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In this paper, we consider federated Q-learning, which aims to learn an optimal Q-function
by periodically aggregating local Q-estimates trained on local data alone. Focusing on
infinite-horizon tabular Markov decision processes, we provide sample complexity guaran-
tees for both the synchronous and asynchronous variants of federated Q-learning, which
exhibit a linear speedup with respect to the number of agents and near-optimal dependen-

cies on other salient problem parameters.

In the asynchronous setting, existing analyses of federated Q-learning, which adopt an
equally weighted averaging of local Q-estimates, require that every agent covers the entire
state-action space. In contrast, our improved sample complexity scales inverse proportion-
ally to the minimum entry of the average stationary state-action occupancy distribution of
all agents, thus only requiring the agents to collectively cover the entire state-action space,
unveiling the blessing of heterogeneity. However, its sample complexity still suffers when
the local trajectories are highly heterogeneous. In response, we propose a novel federated
Q-learning algorithm with importance averaging, giving larger weights to more frequently
visited state-action pairs, which achieves a robust linear speedup as if all trajectories are
centrally processed, regardless of the heterogeneity of local behavior policies.

Keywords: federated RL, Q-learning, sample complexity, linear speedup, heterogeneity

1. Introduction

Reinforcement Learning (RL) (Sutton and Barto, 2018) is an area of machine learning for
sequential decision making, aiming to learn an optimal policy that maximizes the total
rewards via interactions with an unknown environment. RL is widely used in many real-
world applications, such as autonomous driving, games, clinical trials, and recommendation
systems. However, due to the high dimensionality of the state-action space, training of RL
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agents typically requires a significant amount of computation and data to achieve desirable
performance. Moreover, data collection can be extremely time-consuming with limited
access in the wild, especially when performed by a single agent. On the other hand, it
is possible to leverage multiple agents to collect data simultaneously, under the premise
that they can learn a global policy collaboratively with the aid of a central server without
the need of sharing local data. As a result, there is a growing need to conduct RL in a
distributed or federated fashion.

Although there have been many studies analyzing federated learning (Kairouz et al.,
2021) in other areas such as supervised machine learning (McMahan et al., 2017; Bonawitz
et al., 2019; Wang et al., 2020b), there are only a few recent works focused on federated RL.
They consider issues such as robustness to adversarial attacks (Wu et al., 2021; Fan et al.,
2021), environment heterogeneity (Jin et al., 2022), as well as sample and communication
complexities (Doan et al., 2021; Khodadadian et al., 2022; Shen et al., 2022). Encouragingly,
some of these prior works offer non-asymptotic sample complexity analyses of federated RL
algorithms that highlight a linear speedup of the required sample size in terms of the number
of agents. However, the performance characterization of these federated algorithms is still
far from complete.

1.1 Federated Q-learning: prior art and limitations

This paper focuses on Q-learning (Watkins and Dayan, 1992), one of the most celebrated
model-free RL algorithms, which aims to learn the optimal Q-function directly without form-
ing an estimate of the model. Two sampling protocols are typically studied: synchronous
sampling and asynchronous sampling. With synchronous sampling, all state-action pairs
are updated uniformly assuming access to a generative model or a simulator (Kearns and
Singh, 1999). With asynchronous sampling, only the state-action pair that is visited by the
behavior policy is updated at each time (Tsitsiklis, 1994). Despite its long history of theo-
retical investigation, the tight sample complexity of Q-learning in the single-agent setting
has only recently been pinned down in Li et al. (2023). As we shall elucidate, there remains
a large gap in terms of the sample complexity requirement between the federated setting
and the single-agent setting in terms of dependencies on salient problem parameters.

To harness the power of multiple agents, Khodadadian et al. (2022) proposed and ana-
lyzed a federated variant of Q-learning with asynchronous sampling that periodically aggre-
gates the local Q-estimates trained on local Markovian trajectories collected over K agents.
To set the stage, consider an infinite-horizon tabular Markov decision process (MDP) with
state space S, action space A, and a discount factor v € [0,1). To learn an e-optimal Q-
function estimate (in the /5 sense), Khodadadian et al. (2022) requires a per-agent sample
size on the order of

0 (Kui’q;ng’i 7)9€2> W

for sufficiently small €, where pimin 1= mini<gp<x mMin( g)esx.A4 ulg(s, a) is the minimum entry
of the stationary state-action occupancy distributions ulg of the sample trajectories over
all agents, and O hides logarithmic terms. On the other hand, the sample requirement of
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single-agent Q-learning (Li et al., 2023) for learning an e-optimal Q-function is

e @

for sufficiently small e. Comparing the two sample complexity bounds reveals several draw-
backs of existing analyses and raises the following natural questions.

e Near-optimal sample size. Despite the appealing linear speedup in terms of the number of
agents K shown in Khodadadian et al. (2022), it has unfavorable dependencies on other
salient problem parameters. In particular, since 1/pmin > |S||A|, the sample complexity

in (1) will be better than that of the single-agent case in (2) only if K is at least above the
|S[°]Al*

(1= ) .
long effective horizon. Can we improve the dependency on the salient problem parameters

for federated Q-learning while maintaining linear speedup?

order of

which may not be practically feasible with large state-action space and

e Benefits of heterogeneity. Existing analyses in Khodadadian et al. (2022) require that
each agent has a full coverage of the state-action space (i.e., fimin > 0), which is as
stringent as the single-agent setting. However, given that the insufficient coverage of
individual agents can be complemented by each other when agents have heterogeneous
local trajectories, it may not be necessary to require full coverage of the state-action
space from every agent. Can we exploit the heterogeneity in the agents’ local trajectories
and relax the coverage requirement on individual agents?

1.2 Summary of our contributions

In this paper, we answer these questions in the affirmative, by providing a sample complexity
analysis of federated Q-learning under both the synchronous and asynchronous settings. The
main contributions are summarized as follows, with Table 1 providing a comparison with
the prior art.

o Sample complexity of federated synchronous Q-learning with equal averaging. We show
that with high probability, the sample complexity of federated synchronous Q-learning
(FedSynQ) to learn an e-optimal Q-function in the £, sense is (see Theorem 1)

5(_ ISIIA]
(=) ¥

which exhibits a linear speedup with respect to the number of agents K and nearly
matches the tight sample complexity bound of single-agent synchronous Q-learning up
to a factor of 1/(1 —~) in Li et al. (2023) for K = 1.

o Sample complexity of federated asynchronous Q-learning with equal averaging. We provide
a sharpened sample complexity analysis of the algorithm developed in Khodadadian et al.
(2022) for federated asynchronous Q-learning with equal averaging (FedAsynQ-EqAvg)
that leads to new insights. To learn an e-optimal Q-function in the £, sense, FedAsynQ-
EqAvg requires at most (see Theorem 2)

5(Km@gﬁvﬁﬁ> (4)
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samplin reference number of coverage sample
Ping agents & complexity

Wainwright (2019a); Chen et al. (2020) 1 full (1‘5‘7‘;‘;‘62

synchronous
Li et al. (2023) 1 full gl
SIIA]

FedSynQ (Theorem 1) K full Ry
Qu and Wierman (2020) 1 full W
Li et al. (2021b) 1 full W

. 1

asynchronous Li et al. (2023) 1 full T
FedAsynQ-EqAvg (Khodadadian et al., 2022) K full ﬁ‘;)%z
FedAsynQ-EqAvg (Theorem 2) K partial W
FedAsynQ-ImAvg (Theorem 3) K partial W

Table 1: Comparison of sample complexity upper bounds of single-agent and federated
Q-learning algorithms under synchronous and asynchronous sampling protocols to learn
an e-optimal Q-function in the ¢, sense, where logarithmic factors and burn-in costs are
hidden. Here, S is the state space, A is the action space, v is the discount factor, K is
the total number of agents, and tmjx is the mixing time of the behavior policy. In addition,
Hmin = Ming s 4 u{j(s, a) denotes the minimum entry of the stationary state-action occupancy
distributions uf of all agents, payg = ming, % Zszl 11£(s,a) denotes the minimum entry
of the average stationary state-action occupancy distribution of all agents, and Chey =
maxy 5o Kpf(s,a)/( Zszl (£ (s, a)) captures the heterogeneity across the agents.

samples per agent for sufficiently small ¢ (ignoring the burn-in cost that depends on the
mixing times of the Markovian trajectories over all agents), where fiayg is the minimum
entry of the average stationary state-action occupancy distribution of all agents, i.e.,

Havg = mins,a % Zf:l M’é(sa a) > fmin, and Chet = maxg s.q % € [17 1//~Lavg]
captures the heterogeneity of the behavior policies across agents. This t;s.ample complexity
not only proves a linear speedup with respect to the number of agents, but also greatly
sharpens the dependency on all the salient problem parameters — including 1/(1—7), |S],
and 1/pmin — by orders of magnitudes compared to the bound obtained in Khodadadian
et al. (2022). More importantly, it uncovers that as long as the agents collectively cover
the entire state-action space (i.e., ptavg > 0), FedAsynQ-EqAvg still enables learning even
when individual agents fail to cover the entire state-action space (i.e., timin = 0), unveiling
the blessing of heterogeneity that was not elucidated in prior work (Khodadadian et al.,

2022).

o Sample complexity of federated asynchronous Q-learning with importance averaging. Al-
though heterogeneous behavior policies at agents may induce local trajectories cover-
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ing different parts of the state-action space and relax the coverage requirement, equally
weighting the local Q-estimates may hinder the convergence which is bottlenecked by
the slowest converging agent. This is evident by the dependency on Chet in the sample
complexity of FedAsynQ-EqAvg, which becomes larger when the local behavior policies
are highly disparate. To address this issue, we propose a novel importance averaging
scheme in federated Q-learning (FedAsynQ-ImAvg) that averages the local Q-estimates
by assigning larger weights to more frequently updated local estimates. To learn an
e-optimal Q-function in the £, sense, FedAsynQ-ImAvg requires at most (see Theorem 3)

0 (Kuavgul— 7)552> (5)

samples per agent for sufficiently small ¢ (ignoring the burn-in cost that depends on the
mixing times of the Markovian trajectories over all agents). This improves over that of
FedAsynQ-EqAvg by removing the dependency on Chet, which can be as large as 1/ftavg-
More importantly, this suggests that FedAsynQ-ImAvg achieves stable linear speedup
with respect to the profile of the local behavior policies while maintaining the blessing of
heterogeneity that eases the burden of individual agents’ coverage.

1.3 Related work

Analysis of single-agent Q-learning. There has been extensive research on the con-
vergence guarantees of Q-learning, focusing on the single-agent case. Many initial studies
have analyzed the asymptotic convergence of Q-learning (Tsitsiklis, 1994; Szepesvéri, 1998;
Jaakkola et al., 1994; Borkar and Meyn, 2000). Later, Even-Dar and Mansour (2003); Beck
and Srikant (2012); Wainwright (2019a); Chen et al. (2020); Li et al. (2023) have studied
the sample complexity of Q-learning under synchronous sampling, and Even-Dar and Man-
sour (2003); Beck and Srikant (2012); Qu and Wierman (2020); Li et al. (2023, 2021b);
Chen et al. (2021b) have investigated the finite-time convergence of Q-learning under asyn-
chronous sampling (also referred to as Markovian sampling). In addition, Jin et al. (2018);
Bai et al. (2019); Zhang et al. (2020); Li et al. (2021a); Yang et al. (2021) studied Q-learning
with optimism for online RL, and Shi et al. (2022); Yan et al. (2022) dealt with Q-learning
with pessimism for offline RL.

Distributed and federated RL. Several recent works have developed distributed ver-
sions of RL algorithms to accelerate training (Mnih et al., 2016; Espeholt et al., 2018;
Assran et al., 2019). Theoretical analysis of convergence and communication efficiency of
these distributed RL algorithms have also been considered in recent works. For example, a
collection of works (Doan et al., 2019; Sun et al., 2020; Wang et al., 2020a; Wai, 2020; Chen
et al., 2022a; Zeng et al., 2021) have analyzed the convergence of decentralized temporal dif-
ference (TD) learning. Furthermore, Chen et al. (2022b); Shen et al. (2022) have analyzed
the finite-time convergence of distributed actor-critic algorithms and Chen et al. (2021a)
proposed a communication-efficient policy gradient algorithm with provable convergence
guarantees.

Notation. Throughout this paper, we denote by A(S) the probability simplex over a set
S, and [K] = {1,---, K} for any positive integer K > 0. In addition, f(-) = O(g(-)) or
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f < g (resp. f(-) = Q(g(-)) or f = g) means that f(-) is orderwise no larger than (resp. no
smaller than) g(-) modulo some logarithmic factors. The notation f < g means f < g and
f 2 g hold simultaneously.

2. Model and background

In this section, we introduce the mathematical model and background of Markov decision
processes.

Infinite-horizon Markov decision process. We consider an infinite-horizon Markov
decision process (MDP), which is represented by M = (S, A, P,r,~). Here, S and A denote
the state space and the action space, respectively, P : § x A x § — [0, 1] indicates the
transition kernel such that P(s’|s,a) denotes the probability that action a in state s leads
to state s’, r : § x A — [0, 1] denotes a deterministic reward function, where r(s,a) is the
immediate reward for action a in state s, and v € [0, 1) is the discount factor.

Policy, value function, and Q-function. A policy is an action-selection rule denoted
by the mapping 7 : S — A(A), such that 7(a|s) is the probability of taking action a in
state s. For a given policy 7, the value function V™ : § — R, which measures the expected
discounted cumulative reward from an initial state s, is defined as

o0
VseS: V™(s) =E [Z Vr(se, ar) | so = s] . (6)
t=0

Here, the expectation is taken with respect to the randomness of the trajectory {s¢, a;, ¢ }52,
sampled based on the transition kernel (i.e., s;41 ~ P(:|st,at)) and the policy = (i.e.,
ar ~ m(-|s¢)) for any ¢t > 0. Similarly, the state-action value function (i.e., Q-function)
Q™ : S x A = R, which measures the expected discounted cumulative reward from an
initial state-action pair (s, a), is defined as

V(s,a) e S x A: Q" (s,a) =r(s,a) + E

[e.e]
Z’ytr(st,at) ‘ S0 = 8,a0 = a] .
t=1

Again here, the expectation is taken with respect to the randomness of the trajectory
{st,a,m¢}7°, generated similarly as above. Since the rewards lie within [0, 1], it follows
that for any policy T,

™ 1 7T 1
0<Vv Sﬁ’ 0<@ gﬁ. (7)
Optimal policy and Bellman’s principle of optimality. A policy that maximizes the
value function uniformly over all states is called an optimal policy and denoted by 7*. Note
that the existence of such an optimal policy is always guaranteed (Puterman, 2014), which
also maximizes the Q-function simultaneously. The corresponding optimal value function
and Q-function are denoted by V* := V™ and Q* := Q™ , respectively. It is well-known
that the optimal Q-function Q* can be determined as the unique fixed point of the Bellman
operator T, given by

T(Q)(s,a):=r(s,a)+v E [max Q(s',d)|. (8)

s/~P(|s,0) La'€A
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Q-learning (Watkins and Dayan, 1992), perhaps the most widely used model-free RL algo-
rithm, seeks to learn the optimal Q-function based on samples collected from the underlying
MDP without estimating the model.

3. Federated synchronous Q-learning: algorithm and theory

In this section, we begin with understanding federated synchronous Q-learning, where all
the state-action pairs are updated simultaneously assuming access to a generative model or
simulator at all the agents.

3.1 Problem setting

In the synchronous setting, each agent k € [K] has access to a generative model, and
generates a new sample

Sf(sva’) NP("Sva) (9)

for every state-action pair (s,a) € S x A independently at every iteration t. Our goal
is to learn the optimal Q-function @Q* collaboratively by aggregating the local Q-learning
estimates periodically.

Review: synchronous Q-learning with a single agent. To facilitate algorithmic
development, let us recall the synchronous Q-learning update rule with a single agent.
Starting with certain initialization @Qq, at every iteration ¢ > 1, the Q-function is updated
according to

V(s,a) eSx A Qifs,a) = (1= 1)Qi-1(s,a) +1 (T(S,a) +ymax Qr-1(se(s, a), a’)) 7
(10)

where s(s,a) ~ P(:|s,a) is drawn independently for every state-action pair (s,a) € S X A,
and 7 denotes the constant learning rate. The sample complexity of synchronous Q-learning
has been recently investigated and sharpened in a number of works, e.g. Li et al. (2023);
Wainwright (2019a); Chen et al. (2020).

3.2 Algorithm description

We propose a natural federated synchronous Q-learning algorithm called FedSynQ that
alternates between local updates at agents and periodic averaging at a central server. The
complete description is summarized in Algorithm 1. FedSynQ initializes a local Q-function
as ng = Qo at each agent k € [K]. Suppose at the beginning of each iteration ¢ > 1, each
agent maintains a local Q-function estimate Q¥ ; and a local value function estimate V}* ,,
which are related via

VseS: ViF(s) := max Q¥ (s, a). (11)

acA

FedSynQ proceeds according to the following steps in the rest of the ¢-th iteration.
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1. Local updates: Each agent first independently updates all entries of its Q-estimate Qf_l
to reach some intermediate estimate following the update rule:

V(s,a) € S x 'A : Qf,%(‘s?a) = (1 - 77)fo1(5:@) + n (T(Sva’) +’7Vtkfl(sf(87a))> )
(12)

where sF(s,a) is drawn according to (9), and 1 > 0 is the learning rate.

2. Periodic averaging: These intermediate estimates will be periodically averaged by the
server to form the updated estimate QF at the end of the t-th iteration. Formally,
denoting 7 > 1 as the synchronization period, it follows

+ Zle Qf_%(s, a) ift=0 (mod 7)

fﬁ 1 (s,a) otherwise

V(s,a) eSx A:  QF(s,a) = (13)

Denoting the number of total iterations by 7', the algorithm outputs the final Q-estimate
as the average of all local estimates, i.e. Qp = % >k Q’%. Without loss of generality, we
assume the total number of iterations 7' is divisible by 7, where Cioyng = T'/7 is the rounds
of communication.

Algorithm 1: Federated Synchronous Q-learning (FedSynQ)

1: inputs: learning rate 7, discount factor -, number of agents K, synchronization
period 7, number of iterations T'.

2: initialization: Q’S = Qo for all k.
3: fort=1,---,7T do
4. for k € [K] do
5: Draw sf(s,a) ~ P(-|s,a) for all (s,a) € S x A.
6: Compute Qf_l according to (12).
2
7 Compute QF according to (13).
8: end for
9: end for

10: return: Qr = % S Q.

3.3 Performance guarantee

We are ready to provide the finite-time convergence analysis of Algorithm 1.

Theorem 1 (Finite-time convergence of FedSynQ) Consider any given 6 € (0,1) and

e € (0, ﬁ] Suppose that the initialization of Algorithm 1 satisfies 0 < Qg < ﬁ, and the

synchronization period T obeys

1 1-— 1
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There exist some sufficiently large constant cr > 0 and sufficiently small constant ¢, > 0,
both independent of problem parameters, such that with probability at least 1 — 6, the output
of Algorithm 1 satisfies |Qr — Q*||oc < €, provided that the sample size per agent T' and the
learning rate 1 satisfy

A|KT

cr 2.\\2 S|
B e — —
1

log SIAIKT

(14b)

= ey (1—7)te? (14c)

Theorem 1 suggests that to achieve an e-accurate Q-function estimate in an /o, sense,
the number of samples required at each agent is no more than

o (opa)

given that the agent collects |S||.A| samples at each iteration. A few implications are in
order.

Linear speedup. The sample complexity exhibits an appealing linear speedup with re-

spect to the number of agents K. In comparison, the sharpest upper bound known for
single-agent Q-learning (Li et al., 2023) is 9] (%), which matches with its
algorithmic-dependent lower bound when ¢ € (0,1). Therefore, our federated setting en-
ables faster learning as soon as the number of agents satisfies

1
K>
~ (I =) max{Le}

up to logarithmic factors. When K = 1, our bound nearly matches with the lower bound
of single-agent Q-learning up to a factor of 1/(1 — «), indicating its near-optimality.

Communication efficiency. One key feature of our federated setting is the use of peri-
odic averaging with the hope to improve communication efficiency. According to (14a), our
theory requires that the synchronization period 7 be inversely proportional to the learn-
ing rate 77, which suggests that more frequent communication is needed to compensate the
discrepancy of local updates when the learning rate is large. To provide insights, consider
the parameter regime when K 2> ﬁ and ¢ < ﬁ Plugging the choice of the learning
rate (14c) into the upper bound of 7 in (14a), we can choose the synchronization period as
m up to logarithmic factors, leading to a communication complexity no larger

than Cioynd = % < %, which is almost independent of the final accuracy e.

T X

4. Federated asynchronous Q-learning: algorithm and theory

In this section, we study the sample complexity of federated asynchronous Q-learning,
where K agents sample local trajectories using different behavior policies. In particular, we
propose a novel aggregation algorithm FedAsynQ-ImAvg that leverages the heterogeneity of
these policies and dramatically improves the sample complexity.
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4.1 Problem setting

In the asynchronous setting, each agent k € [K] independently collects a sample trajectory
{sk, ak, rk}2, from the same underlying MDP M following some stationary local behavior
policy 7T]g such that

allfc Nﬂ]g("sf% Tf :r(sf,af), Sf—i-l NP("vaaf) (15)
for all ¢ > 0, where the initial state is initialized as slg for each agent k. Note that the
behavior policies {7r{f } ke[k] are heterogeneous across agents and can be different from the
optimal policy 7*. Contrary to the generative model considered in the synchronous setting,
the samples collected under the asynchronous setting are no longer independent across
time but are Markovian, making the analysis significantly more challenging. The sample
trajectory at each agent can be viewed as sampling a time-homogeneous Markov chain
over the set of state-action pairs. Throughout this paper, we make the following standard
uniform ergodicity assumption (Paulin, 2015; Li et al., 2021b).

Assumption 1 (Uniform ergodicity) For every agent k € [K], the Markov chain in-
duced by the stationary behavior policy 7r’g is uniformly ergodic over the entire state-action
space S X A.

Uniform ergodicity guarantees that the distribution of the state-action pair (s a;) of a
trajectory converges to the stationary distribution of the Markov chain geometrically fast
regardless of the initial state-action pair, and eventually, each state-action pair is visited in
proportion to the stationary distribution.

Key parameters. Two important quantities concerning the resulting Markov chains will
govern the performance guarantees. The first one is the stationary state-action distribution
u’g, which is the stationary distribution of the Markov chain induced by 77’; over all state-
action pairs; the second one is t’rfﬂx, which is the mixing time of the same Markov chain
given by

tkmix := min {t ‘ max dTV(Ptk(- | s0,a0), ,ulg) < 1}, (16)

(s0,a0)€ESXA 4

where PF(-|sg,a0) denote the distribution of (s, a;) conditioned on (sg,aq) for agent k,
and dty(+,-) is the total variation distance. Further, let the largest mixing time of all the
Markov chains induced by local behavior policies be

— k
mix = MK T (17)
In words, t72X approximately indicates the time that the transition of every agent starts to

follow its stationary distribution regardless of its initial state.
Let us further define a few key parameters that measure the coverage and heterogeneity
of the stationary state-action distribution ,ufj across agents. First, define

: k k : k
Pmin *— 1M1l v min>’ where ,Mm- = min HplS,a). 18
: ke[K] n n (s,a)ESX A b( ) ( )

10
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State-action pairs with small stationary probabilities are visited less frequently, and there-
fore can become bottlenecks in improving the quality of Q-function estimates. Clearly,
Lmin < WIIAI' In addition, denote

K
. 1
Havg = Mmin K Z Mlg(sv (1). (19)

In words, favg is the minimum entry of the average stationary state-action distribution
of all agents. The difference between piavg and pimin stands out when an individual agent
fails to cover the entire state-action space. While pimin = 0 in such a case, pavg can still
be positive as long as each state-action pair is explored by at least one of the agents, i.e.,
Zszl ,ulg(s, a) > 0. Note that jayg is always greater than or equal to pimin since

k
_ § $,0) = fmin- 20
Have = (s ar)rggXA K Mb % CL (s a)eg}i{l ke[K] Hb ( a) Himmin ( )

Last but not least, we measure the heterogeneity of the stationary state-action distributions
across agents by

5 (s, a)
Chet '= max max T b (21)
ke[K] (s,a)eSxA Zk llub( )

which satisfies 1 < Cher < min{K, 1/pavg}, and in particular, Cher = 1 when Mllf = up are
all equal.

Review: asynchronous Q-learning with a single agent. Recall the update rule of
asynchronous Q-learning with a single agent, where at each iteration ¢t > 1, upon receiving
a transition (s;—1,a;—1, St), the Q-estimate is updated via

Qu(s,a) = { (1 =n)Q¢-1(s,a) +n(r(s,a) + ymaxyea Qt—1(st,a’)), if (s,a) = (st-1, at-1),
B2 Quls,a) otherwise,
(22)

where 7 denotes the learning rate and V; is defined in (11). The sample complexity of
asynchronous Q-learning has been recently investigated in Li et al. (2021b, 2023); Qu and
Wierman (2020).

4.2 Algorithm description

Similar to the synchronous setting, we describe a federated asynchronous Q-learning algo-
rithm, called FedAsynQ (see Algorithm 2), that learns the optimal Q-function by periodi-
cally averaging the local Q-estimates with the aid of a central server. See Figure 1 for an
illustration. Inheriting the notation of QF and V/* from the synchronous setting (cf. (11)),
FedAsynQ proceeds as follows in the rest of the ¢-th iteration.

1. Local updates: Each agent k samples a transition (sf_;,af_;,7F |, sF) from its Markovian
trajectory generated by the behavior policy 7T’bc according to (15) and updates a single

11
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Parameter server

K

Qi(s,a) = Zaf(s,a)Q£% (s,a)

k=1

Qs ,”7Q Qi 1Q Qb1 1Q QF, Q:
| EJH
Agent 1 Agent 2 - Agentk - AgentK

— — —> Alocal Markovian trajectory of t iterations

Figure 1: Federated asynchronous Q-learning with K agents and a parameter server. Each
agent k performs 7 local updates on its local Q-table along a Markovian trajectory induced
by behavior policy ﬂ’g and sends the Q-table to the server. The server averages and synchro-
nizes the local Q-tables every 7 iterations. For importance averaging, the agents additionally
send the number of visits over all the state-action pairs within each synchronization period,
which is not pictured.

entry of its local Q-estimate QF_;:

Q" (s,a) = (1=n)QF_i(s,a) +n(rfy +VF(sF)  if (s,a) = (sf_1,af 1) (23)
=3 QF 1(s,a), otherwise ’

where 7 denotes the learning rate.

2. Periodic averaging: The intermediate local estimates will be averaged every 7 iterations,
where 7 > 1 is the synchronization period. Here, we consider a more general weighted
averaging scheme, where the updated estimate QF is:

Zf:l af (s, a)Qf_% (s,a) ift=0 (mod 7)

V(s,a) €S x A: [ (s,a) =
(s,a) Qi (s, a) Qf_i(s’a) otherwise
2

, (24)

where af = [af(s,a)]ses.aea € [0, 1]15I4] is an entry-wise weight assigned to agent k such

that
K
V(s,a) e Sx A: Zaf(s,a):l.
k=1

After a total of T iterations, for all (s,a) € S x A, FedAsynQ outputs a global Q-estimate
Qr(s,a) = 25:1 ok (s,a)Qk.(s,a). In the subsections below, we provide two possible ways
(equal and importance weighting) to choose af and their corresponding sample complexity
analyses.

12
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Algorithm 2: Federated Asynchronous Q-learning (FedAsynQ)

1: inputs: learning rate {n}, discount factor , number of agents K, synchronization
period 7, total number of iterations 7.
initialization: Qf = Qo for all k € [K].
fort=1,---,7T do
for k € [K] do
Draw action af_; ~ 7 (sf_,), observe reward rf | = r(sf_,al_,), and draw next
state sf ~ P(-|sF | af ).
Compute Qi% according to (23).

@

Compute QF according to (24).
end for
end for
10: return: Qr(s,a) = 25:1 ok (s,a)Qk.(s,a), for all (s,a) € S x A.

4.3 Performance guarantees with equal averaging

We begin with the most natural choice, which equally weights the local Q-estimates, that
is,
i 1

a;(s,a) = Fa (25)

We call the resulting scheme FedAsynQ-EqAvg, which is also analyzed in Khodadadian et al.
(2022). We have the following improved performance guarantee in the next theorem.

Theorem 2 (Finite-time convergence of FedAsynQ-EqAvg) Consider any given d € (0,1)
and € € (0, ﬁ] Suppose that the initialization of FedAsynQ-EqAvg satisfies 0 < Qg < ﬁ
There exist some sufficiently large constant cp > 0 and sufficiently small constant c;, > 0,
both independent of problem parameters, such that with probability at least 1 — 6, the output
of FedAsynQ-EqAvg satisfies |Qr — Q*||co < €, provided that the synchronization period T,
the sample size per agent T', and the learning rate n satisfy

TOSTSlenmin{lly,Il{}, (26a)
12 or (o 1) Gos((1 ) og (1) log SIAE (o)
1= e i { K(lC;hg)452 ’ UO} log (TK) 1ig BIATE (26¢)

where 1) = %log 8K log M, Ty = Wl—'ﬂﬂo’ and ng = “avgminf£§7’K71}, inde-

pendent of €.

Theorem 2 implies that to achieve an e-accurate estimate (in the (., sense), the sample
complexity per agent of FedAsynQ-EqAvg is no more than

C’het
o (Kuavg(l - 7)552>

13
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for sufficiently small €, when the burn-in cost Ty — representing the impact of the mixing
times — is amortized over time. A few implications are in order.

Linear speedup without full coverage. The sample complexity of FedAsynQ-EqAvg
shows linear speedup with respect to the number of agents, which is especially pronounced
when the local behavior policies are similar, i.e., Chet & 1. Notably, the guarantee holds as
long as all agents collectively cover the entire state-action space (i.e., ftayg > 0), unveiling
the benefit of heterogeneity in local behavior policies. This is surprising in view of the
convergence guarantee provided in Khodadadian et al. (2022), which requires each agent
visits the entire state-action space (i.e., umin = 0). Moreover, our sample complexity has
sharpened dependency on nearly all problem-dependent parameters compared to the bound

5(%) obtained in Khodadadian et al. (2022) by at least a factor of

Mavg‘8|2 N |S|5|A|3‘
Chetiton (L —7)* = (1 —9)*

For K = 1, the bound nearly matches with the sharpest upper bound 5(@) for

the single-agent case (Li et al., 2023) up to a factor of 1/(1 — ), when ignoring the burn-in
cost.

Communication efficiency. To provide further insights on the communication complex-
ity of FedAsynQ-EqAvg, consider the regime when ¢ is sufficiently small and the number of
agents is sufficiently large such that K 2 ﬁ By plugging the choice of the learning rate
(26¢) into the upper bound of 7 in (26a), we can select the synchronization period as large
as 7 < W up to logarithmic factors, which ensures the communication complexity

Cround = T'/7 is no more than 6(%)

Burn-in cost and mixing times. In (26b), the second term Ty can be viewed as the
burn-in cost needed for asynchronous Q-learning to eliminate the impact of Markovian
noise and approximate synchronous Q-learning. The burn-in cost linearly scales with ¢n2x,
the largest mixing time of all the Markov chains of agents induced by their local behavior
policies. Similarly, the convergence analysis in Khodadadian et al. (2022) also requires the
sample size T’ to exceed a certain mixing time to guarantee the convergence of all Markov
chains, similar to tM2*. However, in Khodadadian et al. (2022), the effect of the mixing time
on the convergence is not amortized over time, remaining non-negligible even for sufficiently
small target accuracy €. In contrast, in our sample complexity analysis, the burn-in time Ty
is independent of the target accuracy e, implying that the cost associated with the mixing

times becomes negligible for sufficiently small ¢ and is amortized over time.

4.4 Performance guarantees with importance averaging

In the asynchronous setting, heterogeneous behavior policies induce local trajectories that
cover the state-action space in a non-uniform manner. As a result, agents may update the
Q-estimate for a state-action pair at different frequencies, resulting in noisier Q-estimates
of state-action pairs that an agent rarely visits. Equally-weighted averaging of such local
Q-estimates is not efficient, because the convergence speed to the optimal Q-function for

14
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each state-action pair is bottlenecked with the slowest converging agent that visits it least
frequently. This is highlighted by the impact of the heterogeneity factor Chet in the sample
complexity of FedAsynQ-EqAvg, which scales linearly with Clet, implying that increased
heterogeneity among agents’ trajectories may impede the convergence. For example, if only
one agent exclusively visits a certain state-action pair (s,a) with probability one, while
other agents never visit that particular state-action pair, the heterogeneity factor becomes
Chet = K when K < 1/f1ayg, canceling out the linear speedup.

Our key idea to prevent such inefficiency is to increase the contribution of frequently
updated local Q-estimates, which are likely to have smaller errors. By assigning a weight
inversely proportional to the error of the corresponding local estimate, we can balance the
heterogeneous training progress of the local estimates and obtain an average estimate with
much lower error. Combining this idea with the property that the local error decreases
exponentially with the number of local visits, we propose an importance averaging scheme
FedAsynQ-ImAvg with weights given by

(1 — fr])_Ntka,t(Sﬁ’)

K (- n)*NﬁT,t(s,a)

af(s,a) =

(27)

for all (s,a) € S x A and k € [K], where Ntk_m(s,a) represents the number of iterations
between [t — 7,t) when the agent k visits (s,a). The weights in (27) can be calculated
at the server based on the number of visits to each state-action pair by the agents in one
synchronization period. Therefore, each agent needs to send its Nf_ﬂt(s, a) for each (s,a)
along with its local Q-estimate, and FedAsynQ-ImAvg incurs twice the communication cost
of FedAsynQ-EqAvg per iteration.

We have the following theorem on the finite-time convergence of FedAsynQ-ImAvg.

Theorem 3 (Finite-time convergence of FedAsynQ-ImAvg) Consider any given é € (0,1)
and € € (0, ﬁ] Suppose that the initialization of FedAsynQ-ImAvg satisfies 0 < Qg < ﬁ,
and the synchronization period T obeys

1 1-— 1
TSMmln{j,K} (28&)

There exist some sufficiently large constant cy > 0 and sufficiently small constant ¢, > 0,
both independent of problem parameters, such that with probability at least 1 — 6, the output
of FedAsynQ-ImAvg satisfies ||Qr — Q|0 < &, provided that the sample size per agent T
and the learning rate n satisfy

1
K:“Javg(l - 7)

7 = ¢; min {K(l — 7)462,770}

|S||A|T? K
6 b

T>cr < ot :’f0> (log((1 —~)%))? log (TK) log (28b)
1

log (TK) log W ’

(28¢)

where Ty = and 79 = min {tm%, 1—7, K_l}, independent of ¢.

1
avg (1=7)m0
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Theorem 3 implies that to achieve an e-accurate estimate (in the £, sense), the sample
complexity per agent of FedAsynQ-ImAvg is no more than

~ 1
o (Kﬂan(l - 7)552>

for sufficiently small €, when the burn-in cost To — representing the impact of the mixing
times — is amortized over time. A few implications are in order.

Linear speedup without the curse of heterogeneity. The sample complexity of
FedAsynQ-ImAvg is better than that of FedAsynQ-EqAvg, since it no longer depends on Chet
which can be as large as 1/ptavg. FedAsynQ-ImAvg not only overcomes potential insufficient
local coverage by exploiting the complementary coverage of agents’ behavior policies, but
also achieves linear speedup with respect to the number of agents without suffering from
the potential performance degradation due to the associated statistical heterogeneity as in
FedAsynQ-EqAvg. In fact, the performance of FedAsynQ-ImAvg matches with centralized
Q-learning as if we collect and process all data trajectories at the central server, up to the
burn-in cost and logarithmic factors.

Communication efficiency. To provide further insights on the communication complex-
ity of FedAsynQ-ImAvg, consider again the regime when ¢ is sufficiently small and K 2 ﬁ
To minimize the communication frequency while preserving the sample efficiency, we again
plug the choice of the learning rate (28c) into (28a) and select the synchronization period

) - 1 . . . . .
as large as 7 < REi—yiez UP to logarithmic factors. Then, this ensures the communication

complexity Cyound = T'/7 is no more than 6(%)

5. Numerical experiments

In this section, we conduct numerical experiments to demonstrate the performance of the
asynchronous Q-learning algorithms (FedAsynQ-EqAvg and FedAsynQ-ImAvg).

Experimental setup. Consider an MDP M = (S, A, P,r,7) described in Figure 2, where
S ={0,1} and A = {1,2,---,m}. The reward function r is set as r(s = 1,a) = 1
and r(s = 0,a) = 0 for any action a € A, and the discount factor is set as v = 0.9.
We now describe the transition kernel P. Here, we set the self-transitioning probabilities
pa = P(0]0,a) and ¢, := P(1]1,a) uniformly at random from [0.4,0.6] for each a € A, and
set the probability of transitioning to the other state as P(1 — s|s,a) = 1 — P(s|s,a) for
each s € S.

We evaluate the proposed federated asynchronous Q-learning algorithms on the above
MDP with K agents selecting their behavior policies from II = {7y, 7o, -, 7y}, where
the i-th policy always chooses action i for any state, i.e., m;(i|]s) = 1 for all s € S. Here, we
assign m; to agent k € [K] if i = k (mod m). Note that if an agent has a behavior policy
i, it can visit only two state-action pairs, (s = 0,a =14) and (s = 1,a = ), as described in
Figure 2. Thus, each agent covers a subset of the state-action space, and at least K = m
agents are required to obtain local trajectories collectively covering the entire state-action
space. Under this setting with m = 20, we run the algorithms for 100 simulations using
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samples randomly generated from the MDP and policies assigned to the agents. The Q-
function is initialized with entries uniformly at random from (0, 2-] for each state-action

» T—y
pair.
a=1 a=1 a=m
121 p; = P(0[0,1) Pm
1-p 1—p; 1—pm

1_q1 l_qi 1_qm

a1 q = P(1L,1) dm

The state-action coverage of mr;
{s=0a=1,(=1a=10)}

Figure 2: An illustration of the constructed synthetic MDP M. The red arrows represent
transitioning paths when action a = i is taken in s = 0 and s = 1. A trajectory induced
by m;, which executes only action i for any state, can cover only two state-action pairs,
(s=0,a=1) and (s =1,a =1).

Faster convergence of FedAsynQ-ImAvg. Figure 3 shows the normalized Q-estimate
error (1 —7)||Qr — Q*||cc With respect to the sample size T', with K = 20 and 7 = 50.
Given the trajectories of agents collectively cover the entire state-action space, the global
Q-estimates of both FedAsynQ-EqAvg and FedAsynQ-ImAvg converge to the optimal Q-
function, yet at different speeds. Although FedAsynQ-EqAvg converges in the end, we can
see that it converges much slower compared to FedAsynQ-ImAvg, because each entry of the
Q-function is trained by only one agent while the other m — 1 agents never contribute useful
information. However, the vacuous values of the m — 1 agents significantly slow down the
global convergence under equal averaging.

Convergence speedup. Figure 4 demonstrates the impact of the number of agents on
the convergence speed of FedAsynQ-EqAvg and FedAsynQ-ImAvg. It can be observed that
there is indeed a speedup in terms of the number of agents K with respect to the squared /
error ||Qr — Q*||52, which is poised to scale linearly with respect to the number of agents.
In particular, the speedup is more rapid with FedAsynQ-ImAvg as K increases, while it
increases much slower with FedAsynQ-EqAvg. This shows that FedAsynQ-ImAvg achieves
much better convergence speedup in terms of the number of agents.

Communication efficiency. Figure 5 demonstrates the impact of the synchronization
period 7 on the convergence of FedAsynQ-ImAvg and FedAsynQ-EqAvg. With frequent av-
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0.200 1 —@— FedAsynQ-EgAvg (K =20, n =0.2)
FedAsynQ-ImpAvg (K =20, n =0.05)

0.175 1
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Normalized £+, error
(T =ylQr — Q)
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0 250 500 750 1000 1250 1500 1750 2000

Number of samples (T)

Figure 3: The normalized (o, error of the Q-estimates (1 — 7)||Q7 — Q*||cc With respect
to the number of samples T for both FedAsynQ-EqAvg and FedAsynQ-ImAvg, with K = 20
and 7 = 50. Here, the learning rates of FedAsynQ-ImAvg and FedAsynQ-EqAvg are set as
n = 0.05 and n = 0.2, where each algorithm converges to the same error floor at the fastest
speed, respectively.

—@— FedAsynQ-EqAvg
FedAsynQ-ImpAvg

3.01

)

-2
0

2.01

(IQr — |l

1.04

051 /*”"*_”_.

20 30 10 50 60 70 80 90 100

The inverse squared (o, error

Number of agents (K)

Figure 4: The inverse squared /o, error ||Qr — Q*||<2 with respect to the number of agents
K = 20,40,60,80,100 for both FedAsynQ-EqAvg and FedAsynQ-ImAvg, with 7' = 300 and
7 = 50.

eraging (7 = 1), FedAsynQ-ImAvg slightly outperforms FedAsynQ-EqAvg, but there is no
significant difference because the heterogeneity between local Q-functions after just one
local update is very small. The performance of FedAsynQ-EqAvg degrades as we increase
7 since FedAsynQ-EqAvg cannot cope with the increased heterogeneity between local Q-
estimates as we increase the number of local steps. On the other end, the performance of
FedAsynQ-ImAvg improves first (i.e., 7 = 10, 25, 50) as it balances the heterogeneity much
better than FedAsynQ-EqAvg, but drops later if 7 is too large (i.e., 7 = 75, 100) due to the
high variance of the averaged Q-estimates.
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0184 —@— FedAsynQ-EqAvg
FedAsynQ-ImpAvg
0.16 /

0.14 4
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Normalized £+, error
(T =ylQr — Q)
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Figure 5: The normalized £, error of the Q-estimates (1—7)||Q7 —Q* ||~ With respect to the
synchronization period 7 = 1,10, 25,50, 75,100 for both FedAsynQ-EqAvg and FedAsynQ-
ImAvg, with K = 20 and T = 300.

6. Analysis outline

Let the matrix P € RISIAXIAL represent the transition kernel of the underlying MDP,
where P(s,a) = P(:|s,a) is the probability vector corresponding to the state transition at
the state-action pair (s,a). For any vector V € RIS, we define the variance parameter
Var, (V') with respect to the probability vector P(s,a) as

Vars o(V) = Eyp(s,a) [V(s')—P(s, CL)V]2 = P(s,a)(VoV)—[P(s,a)V]o[P(s,a)V]. (29)

Here, o denotes the Hadamard product such that a o b = [a;b;]_; for any vector a =
[a;]?4,b = [b]}, € R". With slight abuse of notation, we shall also assume V* € RIS!

vk e RIS, Q* € RISIMI QF € RISIMAI Q,’;; e RISIMI and » e RISIMI represent the
2
corresponding functions in the matrix/vector form.

6.1 Basic facts

We first state a few basic facts that hold both for the synchronous and the asynchronous
settings. It is easy to establish, by induction, that all iterates satisfy for all 1 < & < K and

t > 0 that
1 1
0<QF< —— 0<VF<— 30
iQtfliry? — til*’y’ ( )
as long as 0 < Qo = QF < ﬁ; see a similar argument, e.g., in Li et al. (2023, Lemma 4).
In addition, observe that

IVE = V¥l < 1QF — Q" (31)

since

k _ k k k
VAVl = max | max QF (s, @)—max Q*(s,0)| < _max  |QF(s,0)~Q"(s,0)| < Q=@
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Letting Q; be the average of the local Q-estimates at the end of the t-th iteration, i.e.,
Q= L+ S8, QF, it follows from (13) and (24) that for all ¢ > 0 that

K
1
=2 Q=7 ZQt_,~ (32)
k=1
Denote the error between Q; and Q* by

= Q* - Qt7
which is the quantity we aim to control. From (30), it holds immediately that for all ¢ > 0,

1
Atlloo < —. 33
Ao < 7= (33)

Next, we also introduce the following functions pertaining to periodic averaging. For
any t,

e define «(t) := 7| L] as the most recent synchronization step until ¢;

e define ¢(t) := [ L] as the number of synchronization steps until ¢.

6.2 Proof outline of Theorem 1

Define the local empirical transition matrix at the t-th iteration PF € {0, 1}ISIMAIXIS] a5

1, ifs’ =sF(s,a)
PF((s,a),s) =< A , 34
v (s,0),5) {O, otherwise (34)
then the local update rule (12) can be rewritten as
Qt 1= =(1-nQf 1 +n (7" + VPthtk—l) . (35)

The proof of Theorem 1 consists of the following steps.

Step 1: error decomposition. To analyze the error A, we first decompose the error
into three terms, each of which can be bounded in a simple form. From (32), it follows that

K 0 1 K
EY @ @) LSS (@ - Qb (@ - PVEY)
k: k:l

(i) T v

= (L=mAs+nye Y (PV* = PV

i

1

K
=1 =n)Ai1+ 77% S (P-PHVE+ 77% Y PV -VEy),
k=1 k=1
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where (i) follows from (35), and (ii) follows from Bellman’s optimality equation @Q* =
r +yPV*. By recursion over the above relation, we obtain

t K t K
Y —i y —i *
Ap=1=n)Bo+nge Y (L= (P=POVE +nzd (L=n)"" > PV =VEy).
i=1 k=1 i=1 k=1
=B =B} =B}

(36)

Here, the first term E} denotes the initialization error stemming from the disparity between
the initial Q-values and the optimal Q-values, which diminishes exponentially throughout
iterations. The second term, E?, comprises a weighted sum accounting for the difference
between the true transition probability and the realized transition in each iteration, where
the difference arises from the randomness of transitions. Lastly, the final term, EJ, repre-
sents a weighted sum of value estimation errors from preceding iterations, which introduces
a recursive relation.

Step 2: bounding the error terms. Now, we obtain a bound of each of the error terms

in (36) separately.

e Bounding ||E}||.. Using the fact that all agents start with the same initial Q-values,
ie., Q’S = (o, the first error term is bounded as follows:

1—n)t

12 = (1= ) 180l < G225 (37)

where the last inequality follows from (33).

e Bounding ||F?||«. Exploiting conditional independence across transitions in differ-
ent iterations and applying Freedman’s inequality (Freedman, 1975), the second error
term is bounded using Lemma 4 below, whose proof is provided in Appendix B.1.

Lemma 4 For any given ¢ € (0,1), the following holds

8 [n . [SIAIT
1Bl < T e — (38)
for all0 < t < T with probability at least 1—6, as long as 7 satisfiesn < %(log %)_1.

e Bounding ||E}||o. For E}, we obtain the following recursive relation using Lemma 5
below, whose proof is provided in Appendix B.2.

Lemma 5 Let 3 be any integer that satisfies 0 < < ¢(T'). For any given 6 € (0,1),
the following holds

2 16ynv/T — 1 2|S||AIKT
Edloo < ——(1—n)"" + log
B8l < 21— )+ Y /
144 —1 Ailloo 39
o= 1) | max ] (30

for all BT <t <T with probability at least 1 — 6, as long as n satisfies T < 1/2.
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Step 3: solving a recursive relation. By putting all the bounds derived in the previous
step together, for any 7 <t < T, the total error bound can be written in a simple recursive
form as follows:

1+
Al < 144p(r—1)) m Aillos < m Aillos, (40
|8l < CHA(U+dn(r = 1)) max [ Al <+( 5 )L@)ﬁém‘ lloos  (40)

where in the first inequality we introduce the short-hand notation

41 —n)fT 8 [n, [SIAT  16ynyT -1 2|S||AIKT
(= =~ —1—1_7 Klog 5 + 1= log 5 , (41)

and the second inequality follows from the assumption 7 — 1 < é <

By invoking the recursive relation in (40) L times, where the ch01ces of f and L will be
made momentarily, it follows that for any LT <t < T,

L-1 i L
147 1+~
A < - - 7 m A
H tHoo — - < 2 > C + < 2 ) L(t)ng"l)'(Si<t H Z”OO

e () ()

where the second line uses the crude bound in (33).

Setting 8 = P (1_277)TJ and L = L / %1, which ensures L37 < T, and plugging their
choices into (41) and (42) at t = T', we obtain that

AT |0
8(1 —n)h™ 16y [n . |SJAT | 32ypy7T—1 AS|[AIKT  [1+~4\"/ 1
STaor TaoVE s trar Ve s Tl ) i
32 VA =ynT n ., |SIAT — ISIIA!KT
(e <eXp< 2 >+7 Kle—g5 T 5

< E47)2 <exp < (1 — ) \/ |S||A|KT) | 43)

where the second line follows from

(1= )" < exp(-nfr) < exp (—W) ,

(57) = (1-152) <o (-0522) <o (Y0527,

and the third line follows from the choice of the synchronization period such that

1< tmindl=r LU (44)
7 8y K
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Thus, for any given ¢ € (0, ﬁ), we can guarantee that ||Ar|ls < € if

! 210y [SIMIKT
T =y ol —7)%)) log =
2 1

S||A|KT
log SI4

T > cr

n=cyK(1—- v)te (45)

for some sufficiently large cr and sufficiently small c;.

6.3 Proof outline of Theorem 2

For simplicity, we introduce the following notation. Let U 0, (8,a) represent a set of it-
eration indices between [vi,v2) for some 0 < v; < vg < T where agent k visits (s,a),

ie.,
U{fhw(s,a) = {u € [v17v2) : (Sﬁ,aﬁ) = (Saa)}v

and folm (s,a) denotes the number of visits of agent k on (s,a) during iterations between

[1}1,7}2), i.e.,
Nk (87 CL) = |u111€1,1)2 (870’)"

v1,V2

Define the local empirical transition matrix at the ¢-th iteration P} e {0, 1}ISIMAIXISI a5

1 if (s,a,8) = (sfﬁl,affl,sf)

PF((s,a),s') = { (46)

0 otherwise

Then the local update rule (23) can be rewritten as

ko (s,a) = (1- 77)@?—1(8,&) + 77(7“5_1 + ’7Ptk(s,a)Vtk_1) if (s,a) = (Sf—laaf_ﬂ
N Qf_l(s,a), otherwise

(47)
The proof of Theorem 2 consists of the following steps.

Step 1: error decomposition. Consider any 0 < ¢ < T such that ¢t = 0 (mod 7), i.e., t is
a synchronization step. To analyze A, we first decompose the error for each (s,a) € S x A
as follows:

K
’y S.,a
+ 2 Z Z (1 —n)Nerr 59 (P(s,a) — PF(s,0)VF
+ EKZ S =) NeBOP(s a) (V- VE) (48)
K n n ’ S,a w /)
k
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where we invoke the following recursive relation of the local error at iteration u such that
(Su—ly au—l) = (57 CL)Z

Q(s.0) — Q% _, (5,0)

(1= n)(Q"(s,a) = Qu_1(s,)) +0(Q*(s,a) = riy_y = 7Py (5,0)Vyiy)
= (1 =m(Q"(s,a) = Qs (s, ))+77(7P(S,G)V* ’VPk(S )V, y)
(L= m)(Q*(s,0) = Qu_1(s,0) +y0(P(s,a) — Py(s,a)) Vi y +vP(s,a)(V* = V1 (49)

Here, the second equality follows from Bellman’s optimality equation. Denoting

)\vl,v2 S, (I = K Z Ul UQ(S @) (50)

for any integer 0 < v; < wy < T, we apply recursion to the relation (48) over the synchro-
nization periods, and obtain

o(t)—1
At(87 a) = H )‘hT,(h+1)T(37 a) A0(37 a)
h=0
p(t)-1 [ o(t)—

+%Z H Az (14+1)7 (8, @)

h=0 \I= (h+1

x Z 3 (1 — )NerLesn- G (p(s q) — PR (s, a))VE
k= 1uez/[h‘r (h+1)7'( )
L o)1 [ o)~
e H Atz (141)r (8, @)

h=0 \i= (h+1

Nk S,a *
o SRS SR LR s

k=1 ueuf (h+1)( a)

:w07t(8,a)A0(S,a)+’yZ Z ws,t('S?a)(P(S’a) _Pf—i-l(sva))vuk

k=1 ueu&t (s,a)

= Egr(s,a) =:E%(s,a)
K
+7) wWia(s,0)P(s,a) (V= V), (51)

=:E3(s,a)
which is decomposed in a similar manner as (36). Here, we define

p(t)—1

wo,t(s, @) H A (b 1)7 (85 @), (52a)
h=0
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o(t)—1
1 ’ s,a
wllj’t(s,a) = ?77(1 — 77)N5+L<¢(u)+1)r( ) H Air (1+1)r (8, @). (52b)
I=¢(u)+1

We record the following useful lemma whose proof is provided in Appendix C.2.

Lemma 6 Consider integers vy and vy such that 0 < vy <wg <t < T, wheret =0 (mod 1),
and a state-action pair (s,a) € S x A. Suppose that nt < 1. The parameters defined in
(52) satisfy

K
Avivs (8, a) < exp (—22( ZN”Z’UZ (s, a)) , (53a)

k=1

K
wo (s, a) + Z Z wﬁ’t(s,a) =1, (53b)

k=1 uEL{éﬁt(s,a)
K K
Z Z wﬁ’t(s,a) < exp (—22{ ZN;’f,m(s,a)> . YO <K <o), (53c)
k=1 uEUé“’h/T(s,a) k=1
i 2
> (wh (s, @)? < L. (53d)

k 1u€U('f’t s,a)

Step 2: bounding the error terms. Here, we derive the bound of the error terms in
(51) separately for all the state-action pairs (s,a) € S x A.

e Bounding |F}(s,a)|. Using the initialization condition that Qq(s,a) = Q&(s,a) for
every agent k € [K], we bound the first term for any (s,a) € S x A as follows:

) 2w, S, a (ii) 2 av t
B (50 < el )| Qollc + Q1) S 200 22 ey (),

(54)

where (i) holds because ||Qollco, [|Q*|lcc < ﬁ (cf. (30)) and (ii) follows from the
fact that

K
t
wot(s,a) < exp (—22( g N(lit(s,a)> < exp <_77N;vg ) : (55)
k=1

where the first inequality holds according to (53a) of Lemma 6, and the last inequality
follows from the fact that S5, N(’it(s, a) > % for all (s,a,k,h) € Sx Ax[K]|x[T]
at least with probability 1 — § according to Lemma 15 and the union bound, as long
as t > ti.

e Bounding |E?(s,a)|. By carefully treating the statistical dependency via a de-
coupling argument and applying Freedman’s inequality, we can obtain the following
bound, whose proof is provided in Appendix C.3.
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Lemma 7 For any given 0 € (0,1), the following holds for any (s,a) € S x A and
1<t<T:

72417 \/Chem log (T) log 4)S||AIT2K

‘Etz(s a) 5

(56)

with probability at least 1 — 46, as long as T > ty, and

3 11 1
<7 < min {—, , }
167" 47K 198 K Chey log (TK ) log ASIATZK

e Bounding |E}(s,a)|. For E?, we can obtain the following recursive relation, whose
proof is provided in Appendix C.4.

Lemma 8 Let 3 be any integer that satisfies 0 < < ¢(T'). For any given 6 € (0,1),
the following holds

2 8y T — 2 S TK
|E§(S, CL)| S v exp _n,LLan/ST + v T | HA|
1—~ 8 1—7 1)
1+
+ =T max [ Ap (57)

2 ¢(t)-B<h=<¢(t)-1
for all ﬁT

mln{ 477' )21

S t < T with probability at least 1 — 0, as long as BT > tyn and n <
)

Step 3: solving a recursive relation. By putting all the bounds derived in the previous
step together, for any S7 < t < T, the total error bound can be written in a simple recursive
form as follows:

147
Al <0 Anrlloos 58
Al €0+ 57 max A (58)
where we define
4 v 241 4 T2K
_ eXp(_wagﬁr> 7241y \/Cheml ) log US4
1—7 8 )
8 8T —1 25 TK

Then, by invoking the recursive relation for L; times, where the choices of 8 and L; will
be made momentarily, it follows that for any L1877 <t < T,

Li-1 l L L
Atlloo < E — ) 0+ | —— max A”-oo<7 0+ —— ,

1=0
(60)

where the last inequality follows from (33).
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Setting 8 = Lf (;T;?)TJ and L) = E ’ﬁ“ﬁ%ﬁ , which ensures L7 < T, and

plugging the choices into (59) and (60) at ¢t = T, we obtain

a /3
Ao < 8exp (*W 3 144817 \/Chetnl TI)1 4|S||AIT2K
s (1) S
L 1697~ 2\S||A]TK L2 (1 + \*
(1- 7) e =
16 (1 — ) pavgnT 1448w \/ ChetT] 4|S||AIT* K
< - log log —— = —
- (1—7)26Xp< s TH)log =5
16y T — log 2|S||AITK
(1- 7) o
14497 (1 - V)MavgnT \/Chetn 4‘S| |~A’T2K
< 77 _ —net 7 il bul | i
ST (exp( 3 +7\ — log (TK)log 5 ,
(61)

where the second line follows from

exp (_ nﬂavg/37'> < exp <_ (1 - ';),UavgnT) ’

L L
L+y\™ L—y\™ 1—n (1 = 7)tavgnT
- — - ' < E—— < —
( > ) (1 5 < exp 5 L) <exp 1 ,

and the third line follows from the choice of the synchronization period such that

1 . 1-— 1

Thus, for any given ¢ € (0 we can guarantee that ||Ar|ls < ¢ if

)
4 T°K
7> er(log((1 — 7)%))? log (TK) log * 14

1 Chet T
. max ok — ,
Havg K(l _'7) € Navg(1 _7) mln{l _77K }

AS||AIT? K\ K(1—~)4%2 i, min{l — v, K1
n=cy (log (TK)log |S||“;‘|) min{ ( - )% M gmln;{jmax ot }}
het

mix

for some sufficiently large cr and sufficiently small c;.

6.4 Proof outline of Theorem 3

The proof of Theorem 3 consists of the following steps.

27



Woo, JosHi, AND CHI

Step 1: error decomposition. Consider any 0 <t < T such that t =0 (mod 7), i.e., t
is a synchronization step. To analyze A, invoking the recursive relation of the local error
(cf. (49)), we first decompose the error for each (s,a) € S x A as follows:

K
Ai(s,a) = ) af(s,a)(Q*(s.a) — Qf_1(s,a))
k=1 :
K
= (e - n)Nm@’“)) Arr(s.a)
k=1
K
+ Z o (37 a) Z 77(1 - U)Nu“ o(5a) (P(87 CL) - Pu—i—l(sa a))vu
k=1 ueL{f ‘rt(s a)
K
ty > af(s0) 30 (=) MO P(s a) (V- V)
k=1 uel/lfiﬂt(s,a)

( K
Ehen1 =) o

k
77 1 — 77 _Nth u+1(8 a)
S S D) (P(s,a) — P,y (s, )V

NE
k= 1u61/{t ,,_tsa)zk:’ 1(1_ ) e Tt( 2

+72 Z n(l—mn)

k!
Kl wetth(sia) o=t (1 —m) il

) Ar_7(s,a)

_Ntkfr,qul (s,a)

P(s,a)(V* = V), (63)
where the last line uses the definition of af(s,a) in (27). Denoting
- K
)‘UI,UQ (S’ (l) = (s,a)
>pei(1- Mo g

for any integer 0 < v1 < vy < T, we apply recursion to the relation (63) over the synchro-
nization period, and obtain

(64)

o(t)-1
Ay(s,a) = H Ar,(ht1)r (8, @) | Ao(s,a)
h=0
o)1 [ o)1
+ > H Nr 1417 (5, @)
h=0 \i=(h+1)
k
n(1 — ) N (59)
XVZ > 7 (P(s,0) = Pl (s,0) Vi)
K 1 _ N}LT,(h+1)T(S’a)
k= 1u€1/{h ()T (s,a) Zk’:l( 77)
p)—1 [ (t)-1
+ H i (14+1)7 (8, @)

h=0 \l=(h+1)
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K — Nk (s,a)
1 — hT,u+1 .
v Z Z T]( 77) k P(Sv a’)(v - Vuk)

K —N, ! (Sva)
k=1 uGU};fT,(h+1)T(s,a) Zk/:l(l - 77) A (Rt )T

K
:@07t(s,a)Ao(3,a)+’yZ Z @ﬁ,t(‘S?a)(P(S?a) _Perl(S?a))Vuk
k=1 uEMé“’t(s,a)

=:E{(s,a) =:E?%(s,a)
K
+9Y. > @ (sa)P(s,a)(VF - V), (65)

k=1 uGZ/{(]{t (s,a)

=:E3(s,a)

which is again decomposed similarly as (36). Here, we define

P11 _
wo,t(s,a) = H A (bt 1)7 (85 @), (66a)
h=0
—NF (s,a) B(t)—1
~ 1— d(u)Tut1 "
wﬁ,t(sa a) : 77( T,) H )\IT,(Z+1)T<87 a) . (66b)

2521(1 —n) N wyr (6 (uy+1)7 (550) = ()41
We record the following useful lemma whose proof is provided in Appendix C.5.

Lemma 9 Consider any integers 0 < vy < vy < t < T where t = 0 (mod 7) and any
state-action pair (s,a) € S x A. Suppose that nT < 1, then the parameters defined in (66)
satisfy

1 3
3 Sai(sa) < -, (672)
Bo(s,a) < (1 —n)* Tz Noa(sa), (67h)
K
aoyt(sﬂ CL) + Z a}ﬁ,t(s’ CL) =1, (67(3)

K
Y @sa) <A -pFEER N o < <), (67d)

< 6}” (67e)

(]~
€

£
0
=
e
A

Step 2: bounding the error terms. Here, we derive the bound of each error term in
(65) separately for all the state-action pairs (s,a) € S x A.

e Bounding |F}(s,a)|. Using the initialization condition that Qq(s,a) = Q&(s,a) for
every client k € [K], we bound the first term for any (s,a) € S x A as follows:

J 2 & S N (s

< 7(1_77);( k=1 Vo,t\S;

L=y 7 1-9

i

B/ (s, )| < @o.([|Qolloc + 1Q"]|oc) <

—~
=
—~
=

200 ¢
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e, )

where (i) holds because [|Qollco, [[@*]cc < % (cf. (30)), (ii) follows from (67b) of
Lemma 9, and (iii) holds for all (s,a,t) € S x A x [T] with probability at least 1 —
according to Lemma 15, as long as t > tth.

e Bounding |E?(s,a)|. By carefully treating the statistical dependency via a de-
coupling argument and applying Freedman’s inequality, we can obtain the following
bound, whose proof is provided in Appendix C.6.

Lemma 10 For any given 6 € (0,1), the following holds for any (s,a) € S x A and

1<t<T:
2064 4S||AT2K
B35, 0)] < 22800 g (7)o 2511 )
with probability at least 1 — 20, as long as
LA { K 1 }
— <n <min
s 167" 956 log (TK) log ASIAITZE " 3481 6max jog (8 1) log HSILAT

e Bounding |E}(s,a)|. For E}, similarly to Lemma 8, we can obtain the following
recursive relation, whose proof is provided in Appendix C.7.

Lemma 11 Let 8 be any integer that satisfies tt?h < B < ¢(T). For any given § €
(0,1), the following holds

Mavgﬁ‘f'

E3(s,a) < 20 =W+ ST =L ASIAITE

EAT L = 1—~ 1—~ 5
1+~
— A 70
LRI S Al (70)

for all B <t < T with probability at least 1 — 6, as long as n < mln{ 477, 27

Step 3: solving a recursive relation. By putting all the bounds derived in the previous
step together, for any 7 <t < T, the total error bound can be written in a simple recursive
form as follows:

1+~
Ao < Aprllso, 1
Al <0+ 52 max A ()
where we define
~ 4 avgBT 2 4 4 T2K
f (1_ )u gh 06 ’}/\/ |SH.A|
1—~ 0
8’y77\/7' — 2|SHA|TK

T 76 (72)
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Then, by invoking the recursive relation for Lo times, where the choices of 5 and Lo will
be made momentarily, it follows that for any L8 <t < T,

Ly—1 l Lo Lo
14+9\ ~ 14+~ 2 1+~
A oo< — 0 —a AZT oogi 0 G )
"t"—Zl:()(z)*(Q) o5 s 1] 1v<+<2>>
(73)

where the last inequality follows from (33).

Setting Lo = { ’ﬁvf"ﬂ and 8 = L %J , which ensures Lo87 < T, and plugging

the choices into (72) and (73) at t = T, we obtain

aV]| ﬁ
8(1—n) "% 41287 4]SHA]T2K
A7 ]l < — —
(1—=7) 6
169ny/7 — 2|5|\A\TK 2 (1 + v\ "2
+ lo +
(1-— ’y) 0 1-—
16 (1 — ) pravgnT 41287 \/ o ASIAIT2K
<—5exp| — _
(1—7)? 4 6
16y T — log 2|S||AITK
(1- 7) 6
4144 (1 =) ttavgnT \/ n 4|S||A|IT2K
< — — —log (TK)log ——————
S A=A (exp< 1 + Kog( ) log 5 ,
(74)
where the second line follows from
avgPT av ]._ \Vj T
(- )" 5" < exp (12807 < o [ - 0= agtT )
4 4
L2 L2
- - 1— ve T
T+\”_({_1=n <o (-100,) <exp [ - (1 —7)Havgn ’
2 2 4
and the third line follows from the choice of the synchronization period such that
1 1- 1

Thus, for any given ¢ € (0, ﬁ), optimizing 1 and T to make (74) bounded by ¢ and
recalling 57 > ty,, we can guarantee that ||Ap|le < e if

4|S||AIT?* K

T > er(log((1 - 7)%))* log (TK) log =

1 { 1 gmax 1 }
. max y y - 5
g VKL =752 (1—7) (T—y)min{l—7, K1}
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1 1 1
n = c,min{ K(1 —~)*e? : :
! { log (TK) log BIATE " jigygtuy” gmax log (T K ) log ASIAITE
4S||AIT2 K\ 1
= ¢y (log (TK)log ‘Hé) min {K(l — )%, e min {1 — 7, K_l}}
mix

for some sufficiently large cr and sufficiently small ¢;,.

7. Discussions

We presented a sample complexity analysis of federated Q-learning in both synchronous
and asynchronous settings. Our sample complexity not only leads to linear speedup with
respect to the number of agents, but also significantly improves the dependencies on other
salient problem parameters over the prior art. For federated asynchronous Q-learning, we
proposed a novel importance averaging scheme that weighs the agents’ local Q-estimates
according to the number of visits to each state-action pair. This allows agents to leverage
the blessing of heterogeneity of their local behavior policies and collaboratively learn the
optimal Q-function that otherwise would not be possible, without requiring each individual
agent to cover the entire state-action space. Looking ahead, this work opens up many
exciting future directions, some outlined below.

o Improved sample complexity. While our sample complexity bounds are near-optimal
with respect to the size of the state-action space, it is still sub-optimal with respect to
the effective horizon length as well as the mixing time when benchmarking with the
sample complexity in the single-agent setting (Li et al., 2023). It will be interesting
to close this gap, and further improve the sample complexity with variance reduction
techniques (Wainwright, 2019b; Li et al., 2021b) in the federated setting.

e Understanding communication asynchrony across agents. As a starting point, our
work assumes that all agents communicate with the server in a synchronous man-
ner to perform periodic averaging. However, in practical federated networks, some
agents might be stragglers due to communication slowdowns, which warrants further
investigation (Kairouz et al., 2021).

e Other RL settings and function approximation. Besides the infinite-horizon tabular
MDPs, it will be of great interest to extend our analysis framework to other RL
settings including but not limited to the finite-horizon setting, the average reward
setting, heterogeneous environments across the agents (Yang et al., 2024), as well as
incorporating function approximation.

e Federated offline RL. In many applications, offline RL is attracting a growing amount
of interest, which aims to explore history datasets to improve the learned policy with-
out exploration, e.g. via pessimistic variants of Q-learning (Shi et al., 2022). It will be
appealing to develop federated offline Q-learning algorithms to enable learning from
geographically distributed history datasets.

e Adaptive communication periods and communication efficiency. In our work, we as-
sume a constant communication period 7, where the number of local steps between
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synchronizations is fixed. This results in the number of communication rounds grow-
ing linearly with the number of agents K and the horizon factor ﬁ, which is shy
from the statistical-communication complexity established in Salgia and Chi (2024).
A recent study Woo et al. (2024) shows that a federated offline RL algorithm can
significantly improve communication efficiency without sacrificing sample efficiency
by adaptively increasing the communication periods exponentially in a finite-horizon
MDP. In this case, the required number of communication rounds scales only with
the horizon length, independent of the number of agents. It would be interesting to
explore whether adaptive communication periods could lead to similar improvements

in communication efficiency in the infinite-horizon MDP setting.
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Appendix A. Preliminaries

We record a few useful inequalities that will be used throughout our analysis. To start
with, our analysis leverages Freedman’s inequality (Freedman, 1975), which we record a
user-friendly version as follows.

Theorem 12 (Theorem 6 in Li et al. (2023)) Suppose thatY,, = > ;_, Xj € R, where
{Xk} is a real-valued scalar sequence obeying

Xl <R and  E[Xe | {X},0] =0 for all k > 1.

j:j<k:|
Define

W= Ep [X7],
k=1

where we write Ex_1 for the expectation conditional on {Xj}j Then for any given

g<k’
o > 0, one has

2
2 7°/2
P{|Yn\ >t and W, <o } < 2exp <—02 n 7_/3> ) (76)

In addition, suppose that W, < o2 holds deterministically. For any positive integer m > 1,
with probability at least 1 — § one has

2m

2 2 4
1Y, < \/8max{W U—}log—m + gRlog 5 (77)

sy 2m 5
Another useful relation concerns the concentration of empirical distributions of uni-
formly ergodic Markov chains, which is rephrased from Li et al. (2021D).

Lemma 13 (Li et al. (2021b, Lemma 8)) Consider any time homogeneous and uni-
formly ergodic Markov chain (Xo, X1, Xa,...) with transition kernel P, finite state space
X, and stationary distribution p. Let tmix be the mizing time of the Markov chain and pimin
be the minimum entry of the stationary distribution p. Consider any 0 < § < 1. For any

4]
>1t < d
~tv —.
2y

T €EX, ift> &If"“xlogT for v > pu(x), then

Remark 14 Lemma 13 is a slightly generalized version of in Li et al. (2021b, Lemma 8),
where the concentration bound is characterized in terms of any given threshold v > u(x),
not scaling with the stationary distribution p(z). It can be shown using the Bernstein’s
inequality for Markov chains (Paulin, 2015, Theorem 3.11) in the same manner as Li et al.
(2021b, Lemma 8), except that the threshold is set to %t instead of @ We omit further
details for conciseness and refer interested readers to the proof in Li et al. (2021b).

Vye X : ]P)Xl_y{

Z HX; =z} —tu(x)
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In addition, we provide the concentration bound of the total number of visits of multiple
agents agents with independent uniformly ergodic Markov chains, whose proof is provided
in Appendix C.1. Denote

217672 log 8K log USIAIT 217672 log 8K log USIAITE
tin(s,a) = mix 08 o8 and ty, = mix_08 I S— (78)
,Uavg(sa a) Havg

Here, fiavg(s,a) = Zi{zl 118 (s,a) is the average behavior policy over all agents.

Lemma 15 Consider any 6 € (0,1). Under the asynchronous sampling, for any (s,a) €
SxAand0<u<v<T such that v —u > tw(s, a), the following holds :

Mw

1
4(1) — u) K ptavg (s, a) (s,a) <2(v —u)K pavg (s, a) (79)

k=1

with probability at least 1 — W-

Appendix B. Proofs for federated synchronous Q-learning (Section 3)

Define the following actions

a*(s) = argmax Q*(s,a), af(s) =argmaxQ¥(s,a), ai(s) = argmax — ZQk (s,a)
acA acA acA
(80)

for any state s € S, which will be useful throughout the proof.

B.1 Proof of Lemma 4

For notation simplicity, let 2¥(s,a) :== n(1 — n)!"4(P(s,a) — PF(s,a))V}*,, then the entries
of E? = [E?(s,a)] can be written as

t K K
e (=)' Y (Pls,a) = P(s,a)VE = 23D A (s,a), (8D)

=1 k=1 i=

FE%(s,a) =

NR
-
i

which we plan to bound by invoking Freedman’s inequality (cf. Theorem 12) using the fact
z¥(s,a) is independent of the transition events of other agents k' # k at i and has zero
mean conditioned on the events before iteration ¢, i.e.,

E[zF(s,a)|VE, .. Vi, VE Vi =0, VkelK], 1<i<t. (82)

Before applying Freedman’s inequality, we first derive the following properties of the variable
k
27 (s, a).

e First, we can bound

. k
By(s,a) = e |2 (s, a)]
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2n
< P Pk VE o < —1, 83
—ke[ﬁi@gt”(” (s;a)ll1 + 1P (s, a) 1) Vi1 lleo < 1=~ (83)

where the first inequality uses (1 —n)'~% < 1, and the last inequality follows from

1P(s,a)ll1 < 1, [|1PF(s,a)ll <1, and [V, [lo < 755 (cf. (30)).

e Next, we have
E[(Zf(57a))2|‘/2'[fla ey ‘/7L£17 . ‘7‘/0K7 .- ')‘/(]1]

Var(2F (s, a)|[VE,, o ViRV V)

< s > =0 )Smiza, (84)

where we recall the definition of Varg, in (29). Here, the first inequality holds since

2
Var,o(Vi1) < [1P(s,0) 1 (IVE1]l00)® + (1P (s, @) 11 ViE1lloo)? < -~
and the last inequality follows from
t 2 2t
2 2(t—i) 1 (1-(1-=n)%)
1-— < <n.
> *(1—n) S oo S (85)

i=1

By substituting the above bounds (cf. (83) and (84)) and m = 1 into Freedman’s
inequality (see Theorem 12), it follows that for any s € S, a € A and t € [T,

t K -
E g 2F(s,a) S\/8max{Wt(g,a)7;l}1ogW+§Bt(5’a)10gw
=1 k=1
320K ISIAIT | 6y ISIAIT
1 1
\/(1—7)2 S I T R
8 SIIA[T
<2
=1 7\/”1( log =75 (86)

with probability at least 1 — ‘8”%, where the last inequality holds under the assumption

n < %(log %)*1. Applying the union bound over all s € S, a € A and ¢ € [T] then

completes the proof.
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B.2 Proof of Lemma 5

For any 87 <t < T and (s,a) € S x A, we can decompose the entries of E} = [E}(s,a)] as

t—1 K
3 my n)i—i k
B (s.a)l = 72> > (- P(s,a)(V* = V)
1=0 k=1
-~ (t)—BT—-1 K Y t—1 K
D k t—i—1 k
<|x > (- Pls,a) V' =VE) |+ |2 2. 2 (=0 Plsa)(VF = V.
i=0 k=1 i=u(t)—pT k=1
=:E3%(s,a) ::E?b(s,a)
(87)
We shall bound these two terms separately.
Step 1: bounding E?%(s,a). First, the bound of E3¢ is obtained as follows:
- K t)—-pr—1
Ef*(s,a) < ngz (=) 1P(s, @)1 (Voo + V¥ lloo)
k=1 =0
2y (t)—pr—1 2y 5
< 1—p)71 < 1—n)P" 88
D I (55)
where the Second inequality holds due to the fact that ||P(s,a)||1 <1 and |[|[V*|lec < ﬁ,
V] oo < —7 and the last inequality follows from
L(t)—pr—1
—i— T T — 1—n)f" 1—n)f"
D ) R € ) U € ) R S € ) L 1(_ (177277) <=

i=0 n

Step 2: decomposing the bound on E(s,a). Next, Ef’(s,a) can be bounded as
follows

K
EP(s,a) = | 1L 3@ =) P(s ) (V- V)

1

7 2 Pl a) (V= Vi)

1
K

i
L
g

V*=vHl (89)

o0

T

1

where the second inequality holds since [|P(s,a)||1 < 1. To continue, denoting
Ay (5,0) = Qi (s,0) = (s, ), (90)
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we claim the following bound for any 0 < ¢ < T', which will be shown in Appendix B.2.1:

KZ B

In view of (91), it boils down to control maxy, Hdb(Z ZH . For any (s,a) € Sx A, k € [K],
and 0 < i < T, by the definition (90), it follows that

< [|Ailloo + 2m]§xx de(i) (91)

,ZHoo

o0

i—1 i—1
a5, 2: (5,0 <20 3 (88| 3 (P (s, ) — Pls,a)v*
J=u() J=u(i)
::Bl ::52
(92)
where
k * k
A =Q - Qb (93)

The inequality (92) holds by the local update rule:

d¥ iy (s,a) = QY (s,0) — Q% (s, )
= n(r(s,a) + 7Pl (5,0)VF — Q(s,a))
L y(r(s,a) + Y PE (s, @) VE = r(s,a) = YP(s,a)V* + Q*(s,a) — Q%(s,a))
N(yPE (s, a)V] = 7P(s,a)V* + Q*(s,a) — Qf(s, a))
= 0Pl (5,0) (V= V*) + (Pl (s,a) — P(s,a))V* + 1Ak (s, )
< 2| A%l +91(PF i (5,a) — P(s,a))V*, (94)

where (i) follows from Bellman’s optimality equation, and the last inequality follows from
1Pfy1(s,a)]lr <1 and [V = V¥loo < [ Af]|os (ct. (31)).
Next, we bound each term in (92) separately.

o
Rab2

e Bounding Bj. The local error [|A¥||, is bounded as stated in the following lemma,
whose proof is provided in Appendix B.2.2.

Lemma 16 Assume mn < % For any given § € (0,1), the following bound holds for
any 1 <i<T and k € [K]:

2 S||A|KT
1881 1yl + 2 o A (95)

with at least probability 1 — &, where (i) is the most recent synchronization step until
Q.

Using the fact that i —¢(i) <7 — 1, we can claim that

4 -1 KT
=), [ SIART
1—7 0

i—1
20 Y [[AF oo < 20(7 = DA oo +
j=(i)

(96)
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e Bounding B,. Using the fact that the empirical transitions are independent and
centered on the true transition probability, by invoking Hoeffding’s inequality and the
union bound, we can claim that the following holds for all (s, a, k,t) € Sx Ax[K]x[T],

i—1
KT
| S (Pli(s,a) — P(s,a))V*| < 17_7 Z o \Sllf;!
j=u(7) ] =0
1 |S||A|KT
Pa— —1)log —————
—1_7\/(7 ) log —— (97)

with probability at least 1 — ¢ for any given § € (0,1), where 7 is the synchronization
period.

By substituting the bound of By and By into (92), and applying the union bound, we
obtain that: for any given 0 € (0,1), the following holds for any 0 < i <T and k € [K]:

dn((r —1)yn+v7-1) 2|S||A|IKT
5y lloo < 2n(r = DAy llo + = \/log ——

8T — 1 o 2|S||A|KT
(1- V® 5

< 2n(T = DA llo + (98)
with at least probability 1 — 0, where ¢(4) is the most recent synchronization step until i.
Here, the second line uses the fact nr < 1.

By combining (98) and (91) and substituting it into (89) and using the fact that
Ef;bl(t)fﬁT n(1 — )=~ < 1, we can obtain the bound E?(s,a) as follows:

16yny/1 — 1 2|S||A|KT
3b < _
‘Et (S,(I)| = (1 _’Y) log 5
+7 Z D' (1Ailloo + 40(7 = DA 1)
=u(t)—BT

16yny/1 —1 2|S||A|KT
VT = 2 log D2V (1 dn(r — 1 Ailloo.
1—) og 5 + (1 +4n(r ))L(t)f%géKtH [oo- (99)

Step 3: putting all together. Now, we have the bounds of E?* and E?* separately
derived above. By combining the bounds in (87), we can finally claim the advertised bound
and this completes the proof.

B.2.1 PrROOF OF (91)

On one end, it follows that for any s € S,

K
7 Z (V70 VH6)) = @ (0,070~ e 32 Qo)
K
< Q*(s,a*(s)) — % Z QF(s,a*(s)) = Ay(s,a*(s)), (100)
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where we use the definitions in (80). On the other end, it follows that

1 = * k
=2 (V) -v)
= 1 K 1 K 1 K

= Q(s,0°(5) = 2= D Q.0 (9)) + = 2 Qs 0,9 () — = - Q¥ (s, af(s))
1k1K 1k1K 1k1K

> Q" (5,0, () = 72 2 QF(s, () + 7= D_ QF (s, iy () = = D Qf(s.af(s)
1 k;l 1 k;l k=1

= (s, a0)(8)) + = 22 Q3,04 (9)) = 2= D Qh(s.af(s)), (101)

k=1 k=1

where the inequality follows from the fact that a*(s) is the optimal action for state s. Notice
that the latter terms can be further lower bounded as

1 . 1 = k k
K ; Q; (s, aL(i)(S)) K kzl Q7 (s,a;(s))
1 K 1 K 1 K
% D QF(s,au)(s)) — e D QG (s aui () + 7 D Q5. a,3:)(9))
k=1 k=1 k=1
K ; Quiiy (45 (9)) + ; Quay (5,93 (9)) = ¢ ; Qi(s. i (s)
1, .
—_— ; (% i(5, @iy (5)) = diyy 5 (s, af (), (102)

where the inequality follows from the definition (90) and the fact that

Qi) (5, a5y (5)) — QUi (s, af (5)) > 0.

The above holds, since Qf(i) = Q) for all k € [K] agents after periodic averaging at ¢(i),

and a,(;)(s) is the optimal action at state s at time (i) for every agent.
Combining (100), (101) and (102), we obtain

1 K
A (S aa(z + Z S)) db() (
k:l

n
N\H

K
3 (79 - v
i(s,a*(s)),

IN
>

which immediately implies (91).
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B.2.2 PROOF OF LEMMA 16

By applying the decomposition in (36) to the local error for agent k, we decompose AF as
follows:

Af(s,0) = (1 =)~ Oafy(sa)+7 D w1l =) (P(s,0) = Ph(s.a)V”

=u(i)+1
=Dh 5:52
+’y Z ) PE(s,a) (V= V). (103)
=u(i)+1
D3

We shall bound each term separately.

e Bounding D;. Since Af(i) = A,(;) for every agent k at the synchronization step ¢(7)

D1 < (1 =) DA lloo- (104)

¢ Bounding D,. In a similar manner to (97), by invoking Hoeffding inequality and
using the fact that Y, (n(1 —n)"9)* < 5 (cf. (85)), we can claim that the
following holds for all (s,a,k,t) € S x A x [K] x [T7,

i

- SIJAIKT _ v \/ S||A|KT

< — n)i—7)2 *||2 ‘ <

Do <,y %)H(n(l m) ) IV*I3e log = ST\ 5
VAU

(105)
with probability at least 1 — ¢ for any given ¢ € (0, 1).

e Bounding Dj3. By bounding ||[V* — leilﬂoo with the local error ||A§71||OO (cf. (31))
and using ||Pf(s,a)||1 <1, we have

1Ds| <y > a0 =) |P(s,a) iV = Vil <7 Y0 (=) TAF ]|
j=u(i)+1 j=u(i)+1

(106)

By combining the bounds obtained above in (103), we obtain the following recursive
relation

i—u(2 Y S “ll(T : i—J
1A oo < (1 =0) D[ A ) lloo + —— nlogi‘ 1A +y Y n(l—n)tI|ak
1—7 0

]—1”00'

~ j=u(®)+1
=p

(107)
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By invoking the recursive relation with some algebraic calculations, we obtain the fol-
lowing bound

AT [l
< (1= DA m o + o

i Jji—1
+y >l —p) ((177)31“(’)Ab<i>oo+p+’v > o —pytte|ak 100)

Jr=e(i)+1 Je=e(i)+1

_ ((1 z ¢(4) + Z 2 1— Ll)) HA z)HOO (1+’Y Z 77(177)1]1> P
Ji=u(i)+1 ji=e(i)+1

Jji—1

Z > P-n)TRAY

Ji=e(D)+1 ja=u(i)+1

((1 z ¢(4) + Z z 1- Ll)) HA z)HOO (1+’)/ Z 77(177)@]1> p
Ji=e(i)+1 J1=t(3)+1
Jji—1

ST R (O )

J1=u(?)+1 jo=c(3)+1
< 1Ay lleo

i Ji—1—1
> (( 7, Lz)_i_,y Z z 1- L(Z)‘F"“i"}/l Z Z nl(ln)ilL(i))
1

Ji=c(i)+1 Ji=(i)+1 =i+

i Ji—1—1
147 Z z J1 +. ,Y Z L Z 77l(1 . n)i*l‘H*jl P
Ji=u(@)+1 =@+l g=e(i)+1

i Ji—1

4o Z Z (1 — )it (HAJm—lH)

ji=u(d)+1 Jig1=t(3)+1

i—u(7) . . i—u(3)—1 i i
(i) i (i) — 7 — (2
< Z o < > n (1 =) O A e+ > vl< l“)n%
Py 1=0
< (1 =n) + ) DAk oo + (L+m) ™ Dp
(1
HA ”oo +2p, (108)

where (i) follows from AJ -1 T Af(i) since j; <@ —1+1,

j1i—1 Ji—1—1

> Py 1=y = (7 Y gy

J1=u(3)+1 jo=u(i)+1 Ji=u(d)+1
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i Ji—1—1 i Ji—1—1 i L(Z)
.. A S e .. I < o l
D D P I DI Ui
n=u@)+1  G=u(@)+1 n=u@+1  g=u(@)+1

and (ii) follows from (1 4 7)) < (1 +~n)7 < €™ < 2 since i — 1(i) < 7 and 71 < 3.
This completes the proof.

Appendix C. Proofs for federated asynchronous Q-learning (Section 4)
C.1 Proof of Lemma 15

To describe the joint probabilistic transitions of K agents formally, we first introduce the
following Markov chain X; = (X},..., X/), t = 0,1,..., where X} € S x A is the state-
action pair visited by agent k at time t. The joint transition kernel P of K agents is given
by

P2
Pi= , : (109)
. PK

where P* is the transition kernel of agent k, k = 1, ..., K. Since the agents are independent,
the stationary distribution of the joint Markov chain is u, given by

K
pu(x) = Hulg(xk), Vo = (zb, 22, 25) e (S x A)X, (110)
k=1

where Mlg denotes the stationary distribution of agent k, which are induced by its behavior
policy W]g. Next, we define the mixing time of the joint Markov chain as follows:

1
sup  drv(Pi(-|xo), p) <ep and tmix = tmix <> , (111)
2oe(SxA)K 4

tmix(€) := min {t

where «
Py(Jzo) = [[ P (:lf) (112)
k=1

denotes the distribution of the joint state-action pairs of all agents after ¢ transitions starting
from xg = (28,...,2L). The mixing time of the joint Markov chain can be connected to

those of the individual chains via the following relation
mix mix»

tmix(€) < maxt®. (¢/K), tmix < 4log 8K max tF (113)
k ke[K]

which will be proven at the end of the proof.
We now turn to the proof of Lemma 15. Define the event

K
(v —u>2u’;<s,a>}. (114)

k=1

DN |

K K
B (s, a) = { SN (s.0) — (0 0) S p(sva)| =
k=1 k=1
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We first establish that

5
k kWK
xoe%%(};)KP{Buzv(saa)H(SOaaO)}kzzl —wo} < SIAT? (115)

for any (s,a) € S x Aand 1 < u < v < T provided that u > t(s,a)/2 and v — u >
tth(s,a)/2. To this end, we decompose the probability into two terms as follows:

P{Bu,v@, @) [{(sk, ab) ., = xo}
= P{ Bup(o(eb oM ~ 1}

-~

+ P{Bu,v(s, a)\%(;'é, ag) ey = :co} - P{Bu,v@, a)[{(s5,a6) oy ~ u},

=:Go

and show each of the terms is bounded by W for any z¢ € (S x .A)K. We shall derive
the bounds of these two terms separately.

Step 1: bounding G;. This is for the case that the distribution of the initial state follows
the joint stationary distribution. Since the total number of visits can be written as

v

K K v
ZNﬁ,v(&a) = Z Z sz(s?a) = Z Zi(s7a)>
k=1

k=1i=u+1 i=u+1
where
1 if (s,a) € (s¥ ,a¥ )
ZF(s,a) =47 ’ DTS and Zy( ZE(s,a),
i(5,9) {0, otherwise Z
and

v

K
Vuw(S?a) = E(s’é,aﬁ)wukae[K] [ Z Zi(sva)] = (’U - u) ZME(S a)
k=1

i=u-+1

we can invoke Bernstein’s inequality for Markov chains (Paulin, 2015, Theorem 3.11) and
Z Zi(s,a) — vyp(s,a)| >

obtain
uo(S, a)]
i=u+1

(Y (8, a)/2)2’Yps
8((v —u) + 1/7ps)Vy + 20C (1 o (5, a) /2)) ' (116)

l\.')\r—l

Gl {(Sovao }k 17 [

< 2exp (—

Here, ~ps is the pseudo spectral gap satisfying

1
- 2tm|x

Yos = (117a)
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for uniformly ergodic Markov chains according to Paulin (2015, Proposition 3.4). The
parameters C' and V; are defined and bounded as follows

C = max |Zi(s,a) — E[Zi(s,a)]| < K, (117b)
K K

Vi = Var(Zi(s,a)) = Z(l — ul(s,a))ut(s,a) < Z (117c¢)
k=1 k=1

Plugging (117) into (116), we have

G1 < 2exp <— (Vun(s, ) >

Stmi(24(v — u) (3, (s, a)) + 10K vy (5, a))
e <_ (v —u) (A, u'é(%@)) __ 3 (118)

8tmix(24 + 10K) = 2[S[|A|T?’

where the last inequality holds since (v—u) is large enough to satisfy the following condition:

2 2
ten(s, a) 1088(maxke[K] tk. )1og 8K log M 272t mix log M

= = K
2 K Zk 1 (s, a) % >k (5, @)
Step 2: bounding G;. By the same argument of Li et al. (2021b, Section A.1), using

the fact that the difference caused by the initial state becomes very small after sufficiently
long time, we have

v—u >

Gy = P{Bu,v(s,a)‘{(sg,ag)}fl = xo} - P{Bu,v(sva)‘{(slgvalg)}fl ~ N}
4]

<dyv(Pu(|zo), ) € =———, 119
where the last inequality holds due to
tn(s,a) 41S||AIT?°K A ) )
> —— > >4log ———— t > t oo | Ztmix | e |-
e Ty SR T R ik = R i \ QST AITRK ) < 2|S[|A|T?
(120)

Here, the second inequality follows from the fact that t*. (¢) < 2tk. logQ% (Paulin, 2015),
and the last inequality follows from (113).

Step 3: summing things up. By combining the above bound, we complete the proof of
(115), provided that u > th(s,a)/2 and v —u > tw (s, a). Then, we can obtain the following
bound for any (s,a) e Sx Aand 0 <u<v <T:

K K
{ v—u Zu’ésa <Z (s,a <2(v—u2,uﬁsa)}
k=1 k=1

p{K

IN

tn(s, a) X
k th\o; k
>N e (520) - ( e DI

k=1 k=1
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[\)

>1 (v —u— tth(;’a)> iu’é(sja)}

0
|SIIAJT?

Proof of (113). Notice that by the definition of dty and (112), we have

k kWK
= PLB, e (66 ab) = o <
O k)

K

drv(Py(-|zo), ) <Y drv(PE(|xg), )
k=1

for any z¢ € (S x A)X. Hence, setting t = maxje(g] th. (&), we have

max dTV(Pt ‘.Z’o
ro€ (SXA)

|MN

which immediately implies

¢/K).

mIX(

tmix(€) < maxt

The proof is complete by using the fact that tmix(€) < 2tmix logQ% (Paulin, 2015), which
leads to

1
tmix < m%(x] th. <4K) < 4log8K rrel[e%t

C.2 Proof of Lemma 6
First, (53a) is derived as follows:

K K
1 ko (sa 1
)\ULUQ(S,Q) = ? Z(l — n)Nvl,vz( ,a) < ? Z ( Nv1,v2( ))
k=1 k=1
K
11
S 1-— 5? Z qujl vg(saa)

el
Il

1
n K
7K Z 1, U2 > (122)
k=1

using the fact that 1—z < exp(—z) < 1—% holds for any 0 < = < 1, and 77N r (ht1)r (s,a) <
nt < 1.
Next, we obtain (53b) through the following derivation:

K
YD wlsa)

k=1 ueugt(s a)

K o(t)—1

=X, ) wwlso

k=1 h=0 uEL{hT(h+l (s,a)
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=| -

K
= N anye(s,0) | D

> (77(1 - n)N5+1»<h+1>r(Sva)>
h=0 \I=(h+1) k=1 weuk

hT, (h+1)‘r(s’a)

K

@ i N;fT (h )‘r(s’a)
= | | R Z 7t ) i )

h=0 I=(h+1) =1
i) e(t)—1 [ $(t)-1
= H >‘l’r l+1)T S a) (1 - )‘hT,(h—l—l)T(S?a))

h=0 =(h+1)
(E) 1-Xo T)\T 2T " >\(¢>(t)71)7—,t =1- WO,t(Sa a)v (123)

where (i) follows from the geometric sum

k i B
E n(l— n)Nu+1,(h+1)r(s’a) =n+nl—n)+ - +n(l- n)NhT,(hH)T(S,a) 1
ueUkr

h'r,(h+1)7'(8’a)

=1-(1- n)NfohH)f(s’“), (124)

(ii) follows from the definition (50), and (iii) follows by cancellation.
Similarly, (53c) can be obtained with some algebraic calculations as follows:

K K h'-1
Yoo wmsa=) 3 Y wisa)
k=1 ueué“’h,f(s,a) k=1 h=0 uEZ/IhT (h+1)7_(s a)

R =1 [ e(t)-1

= Z H M, (1+1)r(8,@) | (1= Anr (ng1)r (5, 0))

h=0 \I=(h+1)
(i)
S Awm(41)r T A —)mt — AorArer Mgt~ 1)t

< A (W 41)7 At —1)7.t

(iii) ¢(1)—1 n K
< H exp <_2_[( Z Nf]fT,(h—i-l)T(S? a)) ) (125)
k=1

h=h'

where (i) follows from similar derivations as above, (ii) follows by cancellation, and (iii)
follows from (53a).

Finally, (53d) is derived as follows:

k=1 h=0 ycuk
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P(t)-1 [ (t)—1

J7a H i (141)7 (8, @)
h=0 \i=(h+1)

() g 01 [ 601
< ? Z H )‘lT,(l-l—l)T(Saa)

h=0 \i=(h+1)
o(t)-1 [ ¢(t)—1

2
% TT Ao 5:0) | (= Ao )
h=0 I=(h+1)

—

K > (77(1 - n)NSH,(hH)T(S,CL))Z

k
1 ueuhT,(h+1)T(S’a)

1
K

M= 1=

(1-a- n)(N"fwunT(s,a)))

b
Il

1

where (i) holds since

2
Z (77(1 — 77)N5+1v(h+1)7(s’a)> =n?+ 772(1 — 77)2 e 772(1 _ 77)2(N5+1,(h+1)f(57a)*1)
ueUkr

hT,(h+1)T(S’a)

< (1 —(1- n)2N5+17<h+1>7(5’a)>

<2n (1 —(1—p)™

u+1,(h+1)7(s’a)) (126)
and (ii) can be similarly derived to the proof of (53c) (cf. (125)).

C.3 Proof of Lemma 7

Without loss of generality, we prove the claim for some fixed 1 <¢ < T and (s,a) € S x A.
For notation simplicity, let

wk (s,a)(P(s,a —ij s,a))V.F if (s¥ ak) = (s,a
yit(saa) — ,t( )( ( ) +1( )) ( . ) ( ) ’ (127)
0 otherwise
where
" N} co 7 (L% N sy (5:0)
wh ,(s,a) = (L= m) st 11 (K D (1= ) hntnr > . (128)
h=¢(u)+1 k=1

then E?(s,a) = v Zszl ZZ_:IO yit(s, a). However, due to the dependency between PF (s, a)
and wﬁ)t(s,a) arising from the Markovian sampling, it is difficult to track the sum of
Y= {yﬁ,t(s, a)} directly. To address this issue, we will first analyze the sum using a collec-
tion of approximate random variables § = {7k ,(s,a)} drawn from a carefully constructed

set JA/, which is closely coupled with the target {yit(s, a) Yo<u<t, 1.€.,

K t-1

D(y, /y\> = Z Z (yﬁ,t(sv a) - /y\zlj,t(& a)) (129)

k=1u=0
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is sufficiently small. In addition, 7 shall exhibit some useful statistical independence and
thus easier to control its sum; we shall control this over the entire set . Finally, leveraging
the proximity above, we can obtain the desired bound on y via triangle inequality. We now
provide details on executing this proof outline, where the crust is in designing the set ji\
with a controlled size.

Before describing our construction, let’s introduce the following useful event:

t—MT K
B (s,a) = ﬂ {4,uavg(s,a)KMT < ZNf,u+MT(57a) < ZHan(s,a)KMT} ,  (130)
u=0 k=1

where M = M(s,a) := Lmj Note that M7 > 7 > ty, (see (78) for the definition
of tan(s,0)), and 1 < 1/(16jimg (5, a)7) < M(s,a) < 1/(8navg(s, a)7) if 7 < 1/16. Then,
Bas(s,a) holds with probability at least 1 — W according to Lemma 15. The rest of the

proof shall be carried out under the event Bj/(s, a).

Step 1: constructing Y. To decouple dependency between Pk, (s,a) and w{j’t(s, a), we
will introduce approximates of wﬁyt(s, a) that only depend on history until u by replacing
a factor dependent on future with some constant. To gain insight, we first decompose

wh (s, a) as follows:

k
wu,t(87 a)
k o(t)—1 K
_ Q(l _ )*NfZ(u)T,uH(S’“) (1- n)N¢(u)r,<¢(u>+1)T(s,a) (ll[ 1 Z (1 )N}’f_lr’(hﬂ).r(s a)
K K Nouyr.(o(uy+1)7 (5:0) i !
2 =1 (L =) oGO gy N7 =1

) w01 K .
o LT | | (K Z(l—mNM«hﬂv“’“’)
ho(u) \© k=1
::G)I’j,t(s,a)
Nk (s,a) (t)—1 K
— d(u)7,(d(u)+1)7 !

+%(1_77)‘N§<u>r,u+1(8ﬂ) (1—n) . i 1 H (;Z(l 1) e (ha)r (5:2)

25:1(1 — 'r’)N¢(u)"',(¢<u>+1)T(S’a) h=¢(u) k=1

::X’th:,t(s7a)

Considering that X’;’t(s, a) can be made small enough, which will be shown in the following
step, we analyze the dominant factor (ij’t(s, a) in detail as follows:

¢(u)_1 1 K W 1 K v -1
‘Dzlj,t(sy a) = H <K Z (1-— n)NhT,(thl)T(s’a)) (K Z (1— n)NhT,(h-Fl)T(s?a))

h=ho (u,t) k=1 k=1

U N% e T (1 NE. oy (5:0)
X e (L—m) Tetiru 11 (K > (1= p) et )

h=(u) k=1
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k P(u)—1 1 K o -1
e (1 _ n)7N¢(u)T,u+1(s,a) H (K Z (1 _ U)Nh‘r,(h+1)7—(s7a’)>

h=ho(u,t) k=1

==

dependent on history until u

B(t)—1 1 K Y (5.)
% H (KZ(l_n) hr,(h41)7\5 )

h=ho(u,t) k=1

dependent on history and future until ¢

. . ( )¢(u)71 | K o ) -1
:E( —77) (u)T,ut 1\ H (KZ(l—n) hr,(h41)7\% )

h=ho(u,t) k'=1

=ak(s,0)

W) pO-(-DM-1 /K " o
T (o).

=1 h=max{0,4(t)—IM} k'=1

=z;(s,a)

(131)

where we denote hg(u,t) = max{0, ¢(t) — l(u, t) M}, with l(u,t) = [%1
Motivated by the above decomposition, we will construct ) by approximating the future-
dependent parameter z;(s,a) for 1 <1 < L, where we define

L = min { L\;J ,[1281og (K/nﬂ} . (132)

We note that L < 128log (T'K) for n > 3/T. Using the fact that 1 —z < exp(—z) <1—§
holds for any 0 < x < 1, and nN}’f; (h+1)7'(8’a) <nr <31
2 N
kl kl
exp <_K > Ni iy (s a>> sl-4 Y Nirene(s,)
k'=1 k'=1
RS £ ey (5:0)
N s,a
< % Z(l — ) Vhrhtn)r
k'=1
| K
<% > (NG 41y, (5. @)
k'=1
11 &
kl
<1- 5? Z nNhT,(h+1)T(S7 CL)
k'=1
. K
< exp <_2[{ NflfT,(h—l-l)T(S? CL)) . (133)
k'=1

Therefore, for 1 <1 < L, under By(s,a), the range of z;(s,a) is bounded as follows:

1
z(s,a) € eXp(—477Mavg(S,a)MT), eXp(_877Mavg(Sva')MT):| .
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Using this property, we construct a set of values that can cover possible realizations of
z1(s,a) in a fine-grained manner as follows:

1 .
Z = {exp (—8nuavg(s,a)MT - Z}Z) ‘Z €Z: 0<i< 4K,uavg(s,a)MT} . (134)

Note that the distance of adjacent elements of Z is bounded by 7/ K e~ V/8nmave(s:) M7 a1 the
size of the set is bounded by 4K jiavg(s,a)M7. For | = L, because the number of iterations
involved in 21, (s, a) can be less than M, it follows that z7,(s,a) € [exp(—4npavg(s, a) M), 1].
Hence, we construct the set

ZO = {exp <—g> ‘Z €eZ: 0<i< 4K,Uavg(sva)M7_} : (135)

In sum, we can always find (21,---,%,---,21) € 271 x Zy where its entry-wise distance
to (z1(s,a))ie(—1) (resp. zL(s,a)) is at most n/Ke=V/8mag(s:)MT (rogp p/K).

Moreover, we approximate xﬁ(s, a) by clipping it when the accumulated number of visits
of all agents is not too large as follows:

(136)

Ly,

(s a) = ah(s,a) if S, NE ey (@) < 2K pavg (s, a) MT
’ 0 otherwise :

Note that the clipping never occurs and z¥(s,a) = x%(s,a) for all u as long as By(s, a)

holds. To provide useful properties of Z¥(s,a) that will be useful later, we record the
following lemma whose proof is provided in Appendix C.3.1.

Lemma 17 For any state-action pair (s,a) € S x A, consider any integers 1 <t <T and
1 <1< [4%], where M = Lmj Suppose that 4nt < 1, then T%(s,a) defined in
(136) satisfy

V€ [ho, d(t) — (L= )M) : F*(s,a) < 9%’ (137a)
B~ 1M1

K
Z Z Zfﬁ(s,a) < 1677:uavg(57a)M7', (137b)

h=hgo UEUR | 1y41), (5:0) =1
o(H)—(1—1)M—1 K )
64 M
> Yo Y @sa)? < ”“g;’a) T (137¢)
h=hg uEU:T’(hle)T(s,a) k=1
where hg = max{0, ¢(t) — IM}.
Finally, for each z = (21, ---,21) € ZF71 x Zy, setting

1(u,t)
Oh(s,a2) = y(s,0) [] 2 (138)

=1
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an approximate random sequence 7, = {¥h ;(s,a; 2) fo<u<t can be constructed as follows:

U

ey Wk (s, a;2)(P(s,a) — PYy(s,a)VF if (sk,ak) = (s,a) and I(u,t) < L
U i(s,a;2) = ’ )
’ 0 otherwise

(139)

Ift > LMr, for any u < t — LM+, i.e., l(u,t) > L, we set y’u‘:?t(s,a; z) = 0 since the
magnitude of Wﬁ,t(& a) becomes negligible when the time difference between u and ¢ is large
enough, and the fine-grained approximation using Z is no longer needed, as shall be seen
momentarily. Finally, denote a collection of the approximates induced by ZX~! x Z as

V={g.: zeZ''xz)

Step 2: bounding the approximation error D(y,y,). We now show that under
B (s, a), there exists ¥z := ¥,(,) € Y such that

525 [ChenL 4|S||A|T?
log

VK 5 (140)

D(y,y=) <

with at least probability 1 — 20. To this end, we first decompose the approximation error
as follows:

min D(y, ?/J\z)

J=€Y
K t-1
- 21?—1{1 =z ZZ (yﬁvt(s,a) _gku,t(saa; Z))‘
=€ X2 k=1 u=0
K t—LMt-1
L Z Z S, a - s,a; 2
zEZL Ix Zo yUt yut( )
K
mln Z Z yutsa yut(saz)
ZEZL XZ k=1u=t—LMT
K t—LMt—1
~k
max Z Z 5,a) S a2
zEZL Ix Zo y“t yu,t(7 ) )
—:D1
K t—1
pin 30 3 (@hi(oi0) = Bl ) (PGs.0) = Pl )
zeZL 1x Zo =T

=:D>

K t—1
Do D xisa)(P(s,a) = Py (s,a)V

k=1u=t—LMT

=:Ds3

and will bound each term separately.
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e Bounding D;. This term appears only when ¢t > LM . Since @’it(s, a; z) = 0 for all
u <t — LM regardless of z by construction,

K t—LMt1-1

Z Z yﬁ,t(sva) - gku,t(‘s?a;z)

IN

K
Yo Y wnsalP(s,a) = Pra(sa)lVils
k=1

uOt LJVIT( )

Z Y. wilsa)

k 1 ueuo t— L (5:@)

2 ¢(t)_ 1 K Nk/ ( )
S 1 H (K Z(l _ 77) h7,(h+1)7\"? )

h=¢(t)—LM k=1

—
I/\~'
=

where (i) holds since || P(s,a)||1, ||P¥(s,a)||; <1 and [|[VF |[le0 < j (cf. (30)), ( i)
follows from (133), (iii) holds due to Bys(s,a), and (iv) holds because L > 128 log 2
m log % given that nuave(s,a)Mt > 1/16.

e Bounding Dj. Since 7%(s,a) = z¥(s,a) when By (s,a) holds, in view of (139), we
have

min |3 Y (@ (s,0) - 0F (5,0 2))(P(s, ) — Py (s, a)VE

2€2ETIX20 |\ T i LM
_k ~k . k
< ZGZT{H?X%Z Z | (s, a) — @y (s, a; 2)| | P(s, a) — PE(s,a) 1]Vl

k=1 ueuty _ L, (5:0)

o(t)— -1 K
2 . ~
i am (3 Z 2 2l

=1 h= (b eu}’ff (h+1)7'(s

where the last inequality holds since || P(s,a)||1, |P¥(s,a)[1 <1 and |[VF [l < T
(cf. (30)) and the definition of &f (s, a; z) defined in (138).

Note that for any given {2;(s, a) }ic[z], under Bys(s, a), there exists 2% = (2}, ...,2/,...,2}) €
ZL=1 x 2y such that |z} — z(s,a)] < 7+ exp(—1/8npavg(s,a)Mr) for I < L and
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|27 — z1(s,a)] < k. Also, recall that z(s,a), 2z} < exp(—1/8npavg(s,a)MT) for
| < L and z1(s,a), zj < 1. Then, for any [ < L it follows that:

< exp ( — *(l — D)npavg(s, a MT) zl:

1 L77
< — (] —
< exp( 8([ 1)ntavg (s, CL)MT) i

Then, applying the above bound and (137b) in Lemma 17,

L o) —(I-1)M-1

DY Y > zxsa

h=¢(t)—IM  uellk a) k=1

hr,(h+1)7 (s,

L
1
<=7 2o (- 0 Dl M)

$(t)—(1—1)M—1

K
X > > > Eh(s,a)

h=¢(t)—IM uel/{;;_’(h+l>_r(s,a) k=1

2 Ln 1
1 16 )M
T 1-7K1- exp(—l/Sn,uavg(s,a)MT)( tavg (s, @) M)
@© 2 Ly 16 512nL

<

16npavg (s, a) M1 < mv

where (i) holds since 7pavg(s,a)M7/8 <1 and e ® <1— 1z for any 0 <z < 1.

1— v K ntavg(s,a) Mt

e Bounding Ds. Applying Freedman’s inequality, we can obtain the following bound,
whose proof is provided in Appendix C.3.2.

Lemma 18 Consider any ¢ € (0,1) and L defined in (132). For any (s,a) € S X A
and 1 <t <T, the following holds:

9 [ChenL  4|S||A|T?
D ! 141
3 < 1—~ K08 5 (141)
with probability at least 1—26, as long as T > tyn, andn < min{ﬁ, 1 ST )
TR K Cpet L log HISIAITZ
By combining the bounds obtained above,
) N 2n 512nL 9 ChetnL . 4|S||A|T?
min D(y,yz) < + + log
Gecy TTU-9K  (1-yK "1-9V K 5
525 [CheenL . 4|S||A|T?
< log
1— K 1)
since n < W < K/L due to L < 1281og (TK).
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Step 3: concentration bound over ). We now show that for all elements in j)\ ={y:
z € ZL71 x 2y} satisfy

K t—1
115 nL 4|S||A|IT?*K
ZZ@\ZJ(S,GI; Z) < ﬁ flo f (142)
k=1u=0 v
with probability at least 1 — W. It suffices to establish (142) for a fixed z € ZX~1 x 2,
. ‘e [
with probability at least 1 — ST where
351 zL-1 L L L
VI=12""" x Zo| < (4K pravg (s, a) M7)" < (K/n)" < (TK) (143)

because nptavg(s,a)MT < 1/4 and n > 1/T.

For any fixed z = (21,---,21) € ZF71 x Z;, since @ﬁ’t(s,a;z) = 7F(s,a) Hé(:ult) z; only
depends on the events happened until u, which is independent to a transition at u + 1.
Thus, we can apply Freedman’s inequality to bound the sum of @\ku,t(s, a; z) since

E[jE (5,05 2)| V] =0, (144)

where ), denotes the history of visited state-action pairs and updated values of all agents
until u, i.e., Y, = {(s¥,ak), VF }re[K),v<u- Before applying Freedman’s inequality, we need
to calculate the following quantities. First,

U(u,t)

Bus.o) o= o (ho(s0:9)] < 2is.0) J] 2IPG,0) = Phs(o, ) IV
18n
< 0 (145)
(1-7)K

where the last inequality follows from || P(s, a)||1, [|[P¥(s,a)[l1 < 1, |[VF 1]l < ﬁ (cf. (30)),
21 <1, and (137a) in Lemma 17. Next, we can bound the variance as

t K

= 3 S B 4 (5.0:2))°19%)

u=0 k=1

l
= Z Z Z Z (/x\ﬁ(s, a) U 2\l’)Q\/arP(s,a)(va)

=1 h:max{(],d)( ) ZM} k=1 ueuh (h+1)7—( )

d(t)—(I—1)M—1
) > Z S (@h(s,a)?

h=max{0,6(t)—IM} k=1 yc4*

64N~ tave (S, a) M T
S 1_ 22(]._[ ) nlug[i‘ )

=1 \l'=1

(s

I'=1

hr,(h4+1)7 (s,0)

(2) 128n? uavg s, a) MT

< T RQ Zexp —1/4(1 — 1)nptavg (s, a) MT)
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12810 pravg (s, a) M T 1
B K(1—7)? 1 — exp(—1/4npavg(s, a) M)
(iv) 1281211y M
P 80 g(s,aQ) T 8 _ 1024y - o2, (146)
K(1-7) Niavg (s, a) M7 K(1—7)
where (i) holds due to the fact that [|[Varp(V)|leo < |Pl1(|V]loo)? + (||P]|1]]V]|00)? < a 27)

because ||V < ﬁ (cf. (30)) and [|P||; < 1, (ii) follows from (137¢) in Lemma 17,
(iii) holds due to the range of Z and Zj is bounded by exp(—1/8nptavg(s,a)MT) and 1,
respectively, and (iv) holds since e™® < 1— 1z for any 0 < 2 < 1 and 7npavg(s,a)M7/4 < 1

Now, by substituting the above bounds of W; and B, into Freedman’s inequality (Asee
Theorem 12) and setting m = 1, it follows that for any s € S, a € A, t € [T] and g € ),

K t—1
DD iilsaz)
k=1u=0
2. 4 Ty 4 4 Ty
2m 4] 3 )
n 4S[IAITIY| 241 4S|IAIT|Y|
< 1/8192 1 1
\/89 K =) og 5 +K(1—w) og 5

i 11 4 T?K

L 1L s MEIAITEK (147)
with at least probability 1 — m, where (i) holds because |JA)| < (TK)¥ (cf. (143)), and
7}? W <1 when L < 128log (TK) and n < K . Therefore, it

1281log (TK) log w
follows that (142) holds.

Step 4: putting things together. We now putting all the results obtained in the
previous steps together to achieve the claimed bound. Under Bj;(s,a), there exists g, :=
Y=(y) € Y such that (140) holds. Hence,

K t-1 K t—1
Zzyutsa Zzyutsaz) +D(y yz)
k=1 u=0 k=1u=0
115 nL 4|S||AIT2K 525 [ChenL 4|S||A|T?
< 1 log (TK)log —————
241 4 T2K
u Wheml 7i¢) g ISTAIPE

where the second line holds due to (142) and (140), and the last line holds because L <
1281log (T'K). By taking a union bound over all (s,a) € S x A and t € [T], we complete the
proof.
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C.3.1 PrROOF OF LEMMA 17

For notational simplicity, let h be the largest integer among h € (hg, ¢(t) — (I — 1)M) such
that

K
Z (ho1yr(5,0) < 2K piayg (s, a) M7, (148)
k=
Then, the following holds:
K K
_ k
Z hoT,ht ’a)_ZN(E—l h Sa +Z hoT,(h—1)T Sa)
k= k=1
< KT+2Kuavg(s,a)MT. (149)

Also, for the following proofs, we provide an useful bound as follows:

i N;’fr (ht1)- (8 Zk’ 16 Ni (h+1)-,—(570«) 1o Zk/ " hr (ht1)r (s,a)
s K = K
K
< exp (2772k, ! hT J(h+ )7 (S’a)>
— K )
(150)

which holds since 1+ 2 < e” <1+ 2z for any = € [0,1] and nNF (h1)r(8,0) < T < 1.

According to (136), for any integer u € [h7,t — (I — 1)MT), Z¥(s,a) is clipped to zero.
Now, we prove the bounds in Lemma 17 respectively.

Proof of (137a). For u € [hoT, h7),

. oW1/, K y -1
Th(s,a) = %(1 — ) Nowrati (52 11 (K > - n)NhT,mH)T(&a))

h=ho(u,t) k=1
u 1 K N -1
3n Ny ~(s,a)
? H (K Z(l — ) bt )
ho (u,t) k'=1
11 2
ST R
k=1

(i) 3 (1v) 9
< fnexp (4npavg(s,a)MT) < 77

where (i) holds since (1 +n)* < e and nN ¢(U)T wi1(8,a) < <1, (ii) holds due to (133)
and the fact that ¢(u) < h — 1, (iii) follows from the condition of h in (148), and (iv) holds
because 41 ftavg(s,a)MT < 1.
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Proof of (137b). By the definition of h, it follows that

$(t)—(1-1)M 1 K 1 N
2 > D Tls0)= S S s
h=hg UEUET,(thl)T(S,a) k=1 h=hg uEZ/{h_r (ht1)r (s,a) k=1
Using the following relation for each h:
K
> Yodlsa)
EUR . i1y, (5:0) F=1
K . el K . -1
)OND SR B | <K > —mNhlf,(M(s’“))
=Ll ey (5:9) W'=ho k=1

-1

N \

K — K
=| = 1 —n) ThnenrtE a) (1-— h’ (W +1)7 50
(23 o )H(Z )
(K Z Nir () (5:0) ) hl:[ ( EK: 1- Ny, (w4 (S a)>
k=1

h'=hg
where the last inequality follows from Jensen’s inequality, and applying (150), we can com-
plete the proof as follows:

h—1 X
Z Z Zl‘ o) CL < H ( Z n)_N:’T,(h’Jrl)T(Sva)) 1

h=ho euhT (ht1)r (850 k=1

==

K
< 277 Zk’ 1 h ThT(Saa) 1
e J—
=~ €Xp K

@)
< exp (4nftavg (s, a) M7 + 2n7) — 1

(i)
< 160 pavg (s, a) M,

where (i) follows from (149), and (ii) holds because ¢* < 142z for any = € [0,1], 2nT < 1/2,
and 41 pavg (s, a)MT < 1/2.

Proof of (137c¢). Similarly,

p(t)—(-1)M-1 K h—1 K
> oD (@isa)’= Yoo D (@h(s,a)?
h=ho uez,{;;_’(h+l)_r(57a) k=1 h=hg ueZ/{hT (h+1)-r(s a) k=1

Using the following relation for each h:

K
Z Z(wﬁ(s a

k =
ueuhf,(h+1)7' (S’a) k=1
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K . el K y -2
= Z Z 772(1 — 7’])_2N¢(u)7',u+1(57a) H (K Z (1- n)Nh/T,(h/+l)T(s’a)>
k= uh (h+1)r(s a) h'=hg k=1
K » hl o/ K - . —2
Lr (W 41)r (50
<L ( Z hr(thl)T — 1> H (K Z(l —n) W0+ >
k=1 h'=hg k=1
K (s.0) h—1 1 K o N (5.0)
- 1 (h! F\8a
( Z hr(thl)T _ 1) H (K Z(l —7) B 7 (h!+1) ) ,
k=1 W =ho k=1

where the last inequality follows from Jensen’s inequality, and applying (150) under the
condition 27T < 1, we can complete the proof as follows:

K

h— K
Z:l Z Z(azﬁ(s, R 7 H ( Z 77)_2Ni]f/n(h’+1)f(s’“)> -1

h=ho ueuty;_ (ht1)r (5:@) k=1 k=1

Zk’ 1 hoTﬁT(S’ (I)
K

IA
=[=

exp | 4n —1

=[=

i)
< (exp (8nptavg (s, a) M1+ 4nT) — 1)

() 641 ravg(5. @) M T
- K b

where (i) follows from (149), and (ii) holds because e* < 1 + 4z for any = € [0, 2], 4n7 < 1,
and 8npavg (s, a)MT < 1.

C.3.2 PROOF OF LEMMA 18
Recall that

Ng (s,a)
—-Nk 1— d(u)T,(p(u)+1)T
Xha(s,0) = 5 (1 — ) Vewrara ) (1—=n) i .
* 2521(1 - 77)N¢(U)T’(¢(“)+1)T(s’a)

1 N¥ (s.0)

s,a
< 11 (Kz(l—n) () >
h=¢(u) k=1

(1— n)N§<u)n(¢<u)+1>r(5’“) N
= 7 — 1| wys(s,a).
S (1= p)Newrneon.(59)

We can observe that x% ,(s,a) and wit(s, a) are solely determined by the number of visits

of agents during local steps, i.e., (N,’fT (h+1)7(s7 a)) ke[K]helo(t)—LM,6(t)—1]- 1t thus suffice to

consider {x& (5, N)bocucrrei) and 1wk (5, a5 N Yocyr re) constructed with each of
the possible combinations of number of visits for all k € [K] and h € [¢(t) — LM, ¢(t) — 1]

59



Woo, JosHi, AND CHI

,ie., N € [0,7]5EM | Then, by setting X = 9\/chhle‘"L lo 4‘8”34|T2 and taking an union

bound
ZX]

K
|
Xﬁ,t(s’a)(P(Sva) - Pilerl(Sv a))vuk

t—1
Z Z Xﬁ,t('S?a)(P(S)a) - P5+1(57 a))Vuk
= > P

k=1u=t—LMr
K
Nefo,7)KLM  Llk=1u=t—LMr
K

< P
Ne[O;r}KLM LIk=1u=t—LMT

o(5,a; N)(P(s,a) = Py (s, ) Vi

]

5
< .
X] = SIAIT(L £ KM

and it suffices to show that

gl

—1
>N Xk (s.asN)(P(s,a) — Py (s,0)VE| >

k=1u=t—LMT

Since X% ,(s,a; N) is a constant, which does not depend on P, (s, a),

Elxu4(5,a; N)(P(s,a) = Pyi(s,a)) Vi |[Vu] = 0, (151)

where ), denotes the history of visited state-action pairs and updated values of all agents
until u, i.e., Yy = {(s¥,a¥), VF}1e1k),0<u and thus, we can apply Freedman’s inequality to
bound the sum.

Before applying Freedman’s inequality, we need to calculate the following quantities.
First,

Bi(s,a) = o max (s, N)(P(s,a) = Py (s,0)V,]

1 K Nk/u (b1 (5:5@)
(‘1 B 7 D=1 (1 —m) ot e+ ’
k
(1 — n) Mot o+ (59)

X wyo(s,a; N)|[P(s, a) — Pu—l—l(saa)HlHVukHOO)

< max
ke[K|t—LM1<u<t

K
© 9 LK YNNG 6+ (59)
< — max 1- £ 2= kﬁ) Wk (s,a;N)
1 — 7 ke[K]t—LMr<u<t (1 — n)N¢(u)T,(¢(u)+1)T(S@) ’
(2 Bnpimax(s, a)T max wh (s,a; N) (2) —8772,Uzmax($7a)7—,
1—x ke[K)t—LMr<u<t (1—-9v)K

where (i) holds because ||P(s,a)||1, [|PF(s,a)|1 <1, V¥ ||l < ﬁ (cf. (30)), (ii) follows
from the fact that (which will be shown at the end of the proof)

sz' 1(1— ) u>r(¢<u>+1)T(sa)

(1—mn) N3 wyr (o) +1)r (550)

1-— < 477,Umax(3>a)7-7 (152)
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With fimax(s,a) = maxy, uf(s,a), and (iii) holds due to the fact that wfj,t(s, a;N) < -
Next, we can bound the variance as

2
W= Y ZE[(XM 5, N)(P(s,0) = Pl (5,0)VE) 0]
u=max{0,t—LM7} k=1
(i) ¢(t)_1 K 2
< Wnpmae(s, )7 Y S X (whilsaiN) ) Varpga (V)
h=max{0,¢(t)—LM} uez/[h <th1>7_( a) k=1

.. P(t)—1 K
(if) 2(477Nmax(57a)7_)2 2
<
) S Sl v e

h=max{0,p(t)—LM} ueuh (h+1)7( a) k=1

(2) 2(4npmax(s, a)T)2 6ﬂ =: 02,
= 01—+ K

where (i) follows from (152), (ii) holds due to the fact that |[Varp(V)|leo < [|P|l1(|V]loo)? +
(PI1IV llse)? < ﬁ because ||V ]x < ﬁ (cf. (30)) and ||P|j; < 1, (iii) follows from

(53d) in Lemma 6.
Now, by substituting the above bounds of W; and B, into Freedman’s inequality (see

Theorem 12) and setting m = 1, it follows that for any s € S, a € A, t € [T] and
N = (Nf 1y (8,0 kelr) helow - Larso -1 € [0, 717,

Z Z Xua(5, 0 N)(P(s,0) = Py (s,0))Vy

k=1u=t—LMT

2 KLM KLM
< \/8 max {W,(s, ), ;Lm} log 4m!8||A!T((51 +7) N gBt(& o) log 4m\SHAT((51 +7)

AN lmax 2 4 T(1 KLM 1292 14 0ax 4 T(1 KLM
96( np (S’“)T)’Hog IS||A|IT(1+7) L 2 (3’“)T1og ISIIA|T(1 + 7)
K(1—~)2 B K(1—7) B
< 384(4UTK)(umax(s a)? nMT)Lnl 4S|JAIT(1 + 7)
K(1—~)? 4]
1200 (pamax (8, a)nMT) 4|S||AIT(1+7)
log
(1—=7) o
Q) Chet L1 AS||AIT(147) | 2CheeLy . 4AIS||AIT(1+7)
\/48 K =) 5 log ; + = )l 5

(i) ChetnL 41S||A|T?
<
9\/K(1 7 log 5 (153)

with at least probability 1 — W, where we invoke the definition of Che (cf.

(21)). Here, (i) holds because nTK < 1/4 and ,umax(s a)nMT < Chetftavg (s, a)nMT < Che‘,
and (ii) follows from the fact that n < 1

<
= 2 -
128K Chet log (TK) log % K Cher L log SIAITZ
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Proof of (152). Using the fact that for 0 < n < 1,
I—m)™<e™<1+42nn if n>0 and M <1, and (1—-n)">1—nn if n<0orn>1,

we can obtain the bounds as follows:

K K
n / 1 Nk/ ,
L= 2 22 Niwrnote(5:0) < g D (1 =m0
k'=1 k'=1

k)l
LyE (- n) Vo ew+nr (59

(1 — n)Ng(u)T‘<¢(”)+1)r(Sva)
S (1 —_ n)_Ng(u)T,(¢(u)+1)T(37a)

k
<1+ 277N¢(U)T,(¢(u)+1)7_(3, CL)_

Thus, recalling fimax(s,a) = maxy uf(s,a), and using the fact that for any (s,a,k,u) €
S X Ax K] x[T]:

Ng(U)T,(¢(u)+1)T(S, a) S 2,U/max($, Q)T

k
at least with probability 1 — 4, as long as 7 > 443 ( t"‘(ix ) log 4‘5”“5””{, which naturally

Mmax S,CL)

holds if 7 > t4, (see (78) for the definition of #4,), according to Lemma 13,

!
1 % 25:1(1 - n)Ng(uh(qb(u)H)r(S’a)

Nk (s,a)
(1 — 77) B (w)T,(¢(w)+1)T

K
1 ,
k k
< 2nma { Nf(uyr (o 1)+ (5:0); 7 2 N (s a)}
k=1

< Anpimax(s, a)T.
C.4 Proof of Lemma 8

For any t > 7, the error term can be decomposed as follows:

K
E}s,a)=7) Y wis,a)P(s,a)(V* = V)

k=1 uel/lgf’z (s,a)

K
=7y > wh o(s,0)P(s,a)(V* = V)

F=Lu€llf 41— py- (5:0)

=:E3%(s,a)

K
+> > wk (s,a)P(s,a)(V* = V). (154)

R=Lu€lfly 1) pyr o (5:9)

=:E3"(s,a)

We shall these two terms separately.
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e Bounding E}%(s,a). First, the bound on E}%(s,a) is derived as follows:

K
B (s,a)| <) > wua(5,0)1P(s, @) [ (VF = Vi)lloa

k= 1“@’0 ((t)—p)r (5:0)

(i)
<= SOy uea

= Luely ) 5)7(5 a)

() 2
= 1_W76XP< ZN(¢> msa))

(iii) 2y n/iavgﬁ'r
< oo ( < ) : (155)

where (i) holds because || V¥ || o, [|[V*[|0o < 1_7 (cf. (30)) and || P(s,a)|l1 <1, (ii) holds
due to (53c) in Lemma 6, and (iii) follows from the fact that > 5, N@(t)iﬁ)”(s, a) >
K“afvg& according to Lemma 15 as long as 87 > ty.

e Bounding E}®(s,a). Next, we bound E(s,a) as follows:

K
EP (s a)l <7 > wWs(5,)

R=Luelfly ) p)ra(:0)

5 K e)-1

<7y D S W a) (B e + Q5 — QF )
k 1h ¢(t) 5u62/{;f_r(h+1 (5711)

(ii) K ¢@)-1

<> D ST Wk (s,a) (14 20 A lloe + T10ca(156)

k=1 h=¢(t)=Buelf_ 1), (

’V* _yk

[e.9]

—~
=

s,a)
where (i) follows from the following bound, which will be shown in Appendix C.4.1,
IV* = Villoo < 1AYw lloo + 1Q% = Qi lloo, (157)

and (ii) holds due to the following lemma.

Lemma 19 Assume nt < % For any given 6 € (0,1), the following holds for any
ke [Kland0<u<T:

8ynv/T — 1 log 2|S||A|ITK
1—

1Q% — Qfwylloo < 207 A lloo + 5

(158)

with probability at least 1 — §.

Here, for notation simplicity, we denote ojocal SW“ log

2|S||AITK
1- 0 :
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Then, with some algebraic calculations, we can obtain the bound on E?(s,a) as
follows:

) o(t)—1 K
‘Edb(s a)| < Olocal + Z (1 +2n7)[[Apr oo Z Z wﬁ,t(sva)

h=¢(t)—B k= 1U€uh (h+1)7( a)
¢

(t)—
Z > wisa)

1 h=0(t)— 5u€L{hT(h+l)T( s,a)

(ii) 14~ K
< A
Olocal + —(5— 2 (t)- ﬁ<h<¢ || hrlloo Z

< _ A 159
Olocal + 9 ()= 5<h<¢ ” hTHOO7 ( )

where (i) holds according to (53b) of Lemma 6, (ii) holds when 7 is small enough that
n < 17;7, and (iii) follows from (53b) of Lemma 6.

Now we have the bounds of E3%(s,a) and E?*(s,a) separately obtained above. By
combining the bounds in (154), we can claim the advertised bound, which completes the
proof.

C.4.1 PROOF OF (157)
We prove the claim by showing

Ay (5, a5 () = djyy (5,07 () S V() = Vif(s) < A (s,a%(5)) = dify o (s, a%(5))

for any s € S. The upper bound is derived as follows:

V*(s) = Vif(s) = Q*(s,a*(s)) — Qi(s, ag(s))

(87 a*(s))

= Q"(s,a"(s)) — Q) (5, 0" (5)) — (Qui(s,a"(5)) — Qyi) (5, a”(s))) (161)
& o (5.0°(5))

|

>*
—~
VA
IS
—~
VAl
~—
~—
\

using the fact that Q¥ (s,ak(s)) > QF(s,a*(s)). Similarly, the lower bound is obtained as
follows:

= Q"(s,a"(s)) — Qﬁ(&aﬁ(S))

= Q"(5,a"(s)) = Qfuy (5,0, (5)) + Q () (51 ) (9)) — ( ay(s))

= Q" (s,a%(5)) — Qi) (5,01 (5)) + (S,Gf(u)(S)) () (8, @ (5)) = dify) o (5, a3 (5))

> Q" (s, ay( (5) — Qi (S, ab(u (s)) + Q () (51 @) (9)) — L(u)( @y (5)) = i) (5, a5 (5))
> Q" (5, a5, (5)) = Qi (5, 44 () = iy u (5, a3 (5)) (162)

using the fact that Q*(s, af(u)(s)) < Q*(s,a*(s)) and Qf(u)(s,af(u)(s)) > Qf(u)(s,aﬁ(s)).
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C.4.2 PROOF OF LEMMA 19

For any 0 <u < T, k € [K], and (s,a) € S x A, we can write the bound as

Qi(s,0) = Quy(ssa)l <20 > ALt |1 D (Pials,a) = P(s,a))V*|.

UEZ/{L’“(u)m(s,a) ueuf(u)’u(s,a)

=B ::EQ
(163)

The inequality holds by the local update rule:

Qb41(s,a) = Q5(s,a) = (1 = n)Qy(s,a) +1(r(s, a) +7Pr (s, a)Vy) — Qi(s, a)
=1(r(s,a) + 7Py (s, )V — Qi(s, a))
= 1(yPy(s,0)VF = 7P(s,a)V* + Q*(s,a) — Qy(s, a))

= Py (s,a) (V) = V*) + (Pl (s,a) = Ps,a))V* +nAf(s, a),
(164)

and

Qu(s,a) = Qi (s, < > [Qbyi(s,0) — Qi(s, a)

Euf(u)‘u(s,a)

< Y (WAl @)l +wmlPhals o) (VE - V)
Elxlf(u)’u(s,a)

+hm o Y. (Pha(s,a) — P(s,a)V*
EZ/{f(u)Yu(s,a)

< Y 22+ n Y (Pha(s,a) = P(s,a))V*,
vGL{Lk(u)M(s,a) vEL{L’“(uLu(s,a)

(165)

where the last inequality holds since ||P¥, ;(s,a)|1 < 1 and [|[VF = V*|ls < [|QF — Q*||oo (cf
(31)).

Now, we shall bound each term separately.

e Bounding Bj. The local error ||A¥||, is bounded as follows.

Lemma 20 Assume nT < % For any given 6 € (0,1), the following holds for any
ke[K]and0<u<T:

2 |S|| AT K
AF Nl < IIA% o \/1 e~ 1
[Agllos < 1Al +1_7 nlog —— (166)

with probability at least 1 — 9.
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Then, combining the fact that the number of local updates before the periodic aver-
aging is at most 7 — 1, we can conclude that

2 N A < 20Ul L (sa)]  max A

VEU (0 (5:0) VU ) (5
2 S||AITK
< 2n(r —1) (\IAf(u)\loo + 1_7\/77 log |H5|) -(167)

e Bounding B;. Exploiting the independence of the transitions and applying the
Hoeffding inequality and using the fact that \L{Lk(u) (s,a)] <7 —1, By is bounded as

N

follows:
S||A|ITK
Bo<w | Y Ph(s.)— P(s,a)veliog S
veuf(u)’u(&a)
291 \/ S| AITK
< 20 (= 1)log S22 1
ST\ Dle—5 (168)

for any k € [K], (s,a) € S x A, and 0 < u < T with probability at least 1 — J, where
the last inequality follows from ||V*||o < ﬁ, |P¥ ((s,a)||1, and || P(s,a)|:1 < 1.

By substituting the bound on B; and Bj into (163) and using the condition that nT < 1,
we can claim the stated bound holds and this completes the proof.
C.4.3 Proor or LEMMA 20

For each state-action (s,a) € S x A and agent k, by invoking the recursive relation (49)
derived from the local Q-learning update in (23), Afj is decomposed as follows:

k S,a S,a
Ab(s,a) = (1= p)NwnGOAK (s ay 4y ST g1 - )Nl (P(s,a) — PE (s,0)V*
vel” (s,a)
v(u),u

=:D1

=:Do

k S.,a *
+y o Y @ =) NeraBOPE (s a) (V- V).
velx{f(m,u(s,a)

—=:Dg
(169)
Now, we obtain the bound on the three decomposed terms separately.
e Bounding D;. The term D; can be bounded by
k
D1 < (1 =) o O AK oo (170)

e Bounding D,. By applying the Hoeffding bound using the independence of transi-
tions, the second term is bounded as follows:

k S,a SATK
Dol | Y = (e )oY

vEZ/ILk(u)’u(s,a)
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v S|IAITK
< =
=7 7\/7710{; 5 p (171)

with probability at least 1 — §, where the last inequality holds due to the fact that
IV loo < ﬁ and

k s,a
> (=N <P (1 -+ (1)t ) <
veuk (s,a)
v(u),u

See (Li et al., 2021b, Lemma 1) for the detailed explanation of the bound.

e Bounding Dj. Lastly, we bound the third term as follows:

k
Dal<y D =)V CNPE (s, 0) o[V = Vil
velr (s,a)
v(u),u

k
<y Y -V Ak, (172)
vEZ/lLk(u%u(s,a)

where the last inequality follows from the fact that |[P¥ (s, a)|l; = 1 and

Qu(s.a*(s) — Q*(s,a%(s)) < Vi (s) = V*(s) < Qy(s, al(s)) — Q" (s, ai(s))

for any s € S, where we denote a*(s) = argmax, Q*(s,a), af(s) = argmax, Q% (s, a).

By combining the bounds of the above three terms, we obtain the following recursive
relation:

Nk , k
Ab(s, @) < (1 =)0 AR o+ pry Y p1 =)V AL)
UEML’C(u)yu(s,a)
(173)

Using the recursive relation, we will prove that the following claim holds for any 0 <m < 7
by induction:

1A tmlloo < 1AT lloo + 20, (174)

which completes the proof of Lemma 20. First, if m = 0, the claim is obviously true.
Suppose the claim holds for ¢(u),¢(u) + 1,---,¢(u) +m — 1. Then, for u = ¢(u) + m, by
invoking the recursive relation (173), we can show that the claim (174) holds for m as
follows:

|Af(u)+m(57 a)l
k s,a k s,a
<@ =oAL ot oty Y =N GO (AR, s + 20)

vEULk (s,a)

(u)w

Nk S,a k s,a
= ((1— )Nl 4 § n(1 —m)Nerral ))IIAf(u)Iloo
veur (s,a)
v(u),u
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FA+2y > =N,
velx{f(u),u(s,a)

k S,a k S,a k S,a
= (=) (1= (1= M) AT oo+ (14 2y (1= (1= ) )

< (1A oo + 2p, (175)
where the last inequality holds since
Nk s,a T 1 - 1
(1= > ()T = ()7 2 5

: 1
provided that nT < 3.

C.5 Proof of Lemma 9
First, using the fact that
1<(1— n)_Ntk—'r,t(Sva) <elm <3
given that n7 < 1, by the definition of af (cf. (27)), we derive (67a) as follows:
(1 — ) Neere(s0)

IV EEe

— 7]\[1677—Y (S7a)
cA—n) e 3
- K - K

< 1 < af(s,a)
3K = 7 > oS, a
3K Kma.Xk/e[K}(]_ — n)_Ntkfﬂ—,t(Sva)

Moving onto (67b), it follows that

¢()-1
C&O,t(&a): H )‘hT,(h+1)T(57a)
h=0
d(t)-1 K i
=TI S abi (ssa)(1 — gy
h=0 k=1
1 o(t)—1

911 K

h=0 Z?:l(l — ’I’])_N;:‘r,(h+1)7—(57a)
)—1 .

T K vk
— % k=1 Nhr,(h+1)r(s’a‘)

(i) 2¢
<

h=0 (1—n)

= (1= )D& E N (40) (] oy S N (o)

where (i) follows from the definition of of (cf. (27)), (ii) follows from Jensen’s inequality.
Next, we obtain (67c) through the following derivation:

K

K
Z Z @Z,t(sja)zz Z "Nuzlj,t(saa)

k:lueu(lit(&a) k=1 h=0 uel,{;:_r,(h+1)7_(57a)
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K (-1 v $H)=1
= Z O‘I(Ch+1)r(57 a) Z n(1—n) ur1,(hr1)r (5:0) H iz (14+1)r (8, @)
k=1 h=0 UGZ/{},:T’(}L+1)T(S,(Z) I=h+1
K #(t)—1 N ~
= Z O/(Ch—l—l)’r(s a) <]_ — (]_ — 77) h‘r,(thl)T(s:a)) H )\lT,(l-‘rl)T(S’ CL)
k=1 h=0 I=h+1
" ¢(t)—1 [o(t)-1 K o)
= H )\l7_7(l+1)7.(8, CL) Z a(h+1) ( ) (1 — (1 — 77) hr,(h+1)T )
h=0 \i=h+1 k=1
(i) ¢(t)-1 [o(H)-1 K N :
= AlT,(l-ﬁ-l)T(S? a) <1 — Za(h+1) (3 a)(l ’r]) hT (h+1)7’( ) )
h=0 \l=h+1 k=1
¢(t)—1 [o(t)-1
=y Atz (141)r (8, ) (1 = Ar, (1) (8 a))
h=0 \I=h+1
O 1 Xor (5, @) Ar2r(5,0) -+ Agaey—1yrt (5, @) = 1 — (5, ), (176)

where (i) follows by reordering the summation, (i) follows by S"r—, af(s,a) = 1, and (iii)
holds by cancellation.
In a similar manner, (67d) is derived as follows:

K K -1
Yood Gllsa) =) Yo @hlsia)
k=1 uGUé“’h,T(s,a) k=1 h=0 UEZ/{h (h+1)7—( a)
R —1 [é(t)— _
= Z H N (11)7 (5 @) (1 - )‘hT,(h-i-l)T(S?a))
h=0 \l=h+1
B(t)—1

< H er,(z+1)r(3»a)
1=K

S (1 )KZk 1 h’q—t(s CL)

9

where the last inequality follows from

(1)~ (1)1 K o)1 1
)\ZT +1)T 5 a) =
111 ey hgz’ Y (1 - )~ N ey () hlz_[h’ (I—mn) ¥ e 2t Vi e ()

due to Jensen’s inequality.
Finally, with basic algebraic calculations, (67e) is derived as follows:
p(t)—

K K )—1
Yo @isa)?=)" > > (@ 4(5,a))?

k=1 ue[/{(lit(&a) k=1 h=0 uEZ/{;:T’(h+1)T(S7a)
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K ¢(t)-1 B(t)—1 . an?
— Z Z Oé(h+1 3 a))Q H )\l’r l+1)7’ S a) Z (7”(1_77) u+1,(h+1)T S,a)
k=1 h=0 I=h+1 WEUE oy (5:0)
o K Wl o)1 2 o -
ST | ER S
k=1 h=0 I=h+1
2
i o(t)—1 K
11 6 o)~ ) k N;f (ht1) (s,a)
§: I A0 | S alny (s.a) (1= (1= ) 0)
h=0 l=h+1 k=1
(iii)
< o
- K

where (i) holds because

)Q(N}}fr,(thl)‘r(S’a))

Nk , 1—(1—n
S = ey el - (1)
ueu}’fT,(h-{»l)T(s’a)

S ’r](]_ — (]_ — n)Z(NfI:T,(h+1)T(S’a)))
< 2n(1 = (1= ) Mmoo G0y 177)
given that 2z — 2 > x for z <1 and (1 — 2?) < 2(1 — x), (i) follows from (67a), and (iii)

follows from the same reasoning of (176).

C.6 Proof of Lemma 10

Without loss of generality, we prove the claim for some fixed 1 <¢ < T and (s,a) € S x A.
For notation simplicity, let

T (s.a) = 4 Dua(a)(P(s.0) = Pl (s )V (s, 0) = (s0) (178)
) " otherwise ’
where
ok 11 — ) Mo (0) KO y
wu?t(sj a) ) K K _NFK (s,a)’ (179)
h=¢(u) Zkz’:l(l - 77) hr,(h41)7\5

then E?(s,a) = v Zle S 10 7" +(8,a). However, due to the dependency between P (s a)
and @5775(3,@) arising from the Markovian sampling, it is difficult to track the sum of
Y= {gﬁ,t(s, a)} directly. To address this issue, we will first analyze the sum using a collec-
tion of approximate random variables y = {@\ku’t(s, a)} drawn from a carefully constructed

set )A/, which is closely coupled with the target {gj{jvt(s, a) Yo<u<t, 1.€.,

K t—-1

D(y,y) = Z Z @Z,t(sa a) — @\5715(87 a)) (180)

k=1u=0
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is sufficiently small. In addition, 7 shall exhibit some useful statistical independence and
thus easier to control its sum; we shall control this over the entire set . Finally, leveraging
the proximity above, we can obtain the desired bound on ¥ via triangle inequality. We now
provide details on executing this proof outline, where the crust is in designing the set ji\
with a controlled size.

Before describing our construction, let’s introduce the following useful event:

t—MTt K

1

By = ) {4uavg(s,a)KMT§§ N57U+MT(s,a)§2uavg(3,a)KMT}, (181)
u=0 k=1

where M = M(s,a) := LWJ Note that M > m since nT < 1/16. Com-
bining this with the assumption n < m (see (78) for the definition of t(s,a)),
it follows that M7 > tw(s,a) always holds. Then, By holds with probability at least
1-— W according to Lemma 15. The rest of the proof shall be carried out under the

event B;.

Step 1: constructing ). To decouple dependency between PE.\(s,a) and &% (s, a), we
will introduce approximates of @&(s, a) that only depend on history until u by replacing a

factor dependent on future with some constant. To gain insight, we factorize szji(s, a) into
two components as follows:

o K DIt Bl
b= I | o B
h=ho(u,t) \ D_py—1 (1 —m) “hnDr

o(t)-1 K

_NF
h=o(u) = (1= 1) Niir () (5:0)
o 25:1(1 - n)iN}lj;’(thl)T(s’a) 77(1 — n)_Ng(u)q—,qul(S,a)

= 1l K K

h=ho(u,t)

n(1 =) Moran
K

X

dependent on history until u

o(t)-1 K

h=ho(u,t) 2521(1 —n)

-~
dependent on history and future until ¢

X

k/
Nyr (ha1yr (8:0)

¢(u)—1 2521(1 _ n)_N;fT,(thl)f(S’“) n(1 — n)*N!;(u)r,uH(Sva)

=| 1I K K

h=hgo(u,t)

~
=xk (s,a)

Wut) [ o(t)—(1-1)M—1
X ll_[ H

_ N
=1 \ h=max{0,¢(t)—IM} 2521(1 - 7]) hT’(h+l)T(S’a)

K

(182)

=z(s,a)

71



Woo, JosHi, AND CHI

where we denote I(u, t) == [“=%7] and ho(u, t) = max{0, ¢(t) — {(u, t)M}.
Motivated by the above decomposition, we will construct y by approximating the future-
dependent parameter z(s,a) for 1 <1 < L, where L := min{[ -1, [641log (K/n)]}. Using

K k
k=1 Nhf,(h+1)f(57a)
K

<

the fact that 1 + 2 < exp(z) < 1+ 2z holds for any 0 < z < 1, and 7
nT < 1, and applying Jensen’s inequality,

K K
Zk/:]_ NhT,(thl)T(S’ a) K
eXp —77 Z i
" Z5:1(1 - U)_N’LT,(hH)T(Sﬂa)
K
- 25_1 enN/f;,(hH)T(s»a)
> 1
B K ZK/: Nk; T(Sﬂ)
1+2T’Zk/:1 k'=1 h[((h+1)
K K
> exp | —2 2k =1 Npir,(n1)7 (5, @)
pu— p "7 K ‘

Therefore, for 1 <[ < L, under By, the range of z;(s,a) is bounded as follows:

1
zi(s,a) € [exp(—élnuavg(s,a)MT), exp(—4nuavg(s,a)MT)} .

Using this property, we construct a set of values that can cover possible realizations of
z1(s,a) in a fine-grained manner as follows:

1 ‘
Z = {exp <—4’I7Mavg(8,a)MT - 2}?) ‘z €Z: 0<i< 4K,uavg(s,a)MT} . (183)

Note that the distance of adjacent elements of Z is bounded by /K e~ VAnpavg(s,0) M7 - ( the
size of the set is bounded by 4K piavg(s,a)Mt. For | = L, because the number of iterations
involved in zr,(s, a) can be less than M, it follows that z7,(s,a) € [exp(—4npavg(s, a)MT), 1].
Hence, we construct the set

Zy = {exp <_ZIZ> ‘Z €Z: 0<i< 4K,uavg(s,a)MT} . (184)

In sum, we can always find (21,---,%,---,25) € 271 x Zy where its entry-wise distance
to (z1(s,a))ie(—1) (resp. zL(s,a)) is at most n/Ke=t/4mag(s:)MT (rosp n/K).

Moreover, we approximate xﬁ(s, a) by clipping it when the accumulated number of visits
of all agents is not too large as follows:

. K
~k (s,a) = {IZ(S’ a) if Zk:l Nl{fo(u,t)Tﬁ(u)T(s’ a) < 2K piavg (s, a) M7 . (185)

xu .
0 otherwise

Note that the clipping never occurs and 7% (s, a) = 2% (s,a) for all u as long as By, holds.

To provide useful properties of Z¥(s,a) that will be useful later, we record the following
lemma whose proof is provided in Appendix C.6.1.

72



THE BLESSING OF HETEROGENEITY IN FEDERATED Q-LEARNING

Lemma 21 For any state-action pair (s,a) € S X A, consider any integers 1 <t <T and
1 <1< [4=], where M = | Suppose that 4nt < 1, then T¥(s,a) defined in
(185) satisfy

T el
8nhavg (s,0) 74"

Vu € [ho, 6(t) — (1 — )M) = #(s,a) < 9?’7 (186a)

o(t)—(I-1)M—1

K
Z Z Z '/%'\1]3(37 a) < 1677,Uavg(3, G)MT, (186b)

= k =
h=hg uel/{hﬂ_’(h+1>_r(s,a)k 1

$(t)—(1-1)M—1

K
> S S @) < 64”2’“‘“3?’“)]” T (1s60)

h=ho ueuf’ff,(h+1)T(s’a) k=1
where hg = max{0, ¢(t) — IM}.
Finally, for each z = (21, ,21) € 2171 x 2y, setting ©F (s, a; 2) = Th(s,a) Hﬁ(:ul’t) 2,

an approximate random sequence Y, = {gj’u‘:,t(s, a; z) fo<u<t can be constructed as follows:

~k 65 t(87 a; Z)(P(S, a) - P?.]erl(Sv a))vuk if (357 aﬁ) = (Sv CL) and l(u7 t) < L
yu t(87 a; Z) = ’ . .
’ 0 otherwise
(187)

Ift > LMr, for any u < t — LM, ie., l(u,t) > L, we set ’y\ku’t(s,a; z) = 0 since the
magnitude of (Tjﬁi(s, a) becomes negligible when the time difference between u and ¢ is large
enough, and the fine-grained approximation using Z is no longer needed, as shall be seen
momentarily. Finally, denote a collection of the approximates induced by ZX~1 x Z as

V={j.: zeczZl1x2z).

Step 2: bounding the approximation error D(y,y,). We now show that under By,
there always exists 7, := ﬂz@ € Y such that

129 [Ln (188)

D~/\

To this end, we first decompose the approximation error as follows:

min D(y,¥-)

Y=€Y
K t—1
— 3 E ~k ~k .
o 2%13111 =z Z (yuat(s’ (1) - yu,t(’s) a; Z))
ZESTTXE0 LT um0
K t—LM7—1
E ~k ~k .
S max Z yu,t(sﬂ CL) - yu,t(sa as; Z)
zcZL-1x 2z,
k=1 u=0

~~

=:D1
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mln
zEZL

XZQ

Z Z yutsa yut(saz)

k=1u=t—LMT

=:Do

e Bounding D;. This term appears only when ¢t > LM. Since ﬂﬂt(s, a; z) = 0 for all
u <t — LM regardless of z by construction,

K t—LMt-1

= a- )KZ

=
INZ
=

T

where (i) holds since ||P(s,a)|1, ||P*(s,a)ly < 1 and |V¥ ||l
(i) follows from (67d) in Lemma 9, (iii) holds due to By, and (iv)
log = given that npave(s,a) M1 > 1/16.

4

L>6410g* W

e Bounding Ds. Since 7%(s,a)

min E E ytsa yt(saz)
zeZL-1x 2, “ “

k=1u=t—LMT

mln E E
ZGZL 1xZg

k=Luef ;. (s,a)

2

B(t)—
1- Y zleBlanO z_: Z

<

where the last inequality holds since ||P(s,a)|l1, |P¥(s,a)|l1 <1 and [|[VF || <

(cf. (30)).

Z Z gﬁ’t(é’, a)
=0

~k
‘wu,t

Dua(s,0) || P(s, a) —

2.

1 “EM(I)C,FLMT(Sva)

M-1

—IM

Note that for any given {z (s, @) }ic(r),

ZL=1 % Z, such that |z — zl(s,a)] <

- 3//\5,15(5) a; Z)

(s,a)

P

U

k
i1(5, ) [1[Vif oo

U.):it(S, (L)

t LM, +(s,0)

o~ i Have (5,0) LM T

< L (et (30)),
holds because

= 2% (s, a) when Bj; holds, in view of (187), we have

P

U

— W5, a3 2)|[1P(s,0) = P (s, 0) 1| Vif o

1

T—y
under By, there exists 2* = (27,...,%],...,2]) €

n

7 exp(—1/4npavg (s, a) M) for [ < L and

74
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|27 — z1(s,a)] < k. Also, recall that z(s,a), 2z} < exp(—1/4npavg(s,a)MT) for
| < L and z1(s,a), zj < 1. Then, for any [ < L it follows that:

l
IECEEIE:

l

l -1
<(‘Hzl/sa—zHl/sa‘ —l—‘le?ﬁ—HE;

)

I'=1 I'=1 I'=1 /=2 I'=1 I'=1
l
< exp ( - —(l — 1)?7Man s, a MT) Z %
1 L
< exp ( = 7= Dnptavg (s, a)MT) I?

Then, applying the above bound and (186b) in Lemma 21,

K t—1
Z Z gﬁ,t(sva) _@\S,t(sacu Z)

k=1u=t—LMT
o(t)—(1-1)M -1 K
ShY Y Y Sabes
=1

h=a(t)—l uEZ/{;ny(hﬁ_l)T(s,a) k=1

min
zezZLl-1x 2z,

l

l
H Zl/(S,CL) - H /2’7;
I'=1

'=1

$(t)—(1—1)M—1

L K
e (— 0= D) Y > Yk
=1 k

h=¢(t)—IM ueuil;_’(h+l>_r(s,a) =1

IN
|

2 Ln 1
< el 16 a)M
S T2 K 1= oxp(1/Apiaeg(s, a)iir) L OMHave(s: )MT)
0 2 Ly 8 256 L)

160 tavg (s, a) MT <

11— 'an,uavg(saa)MT (1 - ’7)K7

where (i) holds since 1/4npavg(s,a)M7 <1 and e ® <1 — iz for any 0 <z < 1.

By combining the bounds obtained above and using the fact that % <land L <
64 log (TK), we can conclude that

. o 2n 256Ln 129 [Ln
min D(y, Jz) < + < =.
ey T (1-yK (1-9K 1-4VK

Step 3: concentration bound over ). We now show that for all elements in JA/ ={y:
z € ZI71 x Zy} satisfy

SN Bk (saz)| < 624 /1 1og () log HEIAITK (189)
k=1 u=0 7 (1 ) K J

with probability at least 1 — W. It suffices to establish (189) for a fixed z € 271 x Z

. s )
with probability at least 1 — STATY where
V= 2571 x 20| < (4K pravg (s, 0)MT)" < (K /m)" < (TK)*. (190)
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For any fixed z = (21, ,21) € 2171 x Zq, since @ (s, a; 2) = Th(s, a) Hﬁ(:ul’t) z; only
depends on the events happened until u, which is independent to a transition at u + 1.
Thus, we can apply Freedman’s inequality to bound the sum of @\ku,t(s, a; z) since

E(7g (s, a; 2)[Vu] =0, (191)

where ), denotes the history of visited state-action pairs and updated values of all agents
until u, i.e., YV, = {(s¥,ak), VF }re[K)v<u- Before applying Freedman’s inequality, we need

v ’U
to calculate the following quantities. First,

U(u,t)

Buna) = Bk 0i2)] < 3n) [T 31PG0) = Pl o) IV
187
< 0 (192)
(1=7)K

where the last inequality follows from || P(s, a)||1, [|P¥(s,a)|l1 < 1, |[VF ||l < ﬁ (cf. (30)),
2 <1, and (186a) in Lemma 21. Next, we can bound the variance as

-1 K
Wils,a) = > > El@i(s,0:2)° 0]

u=t—LMT k=1
L é(H—(-1)M-1 z

-y ¥ Z Y. @isa) [] 7 Varpaw (V)

I=1 h=max{0,6()~IM} k=TuelUf . (sa) =1

R AN GRS o
<(1_7)2;(l[[12,,> SOy Y @ew

l h=maz{0,p(t)—IM} k= luel/{h (ht1)r (s,a)

(i) 2 L l 64172 ttavg (s, a) M T
< /Z\Q/ avg\$,
T (H )R
(1) 12802 avg (s, a) MT
< Kl avs Zexp (—=1/2(1 — 1)npavg(s,a) M)
128n2uavg(s,a)MT 1
- K(1—~)2 1 — exp(—1/2npavg(s,a)MT)
(iv) 12812 14y M 4 12
< 1287 pravg(s, 2 M7 L R— (193)
K(1-7) Npavg(s, a) M7 K(1—7)
where (i) holds due to the fact that |[Varp(V)|leo < [|P[1([[V]eo)? + (IP)1]]V ]|e0)? < ﬁ

because ||V|oo < ﬁ (cf. (30)) and ||P|1 < 1, (ii) follows from (186¢) in Lemma 21,
(iii) holds due to the range of Z and 2 is bounded by exp(—1/4nptavg(s,a)MT) and 1,
respectively, and (iv) holds since e™® < 1— 1z for any 0 < z < 1 and 1/2n1avg(s,a) M7 < 1
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Now, by substituting the above bounds of W} and B; into Freedman’s inequality (Asee
Theorem 12) and setting m = 1, it follows that for any s € S, a € A, t € [T] and g € ),

K t—1
Zzgku,t(s’a;z)
k=1 u=0

2 O ~
S 8maX{Wt(S,a),L}IOgM+éBt(S7a)logM

m ) 3 5

77 AIS||AITIY| | 247 4181 ATY)
\/096K<1—v>2 5 tRa-7 % s

i) 78 nL . 4|S||A|IT?K
= i 194
Sa-pVE 5 (194)

with at least probability 1 where (i) holds because |Y| < (TK)X given that

-0
ISIAITY
Nitavg (s, a)MT < 1/4, and % log W# < 1. Therefore, it follows that (189) holds.

Step 4: putting things together. We now putting all the results obtained in the
previous steps together to achieve the claimed bound. Under By, there always exists

Uz = Ua(y) € Y such that (188) holds. Hence, setting ¢ = 2064 \/ log (TK) 1ng
K t-1 K t—1
Zzyutsa Zzyutsaz) + D(Y, J=)
k=1u=0 k=1u=0
78 L 4 2K 12 L
< nL log |S||A| N 9 [Lny
(1-— K 1) 1—-vV K
2 4 4 2K
06 ¢ log USIAIT"K. (195)

where the second line holds due to (189) and (188), and the last line holds due to L <
64log (T'K). By taking a union bound over all (s,a) € S x A and t € [T], we complete the
proof.

C.6.1 PrOOF OF LEMMA 21

For notational simplicity, let h be the largest integer among h € (hg, ¢(t) — (I — 1)M) such
that

Z hoT,(h— 1)7' S a) < QK,U,an(S a)M (196)

Then, the following holds:

K

Z ThT Z<h1*5a+z hr(hlsa)

k=
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< K7+ 2K plavg (s, a) M. (197)

Also, for the following proofs, we provide an useful bound as follows:

K NhT (h+1)r(5 @) ZK eanlf;»(thl)T(s’“) Z[f Ny (s,a)
r <14 op k=1 (b)) S 198
2_: < = <1+2p i (198)
A N (5, a)
< exp (277 P h}éhﬂ) > )

which holds since 1 + z < e* < 1+ 2z for any = € [0, 1] and nN,’f;(hH)T(s,a) <nr <1
According to (185), for any integer u € [h7,t — (I — 1)MT7), 2%(s,a) is clipped to zero.
Now, we prove the bounds in Lemma 21 respectively.

Proof of (186a). For u € [hoT, h7),

RO« 2 D L ) I 1O ) B iaan
xu(sva)_ H K K
h=ho

2 Mf[_1 I R AR

K K
h=hgo
1 277 377
<eXp< Z hor(h r 5“))[(
k'=1
(iii) 3p (iv) 9
< exp(4npavg (s, a) MT)— i o (199)

K - K’
where (i) holds since (1 +n)* < e and nN ¢(U)T wi1(8:a) <mr <1, (ii) holds due to (198)

and the fact that ¢(u) < h — 1, (iii) follows from the definition of A in (196), and (iv) holds
because 41 ptavg(s,a)MT < 1.

Proof of (186b). By the definition of &, it follows that
Ht)—(1—-1)M -1 K h—1

K
Z Z Zfﬁ(&a) = Z ka(s,a).

h=hg uEL{}’fT’(h_H)T(s,a) k=1 h=hg ueuh (ht1)r (s,a) k=1

Using the following relation for each h:

K
Z Zxﬁ(s,a)

ueufT’(hH)T(sﬂ) k=1
k
h1 _Nk/ ’ K — _NhT,u+1(S’a)
_ H 25:1(1 —n) Wr (h41)7 (559) Z Zueu}jﬂ(hﬂﬁ(s,a) n(l—mn)
K K
=ho k=1
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Zk’ 1 1 — ) N’If',ﬂ(h”rl)f(s @ K 1 _ NhT (h+1)f(5 a) -1
- K Z
=1
SE_ (1= gy e () Al Ky Ny (50)
- H K 11 I :

and applying (198), we can complete the proof as follows:

& i 2031y NE e (5:0)
Z Zxﬁ(s,a) < H exp( - hlg(h ) > -1

(TN e
< exp -
K

6)
< exp (477,Uavg(87 a)MT + 2777_) -1

(i)

< 161 tavg (s, a) M,
where (i) follows from (197), and (ii) holds because e* < 1+ 2z for any = € [0,1] and
20T < Anpravg (s, a) Mt < 1/2.

Proof of (186¢). Similarly,

o(t)—(I-1)M -1 K h—1 K
> > > @i(s,0)* = > PCACHNE
h=hg uell}'fﬂ(h+1)7_(s,a) k=1 h=ho uGL{hT (ht1)r (s,a) k=1

Using the following relation for each h:

K
Y. D (@)’

k =
ueuhT,(h+1)T(s7a) k=1

— -Nj ? 2 — 72N}:T u (870’)
_ ﬁ 25:1(1 —n) Nytr w41y (5:8) i zueu}’j_r’(h+1)7_(s,a) n°(L—n) hrutl
a 2
K k=1 K
_ Ak 2 P
< hl‘[l K (1 =) e 59 i(: (1 = )~ 2V ey () _ 1)
N K K2

IN
|

_ K / 2 K /
n hl—f exb | 2 Zk’:l N/f/T,(h/H)T(S?CL) oxo [ 4 Zk’ 1N;§T(h+1) (s,a) _q
I pa Pl 2n K p | 4n K

=no

K / k'
_ Q ex 4 k=1 Nf]:oT,hT(S’ a) ox 4 k' 1 NhT J(h+1)T (S’ a) -1
K p | an K Pl &n K
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K K K /
=1 exp | 4 2= NhOT’(h+1)T(s’ ) —exp | 4 2k=1 NﬁOT’hT(S, i (200)
- K p | an K p| <" K )

where the inequality is derived similarly to (198) under the condition 2nT < 1, we can
complete the proof as follows:

E*l K ZK Nk/ B (S a)
k'=1 5
> X YEha) < g e |4 . 1
h=ho ueuty_ 14, (s,a) k=1
@)
< % (eXp (8nﬂavg(3, a)M’]‘ + 4777—) _ 1)

) 641 ravg(5. @) M T
- K b

(201)

where (i) follows from (197), and (ii) holds because e* < 1+ 4z for any = € [0,2] and
At < 8nptavg (s, a) Mt < 1.

C.7 Proof of Lemma 11

The proof follows a similar structure to that of Lemma 8. We omit common parts of the
proofs and refer to Appendix C.4 to check the detailed derivations. First, we decompose
the error term as follows:

K
Ef(s,a) =) G (s,)P(s,a)(V* = V)

— k
F=Luels (40)- - (5:0)

=:E}%(s,a)

K
+v> > & (s, a)P(s,a)(V* = VF). (202)

F=Lu€Ufly 1) pyra(5:0)

=:E3"(s,a)

We shall bound these two terms separately.

e Bounding E}%(s,a). First, the bound of E}%(s,a) is derived as follows:

K
|BY(s,a) <) > Gua(5,@) [ P(s, @) [1l[V* = ViFlo

F=Luels (40— py- (5:0)
2

L=
(2) 2 1 Havgﬁ"' 203
_ — 4
<1 _7( n) : (203)

—~
—-
=

(1 - 77)% E;}f:l N&(t)—ﬁ)r,t(&a)

IN
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where (i) holds due to Lemma 9 (cf. (67d)), and (ii) follows fromapplying Lemma 15
that with probability at least 1 — 6,

K BT pay
ZN b))y ($:0) 2 —— =

holds for all (s,a) € S x Aand 0 <u < v <T aslong as ST > t.

e Bounding E}®(s,a). Combining (157) and Lemma 19 to bound ||[V* — V¥, we
bound E(s,a) as follows:

K
Elsal <> > Sl v v

k=1 yecu*

00
(e()=B), +(5:2)

K ¢o(t)-1
<y > S @ (s a) (14 20m) | A llso + Tlocal)

k=1 h=¢(t)— 5u€l/lh (h+1)_r(s a)

147
< —_— A 204
Olocal + 9 $(t)— ﬂ<h<¢(t H hTHOO ( )

where we denote ojgcal = 87% V;_l log w for notational simplicity, and the

. . : 1
last inequality follows from Lemma 9 (cf. (67c)) and the assumption that n < ;=1

Now we have the bounds of E3%(s,a) and E?*(s,a) separately obtained above. By
combining the bounds in (202), we can claim the advertised bound, which completes the
proof.
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