(
θ +

(
1 + γ

2

)L2
)
,

(73)

where the last inequality follows from (33).

Setting L2 =
⌈
1
2

√
µavgηT
(1−γ)

⌉
and β =

⌊
1
τ

√
2(1−γ)T
µavgη

⌋
, which ensures L2βτ ≤ T , and plugging

the choices into (72) and (73) at t = T , we obtain

‖∆T ‖∞ ≤ 8(1− η)
µavgβτ

4

(1− γ)2
+

4128γ

(1− γ)2

√
η

K
log (TK) log

4|S||A|T 2K

δ

+
16γη

√
τ − 1

(1− γ)2

√
log

2|S||A|TK
δ

+
2

1− γ

(
1 + γ

2

)L2

≤ 16

(1− γ)2
exp

(
−
√
(1− γ)µavgηT

4

)
+

4128γ

(1− γ)2

√
η

K
log (TK) log

4|S||A|T 2K

δ

+
16γη

√
τ − 1

(1− γ)2

√
log

2|S||A|TK
δ

≤ 4144

(1− γ)2

(
exp

(
−
√
(1− γ)µavgηT

4

)
+ γ

√
η

K
log (TK) log

4|S||A|T 2K

δ

)
,

(74)

where the second line follows from

(1− η)
µavgβτ

4 ≤ exp

(
−ηµavgβτ

4

)
≤ exp

(
−
√
(1− γ)µavgηT

4

)
,

(
1 + γ

2

)L2

=

(
1− 1− γ

2

)L2

≤ exp

(
−1− γ

2
L2

)
≤ exp

(
−
√

(1− γ)µavgηT

4

)
,

and the third line follows from the choice of the synchronization period such that

τ ≤ 1

4η
min

{
1− γ

4
,
1

K

}
. (75)

Thus, for any given ε ∈ (0, 1
1−γ ), optimizing η and T to make (74) bounded by ε and

recalling βτ ≥ tth, we can guarantee that ‖∆T ‖∞ ≤ ε if

T ≥ cT (log((1− γ)2ε))2 log (TK) log
4|S||A|T 2K

δ

· 1

µavg

max

{
1

K(1− γ)5ε2
,

tmax
mix

(1− γ)
,

1

(1− γ)min {1− γ,K−1}

}
,
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η = cη min

{
K(1− γ)4ε2

1

log (TK) log 4|S||A|T 2K
δ

,
1

µavgtth
,

1

tmax
mix log (TK) log 4|S||A|T 2K

δ

}

= cη

(
log (TK) log

4|S||A|T 2K

δ

)−1

min

{
K(1− γ)4ε2,

1

tmax
mix

,min
{
1− γ,K−1

}}

for some sufficiently large cT and sufficiently small cη.

7. Discussions

We presented a sample complexity analysis of federated Q-learning in both synchronous
and asynchronous settings. Our sample complexity not only leads to linear speedup with
respect to the number of agents, but also significantly improves the dependencies on other
salient problem parameters over the prior art. For federated asynchronous Q-learning, we
proposed a novel importance averaging scheme that weighs the agents’ local Q-estimates
according to the number of visits to each state-action pair. This allows agents to leverage
the blessing of heterogeneity of their local behavior policies and collaboratively learn the
optimal Q-function that otherwise would not be possible, without requiring each individual
agent to cover the entire state-action space. Looking ahead, this work opens up many
exciting future directions, some outlined below.

• Improved sample complexity. While our sample complexity bounds are near-optimal
with respect to the size of the state-action space, it is still sub-optimal with respect to
the effective horizon length as well as the mixing time when benchmarking with the
sample complexity in the single-agent setting (Li et al., 2023). It will be interesting
to close this gap, and further improve the sample complexity with variance reduction
techniques (Wainwright, 2019b; Li et al., 2021b) in the federated setting.

• Understanding communication asynchrony across agents. As a starting point, our
work assumes that all agents communicate with the server in a synchronous man-
ner to perform periodic averaging. However, in practical federated networks, some
agents might be stragglers due to communication slowdowns, which warrants further
investigation (Kairouz et al., 2021).

• Other RL settings and function approximation. Besides the infinite-horizon tabular
MDPs, it will be of great interest to extend our analysis framework to other RL
settings including but not limited to the finite-horizon setting, the average reward
setting, heterogeneous environments across the agents (Yang et al., 2024), as well as
incorporating function approximation.

• Federated offline RL. In many applications, offline RL is attracting a growing amount
of interest, which aims to explore history datasets to improve the learned policy with-
out exploration, e.g. via pessimistic variants of Q-learning (Shi et al., 2022). It will be
appealing to develop federated offline Q-learning algorithms to enable learning from
geographically distributed history datasets.

• Adaptive communication periods and communication efficiency. In our work, we as-
sume a constant communication period τ , where the number of local steps between
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synchronizations is fixed. This results in the number of communication rounds grow-
ing linearly with the number of agents K and the horizon factor 1

1−γ , which is shy
from the statistical-communication complexity established in Salgia and Chi (2024).
A recent study Woo et al. (2024) shows that a federated offline RL algorithm can
significantly improve communication efficiency without sacrificing sample efficiency
by adaptively increasing the communication periods exponentially in a finite-horizon
MDP. In this case, the required number of communication rounds scales only with
the horizon length, independent of the number of agents. It would be interesting to
explore whether adaptive communication periods could lead to similar improvements
in communication efficiency in the infinite-horizon MDP setting.
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Appendix A. Preliminaries

We record a few useful inequalities that will be used throughout our analysis. To start
with, our analysis leverages Freedman’s inequality (Freedman, 1975), which we record a
user-friendly version as follows.

Theorem 12 (Theorem 6 in Li et al. (2023)) Suppose that Yn =
∑n

k=1Xk ∈ R, where
{Xk} is a real-valued scalar sequence obeying

|Xk| ≤ R and E

[
Xk | {Xj}j:j<k

]
= 0 for all k ≥ 1.

Define

Wn :=

n∑

k=1

Ek−1

[
X2

k

]
,

where we write Ek−1 for the expectation conditional on {Xj}j:j<k. Then for any given

σ2 ≥ 0, one has

P
{
|Yn| ≥ τ and Wn ≤ σ2

}
≤ 2 exp

(
− τ2/2

σ2 +Rτ/3

)
. (76)

In addition, suppose that Wn ≤ σ2 holds deterministically. For any positive integer m ≥ 1,
with probability at least 1− δ one has

|Yn| ≤
√

8max
{
Wn,

σ2

2m

}
log

2m

δ
+

4

3
R log

2m

δ
. (77)

Another useful relation concerns the concentration of empirical distributions of uni-
formly ergodic Markov chains, which is rephrased from Li et al. (2021b).

Lemma 13 (Li et al. (2021b, Lemma 8)) Consider any time homogeneous and uni-
formly ergodic Markov chain (X0, X1, X2, . . .) with transition kernel P , finite state space
X , and stationary distribution µ. Let tmix be the mixing time of the Markov chain and µmin

be the minimum entry of the stationary distribution µ. Consider any 0 < δ < 1. For any
x ∈ X , if t ≥ 443tmix

ν log 4|X |
δ for ν ≥ µ(x), then

∀y ∈ X : PX1=y

{∣∣∣∣∣

t∑

i=1

1{Xi = x} − tµ(x)

∣∣∣∣∣ ≥
1

2
tν

}
≤ δ

|X | .

Remark 14 Lemma 13 is a slightly generalized version of in Li et al. (2021b, Lemma 8),
where the concentration bound is characterized in terms of any given threshold ν ≥ µ(x),
not scaling with the stationary distribution µ(x). It can be shown using the Bernstein’s
inequality for Markov chains (Paulin, 2015, Theorem 3.11) in the same manner as Li et al.

(2021b, Lemma 8), except that the threshold is set to νt
2 instead of µ(x)t

2 . We omit further
details for conciseness and refer interested readers to the proof in Li et al. (2021b).
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In addition, we provide the concentration bound of the total number of visits of multiple
agents agents with independent uniformly ergodic Markov chains, whose proof is provided
in Appendix C.1. Denote

tth(s, a) :=
2176tmax

mix log 8K log 4|S||A|T 2

δ

µavg(s, a)
and tth :=

2176tmax
mix log 8K log 4|S||A|T 2

δ

µavg

. (78)

Here, µavg(s, a) :=
1
K

∑K
k=1 µ

k
b(s, a) is the average behavior policy over all agents.

Lemma 15 Consider any δ ∈ (0, 1). Under the asynchronous sampling, for any (s, a) ∈
S ×A and 0 ≤ u < v ≤ T such that v − u ≥ tth(s, a), the following holds :

1

4
(v − u)Kµavg(s, a) ≤

K∑

k=1

Nk
u,v(s, a) ≤ 2(v − u)Kµavg(s, a) (79)

with probability at least 1− δ
|S||A|T 2 .

Appendix B. Proofs for federated synchronous Q-learning (Section 3)

Define the following actions

a?(s) = argmax
a∈A

Q?(s, a), aki (s) = argmax
a∈A

Qk
i (s, a), ai(s) = argmax

a∈A

1

K

K∑

k=1

Qk
i (s, a)

(80)
for any state s ∈ S, which will be useful throughout the proof.

B.1 Proof of Lemma 4

For notation simplicity, let zki (s, a) := η(1 − η)t−i(P (s, a) − P k
i (s, a))V

k
i−1, then the entries

of E2
t = [E2

t (s, a)] can be written as

E2
t (s, a) = η

γ

K

t∑

i=1

(1− η)t−i
K∑

k=1

(P (s, a)− P k
i (s, a))V

k
i−1 =

γ

K

t∑

i=1

K∑

k=1

zki (s, a), (81)

which we plan to bound by invoking Freedman’s inequality (cf. Theorem 12) using the fact
zki (s, a) is independent of the transition events of other agents k′ 6= k at i and has zero
mean conditioned on the events before iteration i, i.e.,

E[zki (s, a)|V K
i−1, . . . , V

1
i−1, . . . , V

K
0 , . . . , V 1

0 ] = 0, ∀k ∈ [K], 1 ≤ i ≤ t. (82)

Before applying Freedman’s inequality, we first derive the following properties of the variable
zki (s, a).

• First, we can bound

Bt(s, a) := max
k∈[K],1≤i≤t

|zki (s, a)|
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≤ max
k∈[K],1≤i≤t

η
(
‖P (s, a)‖1 + ‖P k

i (s, a)‖1
)
‖V k

i−1‖∞ ≤ 2η

1− γ
, (83)

where the first inequality uses (1 − η)t−i ≤ 1, and the last inequality follows from
‖P (s, a)‖1 ≤ 1, ‖P k

i (s, a)‖1 ≤ 1, and ‖V k
i−1‖∞ ≤ 1

1−γ (cf. (30)).

• Next, we have

Wt(s, a) :=

t∑

i=1

K∑

k=1

E
[
(zki (s, a))

2|V K
i−1, . . . , V

1
i−1, . . . , V

K
0 , . . . , V 1

0

]

=
t∑

i=1

K∑

k=1

Var
(
zki (s, a)|V K

i−1, . . . , V
1
i−1, . . . , V

K
0 , . . . , V 1

0

)

=

t∑

i=1

K∑

k=1

η2(1− η)2(t−i)Vars,a(V
k
i−1)

≤ 2K

(1− γ)2

t∑

i=1

η2(1− η)2(t−i) ≤ 2ηK

(1− γ)2
:= σ2, (84)

where we recall the definition of Vars,a in (29). Here, the first inequality holds since

Vars,a(V
k
i−1) ≤ ‖P (s, a)‖1(‖V k

i−1‖∞)2 + (‖P (s, a)‖1‖V k
i−1‖∞)2 ≤ 2

(1− γ)2

and the last inequality follows from

t∑

i=1

η2(1− η)2(t−i) ≤ η2(1− (1− η)2t)

1− (1− η)2
≤ η. (85)

By substituting the above bounds (cf. (83) and (84)) and m = 1 into Freedman’s
inequality (see Theorem 12), it follows that for any s ∈ S, a ∈ A and t ∈ [T ],

∣∣∣∣∣

t∑

i=1

K∑

k=1

zki (s, a)

∣∣∣∣∣ ≤
√
8max {Wt(s, a),

σ2

2m
} log 2m|S||A|T

δ
+

4

3
Bt(s, a) log

2m|S||A|T
δ

≤
√

32ηK

(1− γ)2
log

|S||A|T
δ

+
6η

1− γ
log

|S||A|T
δ

≤ 8

1− γ

√
ηK log

|S||A|T
δ

(86)

with probability at least 1 − δ
|S||A|T , where the last inequality holds under the assumption

η ≤ K
2 (log

|S||A|T
δ )−1. Applying the union bound over all s ∈ S, a ∈ A and t ∈ [T ] then

completes the proof.
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B.2 Proof of Lemma 5

For any βτ ≤ t ≤ T and (s, a) ∈ S ×A, we can decompose the entries of E3
t = [E3

t (s, a)] as

|E3
t (s, a)| =

∣∣∣∣∣
ηγ

K

t−1∑

i=0

K∑

k=1

(1− η)t−i−1P (s, a)(V ? − V k
i )

∣∣∣∣∣

≤

∣∣∣∣∣∣
ηγ

K

ι(t)−βτ−1∑

i=0

K∑

k=1

(1− η)t−i−1P (s, a)(V ? − V k
i )

∣∣∣∣∣∣
︸ ︷︷ ︸

=:E3a
t (s,a)

+

∣∣∣∣∣∣
ηγ

K

t−1∑

i=ι(t)−βτ

K∑

k=1

(1− η)t−i−1P (s, a)(V ? − V k
i )

∣∣∣∣∣∣
︸ ︷︷ ︸

=:E3b
t (s,a)

.

(87)

We shall bound these two terms separately.

Step 1: bounding E3a
t (s, a). First, the bound of E3a

t is obtained as follows:

E3a
t (s, a) ≤ η

γ

K

K∑

k=1

ι(t)−βτ−1∑

i=0

(1− η)t−i‖P (s, a)‖1(‖V ?‖∞ + ‖V k
i ‖∞)

≤ 2ηγ

1− γ

ι(t)−βτ−1∑

i=0

(1− η)t−i−1 ≤ 2γ

1− γ
(1− η)βτ , (88)

where the second inequality holds due to the fact that ‖P (s, a)‖1 ≤ 1 and ‖V ?‖∞ ≤ 1
1−γ ,

‖V k
i ‖∞ ≤ 1

1−γ , and the last inequality follows from

ι(t)−βτ−1∑

i=0

(1− η)t−i−1 ≤ (1− η)βτ + (1− η)βτ+1 + . . .+ (1− η)t−1 ≤ (1− η)βτ

1− (1− η)
≤ (1− η)βτ

η
.

Step 2: decomposing the bound on E3b
t (s, a). Next, E3b

t (s, a) can be bounded as
follows

E3b
t (s, a) =

∣∣∣∣∣∣
ηγ

K

t−1∑

i=ι(t)−βτ

K∑

k=1

(1− η)t−i−1P (s, a)(V ? − V k
i )

∣∣∣∣∣∣

≤ γ

t−1∑

i=ι(t)−βτ

η(1− η)t−i−1

∣∣∣∣∣
1

K

K∑

k=1

P (s, a)(V ? − V k
i )

∣∣∣∣∣

≤ γ

t−1∑

i=ι(t)−βτ

η(1− η)t−i−1

∥∥∥∥∥
1

K

K∑

k=1

(V ? − V k
i )

∥∥∥∥∥
∞
, (89)

where the second inequality holds since ‖P (s, a)‖1 ≤ 1. To continue, denoting

dkv,w(s, a) := Qk
w(s, a)−Qk

v(s, a), (90)
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we claim the following bound for any 0 ≤ i < T , which will be shown in Appendix B.2.1:
∥∥∥∥∥
1

K

K∑

k=1

(V ? − V k
i )

∥∥∥∥∥
∞

≤ ‖∆i‖∞ + 2max
k

∥∥dkι(i),i
∥∥
∞. (91)

In view of (91), it boils down to control maxk
∥∥dkι(i),i

∥∥
∞. For any (s, a) ∈ S×A, k ∈ [K],

and 0 ≤ i < T , by the definition (90), it follows that

∣∣dkι(i),i(s, a)
∣∣ =

∣∣∣∣∣∣

i−1∑

j=ι(i)

dkj,j+1(s, a)

∣∣∣∣∣∣
≤ 2η

i−1∑

j=ι(i)

‖∆k
j ‖∞

︸ ︷︷ ︸
:=B1

+ γη

∣∣∣∣∣∣

i−1∑

j=ι(i)

(P k
j+1(s, a)− P (s, a))V ?

∣∣∣∣∣∣
︸ ︷︷ ︸

:=B2

,

(92)

where
∆k

j = Q? −Qk
j . (93)

The inequality (92) holds by the local update rule:

dkj,j+1(s, a) = Qk
j+1(s, a)−Qk

j (s, a)

= η(r(s, a) + γP k
j+1(s, a)V

k
j −Qk

j (s, a))

(i)
= η(r(s, a) + γP k

j+1(s, a)V
k
j − r(s, a)− γP (s, a)V ? +Q?(s, a)−Qk

j (s, a))

= η(γP k
j+1(s, a)V

k
j − γP (s, a)V ? +Q?(s, a)−Qk

j (s, a))

= γηP k
j+1(s, a)(V

k
j − V ?) + γη(P k

j+1(s, a)− P (s, a))V ? + η∆k
j (s, a)

≤ 2η‖∆k
j ‖∞ + γη(P k

j+1(s, a)− P (s, a))V ?, (94)

where (i) follows from Bellman’s optimality equation, and the last inequality follows from
‖P k

j+1(s, a)‖1 ≤ 1 and ‖V k
j − V ?‖∞ ≤ ‖∆k

j ‖∞ (cf. (31)).
Next, we bound each term in (92) separately.

• Bounding B1. The local error ‖∆k
j ‖∞ is bounded as stated in the following lemma,

whose proof is provided in Appendix B.2.2.

Lemma 16 Assume τη ≤ 1
2 . For any given δ ∈ (0, 1), the following bound holds for

any 1 ≤ i ≤ T and k ∈ [K]:

‖∆k
i ‖∞ ≤ ‖∆ι(i)‖∞ +

2

1− γ

√
η log

|S||A|KT

δ
(95)

with at least probability 1− δ, where ι(i) is the most recent synchronization step until
i.

Using the fact that i− ι(i) ≤ τ − 1, we can claim that

2η

i−1∑

j=ι(i)

‖∆k
j ‖∞ ≤ 2η(τ − 1)‖∆ι(i)‖∞ +

4η(τ − 1)

1− γ

√
η log

|S||A|KT

δ
. (96)
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• Bounding B2. Using the fact that the empirical transitions are independent and
centered on the true transition probability, by invoking Hoeffding’s inequality and the
union bound, we can claim that the following holds for all (s, a, k, t) ∈ S×A×[K]×[T ],

γη

∣∣∣∣∣∣

i−1∑

j=ι(i)

(P k
j+1(s, a)− P (s, a))V ?

∣∣∣∣∣∣
≤ γη

1− γ

√√√√1

2

i−1∑

j=ι(i)

log
|S||A|KT

δ

≤ γη

1− γ

√
(τ − 1) log

|S||A|KT

δ
(97)

with probability at least 1− δ for any given δ ∈ (0, 1), where τ is the synchronization
period.

By substituting the bound of B1 and B2 into (92), and applying the union bound, we
obtain that: for any given δ ∈ (0, 1), the following holds for any 0 ≤ i ≤ T and k ∈ [K]:

‖dkι(i),i‖∞ ≤ 2η(τ − 1)‖∆ι(i)‖∞ +
4η((τ − 1)

√
η +

√
τ − 1)

(1− γ)

√
log

2|S||A|KT

δ

≤ 2η(τ − 1)‖∆ι(i)‖∞ +
8η

√
τ − 1

(1− γ)

√
log

2|S||A|KT

δ
(98)

with at least probability 1 − δ, where ι(i) is the most recent synchronization step until i.
Here, the second line uses the fact ητ < 1.

By combining (98) and (91) and substituting it into (89) and using the fact that∑t−1
i=ι(t)−βτ η(1− η)t−i−1 ≤ 1, we can obtain the bound E3b

t (s, a) as follows:

|E3b
t (s, a)| ≤ 16γη

√
τ − 1

(1− γ)

√
log

2|S||A|KT

δ

+ γ
t−1∑

i=ι(t)−βτ

η(1− η)t−i−1
(
‖∆i‖∞ + 4η(τ − 1)‖∆ι(i)‖∞

)

≤ 16γη
√
τ − 1

(1− γ)

√
log

2|S||A|KT

δ
+ γ(1 + 4η(τ − 1)) max

ι(t)−βτ≤i<t
‖∆i‖∞. (99)

Step 3: putting all together. Now, we have the bounds of E3a
t and E3b

t separately
derived above. By combining the bounds in (87), we can finally claim the advertised bound
and this completes the proof.

B.2.1 Proof of (91)

On one end, it follows that for any s ∈ S,

1

K

K∑

k=1

(
V ?(s)− V k

i (s)
)
= Q?(s, a?(s))− 1

K

K∑

k=1

Qk
i (s, a

k
i (s))

≤ Q?(s, a?(s))− 1

K

K∑

k=1

Qk
i (s, a

?(s)) = ∆i(s, a
?(s)), (100)
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where we use the definitions in (80). On the other end, it follows that

1

K

K∑

k=1

(
V ?(s)− V k

i (s)
)

= Q?(s, a?(s))− 1

K

K∑

k=1

Qk
i (s, aι(i)(s)) +

1

K

K∑

k=1

Qk
i (s, aι(i)(s))−

1

K

K∑

k=1

Qk
i (s, a

k
i (s))

≥ Q?(s, aι(i)(s))−
1

K

K∑

k=1

Qk
i (s, aι(i)(s)) +

1

K

K∑

k=1

Qk
i (s, aι(i)(s))−

1

K

K∑

k=1

Qk
i (s, a

k
i (s))

= ∆i(s, aι(i)(s)) +
1

K

K∑

k=1

Qk
i (s, aι(i)(s))−

1

K

K∑

k=1

Qk
i (s, a

k
i (s)), (101)

where the inequality follows from the fact that a?(s) is the optimal action for state s. Notice
that the latter terms can be further lower bounded as

1

K

K∑

k=1

Qk
i (s, aι(i)(s))−

1

K

K∑

k=1

Qk
i (s, a

k
i (s))

=
1

K

K∑

k=1

Qk
i (s, aι(i)(s))−

1

K

K∑

k=1

Qk
ι(i)(s, aι(i)(s)) +

1

K

K∑

k=1

Qk
ι(i)(s, aι(i)(s))

− 1

K

K∑

k=1

Qk
ι(i)(s, a

k
i (s)) +

1

K

K∑

k=1

Qk
ι(i)(s, a

k
i (s))−

1

K

K∑

k=1

Qk
i (s, a

k
i (s))

≥ 1

K

K∑

k=1

(
dkι(i),i(s, aι(i)(s))− dkι(i),i(s, a

k
i (s))

)
, (102)

where the inequality follows from the definition (90) and the fact that

Qk
ι(i)(s, aι(i)(s))−Qk

ι(i)(s, a
k
i (s)) ≥ 0.

The above holds, since Qk
ι(i) = Qι(i) for all k ∈ [K] agents after periodic averaging at ι(i),

and aι(i)(s) is the optimal action at state s at time ι(i) for every agent.

Combining (100), (101) and (102), we obtain

∆i(s, aι(i)(s)) +
1

K

K∑

k=1

(
dkι(i),i(s, aι(i)(s))− dkι(i),i(s, a

k
i (s))

)
≤ 1

K

K∑

k=1

(
V ?(s)− V k

i (s)
)

≤ ∆i(s, a
?(s)),

which immediately implies (91).
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B.2.2 Proof of Lemma 16

By applying the decomposition in (36) to the local error for agent k, we decompose ∆k
i as

follows:

∆k
i (s, a) = (1− η)i−ι(i)∆k

ι(i)(s, a)

︸ ︷︷ ︸
:=D1

+ γ
i∑

j=ι(i)+1

η(1− η)i−j(P (s, a)− P k
j (s, a))V

?

︸ ︷︷ ︸
:=D2

+ γ

i∑

j=ι(i)+1

η(1− η)i−jP k
j (s, a)(V

? − V k
j−1)

︸ ︷︷ ︸
:=D3

. (103)

We shall bound each term separately.

• Bounding D1. Since ∆k
ι(i) = ∆ι(i) for every agent k at the synchronization step ι(i),

|D1| ≤ (1− η)i−ι(i)‖∆ι(i)‖∞. (104)

• Bounding D2. In a similar manner to (97), by invoking Hoeffding inequality and
using the fact that

∑i
j=ι(i)+1(η(1 − η)i−j)2 ≤ η (cf. (85)), we can claim that the

following holds for all (s, a, k, t) ∈ S ×A× [K]× [T ],

|D2| ≤ γ

√√√√
i∑

j=ι(i)+1

(η(1− η)i−j)2‖V ?‖2∞ log
|S||A|KT

δ
≤ γ

1− γ

√
η log

|S||A|KT

δ

(105)

with probability at least 1− δ for any given δ ∈ (0, 1).

• Bounding D3. By bounding ‖V ? − V k
j−1‖∞ with the local error ‖∆k

j−1‖∞ (cf. (31))

and using ‖P k
j (s, a)‖1 ≤ 1, we have

|D3| ≤ γ

i∑

j=ι(i)+1

η(1− η)i−j‖P k
j (s, a)‖1‖V ? − V k

j−1‖∞ ≤ γ

i∑

j=ι(i)+1

η(1− η)i−j‖∆k
j−1‖∞.

(106)

By combining the bounds obtained above in (103), we obtain the following recursive
relation

‖∆k
i ‖∞ ≤ (1− η)i−ι(i)‖∆ι(i)‖∞ +

γ

1− γ

√
η log

|S||A|KT

δ︸ ︷︷ ︸
:=ρ

+γ

i∑

j=ι(i)+1

η(1− η)i−j‖∆k
j−1‖∞.

(107)
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By invoking the recursive relation with some algebraic calculations, we obtain the fol-
lowing bound

‖∆k
i ‖∞

≤ (1− η)i−ι(i)‖∆ι(i)‖∞ + ρ

+ γ

i∑

j1=ι(i)+1

η(1− η)i−j1


(1− η)j1−1−ι(i)‖∆ι(i)‖∞ + ρ+ γ

j1−1∑

j2=ι(i)+1

η(1− η)j1−1−j2‖∆k
j2−1‖∞




=


(1− η)i−ι(i) + γ

i∑

j1=ι(i)+1

η(1− η)i−1−ι(i)


 ‖∆ι(i)‖∞ +


1 + γ

i∑

j1=ι(i)+1

η(1− η)i−j1


 ρ

+ γ2
i∑

j1=ι(i)+1

j1−1∑

j2=ι(i)+1

η2(1− η)i−1−j2‖∆k
j2−1‖∞

≤


(1− η)i−ι(i) + γ

i∑

j1=ι(i)+1

η(1− η)i−1−ι(i)


 ‖∆ι(i)‖∞ +


1 + γ

i∑

j1=ι(i)+1

η(1− η)i−j1


 ρ

+ γ2
i∑

j1=ι(i)+1

j1−1∑

j2=ι(i)+1

η2(1− η)i−1−j2
(
(1− η)j2−1−ι(i)‖∆ι(i)‖∞ + ρ+ · · ·

)

≤ ‖∆ι(i)‖∞

×


(1− η)i−ι(i) + γ

i∑

j1=ι(i)+1

η(1− η)i−1−ι(i) + · · ·+ γl
i∑

j1=ι(i)+1

· · ·
jl−1−1∑

jl=ι(i)+1

ηl(1− η)i−l−ι(i)




+


1 + γ

i∑

j1=ι(i)+1

η(1− η)i−j1 + · · · γl
i∑

j1=ι(i)+1

· · ·
jl−1−1∑

jl=ι(i)+1

ηl(1− η)i−l+1−jl


 ρ

+ γl+1
i∑

j1=ι(i)+1

· · ·
jl−1∑

jl+1=ι(i)+1

ηl+1(1− η)i−l−jl+1

(
‖∆k

jl+1−1‖
)

(i)

≤
i−ι(i)∑

l=0

γl
(
i− ι(i)

l

)
ηl(1− η)i−ι(i)−l‖∆k

ι(i)‖∞ +

i−ι(i)−1∑

l=0

γl
(
i− ι(i)

l

)
ηlρ

≤ ((1− η) + γη)i−ι(i)‖∆k
ι(i)‖∞ + (1 + γη)i−ι(i)ρ

(ii)

≤ ‖∆k
ι(i)‖∞ + 2ρ, (108)

where (i) follows from ∆k
ji−ι(i)−1 = ∆k

ι(i) since jl ≤ i− l + 1,

i∑

j1=ι(i)+1

j1−1∑

j2=ι(i)+1

· · ·
jl−1−1∑

jl=ι(i)+1

ηl(1− η)i−l−ι(i) =

(
i− ι(i)

l

)
ηl(1− η)i−l−ι(i),
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i∑

j1=ι(i)+1

· · ·
jl−1−1∑

jl=ι(i)+1

ηl(1− η)i−l+1−jl ≤
i∑

j1=ι(i)+1

· · ·
jl−1−1∑

jl=ι(i)+1

ηl ≤
(
i− ι(i)

l

)
ηl,

and (ii) follows from (1 + γη)i−ι(i) ≤ (1 + γη)τ ≤ eτη ≤ 2 since i − ι(i) ≤ τ and τη ≤ 1
2 .

This completes the proof.

Appendix C. Proofs for federated asynchronous Q-learning (Section 4)

C.1 Proof of Lemma 15

To describe the joint probabilistic transitions of K agents formally, we first introduce the
following Markov chain Xt = (X1

t , . . . , X
K
t ), t = 0, 1, . . ., where Xk

t ∈ S × A is the state-
action pair visited by agent k at time t. The joint transition kernel P of K agents is given
by

P :=




P 1

P 2

. . .

PK


 , (109)

where P k is the transition kernel of agent k, k = 1, . . . ,K. Since the agents are independent,
the stationary distribution of the joint Markov chain is µ, given by

µ(x) :=
K∏

k=1

µk
b(x

k), ∀x = (x1, x2, · · · , xK) ∈ (S ×A)K , (110)

where µk
b denotes the stationary distribution of agent k, which are induced by its behavior

policy πk
b . Next, we define the mixing time of the joint Markov chain as follows:

tmix(ε) := min

{
t

∣∣∣∣ sup
x0∈(S×A)K

dTV(Pt(·|x0), µ) ≤ ε

}
and tmix := tmix

(
1

4

)
, (111)

where

Pt(·|x0) =
K∏

k=1

P k
t (·|xk0) (112)

denotes the distribution of the joint state-action pairs of all agents after t transitions starting
from x0 = (x10, . . . , x

K
0 ). The mixing time of the joint Markov chain can be connected to

those of the individual chains via the following relation

tmix(ε) ≤ max
k

tkmix(ε/K), tmix ≤ 4 log 8K max
k∈[K]

tkmix, (113)

which will be proven at the end of the proof.
We now turn to the proof of Lemma 15. Define the event

Bu,v(s, a) :=

{∣∣∣∣∣

K∑

k=1

Nk
u,v(s, a)− (v − u)

K∑

k=1

µk
b(s, a)

∣∣∣∣∣ ≥
1

2
(v − u)

K∑

k=1

µk
b(s, a)

}
. (114)

43



Woo, Joshi, and Chi

We first establish that

max
x0∈(S×A)K

P

{
Bu,v(s, a)

∣∣{(sk0, ak0)}Kk=1 = x0

}
≤ δ

|S||A|T 2
(115)

for any (s, a) ∈ S × A and 1 ≤ u < v ≤ T provided that u ≥ tth(s, a)/2 and v − u ≥
tth(s, a)/2. To this end, we decompose the probability into two terms as follows:

P

{
Bu,v(s, a)

∣∣{(sk0, ak0)}Kk=1 = x0

}

= P

{
Bu,v(s, a)

∣∣{(sk0, ak0)}Kk=1 ∼ µ

}

︸ ︷︷ ︸
=:G1

+ P

{
Bu,v(s, a)

∣∣{(sk0, ak0)}Kk=1 = x0

}
− P

{
Bu,v(s, a)

∣∣{(sk0, ak0)}Kk=1 ∼ µ

}

︸ ︷︷ ︸
=:G2

,

and show each of the terms is bounded by δ
2|S||A|T 2 for any x0 ∈ (S ×A)K . We shall derive

the bounds of these two terms separately.

Step 1: bounding G1. This is for the case that the distribution of the initial state follows
the joint stationary distribution. Since the total number of visits can be written as

K∑

k=1

Nk
u,v(s, a) =

K∑

k=1

v∑

i=u+1

Zk
i (s, a) =

v∑

i=u+1

Z̄i(s, a),

where

Zk
i (s, a) =

{
1, if (s, a) ∈ (ski−1, a

k
i−1)

0, otherwise
and Z̄i(s, a) =

K∑

k=1

Zk
i (s, a),

and

νu,v(s, a) := E(sk0 ,a
k
0)∼µk∀k∈[K]

[
v∑

i=u+1

Z̄i(s, a)

]
= (v − u)

K∑

k=1

µk
b(s, a),

we can invoke Bernstein’s inequality for Markov chains (Paulin, 2015, Theorem 3.11) and
obtain

G1 = P{(sk0 ,ak0)}Kk=1∼µ

[∣∣∣∣∣

v∑

i=u+1

Z̄i(s, a)− νu,v(s, a)

∣∣∣∣∣ ≥
1

2
νu,v(s, a)

]

≤ 2 exp

(
− (νu,v(s, a)/2)

2γps
8((v − u) + 1/γps)Vf + 20C(νu,v(s, a)/2)

)
. (116)

Here, γps is the pseudo spectral gap satisfying

γps ≥
1

2tmix

(117a)
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for uniformly ergodic Markov chains according to Paulin (2015, Proposition 3.4). The
parameters C and Vf are defined and bounded as follows

C := max
u<i≤v

∣∣Z̄i(s, a)− E[Z̄i(s, a)]
∣∣ ≤ K, (117b)

Vf := Var(Z̄i(s, a)) =
K∑

k=1

(1− µk
b(s, a))µ

k
b(s, a) ≤

K∑

k=1

µk
b(s, a). (117c)

Plugging (117) into (116), we have

G1 ≤ 2 exp

(
− (νu,v(s, a))

2

8tmix(24(v − u)(
∑K

k=1 µ
k
b(s, a)) + 10Kνu,v(s, a))

)

≤ 2 exp

(
−(v − u)(

∑K
k=1 µ

k
b(s, a))

8tmix(24 + 10K)

)
≤ δ

2|S||A|T 2
, (118)

where the last inequality holds since (v−u) is large enough to satisfy the following condition:

v − u ≥ tth(s, a)

2
≥

1088(maxk∈[K] t
k
mix) log 8K log 4|S||A|T 2

δ
1
K

∑K
k=1 µ

k
b(s, a)

≥ 272tmix log
4|S||A|T 2

δ
1
K

∑K
k=1 µ

k
b(s, a)

.

Step 2: bounding G2. By the same argument of Li et al. (2021b, Section A.1), using
the fact that the difference caused by the initial state becomes very small after sufficiently
long time, we have

G2 := P

{
Bu,v(s, a)

∣∣{(sk0, ak0)}Kk=1 = x0

}
− P

{
Bu,v(s, a)

∣∣{(sk0, ak0)}Kk=1 ∼ µ

}

≤ dTV(Pu(·|x0), µ) ≤
δ

2|S||A|T 2
, (119)

where the last inequality holds due to

u ≥ tth(s, a)

2
≥ 4 log

4|S||A|T 2K

δ
max
k∈[K]

tkmix ≥ max
k∈[K]

tkmix

(
δ

2|S||A|T 2K

)
≥ tmix

(
δ

2|S||A|T 2

)
.

(120)

Here, the second inequality follows from the fact that tkmix(ε) ≤ 2tkmix log2
2
ε (Paulin, 2015),

and the last inequality follows from (113).

Step 3: summing things up. By combining the above bound, we complete the proof of
(115), provided that u ≥ tth(s, a)/2 and v−u ≥ tth(s, a). Then, we can obtain the following
bound for any (s, a) ∈ S ×A and 0 ≤ u < v ≤ T :

P

{
1

4
(v − u)

K∑

k=1

µk
b(s, a) ≤

K∑

k=1

Nk
u,v(s, a) ≤ 2(v − u)

K∑

k=1

µk
b(s, a)

}

≤ P

{ ∣∣∣∣∣

K∑

k=1

Nk

u+
tth(s,a)

2
,v
(s, a)−

(
v − u− tth(s, a)

2

) K∑

k=1

µk
b(s, a)

∣∣∣∣∣
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≥ 1

2

(
v − u− tth(s, a)

2

) K∑

k=1

µk
b(s, a)

}

= max
x0∈(S×A)K

P

{
B
u+

tth(s,a)

2
,v
(s, a)

∣∣∣∣{(s
k
0, a

k
0)}Kk=1 = x0

}
≤ δ

|S||A|T 2
. (121)

Proof of (113). Notice that by the definition of dTV and (112), we have

dTV(Pt(·|x0), µ) ≤
K∑

k=1

dTV(P
k
t (·|xk0), µk

b)

for any x0 ∈ (S ×A)K . Hence, setting t = maxk∈[K] t
k
mix

(
ε
K

)
, we have

max
x0∈(S×A)K

dTV(Pt(·|x0), µ) ≤
K∑

k=1

ε

K
= ε,

which immediately implies

tmix(ε) ≤ max
k

tkmix(ε/K).

The proof is complete by using the fact that tmix(ε) ≤ 2tmix log2
2
ε (Paulin, 2015), which

leads to

tmix ≤ max
k∈[K]

tkmix

(
1

4K

)
≤ 4 log 8K max

k∈[K]
tkmix.

C.2 Proof of Lemma 6

First, (53a) is derived as follows:

λv1,v2(s, a) =
1

K

K∑

k=1

(1− η)N
k
v1,v2

(s,a) ≤ 1

K

K∑

k=1

exp(−ηNk
v1,v2(s, a))

≤ 1− 1

2

1

K

K∑

k=1

ηNk
v1,v2(s, a)

≤ exp

(
− η

2K

K∑

k=1

Nk
v1,v2(s, a)

)
(122)

using the fact that 1−x ≤ exp(−x) ≤ 1− x
2 holds for any 0 ≤ x < 1, and ηNk′

hτ,(h+1)τ (s, a) ≤
ητ ≤ 1.

Next, we obtain (53b) through the following derivation:

K∑

k=1

∑

u∈Uk
0,t(s,a)

ωk
u,t(s, a)

=

K∑

k=1

φ(t)−1∑

h=0

∑

u∈Uk
hτ,(h+1)τ

(s,a)

ωk
u,t(s, a)
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=

φ(t)−1∑

h=0




φ(t)−1∏

l=(h+1)

λlτ,(l+1)τ (s, a)




K∑

k=1

1

K

∑

u∈Uk
hτ,(h+1)τ

(s,a)

(
η(1− η)

Nk
u+1,(h+1)τ

(s,a)
)

(i)
=

φ(t)−1∑

h=0




φ(t)−1∏

l=(h+1)

λlτ,(l+1)τ (s, a)




K∑

k=1

1

K
(1− (1− η)

Nk
hτ,(h+1)τ

(s,a)
)

(ii)
=

φ(t)−1∑

h=0




φ(t)−1∏

l=(h+1)

λlτ,(l+1)τ (s, a)


 (1− λhτ,(h+1)τ (s, a))

(iii)
= 1− λ0,τλτ,2τ · · ·λ(φ(t)−1)τ,t = 1− ω0,t(s, a), (123)

where (i) follows from the geometric sum

∑

u∈Uk
hτ,(h+1)τ

(s,a)

η(1− η)
Nk

u+1,(h+1)τ
(s,a)

= η + η(1− η) + · · ·+ η(1− η)
Nk

hτ,(h+1)τ
(s,a)−1

= 1− (1− η)
Nk

hτ,(h+1)τ
(s,a)

, (124)

(ii) follows from the definition (50), and (iii) follows by cancellation.

Similarly, (53c) can be obtained with some algebraic calculations as follows:

K∑

k=1

∑

u∈Uk
0,h′τ

(s,a)

ωk
u,t(s, a) =

K∑

k=1

h′−1∑

h=0

∑

u∈Uk
hτ,(h+1)τ

(s,a)

ωk
u,t(s, a)

(i)
=

h′−1∑

h=0




φ(t)−1∏

l=(h+1)

λlτ,(l+1)τ (s, a)


 (1− λhτ,(h+1)τ (s, a))

(ii)

≤ λh′τ,(h′+1)τ · · ·λ(φ(t)−1)τ,t − λ0,τλτ,2τ · · ·λ(φ(t)−1)τ,t

≤ λh′τ,(h′+1)τ · · ·λ(φ(t)−1)τ,t

(iii)

≤
φ(t)−1∏

h=h′

exp

(
− η

2K

K∑

k=1

Nk
hτ,(h+1)τ (s, a)

)
, (125)

where (i) follows from similar derivations as above, (ii) follows by cancellation, and (iii)
follows from (53a).

Finally, (53d) is derived as follows:

K∑

k=1

∑

u∈Uk
0,t(s,a)

(ωk
u,t(s, a))

2

=

K∑

k=1

φ(t)−1∑

h=0

∑

u∈Uk
hτ,(h+1)τ

(s,a)

(ωk
u,t(s, a))

2
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=
1

K

φ(t)−1∑

h=0




φ(t)−1∏

l=(h+1)

λlτ,(l+1)τ (s, a)




2
K∑

k=1

1

K

∑

u∈Uk
hτ,(h+1)τ

(s,a)

(
η(1− η)

Nk
u+1,(h+1)τ

(s,a)
)2

(i)

≤ 2η

K

φ(t)−1∑

h=0




φ(t)−1∏

l=(h+1)

λlτ,(l+1)τ (s, a)




K∑

k=1

1

K

(
1− (1− η)

(Nk
hτ,(h+1)τ

(s,a))
)

=
2η

K

φ(t)−1∑

h=0




φ(t)−1∏

l=(h+1)

λlτ,(l+1)τ (s, a)


(1− λhτ,(h+1)τ (s, a)

)

(ii)

≤ 2η

K
,

where (i) holds since

∑

u∈Uk
hτ,(h+1)τ

(s,a)

(
η(1− η)

Nk
u+1,(h+1)τ

(s,a)
)2

= η2 + η2(1− η)2 · · ·+ η2(1− η)
2(Nk

u+1,(h+1)τ
(s,a)−1)

≤ η
(
1− (1− η)

2Nk
u+1,(h+1)τ

(s,a)
)

≤ 2η
(
1− (1− η)

Nk
u+1,(h+1)τ

(s,a)
)

(126)

and (ii) can be similarly derived to the proof of (53c) (cf. (125)).

C.3 Proof of Lemma 7

Without loss of generality, we prove the claim for some fixed 1 ≤ t ≤ T and (s, a) ∈ S ×A.
For notation simplicity, let

yku,t(s, a) =

{
ωk
u,t(s, a)(P (s, a)− P k

u+1(s, a))V
k
u if (sku, a

k
u) = (s, a)

0 otherwise
, (127)

where

ωk
u,t(s, a) =

η

K
(1− η)

Nk
u+1,(φ(u)+1)τ

(s,a)
φ(t)−1∏

h=φ(u)+1

(
1

K

K∑

k′=1

(1− η)
Nk′

hτ,(h+1)τ
(s,a)

)
, (128)

then E2
t (s, a) = γ

∑K
k=1

∑t−1
u=0 y

k
u,t(s, a). However, due to the dependency between P k

u+1(s, a)

and ωk
u,t(s, a) arising from the Markovian sampling, it is difficult to track the sum of

y := {yku,t(s, a)} directly. To address this issue, we will first analyze the sum using a collec-

tion of approximate random variables ŷ = {ŷku,t(s, a)} drawn from a carefully constructed

set Ŷ, which is closely coupled with the target {yku,t(s, a)}0≤u<t, i.e.,

D(y, ŷ) :=

∣∣∣∣∣

K∑

k=1

t−1∑

u=0

(
yku,t(s, a)− ŷku,t(s, a)

)
∣∣∣∣∣ (129)
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is sufficiently small. In addition, ŷ shall exhibit some useful statistical independence and
thus easier to control its sum; we shall control this over the entire set Ŷ. Finally, leveraging
the proximity above, we can obtain the desired bound on y via triangle inequality. We now
provide details on executing this proof outline, where the crust is in designing the set Ŷ
with a controlled size.

Before describing our construction, let’s introduce the following useful event:

BM (s, a) :=
t−Mτ⋂

u=0

{
1

4
µavg(s, a)KMτ ≤

K∑

k=1

Nk
u,u+Mτ (s, a) ≤ 2µavg(s, a)KMτ

}
, (130)

where M = M(s, a) := b 1
8ηµavg(s,a)τ

c. Note that Mτ ≥ τ ≥ tth (see (78) for the definition

of tth(s, a)), and 1 ≤ 1/(16ηµavg(s, a)τ) ≤ M(s, a) ≤ 1/(8ηµavg(s, a)τ) if ητ ≤ 1/16. Then,
BM (s, a) holds with probability at least 1− δ

|S||A|T according to Lemma 15. The rest of the

proof shall be carried out under the event BM (s, a).

Step 1: constructing Ŷ. To decouple dependency between P k
u+1(s, a) and ωk

u,t(s, a), we

will introduce approximates of ωk
u,t(s, a) that only depend on history until u by replacing

a factor dependent on future with some constant. To gain insight, we first decompose
ωk
u,t(s, a) as follows:

ωk
u,t(s, a)

=
η

K
(1− η)

−Nk
φ(u)τ,u+1

(s,a) (1− η)
Nk

φ(u)τ,(φ(u)+1)τ
(s,a)

∑K
k′=1(1− η)

Nk′

φ(u)τ,(φ(u)+1)τ
(s,a)

φ(t)−1∏

h=φ(u)

(
1

K

K∑

k′=1

(1− η)
Nk′

hτ,(h+1)τ
(s,a)

)

=
η

K
(1− η)

−Nk
φ(u)τ,u+1

(s,a)
φ(t)−1∏

h=φ(u)

(
1

K

K∑

k′=1

(1− η)
Nk′

hτ,(h+1)τ
(s,a)

)

︸ ︷︷ ︸
:=ω̄k

u,t(s,a)

+
η

K
(1− η)

−Nk
φ(u)τ,u+1

(s,a)


 (1− η)

Nk
φ(u)τ,(φ(u)+1)τ

(s,a)

∑K
k′=1(1− η)

Nk′

φ(u)τ,(φ(u)+1)τ
(s,a)

− 1




φ(t)−1∏

h=φ(u)

(
1

K

K∑

k′=1

(1− η)
Nk′

hτ,(h+1)τ
(s,a)

)

︸ ︷︷ ︸
:=χk

u,t(s,a)

.

Considering that χk
u,t(s, a) can be made small enough, which will be shown in the following

step, we analyze the dominant factor ω̄k
u,t(s, a) in detail as follows:

ω̄k
u,t(s, a) =

φ(u)−1∏

h=h0(u,t)



(

1

K

K∑

k′=1

(1− η)
Nk′

hτ,(h+1)τ
(s,a)

)(
1

K

K∑

k′=1

(1− η)
Nk′

hτ,(h+1)τ
(s,a)

)−1



× η

K
(1− η)

−Nk
φ(u)τ,u+1

(s,a)
φ(t)−1∏

h=φ(u)

(
1

K

K∑

k′=1

(1− η)
Nk′

hτ,(h+1)τ
(s,a)

)

49



Woo, Joshi, and Chi

=
η

K
(1− η)

−Nk
φ(u)τ,u+1

(s,a)
φ(u)−1∏

h=h0(u,t)

(
1

K

K∑

k′=1

(1− η)
Nk′

hτ,(h+1)τ
(s,a)

)−1

︸ ︷︷ ︸
dependent on history until u

×
φ(t)−1∏

h=h0(u,t)

(
1

K

K∑

k′=1

(1− η)
Nk′

hτ,(h+1)τ
(s,a)

)

︸ ︷︷ ︸
dependent on history and future until t

=
η

K
(1− η)

−Nk
φ(u)τ,u+1

(s,a)
φ(u)−1∏

h=h0(u,t)

(
1

K

K∑

k′=1

(1− η)
Nk′

hτ,(h+1)τ
(s,a)

)−1

︸ ︷︷ ︸
:=xk

u(s,a)

×
l(u,t)∏

l=1

φ(t)−(l−1)M−1∏

h=max{0,φ(t)−lM}

(
1

K

K∑

k′=1

(1− η)
Nk′

hτ,(h+1)τ
(s,a)

)

︸ ︷︷ ︸
:=zl(s,a)

,

(131)

where we denote h0(u, t) = max{0, φ(t)− l(u, t)M}, with l(u, t) := d (t−u)
Mτ e.

Motivated by the above decomposition, we will construct Ŷ by approximating the future-
dependent parameter zl(s, a) for 1 ≤ l ≤ L, where we define

L := min

{⌈
t

Mτ

⌉
, d128 log (K/η)e

}
. (132)

We note that L ≤ 128 log (TK) for η ≥ 3/T . Using the fact that 1− x ≤ exp(−x) ≤ 1− x
2

holds for any 0 ≤ x < 1, and ηNk′

hτ,(h+1)τ (s, a) ≤ ητ ≤ 1
2 ,

exp

(
−2η

K

K∑

k′=1

Nk′

hτ,(h+1)τ (s, a)

)
≤ 1− η

K

K∑

k′=1

Nk′

hτ,(h+1)τ (s, a)

≤ 1

K

K∑

k′=1

(1− η)
Nk′

hτ,(h+1)τ
(s,a)

≤ 1

K

K∑

k′=1

exp(−ηNk′

hτ,(h+1)τ (s, a))

≤ 1− 1

2

1

K

K∑

k′=1

ηNk′

hτ,(h+1)τ (s, a)

≤ exp

(
− η

2K

K∑

k′=1

Nk′

hτ,(h+1)τ (s, a)

)
. (133)

Therefore, for 1 ≤ l < L, under BM (s, a), the range of zl(s, a) is bounded as follows:

zl(s, a) ∈
[
exp(−4ηµavg(s, a)Mτ), exp(−1

8
ηµavg(s, a)Mτ)

]
.
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Using this property, we construct a set of values that can cover possible realizations of
zl(s, a) in a fine-grained manner as follows:

Z :=

{
exp

(
−1

8
ηµavg(s, a)Mτ − iη

K

) ∣∣∣i ∈ Z : 0 ≤ i < 4Kµavg(s, a)Mτ

}
. (134)

Note that the distance of adjacent elements of Z is bounded by η/Ke−1/8ηµavg(s,a)Mτ , and the
size of the set is bounded by 4Kµavg(s, a)Mτ . For l = L, because the number of iterations
involved in zL(s, a) can be less thanMτ , it follows that zL(s, a) ∈ [exp(−4ηµavg(s, a)Mτ), 1].
Hence, we construct the set

Z0 :=

{
exp

(
− iη

K

) ∣∣∣i ∈ Z : 0 ≤ i < 4Kµavg(s, a)Mτ

}
. (135)

In sum, we can always find (ẑ1, · · · , ẑl, · · · , ẑL) ∈ ZL−1 × Z0 where its entry-wise distance
to (zl(s, a))l∈[L−1] (resp. zL(s, a)) is at most η/Ke−1/8ηµavg(s,a)Mτ (resp. η/K).

Moreover, we approximate xku(s, a) by clipping it when the accumulated number of visits
of all agents is not too large as follows:

x̂ku(s, a) =

{
xku(s, a) if

∑K
k=1N

k
h0(u,t)τ,φ(u)τ

(s, a) ≤ 2Kµavg(s, a)Mτ

0 otherwise
. (136)

Note that the clipping never occurs and x̂ku(s, a) = xku(s, a) for all u as long as BM (s, a)
holds. To provide useful properties of x̂ku(s, a) that will be useful later, we record the
following lemma whose proof is provided in Appendix C.3.1.

Lemma 17 For any state-action pair (s, a) ∈ S ×A, consider any integers 1 ≤ t ≤ T and
1 ≤ l ≤ d t

Mτ e, where M = b 1
8ηµavg(s,a)τ

c. Suppose that 4ητ ≤ 1, then x̂ku(s, a) defined in

(136) satisfy

∀u ∈ [h0, φ(t)− (l − 1)M) : x̂ku(s, a) ≤
9η

K
, (137a)

φ(t)−(l−1)M−1∑

h=h0

∑

u∈Uk
hτ,(h+1)τ

(s,a)

K∑

k=1

x̂ku(s, a) ≤ 16ηµavg(s, a)Mτ, (137b)

φ(t)−(l−1)M−1∑

h=h0

∑

u∈Uk
hτ,(h+1)τ

(s,a)

K∑

k=1

(x̂ku(s, a))
2 ≤ 64η2µavg(s, a)Mτ

K
, (137c)

where h0 = max{0, φ(t)− lM}.

Finally, for each z = (ẑ1, · · · , ẑL) ∈ ZL−1 ×Z0, setting

ω̂k
u,t(s, a; z) = x̂ku(s, a)

l(u,t)∏

l=1

ẑl, (138)
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an approximate random sequence ŷz = {ŷku,t(s, a; z)}0≤u<t can be constructed as follows:

ŷku,t(s, a; z) =

{
ω̂k
u,t(s, a; z)(P (s, a)− P k

u+1(s, a))V
k
u if (sku, a

k
u) = (s, a) and l(u, t) ≤ L

0 otherwise
.

(139)

If t > LMτ , for any u < t − LMτ , i.e., l(u, t) > L, we set ŷku,t(s, a; z) = 0 since the

magnitude of ωk
u,t(s, a) becomes negligible when the time difference between u and t is large

enough, and the fine-grained approximation using Z is no longer needed, as shall be seen
momentarily. Finally, denote a collection of the approximates induced by ZL−1 ×Z0 as

Ŷ = {ŷz : z ∈ ZL−1 ×Z0}.

Step 2: bounding the approximation error D(y, ŷz). We now show that under
BM (s, a), there exists ŷz := ŷz(y) ∈ Ŷ such that

D(y, ŷz) <
525

1− γ

√
ChetηL

K
log

4|S||A|T 2

δ
(140)

with at least probability 1 − 2δ. To this end, we first decompose the approximation error
as follows:

min
ŷz∈Ŷ

D(y, ŷz)

= min
z∈ZL−1×Z0

∣∣∣∣∣

K∑

k=1

t−1∑

u=0

(
yku,t(s, a)− ŷku,t(s, a; z)

)∣∣∣∣∣

≤ max
z∈ZL−1×Z0

∣∣∣∣∣

K∑

k=1

t−LMτ−1∑

u=0

yku,t(s, a)− ŷku,t(s, a; z)

∣∣∣∣∣

+ min
z∈ZL−1×Z0

∣∣∣∣∣

K∑

k=1

t−1∑

u=t−LMτ

yku,t(s, a)− ŷku,t(s, a; z)

∣∣∣∣∣

≤ max
z∈ZL−1×Z0

∣∣∣∣∣

K∑

k=1

t−LMτ−1∑

u=0

yku,t(s, a)− ŷku,t(s, a; z)

∣∣∣∣∣
︸ ︷︷ ︸

=:D1

+ min
z∈ZL−1×Z0

∣∣∣∣∣

K∑

k=1

t−1∑

u=t−LMτ

(ω̄k
u,t(s, a)− ω̂k

u,t(s, a; z))(P (s, a)− P k
u+1(s, a))V

k
u

∣∣∣∣∣
︸ ︷︷ ︸

=:D2

+

∣∣∣∣∣

K∑

k=1

t−1∑

u=t−LMτ

χk
u,t(s, a)(P (s, a)− P k

u+1(s, a))V
k
u

∣∣∣∣∣
︸ ︷︷ ︸

=:D3

,

and will bound each term separately.
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• Bounding D1. This term appears only when t > LMτ . Since ŷku,t(s, a; z) = 0 for all
u < t− LMτ regardless of z by construction,

∣∣∣∣∣

K∑

k=1

t−LMτ−1∑

u=0

yku,t(s, a)− ŷku,t(s, a; z)

∣∣∣∣∣

≤
K∑

k=1

∑

u∈Uk
0,t−LMτ (s,a)

ωk
u,t(s, a)‖P (s, a)− P k

u+1(s, a)‖1‖V k
u ‖∞

(i)

≤ 2

1− γ

K∑

k=1

∑

u∈Uk
0,t−LMτ (s,a)

ωk
u,t(s, a)

≤ 2

1− γ

φ(t)−1∏

h=φ(t)−LM

(
1

K

K∑

k′=1

(1− η)
Nk′

hτ,(h+1)τ
(s,a)

)

(ii)

≤ 2

1− γ
exp

(
− η

2K

K∑

k′=1

Nk′

t−LMτ,t(s, a)

)

(iii)

≤ 2

1− γ
exp

(
−1

8
ηµavg(s, a)LMτ

)

(iv)

≤ 2η

(1− γ)K
,

where (i) holds since ‖P (s, a)‖1, ‖P k
u (s, a)‖1 ≤ 1 and ‖V k

u−1‖∞ ≤ 1
1−γ (cf. (30)), (ii)

follows from (133), (iii) holds due to BM (s, a), and (iv) holds because L ≥ 128 log K
η ≥

8
ηµavg(s,a)Mτ log

K
η given that ηµavg(s, a)Mτ ≥ 1/16.

• Bounding D2. Since x̂ku(s, a) = xku(s, a) when BM (s, a) holds, in view of (139), we
have

min
z∈ZL−1×Z0

∣∣∣∣∣

K∑

k=1

t−1∑

u=t−LMτ

(ω̄k
u,t(s, a)− ω̂k

u,t(s, a; z))(P (s, a)− P k
u+1(s, a))V

k
u

∣∣∣∣∣

≤ min
z∈ZL−1×Z0

K∑

k=1

∑

u∈Uk
t−LMτ,t(s,a)

∣∣ω̄k
u,t(s, a)− ω̂k

u,t(s, a; z)
∣∣ ‖P (s, a)− P k

u+1(s, a)‖1‖V k
u ‖∞

≤ 2

1− γ
min

z∈ZL−1×Z0




L∑

l=1

φ(t)−(l−1)M−1∑

h=φ(t)−lM

∑

u∈Uk
hτ,(h+1)τ

(s,a)

K∑

k=1

x̂ku(s, a)

∣∣∣∣∣

l∏

l′=1

zl′(s, a)−
l∏

l′=1

ẑl′

∣∣∣∣∣


 ,

where the last inequality holds since ‖P (s, a)‖1, ‖P k
u (s, a)‖1 ≤ 1 and ‖V k

u−1‖∞ ≤ 1
1−γ

(cf. (30)) and the definition of ω̂k
u,t(s, a; z) defined in (138).

Note that for any given {zl(s, a)}l∈[L], under BM (s, a), there exists ẑ? = (ẑ?1 , . . . , ẑ
?
l , . . . , ẑ

?
L) ∈

ZL−1 × Z0 such that |ẑ?l − zl(s, a)| ≤ η
K exp(−1/8ηµavg(s, a)Mτ) for l < L and
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|ẑ?L − zL(s, a)| ≤ η
K . Also, recall that zl(s, a), ẑ?l ≤ exp(−1/8ηµavg(s, a)Mτ) for

l < L and zL(s, a), ẑ?L ≤ 1. Then, for any l ≤ L it follows that:
∣∣∣∣∣

l∏

l′=1

zl′(s, a)−
l∏

l′=1

ẑ?l′

∣∣∣∣∣ ≤
(∣∣∣

l∏

l′=1

zl′(s, a)− ẑ?1

l∏

l′=2

zl′(s, a)
∣∣∣+ · · ·+

∣∣∣zl
l−1∏

l′=1

ẑ?l′ −
l∏

l′=1

ẑ?l′
∣∣∣
)

≤ exp
(
− 1

8
(l − 1)ηµavg(s, a)Mτ

) l∑

l′=1

η

K

≤ exp
(
− 1

8
(l − 1)ηµavg(s, a)Mτ

)Lη
K

.

Then, applying the above bound and (137b) in Lemma 17,

D2 ≤
2

1− γ

L∑

l=1

φ(t)−(l−1)M−1∑

h=φ(t)−lM

∑

u∈Uk
hτ,(h+1)τ

(s,a)

K∑

k=1

x̂ku(s, a)

∣∣∣∣∣

l∏

l′=1

zl′(s, a)−
l∏

l′=1

ẑ?l′

∣∣∣∣∣

≤ 2

1− γ

Lη

K

L∑

l=1

exp
(
− 1

8
(l − 1)ηµavg(s, a)Mτ

)

×
φ(t)−(l−1)M−1∑

h=φ(t)−lM

∑

u∈Uk
hτ,(h+1)τ

(s,a)

K∑

k=1

x̂ku(s, a)

≤ 2

1− γ

Lη

K

1

1− exp(−1/8ηµavg(s, a)Mτ)
(16ηµavg(s, a)Mτ)

(i)

≤ 2

1− γ

Lη

K

16

ηµavg(s, a)Mτ
16ηµavg(s, a)Mτ ≤ 512ηL

(1− γ)K
,

where (i) holds since ηµavg(s, a)Mτ/8 ≤ 1 and e−x ≤ 1− 1
2x for any 0 ≤ x ≤ 1.

• Bounding D3. Applying Freedman’s inequality, we can obtain the following bound,
whose proof is provided in Appendix C.3.2.

Lemma 18 Consider any δ ∈ (0, 1) and L defined in (132). For any (s, a) ∈ S × A
and 1 ≤ t ≤ T , the following holds:

D3 ≤
9

1− γ

√
ChetηL

K
log

4|S||A|T 2

δ
(141)

with probability at least 1−2δ, as long as τ ≥ tth, and η ≤ min{ 1
4τK , 1

KChetL log
4|S||A|T2

δ

}.

By combining the bounds obtained above,

min
ŷz∈Ŷ

D(y, ŷz) ≤
2η

(1− γ)K
+

512ηL

(1− γ)K
+

9

1− γ

√
ChetηL

K
log

4|S||A|T 2

δ

≤ 525

1− γ

√
ChetηL

K
log

4|S||A|T 2

δ

since η ≤ K
128 log (TK) ≤ K/L due to L ≤ 128 log (TK).
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Step 3: concentration bound over Y. We now show that for all elements in Ŷ = {ŷz :
z ∈ ZL−1 ×Z0} satisfy

∣∣∣∣∣

K∑

k=1

t−1∑

u=0

ŷku,t(s, a; z)

∣∣∣∣∣ <
115

(1− γ)

√
ηL

K
log

4|S||A|T 2K

δ
(142)

with probability at least 1− δ
|S||A|T . It suffices to establish (142) for a fixed z ∈ ZL−1 ×Z0

with probability at least 1− δ
|S||A|T |Y| , where

|Ŷ| = |ZL−1 ×Z0| ≤ (4Kµavg(s, a)Mτ)L ≤ (K/η)L ≤ (TK)L (143)

because ηµavg(s, a)Mτ ≤ 1/4 and η ≥ 1/T .

For any fixed z = (ẑ1, · · · , ẑL) ∈ ZL−1 × Z0, since ω̂k
u,t(s, a; z) = x̂ku(s, a)

∏l(u,t)
l=1 ẑl only

depends on the events happened until u, which is independent to a transition at u + 1.
Thus, we can apply Freedman’s inequality to bound the sum of ŷku,t(s, a; z) since

E[ŷku,t(s, a; z)|Yu] = 0, (144)

where Yu denotes the history of visited state-action pairs and updated values of all agents
until u, i.e., Yu = {(skv , akv), V k

v }k∈[K],v≤u. Before applying Freedman’s inequality, we need
to calculate the following quantities. First,

Bt(s, a) := max
k∈[K],0≤u<t

|ŷku,t(s, a; z)| ≤ x̂ku(s, a)

l(u,t)∏

l=1

ẑl‖P (s, a)− P k
u+1(s, a)‖1‖V k

u ‖∞

≤ 18η

(1− γ)K
, (145)

where the last inequality follows from ‖P (s, a)‖1, ‖P k
u (s, a)‖1 ≤ 1, ‖V k

u−1‖∞ ≤ 1
1−γ (cf. (30)),

ẑl ≤ 1, and (137a) in Lemma 17. Next, we can bound the variance as

Wt(s, a) :=

t∑

u=0

K∑

k=1

E[(ŷku,t(s, a; z))
2|Yu]

=
L∑

l=1

φ(t)−(l−1)M−1∑

h=max{0,φ(t)−lM}

K∑

k=1

∑

u∈Uk
hτ,(h+1)τ

(s,a)

(x̂ku(s, a)
l∏

l′=1

ẑl′)
2VarP (s,a)(V

k
u )

(i)

≤ 2

(1− γ)2

L∑

l=1

(
l∏

l′=1

ẑ2l′

)
φ(t)−(l−1)M−1∑

h=max{0,φ(t)−lM}

K∑

k=1

∑

u∈Uk
hτ,(h+1)τ

(s,a)

(x̂ku(s, a))
2

(ii)

≤ 2

(1− γ)2

L∑

l=1

(
l∏

l′=1

ẑ2l′

)
64η2µavg(s, a)Mτ

K

(iii)

≤ 128η2µavg(s, a)Mτ

K(1− γ)2

L∑

l=1

exp (−1/4(l − 1)ηµavg(s, a)Mτ)
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≤ 128η2µavg(s, a)Mτ

K(1− γ)2
1

1− exp(−1/4ηµavg(s, a)Mτ)

(iv)

≤ 128η2µavg(s, a)Mτ

K(1− γ)2
8

ηµavg(s, a)Mτ
=

1024η

K(1− γ)2
=: σ2, (146)

where (i) holds due to the fact that ‖VarP (V )‖∞ ≤ ‖P‖1(‖V ‖∞)2+(‖P‖1‖V ‖∞)2 ≤ 2
(1−γ)2

because ‖V ‖∞ ≤ 1
1−γ (cf. (30)) and ‖P‖1 ≤ 1, (ii) follows from (137c) in Lemma 17,

(iii) holds due to the range of Z and Z0 is bounded by exp(−1/8ηµavg(s, a)Mτ) and 1,
respectively, and (iv) holds since e−x ≤ 1− 1

2x for any 0 ≤ x ≤ 1 and ηµavg(s, a)Mτ/4 ≤ 1
.

Now, by substituting the above bounds of Wt and Bt into Freedman’s inequality (see
Theorem 12) and setting m = 1, it follows that for any s ∈ S, a ∈ A, t ∈ [T ] and ŷz ∈ Ŷ,

∣∣∣∣∣

K∑

k=1

t−1∑

u=0

ŷku,t(s, a; z)

∣∣∣∣∣

≤

√

8max {Wt(s, a),
σ2

2m
} log 4m|S||A|T |Ŷ|

δ
+

4

3
Bt(s, a) log

4m|S||A|T |Ŷ|
δ

≤

√

8192
η

K(1− γ)2
log

4|S||A|T |Ŷ|
δ

+
24η

K(1− γ)
log

4|S||A|T |Ŷ|
δ

(i)

≤ 115

(1− γ)

√
ηL

K
log

4|S||A|T 2K

δ
, (147)

with at least probability 1− δ

|S||A|T |Ŷ| , where (i) holds because |Ŷ| ≤ (TK)L (cf. (143)), and

ηL
K log 4|S||A|T 2K

δ ≤ 1 when L ≤ 128 log (TK) and η ≤ K

128 log (TK) log
4|S||A|T2K

δ

. Therefore, it

follows that (142) holds.

Step 4: putting things together. We now putting all the results obtained in the
previous steps together to achieve the claimed bound. Under BM (s, a), there exists ŷz :=
ŷz(y) ∈ Ŷ such that (140) holds. Hence,

K∑

k=1

t−1∑

u=0

yku,t(s, a) ≤
∣∣∣∣∣

K∑

k=1

t−1∑

u=0

ŷku,t(s, a; z)

∣∣∣∣∣+D(y, ŷz)

≤ 115

(1− γ)

√
ηL

K
log

4|S||A|T 2K

δ
+

525

1− γ

√
ChetηL

K
log (TK) log

4|S||A|T 2

δ

≤ 7241

(1− γ)

√
Chetη

K
log (TK) log

4|S||A|T 2K

δ
,

where the second line holds due to (142) and (140), and the last line holds because L ≤
128 log (TK). By taking a union bound over all (s, a) ∈ S ×A and t ∈ [T ], we complete the
proof.
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C.3.1 Proof of Lemma 17

For notational simplicity, let h be the largest integer among h ∈ (h0, φ(t)− (l − 1)M) such
that

K∑

k=1

Nk
h0τ,(h−1)τ (s, a) ≤ 2Kµavg(s, a)Mτ. (148)

Then, the following holds:

K∑

k=1

Nk
h0τ,hτ

(s, a) =
K∑

k=1

Nk
(h−1)τ,hτ

(s, a) +
K∑

k=1

Nk
h0τ,(h−1)τ

(s, a)

≤ Kτ + 2Kµavg(s, a)Mτ. (149)

Also, for the following proofs, we provide an useful bound as follows:

K∑

k′=1

(1− η)
−Nk′

hτ,(h+1)τ
(s,a)

K
≤
∑K

k′=1 e
ηNk′

hτ,(h+1)τ
(s,a)

K
≤ 1 + 2η

∑K
k′=1N

k′

hτ,(h+1)τ (s, a)

K

≤ exp

(
2η

∑K
k′=1N

k′

hτ,(h+1)τ (s, a)

K

)
,

(150)

which holds since 1 + x ≤ ex ≤ 1 + 2x for any x ∈ [0, 1] and ηNk′

hτ,(h+1)τ (s, a) ≤ ητ ≤ 1.

According to (136), for any integer u ∈ [hτ, t − (l − 1)Mτ), x̂ku(s, a) is clipped to zero.
Now, we prove the bounds in Lemma 17 respectively.

Proof of (137a). For u ∈ [h0τ, hτ),

x̂ku(s, a) =
η

K
(1− η)

−Nk
φ(u)τ,u+1

(s,a)
φ(u)−1∏

h=h0(u,t)

(
1

K

K∑

k′=1

(1− η)
Nk′

hτ,(h+1)τ
(s,a)

)−1

(i)

≤ 3η

K

φ(u)−1∏

h=h0(u,t)

(
1

K

K∑

k′=1

(1− η)
Nk′

hτ,(h+1)τ
(s,a)

)−1

(ii)

≤ 3η

K
exp

(
2η

K

K∑

k′=1

Nk′

h0τ,(h−1)τ
(s, a)

)

(iii)

≤ 3η

K
exp (4ηµavg(s, a)Mτ)

(iv)

≤ 9η

K
,

where (i) holds since (1 + η)x ≤ eηx and ηNk
φ(u)τ,u+1(s, a) ≤ ητ ≤ 1, (ii) holds due to (133)

and the fact that φ(u) ≤ h− 1, (iii) follows from the condition of h in (148), and (iv) holds
because 4ηµavg(s, a)Mτ ≤ 1.
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Proof of (137b). By the definition of h, it follows that

φ(t)−(l−1)M−1∑

h=h0

∑

u∈Uk
hτ,(h+1)τ

(s,a)

K∑

k=1

x̂ku(s, a) =
h−1∑

h=h0

∑

u∈Uk
hτ,(h+1)τ

(s,a)

K∑

k=1

xku(s, a).

Using the following relation for each h:

∑

u∈Uk
hτ,(h+1)τ

(s,a)

K∑

k=1

xku(s, a)

=
1

K




K∑

k=1

∑

u∈Uk
hτ,(h+1)τ

(s,a)

η(1− η)
−Nk

φ(u)τ,u+1
(s,a)




h−1∏

h′=h0

(
1

K

K∑

k′=1

(1− η)
Nk′

h′τ,(h′+1)τ
(s,a)

)−1

=

(
1

K

K∑

k=1

(1− η)
−Nk

hτ,(h+1)τ
(s,a) − 1

)
h−1∏

h′=h0

(
1

K

K∑

k′=1

(1− η)
Nk′

h′τ,(h′+1)τ
(s,a)

)−1

≤
(

1

K

K∑

k=1

(1− η)
−Nk

hτ,(h+1)τ
(s,a) − 1

)
h−1∏

h′=h0

(
1

K

K∑

k=1

(1− η)
−Nk

h′τ,(h′+1)τ
(s,a)

)
,

where the last inequality follows from Jensen’s inequality, and applying (150), we can com-
plete the proof as follows:

h−1∑

h=h0

∑

u∈Uk
hτ,(h+1)τ

(s,a)

K∑

k=1

xku(s, a) ≤
h−1∏

h′=h0

(
1

K

K∑

k=1

(1− η)
−Nk

h′τ,(h′+1)τ
(s,a)

)
− 1

≤ exp



2η
∑K

k′=1N
k′

h0τ,hτ
(s, a)

K


− 1

(i)

≤ exp (4ηµavg(s, a)Mτ + 2ητ)− 1

(ii)

≤ 16ηµavg(s, a)Mτ,

where (i) follows from (149), and (ii) holds because ex ≤ 1+2x for any x ∈ [0, 1], 2ητ ≤ 1/2,
and 4ηµavg(s, a)Mτ ≤ 1/2.

Proof of (137c). Similarly,

φ(t)−(l−1)M−1∑

h=h0

∑

u∈Uk
hτ,(h+1)τ

(s,a)

K∑

k=1

(x̂ku(s, a))
2 =

h−1∑

h=h0

∑

u∈Uk
hτ,(h+1)τ

(s,a)

K∑

k=1

(xku(s, a))
2.

Using the following relation for each h:

∑

u∈Uk
hτ,(h+1)τ

(s,a)

K∑

k=1

(xku(s, a))
2
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=
1

K2




K∑

k=1

∑

u∈Uk
hτ,(h+1)τ

(s,a)

η2(1− η)
−2Nk

φ(u)τ,u+1
(s,a)




h−1∏

h′=h0

(
1

K

K∑

k′=1

(1− η)
Nk′

h′τ,(h′+1)τ
(s,a)

)−2

≤ η

K

(
1

K

K∑

k=1

(1− η)
−2Nk

hτ,(h+1)τ
(s,a) − 1

)
h−1∏

h′=h0

(
1

K

K∑

k′=1

(1− η)
Nk′

h′τ,(h′+1)τ
(s,a)

)−2

≤ η

K

(
1

K

K∑

k=1

(1− η)
−2Nk

hτ,(h+1)τ
(s,a) − 1

)
h−1∏

h′=h0

(
1

K

K∑

k=1

(1− η)
−2Nk

h′τ,(h′+1)τ
(s,a)

)
,

where the last inequality follows from Jensen’s inequality, and applying (150) under the
condition 2ητ ≤ 1, we can complete the proof as follows:

h−1∑

h=h0

∑

u∈Uk
hτ,(h+1)τ

(s,a)

K∑

k=1

(xku(s, a))
2 ≤ η

K

h−1∏

h′=h0

(
1

K

K∑

k=1

(1− η)
−2Nk

h′τ,(h′+1)τ
(s,a)

)
− 1

≤ η

K


exp


4η

∑K
k′=1N

k′

h0τ,hτ
(s, a)

K


− 1




(i)

≤ η

K
(exp (8ηµavg(s, a)Mτ + 4ητ)− 1)

(ii)

≤ 64η2µavg(s, a)Mτ

K
,

where (i) follows from (149), and (ii) holds because ex ≤ 1 + 4x for any x ∈ [0, 2], 4ητ ≤ 1,
and 8ηµavg(s, a)Mτ ≤ 1.

C.3.2 Proof of Lemma 18

Recall that

χk
u,t(s, a) =

η

K
(1− η)

−Nk
φ(u)τ,u+1

(s,a)


 (1− η)

Nk
φ(u)τ,(φ(u)+1)τ

(s,a)

∑K
k′=1(1− η)

Nk′

φ(u)τ,(φ(u)+1)τ
(s,a)

− 1




×
φ(t)−1∏

h=φ(u)

(
1

K

K∑

k′=1

(1− η)
Nk′

hτ,(h+1)τ
(s,a)

)

=


 (1− η)

Nk
φ(u)τ,(φ(u)+1)τ

(s,a)

∑K
k′=1(1− η)

Nk′

φ(u)τ,(φ(u)+1)τ
(s,a)

− 1


ωk

u,t(s, a).

We can observe that χk
u,t(s, a) and ωk

u,t(s, a) are solely determined by the number of visits

of agents during local steps, i.e., (Nk
hτ,(h+1)τ (s, a))k∈[K],h∈[φ(t)−LM,φ(t)−1]. It thus suffice to

consider {χk
u,t(s, a;N)}0≤u<t,k∈[K] and {ωk

u,t(s, a;N)}0≤u<t,k∈[K] constructed with each of
the possible combinations of number of visits for all k ∈ [K] and h ∈ [φ(t)− LM,φ(t)− 1]

59



Woo, Joshi, and Chi

, i.e., N ∈ [0, τ ]KLM . Then, by setting X = 9
√

ChetηL
K(1−γ)2

log 4|S||A|T 2

δ and taking an union

bound,

P

[∣∣∣∣∣

K∑

k=1

t−1∑

u=t−LMτ

χk
u,t(s, a)(P (s, a)− P k

u+1(s, a))V
k
u

∣∣∣∣∣ ≥ X

]

=
∑

N∈[0,τ ]KLM

P

[∣∣∣∣∣

K∑

k=1

t−1∑

u=t−LMτ

χk
u,t(s, a)(P (s, a)− P k

u+1(s, a))V
k
u

∣∣∣∣∣ ≥ X,χk
u,t(s, a) = χk

u,t(s, a;N)

]

≤
∑

N∈[0,τ ]KLM

P

[∣∣∣∣∣

K∑

k=1

t−1∑

u=t−LMτ

χk
u,t(s, a;N)(P (s, a)− P k

u+1(s, a))V
k
u

∣∣∣∣∣ ≥ X

]
,

and it suffices to show that

P

[∣∣∣∣∣

K∑

k=1

t−1∑

u=t−LMτ

χk
u,t(s, a;N)(P (s, a)− P k

u+1(s, a))V
k
u

∣∣∣∣∣ ≥ X

]
≤ δ

|S||A|T (1 + τ)KLM
.

Since χk
u,t(s, a;N) is a constant, which does not depend on P k

u+1(s, a),

E[χk
u,t(s, a;N)(P (s, a)− P k

u+1(s, a))V
k
u |Yu] = 0, (151)

where Yu denotes the history of visited state-action pairs and updated values of all agents
until u, i.e., Yu = {(skv , akv), V k

v }k∈[K],v≤u, and thus, we can apply Freedman’s inequality to
bound the sum.

Before applying Freedman’s inequality, we need to calculate the following quantities.
First,

Bt(s, a) := max
k∈[K],t−LMτ≤u<t

|χk
u,t(s, a;N)(P (s, a)− P k

u+1(s, a))V
k
u |

≤ max
k∈[K],t−LMτ≤u<t

(∣∣∣1−
1
K

∑K
k′=1(1− η)

Nk′

φ(u)τ,(φ(u)+1)τ
(s,a)

(1− η)
Nk

φ(u)τ,(φ(u)+1)τ
(s,a)

∣∣∣

× ωk
u,t(s, a;N)‖P (s, a)− P k

u+1(s, a)‖1‖V k
u ‖∞

)

(i)

≤ 2

1− γ
max

k∈[K],t−LMτ≤u<t

∣∣∣∣∣∣
1−

1
K

∑K
k′=1(1− η)

Nk′

φ(u)τ,(φ(u)+1)τ
(s,a)

(1− η)
Nk

φ(u)τ,(φ(u)+1)τ
(s,a)

∣∣∣∣∣∣
ωk
u,t(s, a;N)

(ii)

≤ 8ηµmax(s, a)τ

1− γ
max

k∈[K],t−LMτ≤u<t
ωk
u,t(s, a;N)

(iii)

≤ 8η2µmax(s, a)τ

(1− γ)K
,

where (i) holds because ‖P (s, a)‖1, ‖P k
u (s, a)‖1 ≤ 1, ‖V k

u−1‖∞ ≤ 1
1−γ (cf. (30)), (ii) follows

from the fact that (which will be shown at the end of the proof)

∣∣∣∣∣∣
1−

1
K

∑K
k′=1(1− η)

Nk′

φ(u)τ,(φ(u)+1)τ
(s,a)

(1− η)
Nk

φ(u)τ,(φ(u)+1)τ
(s,a)

∣∣∣∣∣∣
≤ 4ηµmax(s, a)τ, (152)
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with µmax(s, a) := maxk µ
k
b(s, a), and (iii) holds due to the fact that ωk

u,t(s, a;N) ≤ η
K .

Next, we can bound the variance as

Wt(s, a) :=
t−1∑

u=max{0,t−LMτ}

K∑

k=1

E

[(
χk
u,t(s, a;N)(P (s, a)− P k

u+1(s, a))V
k
u

)2
|Yu

]

(i)

≤ (4ηµmax(s, a)τ)
2

φ(t)−1∑

h=max{0,φ(t)−LM}

∑

u∈Uk
hτ,(h+1)τ

(s,a)

K∑

k=1

(
ωk
u,t(s, a;N)

)2
VarP (s,a)(V

k
u )

(ii)

≤ 2(4ηµmax(s, a)τ)
2

(1− γ)2

φ(t)−1∑

h=max{0,φ(t)−LM}

∑

u∈Uk
hτ,(h+1)τ

(s,a)

K∑

k=1

(
ωk
u,t(s, a;N)

)2

(iii)

≤ 2(4ηµmax(s, a)τ)
2

(1− γ)2
6η

K
=: σ2,

where (i) follows from (152), (ii) holds due to the fact that ‖VarP (V )‖∞ ≤ ‖P‖1(‖V ‖∞)2+
(‖P‖1‖V ‖∞)2 ≤ 2

(1−γ)2
because ‖V ‖∞ ≤ 1

1−γ (cf. (30)) and ‖P‖1 ≤ 1, (iii) follows from

(53d) in Lemma 6.

Now, by substituting the above bounds of Wt and Bt into Freedman’s inequality (see
Theorem 12) and setting m = 1, it follows that for any s ∈ S, a ∈ A, t ∈ [T ] and
N = (Nk

hτ,(h+1)τ (s, a))k∈[K],h∈[φ(t)−LM,φ(t)−1] ∈ [0, τ ]KLM ,

∣∣∣∣∣

K∑

k=1

t−1∑

u=t−LMτ

χk
u,t(s, a;N)(P (s, a)− P k

u+1(s, a))V
k
u

∣∣∣∣∣

≤
√
8max {Wt(s, a),

σ2

2m
} log 4m|S||A|T (1 + τ)KLM

δ
+

4

3
Bt(s, a) log

4m|S||A|T (1 + τ)KLM

δ

≤
√

96
(4ηµmax(s, a)τ)2η

K(1− γ)2
log

4|S||A|T (1 + τ)KLM

δ
+

12η2µmax(s, a)τ

K(1− γ)
log

4|S||A|T (1 + τ)KLM

δ

≤
√

384
(4ητK)(µmax(s, a)2ηMτ)Lη

K(1− γ)2
log

4|S||A|T (1 + τ)

δ

+
12Lη(µmax(s, a)ηMτ)

(1− γ)
log

4|S||A|T (1 + τ)

δ

(i)

≤
√

48
ChetLη

K(1− γ)2
log

4|S||A|T (1 + τ)

δ
+

2ChetLη

(1− γ)
log

4|S||A|T (1 + τ)

δ

(ii)

≤ 9

√
ChetηL

K(1− γ)2
log

4|S||A|T 2

δ
(153)

with at least probability 1 − δ
|S||A|T (1+τ)KLM , where we invoke the definition of Chet (cf.

(21)). Here, (i) holds because ητK ≤ 1/4 and µmax(s, a)ηMτ ≤ Chetµavg(s, a)ηMτ ≤ Chet

8 ,
and (ii) follows from the fact that η ≤ 1

128KChet log (TK) log
4|S||A|T2

δ

≤ 1

KChetL log
4|S||A|T2

δ

.
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Proof of (152). Using the fact that for 0 < η < 1,

(1− η)−n ≤ eηn ≤ 1 + 2ηn if n ≥ 0 and ηn ≤ 1, and (1− η)n ≥ 1− ηn if n ≤ 0 or n ≥ 1,

we can obtain the bounds as follows:

1− η

K

K∑

k′=1

Nk′

φ(u)τ,(φ(u)+1)τ (s, a) ≤
1

K

K∑

k′=1

(1− η)
Nk′

φ(u)τ,(φ(u)+1)τ
(s,a)

≤
1
K

∑K
k′=1(1− η)

Nk′

φ(u)τ,(φ(u)+1)τ
(s,a)

(1− η)
Nk

φ(u)τ,(φ(u)+1)τ
(s,a)

≤ (1− η)
−Nk

φ(u)τ,(φ(u)+1)τ
(s,a)

≤ 1 + 2ηNk
φ(u)τ,(φ(u)+1)τ (s, a).

Thus, recalling µmax(s, a) := maxk µ
k
b(s, a), and using the fact that for any (s, a, k, u) ∈

S ×A× [K]× [T ]:

Nk
φ(u)τ,(φ(u)+1)τ (s, a) ≤ 2µmax(s, a)τ

at least with probability 1− δ, as long as τ ≥ 443
(

tk
mix

µmax(s,a)

)
log 4|S||A|TK

δ , which naturally

holds if τ ≥ tth (see (78) for the definition of tth), according to Lemma 13,
∣∣∣∣∣∣
1−

1
K

∑K
k′=1(1− η)

Nk′

φ(u)τ,(φ(u)+1)τ
(s,a)

(1− η)
Nk

φ(u)τ,(φ(u)+1)τ
(s,a)

∣∣∣∣∣∣

≤ 2ηmax
{
Nk

φ(u)τ,(φ(u)+1)τ (s, a),
1

K

K∑

k′=1

Nk′

φ(u)τ,(φ(u)+1)τ (s, a)
}

≤ 4ηµmax(s, a)τ.

C.4 Proof of Lemma 8

For any t ≥ βτ , the error term can be decomposed as follows:

E3
t (s, a) = γ

K∑

k=1

∑

u∈Uk
0,t(s,a)

ωk
u,t(s, a)P (s, a)(V ? − V k

u )

= γ

K∑

k=1

∑

u∈Uk
0,(φ(t)−β)τ

(s,a)

ωk
u,t(s, a)P (s, a)(V ? − V k

u )

︸ ︷︷ ︸
=:E3a

t (s,a)

+ γ

K∑

k=1

∑

u∈Uk
(φ(t)−β)τ,t

(s,a)

ωk
u,t(s, a)P (s, a)(V ? − V k

u )

︸ ︷︷ ︸
=:E3b

t (s,a)

. (154)

We shall these two terms separately.
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• Bounding E3a
t (s, a). First, the bound on E3a

t (s, a) is derived as follows:

|E3a
t (s, a)| ≤ γ

K∑

k=1

∑

u∈Uk
0,(φ(t)−β)τ

(s,a)

ωk
u,t(s, a)‖P (s, a)‖1‖(V ? − V k

u )‖∞

(i)

≤ 2γ

1− γ

K∑

k=1

∑

u∈Uk
0,(φ(t)−β)τ

(s,a)

ωk
u,t(s, a)

(ii)

≤ 2γ

1− γ
exp

(
− η

2K

K∑

k=1

Nk
(φ(t)−β)τ,t(s, a)

)

(iii)

≤ 2γ

1− γ
exp

(
−ηµavgβτ

8

)
, (155)

where (i) holds because ‖V k
u ‖∞, ‖V ?‖∞ ≤ 1

1−γ (cf. (30)) and ‖P (s, a)‖1 ≤ 1, (ii) holds

due to (53c) in Lemma 6, and (iii) follows from the fact that
∑K

k=1N
k
(φ(t)−β)τ,t(s, a) ≥

Kµavgβτ
4 according to Lemma 15 as long as βτ ≥ tth.

• Bounding E3b
t (s, a). Next, we bound E3b

t (s, a) as follows:

|E3b
t (s, a)| ≤ γ

K∑

k=1

∑

u∈Uk
(φ(t)−β)τ,t

(s,a)

ωk
u,t(s, a)

∥∥∥V ? − V k
u

∥∥∥
∞

(i)

≤ γ

K∑

k=1

φ(t)−1∑

h=φ(t)−β

∑

u∈Uk
hτ,(h+1)τ

(s,a)

ωk
u,t(s, a)(‖∆hτ‖∞ + ‖Qk

u −Qk
hτ‖∞)

(ii)

≤ γ

K∑

k=1

φ(t)−1∑

h=φ(t)−β

∑

u∈Uk
hτ,(h+1)τ

(s,a)

ωk
u,t(s, a)((1 + 2ητ)‖∆hτ‖∞ + σlocal)(156)

where (i) follows from the following bound, which will be shown in Appendix C.4.1,

‖V ? − V k
u ‖∞ ≤ ‖∆k

ι(u)‖∞ + ‖Qk
u −Qk

ι(u)‖∞, (157)

and (ii) holds due to the following lemma.

Lemma 19 Assume ητ ≤ 1
2 . For any given δ ∈ (0, 1), the following holds for any

k ∈ [K] and 0 ≤ u < T :

‖Qk
u −Qk

ι(u)‖∞ ≤ 2ητ‖∆k
ι(u)‖∞ +

8γη
√
τ − 1

1− γ

√
log

2|S||A|TK
δ

(158)

with probability at least 1− δ.

Here, for notation simplicity, we denote σlocal :=
8γη

√
τ−1

1−γ

√
log 2|S||A|TK

δ .
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Then, with some algebraic calculations, we can obtain the bound on E3b
t (s, a) as

follows:

|E3b
t (s, a)|

(i)

≤ σlocal + γ

φ(t)−1∑

h=φ(t)−β

(1 + 2ητ)‖∆hτ‖∞
K∑

k=1

∑

u∈Uk
hτ,(h+1)τ

(s,a)

ωk
u,t(s, a)

(ii)

≤ σlocal +
1 + γ

2
max

φ(t)−β≤h<φ(t)
‖∆hτ‖∞

K∑

k=1

φ(t)−1∑

h=φ(t)−β

∑

u∈Uk
hτ,(h+1)τ

(s,a)

ωk
u,t(s, a)

(iii)

≤ σlocal +
1 + γ

2
max

φ(t)−β≤h<φ(t)
‖∆hτ‖∞, (159)

where (i) holds according to (53b) of Lemma 6, (ii) holds when η is small enough that
η ≤ 1−γ

4γτ , and (iii) follows from (53b) of Lemma 6.

Now we have the bounds of E3a
t (s, a) and E3b

t (s, a) separately obtained above. By
combining the bounds in (154), we can claim the advertised bound, which completes the
proof.

C.4.1 Proof of (157)

We prove the claim by showing

∆k
ι(u)(s, a

k
ι(u)(s))− dkι(u),u(s, a

?(s)) ≤ V ?(s)− V k
u (s) ≤ ∆k

ι(u)(s, a
?(s))− dkι(u),u(s, a

?(s))

(160)

for any s ∈ S. The upper bound is derived as follows:

V ?(s)− V k
u (s) = Q?(s, a?(s))−Qk

u(s, a
k
u(s))

≤ Q?(s, a?(s))−Qk
u(s, a

?(s))

= Q?(s, a?(s))−Qk
ι(u)(s, a

?(s))− (Qk
u(s, a

?(s))−Qk
ι(u)(s, a

?(s)))
︸ ︷︷ ︸

dk
ι(u),u

(s,a?(s))

(161)

using the fact that Qk
u(s, a

k
u(s)) ≥ Qk

u(s, a
?(s)). Similarly, the lower bound is obtained as

follows:

V ?(s)− V k
u (s)

= Q?(s, a?(s))−Qk
u(s, a

k
u(s))

= Q?(s, a?(s))−Qk
ι(u)(s, a

k
ι(u)(s)) +Qk

ι(u)(s, a
k
ι(u)(s))−Qk

u(s, a
k
u(s))

= Q?(s, a?(s))−Qk
ι(u)(s, a

k
ι(u)(s)) +Qk

ι(u)(s, a
k
ι(u)(s))−Qk

ι(u)(s, a
k
u(s))− dkι(u),u(s, a

k
u(s))

≥ Q?(s, akι(u)(s))−Qk
ι(u)(s, a

k
ι(u)(s)) +Qk

ι(u)(s, a
k
ι(u)(s))−Qk

ι(u)(s, a
k
u(s))− dkι(u),u(s, a

k
u(s))

≥ Q?(s, akι(u)(s))−Qk
ι(u)(s, a

k
ι(u)(s))− dkι(u),u(s, a

k
u(s)) (162)

using the fact that Q?(s, akι(u)(s)) ≤ Q?(s, a?(s)) and Qk
ι(u)(s, a

k
ι(u)(s)) ≥ Qk

ι(u)(s, a
k
u(s)).
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C.4.2 Proof of Lemma 19

For any 0 ≤ u < T , k ∈ [K], and (s, a) ∈ S ×A, we can write the bound as

|Qk
u(s, a)−Qk

ι(u)(s, a)| ≤ 2η
∑

v∈Uk
ι(u),u

(s,a)

‖∆k
v‖∞

︸ ︷︷ ︸
:=B1

+

∣∣∣∣∣∣∣
γη

∑

v∈Uk
ι(u),u

(s,a)

(P k
v+1(s, a)− P (s, a))V ?

∣∣∣∣∣∣∣
︸ ︷︷ ︸

:=B2

.

(163)

The inequality holds by the local update rule:

Qk
v+1(s, a)−Qk

v(s, a) = (1− η)Qk
v(s, a) + η(r(s, a) + γP k

v+1(s, a)V
k
v )−Qk

v(s, a)

= η(r(s, a) + γP k
v+1(s, a)V

k
v −Qk

v(s, a))

= η(γP k
v+1(s, a)V

k
v − γP (s, a)V ? +Q?(s, a)−Qk

v(s, a))

= γηP k
v+1(s, a)(V

k
v − V ?) + γη(P k

v+1(s, a)− P (s, a))V ? + η∆k
v(s, a),

(164)

and

|Qk
u(s, a)−Qk

ι(u)(s, a)| ≤
∑

v∈Uk
ι(u),u

(s,a)

|Qk
v+1(s, a)−Qk

v(s, a)|

≤
∑

v∈Uk
ι(u),u

(s,a)

(
η|∆k

v(s, a)|+ γη|P k
v+1(s, a)(V

k
v − V ?)|

)

+

∣∣∣∣∣∣∣
γη

∑

v∈Uk
ι(u),u

(s,a)

(P k
v+1(s, a)− P (s, a))V ?

∣∣∣∣∣∣∣

≤
∑

v∈Uk
ι(u),u

(s,a)

2η‖∆k
v‖∞ +

∣∣∣∣∣∣∣
γη

∑

v∈Uk
ι(u),u

(s,a)

(P k
v+1(s, a)− P (s, a))V ?

∣∣∣∣∣∣∣
,

(165)

where the last inequality holds since ‖P k
v+1(s, a)‖1 ≤ 1 and ‖V k

v −V ?‖∞ ≤ ‖Qk
v −Q?‖∞ (cf.

(31)).
Now, we shall bound each term separately.

• Bounding B1. The local error ‖∆k
v‖∞ is bounded as follows.

Lemma 20 Assume ητ ≤ 1
2 . For any given δ ∈ (0, 1), the following holds for any

k ∈ [K] and 0 ≤ u < T :

‖∆k
u‖∞ ≤ ‖∆k

ι(u)‖∞ +
2γ

1− γ

√
η log

|S||A|TK
δ

(166)

with probability at least 1− δ.
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Then, combining the fact that the number of local updates before the periodic aver-
aging is at most τ − 1, we can conclude that

2η
∑

v∈Uk
ι(u),u

(s,a)

‖∆k
v‖∞ ≤ 2η|Uk

ι(u),u(s, a)| max
v∈Uk

ι(u),u
(s,a)

‖∆k
v‖∞

≤ 2η(τ − 1)

(
‖∆k

ι(u)‖∞ +
2

1− γ

√
η log

|S||A|TK
δ

)
.(167)

• Bounding B2. Exploiting the independence of the transitions and applying the
Hoeffding inequality and using the fact that |Uk

ι(u),u(s, a)| ≤ τ − 1, B2 is bounded as
follows:

B2 ≤ γη

√√√√
∑

v∈Uk
ι(u),u

(s,a)

|(P k
v+1(s, a)− P (s, a))V ?| log |S||A|TK

δ

≤ 2γη

1− γ

√
(τ − 1) log

|S||A|TK
δ

(168)

for any k ∈ [K], (s, a) ∈ S ×A, and 0 ≤ u < T with probability at least 1− δ, where
the last inequality follows from ‖V ?‖∞ ≤ 1

1−γ , ‖P k
v+1(s, a)‖1, and ‖P (s, a)‖1 ≤ 1.

By substituting the bound on B1 and B2 into (163) and using the condition that ητ < 1,
we can claim the stated bound holds and this completes the proof.

C.4.3 Proof of Lemma 20

For each state-action (s, a) ∈ S × A and agent k, by invoking the recursive relation (49)
derived from the local Q-learning update in (23), ∆k

u is decomposed as follows:

∆k
u(s, a) = (1− η)

Nk
ι(u),u

(s,a)
∆k

ι(u)(s, a)︸ ︷︷ ︸
=:D1

+ γ
∑

v∈Uk
ι(u),u

(s,a)

η(1− η)N
k
v+1,u(s,a)(P (s, a)− P k

v+1(s, a))V
?

︸ ︷︷ ︸
=:D2

+ γ
∑

v∈Uk
ι(u),u

(s,a)

η(1− η)N
k
v+1,u(s,a)P k

v+1(s, a)(V
? − V k

v )

︸ ︷︷ ︸
=:D3

.

(169)

Now, we obtain the bound on the three decomposed terms separately.

• Bounding D1. The term D1 can be bounded by

|D1| ≤ (1− η)
Nk

ι(u),u
(s,a)‖∆k

ι(u)‖∞. (170)

• Bounding D2. By applying the Hoeffding bound using the independence of transi-
tions, the second term is bounded as follows:

|D2| ≤ γ

√√√√
∑

v∈Uk
ι(u),u

(s,a)

(η(1− η)N
k
v+1,u(s,a))2(‖V ?‖∞)2 log

|S||A|TK
δ
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≤ γ

1− γ

√
η log

|S||A|TK
δ

:= ρ (171)

with probability at least 1 − δ, where the last inequality holds due to the fact that
‖V ?‖∞ ≤ 1

1−γ and

∑

v∈Uk
ι(u),u

(s,a)

(η(1− η)N
k
v+1,u(s,a))2 ≤ η2(1 + (1− η)2 + (1− η)4 + · · · ) ≤ η.

See (Li et al., 2021b, Lemma 1) for the detailed explanation of the bound.

• Bounding D3. Lastly, we bound the third term as follows:

|D3| ≤ γ
∑

v∈Uk
ι(u),u

(s,a)

η(1− η)N
k
v+1,u(s,a)‖P k

v+1(s, a)‖1‖V ? − V k
v ‖∞

≤ γ
∑

v∈Uk
ι(u),u

(s,a)

η(1− η)N
k
v+1,u(s,a)‖∆k

v‖∞, (172)

where the last inequality follows from the fact that ‖P k
v+1(s, a)‖1 = 1 and

Qk
v(s, a

?(s))−Q?(s, a?(s)) ≤ V k
v (s)− V ?(s) ≤ Qk

v(s, a
k
v(s))−Q?(s, akv(s))

for any s ∈ S, where we denote a?(s) = argmaxaQ
?(s, a), akv(s) = argmaxaQ

k
v(s, a).

By combining the bounds of the above three terms, we obtain the following recursive
relation:

|∆k
u(s, a)| ≤ (1− η)

Nk
ι(u),u

(s,a)‖∆k
ι(u)‖∞ + ρ+ γ

∑

v∈Uk
ι(u),u

(s,a)

η(1− η)N
k
v+1,u(s,a)‖∆k

v‖∞.

(173)

Using the recursive relation, we will prove that the following claim holds for any 0 ≤ m < τ
by induction:

‖∆k
ι(u)+m‖∞ ≤ ‖∆k

ι(u)‖∞ + 2ρ, (174)

which completes the proof of Lemma 20. First, if m = 0, the claim is obviously true.
Suppose the claim holds for ι(u), ι(u) + 1, · · · , ι(u) + m − 1. Then, for u = ι(u) + m, by
invoking the recursive relation (173), we can show that the claim (174) holds for m as
follows:

|∆k
ι(u)+m(s, a)|

≤ (1− η)
Nk

ι(u),u
(s,a)‖∆k

ι(u)‖∞ + ρ+ γ
∑

v∈Uk
ι(u),u

(s,a)

η(1− η)N
k
v+1,u(s,a)(‖∆k

ι(u)‖∞ + 2ρ)

= ((1− η)
Nk

ι(u),u
(s,a)

+ γ
∑

v∈Uk
ι(u),u

(s,a)

η(1− η)N
k
v+1,u(s,a))‖∆k

ι(u)‖∞
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+ (1 + 2γ
∑

v∈Uk
ι(u),u

(s,a)

η(1− η)N
k
v+1,u(s,a))ρ

= ((1− η)
Nk

ι(u),u
(s,a)

+ γ(1− (1− η)
Nk

ι(u),u
(s,a)

)‖∆k
ι(u)‖∞ + (1 + 2γ(1− (1− η)

Nk
ι(u),u

(s,a)
))ρ

≤ ‖∆k
ι(u)‖∞ + 2ρ, (175)

where the last inequality holds since

(1− η)
Nk

ι(u),u
(s,a) ≥ (1− η)τ ≥ (

1

4
)ητ ≥ 1

2

provided that ητ ≤ 1
2 .

C.5 Proof of Lemma 9

First, using the fact that

1 ≤ (1− η)−Nk
t−τ,t(s,a) ≤ eητ ≤ 3

given that ητ ≤ 1, by the definition of αk
t (cf. (27)), we derive (67a) as follows:

1

3K
≤ 1

Kmaxk′∈[K](1− η)−Nk′
t−τ,t(s,a)

≤ αk
t (s, a) =

(1− η)−Nk
t−τ,t(s,a)

∑K
k′=1(1− η)−Nk′

t−τ,t(s,a)

≤ (1− η)−Nk
t−τ,t(s,a)

K
≤ 3

K
.

Moving onto (67b), it follows that

ω̃0,t(s, a) =

φ(t)−1∏

h=0

λ̃hτ,(h+1)τ (s, a)

=

φ(t)−1∏

h=0

K∑

k=1

αk
(h+1)τ (s, a)(1− η)

Nk
hτ,(h+1)τ

(s,a)

(i)
=

φ(t)−1∏

h=0

K
∑K

k=1(1− η)
−Nk

hτ,(h+1)τ
(s,a)

(ii)

≤
φ(t)−1∏

h=0

1

(1− η)
− 1

K

∑K
k=1 N

k
hτ,(h+1)τ

(s,a)

= (1− η)
∑φ(t)−1

h=0
1
K

∑K
k=1 N

k
hτ,(h+1)τ

(s,a)
= (1− η)

1
K

∑K
k=1 N

k
0,t(s,a),

where (i) follows from the definition of αk
t (cf. (27)), (ii) follows from Jensen’s inequality.

Next, we obtain (67c) through the following derivation:

K∑

k=1

∑

u∈Uk
0,t(s,a)

ω̃k
u,t(s, a) =

K∑

k=1

φ(t)−1∑

h=0

∑

u∈Uk
hτ,(h+1)τ

(s,a)

ω̃k
u,t(s, a)
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=

K∑

k=1

φ(t)−1∑

h=0

αk
(h+1)τ (s, a)

∑

u∈Uk
hτ,(h+1)τ

(s,a)

η(1− η)
Nk

u+1,(h+1)τ
(s,a)




φ(t)−1∏

l=h+1

λ̃lτ,(l+1)τ (s, a)




=
K∑

k=1

φ(t)−1∑

h=0

αk
(h+1)τ (s, a)

(
1− (1− η)

Nk
hτ,(h+1)τ

(s,a)
)



φ(t)−1∏

l=h+1

λ̃lτ,(l+1)τ (s, a)




(i)
=

φ(t)−1∑

h=0




φ(t)−1∏

l=h+1

λ̃lτ,(l+1)τ (s, a)




K∑

k=1

αk
(h+1)τ (s, a)

(
1− (1− η)

Nk
hτ,(h+1)τ

(s,a)
)

(ii)
=

φ(t)−1∑

h=0




φ(t)−1∏

l=h+1

λ̃lτ,(l+1)τ (s, a)



(
1−

K∑

k=1

αk
(h+1)τ (s, a)(1− η)

Nk
hτ,(h+1)τ

(s,a)

)

=

φ(t)−1∑

h=0




φ(t)−1∏

l=h+1

λ̃lτ,(l+1)τ (s, a)



(
1− λ̃hτ,(h+1)τ (s, a)

)

(iii)
= 1− λ̃0,τ (s, a)λ̃τ,2τ (s, a) · · · λ̃(φ(t)−1)τ,t(s, a) = 1− ω̃0,t(s, a), (176)

where (i) follows by reordering the summation, (ii) follows by
∑K

k=1 α
k
t (s, a) = 1, and (iii)

holds by cancellation.

In a similar manner, (67d) is derived as follows:

K∑

k=1

∑

u∈Uk
0,h′τ

(s,a)

ω̃k
u,t(s, a) =

K∑

k=1

h′−1∑

h=0

∑

u∈Uk
hτ,(h+1)τ

(s,a)

ω̃k
u,t(s, a)

=
h′−1∑

h=0




φ(t)−1∏

l=h+1

λ̃lτ,(l+1)τ (s, a)



(
1− λ̃hτ,(h+1)τ (s, a)

)

≤
φ(t)−1∏

l=h′

λ̃lτ,(l+1)τ (s, a)

≤ (1− η)
1
K

∑k
k=1 N

k
h′τ,t

(s,a)
,

where the last inequality follows from

φ(t)−1∏

l=h′

λ̃lτ,(l+1)τ (s, a) =

φ(t)−1∏

h=h′

K
∑K

k=1(1− η)
−Nk

hτ,(h+1)τ
(s,a)

≤
φ(t)−1∏

h=h′

1

(1− η)
− 1

K

∑K
k=1 N

k
hτ,(h+1)τ

(s,a)

due to Jensen’s inequality.

Finally, with basic algebraic calculations, (67e) is derived as follows:

K∑

k=1

∑

u∈Uk
0,t(s,a)

(ω̃k
u,t(s, a))

2 =

K∑

k=1

φ(t)−1∑

h=0

∑

u∈Uk
hτ,(h+1)τ

(s,a)

(ω̃k
u,t(s, a))

2
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=
K∑

k=1

φ(t)−1∑

h=0

(αk
(h+1)τ (s, a))

2




φ(t)−1∏

l=h+1

λ̃lτ,(l+1)τ (s, a)




2
∑

u∈Uk
hτ,(h+1)τ

(s,a)

(
η(1− η)

Nk
u+1,(h+1)τ

(s,a)
)2

(i)

≤ 2

K∑

k=1

φ(t)−1∑

h=0

(αk
(h+1)τ (s, a))

2




φ(t)−1∏

l=h+1

λ̃lτ,(l+1)τ (s, a)




2

η
(
1− (1− η)

Nk
hτ,(h+1)τ

(s,a)
)

(ii)

≤ 6η

K

φ(t)−1∑

h=0




φ(t)−1∏

l=h+1

λ̃lτ,(l+1)τ (s, a)




2
K∑

k=1

αk
(h+1)τ (s, a)

(
1− (1− η)

Nk
hτ,(h+1)τ

(s,a)
)

(iii)

≤ 6η

K
,

where (i) holds because

∑

u∈Uk
hτ,(h+1)τ

(s,a)

(η(1− η)
Nk

u+1,(h+1)τ
(s,a)

)2 = η2
1− (1− η)

2(Nk
hτ,(h+1)τ

(s,a))

1− (1− η)2

≤ η(1− (1− η)
2(Nk

hτ,(h+1)τ
(s,a))

)

≤ 2η(1− (1− η)
(Nk

hτ,(h+1)τ
(s,a))

) (177)

given that 2x− x2 ≥ x for x ≤ 1 and (1− x2) ≤ 2(1− x), (ii) follows from (67a), and (iii)
follows from the same reasoning of (176).

C.6 Proof of Lemma 10

Without loss of generality, we prove the claim for some fixed 1 ≤ t ≤ T and (s, a) ∈ S ×A.
For notation simplicity, let

ỹku,t(s, a) =

{
ω̃k
u,t(s, a)(P (s, a)− P k

u+1(s, a))V
k
u if (sku, a

k
u) = (s, a)

0 otherwise
, (178)

where

ω̃k
u,t(s, a) =

η(1− η)
−Nk

φ(u)τ,u+1
(s,a)

K

φ(t)−1∏

h=φ(u)

K
∑K

k′=1(1− η)
−Nk′

hτ,(h+1)τ
(s,a)

, (179)

then E2
t (s, a) = γ

∑K
k=1

∑t−1
u=0 ỹ

k
u,t(s, a). However, due to the dependency between P k

u+1(s, a)

and ω̃k
u,t(s, a) arising from the Markovian sampling, it is difficult to track the sum of

ỹ := {ỹku,t(s, a)} directly. To address this issue, we will first analyze the sum using a collec-

tion of approximate random variables ŷ = {ŷku,t(s, a)} drawn from a carefully constructed

set Ŷ, which is closely coupled with the target {ỹku,t(s, a)}0≤u<t, i.e.,

D(ỹ, ŷ) :=

∣∣∣∣∣

K∑

k=1

t−1∑

u=0

(
ỹku,t(s, a)− ŷku,t(s, a)

)
∣∣∣∣∣ (180)
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is sufficiently small. In addition, ŷ shall exhibit some useful statistical independence and
thus easier to control its sum; we shall control this over the entire set Ŷ. Finally, leveraging
the proximity above, we can obtain the desired bound on ỹ via triangle inequality. We now
provide details on executing this proof outline, where the crust is in designing the set Ŷ
with a controlled size.

Before describing our construction, let’s introduce the following useful event:

BM :=
t−Mτ⋂

u=0

{
1

4
µavg(s, a)KMτ ≤

K∑

k=1

Nk
u,u+Mτ (s, a) ≤ 2µavg(s, a)KMτ

}
, (181)

where M = M(s, a) := b 1
8ηµavg(s,a)τ

c. Note that M ≥ 1
16ηµavg(s,a)τ

since ητ ≤ 1/16. Com-

bining this with the assumption η ≤ 1
16tth(s,a)µavg(s,a)

(see (78) for the definition of tth(s, a)),

it follows that Mτ ≥ tth(s, a) always holds. Then, BM holds with probability at least
1 − δ

|S||A|T according to Lemma 15. The rest of the proof shall be carried out under the
event BM .

Step 1: constructing Ŷ. To decouple dependency between P k
u+1(s, a) and ω̃k

u,t(s, a), we

will introduce approximates of ω̃k
u,t(s, a) that only depend on history until u by replacing a

factor dependent on future with some constant. To gain insight, we factorize ω̃k
u,t(s, a) into

two components as follows:

ω̃k
u,t(s, a) =

φ(u)−1∏

h=h0(u,t)


 K
∑K

k′=1(1− η)
−Nk′

hτ,(h+1)τ
(s,a)

∑K
k′=1(1− η)

−Nk′

hτ,(h+1)τ
(s,a)

K




× η(1− η)
−Nk

φ(u)τ,u+1
(s,a)

K

φ(t)−1∏

h=φ(u)

K
∑K

k′=1(1− η)
−Nk′

hτ,(h+1)τ
(s,a)

=




φ(u)−1∏

h=h0(u,t)



∑K

k′=1(1− η)
−Nk′

hτ,(h+1)τ
(s,a)

K


 η(1− η)

−Nk
φ(u)τ,u+1

(s,a)

K




︸ ︷︷ ︸
dependent on history until u

×




φ(t)−1∏

h=h0(u,t)

K
∑K

k′=1(1− η)
−Nk′

hτ,(h+1)τ
(s,a)




︸ ︷︷ ︸
dependent on history and future until t

=




φ(u)−1∏

h=h0(u,t)



∑K

k′=1(1− η)
−Nk′

hτ,(h+1)τ
(s,a)

K


 η(1− η)

−Nk
φ(u)τ,u+1

(s,a)

K




︸ ︷︷ ︸
:=xk

u(s,a)

×
l(u,t)∏

l=1




φ(t)−(l−1)M−1∏

h=max{0,φ(t)−lM}

K
∑K

k′=1(1− η)
−Nk′

hτ,(h+1)τ
(s,a)




︸ ︷︷ ︸
:=zl(s,a)

. (182)
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where we denote l(u, t) := d (t−u)
Mτ e and h0(u, t) = max{0, φ(t)− l(u, t)M}.

Motivated by the above decomposition, we will construct Ŷ by approximating the future-
dependent parameter zl(s, a) for 1 ≤ l ≤ L, where L := min{d t

Mτ e, d64 log (K/η)e}. Using

the fact that 1 + x ≤ exp(x) ≤ 1 + 2x holds for any 0 ≤ x < 1, and η

∑K
k′=1 N

k′

hτ,(h+1)τ
(s,a)

K ≤
ητ ≤ 1, and applying Jensen’s inequality,

exp

(
−η

∑K
k′=1N

k′

hτ,(h+1)τ (s, a)

K

)
≥ K
∑K

k′=1(1− η)
−Nk′

hτ,(h+1)τ
(s,a)

≥ K
∑K

k′=1 e
ηNk′

hτ,(h+1)τ
(s,a)

≥ 1

1 + 2η
∑K

k′=1

∑K
k′=1 N

k′

hτ,(h+1)τ
(s,a)

K

≥ exp

(
−2η

∑K
k′=1N

k′

hτ,(h+1)τ (s, a)

K

)
.

Therefore, for 1 ≤ l < L, under BM , the range of zl(s, a) is bounded as follows:

zl(s, a) ∈
[
exp(−4ηµavg(s, a)Mτ), exp(−1

4
ηµavg(s, a)Mτ)

]
.

Using this property, we construct a set of values that can cover possible realizations of
zl(s, a) in a fine-grained manner as follows:

Z :=

{
exp

(
−1

4
ηµavg(s, a)Mτ − iη

K

) ∣∣∣i ∈ Z : 0 ≤ i < 4Kµavg(s, a)Mτ

}
. (183)

Note that the distance of adjacent elements of Z is bounded by η/Ke−1/4ηµavg(s,a)Mτ , and the
size of the set is bounded by 4Kµavg(s, a)Mτ . For l = L, because the number of iterations
involved in zL(s, a) can be less thanMτ , it follows that zL(s, a) ∈ [exp(−4ηµavg(s, a)Mτ), 1].
Hence, we construct the set

Z0 :=

{
exp

(
− iη

K

) ∣∣∣i ∈ Z : 0 ≤ i < 4Kµavg(s, a)Mτ

}
. (184)

In sum, we can always find (ẑ1, · · · , ẑl, · · · , ẑL) ∈ ZL−1 × Z0 where its entry-wise distance
to (zl(s, a))l∈[L−1] (resp. zL(s, a)) is at most η/Ke−1/4ηµavg(s,a)Mτ (resp. η/K).

Moreover, we approximate xku(s, a) by clipping it when the accumulated number of visits
of all agents is not too large as follows:

x̂ku(s, a) =

{
xku(s, a) if

∑K
k=1N

k
h0(u,t)τ,φ(u)τ

(s, a) ≤ 2Kµavg(s, a)Mτ

0 otherwise
. (185)

Note that the clipping never occurs and x̂ku(s, a) = xku(s, a) for all u as long as BM holds.
To provide useful properties of x̂ku(s, a) that will be useful later, we record the following
lemma whose proof is provided in Appendix C.6.1.
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Lemma 21 For any state-action pair (s, a) ∈ S ×A, consider any integers 1 ≤ t ≤ T and
1 ≤ l ≤ d t

Mτ e, where M = b 1
8ηµavg(s,a)τ

c. Suppose that 4ητ ≤ 1, then x̂ku(s, a) defined in

(185) satisfy

∀u ∈ [h0, φ(t)− (l − 1)M) : x̂ku(s, a) ≤
9η

K
, (186a)

φ(t)−(l−1)M−1∑

h=h0

∑

u∈Uk
hτ,(h+1)τ

(s,a)

K∑

k=1

x̂ku(s, a) ≤ 16ηµavg(s, a)Mτ, (186b)

φ(t)−(l−1)M−1∑

h=h0

∑

u∈Uk
hτ,(h+1)τ

(s,a)

K∑

k=1

(x̂ku(s, a))
2 ≤ 64η2µavg(s, a)Mτ

K
, (186c)

where h0 = max{0, φ(t)− lM}.

Finally, for each z = (ẑ1, · · · , ẑL) ∈ ZL−1 × Z0, setting ω̂k
u,t(s, a; z) = x̂ku(s, a)

∏l(u,t)
l=1 ẑl,

an approximate random sequence ŷz = {ŷku,t(s, a; z)}0≤u<t can be constructed as follows:

ŷku,t(s, a; z) =

{
ω̂k
u,t(s, a; z)(P (s, a)− P k

u+1(s, a))V
k
u if (sku, a

k
u) = (s, a) and l(u, t) ≤ L

0 otherwise
.

(187)

If t > LMτ , for any u < t − LMτ , i.e., l(u, t) > L, we set ŷku,t(s, a; z) = 0 since the

magnitude of ω̃k
u,t(s, a) becomes negligible when the time difference between u and t is large

enough, and the fine-grained approximation using Z is no longer needed, as shall be seen
momentarily. Finally, denote a collection of the approximates induced by ZL−1 ×Z0 as

Ŷ = {ŷz : z ∈ ZL−1 ×Z0}.

Step 2: bounding the approximation error D(ỹ, ŷz). We now show that under BM ,
there always exists ŷz := ŷz(ỹ) ∈ Ŷ such that

D(ỹ, ŷz) <
129

1− γ

√
Lη

K
. (188)

To this end, we first decompose the approximation error as follows:

min
ŷz∈Ŷ

D(ỹ, ŷz)

= min
z∈ZL−1×Z0

∣∣∣∣∣

K∑

k=1

t−1∑

u=0

(
ỹku,t(s, a)− ŷku,t(s, a; z)

)∣∣∣∣∣

≤ max
z∈ZL−1×Z0

∣∣∣∣∣

K∑

k=1

t−LMτ−1∑

u=0

ỹku,t(s, a)− ŷku,t(s, a; z)

∣∣∣∣∣
︸ ︷︷ ︸

=:D1
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+ min
z∈ZL−1×Z0

∣∣∣∣∣

K∑

k=1

t−1∑

u=t−LMτ

ỹku,t(s, a)− ŷku,t(s, a; z)

∣∣∣∣∣
︸ ︷︷ ︸

=:D2

• Bounding D1. This term appears only when t > LMτ . Since ŷku,t(s, a; z) = 0 for all
u < t− LMτ regardless of z by construction,

∣∣∣∣∣

K∑

k=1

t−LMτ−1∑

u=0

ỹku,t(s, a)− ŷku,t(s, a; z)

∣∣∣∣∣

≤
K∑

k=1

∑

u∈Uk
0,t−LMτ (s,a)

ω̃k
u,t(s, a)‖P (s, a)− P k

u+1(s, a)‖1‖V k
u ‖∞

(i)

≤ 2

1− γ

K∑

k=1

∑

u∈Uk
0,t−LMτ (s,a)

ω̃k
u,t(s, a)

(ii)

≤ 2

1− γ
(1− η)

1
K

∑K
k=1 N

k
t−LMτ,t(s,a)

(iii)

≤ 2

1− γ
e−η 1

4
µavg(s,a)LMτ

(iv)

≤ 2η

(1− γ)K
,

where (i) holds since ‖P (s, a)‖1, ‖P k
u (s, a)‖1 ≤ 1 and ‖V k

u−1‖∞ ≤ 1
1−γ (cf. (30)),

(ii) follows from (67d) in Lemma 9, (iii) holds due to BM , and (iv) holds because
L ≥ 64 log K

η ≥ 4
ηµavg(s,a)Mτ log

K
η given that ηµavg(s, a)Mτ ≥ 1/16.

• Bounding D2. Since x̂ku(s, a) = xku(s, a) when BM holds, in view of (187), we have

min
z∈ZL−1×Z0

∣∣∣∣∣

K∑

k=1

t−1∑

u=t−LMτ

ỹku,t(s, a)− ŷku,t(s, a; z)

∣∣∣∣∣

≤ min
z∈ZL−1×Z0

K∑

k=1

∑

u∈Uk
t−LMτ,t(s,a)

∣∣ω̃k
u,t(s, a)− ω̂k

u,t(s, a; z)
∣∣ ‖P (s, a)− P k

u+1(s, a)‖1‖V k
u ‖∞

≤ 2

1− γ
min

z∈ZL−1×Z0




L∑

l=1

φ(t)−(l−1)M−1∑

h=φ(t)−lM

∑

u∈Uk
hτ,(h+1)τ

(s,a)

K∑

k=1

x̂ku(s, a)

∣∣∣∣∣

l∏

l′=1

zl′(s, a)−
l∏

l′=1

ẑl′

∣∣∣∣∣


 ,

where the last inequality holds since ‖P (s, a)‖1, ‖P k
u (s, a)‖1 ≤ 1 and ‖V k

u−1‖∞ ≤ 1
1−γ

(cf. (30)).

Note that for any given {zl(s, a)}l∈[L], under BM , there exists ẑ? = (ẑ?1 , . . . , ẑ
?
l , . . . , ẑ

?
L) ∈

ZL−1 × Z0 such that |ẑ?l − zl(s, a)| ≤ η
K exp(−1/4ηµavg(s, a)Mτ) for l < L and
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|ẑ?L − zL(s, a)| ≤ η
K . Also, recall that zl(s, a), ẑ?l ≤ exp(−1/4ηµavg(s, a)Mτ) for

l < L and zL(s, a), ẑ?L ≤ 1. Then, for any l ≤ L it follows that:

∣∣∣∣∣

l∏

l′=1

zl′(s, a)−
l∏

l′=1

ẑ?l′

∣∣∣∣∣ ≤
(∣∣∣

l∏

l′=1

zl′(s, a)− ẑ?1

l∏

l′=2

zl′(s, a)
∣∣∣+ · · ·+

∣∣∣zl
l−1∏

l′=1

ẑ?l′ −
l∏

l′=1

ẑ?l′
∣∣∣
)

≤ exp
(
− 1

4
(l − 1)ηµavg(s, a)Mτ

) l∑

l′=1

η

K

≤ exp
(
− 1

4
(l − 1)ηµavg(s, a)Mτ

)Lη
K

.

Then, applying the above bound and (186b) in Lemma 21,

min
z∈ZL−1×Z0

∣∣∣∣∣

K∑

k=1

t−1∑

u=t−LMτ

ỹku,t(s, a)− ŷku,t(s, a; z)

∣∣∣∣∣

≤ 2

1− γ

L∑

l=1

φ(t)−(l−1)M−1∑

h=φ(t)−lM

∑

u∈Uk
hτ,(h+1)τ

(s,a)

K∑

k=1

x̂ku(s, a)

∣∣∣∣∣

l∏

l′=1

zl′(s, a)−
l∏

l′=1

ẑ?l′

∣∣∣∣∣

≤ 2

1− γ

Lη

K

L∑

l=1

exp
(
− 1

4
(l − 1)ηµavg(s, a)Mτ

) φ(t)−(l−1)M−1∑

h=φ(t)−lM

∑

u∈Uk
hτ,(h+1)τ

(s,a)

K∑

k=1

x̂ku(s, a)

≤ 2

1− γ

Lη

K

1

1− exp(−1/4ηµavg(s, a)Mτ)
(16ηµavg(s, a)Mτ)

(i)

≤ 2

1− γ

Lη

K

8

ηµavg(s, a)Mτ
16ηµavg(s, a)Mτ ≤ 256Lη

(1− γ)K
,

where (i) holds since 1/4ηµavg(s, a)Mτ ≤ 1 and e−x ≤ 1− 1
2x for any 0 ≤ x ≤ 1.

By combining the bounds obtained above and using the fact that 4ηL
K ≤ 1 and L ≤

64 log (TK), we can conclude that

min
ŷz∈Ŷ

D(ỹ, ŷz) ≤
2η

(1− γ)K
+

256Lη

(1− γ)K
≤ 129

1− γ

√
Lη

K
.

Step 3: concentration bound over Y. We now show that for all elements in Ŷ = {ŷz :
z ∈ ZL−1 ×Z0} satisfy

∣∣∣∣∣

K∑

k=1

t−1∑

u=0

ŷku,t(s, a; z)

∣∣∣∣∣ <
624

(1− γ)

√
η

K
log (TK) log

4|S||A|T 2K

δ
(189)

with probability at least 1− δ
|S||A|T . It suffices to establish (189) for a fixed z ∈ ZL−1 ×Z0

with probability at least 1− δ
|S||A|T |Y| , where

|Ŷ| = |ZL−1 ×Z0| ≤ (4Kµavg(s, a)Mτ)L ≤ (K/η)L ≤ (TK)L. (190)
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For any fixed z = (ẑ1, · · · , ẑL) ∈ ZL−1 × Z0, since ω̂k
u,t(s, a; z) = x̂ku(s, a)

∏l(u,t)
l=1 ẑl only

depends on the events happened until u, which is independent to a transition at u + 1.
Thus, we can apply Freedman’s inequality to bound the sum of ŷku,t(s, a; z) since

E[ŷku,t(s, a; z)|Yu] = 0, (191)

where Yu denotes the history of visited state-action pairs and updated values of all agents
until u, i.e., Yu = {(skv , akv), V k

v }k∈[K],v≤u. Before applying Freedman’s inequality, we need
to calculate the following quantities. First,

Bt(s, a) := max
k∈[K],0≤u<t

|ŷku,t(s, a; z)| ≤ x̂ku(s, a)

l(u,t)∏

l=1

ẑl‖P (s, a)− P k
u+1(s, a)‖1‖V k

u ‖∞

≤ 18η

(1− γ)K
, (192)

where the last inequality follows from ‖P (s, a)‖1, ‖P k
u (s, a)‖1 ≤ 1, ‖V k

u−1‖∞ ≤ 1
1−γ (cf. (30)),

ẑl ≤ 1, and (186a) in Lemma 21. Next, we can bound the variance as

Wt(s, a) :=

t−1∑

u=t−LMτ

K∑

k=1

E[(ŷku,t(s, a; z))
2|Yu]

=
L∑

l=1

φ(t)−(l−1)M−1∑

h=max{0,φ(t)−lM}

K∑

k=1

∑

u∈Uk
hτ,(h+1)τ

(s,a)

(x̂ku(s, a)
l∏

l′=1

ẑl′)
2VarP (s,a)(V

k
u )

(i)

≤ 2

(1− γ)2

L∑

l=1

(
l∏

l′=1

ẑ2l′

)
φ(t)−(l−1)M−1∑

h=max{0,φ(t)−lM}

K∑

k=1

∑

u∈Uk
hτ,(h+1)τ

(s,a)

(x̂ku(s, a))
2

(ii)

≤ 2

(1− γ)2

L∑

l=1

(
l∏

l′=1

ẑ2l′

)
64η2µavg(s, a)Mτ

K

(iii)

≤ 128η2µavg(s, a)Mτ

K(1− γ)2

L∑

l=1

exp (−1/2(l − 1)ηµavg(s, a)Mτ)

≤ 128η2µavg(s, a)Mτ

K(1− γ)2
1

1− exp(−1/2ηµavg(s, a)Mτ)

(iv)

≤ 128η2µavg(s, a)Mτ

K(1− γ)2
4

ηµavg(s, a)Mτ
=

512η

K(1− γ)2
:= σ2, (193)

where (i) holds due to the fact that ‖VarP (V )‖∞ ≤ ‖P‖1(‖V ‖∞)2+(‖P‖1‖V ‖∞)2 ≤ 2
(1−γ)2

because ‖V ‖∞ ≤ 1
1−γ (cf. (30)) and ‖P‖1 ≤ 1, (ii) follows from (186c) in Lemma 21,

(iii) holds due to the range of Z and Z0 is bounded by exp(−1/4ηµavg(s, a)Mτ) and 1,
respectively, and (iv) holds since e−x ≤ 1− 1

2x for any 0 ≤ x ≤ 1 and 1/2ηµavg(s, a)Mτ ≤ 1
.
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Now, by substituting the above bounds of Wt and Bt into Freedman’s inequality (see
Theorem 12) and setting m = 1, it follows that for any s ∈ S, a ∈ A, t ∈ [T ] and ŷz ∈ Ŷ,

∣∣∣∣∣

K∑

k=1

t−1∑

u=0

ŷku,t(s, a; z)

∣∣∣∣∣

≤

√

8max {Wt(s, a),
σ2

2m
} log 4m|S||A|T |Ŷ|

δ
+

4

3
Bt(s, a) log

4m|S||A|T |Ŷ|
δ

≤

√

4096
η

K(1− γ)2
log

4|S||A|T |Ŷ|
δ

+
24η

K(1− γ)
log

4|S||A|T |Ŷ|
δ

(i)

≤ 78

(1− γ)

√
ηL

K
log

4|S||A|T 2K

δ
, (194)

with at least probability 1 − δ

|S||A|T |Ŷ| , where (i) holds because |Ŷ| ≤ (TK)L given that

ηµavg(s, a)Mτ ≤ 1/4, and 4ηL
K log 4|S||A|T 2K

δ ≤ 1. Therefore, it follows that (189) holds.

Step 4: putting things together. We now putting all the results obtained in the
previous steps together to achieve the claimed bound. Under BM , there always exists

ŷz := ŷz(ỹ) ∈ Ŷ such that (188) holds. Hence, setting q = 2064
(1−γ)

√
η
K log (TK) log 4|S||A|T 2K

δ ,

K∑

k=1

t−1∑

u=0

ỹku,t(s, a) ≤
∣∣∣∣∣

K∑

k=1

t−1∑

u=0

ŷku,t(s, a; z)

∣∣∣∣∣+D(ỹ, ŷz)

≤ 78

(1− γ)

√
ηL

K
log

4|S||A|T 2K

δ
+

129

1− γ

√
Lη

K

≤ 2064

(1− γ)

√
η

K
log (TK) log

4|S||A|T 2K

δ
, (195)

where the second line holds due to (189) and (188), and the last line holds due to L ≤
64 log (TK). By taking a union bound over all (s, a) ∈ S ×A and t ∈ [T ], we complete the
proof.

C.6.1 Proof of Lemma 21

For notational simplicity, let h be the largest integer among h ∈ (h0, φ(t)− (l − 1)M) such
that

K∑

k=1

Nk
h0τ,(h−1)τ (s, a) ≤ 2Kµavg(s, a)Mτ. (196)

Then, the following holds:

K∑

k=1

Nk
h0τ,hτ

(s, a) =
K∑

k=1

Nk
(h−1)τ,hτ

(s, a) +
K∑

k=1

Nk
h0τ,(h−1)τ

(s, a)
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≤ Kτ + 2Kµavg(s, a)Mτ. (197)

Also, for the following proofs, we provide an useful bound as follows:

K∑

k′=1

(1− η)
−Nk′

hτ,(h+1)τ
(s,a)

K
≤
∑K

k′=1 e
ηNk′

hτ,(h+1)τ
(s,a)

K
≤ 1 + 2η

∑K
k′=1N

k′

hτ,(h+1)τ (s, a)

K
(198)

≤ exp

(
2η

∑K
k′=1N

k′

hτ,(h+1)τ (s, a)

K

)
,

which holds since 1 + x ≤ ex ≤ 1 + 2x for any x ∈ [0, 1] and ηNk′

hτ,(h+1)τ (s, a) ≤ ητ ≤ 1.

According to (185), for any integer u ∈ [hτ, t − (l − 1)Mτ), x̂ku(s, a) is clipped to zero.
Now, we prove the bounds in Lemma 21 respectively.

Proof of (186a). For u ∈ [h0τ, hτ),

x̂ku(s, a) =

φ(u)−1∏

h=h0



∑K

k′=1(1− η)
−Nk′

hτ,(h+1)τ
(s,a)

K


 η(1− η)

−Nk
φ(u)τ,u+1

(s,a)

K

(i)

≤
φ(u)−1∏

h=h0



∑K

k′=1(1− η)
−Nk′

hτ,(h+1)τ
(s,a)

K


 3η

K

(ii)

≤ exp

(
2η

K

K∑

k′=1

Nk′

h0τ,(h−1)τ
(s, a)

)
3η

K

(iii)

≤ exp(4ηµavg(s, a)Mτ)
3η

K

(iv)

≤ 9η

K
, (199)

where (i) holds since (1 + η)x ≤ eηx and ηNk
φ(u)τ,u+1(s, a) ≤ ητ ≤ 1, (ii) holds due to (198)

and the fact that φ(u) ≤ h− 1, (iii) follows from the definition of h in (196), and (iv) holds
because 4ηµavg(s, a)Mτ ≤ 1.

Proof of (186b). By the definition of h, it follows that

φ(t)−(l−1)M−1∑

h=h0

∑

u∈Uk
hτ,(h+1)τ

(s,a)

K∑

k=1

x̂ku(s, a) =

h−1∑

h=h0

∑

u∈Uk
hτ,(h+1)τ

(s,a)

K∑

k=1

xku(s, a).

Using the following relation for each h:

∑

u∈Uk
hτ,(h+1)τ

(s,a)

K∑

k=1

xku(s, a)

=




h−1∏

h′=h0

∑K
k′=1(1− η)

−Nk′

h′τ,(h′+1)τ
(s,a)

K




K∑

k=1

∑
u∈Uk

hτ,(h+1)τ
(s,a) η(1− η)−Nk

hτ,u+1(s,a)

K
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=




h−1∏

h′=h0

∑K
k′=1(1− η)

−Nk′

h′τ,(h′+1)τ
(s,a)

K




K∑

k=1

(1− η)
−Nk

hτ,(h+1)τ
(s,a) − 1

K

=




h∏

h′=h0

∑K
k′=1(1− η)

−Nk′

h′τ,(h′+1)τ
(s,a)

K


−




h−1∏

h′=h0

∑K
k′=1(1− η)

−Nk′

h′τ,(h′+1)τ
(s,a)

K


 ,

and applying (198), we can complete the proof as follows:

h−1∑

h=h0

∑

u∈Uk
hτ,(h+1)τ

(s,a)

K∑

k=1

xku(s, a) ≤
h−1∏

h′=h0

exp

(
2η
∑K

k′=1N
k′

h′τ,(h′+1)τ (s, a)

K

)
− 1

≤ exp



2η
∑K

k′=1N
k′

h0τ,hτ
(s, a)

K


− 1

(i)

≤ exp (4ηµavg(s, a)Mτ + 2ητ)− 1

(ii)

≤ 16ηµavg(s, a)Mτ,

where (i) follows from (197), and (ii) holds because ex ≤ 1 + 2x for any x ∈ [0, 1] and
2ητ ≤ 4ηµavg(s, a)Mτ ≤ 1/2.

Proof of (186c). Similarly,

φ(t)−(l−1)M−1∑

h=h0

∑

u∈Uk
hτ,(h+1)τ

(s,a)

K∑

k=1

(x̂ku(s, a))
2 =

h−1∑

h=h0

∑

u∈Uk
hτ,(h+1)τ

(s,a)

K∑

k=1

(xku(s, a))
2.

Using the following relation for each h:

∑

u∈Uk
hτ,(h+1)τ

(s,a)

K∑

k=1

(xku(s, a))
2

=




h−1∏

h′=h0

∑K
k′=1(1− η)

−Nk′

h′τ,(h′+1)τ
(s,a)

K




2
K∑

k=1

∑
u∈Uk

hτ,(h+1)τ
(s,a) η
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K2
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−Nk′
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


2
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k=1

η((1− η)
−2Nk

hτ,(h+1)τ
(s,a) − 1)
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≤ η

K
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exp

(
2η
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h′τ,(h′+1)τ (s, a)

K
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

2(
exp

(
4η
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− 1

)

=
η

K
exp

(
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)
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=
η

K

(
exp

(
4η

∑K
k′=1N

k′

h0τ,(h+1)τ (s, a)

K

)
− exp

(
4η

∑K
k′=1N

k′

h0τ,hτ
(s, a)

K

))
, (200)

where the inequality is derived similarly to (198) under the condition 2ητ ≤ 1, we can
complete the proof as follows:

h−1∑

h=h0

∑

u∈Uk
hτ,(h+1)τ

(s,a)

K∑

k=1

(xku(s, a))
2 ≤ η

K


exp


4η

∑K
k′=1N

k′

h0τ,hτ
(s, a)

K


− 1




(i)

≤ η

K
(exp (8ηµavg(s, a)Mτ + 4ητ)− 1)

(ii)

≤ 64η2µavg(s, a)Mτ

K
, (201)

where (i) follows from (197), and (ii) holds because ex ≤ 1 + 4x for any x ∈ [0, 2] and
4ητ ≤ 8ηµavg(s, a)Mτ ≤ 1.

C.7 Proof of Lemma 11

The proof follows a similar structure to that of Lemma 8. We omit common parts of the
proofs and refer to Appendix C.4 to check the detailed derivations. First, we decompose
the error term as follows:

E3
t (s, a) = γ

K∑

k=1

∑

u∈Uk
0,(φ(t)−β)τ

(s,a)

ω̃k
u,t(s, a)P (s, a)(V ? − V k

u )

︸ ︷︷ ︸
=:E3a

t (s,a)

+ γ
K∑

k=1

∑

u∈Uk
(φ(t)−β)τ,t

(s,a)

ω̃k
u,t(s, a)P (s, a)(V ? − V k

u ).

︸ ︷︷ ︸
=:E3b

t (s,a)

(202)

We shall bound these two terms separately.

• Bounding E3a
t (s, a). First, the bound of E3a

t (s, a) is derived as follows:

|E3a
t (s, a)| ≤ γ

K∑

k=1

∑

u∈Uk
0,(φ(t)−β)τ

(s,a)

ω̃k
u,t(s, a)‖P (s, a)‖1‖V ? − V k

u ‖∞

(i)

≤ 2

1− γ
(1− η)

1
K

∑K
k=1 N

k
(φ(t)−β)τ,t

(s,a)

(ii)

≤ 2

1− γ
(1− η)

µavgβτ

4 , (203)
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where (i) holds due to Lemma 9 (cf. (67d)), and (ii) follows fromapplying Lemma 15
that with probability at least 1− δ,

K∑

k=1

Nk
(φ(t)−β)τ,t(s, a) ≥

Kβτµavg

4

holds for all (s, a) ∈ S ×A and 0 ≤ u < v ≤ T as long as βτ ≥ tth.

• Bounding E3b
t (s, a). Combining (157) and Lemma 19 to bound ‖V ? − V k

u ‖∞, we
bound E3b

t (s, a) as follows:

|E3b
t (s, a)| ≤ γ

K∑

k=1

∑

u∈Uk
(φ(t)−β)τ,t

(s,a)

ω̃k
u,t(s, a)

∥∥∥V ? − V k
u

∥∥∥
∞

≤ γ
K∑

k=1

φ(t)−1∑

h=φ(t)−β

∑

u∈Uk
hτ,(h+1)τ

(s,a)

ω̃k
u,t(s, a)((1 + 2ητ)‖∆hτ‖∞ + σlocal)

≤ σlocal +
1 + γ

2
max

φ(t)−β≤h<φ(t)
‖∆hτ‖∞ (204)

where we denote σlocal :=
8γη

√
τ−1

1−γ

√
log 2|S||A|TK

δ for notational simplicity, and the

last inequality follows from Lemma 9 (cf. (67c)) and the assumption that η ≤ 1−γ
4γτ .

Now we have the bounds of E3a
t (s, a) and E3b

t (s, a) separately obtained above. By
combining the bounds in (202), we can claim the advertised bound, which completes the
proof.
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