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Abstract

We study the underexplored but fundamental problem of
machine understanding of abstract freehand scene sketches.
We introduce a sketch encoder that ensures a semantically-
aware feature space, which we evaluate by testing its per-
formance on a semantic sketch segmentation task. To train
our model, we rely only on bitmap sketches accompanied
by brief captions, avoiding the need for pixel-level anno-
tations. To generalize to a large set of sketches and cat-
egories, we build upon a vision transformer encoder pre-
trained with the CLIP model. We freeze the text encoder and
perform visual-prompt tuning of the visual encoder branch
while introducing a set of critical modifications. First, we
augment the classical key-query (k-q) self-attention blocks
with value-value (v-v) self-attention blocks. Central to our
model is a two-level hierarchical training that enables ef-
ficient semantic disentanglement: The first level ensures
holistic scene sketch encoding, and the second level focuses
on individual categories. In the second level of the hierar-
chy, we introduce cross-attention between the text and vi-
sion branches. Our method outperforms zero-shot CLIP
segmentation results by 37 points, reaching a pixel accu-
racy of 85.5% on the FS-COCO sketch dataset. Finally, we
conduct a user study that allows us to identify further im-
provements needed over our method to reconcile machine
and human understanding of freehand scene sketches.

1. Introduction

Even a quick sketch can convey rich information about what
is relevant in a visual scene: what objects there are and how
they are arranged. However, little work has been devoted
to the task of machine scene sketch understanding, largely
due to a lack of data. Understanding sketches with meth-
ods designed for images is challenging because sketches
have very different statistics from images — they are sparser
and lack detailed color and texture information. Moreover,
sketches contain abstraction at multiple levels: the holis-
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Figure 1. Comparison of the segmentation result obtained with
CLIP visual encoder features and features from our model.

tic scene level and the object level. Here we explore the
promise of two main ideas: (1) the use of language to guide
the learning of how to parse scene sketches and (2) a two-
level training network design for holistic scene understand-
ing and individual categories recognition.

Freehand sketches can be represented as a sequence or
cloud of individual strokes, or as a bitmap image. As one
of the first works on scene sketch understanding, we target
a general setting where we assume only the availability of
bitmap representations. We also aim at the method that can
generalize to a large number of scenes and object categories.
To this end, we build our sketch encoder on a Visual Trans-
former (ViT) encoder pre-trained with a popular CLIP [44]
foundation model (Fig. 1). We propose a two-level hierar-
chical training of our network, where the two levels (“Holis-
tic” and “Category-level”) share the weights of our visual
encoder. The first level focuses on ensuring that our model
can capture holistic scene understanding (Fig. 2: 1. Holis-
tic), while the second level ensures that the encoder can effi-
ciently encode and distinguish individual categories (Fig. 2:
II. Category-level). We avoid reliance on tedious user per-
pixel annotations by leveraging sketch-caption pairs from
the FS-COCO dataset [9], and aligning the visual tokens of
sketch patches with textual tokens from the sketch captions,
using triplet loss training. We strengthen the alignment by
introducing sketch-text cross-attention in the second level
of the network’s hierarchy (Fig. 2: g.). Additionally, we in-
troduce a modified self-attention computation to the visual
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transformer encoder used in both layers, inspired by recent
work by Li et al. [33].

We conduct a comprehensive evaluation of our method
comparing it with recent language-supervised image seg-
mentation methods [33, 44, 58], fine-tuned on the FS-
COCO dataset. We show that our approach outperforms
with a large margin all existing methods on the task of free-
hand sketch segmentation. We also compare with a pre-
vious fully supervised work on scene sketch segmentation
[19], trained on a semi-synthetic set of sketches composed
of individual category sketches. We demonstrate that their
work does not generalize well to freehand scene sketches
[9]. Our method demonstrates consistent performance and
similarly outperforms [19] on a dataset of freehand sketches
provided by Ge et al. [19].

Finally, our analysis reveals that although our model con-
sistently produces robust segmentation results across the
majority of sketches, there are a few challenging sketching
scenarios for our method. We select a subset of representa-
tive sketches for each scenario and collect multi-user anno-
tations. We then carefully assess our approach by compar-
ing its performance with that of human participants, draw-
ing insights to guide future work.

In summary, our contributions include: (1) a two-level
hierarchical training approach, focusing on holistic scene
sketch understanding and category disentanglement, (2)
the first language-supervised scene sketch segmentation
method, (3) per pixel segmentation annotations of 975
sketches from the FS-COCO dataset, and (4) multi-user an-
notations of a subset of distinct groups of sketches.

2. Related Work

2.1. Unsupervised and Weekly Supervised Image
Semantic Segmentation

The need for pixel-wise segmentation limits the number of
instances that supervised segmentation models [1, 6, 7, 17,
36, 64] can use for training, as such annotations are costly
to collect. This in turn limits the generalization properties
of models trained with pixel-level annotations. To avoid the
need for extensive annotations, unsupervised [8, 23, 26, 39,
62], semi-supervised [40, 72] and weakly supervised [13,
14,24, 37, 38, 41, 56, 58, 69] methods were proposed.

Our method belongs to the group of weakly supervised
methods based on text annotations only [5, 13, 14, 37, 38,
58], such methods are not limited to a fixed set of categories
and therefore are referred to as open vocabulary semantic
segmentation methods. Image methods typically rely on the
spatial proximity of semantically similar pixels. This is less
applicable in the sparse and largely monochromatic land-
scape of freehand sketches. For example, recent GroupViT
[58] and SegCLIP [38] use learnable group tokens and se-
mantic group modules to aggregate low-layer pixel features.

In our work, we propose a two-level training architecture
taking sketch sparsity and abstraction into account.

2.2. Sketch Semantic Segmentation

The majority of works on semantic sketch segmentation fo-
cus on single-category sketches. Some of these works treat
sketch as a bitmap image [32, 70, 71], but most leverage
stroke-level information directly [12, 21, 22, 28, 42, 43, 48,
55,57, 60, 66] or as a segmentation refinement step [32, 71].
All these works are fully supervised except for [42], which
segments sketches of a given category provided at least one
segmented reference sketch.

Semantic scene sketch segmentation [51], and more
broadly scene sketch understanding, is underexplored, to
a large extent due to a lack of data. The lack of data is
typically addressed by introducing semi-synthetic sketch
datasets. The SketchyScene dataset [73] consists of 7,264
sketch-image pairs, obtained by arranging clip-art indi-
vidual category sketches in alignment with a reference
image. SketchyCOCO dataset [18] is generated from
COCO-Stuff [4] by semi-automatically arranging freehand
sketches of individual categories. Ge et al. [19] intro-
duced their own semi-synthetic scene sketch dataset and
adopted a DeepLab-v2 [6] architecture to the scene sketch
segmentation task. SketchSeger [59] proposed an encoder-
decoder model based on hierarchical Transformers, trained
with a stroke-based cross-entropy loss on semi-synthetic
scene sketches formed by combining sketches from the
QuickDraw dataset [21]. Zhang et al. [63] proposed an
RNN-GCN-based architecture trained on annotated free-
hand scene sketches. However, neither the dataset nor the
code have been released. We do not require stroke-level in-
formation or pixel-wise segmentation of the training data,
and leverage the FS-COCO dataset [9] of freehand sketches
with their textual descriptions.

2.3. ViT-CLIP and Sketch

We build our encoder on a ViT (Vision Transformer) en-
coder pre-trained with CLIP (Contrastive Language-Image
Pre-training) [44]. CLIP is a model trained on roughly
400 million image-text pairs to embed images and text in
a shared space. It uses ViT as a visual branch (image) en-
coder. A ViT encoder pre-trained with CLIP (ViT-CLIP) is
used in a range of sketch-related tasks: sketch and drawing
generation [16, 49, 53, 54], 2D image retrieval [9, 46, 47],
object detection [10], 3D shape retrieval [2, 30, 31, 50, 61],
3D shape generation [65].

While some works use ViT-CLIP purely pre-trained on
images, many fine-tune the encoder on sketches for down-
stream tasks. Some works fine-tune all weights of the en-
coder [2, 47], some fine-tune Layer Normalization layers
only [9], and some rely on prompt-learning [27, 68] or the
combination of the latter two [10, 46]. In our work, we also
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Figure 2. Our framework consists of two levels: 1. Holistic Scene Sketch Understanding and II. Targeting individual categories disentan-

glement. Please refer to Sec. 3 for details.

rely on fine-tuning with visual prompt learning and Layer
Normalization layers updates. Unlike previous methods tar-
geting sketch inputs, we additionally leverage a two-path
ViT architecture, inspired by Li et al. [33].

3. Method

As we mention in the introduction, we build a sketch en-
coder such that the semantic meaning of individual stroke
pixels can be inferred from its feature embeddings. Build-
ing on the ViT encoder, pre-trained CLIP [44] model, we
fine-tune a modified encoder architecture with a network
consisting of two levels: Holistic scene understanding and
individual category recognition. We start by describing the
first level of our network (Fig. 2 I.) and introducing the ar-
chitecture of our visual encoder (Fig. 2 c.). We then de-
scribe our strategy to improve the model’s ability to under-
stand individual categories (Fig. 2 IL).

3.1. Holistic Scene Sketch Understanding

The architecture in the first level (Fig. 2: L. Holistic) is sim-
ilar to the architecture of the CLIP model [33]. We freeze
the weights of the textual encoder and fine-tune the mod-
ified architecture of the vision encoder (Sec. 3.1.1). The
CLIP model is trained with a contrastive loss, ensuring that
the embedding of images and corresponding captions are
closer in space than embeddings of images and captions of
other images. While our training has a similar goal, we train
with a triplet loss with hard triplet mining, as we found it to
be more beneficial with the batch size we use:

Nt

1
L =" N "max{|[vsT; — csTF
Nr_glbl NT ; {“ 1 i || (1)

—|lvsT; —csT; || +m, 0}

Here, a holistic visual scene sketch embedding VST (Vi-
sual Scene Token) serves as an anchor. An encoding of
the matching sketch caption CST™ (Caption Scene Token)
serves as a positive sample, and an encoding of the most
dissimilar scene caption serves as a negative sample CST™.
We set the margin m to a commonly used value of 0.3. The
number of triplets Nt is equal to the number of samples in
a batch.

3.1.1 Visual encoder

The input scene sketch is divided into non-overlapping
patches, which are flattened and linearly projected into the
feature space. Concatenating with positional encodings,
we obtain one token P, € R 9 per patch. Addition-
ally, we add a set of learnable tokens, V,, referred to as
visual prompts [11]. Finally, these tokens are also aug-
mented with a special token that encodes holistic sketch
meaning, VST (Visual Scene Token). Note that in the con-
text of classification, a CLS token has a similar role to
our VST token. Therefore, the input to the vision encoder
is X = [VST,P,..., Px,V1,...,Vs] € RVX*4 where
Nx=1+K+S.

Attention computation It was observed by Li et al. [33]
that CLIP-predicted similarity maps between image and text
features emphasize background regions rather than areas
that correspond to a category in the text embedding. To
address this issue, they proposed to use an instance of self-
self attention called v-v attention, which does not require
training or fine-tuning the original model. Li ef al. [33],
and later Bousselham et al. [3] demonstrated that this leads
to improved performance in open vocabulary segmentation
tasks: Self-self-attention reinforces the similarity of tokens
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Figure 3. Comparison of similarity maps obtained with classical
attention computation (g-k attention) in the second row, with the
ones obtained from v-v attention, given by Eq. (2).

already close to each other (e.g. representing the same ob-
ject), which leads to a clearer separation in the feature
space, thereby improving the segmentation quality.

We performed a similar experiment with CLIP features
for sketch inputs: The similarity maps in the second row
of Fig. 3 show the poor ability of CLIP features to identify
target categories. Therefore, we follow [33] and use their
two-path configuration of the vision transformer. However,
we use it not only for inference but also incorporate this
two-path configuration directly into our network training, as
we find it more beneficial. We provide a detailed analysis
in Sec. 4.5.1.

The first path represents the original vision encoder
where identical blocks are repeated L times. Each block
consists of Layer Normalization (LN), followed by Multi-
Head Self Attention (MHSA ), another LN and Fead Forward
Network (FFD).

The second path blocks contain a modified attention
computation in MHSA, dubbed as v-v self-attention, where
Keys and Queries are ignored, and self-attention is com-
puted using only Values, V € RVxxd;

s—attn(V,V,V) = softmax (VVT/\/E) V. @

In addition, blocks in the second path do not include the
second LN and FFN layers. Finally, in the second path, the
input to the v-v multi-head attention is always the features
from the original path. We use the output from the second
path during training and inference.

As shown in Fig. 3 third row, the v-v attention results
in feature representations that accurately represent distinct
semantic entities present in the scene sketch.

3.2. Categories Disentanglement

Given the sketch caption we automatically identify individ-
ual categories and generate a set of textual prompts of the
form “A sketch of *” (Fig. 2b.). Each of these textual cat-
egory prompts is encoded with the CLIP text encoder into

cCT € R4 (Caption Category Token).

We then compute the per-patch cosine similarity M
between the class embeddings CCT and the scene sketch
patch embeddings H, defined as:

c T
e CCT\(3 H ; , 3)
|ccTe||H |

where k& € [1, K] is the patch index and ¢ € [1, N/] is an
index of a category (e.g. trees). The resulting similarity ma-
trix M€ € RE*Ne represents the category label probabili-
ties for each individual patch (Fig. 2d.). To generate a pixel-
level similarity map, we reshape each M and then upscale
to the dimensions of the original scene sketch using bi-cubic
interpolation [52]. By multiplying these per category maps
with the input scene sketch, as shown in Fig. 2e., we obtain
disentanglement into individual sketch categories.

Thresholding with a learnable parameter Only pixels
with similarity scores above a certain threshold are retained
at this step (Fig. 2f.). We make the threshold learnable,
eliminating the need for manual tuning. More importantly,
the threshold value increases over epochs as the model be-
comes more confident in its predictions, allowing the model
to obtain strong disentanglement performance.

Epoch 0 Epoch 5
|- _3_—. L e - '—’:a?-% =3

wha 1 T T ML . DR

Epoch 10 Epoch 20

-

Bicycle

Figure 4. Visualization of disentanglement over epochs.

Visual encoder with Cross-Attention The features of in-
dividual category sketches are extracted with the visual en-
coder identical to the one used in the holistic scene sketch
level understanding of our network, described in Sec. 3.1.1,
up to one difference.

We enhance the interplay between textual and visual do-
mains through the introduction of cross-attention. Namely,
in 7th, 10th, and 12th layers in the MHSA, we feed CCT to-
ken from the textual encoder representing a target category
to the linear projection for the queries. This enables the
model to leverage category token embedding from the tex-
tual domain to update the sketch token embedding. This re-
sults in a better text-to-sketch alignment for individual cate-
gories and subsequently improves sketch semantic segmen-
tation. Our ablation study in Tab. 4 underscores the efficacy
of this cross-attention strategy.

Text-sketch category-level alignment We train with a
triplet loss, L1 _cigr, so that the category sketch embed-
ding, VCT (Vision Category Token), is used as an anchor,
the matching embedding of the category prompt is used as
a positive sample and the embedding of the prompt of the
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most dissimilar category is used as negative. We use the
VCT from multiple encoder layers: I, l10, l12.

3.3. Efficient CLIP fine-tuning

The two levels (holistic and category) are trained jointly,
using the total loss

L =Lt gt + L7 _cigr- 4)

We leverage the generalization properties of the pre-
trained foundation model through careful fine-tuning. We
freeze all the weights apart from weights of LN, as was
proposed in [15], and we use learnable visual prompts, as
was proposed in [27]. We introduced visual prompts in
Sec. 3.1.1. We also train linear layers which take part in
cross-attention computation.

3.4. Inference

Our network design allows segmentation for different sets
of categories. Given a desirable set of categories for a given
sketch, we obtain sketch segmentation by applying all the
steps of our network up to the calculation of pixel-category
similarities (Fig. 2e.), followed by upscaling of similarity
maps for each category, as discussed in Sec. 3.2. To as-
sign segmentation results we assign to each pixel a label
that yields the highest similarity value across category sim-
ilarity maps M, where ¢ is an index of a category.

If we want to isolate just a few categories in the sketch,
we can use the thresholding strategy that we use during
training to isolate the pixels of a given category (Fig. 2f.).
We used this strategy to obtain visualizations in Fig. 1, with
a threshold value of 0.71 that we found to be optimal on the
test set of sketches. We do not use the learned value from
the training, as during training the model does not have to
select all the pixels of the given category, but only those that
are sufficient to confidently predict the category label. We
provide an in-depth discussion in the supplemental.

4. Experiments
4.1. Training and Test Data

For training and testing, we use the sketch-caption pairs
from the FS-COCO [9] dataset. The dataset comprises
10,000 sketch-caption pairs, associated with reference im-
ages from the MS-COCO [34] dataset. The sketches are
drawn from memory by 100 non-expert participants. The
reference image was shown for 60 seconds, followed by a
3-minute sketching window.

Training/Validation/Test splits We first selected 500
sketches with distinct styles from five participants. We then
randomly sample 5 sketches from each of the remaining 95
participants for validation (a total of 475 sketches). We use
the remaining 9025 sketches for training.

Annotations One of the co-authors manually annotated test
and validation sketches, relying on reference images and
category labels from the MS-COCO [34] dataset. We assign
each stroke a unique category label. Candidate category la-
bels are extracted from MS-COCO image captions rather
than sketch captions to obtain richer ‘ground-truth’ annota-
tions. Our test set contains 185 different object classes, with
an average of 3.54 objects per sketch.

4.2. Evaluation Metrics

We use standard metrics, commonly used in sketch segmen-
tation literature [25, 57, 63].

Mean Intersection over Union (mIoU): evaluates the av-
erage of the ratios between the intersection and the union of
ground truth and predicted labels over all categories.

Pixel Accuracy (Acc@P): measures the ratio of correctly
labeled pixels to the total pixel count in a sketch.

Stroke Accuracy (Acc@S): evaluates the percentage of
correctly classified strokes to total strokes per sketch. A
stroke label is determined by its most frequent pixel label.

4.3. Implementation Details

We implemented our method in PyTorch and trained on two
24GB Nvidia RTX A5000 GPUs. We built on CLIP [44]
with a ViT backbone using ViT-B/16 weights. The input
sketch image size is set as 224 x 224. We use 3 learnable
visual prompts. We use AdamW optimizer with a learning
rate of 10~%, and train the model for 20 epochs with a batch
size of 16. We pick a checkpoint based on the mloU perfor-
mance on the validation set. We provide more discussion
on the checkpoint choice in the supplemental.

4.4. Comparison against state-of-the-art
4.4.1 Comparison with fully-supervised methods

We first compare with several recent methods for image
segmentation that similarly to us utilize either CLIP as a
backbone: DenseCLIP [45] and ZegCLIP [69], or more
recent foundational backbones Grounding-DINO [35] and
SAM [29], used in Grounded-SAM [20]. These meth-
ods require pixel-level annotated examples, and therefore
can not be fine-tuned on our training data. We also com-
pare to a recent fully supervised method LDP (Local Detail
Perception) [19] for scene sketch semantic segmentation,
which is trained on a dataset of semi-synthetic sketches.
Such sketches are obtained as a superposition of freehand
category-level sketches. Tab. 1 shows that neither of the
these methods generalizes well to freehand scene sketches.

4.4.2 Comparison with language-supervised methods

Next, we compare with several recent methods targeting se-
mantic segmentation with ViT encoders and image-text su-
pervision: GroupViT [58] and SegCLIP [38]. Additionally,
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Figure 5. Visual comparison of our method with CLIP Surgery**. CLIP Surgery™* represents the fine-tuned ViT from the CLIP model
with v-v self-attention introduced at both training and inference stages. The numbers show Acc@ P values.

Methods mloU AccQP Acc@QS Methods mloU AccQP AccQS
ZegCLIP [69] 1545 3248  35.21 g CLIPL . 17.33 2882 27.15
DenseCLIP [67] 2822 50.62  50.25 g CroupViT [5¢] 38.25 - 61.39 60.07
Grounded-SAM [20] ~ 32.21  50.12  50.02 g SegCLIP [38] 38.14 ~ 61.45  65.56
N CLIPSurgery [33] 52.63  72.47  75.17
]
Ours 73.48 85.54 87.02 g  GroupViT* 45.71 66.21 66.89
2 *
Table 1. Comparison of our method against state-of-the-art fully g (S:iglglep . 3932 69.87 73.64
supervised sketch method and image segmentation methods, rely- i . urgery** 8. 65.38 68.78
ing on the availability of pixel-level annotations, on our test set of CLIP Surgery 59.98 78.68 81.11
freehand sketches from the FS-COCO dataset. Ours 73.48 85.54 87.02

we compare with CLIP [44], as well as CLIP Surgery [33]
that introduced the usage of v-v-attention at inference time.

Zero-shot In Tab. 2, we first compare the performance of
our method with the zero-shot performance of these meth-
ods. It shows that image segmentation methods do not gen-
eralize well to freehand sketches.

Fine-tuning We fine-tune each of the methods on our train-
ing set, by updating all their weights. Since such fine-tuning
might be sensitive to a learning-rate choice, we perform sev-
eral runs with several settings of learning rate parameters.
We chose the setting for each method that results in the best
performance on our validation set. The fine-tuned methods
are marked with stars.

Tab. 2 shows that our method outperforms all consid-
ered baselines, and surpasses the best-performing baseline
CLIP Surgery* by a substantial margin of 13.5, 9.9 and 5.9
points in mIoU score, AccQP and Acc@S, respectively. In
Sec. 4.5.1, we evaluate various elements of our architecture
and their contribution to overall performance.

Fig. 5 shows the qualitative comparison between our
method and the CLIP Surgery**. We provide additional vi-
sual comparisons in the supplemental.

Table 2. Comparison of our method against state-of-the-art lan-
guage supervised image segmentation methods on our test set of
sketches from the FS-COCO dataset. The fine-tuned methods
on our training set of freehand sketches are marked with stars.
CLIP Surgery” represents the fine-tuned CLIP model with v-v
self-attention introduced only at inference stages. CLIP Surgery*™*
represents the fine-tuned model with v-v self-attention introduced
at both training and inference stages.

4.4.3 Generalization ability of our method

Next, we evaluate our method on an additional dataset of 50
freehand sketches provided and annotated by Ge et al. [19].
Tab. 3 shows that our model again demonstrates superior
performance on this dataset over the method [19], fully su-
pervised on semi-synthetic sketches. We do not compute
Acc@S§ as sketches are only available as bitmap images.
This experiment highlights that short language captions can
be efficiently used for training, eliminating the need for ex-
pensive and time-consuming per-pixel annotations.

Method mloU AccQP
LDP[19] 37.16 78.84
Ours 53.94 81.63

Table 3. Comparison on the freehand sketches from [19].
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The lower mloU values on these sketches than on FS-
COCO sketches can be explained by (1) on larger av-
erage number of categories in them (5.74 categories per
sketch) than in our FS-COCO test set (3.54 categories
per sketch); (2) domain gap. The sketches from [19]
contain symbolic representations of objects (see the inset
on the left) and look more like a superpo-
sition of sketches that can be found in the
QuickDraw [21] dataset rather than holis-
tic scene sketches. We analyze challenging
scenarios for our method in Sec. 5.1.

4.5. Ablation Study
4.5.1 Importance of individual components

We perform an ablation analysis to assess the importance of
each component in our architecture. Tab. 4 shows the per-
formance of the complete model with individual elements
removed. We discuss them in order of impact on overall
performance.

v-v attention First, we show the importance of the v-v at-
tention, by substituting our dual path v-v attention-based
ViT encoder with the original configuration used in the
CLIP model (w/o v-v attention).

Two-level network architecture We keep only the first
level of holistic scene understanding of the network (Fig. 2
L.). This architecture is similar to CLIP Surgery**, but is su-
pervised with the triplet loss and is fine-tuned using learn-
able visual prompts and updates only LN layers. Tab. 4
(w/o category-level) confirms that two-level network archi-
tecture, along v-v attention, is central to the superiority of
our model.

Thresholding We perform an experiment where instead
of thresholding we weight each pixel according to cosine
similarity scores in M ¢ maps (Tab. 4 (w/o thresholding)).
The learnable threshold more efficiently filters out irrelevant
pixels, forcing the model to learn superior disentanglement
of individual categories.

Holistic scene encoding Removing the global loss, given
by Eq. (1), similarly results in the performance drop (w/o
Global Loss). This shows the mutual importance of the two
levels of our network.

Cross-Attention Cross attention also substantially con-
tributes to performance. If we use a ViT encoder at the sec-
ond level of the network (category level), identical to the
one used at the first level (holistic level) (Fig. 2c.), then the
performance drops by a noticeable 3.35 points in the mloU
score (Tab. 4 (w/o cross-attention)).

Multi-layer features in the triplet loss Tab. 4 (w/o cross-
attention) shows that using features from multiple layers

(l7,l10,112) in the category-level triplet loss is beneficial
over using only the features from the last layer (I12).

Model mlIoU  AccQP  Acc@QS
w/o v-v attention 43.55 58.09 59.03
w/o category-level 65.03 79.35 81.82
w/o thresholding 66.93 81.06 82.56
w/o global Loss 69.06 81.35 83.68

w/o cross-attention 70.13 82.86 85.26
w/o multi-layer Loss ~ 71.29 83.04 86.13

Ours-full 73.48 85.54 87.02

Table 4. Ablation of the role of individual components of our
model. See Sec. 4.5.1 for details.

4.5.2 Efficient fine-tuning

Fig. 6 shows the comparison of different fine-tuning strate-
gies. We obtain the best results by combining fine-tuning
of LN (Layer Normalization) layers and the addition of 3
learnable tokens. Adding more or less tokens degrades the
performance Fig. 6b.

85.54

85.21 85
o 84.04 o s
® 8286 ®
2 2 83
LN VP Full-FT Our 0 ! 2 3 4 3
@) Fine tuning strategy b) Number of learnable VP tokens

Figure 6. Evaluation of alternative fine-tuning strategies (a.) and
the impact of the number of learnable tokens on segmentation ac-
curacy (b.). LN means that only LN layers are fine-tuned; VP
means that only learnable Visual Prompt tokens are used; Full-
FT means that all weights of ViT are fine-tuned.

5. Human-Model Alignment

Fig. 7 shows that for the majority of sketches in our test
set from the FS-COCO dataset, our model correctly labels
more than 80% pixels.

In this section, we investigate (1) which sketches are
likely to get low segmentation accuracy and (2) how the pre-
diction of our model compares with human observers across
different groups of sketches.

5.1. Sketch Groups

We identified four distinct sketch groups that are challeng-
ing for our model: (1) Ambiguous sketches: sketches
where it might be hard even for a human observer to un-
derstand an input sketch; (2) Interchangeable categories:
sketches containing multiple objects with labels that can
interchange each other, like ‘fower’ and ‘building’, or
‘girl’ and ‘man’; (3) Correlated categories: sketches with
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Figure 7. Histogram of Acc@P values for our method on 500
sketches from our FS-COCO test set.

categories that typically co-occur in scenes, e.g., ‘train’-
‘railway’ and ‘airplane’-‘runway’; and (4) Numerous-
categories: sketches with six or more categories.

We supplement these four groups with sketches where
our model labels correctly more than 80% of pixels: (5)
Strong performance.

5.2. User Study Setting

Data We sample 5 sketches for each of the first 4 cate-
gories and 10 sketches for the 5th category. We visualize
selected sketches in the supplemental material.

Participants We recruited 25 participants (14 male).
Each participant was randomly assigned 6 sketches: 1 from
each of the first 4 groups and 2 from the 5th group, such that
every sketch was annotated by five unique participants.

Study Procedure Participants were presented with one
sketch and one object category at a time and were not able to
see their previous annotations. Sketch-category pairs were
interlaced, to reduce the effect of memorizing their previ-
ous annotation on a certain sketch. The annotation inter-
face enabled precise pixel-level segmentation by allowing
participants to “paint” over each sketch using a brush with
an adjustable radius. Participants could also use the eraser
to correct erroneous annotations. Once a participant has
moved to a new sketch-category pair, they were not able
to change their previous annotations.

5.3. User Study Analysis and Future Work

‘Human’ segmentation For each sketch, we generate one
‘human’ segmentation using a majority vote. For each pixel
and each label, we computed the percentage of annotators
that assigned a given label. We then assigned to each pixel
the label that was provided most frequently to that pixel by
different annotators. In cases where there were multiple la-
bels were provided equally often for a pixel, we randomly
sampled one of these labels.

Analysis First, we observed that on sketches that did not
fall into any of the challenging categories, our model almost
reaches human-level performance, with a negligible gap of
0.11 points on average (Fig. 8 Strong).

m SegCLIP* CLIPSurgery** mmOurs = Human & A
90%- 3 $ oo
& » S & N
80%- & P S
N
70%- 2 & 8 a8 o o
R & 9 3 A 5
60%- & © Qf.,,w
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40 %- e AN BRI S .
Ambi nter- lated
mbiguous changeable Correlate Numerous Strong

Figure 8. Comparison of the percentage of correctly predicted pix-
els (Acc@P) by different models and human observers across five
distinct sketch categories, introduced in Sec. 5.1.

Fig. 8 Ambiguous shows that, given a label, humans can
correctly identify sketch pixels even in the presence of am-
biguity. While none of the models currently match human
performance on ambiguous sketches, our model surpasses
the other methods by a noticeable margin, demonstrating
the effectiveness of our two-level training architecture.

The performance across semantically interchange-
able categories is uniform amongst the three language-
supervised models. This potentiality can be alleviated by
proposing solutions that assign labels jointly.

On sketches with correlated categories our model and
ClipSurgery™ perform similarly, highlighting the inherent
limitation of training using language supervision. For a
few such categories, one might need to further fine-tune the
model relying on sketches of isolated categories.

Our model represents a substantial improvement over
current alternatives, surpassing them by more than 10
points. Future work should seek to improve alignment with
human sketch understanding, especially on sketches with
more than six categories (Fig. 8 Numerous).

6. Conclusion

While focusing on the task of sketch segmentation, we in-
troduced a strategy to train a ViT encoder that results in the
feature space with good semantic disentanglement. Such
feature spaces contribute towards improving machine un-
derstanding of abstract freehand sketches and underpin a
range of downstream tasks such as communication and cre-
ative pipelines. In light of the latter, it can enable more
potent tools for conditional generation and retrieval. In psy-
chology, sketches are used to analyze cognitive functions.
This can be facilitated by the availability of robust sketch
understanding tools. Importantly, we for the first time
demonstrated how language supervision can be used for the
task of scene sketch segmentation. Finally, we conducted a
comprehensive analysis of our model’s performance, identi-
fying research directions to further align the understanding
of sketches by humans and machines.
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