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Abstract

Recent advancements in statistical and rein-
forcement learning methods have contributed
to superior patient care strategies. However,
these methods face substantial challenges
in high-stakes contexts, including missing
data, stochasticity, and the need for inter-
pretability and patient safety. Our work
operationalizes a safe and interpretable ap-
proach for optimizing treatment regimes by
matching patients with similar medical and
pharmacological profiles. This allows us to
construct optimal policies via interpolation.
Our comprehensive simulation study demon-
strates our method’s effectiveness in com-
plex scenarios. We use this approach to
study seizure treatment in critically ill pa-
tients, ultimately advocating for personal-
ized strategies based on medical history and
pharmacological features. Our findings rec-
ommend reducing medication doses for mild,
brief seizure episodes and adopting aggressive
treatment strategies for severe cases, leading
to improved outcomes.

1 INTRODUCTION

Our study investigates optimal treatment strategies for
critically ill patients suffering from seizures or epilep-
tiform activity (EA). These conditions are associated
with elevated in-hospital mortality rates and long-term
disabilities (Parikh et al., 2023; Ganesan and Hahn,
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2019; Kim et al., 2018). EA is commonly observed in
patients with various medical conditions such as brain
injuries (Lucke-Wold et al., 2015), cancer (Lee et al.,
2013), organ failure (Boggs, 2002), and infections like
COVID-19. Healthcare professionals in intensive care
units (ICUs) frequently use anti-seizure medications
(ASMs) to manage EA. However, there are concerns
regarding the utilization of highly potent ASMs due to
their potential adverse health effects (Farrokh et al.,
2018; De Wit et al., 2016). Additionally, the relative
risks and benefits of ASMs vary among patients. This
variation necessitates personalized treatment strate-
gies to achieve optimal outcomes for each individual
patient, as there is no one solution that fits all.!

We analyze data from a large hospital to identify opti-
mal treatment regimes and generate clinically relevant
hypotheses for future investigations in critical care.
However, our data faces many challenges such as (i) a
relatively small dataset of 995 patients, (ii) limited ob-
servation windows resulting in unobserved or missing
ASM and EA data, and (iii) highly variable brain-drug
interactions. No existing optimal treatment regime es-
timation methods are well-suited to handle these chal-
lenges (see Table 2, Section 2, and Appendix A). While
our study focuses on treating EA in critically ill pa-
tients, the underlying framework is applicable across
various medical and healthcare contexts, such as ad-
dressing substance use disorder in intravenous drug
users (Volkow, 2020), managing coronary heart disease
in ICU patients (Guo et al., 2022) or treating chronic
psychiatric disorders (Murphy et al., 2007).

Contributions. We offer a general and flexible ap-
proach that allows for consistent estimation of optimal
treatment regimes in the face of these challenges. Our

!Strategies regarding when and how to treat patients
based on their recent history are referred to as treatment
regimes (denoted by m; for each patient 7).
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approach is divided into three main steps:

1. Pharmacological Feature Estimation: We
estimate patient-specific pharmacological features
using a mechanistic model that captures EA-ASM
interaction and is motivated by the underlying
biochemistry.

2. Distance Metric Learning: We employ dis-
tance metric learning to identify clinical and phar-
macological features affecting the outcome and
use it to perform nearest-neighbors estimation to
account for confounding factors.

3. Optimal Regime Estimation: We estimate the
optimal treatment regime for each patient using
their matched group. The matched group is com-
prised of nearby points according to the learned
distance metric. The optimal regime is estimated
using linear interpolation over the regimes of the
nearby patients with favorable outcomes.

Estimation via our approach results in personalized
optimal treatment regimes that are:

e Interpretable, allowing caregivers to under-
stand, validate, and implement the regimes easily;

e Safe, ensuring that patients are neither over-
prescribed nor under-prescribed ASMs; and

e Accurate, outperforming or performing on par
with state-of-the-art black-box methods.

The simplicity and transparency of our approach cou-
pled with its flexibility and interpretability makes it
suited for high-stakes scenarios, such as the design of
treatment strategies for patients experiencing epilepti-
form activity (EA) in the ICU. We discuss the identi-
fication of optimal treatment regimes in Section 4 and
delineate our methodology to estimate them in Sec-
tion 5. We validate and compare our approach with
existing methods via simulation studies in Section 6
and Appendix F.

Clinical Findings. We show in Section 7 that our
estimated treatment regimes would have improved the
outcomes for patients in the ICU. The results indicate
that a one-size-fits-all approach to escalating ASM us-
age in response to EA may not be universally bene-
ficial. Instead, it is crucial to tailor treatment plans
for each individual. For instance, patients exhibiting
cognitive impairment or dementia are at a heightened
risk of experiencing adverse effects from ASMs. A
more cautious and lower-intensity approach to treat-
ment may be warranted in such cases. This analysis
not only characterizes beneficial approaches for treat-
ing EA in critically ill patients but also generates rel-
evant hypotheses for future inquiry.

Methods
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Table 1: Characteristics of optimal regime estimation
approaches. Finite BI: finite timestep backward in-
duction methods, Infinite HZ: infinite horizon meth-
ods, Censored: censored data methods, Deep RL: deep
reinforcement learning methods, Causal NN: causal
nearest neighbors. Columns represent CA: continu-
ous action space, VT': variable timesteps, MT: miss-
ing timesteps, LO: targets long-term outcomes with-
out requiring a designed reward function, DE: data
efficiency, and IN: interpretability. Green cells de-
note desired properties and red cells indicate undesired
properties in the context of our problem. A indicates
the attribute depends on underlying modeling choices.

2 RELATED LITERATURE

Our literature survey encompasses various techniques
for estimating optimal treatment regimes. We clas-
sify these techniques into five categories: (i) Finite
Timestep Backward Induction (Murphy, 2003; Robins,
2004; Murphy, 2005; Moodie and Richardson, 2010;
Chakraborty et al., 2010; Zhang et al., 2012; Zhao
et al., 2015; Murray et al., 2018; Blumlein et al.,
2022; Qian and Murphy, 2011; Moodie et al., 2014;
Zhang et al., 2018), (ii) Infinite Time Horizon (Ernst
et al., 2005; Ertefaie and Strawderman, 2018; Clifton
and Laber, 2020), (iii) Censored Data (Goldberg and
Kosorok, 2012; Lyu et al., 2023; Zhao et al., 2020), (iv)
Deep Reinforcement Learning (Mnih et al., 2013; Lilli-
crap et al., 2015; Haarnoja et al., 2018; Fujimoto et al.,
2018a; Kumar et al., 2020; Fujimoto et al., 2018b;
Wang et al., 2020), and (v) Causal Nearest Neighbors
(Zhou and Kosorok, 2017).

Each category of techniques has its strengths and lim-
itations. Finite timestep backward induction meth-
ods offer interpretability and ease of implementation.
However, they struggle with missing states, samples
with variable timesteps, and large action spaces. Infi-
nite time horizon and censored data methods can han-
dle more nuanced temporal data but require a pre-
defined reward function. Deep reinforcement learning
(RL) can handle more complex regimes but lacks inter-
pretability and requires a large sample size. There is
a need for a method that can handle continuous state
and action spaces, variable and missing timesteps, does
not require the specification of an arbitrary reward
function, and can work with a small sample size while
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maintaining accuracy and interpretability. We provide
a summary of each category of techniques in regard to
these attributes in Table 2 and include an in-depth
literature survey in Appendix A.

3 PRELIMINARIES

We now introduce our setup and notation. While our
study focuses on treating EA in critically ill patients,
the underlying framework is applicable across various
medical and healthcare contexts, as discussed earlier.

For each patient ¢ in a cohort of n patients, we ob-
serve (i) pre-treatment covariates X;, (ii) time-series
of states { Ej ¢}/, (in this case the EA burden), where
T; is the duration for which the patient is under ob-
servation, (iii) sequence of actions {Z;;}*, (a vec-
tor of ASM drug doses given to the patient), and (iv)
discharge outcome Y;. Here, Y; is a binary indica-
tor for patient well-being with 1 indicating an adverse
outcome based on the modified Rankin Score (mRS).
The mRS was retrospectively abstracted from hospi-
tal records, specifically physician and physical therapy
notes, at the time of patient discharge. The mRS as-
sessments underwent rigorous independent review by
evaluators, who were intentionally blinded to the pa-
tients’ EEG measurements and antiseizure medication
status to avoid bias.

The sequence of actions, {Z; ;}, are determined based
on the administered policy m; such that Z;; =
Wi({Ei,t’}i/:p {Zi,t’}i/_zll) + 5i,t where (C/‘Lt is the un-
observed time-and-patient specific factor affecting the
action at time ¢. Y;({z;.}) denotes the potential out-
come, under the action sequence {z; ;}. However, since
z;+’s are determined by the policy m,, we redefine the
potential outcomes as a function of the policy itself,
denoted as Y;(m,). We assume that the observed out-
come Y; is equal to the potential outcome under the
administered treatment regime, denoted Y;(m;). Note
that while we observe Z;:’s, we do not observe the
underlying treatment regime ;.

Our goal is to identify an optimal regime 7* for each
patient ¢ that minimizes their potential outcome:

77 € argmin E[Y; (7, )| X,].

What makes this challenging is that we only observe
the potential outcome corresponding to the treatment
regime administered by the doctors. Thus, Y; = Y;(m;)
for each patient while all the other potential outcomes
are missing (or unknown). Importantly, the outcome is
observed at a timepoint 7; which may be substantially
further down the road than the length of observation
for each patient, denoted by T;.

To address this missingness, we note that the state-

action interaction and state transition are determined
by underlying pharmacology that can be decoupled
into two parts: (i) pharmacokinetics and (ii) pharma-
codynamics. Pharmacokinetics describes the changes
in drug concentration at time ¢ as a function of the
drug concentration at the previous time points along
with the current drug dose at time t. Pharmacody-
namics describes the changes to the EA burden at
time ¢ as a function of the current drug concentra-
tion and the past EA burden. The pharmacokinetic-
pharmacodynamic (PK/PD) system is formalized as a
pair of partial differential equations (described in de-
tail in Appendix C). Since this structural system fully
governs the drug-EA interaction, conditioning on it
allows us to avoid complex outcome simulators while
also providing context for the observed heterogeneity
in outcomes.

4 IDENTIFICATION

We now discuss the underlying assumptions that allow
identification of 7} € argmin,, E[Y;(7,) | X;] for each
patient i. We start by assuming conditional ignora-
bility (Rubin, 1974; Robins, 2000), Y;(7m,) L m; | X,
an assumption standard in observational causal stud-
ies. This assumption is reasonable in our setting as we
know that caregivers decide the drug regimes primar-
ily based on the pre-treatment features X. By the law
of iterated expectations, we know that

: 1 EY;(ma) | X, m = 7]
il | %= 30 (PG | Xem ).
And by conditional ignorability,

E[Yi(ma) | Xi,m = 7| = E[Y;(m,) | Xi, mi = 7]

for all 7. Thus, if we have positivity, i.e. P(m; =
7o | X;) > 0, then E[Y;(7,) | X;] is identifiable as
E[Y; | X, m = ma).

There are many scenarios similar to our setting where
the dimensionality of 7 is high and experts’ treatment
choices are based on patients’ characteristics. In these
scenarios, it is highly unlikely that P(m;, =7 | X;) >0
for all 7 and X;. However, recall that we are par-
ticularly interested in identifying the optimal treat-
ment regime 7} for each patient ¢ and not identifying
E[Y;(m,) | X;] for any arbitrary policy m,. Thus, for
our context, it is reasonable to assume that even if
the clinicians’ policies are suboptimal, they are sam-
pled from the neighborhood of the optimal policy such
that _P(’i'('Z = 77';-k | X,L) = EﬂxJP(’Iﬁ =T ‘ Xz)] We
refer to this assumption as local positivity. This as-
sumption is weaker than the standard positivity as-
sumption in causal inference. The major implication
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of this assumption is that P(m; = nf | X;) > 0, al-
lowing us to identify E[Y;(7}) | X;] and subsequently
T(;'k = arg minﬂ s.t. P(W|X¢)>OE[}€ | Xi77ri = 7T]'

Under the assumption of local positivity, if m;
were observed for each patient ¢, =} is always
identifiable. However, as noted in Section 3,
we only observe {Fj;}/i, and {Z;;}, while
the underlying m; is unobserved. Recall that
Z»L t = 7T1({E7 t/}t/ 15 {Z»L t/}t’ 1) +5i,t; where Ei,t is an
unobserved patient-and-time specific factor. We make
a Markovian assumption, m({Ez Y AZip 3 =

Ti({Bi ¥y oron {Ziw}yi12n)  and  a s
quential ignorability assurnption such  that
v L ({Eiw}_,{&w¥5) | X, Under these
assumptlons m; is non-parametrically identifiable for
each patient ¢ (Matzkin, 2007). This, in turn, implies
that the optimal treatment regime 7 is identifiable.

Remark 1. Recall that the outcome Y; is a function
of a high-dimensional vector of EA burdens {E; +}{%,
and drug doses {Z;}{~,, some of which are unob-
served. Defining the treatment as a regime m; is
akin to exposure mapping such that even though
(B} AZia}Tr) # (B b {Zya}72,) we have
E[Yl(m)|Xl = X] = E[Y}(WJ”XJ = X] if T, = Tj. This
helps us address the problem with missing F; ;’s and
Z,.’s and ensures that the local positivity assumption
is more reasonable.

5 METHODOLOGY

We now outline our three-stage methodology for es-
timating the optimal treatment regime. The first
stage involves estimating an individualized mechanis-
tic model from observed state-action data to approx-
imate state transition dynamics. Mechanistic model-
ing offers interpretability and needs much less data
for fine-tuning. We also estimate the administered
regimes (m;’s) if they are unobserved (as in our setup).
In the second stage, we create a distance metric
to match patients based on pre-treatment covariates
and estimated mechanistic model parameters. Sub-
sequently, we use the estimated distance metric to
tightly match patients . Finally, in the third stage,
we leverage these matched groups to estimate the op-
timal treatment regimes.

Our interpretable matching approach allows validation
through case-based reasoning, which enhances confi-
dence in the estimation procedure and underlying as-
sumptions. We provide details for each stage in the
following subsections, with a focus on our real-world
application. However, the framework is adaptable to
other applications with similar data structures.

Mechanistic State Transition Modeling. We
approximate PK using a one-compartment model
(Shargel et al., 1999), with half-life as the param-
eter, and Hill’'s PD model (Hill, 1910; Weiss, 1997;
Nelson et al., 2008), with receptor-ligand affinity and
drug dose for 50% efficacy as parameters, to model
the short-term effectiveness of the ASMs in reducing
EA burden. We delineate the models formally in Ap-
pendix C. For each patient ¢ in the cohort, we esti-
mate these individualized PK/PD parameters by min-
imizing the mean squared error between the predicted
EA time series under the observed ASM regime using
the mechanistic model and the actual observed EA
time series. This step is akin to estimating a multi-
dimensional propensity score.

Remark 2. We approximate state-transition dynamics
via deterministic mechanistic models, but we do not
use them for counterfactual simulations. Mechanis-
tic modeling isolates clinically relevant pharmacolog-
ical features from stochastic dynamics. While state-
transition dynamics adjustment is not necessary for
consistent estimation, accounting for PK/PD param-
eters aids in estimating heterogeneous effects, akin to
using propensity scores with Bayesian regression trees
(Hahn et al., 2020).

Characterizing Administered Policies. In our
study, we focus on treatment regimes for two com-
monly used anti-seizure medications (ASMs): propo-
fol and levetiracetam. For our application, we em-
ploy the policy template that is defined by the drug
administration protocols used in hospitals, to ensure
interpretability, although our framework can accom-
modate non-parametric policy functions such as trees
or forests. Propofol, a sedating ASM, is administered
as a continuous infusion based on the past lhr, 6hrs,
and 12hrs of seizure levels using policy 7#P"°P. In con-
trast, non-sedative ASM levetiracetam is given as a
bolus every 12 hours, with dosages varying according
to recent EA burden and drug history through policy
w'¢?. The regime for patient i is denoted by

N _{ P ({Bs o Yoy {Zi ﬁ,l,af)}
1 ({Biw Yooy AZiw Yoy al)}

We provide the functional forms of the policies in Ap-
pendix H. We use the observed EA burdens ({E;.})
and ASM doses ({Z;.}) to deduce the administered
policy m; for each patient ¢ by minimizing the mean
squared error loss between the predicted and observed
drug doses at each time ¢.

Distance Metric Learning and Matching To
adjust for confounding, we need to account for pre-
treatment covariates and pharmacological features.
We do this by grouping patients who are similar in
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these features but are treated differently. This proce-
dure is called matching, a commonly used approach
to nonparametrically estimate potential outcomes (Ho
et al., 2007; Stuart, 2010; Parikh et al., 2022). For
the sake of simplicity, let V,; denote a vector of pre-
treatment and pharmacological features for each pa-
tient ¢. Then, the estimate for E[Y (7,)|V = v] is given
by Yy (7a) = m(MGq(D,r,v), 7,) where MG4(D,r,v)
is the matched group of units from dataset D that are
r distance away from v under distance metric d, and
m is a regression on the units in the matched group
evaluated at m,.

In high-dimensional scenarios with limited data, it is
not possible to precisely match all covariates. Thus, we
want to match tightly on important covariates that af-
fect patients’ prognoses. Recent matching approaches
have explored distance metric learning before match-
ing for more accurate and interpretable causal effect
estimation (Parikh et al., 2022; Diamond and Sekhon,
2013; Lanners et al., 2023, see Appendix B for further
details). We extend the Variable Importance Match-
ing (VIM) framework (Lanners et al., 2023) to our
problem setting. Our distance metric d is parame-
terized by a positive semi-definite matrix M such that
dpm(vi, vie) = (vi — vi)TM(v; — vi). We constrain
M to a diagonal matrix, enabling domain experts to
interpret these entries as feature importance values.
Consequently, we set M ; equal to the gini impurity
importance of the j-th feature in the model for E[Y'|V]
(as defined in Nembrini et al. (2018) and Ishwaran
(2015)). To ensure the “honesty” of our approach, we
split the dataset D into two parts: the training set
Dy and the estimation set D, (Ratkovic, 2019). We
fit gradient-boosting trees with 100 estimators on Dy,
each with a maximum depth of 2. Henceforth, we de-
note the learned distance metric as d'.

Estimating Optimal Regimes. For each matched
group centered around patient i € D.g, we consider
the administered regimes 7 and outcomes Y for all
k € MGgi (Dest,7, Vi), where d is the learned dis-
tance metric. For the sake for simplicity, we will de-
note MG gt (Dest,r, Vi) as MG;. We estimate the con-
ditional expected outcome v;(7) := E[Y; | 7, V;] using
only the units in MG;. The estimate is denoted as
U;(m). Further, consider a new operator € such that
if m; € Dom(n) (a function that maps states to a vec-
tor of ASM doses) and 7 € Dom(7) (another func-
tion that maps states to a vector of ASM doses) then
w3 = w1 @ me € Dom(w). This operation is defined
so that if m3 = m @ m2 then w3(s) = m1(s) + m2(s)
for all s in the domain of states. Then, our es-
timate of the optimal treatment regime for unit ¢
is 7f € argmin, , U;(m.;) where, 7., = @ crmy,
keMG;

ZkeMGi cp=1and 0<¢, <1.

Consistency. We now discuss a smoothness of out-
comes assumption under which our estimated optimal
regime is consistent. Let’s first define an (S, p)-norm
on the space of policies such that ||m — malls, =

([ies|mi(s) —ma(s)") P s where S is the state space
for the policies and p is some positive integer. The
smoothness of outcomes assumption is given as fol-
lows: given constants A, > 0 and Ay > 0 such that
for any two units 1 and 2, if |71 — m2||s,00 < Ax and
V1= Va2 < Av then [[E[Y(m) | V1] — E[Y(m2) |
V]|l < 6(Ar, Av) where § is a monotonically decreas-
ing function in both the arguments with §(0,0) = 0.

This assumption essentially implies that if V; and V,
are close and if m; and my are also close then the ex-
pected potential outcomes are also close.

Proposition 1. Given the conditional ignorability, lo-

cal positivity, and smoothness of outcomes assump-

tions, T is a consistent estimate of 7}, such that
lim E[Y(77) | Vi] = E[Y(7]) | Vi].

n— oo

We provide the proof of this proposition in Appendix I

Remark 3. As our regimes 7 are linear score func-
tions with parameter vector a (see Appendix H), 7, =
Tk, @D Tk, corresponds to defining new policy g, with
parameters ax, = ay, + a,. This property comes in
handy when comparing the administered policy’s pa-
rameters with the estimated optimal policy.

6 SYNTHETIC EXPERIMENTS

Comparison Baselines. We compare our approach
to 49 approaches based on 10 different state-of-the-art
finite timestep backward induction, infinite horizon,
and deep reinforcement learning frameworks. The vast
majority of methods cannot be run on our data setup
out of the box and often require major modifications.
The various approaches we compare use different un-
derlying models, ways to discretize continuous out-
comes, and predefined reward functions. We outline
the methods we compare to and the implementation
details in Appendix E.

Data  Generation Procedure. Our data-
generative procedure is designed to emulate the
real-world scenario where critically ill patients un-
dergo drug treatment that affects their state. We
design the data generation process to be customizable
in five important aspects to discern how various
methods perform with the challenges present in
our real-world data: (i) number of covariates; (ii)
number of total timesteps 7;, for each patient; (iii)
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Figure 1: Percent of patients with poor outcomes under each method’s proposed policy (lower is better). Boxplots
show the distribution of the average outcomes over 20 iterations. Observed shows average observed outcomes.
Inaction and Maz Dosing administer no drugs and the max amount of drugs to each patient at each timestep,
respectively. RF Q-learning is a finite timestep backward induction method using random forests. Infinite (Inf)
Horizon methods use fitted Q-iteration (see Clifton and Laber, 2020) with either linear models or random forests.
Q-learning and Inf Horizon discretize the treatment into five bins. BCQ, CQL, CRR, GGPQ, SAC, and TD3
are Deep RL methods. Inf Horizon and Deep RL methods use an insightful reward function, see Appendix E.
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Figure 2: (a) Estimated density of the outcome probabilities under optimal and clinician’s administered policies.
(b) Tree characterizing the subpopulations that would have benefited the most by switching to the optimal policy.
The value at each node in the tree shows the percentage point improvement in the outcome. Here, HEI/ABI
refers to hypoxic-ischemic encephalopathy (HIE) and anoxic brain injury (ABI).

number of unobserved timesteps, 7, — T;, for each
patient; (iv) cardinality of the action space; and (v)
observed policies. We construct a total of 32 different
experimental setups by varying these aspects. We
provide the full details of our data generation process
and experimental setups in Appendix D.

Results. For a real-world data simulation, we
use 1000 simulated “patients” with (i) 100 pre-
treatment covariates, (ii) varying lengths of stay (10-15
timesteps), and (iii) unobserved timesteps (2-5 steps),
where (iv) drug doses at each timestep are between
0 to 100 and (v) determined using an educated pol-
icy akin to one doctors use in the ICU. We display
the percent of patients with poor outcomes under the
proposed policies of our method, representative ap-
proaches from each of our comparison baseline cat-
egories, and predetermined approaches like inaction,

random assignment, and max-dose in the left plot of
Figure 1. The right plot of Figure 1 shows results for
the same setting except with (iii) no missing timesteps.
In each of these complex setups, our matching-based
method consistently yields optimal treatment policies,
surpassing all comparison methods. Notably, among
the 8 setups with 10-15 total timesteps and observed
data generated from an educated policy, our method
is consistently the top performer.

Analysis. Existing methods falter on simulated data
emulating our real-world setup for various reasons.
The suboptimal performance of Q-learning is likely
caused by its inability to handle missing states as well
as continuous action spaces (Huang et al., 2022). In-
finite horizon methods like fitted Q-iteration mainly
rely on a predefined reward function, often focusing
on short-term objectives, and cannot handle contin-
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Figure 3: Difference in the propofol drug doses between the optimal and the administered regimes for mild and
severe EA burden in last 1h for (a) patients on various levels of Glasgow coma scale (GCS); (b) patients with
various levels of APACHE II scores; and (c) patients with various levels of ED50 for propofol, an important
pharmacodynamic parameter determining the amount of drug required to reduce EA burden by 50%.

uous action spaces (Clifton and Laber, 2020). Deep
RL methods like DDPG are also likely struggling with
having to rely on a predefined reward function and
the relatively small dataset size (Riachi et al., 2021;
Kondrup et al., 2023; Kang et al., 2023; Kalweit and
Boedecker, 2017). More modern Deep RL methods
like CQL, CRR, and BCQ mediate the deficiencies of
DDPG. However, unlike our approach, these methods
are inherently uninterpretable and, therefore, are un-
suitable for high-stakes problems.

Other methods can perform as good or better than our
method when aspects of the data generating process
are varied to look less like our real-world data. For ex-
ample, approaches like infinite horizon and some Deep
RL methods perform better when the observed data
is generated from a random, rather than an educated,
policy and backward induction methods perform bet-
ter when there are fewer and no unobserved timesteps.

In Appendix F, we thoroughly compare our method
to the 49 baselines using 32 simulation setups. These
results underscore the suboptimal performance of ex-
isting methods in scenarios with missing data, contin-
uous action space, and highly stochastic state dynam-
ics. Our method can handle these various challenges,
allowing it to accurately estimate interpretable opti-
mal regimes that are safe for high-stakes settings.

7 TREATING SEIZURES IN
CRITICALLY ILL PATIENTS

We now present the analysis and insights derived from
our optimal treatment estimation approach when ap-
plied to a cohort of 995 critically ill patients. This co-
hort is comprised of individuals aged 18 and older with
confirmed electrographic EA as diagnosed by clinical
neurophysiologists or epileptologists.

We evaluate our approach by comparing the estimated
optimal treatment policy P(Y;(w}) = 1|V;) with the

Table 2: APACHE II scores and corresponding non-
operative mortality or death rate from Knaus et al.
(1986), as well as estimated Y under estimated ad-
ministered regime and optimal regime.

APACHE Death Est. Est.

IT Score Rate E[Y;(m;)] E[Y;(7})]
0to4 4% 17% 6%
5to 9 8% 22% 8%
10 to 14 15% 35% 17%
15 to 19 24% 48% 25%
20 to 24 40% 56% 31%
25 to 29 55% 61% 35%
30 to 34 73% 73% 36%

clinician’s administered policy P(Y;(m;) = 1|V;) for
each patient. Our analysis indicates a significant im-
provement in patient outcomes, with a 23.6 &+ 1.9 per-
centage point reduction in the probability of adverse
events under the optimal regimen. Few patients under
the optimal policy had over a 50% chance of an ad-
verse outcome (Figure 2(a)). Figure 2(b) reveals that
patients with hypoxic-ischemic encephalopathy (HIE)
or anoxic brain injury (ABI) experienced a substan-
tial 35.9 percentage point decrease in the likelihood of
an adverse outcome, highlighting those who benefited
most from our estimated optimal treatment policies.

We compare and contrast the optimal regimes with the
administered regimes for each drug. We consider the
variability of each drug’s regime with respect to pa-
tients’ pre-treatment prognosis measured as APACHE
IT score (Knaus et al., 1986) and Glasgow coma scale
(GCS) (Jain and Iverson, 2018). APACHE II score
quantifies disease severity in ICU patients and GCS
measures impaired consciousness in acute medical and
trauma patients. Both of these measures are clini-
cally relevant for deciding treatment strategies (Mum-
taz et al., 2023). Table 2 displays mortality rates from
Knaus et al. (1986) and estimated ¥ under adminis-
tered and optimal regimes for different APACHE II
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scores. The optimal regime improves outcomes across
all levels, with the most benefits seen in patients with
high APACHE II scores (i.e., with worse prognoses).

Propofol Regimes. Figures 3(a) and 3(b) show that,
on average, the estimated optimal propofol dose for in-
dividuals with low EA burden is generally lower than
the administered dose, especially for those with worse
prognoses (lower GCS or higher APACHE II scores).
Conversely, when patients have a severe EA burden
in the last hour and an APACHE II score below 30,
the optimal dose is marginally higher than the admin-
istered dose. Also, one must adjust propofol dosages
based on patients’ PK/PD, specifically, based on the
ED50 values — a PD parameter quantifying the amount
of drug required to reduce the EA burden by 50%.
When the EA burden is low, we recommend increasing
the dosage for patients with low ED50 values to alle-
viate EA and decreasing it for those with high ED50
values, as an excess of propofol may lead to adverse
effects (see Figure 3(c)).

Levetiracetam Regimes. The optimal and admin-
istered levetiracetam regimes generally align, except
for patients with sustained 12-hour EA burden. In
such cases, the optimal regime recommends a lower
dose (0.50 mg/kg on average) compared to the admin-
istered regime (0.82 mg/kg on average). For dementia
patients, the difference is more pronounced, with the
optimal regime suggesting a dose of 4.2 mg/kg lower
(see Figure 4(a)). Conversely, subarachnoid hemor-
rhage patients with a 6-hour sustained EA burden re-
ceive a 1 mg/kg higher dose with the optimal regime
(see Figure 4(Db)).

To summarize, our findings indicate that patients in
this study would, on average, be less likely to have an
adverse outcome under the optimal regimes estimated
by using our method. These optimal regimes would
lead us to advocate for an assertive approach to man-
aging the high EA burden in more critically ill patients
while reducing propofol and levetiracetam dosages for
relatively healthier patients or those with mild EA.

8 DISCUSSION & CONCLUSION

We present an approach that is capable of handling
many challenges with real-world observational data
like variable timesteps, missing states, a continuous
action space, and small data size. Our approach bal-
ances accuracy and interpretability and demonstrates
superior performance through simulation. We ulti-
mately operationalize our approach to learn treatment
regimes for ICU patients with EA, showcasing its abil-
ity to solve real-world problems.
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Figure 4: Difference in the levetiracetam doses be-
tween the optimal and the administered regimes for
(a) patients with and without dementia experiencing
a sustained EA burden for 12 hours; and (b) patients
with and without subarachnoid hemorrhage experienc-
ing a sustained EA burden for 6 hours.

Clinical Relevance. The current absence of
evidence-based guidelines to inform ASM regimes
(drug type and dosing) in patients with EA results
in frequent overprescription of ASMs in response to
EA (Zafar et al., 2020; Rubinos et al., 2018). High
EA-burden is frequently treated with escalating doses
of ASMs and anesthetics, and many of these patients
are also discharged on ASM treatment (Zafar et al.,
2018; Tabaeizadeh et al., 2020; Dhakar et al., 2022;
Alvarez et al., 2017; Kilbride et al., 2009; Punia et al.,
2020). Our findings suggest that not all patients may
benefit from such ASM escalation. Thus, careful con-
sideration of the baseline illness severity, injury type,
and patient comorbidities is important to determine
the risk-benefit trade-off of initiating treatment and
selecting treatment intensity. For example, patients
with cognitive impairment and dementia have a higher
risk of ASM adverse effects (Mendez and Lim, 2003;
Cretin, 2021) and may require lower-intensity treat-
ment, which is supported by our findings. Finally, as
shown in Figure 3 and Figure 4, heterogeneous treat-
ment responses need to be considered in selecting drug
dosing. Current clinical practice relies on population-
level pharmacological data to infer standardized dos-
ing regimens used for all patients. However, this one-
size-fits-all approach is suboptimal due to the patient-
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level PK/PD heterogeneity shown in our study (see
Figure 3(c)). Our findings strongly support the need
for clinical trials to reveal heterogeneous causal effects
and construct individualized optimal treatment. Such
efforts can guide evidence-based clinical practice and
improve patient care in the ICU.

Limitations. Like all causal research, our study re-
lies on untestable assumptions. We assume there are
no hidden variables affecting both EA burden and pa-
tient discharge outcomes, though unmeasured disease
characteristics might violate this assumption. Addi-
tionally, the misspecification of our predefined policy
template, intended for doctor interpretability, could
affect real-world drug administration, akin to issues
discussed in recent work Savje (2023). Furthermore,
while we focus on point estimation for personalized
optimal treatment regimes, handling uncertainty, es-
pecially when estimating the exposure map from ob-
served data, remains an open question.

Future Direction. Addressing the limitations inher-
ent in our approach, we identify three promising areas
for future work. First, there is a need for research into
uncertainty quantification for estimated personalized
optimal treatment regimes, with broader implications
for situations where exposure mapping is data-driven.
Second, developing a non-parametric approach for sen-
sitivity analysis and partial identification has the po-
tential to advance research in this area. Third, in-
terpretable Deep RL has been explored to a limited
capacity in works like Lyu et al. (2019) and Li et al.
(2023). Given the relatively strong performance of
these methods, future work that optimizes Deep RL
for offline and off-policy tasks is a promising direction
for future work in this area.
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Safe and Interpretable Estimation of Optimal Treatment Regimes:
Supplementary Materials

Appendix A DyNAMIC TREATMENT REGIME & REINFORCEMENT LEARNING
LITERATURE SURVEY

There are a number of different techniques for estimating optimal treatment regimes. Prior methods include
parametric, semi-parametric, and non-parametric modeling approaches and are often combined with reinforce-
ment learning (RL) frameworks such as Q-learning and policy gradient. We categorize the existing methods into
five categories: Finite Timestep Backward Induction, Infinite Time Horizon, Censored Data, Deep Reinforce-
ment Learning, and Causal Nearest Neighbors. Methods from each of these categories excel in certain settings.
However, in this section, we highlight the limitations of each approach that ultimately make them unsuitable for
our complex, high-stakes problem.

Finite timestep backward induction methods make up the majority of optimal treatment policy estimation
methods. Murphy (2003) and Robins (2004) were some of the first ones to utilize backward induction in a
semiparametric approach using approximate dynamic programming. Murphy (2005) introduced the now widely
used Q-learning, of which initial extensions focused on using parametric and semi-parametric modeling of the
Q-functions (Moodie and Richardson, 2010; Chakraborty et al., 2010; Song et al., 2015). These approaches can
produce interpretable policies and can be easier to implement. However, correct specification of the Q-functions
can be difficult, particularly with observational data (Moodie et al., 2014). This can lead to poor estimates of
the optimal policy when a misspecified linear model is used. For this reason, recent work has focused on using
flexible non-parametric machine learning methods (Zhang et al., 2012; Zhao et al., 2015; Murray et al., 2018;
Blumlein et al., 2022), particularly within the Q-learning framework (Qian and Murphy, 2011; Moodie et al.,
2014; Zhang et al., 2018). While these methods are less prone to model misspecification, they often result in
complex treatment regimes for which the rationale behind the treatment decision is difficult to discern. Although,
Blumlein et al. (2022) and Zhang et al. (2018) proposed more explainable nonparametric approaches.

The majority of backward induction methods assume all patients have the same number of fixed timesteps, which
presents difficulty when working with variable timesteps across patients and unobserved states. Infinite horizon
methods, like fitted Q-iteration (Ernst et al., 2005; Clifton and Laber, 2020) and Ertefaie and Strawderman
(2018)’s Q-learning approach, are better suited to handle these complexities. However, these methods necessitate
a reward value to be associated with every action taken by each unit. These reward values are often assumed
to be a measurable value that is intrinsically linked to the optimization problem. When this is not the case,
they need to be calculated using a predefined function over the observed variables. Having to create such a
reward function is often a difficult task that can lead to poor optimal regime estimates (Mataric, 1994; Koenig
and Simmons, 1996; Singh et al., 2010). Other work has investigated using backward induction with censored
data (Goldberg and Kosorok, 2012; Lyu et al., 2023; Zhao et al., 2020). However, these methods have focused
on survival analysis time-to-event tasks, which differ from our setup where we have a labeled outcome for each
patient.

Regardless of time-step constraints, all of the methods discussed thus far assume that there are a discrete number
of treatment options at each time point. Furthermore, while there is extensive work on backward induction
methods for observational data (Moodie et al., 2012), many methods impose a strong positivity assumption over
all of the treatments at each timepoint (Qian and Murphy, 2011; Zhao et al., 2015; Blumlein et al., 2022). This
assumption is often broken in observational data. For example, in the medical setting patient care is given under
the supervision of a trained professional and thus, unless randomized, at any given time point a patient in a
particular state may have a near-zero chance of receiving a particular treatment. While approaches like Schulte
et al. (2014) do employ weaker positivity assumptions, there is limited discussion on how various backward
induction methods handle extremal propensity scores.
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Deep reinforcement learning (RL) methods are a fast-growing area of research for optimal treatment regime
estimation. Deep RL methods can be categorized as online or offline and on-policy or off-policy. In real-world
high-stakes settings online and on-policy methods are infeasible, limiting the scope of applicable methods to
offline, off-policy approaches. Mnih et al. (2013) introduced Deep Q-Learning as an effective method for off-policy
RL and Lillicrap et al. (2015) extended this method to a continuous action space with deep deterministic policy
gradient (DDPG). More recent work has focused on improving upon DDPG by improving sampling efficiency
(Haarnoja et al., 2018), limiting overestimation bias (Fujimoto et al., 2018a; Kumar et al., 2020), overcoming
extrapolation error (Fujimoto et al., 2018b), and using a critic-regularized approach (Wang et al., 2020).

Deep RL methods are capable of learning complex optimal treatment regimes and can handle variable and infinite
timesteps. These methods are significantly more data and resource-hungry than non-deep learning approaches.
Although, Deep RL methods like Tschantz et al. (2019) and Haarnoja et al. (2018) offer improvements in this
area. A larger issue with Deep RL is that it requires reward values to be associated with each action. This can
cause issues similar to those discussed with infinite horizon methods. A possible solution to not having reward
values for infinite horizon and Deep RL methods is to use inverse reinforcement learning to learn a good reward
function (Ng et al., 2000; Arora and Doshi, 2021). However, such an approach would add an additional layer of
complexity to the estimation procedure. In the case of Deep RL, this would further exacerbate what is already
its most crucial limitation in its inherent lack of interpretability. The black-box nature of Deep RL makes it a
poor choice for optimal treatment regime estimation in high-stakes applications.

The previously mentioned methods either assume (i) the correct specification of a reward function or (ii) that
there are no missing states or actions leading up to the final outcome. These assumptions do not align with our
real-world scenario.

Matching is an intuitive method for optimal treatment regime estimation. Despite its inherent interpretability,
little work has been done in this area. Zhou and Kosorok (2017) used a nearest-neighbor approach that exam-
ined the causal treatment effects within neighborhoods of similar patients to estimate optimal treatment regimes.
While mentioning that their method can be extended to observational studies, they focus on randomized con-
trolled trials - lacking theoretical or experimental results for the observational setting. Furthermore, they only
consider a singular timestep with discrete treatment options and use a limited univariate approach for match-
ing in high dimensions. Ultimately, their matching approach shows promise as an accurate and interpretable
approach to optimal treatment regime estimation but is unable to handle the complexities commonly found in
real-world problems.

Ideally, we want a method that can handle continuous action and state spaces, missing timesteps, does not
require a reward function to be specified, and can be trained on a small number of samples. Furthermore, we
want a method that is interpretable given the high-stakes setting. Table 2, in the main text, summarizes the
different optimal treatment regime estimation approaches in regard to these desired attributes. In Section 5,
we present our matching approach for optimal treatment regime estimation. We subsequently present results
showing our method’s superior performance over a number of comparison approaches across various settings (see
Section 6 and Appendix F.1). Ultimately, to the best of our knowledge, our method is the only approach that
possesses all of the qualities needed to effectively address our problem.

Appendix B DISTANCE METRIC LEARNING AND ALMOST EXACT MATCHING

In this section, we discuss some recent and relevant work in the almost exactly matching and distance metric
learning literature. In an ideal scenario, we would achieve exact matches for some units. However, in high-
dimensional contexts with continuous covariates, exact matches are rare. When performing nearly exact matching
with a caliper of r, the objective is to achieve a close match on relevant features while not being overly concerned
about matching on irrelevant ones. Therefore, especially in cases with limited data, the choice of the distance
metric d for matching becomes crucial. Recent matching approaches have focused on distance metric learning
before the matching process. One such approach, Genetic Matching (Diamond and Sekhon, 2013), employs
a genetic algorithm to learn an appropriate distance metric. However, it has been found to perform poorly
for individualized estimation and is limited to binary or categorical exposures. Another method, Matching
After Learning to Stretch (MALTS) (Parikh et al., 2022), is effective for individualistic estimation but struggles
to converge in high-dimensional settings with small datasets. A recent approach called Variable Importance
Matching (VIM) (Lanners et al., 2023) uses a highly regularized model like LASSO or a shallow decision tree
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to model E[Y|V]. It then utilizes the variable importance scores from the fitted model to guide the selection of
the distance metric. This approach is both fast and interpretable and works well in high-dimensional scenarios,
making it well-suited for our problem.

Appendix C PHARMACOKINETICS AND PHARMACODYNAMICS
In this section, we discuss our modeling choice for PK and PD mechanistic models.

Pharmacokinetics. We use a one-compartment PK model to estimate the concentration of drug j for patient
i at time ¢ (D; ;) as:
9i{Diw 1, Zie) = € " Djig1 + Zjig, (1)

where pharmacokinetic parameter ;; is proportional to the half-life of the drug j in patient .

Pharmacodynamics. We model PD using Hill’s model (Nelson et al., 2008) to estimate the short-term effec-
tiveness of the ASMs in reducing EA burden:

D3
t—1 _ . _ Jyist
fi({Eiﬂf/}t’:UDi,t) - Bl (1 Z D I —|—ED5O 7 7> ’ (2)

J,%,t

where f; is patient i’s EA burden when no drugs are administered, o;; models the affinity of drug j’s ligand
to a receptor for patient ¢, and ED50;; is the amount of drug concentration necessary to reduce EA burden by
50% from the maximum level.

Appendix D DATA GENERATIVE MECHANISM FOR THE SIMULATION STUDY

We base our synthetic data experiments on our real world application where patients experiencing seizures are
treated with anti-seizure medications. For our synthetic experiments, we let the first-order pharmacological state-
transition model outlined in Appendix C be the true model for each patient’s drug response and EA burden
progression.

For each patient ¢ € {1,...,n}, the PK/PD model is defined by the following parameters: B;, v, ®j,
and ED50; ; for each drug j. For simplicity, and to allow for comparison to more methods, we consider a
setting with only one drug. Associated with each patient are p pre-treatment covariates, X;1,...,X;, u
Normal(0,1). We let the PK/PD parameters be correlated with the pre-treatment covariates X; such that

Bi ~ Normal (100 + 10X, 1,5) and ED50; ~ Normal (15 — 2X; 3,1). Further, ~;, a; “d Normal 1,0.1).
, , Y

From here, we let the total number of timesteps, 7;, be a random integer in [Trin, Timaz] and set the number
of observed states as T; = 7; — m;, where m; is the number of unobserved timesteps and is a random integer in
[Mmin, Mimag]. Finally, E; o, the initial burden for patient ¢, is sampled as E; g ~ Normal(75 + 5X; 2, 5), and is
lower bounded by 0 and upper bounded by S;.

We simulate a complete sequence of states {E;.};-,; and actions {Z;};~, given the initial burden E; g, a
policy 7;, and the patient’s corresponding PK/PD parameters. We use the same PK/PD equations outlined in
Appendix C with a small amount of noise added to the patient’s EA burden at each timestep. In particular, we
calculate the EA burden for patient i at timestep ¢ by slighltly modifying Equation 2 in Appendix C so that

Ei; =5 +€R,,- (3)

Z D + ED50(’“

where €g,, ~ Normal(0,2.5). This produces a series of EA burdens {E;;}/~, drug doses {Z;;};~; and drug
concentrations {D;};", corresponding to each patient 7. The outcome is related to the patient’s pre-treatment
covariates, EA burdens, and drug concentrations - thus inducing a level of confounding. In particular, we
calculate the continuous outcome value as
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1

O; = — |exp ep< ) 1>—|—exp ( ep( ) 1) 4
)& 2w (& :
Note that we desire a smaller continuous outcome value. This outcome function represents a scenario where
patients with a large average value in X;; and X; o are more at risk from high levels of EA burden. Whereas,
patients with a large average value in X; 3 and X, 4 are more at risk from high drug concentrations. Finally, to
emulate the real-world setting where we observe a binary outcome, we discretize the continuous outcomes to a
binary outcome for each patient, setting ¥; = 1[0; > 3].

Remark 4. Three was chosen as our cutoff value for the binary outcomes to create a setting where about 50%
of patients experience a bad outcome (i.e. Y = 1). By using a static value, we could more easily compare the
binary outcomes across a variety of data generation setups.

Ultimately, the observed data for each patient i is {X;, {Ei}1i1,{Zit}i2,,Yi}. Note that the observed history
only includes the states and actions up to timestep T;, not 7;, and only includes the binary outcome Y;, not O;.

D.1 Data Generation Process Setups

We vary the data generation process in five important aspects to create a comprehensive synthetic experiment
under these conditions.

1. Number of pre-treatment covariates.

Number of total timesteps.

Number of missing timesteps.

Size of the action space.

Policy creation method (i.e. how we generate ;).

ANl S

For each of these five aspects, we consider two separate settings. We enumerate over all possible combina-
tions for a total of 32 experimental setups. To align with our real-world dataset size, we set the number
of patients n = 1000 for all setups. We outline the two options for each aspect below.

1. Number of pre-treamtent covariates.

(a) 10 pre-treatment covariates (p = 10).

(b) 100 pre-treatment covariates (p = 100).
2. Number of total timesteps.

(a) Each patient has two total timesteps (r; = 2 for all 7).

(b) Each patient has between 10 and 15 total timesteps (Tpnin = 10, Tinar = 15).
3. Number of missing timesteps.

(a) No missing timesteps for any patients (7; = 7; for all 7).

(b) Patients are missing a variable number of timesteps. If the number of total timesteps is 2(a), then
patients are missing between zero and one timesteps (Min = 0, Mypar = 1). Otherwise, if the total
number of timesteps is 2(b), then patients are missing between two and five timesteps (M,in = 2,
Moz = 5)

4. Size of the action space.
(a) A continuous action space with drug doses allowed in [0, 100].
(b) A binary action space with only two drug doses allowed {0, 50}.
5. Policy creation method (i.e. how we generate ;).

(a) Random policy. If the action space is continuous, 4(a), then m; ({EZ t’}t/ 1,14, t'}t' 1) = €, , where
€r,, ~ Uniform(0,100). If the action space is binary, 4(b), then m; ({E;»}5 !, {Zi v} ) = 50€x, ,
where €, , ~ Bernoulli(0.5).

(b) An informed policy that is an additive model using ten binary features F'},..., F''°. For a patient i at
timestep t, the ten features are calculated as:

i Fly=1[E;;—, > 10]

F2t = 1[Eiy1 > 20]
t = ].[ it—1 > 30}
iv. F4t—1[ ii—1 > 40]
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Policy Type Aggressive Moderate Conservative
Action Space Continuous | Binary | Continuous | Binary | Continuous | Binary
1 10+e¢,, 0 €1 0 €Cer 0
© 10+6Ca2 50 €Crma 0 €Ceo 0
(3 20+€¢,4 0 10+ec, .o 0 €Ces 0
Ca 20+-€¢,, 0 10+€¢,., 0 €ea 0
Coeflicient | (s 20+€¢,5 0 20+€¢,.5 50 10+ec,, 50
Values (o 20+€¢,q 0 20+€¢, .6 0 20+€¢,q 0
(7 €Car 0 -10+€¢,., 0 -10+ec,, -50
(s €Cas 0 -20+€¢, ¢ 0 -20+€¢,q 0
Cy 20 +ec,q 0 20 +e¢,.0 0 20 +ec, 0
C10 €¢ar0 0 -20+€¢10 0 20+ 0

Table 3: Coefficient values for aggressive, moderate, and conservative policies. All e¢, ud Normal(0, 1) and are
added to emulate the liberty that experts take to slightly deviate from the preset policies.

v. FS, =1[B; ;1 > 60]
vi. FS, = 1[E; 1 > 80]
vii. Fy = 1(Z;,—1 > 25]

viit. FS, = 1[Z;4—1 > 50]

ix. F? =1t >3]1[E;,—1 > 4012 S0 By > 20]

x. F}Y =1t > 3]1[Z; ;1 > 40]1[3 E;,—;H Zip > 20]

Then, ; ({EZ ,y}t, 14, t’}t/ 1) = ({ FY, 1.0 ) = ZJ L GE 71, where (1,..., (1o are determined by
the type of policy assigned to patient :. We deﬁne three separate policy types: aggressive (7¢), moderate
(7™, and conservative (7¢). Depending on the size of the action space, the coefficients correspondmg
to each of the policy types are shown in Table 3.

We then assign a policy to each patient ¢ such that if the patient has a larger average value in
X1 and X; o then they are assigned an aggressive policy with high probability. And similarly, if
the patient has a larger average value in X; 3 and Xj 4 then they are assigned a conservative policy with
high probability.

Finally, to emulate a doctor occasionally deviating from the informed policy, at each timestep there is
a small chance that the administered dose does not follow the assigned policy 7;. In particular, if the
action space is continuous, 4(a), there is a 5% chance that Z; ; = &; , where ; ; ~ Normal(E; ;,10). And
if the action space is binary, 4(b), there is a 5% chance that Z;; = 50§, ; where &; ; ~ Bernoulli(0.5).

Varying these five aspects of the data generation process, we generate a suite of results that provide a compre-
hensive analysis of the strengths and weaknesses of a variety of optimal policy estimation methods. We outline
the methods we compare to, and provided implementation details, in Appendix E. Results for all experiments
are shown in Appendix F.

Appendix E  COMPARISON METHODS AND IMPLEMENTATION DETAILS

We compare our matching method to Finite Timestep Backward Induction Methods, Infinite Time Horizon
Methods, and Deep Reinforcement Learning Methods. Many of the methods we compare to are not configured
to handle all of the complexities present in our data. For this reason, we make adaptations to each of the
methods where necessary. In this section, we outline the methods we implement and any adaptations we make.
We omit censored data methods due to their focus on survival analysis time-to-event tasks. We also omit the
matching method of Zhou and Kosorok (2017) as they do not consider multiple timesteps and only discuss
discrete treatment options.

Note One: Many of the methods we compare to can only handle binary or discrete actions spaces. For binary
action space methods, we let Z;, € {0,50} and we binarize the doses such that Z;, = 50(1[Z;, > 25]). For
discrete action space methods, we let Z;; € {0,25,50,75,100} and we discretize the doses such that Z;; =
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Note Two: The optimal treatment regime estimation literature normally focuses on mazximizing outcomes, not
minimizing like we do in our setup. We flip the outcomes in our data for methods that try to mazximize in order
to account for this.

Note Three: A number of the methods we compare to require a reward value corresponding to each patient i at
timestep t, {Ri,t'}tT/"Zl. To calculate these values, we define three separate reward functions: naive, insightful, and
oracle. The naive reward function prioritizes reducing FA burden while avoiding large drug doses, but does not
consider the patient’s pre-treatment covariates. The insightful reward function considers the interaction between
Xi1 and EA burdens and X; 3 and drug doses, but assumes a linear relationship and does not account for X; o
nor X; 4. The oracle reward function is of the same form as our outcome function defined in Equation 4. We
compare to three configurations of each method that requires reward values, where each configuration uses reward
values calculated from a different reward function. The exact reward functions are outlined below. Note that all
methods aim to mazximize the reward function.

50 — Ziy

Naive: R; ({Ei,t’}i’:la {Zi,t'}i':ﬁ =[Eit—1— Ei:) + 1 (5)
Insightful: R;: ({Eiyt/}?:l, {Zm/}i/:l) = —[exp (Xs,1)Ei,t + exp (Xi,3) Zi 1 (6)
2 4
Oracles R ({EourHoma ADi Hom) = = [exp (Z 2”> (o (5) 1) oo (Z z”> (e (%) - 1>]
j=1 Jj=3
(7)

e Finite Timestep Backward Induction Methods: We compare to a wide array of finite timestep back-
ward induction methods. The methods we compare to are: Q-learning Murphy (2005); Moodie et al. (2012);
Clifton and Laber (2020), BOWL (Zhao et al., 2015), and optimal classifier (Zhang et al., 2012). We used
the R package DynTxRegime (Holloway et al., 2020) to implement each of these methods. These methods
all require a discrete treatment space and the DynTxRegime package only handles the binary case. Given
that there is a large literature on Q-learning for discrete action spaces with more than two actions, we also
implement our own version of Q-learning for multilevel treatments. For these methods, we followed the
Q-learning implementation for observational data as outlined by Moodie et al. (2012).

Finite timestep backward induction methods assume full observation of all states and actions for each patient
and that the number of timesteps for each patient is the same. To implement these methods when patients
have varying numbers of observable timesteps, we truncate the state and action space to only include the
timesteps for which all samples have observed data, T = mingeqy,....n) 1i- We then carry out each method

on this subset of the data to generate estimated optimal treatments for timesteps ¢ € {1,... ,T }. From
here, we use the model generated at the last observed timestep, T, to estimate optimal treatments for the
remaining ¢t € {T',...,7;} for each patient 1.

For the binary Q-learning methods implemented using the DynTxRegime R package we run two versions.
One where the contrasts model is a linear model and one where the contrasts model is a decision tree model.
For both versions, we use a linear model for the main effects component of the outcome regression. This
results in two binary Q-learning varieties.
For the optimal classifier method we also run two versions. One where the contrasts model is a linear model
and one where the contrasts model is a decision tree model. For both versions, we use a linear model for
the propensity score model and main effects component of the outcome regression. We use a decision tree
classifier for the classification model. This results in two optimal classification varieties.
BOWL requires reward values and thus we run a version for each of the three reward functions. We also
run a linear kernel and second degree polynomial kernel version of BOWL for each reward function. All
versions use a linear model for the propensity score model. This results in six BOWL varieties.
For the multilevel Q-learning methods, we incorporate the propensity score at each timestep as a term in
our Q-function model (Moodie et al., 2012). All propensity scores are estimated with a linear model. We
consider three cases: linear model Q-functions, support vector machine with RBF kernels Q-functions, and
random forest Q-functions. This results in three multivel Q-learning varieties.
In total, we generate results from 13 varieties of finite timestep backward induction methods.
e Infinite Time Horizon Methods: We compare to infinite time horizon Q-learning. We implement this
method using Fitted Q-iteration as outlined in Algorithm 2 of Section 4 of Clifton and Laber (2020). Similar
to multilevel backward induction Q-learning, we use a linear model to estimate propensity scores and include
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them as a term to the Q-funcion. We consider using three different types of models for the Q-functions:
linear models, support vector machines with RBF kernels, and random forests. For each model type, we
also consider the case of binarizing the doses into {0,50} and discretizing the doses into {0, 25, 50, 75, 100}.
Finally, infinite horizon methods need a reward for each action, so we run each configuration under each of
the three reward functions.

In total, we generate results from 18 varieties of infinite time horizon methods.

e Deep Reinforcement Learning Methods: We compare to Batch Constrained Q-learning (BCQ) (Fu-
jimoto et al., 2018b), Conservative Q-learning (CQL) (Kumar et al., 2020), Critic Regularized Regression
(CRR) (Wang et al., 2020), Deep Deterministic Policy Gradients (DDPG) (Lillicrap et al., 2015), Soft
Actor-Critic (SAC) (Haarnoja et al., 2018), and Twin Delayed Deep Deterministic Policy Gradients (TD3)
(Fujimoto et al., 2018a). We implement these methods using the d3rlpy Python package (Seno and Imai,
2022). All of these methods require reward values, so each was run three separate times — one for each of
the three reward functions. We set the number of steps for each model to 10,000 and kept the remaining
parameters at their default values.

In total, we generate results from 18 varieties of deep reinforcement learning methods.

In addition to the optimal treatment regime estimation methods outlined above, we compare to a handful of
other baselines. We refer to these as preset policies and outline each of them below.

e Expert: This baseline is meant to emulate an educated doctor strictly following the informed policy with
no deviation. Here we assign policies to each patient ¢ as done in the informed policy creation method 5(b).
However, we remove all the noise we added to 5(b).In particular, €,, = 0 and there is a 0% chance that the
doctor deviates from the assigned policy at each timestep.

e Random: Random dosing at each timestep. If the action space is continuous, 4(a), then Z;, = &,
where &;; ~ Uniform(0,100). Otherwise, if the action space is binary, 4(b), then Z;, = 50 ; where
&+ ~ Bernoulli(0.5).

e Inaction: No drug is administered to any patients at any timesteps. Z;; = 0 for all ¢ and .

e Full Dosing: If the action space is continuous, 4(a), then a dose of 100 is given at every timestep. Z; ; = 100
for all ¢ and ¢. If the action space is binary, 4(b), then a dose of 50 is given at every timestep. Z;; = 50 for
all 7 and t.

We implement our method as outlined in Section 5. Since here we know the true underlying PK/PD parameters,
we omit Step 1 from our method to ensure a fair comparison. We first estimate each patient’s observed regime
with a linear model, using the ten features in 5(b) of Appendix D as our policy template. We then learn a
distance metric with a linear model and use that distance metric to perform nearest neighbors matching. We
create matched groups of size five for each patient, where we match to the five closest patients with good
outcomes. Finally, we perform linear interpolation over the patients’ policies in each matched group to estimate
the optimal policy, 7, for each patient .

Appendix F SYNTHETIC DATA EXPERIMENTS: ADDITIONAL RESULTS AND
IMPLEMENTATION DETAILS

In Section 6 we present just a small selection of the results from our synthetic data experiment. Here we provide all
of our results and further implementation details. We give a comprehensive analysis of key findings in Section F.1.
We provide additional experimental implementation details in Section F.2. Given the number of approaches (54)
and data generation process setups (32) we ran tests for, we include our full results in our publically available
GitHub repository (https://github.com/almost-matching-exactly /opt tx regime matching). We outline each
file and its contents in Section F.3.

F.1 Additional Results for Synthetic Data Experiments

Summary of our Analysis. We first compare our method with the 39 approaches that do not use the oracle
reward function and are not a preset policy. As noted in Section 6, on the 8 setups with 10-15 timesteps where
the observed data is generated from educated policies, our method is consistently the top performer. Looking
at the 8 setups where we have 10-15 timesteps and 2-5 missing timesteps, our method outperforms all other
approaches in the majority of setups (5 of 8) and is always among the top four performing approaches — never
more than 4.5 percentage points worse than the best approach. In the 16 setups with 10-15 timesteps we are
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the best performing method 9 of 16 times and among the top 4 approaches 16 of 16 times - never more than 7
percentage points worse than the top approach. When compared on all 32 simulations setups, where some are
specifically designed for finite-timestep backward induction methods to perform well, our method outperforms
all of the comparison approaches in 17 of the 32 setups and is among the top 4 approaches 29 times — never more
than 10.1 percentage points worse than the top approach.

When we also consider the oracle reward functions, our method is never more than 12 percentage points worse
than the top performing approach on the 8 setups with 10-15 timesteps and 2-5 missing timesteps and never
more than 15 percentage points worse than the top performing approach across all 32 setups.

All of these upper limits on the number of percentage points between our method and the top performing
approach are the lowest such values for any method. Ultimately, our simulation results show that our method is
frequently the best approach and that its performance is consistent across a variety of scenarios.

In the remainder of this section, we perform an in-depth analysis comparing our method to each of the categories
of existing DTR and RL methods that we implemented. We focus on finite-timestep backward induction methods
Q-learning and optimal classifier in Appendix F.1.1, infinite horizon methods in Appendix F.1.2, Deep RL in
Appendix F.1.3, and BOWL in Appendix F.1.4. In each subsection, we comment on the strengths and weaknesses
of the methods, ultimately highlighting how our approach is superior for estimating optimal treatment regimes
in complex high-stakes settings.

F.1.1 Analyzing Q-learning and Optimal Classifier Performance

Q-learning and Optimal Classifier methods implemented using the DynTxRegime R package struggle in
complex settings for what we presume is a variety of reasons. Figure 5 details the performance of our method,
Q-learning, and optimal classifier with varying action spaces (binary vs. continuous), number of timesteps (2
vs. 10-15), and missing states (missing vs. no missing). These plots highlight how our method drastically
outperforms Q-learning and optimal classifier in continuous action spaces. It makes sense that Q-learning and
optimal classifier struggle with continuous actions spaces, as they are forced to binarize continuous actions spaces,
thereby losing important information. Note that the best results across all the plots in Figure 5 are achieved by
our method when we allow the doses to be continuous, suggesting that binarizing the treatment is not a good
strategy to optimize outcomes for patients.

We also note that our method is far superior in settings with longer time horizons. This aligns with the fact that
previous work on finite-timestep backward induction methods has largely focused on the two timestep setting,
paying less attention to longer time horizons (Clifton and Laber, 2020). As outlined in Appendix E, when
implementing these methods we truncate all of the states to only include timesteps for which all individuals have
an observed state and action. This removes a large amount of information from the data and most likely impacts
the performance of these methods.

We further note that the finite-timestep backward induction methods perform better, on average, when there
are no missing timesteps. Whereas, our method is quite robust to the missingness of states.

As a sanity check, we show the performance of Q-learning and optimal classifier under the conditions that it
was primarily designed for in Figure 6. These results show how effective Q-learning and optimal classifer can be
in a more conducive setting, with all varieties outperforming our method. However, this performance does not
translate to our challenging high-stakes setting, ultimately making these methods ill-suited for our application.

One obvious way to try to improve finite-timestep backward induction Q-learning is to decrease the amount of
information loss by discretizing the continuous treatments into more bins. Since the DynTxRegime R package
does not support multilevel treatments we implemented our own version of Q-learning to handle this. We outline
our implementation in Appendix E.

Figure 7 shows a comparison between binary Q-learning with two treatment options and discrete Q-learning
with five treatment options. All plots in Figure 7 are in settings with 10 pre-treatment covariates, a continuous
action space, and observed data generated using an informed policy. While we do see a gain in performance, this
gain is less substantial when there are more timesteps and missing states. Ultimately, the multi-level treatment
form of Q-learning still fails to match the performance of our method. This suggests that while Q-learning can
improve by increasing the number of discrete dose options, it still struggles with long time horizons and missing
states. Furthermore, at some point the small sample size limits the gain in performance Q-learning can achieve
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Figure 5: Percent of patients with poor outcomes under different proposed policies (lower is better). Boxplots
show the distribution of the average outcomes over 20 iterations. Observed shows average observed outcomes.
Ezpert shows outcomes under the expert policies. Linear and DTree Q-learning are finite-timestep backward
induction Q-learning using either linear models or decision trees. Linear and DTree OptClass are optimal
classifier using either linear models or decision trees. See Appendix E for further details of each method. Note
that not all backward induction methods converged for all 20 iterations of each setup. See all_sims_nan.csv
and Appendix F.3 for details.

by creating more treatment bins.

F.1.2 Analyzing Infinite Horizon Performance

Infinite Horizon methods can overcome the issue finite-timestep backward induction methods face with longer
time horizons and missing states/actions. Figure 8 shows a comparison of our method, the infinite horizon
method fitted Q-iteration (see Clifton and Laber (2020)), and the finite-timestep backward induction methods
Q-learning and optimal classifier. The subplots in this figure show how each method performs with different
numbers of missing states and different size action spaces.

Figure 8 highlights how infinite horizon methods can handle long time horizons and missing states much better
than finite-timestep backward induction Q-learning and optimal classifier. Fitted Q-iteration can outperform
our method when the action space is binary and does especially well when the observed data is generated from
a random policy.

However, we still see that fitted Q-iteration struggles with a continuous action space. This is particularly true
when the observed data is generated from an informed policy (first row plots of Figure 8). Conversely, our
method can handle these added complexities, producing much better results in the setups most resembling a
complex real-world setting.

Similar to Figure 7 for backward induction Q-learning, Figure 9 shows how infinite horizon methods can alleviate
the problem of a continuous action space by using a multi-level treatment version of fitted Q-iteration instead
of a binary version. The bottom row of Figure 9 shows the strong performance of infinite horizon methods
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Figure 6: Percent of patients with poor outcomes under different proposed policies (lower is better) in a setting
more conducive to finite-timestep backward induction methods. Here we set the (i) number of covariates to 10, (ii)
number of timesteps to 2, (iii) have no missing states, (iv) only allow binary doses, and (v) generate the observed
data from a random policy. Boxplots show the distribution of the average outcomes over 20 iterations. Observed
shows average observed outcomes. Fxpert shows outcomes under expert policies. Inaction and Max Dosing
administer no drugs and the max amount of drugs to each patient at each timestep, respectively. Linear and
DTree Q-learning are finite-timestep backward induction Q-learning using either linear models or decision trees.
Linear and DTree OptClass are optimal classifier using either linear models or decision trees. See Appendix E
for further details of each method.

when using observational data generated from a random policy. Fitted Q-iteration outperforms our method in
these setups. However, when the training data is generated from an informed policy (top row of Figure 9), as
observational data typically is, our method has superior performance. This could be due to the fact that infinite
horizon methods have to deal with the notion of exploration vs. exploitation (Clifton and Laber, 2020), leading
to worse performance when the data is collected following a relatively stagnant and educated policy. Observed
data collected under such policies essentially has less "exploration" built into it. This struggle could also be due
to the fact that infinite horizon methods often work under the assumption that there is a non-zero probability of
each action at each timestep (Ertefaie and Strawderman, 2018). However, under the informed policy there are
certain states for which certain actions are near-impossible.

Infinite horizon methods are a promising technique, but face a key challenge in our data setup as they require a
reward value to be assigned to each action. In our setup, we only observe an outcome at the end of a patient’s
timesteps. Therefore, we are forced to define a reward function ourselves. We outline the three different reward
functions we consider in Appendix E. Figure 9 showed results using the oracle reward function. Figure 10 depicts
the stark differences in performance we see using infinite horizon methods with different reward functions. We
observe that the performance of infinite horizon methods suffers as the reward function gets farther away from
the truth. Researchers typically do not know the oracle, or true, reward function and while we can compare
the different reward functions since we know the underlying simulation setup, this is not the case with real-
world observational data. Thus, the researcher has to carefully consider the reward function when using infinite
horizon methods. This ultimately limits the usefulness of infinite horizon methods in high-stakes applications
where reward values are not available for each action that is observed.

F.1.3 Analyzing Deep RL Performance

The performance capabilities of Deep Reinforcement Learning is already depicted in Section 6’s Figure 1.
While DDPG, SAC, and TD3 struggle with the smaller sample sizes and/or the lack of randomness in informed
policies, the more modern architectures like BCQ, CQL, and CRR perform well, although slightly worse than
our method, on a simulated dataset that resembles our real-world data. However, we note that these Deep RL
methods struggle when a random policy is used to generate the observed data. Figure 11 shows how BCQ,
CQL, and CRR perform worse when the training data is generated from a random policy. While our method’s
performance also suffers in this setting, the dip in performance is less severe than Deep RL methods. We
hypothesize that Deep RL struggles when using data generated from a random policy because they all use an
evaluation set to guide the learning process (Seno and Imai, 2022). Thus, with only a small amount of data
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Figure 7: Percent of patients with poor outcomes under different proposed policies (lower is better). In all plots,
the setup has (i) 10 pre-treatment covariates, (iv) a continuous action space, and (v) generates the observed
data using an informed policy. Boxplots show the distribution of the average outcomes over 20 iterations.
Observed shows average observed outcomes. FExpert shows outcomes under expert policies. Linear Q-learning
and Linear Q-learning Multi are finite-timestep backward induction Q-learning using linear models. Linear Q-
learning binarizes the continuous treatment values into two values whereas Linear Q-learning Multi discretizes
the treatments into five bins. See Appendix E for further details of each method.

generated via a random policy, it is difficult to evaluate the model’s performance. Deep RL methods would likely
improve if we had significantly more randomly generated data or had the ability to do online learning (Luo et al.,
2023).

Deep RL approaches, like infinite horizon methods, also require a reward to be specified for each action. Figure 12
shows that the performance of the best Deep RL methods when using each of the three different reward functions
outlined in Appendix E. We observe that the performance is stable across these three reward functions when
training on data generated from informed policies. Although, we note that all three reward functions are at least
slightly related to the outcome, and thus performance could suffer if the reward function was badly misspecified.

Ultimately, deep reinforcement learning methods show promise for optimal treatment regime estimation from
observational data generated by domain experts. The main drawbacks of Deep RL in our setting is its funda-
mental lack of interpretability. The inability to explain the estimates generated by Deep RL makes it ill-suited
for high-stakes applications in the medical field.

As an aside, we also note that Deep RL methods require substantially more compute power to train than our
method and any of the other methods we compare to. We train these models using significantly more compute
power and GPUs Even with the enhanced computing power, these methods have substantially longer runtimes.
See Appendix F.2 for further details.
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Figure 8: Percent of patients with poor outcomes under different proposed policies (lower is better). In all plots,
the setup has (i) 10 pre-treatment covariates and (ii) 10-15 total timesteps. Boxplots show the distribution of the
average outcomes over 20 iterations. Observed shows average observed outcomes. FExpert shows outcomes under
expert policies. Linear @-learning is finite-timestep backward induction Q-learning using linear models. Linear
OptClass is optimal classifier using linear models. Linear Inf is the infinite horizon method fitted Q-iteration
using linear models. Linear Inf uses the oracle reward function. See Appendix E for further details of each
method and the reward functions.

F.1.4 Analyzing BOWL Performance

The final method we compare to is Backward Outcome Weighted Learning, BOWL. We find that the BOWL
method implemented in DynTxRegime struggles to consistently converge, especially when the training data has
more timesteps. We show the frequency in which BOWL fails to run for different configurations and reward
functions in Figure 13. We further discuss the most likely reasons for these runtime issues, and the steps we took
to avoid them, in Appendix F.2. The instability of BOWL for the vast majority of our data configuration setups
makes it difficult to discern what aspects of the data are causing it the most problems. We ultimately conclude
that BOWL, as implemented in the DynTxRegime R package, is ill equipped to handle the challenges present in
our simulated data.

F.2 Additional Implementation Details for Synthetic Data Experiments

Code to reproduce the results in this paper is available at https://github.com/almost-matching-
exactly /opt_tx_regime matching.

We run each of the methods outlined in Section E for a total of 20 iterations for each data generation setup.
Tests are run on a Slurm cluster with VMware, where each VM is an Intel(R) Xeon(R) Gold CPU (either 5317
@ 3.00GHz, 5320 @ 2.20GHz, 6142 @ 2.60GHz, 6152 @ 2.10GHz, 6226 @ 2.70GHz, or 6252 @ 2.10GHz). Deep
RL methods are run on machines with RTX2080 GPUs. Slurm jobs are allocated a single core with 2 GB of
RAM for non-Deep RL methods and 16 GB of RAM for Deep RL methods. We always set the random seed to
match the iteration number of each setup.
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Figure 9: Percent of patients with poor outcomes under different proposed policies (lower is better). In all plots,
the setup has (i) 100 pre-treatment covariates, (ii) 10-15 total timesteps, and (iv) a continuous action space.
Boxplots show the distribution of the average outcomes over 20 iterations. Observed shows average observed
outcomes. Fxzpert shows outcomes under expert policies. Linear Inf is Fitted Q-iteration where the treatments
are binarized and Linear Inf Multi is Fitted Q-iteration where the treatments are discretized into five bins. Both
methods use linear models and the oracle reward function (see Appendix E for details on reward functions).

We split the dataset into 5 folds to perform estimation using our method and Deep RL methods. For our method,
we use 1 fold to learn the distance metric and perform estimation on the remaining 4 folds. We then average
across the 4 outcomes for each sample. For Deep RL methods, we use 4 folds for training and perform estimation
on the remaining fold - doing this 5 times to get estimates for each sample.

There are some data generation processes for which we did not generate results for each method for all 20
iterations. You can find details on which methods failed to run for which setups in the all_sims_nan.csv
file described in Appendix F.3. We outline which methods we are missing results for and provide potential
explanations below.

e QQ-linear, Optimal Classifier, and BOWL implemented using the DynTzRegime R package: Each of these
methods is missing results for some of the setups because they failed to converge or produced a runtime
error. We attempted to alleviate these issues by running both Q-learning and optimal classifier with decision
trees and linear models and running BOWL with a linear kernel and a second degree polynomial kernel. We
performed five-fold cross-validation to choose the lambda for BOWL. However, the package errored out if any
of the folds failed to converge. We added exception handling to account for this, where we attempted to fit
BOWL with preset lambda values of 2 and then 0.5 if it produced an error while performing cross-validation.
After investigation, we hypothesized that Q-learning and optimal classification failed to converge for extremal
propensity scores in observational data. This is supported by the fact that their errors only occurred when
the policy was semi-random. For this policy choice, there are timesteps where a patient’s next dose is mostly
predetermined by their current state - thus leading to very small or large propensity scores.

We believe that BOWL struggles with a similar issue, given that it also employs the use of a propensity score.
However, BOWL failed to converge for a number of the setups that used a random policy. We acknowledge
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Figure 10: Percent of patients with poor outcomes under different proposed policies (lower is better). In all plots,
the setup has (i) 100 pre-treatment covariates, (ii) 10-15 total timesteps, and (iv) a continuous action space.
Boxplots show the distribution of the average outcomes over 20 iterations. Observed shows average observed
outcomes. FExpert shows outcomes under expert policies. All Linear Inf Multi methods are fitted Q-iteration
approaches that discretize the treatment into five bins and use linear models. Naive, Insightful, or Oracle at the
end of each Linear Inf Multi method specifies which reward function is uses to calculate the reward values. See
Appendix E for details on reward functions.

that the software package made it difficult to discern if the errors were being produced due to an issue with
how we were implementing it in the DynTxRegime R package or with the BOWL method itself. Thus, we
are less sure of the exact reasons why BOWL struggled for so many of our setups.

Multilevel Q-learning and Infinite Horizon methods: We only ran multilevel treatment method when the
treatment was continuous, as running these methods when the treatment was binary was equivalent to the
binary version of the method.

Deep RL methods implemented using the d3rlpy Python package: The Deep RL methods we compare to
only accept continuous actions spaces. Therefore, we do not have results for any of the setups where the
action space was discrete. Also, for two of the setups with continuous action spaces, 2 total timesteps, and
0-1 missing timesteps the number of realized doses was such that the methods interpreted the action space
as discrete in some of the iterations, causing it to error out.

F.3 Synthetic Data Experiments Results Files

We include files with results for all 54 approaches and 32 simulation setups in our public GitHub repository
(https://github.com/almost-matching-exactly /opt _tx regime matching/tree/main/simulations data). The
files use seven columns to indicate the settings of the data generation process for that run.

e Sim: Indicates the assigned simulation number. All rows with the same sim number are run under the same

data generation configuration, except for the random seed.
e Iter: Indicates the iteration number of the corresponding Sim. The Iter value is also used as the random
seed for that run.
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Figure 11: Percent of patients with poor outcomes under different proposed policies (lower is better). In all
plots, the setup has (i) 100 pre-treatment covariates, (ii) 10-15 total timesteps, (iii) 2-5 missing states, and (iv)
a continuous action space. Boxplots show the distribution of the average outcomes over 20 iterations. Observed
shows average observed outcomes. Fzpert shows outcomes under expert policies. CQL, CRR, and BC(Q are all
Deep RL methods using the insightful reward function. See Appendix E for details on reward functions.

e Covs: The number of pre-treatment covariates.
e T Setting: The number of total timesteps setting, where a corresponds to setup 2(a) and b corresponds to

setup 2(b) (see Appendix D.1).
T Drop Setting: The number of unobserved timesteps setting, where a corresponds to setup 3(a) and b
corresponds to setup 3(b) (see Appendix D.1).

e Binary Dose: Whether the treatment space is binary or not (if FALSE then treatment space is continuous).
e Policy: The policy used to generate the observed data. If random, than a random policy was used to

generate the data. Else if informed, than an informed policy was used (see Appendix D.1).

For all methods that use a reward function, we refer to to the Naive reward function as R1, the insightful reward
function as R2, and the oracle reward function as R3. We outline the contents of each file below.

e all_sims_binary_outcomes.csv: This file contains the average binary outcome value, + 3" |'V;, under

‘We

the proposed policies of each approach. Each row corresponds to the average value for a single iteration of
the specified simulation setup.

all_sims_cont_outcomes.csv: This file contains the average continuous outcome value under the proposed
policies of each approach. The continuous outcome is simply O; rather than Y; in our data generation process
outlined in Appendix D. We can report these values since we know the true underlying data generation
process. Each row corresponds to the average value for a single iteration of the specified simulation setup.

all_sims_nan.csv: This file contains the number of iterations that each approach failed to produce policy
estimates for the 32 simulation setups. See details in Appendix F.2 for explanation on why methods may
have failed.

sims_binary_outcomes_mean.csv: This file contains the average binary outcome value across all iterations
of each simulation setup for each method. Note that not all methods ran for 20 iterations for each setup.
See all_sims_nan.csv.

sims_binary_outcomes_std.csv: This file contains the standard deviation of the average binary outcome
value across all iterations of each simulation setup for each method. Note that not all methods ran for 20
iterations for each setup. See all_sims_nan.csv.

sims_binary_outcomes_median.csv: This file contains the median of the average binary outcome value
across all iterations of each simulation setup for each method. Note that not all methods ran for 20 iterations
for each setup. See all_sims_nan.csv.

also include sims_cont_outcomes_mean.csv, sims_cont_outcomes_std.csv, and

sims_cont_outcomes_median.csv which contain the same content but for the continuous outcome.

Appendix G DATA SUMMARY
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Figure 12: Percent of patients with poor outcomes under different proposed policies (lower is better). In all
plots, the setup has (i) 100 pre-treatment covariates, (i) 10-15 total timesteps, (iii) 2-5 missing states, (iv) a
continuous action space, and (v) generates data from an informed policy. Boxplots show the distribution of the
average outcomes over 20 iterations. Observed shows average observed outcomes. Ezpert shows outcomes under
expert policies. CQL, CRR, and BCQ are all Deep RL methods where Naive, Insightful, or Oracle at the end of
each method specifies which reward function is uses to calculate the reward values. See Appendix E for details
on reward functions.

Table 4: Full cohort characteristics and data description.

Variable

Value

Age, year, median (IQR)

61 (48 — 73)

Male gender, n (%)

475 (47.7%)

Race

Asian, n (%) 33 (3.3%)
Black / African American, n (%) 72 (7.2%)
White / Caucasian, n (%) 751 (75.5%)
Other, n (%) 50 (5.0%)
Unavailable / Declined, n (%) 84 (8.4%)
Married, 1 (%) 500 (50.3%)
Premorbid mRS before admission, median (IQR) 0(0-3)
APACHE II in first 24h, median (IQR) 19 (11 - 25)
Initial GCS, median (IQR) 11 (6 — 15)
Initial GCS is with intubation, n (%) 415 (41.7%)
Worst GCS in first 24h, median (IQR) 8 (3 -14)

Worst GCS in first 24h is with intubation, n (%)

511 (51.4%)

Admitted due to surgery, n (%)

168 (16.9%)

Cardiac arrest at admission, n (%)

79 (7.9%)

Seizure at presentation, n (%)

228 (22.9%)

Acute SDH at admission, n (%)

146 (14.7%)

Take anti-epileptic drugs outside hospital, n (%)

123 (12.4%)

Highest heart rate in first 24h, /min, median (IQR)

92 (80 — 107)

Lowest heart rate in first 24h, /min, median (IQR)

71 (60 — 84)

Highest systolic BP in first 24h, mmHg, median (IQR)

153 (136 — 176)

Lowest systolic BP in first 24h, mmHg, median (IQR)

116 (100 — 134)

Highest diastolic BP in first 24h, mmHg, median (IQR)

84 (72 — 95)

Lowest diastolic BP in first 24h, mmHg, median (IQR)

61 (54 - 72)

Mechanical ventilation on the first day of EEG, n (%)

572 (57.5%)

Systolic BP on the first day of EEG, mmHg, median (IQR)

148 (130 — 170)

GCS on the first day of EEG, median (IQR)

8(5-13)
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History

Stroke, n (%) 192 (19.3%)
Hypertension, n (%) 525 (52.8%)
Seizure or epilepsy, n (%) 182 (18.3%)
Brain surgery, n (%) 109 (11.0%)
Chronic kidney disorder, n (%) 112 (11.3%)
Coronary artery disease and myocardial infarction, n (%) 160 (16.1%)
Congestive heart failure, n (%) 90 (9.0%)

Diabetes mellitus, n (%)

201 (20.2%)

Hypersensitivity lung disease, n (%)

296 (29.7%)

Peptic ulcer disease, n (%) 50 (5.0%)
Liver failure, n (%) 46 (4.6%)
Smoking, n (%) 461 (46.3%)
Alcohol abuse, n (%) 231 (23.2%)
Substance abuse, n (%) 119 (12.0%)
Cancer (except central nervous system), n (%) 180 (18.1%)
Central nervous system cancer, n (%) 5 (8.5%)
Peripheral vascular disease, n (%) 41 (4.1%)
Dementia, n (%) 45 (4.5%)
Chronic obstructive pulmonary disease or asthma, n (%) 139 (14.0%)
Leukemia or lymphoma, n (%) 2 (2.2%)
AIDS, n (%) 2 (1.2%)
Connective tissue disease, n (%) 47 (4.7%)

Primary diagnosis

Septic shock, n (%)

131 (13.2%)

Ischemic stroke, n (%)

85 (8.5%)

Hemorrhagic stroke, n (%)

163 (16.4%)

Subarachnoid hemorrhage (SAH), n (%)

188 (18.9%)

Subdural hematoma (SDH), n (%) 94 (9.4%)
SDH or other traumatic brain injury including SAH, n (%) 52 (5.2%)
Traumatic brain injury including SAH, n (%) 1 (2.1%)

Seizure/status epilepticus, n (%)

258 (25.9%)

Brain tumor, n (%)

113 (11.4%)

CNS infection, n (%) 64 (6.4%)
Ischemic encephalopathy or Anoxic brain injury, n 72 (7.2%)
Toxic metabolic encephalopathy, n (%) 104 (10.5%)
Primary psychiatric disorder, n (%) 35 (3.5%)
Structural-degenerative diseases, n (%) 5 (3.5%)
Spell, n (%) 5 (0.5%)

Respiratory disorders, n (%)

304 (30.6%)

Cardiovascular disorders, n (%)

153 (15.4%)

Kidney failure, n (%) 65 (6.5%)
Liver disorder, n (%) 30 (3.0%)
Gastrointestinal disorder, n (%) 8 (1.8%)
Genitourinary disorder, n (%) 34 (3.4%)
Endocrine emergency, n (%) 28 (2.8%)
Non-head trauma, n (%) 3 (1.3%)
Malignancy, n (%) 65 (6.5%)
Primary hematological disorder, n (%) 24 (2.4%)
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Figure 13: Percentage of total simulation iterations for which different BOWL variations produced either a
runtime or convergence error. The different colored bars show the percentage of runs that were errors when the
data had either 2 total timesteps or 10-15 total timesteps (see Appendix D.1). Linear or Poly refer to the kernel
type BOWL uses. Naive, Insightful, or Oracle at the end of each method specifies which reward function is used
to calculate the reward values. See Appendix E for details on BOWL implementation and reward functions. See
Appendix F.2 for further details on BOWL and DynTxRegime errors. See all_sim_nan.csv and Appendix F.3
for full results on which simulation setups BOWL failed to run for.
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Figure 14: Boxplots showing the distribution of the estimated pharmacodynamics parameters.

Appendix H ANTI-SEIZURE MEDICATIONS AND PoLicy TEMPLATES

H.1 Anti-Seizure Medications

Two drugs were studied: propofol and levetiracetam, Propofol is a sedative antiseizure medication and is given
as a continuous infusion, while levetiracetam is a non-sedative antiseizure medication given as a bolus. The
doses are normalized by body weight (kg). We use the half-lives from the literature for estimating the drug
concentrations D and estimate the PD parameters using the E and D for each patient in our cohort (see Table 5
and Figure 14).

Table 5: PK and the estimated average PD parameters for the anti-seizure medications.
Drug Half-Life avg. ED50  avg.a
Propofol 20 minutes 2.41 mg/kg/hr  2.96
Levetiracetam 8 hours 2.26 mg/kg 3.33
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H.2 Policy Templates

The regime determining the dose for patient 4, for propofol at time t is given by:

P (B Yt (B Y a?)

= alyil[Eiyt,lhr > 25%] + ab ;1[Eit—1nr > 50%)]

+ab [ Eit—1nr > T5%]

+al  1[Eit—enr > 25%] + af ;1[Eii—enr > 50%)]

+ag ; 1Eit—1nr > 25%]1[E; 1—onr > 25%]

+a¢,i1[E'¢7t,6hr > 25%]1[E; t—12n > 25%), (8)
where a? is a vector of the parameters for propofol’s regime, E; ;4 is the average EA burden between time
t—t" and ¢, and Z; js s is the total dose of drug j’ administered between time ¢ — ¢’ and ¢.

The regime determining the dose for patient 4, for levetiracetam at time ¢ is given by:

l
v ({Ez t’}t/ 1) {Zz t’}t’ 13 Z)

= 1[Ziev,i,t—12hr = 0] X
(af),i + all,i]-[Ei,t—lhr > 25%)

+al2,7;1[Ei,t—1hr > 50%] + aé,il[Ei,tth > 75%)
+a1[Eii—onr > 25%)] + ab i 1[Ei—onr > 50%]
+ag; 1[Eii—1nr > 25%|1[Ei—onr > 25%)

+al7’i1[Ei,t,6hr > 25%]1[Ei,t—12hr > 25%]), (9)

l

where a’ is a vector of the parameters for levetiracetam’s regime,

Thus, the regime for patient 7, denoted by

i _{ e ({E”’}t' 1,{th/ t= 1’ap)}
e ({Ezt’}t/ 1a{zzt’}t’ 1’ )}

We estimate aP and a! by minimizing the mean squared error loss between the predicted drug doses and the
observed drug doses, Zprop,i,t and Ziey,i,: at each time ¢.

Appendix I CONSISTENCY PROPOSITION AND PROOF

Before proceeding to the proof of Proposition 1, we note that we consider optimality with respect to linear score
functions inside the convex hull of locally observed policies. Our methodology is versatile but operationalized
with a linear score function that aligns with the policy template of a prominent tertiary hospital we target (details
in Appendix H.2). In this context, our approach identifies an optimal treatment regime aimed at minimizing the
probability of adverse outcomes, such as death. Emphasizing patient safety, our search is confined within the
convex hull of observed policies for “similar” patients. We now present the proof for Proposition 1.

Proposition 1 (Consistency of Treatment Regime Estimator). Consider a nest sequence of datasets {Dy} such
that |D,| = n. Then, given conditional ignorability, local positivity, and the smooth outcomes assumptions,

lim E[Y;(7™) | V] = E[Yi(n}) | Vi,

n— oo

where %:’(n) is the estimate of the optimal treatment regime for unit © estimated using the caliper nearest neighbors

interpolation on dataset D,, with caliper r,,.

Proof. Let u;(v,m) := E[Y;(7) | V; = v] be the expected potential outcome for unit ¢ for which we are
interested in estimating the optimal policy, and

7
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(n)

By conditional ignorability, u;(v,7) = E[Y; | V; = v,m; = 7]. Also, let fi;"’ (v, m) denote the r,-caliper nearest

neighbor estimate of u;(v,7) on dataset D,, and M Gl(-n) denote the set of all units in D,, that are at max 7,
distance away from V;. Then, by definition, 7} is the policy that, given V;, minimizes p;(-,-), and 7, '™ g the

policy that, given V;, minimizes ﬁgn)(-, -). Thus,

AN < (Ve w ) = BN Ve E ) = (Vi) - B (Vi)
< (Vi m ) = B VaE ) = (Vi) = 3 (Vi) |
< J(mavim) = Ve m) ) |+ | (Vi 70 = 30 (Vw3 |

As n — oo we shrink r,, — 0 such that |M GE")| — 00. Then, by the consistency of the caliper nearest-neighbors

estimator under smoothness of outcomes, ﬁgn)(Vi, ) — 1i(Vi, ) (see Remark 5). This implies that, as n — oo,
Al = ui(Vi,%\:’(n)) — 1;(Vy, ) — A) < 0. Further, by definition of , u;(Vy, 7}) < ,ui(Vi,%:’(n)). Thus, we
get, ui(Vi,%:’(n)) — w;(Vi, ), as n — co. QED.

Remark 5. The consistency of the caliper nearest-neighbors estimator is a standard and well-explored result in
the literature (Parikh et al., 2022; Devroye et al., 1994; Kudraszow and Vieu, 2013; Li, 1984; Jiang, 2019; Ferraty
et al., 2010; Kara et al., 2017; Einmahl and Mason, 2005). Our context is similar to the one discussed in Theorem

1 of Parikh et al. (2022) and Theorem 2 of Kudraszow and Vieu (2013).

Remark 6. The results in Theorem 2.2 from Zhou and Kosorok (2017), shows similar consistency result of the
optimal treatment regime estimator.
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