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Abstract

Research studies have presented an unappreciated relationship between intimate partner violence (IPV) survivors
and symptoms of traumatic brain injuries (TBI). Within these IPV survivors, resulting TBIs are not always identified
during emergency room visits. This demonstrates a need for a prescreening tool that identifies IPV survivors who
should receive TBI screening. We present a model that measures similarities to clinical reports for confirmed TBI
cases to identify whether a patient should be screened for TBI. This is done through an ensemble of three supervised
learning classifiers which work in two distinct feature spaces. Individual classifiers are trained on clinical reports

and then used to create an ensemble that needs only one positive label to indicate a patient should be screened for
TBI.

Introduction

Intimate Partner Violence and Traumatic Brain Injuries

Intimate partner violence (IPV) can be defined as behavior that “causes physical, sexual or psychological harm,
including physical aggression, sexual coercion, psychological abuse and controlling behaviors” in an intimate
relationship.' This sort of harm is very common with one in three women and one in four men having experienced
severe physical [PV at least once in their lifetime.? It is estimated that between 35%-90% of IPV survivors have
experienced at least one head related injury.* These head injuries can be broadly classified as traumatic brain injury
(TBI). TBI can be described as an “alteration in brain function caused by external force.” Symptoms of TBI include
altered mental state, loss of consciousness, and post-traumatic amnesia.’ Loss of consciousness is regarded as an
important symptom of TBI, but is not present in all brain injury cases.® TBI resulting from IPV is an injury that is
often underreported.” This is due to IPV being underreported, and as a result, IPV induced brain injuries remain
undetected. When presenting to the emergency department, some studies have found that 72% of domestic violence
victims were not identified due to a lack of visible external injuries.® Similarly, IPV related TBI is estimated to be 11-
12 times greater than the published incidence for other forms of TBI.> A vast majority of the literature on IPV is
centered around women, with the data related to men being minimal." Thus, the field has demonstrated a need for a
solution to the underreporting of IPV, IPV related TBI, and representation of men in datasets.

IPV-TBI Screening Tools

The World Health Organization has validated several screening tools to identify TBIs, but none of these tools have
been adapted to screen for TBI in the context of IPV.? Validated TBI screening tools phrase their survey questions in
the context of the situation where a brain injury might have occurred. A modified version of the Brain Injury Screening
Questionnaire (BISQ) has been proposed to screen for TBI in the context of IPV. Initial testing of BISQ-IPV indicates
that screening in the context of IPV reveals additional brain injuries when compared to BISQ." This initial testing has
not been validated and so as mentioned before, it cannot be used as a validated screening approach. Similarly a
modified version of the HELPS screening tool was used to estimate how often women were at risk for a brain injury.'
This method provided a stringent criteria for identifying brain injury by asking about blows to the head, treatments
received at the emergency room, loss of consciousness, and problems related to head injuries.”> Similar to the BISQ-
IPV tool it is not a validated screening tool. The Boston Assessment of TBI-Lifetime (BAT-L), a validated screening
tool used to identify lifetime TBI in post 9/11 veterans, was adapted to IPV patients." Its results were compared to a
well-validated Ohio State University TBI Identification Method (OSU-TBI-ID) and results indicated good
performance.” This screening tool relies on a forensic approach that requires a patient to remember the events of a
brain injury. Given that a symptom of brain injuries is posttraumatic amnesia they may not remember the event,
thereby impacting the screening’s results. As mentioned before, patients are not always likely to report their symptoms,
and a screening tool heavily reliant on chronological order and differentiation between symptom etiology may not be
entirely useful. A tool called CHATS from the Ohio Domestic Violence Network is in the process of being validated.'
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Electronic Health Record Analysis

Diagnosis or identification of diseases through the use of clinical text has been done in other medical disciplines. One
study identified keywords associated with an electronic health record (EHR) to discern patients at risk of HIV." This
study reduced a list of terms with high Term Frequency-Inverse Document Frequency (TF-IDF) scores through
univariate chi-square testing to create a set of statistically significant keywords."” A manual selection from this set
created the keyword list they used in their predictive model.” The key words identified include “hiv”, “homosexual”,
and “tested”." Using key words derived from EHR to assess HIV risk is not insightful when one of the words identified
to be associated with high risk is ‘hiv’, indicating the healthcare professional has already identified the disease itself.
Another study designed a custom dictionary to extract terms relevant to schizophrenia in a set of clinical notes.'® This
was done by building a matrix that indicates presence or negation of terms and then using Latent Dirichlet Allocation
(LDA) to identify topics and reduce features.' The final selection was done based on the topic weights.'® Although
this methodology has a heavier reliance on statistical correlations, the act of manual selection reduces the accuracy of
the statistics and can potentially lead it to be less relevant. Finally, another study used a manual dictionary of phrases
related to cognitive decline to identify symptoms of mild cognitive impairment in order to train a prediction model."”
The manual implementation each of these studies used relies heavily on the expertise of the individual and is
contingent on each relevant word being identified, with respect to spelling errors, synonyms, and alternate phrases.
Similarly, if additional EHR were to be added to this dataset, the same manual process would need to be repeated for
each new record. Manual dictionaries have many downfalls in their inability to be generalized. Although they, like
black box methods, can yield high results on a specific dataset, it is difficult to apply the same methodology to new
cases or continually identify risk.

As stated before, methodologies reliant on manual dictionaries are difficult to generalize to new texts. The following
studies have used a non-manual creation of dictionaries or do not use a dictionary at all in their identification of labels.
One study used vectorized clinical notes and clustering to find distinguishing characteristics of heart disease EHR."
The clustering approach makes the method unsupervised, and as stated by its limitations its avoidance of diagnosis
codes makes the labels descriptive rather than definitive. An alternative to dictionaries is the use of Word2Vec and a
bag-of-words approach to generate ICD-9 codes related to rheumatology from EHRs.” EHR data is dependent on
health professional investigation and so in cases where documentation is sparse, extracted ICD-9 codes may be
incomplete or inaccurate.” Another study used large-scale support vector machine (SVM) based classifiers to extract
a diagnosis status from intensive care unit clinical reports.?® This provides some direction as to a method by which
diagnosis can occur without dictionary abstraction, and is generalizable. It is, however, using only one classifier which
is subject to overfitting and the volatility of the notes.” There is also an example in which black box modeling in the
form of an artificial neural network was used to identify clinically relevant TBI cases in children through computed
tomography and demographic data.?! As is with most black boxes, high accuracies are achievable, but understanding
how it is done is not. Thus, to the best of our knowledge TBI diagnosis through clinical text specifically in the case of
IPV patients has not been done. However, work has been done that analyzes electronic health records to establish
health effects and key associations between IPV and TBI.?> This methodology revolved around extracting clinical
terms from EHRs to establish a relationship with I[PV and TBI.  This analysis revealed that IPV induced TBI has a
relationship with other acute conditions including concussion, chronic post-traumatic headache, hematoma, and
delirium.?

Existing literature indicates free text clinical notes can be used to identify illnesses. There are existing TBI screening
tools that can be used to identify TBI in the context of IPV, despite not being validated. IPV induced TBI symptoms
are often difficult to identify, and so healthcare professionals do not always have all the information they need to
diagnose a TBI. In addition, during an Emergency Department visit related to an IPV incident, many dimensions of
the situation are being addressed, including immediate safety, the need to find shelter, and sometimes law
enforcement. We aim to create a way to flag cases, to prioritize screening for TBI by employing an ensemble of
multiple supervised learning classifiers trained on clinical IPV reports.

Methods

Dataset

The dataset was acquired from the Emergency Department of an urban Midwest hospital and represents patients from
June 2017 through June 2021. It was collected and analyzed in accordance with DePaul University and the hospital’s
IRB approval. The last approved date was 11/29/2023. Figure 1 demonstrates the demographic breakdown of this
dataset. The median and mean age of the patients are 34 and 36.7 years old respectively, and the distribution of these
ages can be seen in Figure 1a. There are 522 Female patients and 162 Male patients, as seen in Figure 1b. The racial
breakdown of these patients is 225 Latino, 224 White, 98 African American, 75 Asian, 55 Other, 5 Native American,
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and 2 Not Reported. Each patient is an [PV survivor and was designated as such by the hospital. This dataset also
contains an Initial Clinical Reports section, that includes the first set of clinical notes for patients who have been
identified as IPV survivors, and a TBI Reports section, which contains an additional set of clinical notes that indicate

an IPV survivor disclosed a head injury.
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Figure 1. Demographics of patients represented in the entire IPV-TBI dataset. a) The distribution of patient ages. b)
Comparison of sexes represented. ¢) Percentage breakdown of races represented.

Ground Truth Cases

To utilize existing supervised learning classification methods, Ground Truth cases, or cases that definitively contain
or do not contain a TBI, need to be identified. Of the 564 reports represented in the TBI Reports, 71 patients have an
ICD-10 diagnosis code related to TBI. These cases have been designated as Ground Truth Positive cases. Of the 686
reports represented in the Initial Clinical Reports section, 122 patients do not have a corresponding entry in the TBI
Report section, indicating that the patient did not disclose injury to the face, neck, or head in connection with the [PV
incident. These cases have been designated as Ground Truth Negative cases. A manual review strongly suggests that
these Ground Truth cases are likely representative and can thus be considered as ground truth. The remaining 493
patients have an Initial Clinical Report and TBI report, but do not have an associated ICD-10 code to indicate an injury
to the head, neck or face occurred. Therefore, they cannot be assigned a Ground Truth label, and as a result, were
omitted from our study.

Table 1: Breakdown of the Reports and number of cases.

Label Initial Clinical | TBI Report Gr;";;:t}:: o
Report
Ground Truth Positive | 71 71
. Ground Truth
Ground Truth Negative | 122 0 TBI Reports Positive
Omitted 493 493 Omitted ICD-10
Total Cases 686 564

Figure 2: Breakdown of Ground Truth case origin.
Text Selection
The goal of this project was to create a model that identifies I[PV survivors who should receive additional screening
for TBI. Our model accomplishes this by measuring how similar a hospital clinical report is to reports with Ground
Truth Positive and Negative TBIs. We chose to train our model on the earliest set of clinical notes taken upon arrival
to the emergency room so that an IPV survivor at risk of TBI can be identified for screening as soon as an initial report
is made. Thus, we chose to train our model on only the Initial Clinical Reports.

Clinical Note Preprocessing

We followed standard text preprocessing to prepare our clinical notes for analysis. Figure 3 uses a fictional example
to delineate the preprocessing steps we used to prepare the Initial Clinical Reports for analysis. The preprocessing
steps followed were stopword removal, lemmatization, and negation.
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Original

. Noise Removal Lemmatization Negation
23 yo pt presents to ED with blows to head. . .
- N blows head . abrasion eye . loc . blow head . abrasion eye . loc . blow head abrasion eye loc
Abrasion under left eye. Reports loc. Reports . . N .
N . . boyfriend punched face boyfriend punch face repeatedly . boyfriend punch face repeatedly
boyfriend punched her in the face repeatedly. . . . . 7
repeatedly . denies pain . denies pain . pain_neg

Denies pain.

Figure 3. The text preprocessing steps displayed on a fictional report.

First, stopwords were removed from each individual clinical note. To do so, the documents were lowercased and
tokenized using the spaCy library."”** Stopwords are common words that don't contain much meaning to a computer,
like conjunctions, articles, and pronouns.” The standard English list found in the nltk library set the foundation for the
words that were to be removed.** However, in order to add words to the list that were more specific to this set of text,
we used an iterative process. '* This iterative process looked like the following. The top 30 most frequent words for
the entire column were outputted and any word from this list not deemed to be important to meaning was manually
added to the list. This was done so until the top 30 tokens contained only relevant words. These words included
‘patient’, ‘states’, ‘left’, ‘right’, and ‘police’. Any token that was an abbreviation for a word removed based on the top
30 list, such as ‘pt’, ‘I’, and ‘r’, was also removed. Although important to physician documentation, the words we
removed are not relevant to the computer model and instead add noise.”

Domain knowledge in the form of current screening procedures indicates that loss of consciousness is critical to TBI
identification and thus steps were taken to standardize the phrase “lose consciousness.”” To ensure that the replacement
process accounted for any spelling errors as well as alternate phrasings, we used a combination of regular expressions
and fuzz from the fuzzywuzzy library.*** The final aspect of this step is the removal of non-alpha characters. We used
regular expressions to remove all punctuation (excluding periods), numeric, and special characters from the text. '

Next, we lemmatized each note. Lemmatization reduces words to their basic forms, like changing ‘running’ to ‘run’.
This retains root word meaning while reducing the number of unique words that exist within a report. We first
lemmatized a word as a noun and then lemmatized the resulting word as a verb. This approach allowed us to bypass
part of speech tagging, a common procedure that did not perform well on smaller text test sets. Although this version
fails to account for words whose lemmatized noun form is now a verb, their rarity makes the impact minimal and one
that can be sustained by this dataset.

Last, we identified negated words. Words preceded by ‘no’, ‘not’ or ‘deny’ were tagged to indicate its meaning has
changed. This was done so by appending a negation tag of * neg’ to the end of each token until the presence of a .’
token. Thereby resulting in the computer interpreting each word after any of the three words until the end of the
sentence to be negated. Although this caused words that were not in fact being negated to indicate that they were, it
allowed for lists of symptoms to all be negated at once. When tested on smaller sets of text, alternative options failed
to add negation tags to all symptoms in a list after a negator word. This tradeoff was also deemed to be sustainable
and had minimal impact. After performing these preprocessing steps, we translated the text into numeric values that
can be used in standard machine learning techniques.

Individual Classifiers

The individual classifiers are Random Forest®, fastText®, and a centroid based classifer. We chose a three-classifier
ensemble to explore different methods of prediction aggregation, and to represent different feature spaces in individual
predictions. Three classifiers also represented the smallest number for which a majority could be achieved. The
centroid based and Random Forest classifiers were trained in TF-IDF space. Term frequency refers to how often a
word appears within a document, and document frequency refers to how many documents the word appears in.* Thus,
aword has a high TF-IDF score if the word that appears many times in a document, and also does not appear frequently
in other documents in a dataset. TF-IDF scores can be thought of as word importance scores. Using TF-IDF
representations of the Initial Clinical Reports in classification models allows us to assess which documents have the
same sets of words with similar importance scores. A classification from a model trained in the TF-IDF space indicates
which set of Ground Truth cases a given report is more similar to. Thus, a positive classification from our model
would indicate that the report being evaluated was similar enough to the Ground Truth positive set of Initial Clinical
reports to suggest screening the IPV survivor for TBI. This is the basis for our claim that the ensemble can be used as
a prescreening tool for TBI evaluation.

The fastText model was selected because it trains in a semantic space. Several options exist, namely Word2vec,
fastText, and Clinical BERT. Due to the nature of clinical report text and its tendency to contain abbreviations, medical
terms, and other words not found in a dictionary, picking a model that could handle this was important. fastText is the
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best of these three options in this regard as it creates its vocabulary vector based on the words it encounters within the
text it is trained on. In addition, clinical reports generally have some order in which the medical professional takes
notes, but the context of a sentence before or after is not standardized and so relying on a model that needs a context
window like Word2vec could prove unreliable. Lastly, the simplicity of the fastText training and testing compared to
ClinicalBERT allowed us to choose a method that maintained the simplest route possible.

The Random Forest was initialized to the same random state for each run and contained 100 decision trees. Aside
from initial hyperparameter decisions, no further optimization was done. fastText had three parameters which we
tuned. The first is the epoch which was set to eight. This value was the highest value seen after conducting several
grid searches on a subset of Ground Truth cases. It is important to note that fastText is a blackbox and utilizes
randomness in its training process, thus the ideal parameters vary slightly. The second was the learning rate which
was set to 0.9. Contrary to the selection of the epoch, this was the lowest learning rate seen during the grid search
process. Finally, the wordNgrams was set to one. Throughout each grid search this parameter never changed from one
and so this consistency indicated that it was the best value.

Aggregation Procedure and Selection

We explored two methods of aggregating the results of our individual classifiers. The first was named ‘Any evidence
is enough evidence’, or ‘Any Evidence’ for short. In this method of aggregation, a final positive prediction was
assigned if at least one individual classifier produced a positive prediction. The only scenario where the ‘Any
evidence’ method assigns a negative prediction is when all three classifiers produce a negative prediction. The second
is named ‘Majority vote’. In this case, a final prediction is assigned based on agreement between two or more
individual classifiers. There is one instance in which these two aggregation models disagree: two negative labels and
one positive label. This difference is what results in the differing results of the two classifiers.

We assessed both methods of aggregation, as well as individual classifier performance, by utilizing 30 train/test splits.
These splits followed an 80:20 train/test ratio. For each split, we trained our individual classifiers, used them to predict
the test set, and used both methods of aggregation to acquire two sets of final ensemble predictions. The model
performance metrics accuracy and sensitivity were calculated, and statistical testing was used to determine which
method of aggregation performed better. The better method of aggregation was the model with the highest sensitivity
was selected as the final aggregation method for our ensemble model.

As a part of training our individual classifiers, the train set was split into another 80:20 split, referred to as the classifier
train and test sets. For 30 splits, each classifier was trained on the classifier train set and then tested on the classifier
test set. From the 30 classifiers trained during the 30-classifier train/test splits, the final version selected was the model
that performed closest to the average testing accuracy across all splits. This final model for each individual classifier
was used as part of the ensemble to predict the initial test set.

Figure 4: The methods displayed as a workflow diagram.

Results

Ground Truth Prediction

For each train/test split, accuracy, sensitivity, and specificity were calculated for each of the three individual classifiers
and the two aggregated models. The calculated mean accuracy, sensitivity, and specificity for the individual and
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aggregate classifiers along with their confidence intervals are presented in Table 2. Because the distributions of

performance metrics were not normally distributed, bootstrapped confidence intervals were constructed.

Table 2: Performance of Ground Truth prediction using individual and aggregate classifiers with their 95% confidence

intervals.
Model Accuracy Sensitivity Specificity
Any Evidence Ensemble | 0.911 [0.900, 0.920] 0.940 [0.920, 0.960] 0.895 [0.880, 0.910]

Majority Vote Ensemble

0.928 [0.920, 0.940]

0.914 [0.890, 0.930]

0.936 [0.920, 0.950]

Centroid Based

0.932 [0.920, 0.940]

0.912 [0.890, 0.930]

0.943 [0.930, 0.960]

Random Forest

0.927 [0.910, 0.940]

0.888 [0.860, 0.910]

0.949 [0.940, 0.960]

fastText

0.912[0.900, 0.920]

0.907 [0.890, 0.930]

0.915 [0.900, 0.930]

Comparing Individual and Aggregation Classifiers

The performance of our individual classifiers compared to both ensembles is similar. To determine which model
should be retained as a TBI prescreening tool for IPV survivors, we considered the real-world application of our
model. It is better to screen a patient for a TBI when they do not have a brain injury, than to not screen a patient when
they do have a brain injury. This leads us to prefer a model with a tendency towards false positives over false negatives.
Because of this, we used a one tailed Wilcoxon signed-rank test to determine if the Any Evidence Ensemble, which
has the highest mean sensitivity, performs statistically significantly better than the other classifiers.

Table 3 shows the pairwise test results comparing model sensitivities or i to the Any Evidence Ensemble. The null
hypothesis of these tests is that mean sensitivity for the Any Evidence Ensemble is the same as i’s mean sensitivity.
The alternative hypothesis is that the mean sensitivity for the Any Evidence Ensemble is greater than i’s mean
sensitivity. A Bonferroni correction for multiple hypothesis testing was utilized, making the level that determines
statistical significance to be @ = 0.0125.

Table 3. Results for a one tailed Wilcoxon Test to determine if the Any Evidence Ensemble performs statistically
significantly better with respect to sensitivity, & = 0.0125.

Model p-value

Majority Vote Ensemble 0.002118
Centroid Based 0.001267
Random Forest 0.000076
fastText 0.001725

The results of the pairwise hypothesis tests indicate that the Any Evidence Ensemble has a statistically significantly
higher sensitivity. Because of this, we selected the Any Evidence Ensemble as the model we present as a TBI
prescreening tool for IPV survivors.

Discussion

In this work we used clinical reports from a set of IPV patients to create an aggregate classifier that identified patients
who should be screened for TBI. The dataset consisted of 122 Ground Truth Negative, 71 Ground Truth Positive, and
493 Unlabeled reports. In a healthcare domain, it is not uncommon that sensitivity is prioritized over accuracy. This
is because the impact of a falsely identified positive patient is an extra screening, whereas a falsely identified negative
patient results in a TBI going undetected. Because of this, we selected a model that has the highest sensitivity. The
chosen model, the Any Evidence Ensemble, had an accuracy of 0.911 [0.900, 0.920] and a statistically significantly
higher sensitivity of 0.940 [0.920, 0.960]. In hospitals with a busy emergency department where staff resources are
stretched, our ensemble would help prioritize patients who should receive additional screening. In hospitals looking
to address TBI underdiagnosis in [PV patients, our ensemble would serve as a prescreening tool to identify TBI cases
likely to be overlooked. The ensemble in better identifying TBI cases from the same reported data is able to work
towards the improvement of the patient experience. We believe that this methodology is generalizable to other areas
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of healthcare. Any field that generates clinical reports can measure report similarities to identify patients who are at
risk for an underreported diagnosis. The application of this methodology in diverse healthcare disciplines can improve
patient outcomes, increase identification of understudied phenomena, and prioritize hospital resources.

We propose our model be used in conjunction with a validated TBI screening tool to address TBI underdiagnosis in
IPV survivors. Our ensemble identifies IPV survivors who should be screened for a TBI by measuring similarities
between their Initial Clinical Report and Initial Clinical Reports with a TBI related diagnosis. After initial text
preprocessing, we translate the Initial Clinical Report into a numeric representation using TF-IDF scores. TF-IDF
scores can be thought of as importance scores for each word in a report. The centroid based and Random Forest
classifiers were trained in a TF-IDF space. This means that they measure similarities between reports by identifying
sets of words with similar importance scores. It is the presence of multiple words with similar importance scores that
allows our classifiers to make predictions, and as such, an exploration into individual words that carry the most weight
in our models is not insightful.

Limitations

Our ensemble is trained on Initial Clinical Reports for males and females. The current body of literature surrounding
IPV and TBI often omits males from their dataset as they represent a minority of those who disclose IPV. It is possible
that differing attitudes towards males who experience IPV results in clinical report note differences, however, no
investigation into this was performed.

Clinical reports reflect a patient's willingness to disclose injuries, information a healthcare professional deems
relevant, and internalized attitudes about IPV. As the negative stigma associated with IPV lessens, our ensemble will
need to be retrained on clinical notes that reflect the current IPV attitudes to ensure it can correctly measure report
similarities. Despite this, the ensemble’s ability to improve on identification of TBI from the present reports is
significant.

Our text preprocessing used a crude form of negation and lemmatization that did not rely on any form of part of speech
(POS) tagging. Although this introduced some amount of noise into our resulting text, the impact is negligible. As
more rigorous forms of POS tagging become available, integrating them into our methodology would refine our
preprocessing steps.

Conclusion

We trained an ensemble of classification models on Initial Clinical Reports to create a prescreening tool that can be
used to identify IPV survivors who should be screened for TBI. Our ensemble was selected because it had the highest
sensitivity, or highest true positive rate. We believe the application of this tool will address the understudied
relationship between I[PV survivors and their resulting TBI. Further work will include assessing reporting differences
between male and female IPV survivors, retraining the ensemble on updated clinical reports, and improving text
preprocessing. In this study, we proposed an aggregated classification model that measures clinical report similarities
on the earliest set of clinical notes to identify IPV survivors who should be screened for TBI. This methodology to
prescreen patients from initial clinical reports for often overlooked diagnoses can be applied in other healthcare
contexts.
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