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Abstract—The increasing complexity of electronic systems in
autonomous electric vehicles necessitates robust methods for
forecasting the degradation of critical components such as printed
circuit boards (PCBs). Various time series forecasting methods
have been investigated to predict in-situ resistance degradation un-
der vibration loads. However, these methods failed to capture the
degradation trend under strong measurement noise. This paper
introduces Monotonic Segmented Linear Regression (MSLR), a
novel approach designed to capture monotonic degradation trends
in time series data under significant measurement noise. By incor-
porating monotonic constraints, MSLR effectively models the non-
decreasing behavior characteristic of degradation processes. To
further enhance reliability of the prediction, we integrate Adaptive
Conformal Inference (ACI) with MSLR, enabling the estimation
of statistically valid upper bounds for resistance degradation with
high confidence. Extensive experiments demonstrate that MSLR
outperforms state-of-the-art time series forecasting baselines on
real-world PCB degradation datasets.

Index Terms—Board-Level Reliability, Physical Health Moni-
toring, Prognostics, Physics of Degradation, N-BEATS, Segmented
Regression

I. INTRODUCTION

The advent of electric cars is revolutionizing the automotive
industry, paving the way for fully autonomous vehicles that
promise to redefine transportation. These vehicles rely heavily
on advanced semiconductor technologies that shape their soft-
ware and electronic architectures. As the transition towards self-
driving electric cars accelerates, the demand for cutting-edge
electronic systems has grown exponentially. This shift not only
enhances the capabilities of modern vehicles but also introduces
significant complexities in their design and operation.

At the heart of these challenges lies the reliability and safety
of electronic systems, which are critical to the performance
of autonomous vehicles. The printed circuit boards (PCBs)
and their solder interconnects, which form the backbone of
these systems, are particularly vulnerable to degradation over
time. Studies show that mechanical vibrations alone account for
around one-fifth of solder joint failures, posing risks to mission-
critical electronic components [1]. Ensuring the health of PCBs
is therefore paramount. Effective real-time monitoring of solder
joint degradation can help predict their remaining useful life,
mitigating failures and enhancing system reliability. Moreover,
predicting PCB degradation is also crucial in achieving the high
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Figure 1: An example of PCB degradation prediction of various
time series forecasting approaches

safety of autonomous vehicles. Even though the degradation
process ought to be monotonic, the strong noisy environment
induces severe measurement noise, rendering reliable and ac-
curate prediction.

Time series forecasting is an effective machine learning
method for predicting trends based on previous measure-
ments. Recent work [2] benchmarks the PCB degradation
prediction task for various competitive time series forecasting
approaches, including conventional statistical methods, like
Auto-Regressive Integrated Moving Average (ARIMA) [3], and
modern deep learning models, such as Neural Basis Expansion
Analysis for Time Series (N-BEATS) [4]. ARIMA is a statis-
tical model that combines autoregressive and moving average
components with differencing to make the time series stationary
before predicting future values. Its simplicity and interpretabil-
ity make it a preferred choice for many forecasting tasks. N-
BEATS, on the other hand, is a deep learning-based model
designed to capture complex temporal patterns. It employs a
stack-based architecture that uses neural networks to model
the basis functions of the time series, achieving state-of-the-
art performance in many benchmarking tasks.

However, both ARIMA and N-BEATS face significant lim-979-8-3315-2144-8/25/$31.00 ©2025 IEEE



itations when applied to scenarios involving monotonic trends
under strong measurement noise. ARIMA relies on assump-
tions of stationarity and linearity, which makes it ill-suited
for capturing inherent monotonic behaviors. In contrast, N-
BEATS, while powerful in learning complex patterns, lacks
explicit constraints or inductive biases to enforce monotonicity
in the predictions. This often results in overfitting to noisy data,
especially in environments where the signal-to-noise ratio is
low. Consequently, these methods struggle to reliably model
monotonic degradation processes, underscoring the need for
specialized approaches tailored to this task. Recent research
demonstrates the effectiveness of introducing monotonic neural
network [5] into degradation prediction in chip performance
estimation at several testing time stamps [6], but there is a lack
of such practice in PCB degradation forecasting for fine-grained
time intervals.

To address these concerns, we propose Monotonic Seg-
mented Linear Regression (MSLR), a tailored approach for
modeling the degradation of solder joints in electronic systems
with inherent monotonic trends. MSLR extends traditional
Segmented Linear Regression (SLR) [7] by incorporating two
key constraints: a constant value for the initial segment and
a monotonic increase for subsequent segments. The constant
segment captures the stable behavior typically observed at the
start of the degradation process, while the monotonic constraint
ensures that predictions reflect the non-decreasing nature of the
underlying physical phenomenon.

The model achieves this by enforcing constraints on the
segment slopes, ensuring they remain non-negative, and by
using a Softplus projection to map free parameters into valid
monotonic slopes. This approach embeds the monotonicity
directly into the optimization process, preventing overfitting
to noise and ensuring consistency with the expected trend. By
dividing the time series into meaningful segments and explicitly
encoding the monotonic behavior, MSLR captures the essential
structure of degradation processes, even in the presence of
significant measurement noise. This makes MSLR a robust and
interpretable solution for time series forecasting in applications
where monotonic trends are fundamental. In Fig. 1 we illustrate
the prediction of our method and other baselines for PCB
degradation. MSLR successfully captures the monotonically
increasing trend under noisy measurement without overfitting.

To further enhance the reliable uncertainty quantification of
MSLR, we adopt Adaptive Conformal Inference (ACI) [8] for
upper bound estimation. ACI is a recent Conformal Prediction
(CP) approach [9], which is able to provide confidence intervals
for designed coverage rates under distribution shift scenarios,
such as time series forecasting. ACP dynamically adjusts the
coverage rate to account for changes in data distribution,
enabling MSLR to produce adaptive prediction intervals that
maintain valid coverage under varying conditions. By leverag-
ing recent residuals through a sliding window, ACI calibrates
the upper bounds of resistance degradation predictions to reflect
the underlying uncertainty. This integration is particularly valu-
able for monotonic trends, as it ensures the model’s predictions
remain robust to noise while quantifying the confidence in

its upper bounds. With ACI, MSLR not only captures the
monotonic increase in degradation but also provides reliable
bounds that are critical for safety-critical applications like
predictive maintenance in autonomous electric vehicles.

The main contributions of this work are as follows:

• We propose MSLR, a novel method designed to cap-
ture monotonic trends in time series data, even under
significant measurement noise. By embedding monotonic
constraints into the model, MSLR effectively models
degradation processes with non-decreasing behavior.

• We introduce ACI to MSLR, enabling the estimation of
reliable upper bounds for resistance degradation. ACI dy-
namically adjusts to data variability, providing statistically
valid prediction intervals with high confidence.

• Through extensive experiments on real-world PCB degra-
dation datasets, we demonstrate that MSLR, combined
with ACI, achieves superior forecasting performance com-
pared to state-of-the-art baselines, including ARIMA and
N-BEATS, in terms of both accuracy and reliability.

II. PRELIMINARIES

A. Basics of Board Level Vibration Testing

Vibration testing can be broadly categorized into two types
based on the type of vibration stress application: swept sine
testing and random vibration testing. Swept sine testing is
preferred for understanding the solder degradation process due
to fatigue, as its outcomes are more interpretable. This type of
testing is based on key theoretical concepts.

Firstly, PCB resonance occurs when the board vibrates at
its natural frequency f0, leading to amplified vibrations and
increased stress on solder joint interconnects. The natural
frequency is mathematically defined as [10]:

f0 = λ

(
1

l2
+

1

w2

)√
Eh3

12ρ (1− υ2)
, (1)

where λ is a constant dependent on clamping, l and w are the
board’s length and width, E is Young’s modulus, h is the board
thickness, ρ is the density, and υ is Poisson’s ratio.

Secondly, the peak-to-peak displacement d measures the
maximum movement experienced by the PCB during vibration
testing. Excessive displacement or acceleration a can damage
the PCB-solder interface. It is expressed as [10]:

d =
a

2π2f2
0

. (2)

These two parameters—resonance frequency and peak-to-
peak displacement—constitute the PCB dynamic response,
which refers to the reaction of the board to external mechanical
stimuli. To capture this dynamic response, a 4-wire resistance
measurement circuit, as proposed in [2], is employed to collect
time-series resistance measurements of the solder joints on the
board.



B. Problem Definition

Let D = {(ti, yi)}Ni=1 be the dataset of a time series of
N observations, where xi ∈ R represents the i-th timestamp,
and yi ∈ R the electrical resistance, assumed to be the noisy
measurement of a monotonically increasing physical model f :

y(t) = f(t) + ϵ, (3)

where

f(ti) <= f(tj), ∀ ti < tj ,

and ϵ represents the error term, assumed to be independently
and identically distributed following a zero-mean Gaussian
distribution.

We aim to train a time series forecasting model that is able to
predict the degradation of resistance in the future T timestamps
of measurement {(ti, yi)}N+T

i=N+1.

C. Segmented Linear Regression

Segmented Linear Regression (SLR) aims to partition the
time series into K+1 segments and fit a separate linear function
to each segment, such that:

y(t) = α+ β0t+
K∑
i=1

(βi − βi−1)(t− τi)H(t− τi) + ϵ, (4)

where:
• K is the number of segments (predetermined or to be

optimized);
• α represents the intercept parameter;
• τ1, · · · , τK are the breakpoints between segments such

that τ1 < · · · < τK ;
• β0, · · · , βK are the slope parameters for the k-th segment;
• H(·) is the Heaviside step function.
This formulation ensures that the fitted segments form a

continuous piecewise linear function, with potential changes
in slope at the breakpoints while maintaining continuity of the
regression function.

The objective is to find the optimal parameters
{βk,0, βk,1}Kk=1 and breakpoints {ξk}K−1

k=1 that minimize
Mean Absolute Percentage Error (MAPE) Lmape between true
values y and model predictions ŷ in the training set D:

Lmape (%) = 100× 1

N

N∑
i=1

| 1− ŷi
yi
| . (5)

D. Conformal Prediction

Conformal prediction [9] is a framework for quantifying
the uncertainty of model predictions by providing prediction
intervals that are guaranteed to have a specified coverage
level under mild assumptions. The key idea is to assess the
conformity of a new observation with respect to a given dataset
and model, leveraging nonconformity measures to identify how
unusual or outlying a new prediction might be.

In the context of time series forecasting, conformal predic-
tion can be used to construct prediction intervals for future
observations. Let ŷ(t) represent the model’s point prediction
for the resistance at time t. A conformal prediction interval for

the true value y(t) at a specified confidence level γ is defined
as C(t) = [ŷ(t)− q̂, ŷ(t) + q̂], where q̂ is chosen to ensure that
the interval contains the true value y(t) with probability at least
γ.

The process involves using a calibration dataset Dcal to
compute nonconformity scores, which measure the difference
between observed values and model predictions. For example,
a simple nonconformity score can be the absolute residual:

si = |yi − ŷ(ti)|, (ti, yi) ∈ Dcal. (6)

The threshold q̂ is then determined as the (1 − γ) quantile of
the nonconformity scores in the calibration set.

Conformal prediction makes minimal assumptions about
the data distribution and is compatible with any underlying
predictive model, making it a versatile tool for reliable un-
certainty quantification. By applying conformal prediction, we
can complement the point forecasts of the resistance degrada-
tion model with rigorous uncertainty intervals, enhancing the
interpretability and trustworthiness of the predictions [11].

III. METHODOLOGY

A. Monotonic Segment Linear Regression
In this section, we present the proposed Monotonic Segment

Linear Regression (MSLR). To better model the degradation
of PCB channel resistance, we introduce two constraints into
Segmented Linear Regression (SLR):

• A constant value in the first segment;
• A monotonically increasing trend in the remaining seg-

ments.
The first constraint captures the stable functional value dur-

ing the initial period of degradation, while the second constraint
models the non-decreasing resistance during the degradation
process. The mathematical formulation is as follows:

y(t) = α+

K∑
i=1

(βi − βi−1)(t− τi)H(t− τi) + ϵ, (7)

subject to


βi = 0, if i = 0,

βi > 0, if i ∈ {1, · · · ,K},
τi < τj , if i < j,

(8)

where H(t − τi) is the Heaviside step function, ϵ is noise, βi

are segment slopes, and τi are breakpoint locations.
We minimize the Mean Absolute Percentage Error (MAPE)

loss as defined in Eq. (5) on the training time series D. This
optimization problem is nonlinear and constrained. To address
this, we employ latent variables to eliminate the constraints and
optimize the resulting unconstrained problem using a gradient-
based method.

We introduce two sets of real-valued latent variables,
{θ1, · · · , θK} and {δ1, · · · , δK}, which map to {β1, · · · , βK}
and {τ1, · · · , τK}, respectively, via a softplus projection sp :
R→ (0,+∞):

βi = sp(θi), τi =
i∑

j=1

sp(δj), (9)

sp(x) = log(1 + exp(x)). (10)



The softplus projection embeds the constraints into the latent
variables. For large inputs, the softplus function approximates
an identity mapping, ensuring numerical stability during train-
ing and testing.

Gradient-based optimization efficiently updates the latent
variables. The initial values are set to θi = −10 (yielding
βi ≈ 4.5 × 10−5) and δi as the i-th quantile of the time span
[t1, tN ]. Updates follow the rule θi ← θi − η∇θiLmape and
δi ← δi − η∇δiLmape, where η is the learning rate.

B. Optimal Breakpoint Selection via Information Criterion
While MSLR determines optimal breakpoint locations for

a predefined number of segments, practical applications often
lack prior knowledge of the number of breakpoints, particularly
in PCB degradation prediction. To address this, we adopt a
model selection framework using the Bayesian Information
Criterion (BIC) [12]. The BIC balances model complexity with
goodness of fit and is defined as:

BIC = −2 ln(L) + k ln(n), (11)

where L is the maximized likelihood of the model, k is
the number of parameters (including breakpoints and segment
coefficients), and n is the sample size. The first term evaluates
the model fit, while the second penalizes model complexity to
mitigate overfitting.

For a series of candidate modelsM1, · · · ,Mm with varying
numbers of breakpoints, the optimal model is selected as:

Moptimal = argmin
i∈{1,...,m}

BIC(Mi). (12)

This framework enables the automatic selection of models that
balance complexity and goodness of fit, practically effective for
PCB resistance degradation prediction.

C. Extending MSLR to Upperbound Estimation with Adaptive
Conformal Prediction

To extend MSLR for predicting the upper bounds of resis-
tance degradation with high reliability at a specified confidence
level, we incorporate Adaptive Conformal Inference (ACI) [8],
a recent Conformal Prediction (CP) approach [9]. ACI provides
a distribution-free framework for uncertainty quantification,
producing confidence intervals with statistical coverage guar-
antees.

For a specific timestamp, the conformal score s(ti) is
computed as the residual between the observed and predicted
values:

s(ti) = yi − ŷi. (13)

Using the L-sized time window preceding the current times-
tamp, we calculate q̂γ(ti), the ⌈γ(ti)·(L+1)⌉

L -quantile of the
conformal scores:

q̂γ(ti) = Quantile ⌈γ(ti)·(L+1)⌉
L

(s(t1), . . . , s(tL)), (14)

where the adaptive coverage rate γ(ti) is sequentially updated
with a step size hyper-parameter ν:{

γ(tN+1) = γ

γ(ti) = γ(ti−1) + ν · (γ − 1y(ti−1)<ŷ(ti−1)+q̂γ(ti−1))
(15)

The upper bound for the resistance degradation is then given
by:

ŷγ(ti) = ŷ(ti) + q̂γ(ti), (16)

where ŷγ(ti) has a confidence level γ of being greater than or
equal to the true resistance y(ti). This approach ensures robust
and reliable interval predictions for PCB resistance degradation.

IV. EXPERIMENTAL RESULTS

A. Experimental Settings

a) Physics-Based Degradation Analysis through Vibration
Testing: The experimental apparatus for board-level vibra-
tion analysis comprises three primary components: an elec-
tromagnetic shaker system, a digital controller, and a power
amplifier, operating in a closed-loop feedback configuration.
The controller generates precise waveforms that are amplified
and transmitted to the shaker, enabling accurate reproduction
of predetermined vibration profiles. The mechanical inter-
face between the shaker and the test specimen consists of a
custom-designed vibration fixture equipped with four precision-
machined mounting pillars that ensure uniform load distribution
and consistent boundary conditions for the PCB under test.

We conducted swept-sine vibration tests, whose frequency
sweep range is specifically tailored to encompass ±20% of the
fundamental resonance frequency of the test board, allowing for
comprehensive characterization of the dynamic response near
the critical frequency.

The test vehicles consist of Quad Flat No-Lead (QFN) pack-
ages [13] with dimensions of 9 mm × 9 mm, incorporating 56
peripheral input/output (I/O) pins. These packages are specially
instrumented with wire-bonded circuits configured for four-
wire resistance measurements, enabling high-precision moni-
toring of structural degradation at the solder-PCB interface. The
measurement architecture facilitates real-time assessment of the
physics of degradation through electrical signature analysis.
The experimental design implements simultaneous resistance
monitoring at all eight corner joints of each QFN package.

b) Dataset and Preprocessing: We utilized data from two
PCB boards, each containing 22 channels. The total testing
period spanned from 14:55 on July 5, 2023, to 9:11 on July 6,
2023. The resistance of each channel was measured simultane-
ously at varying time intervals, ranging from 10 seconds to 30
seconds. To standardize the measurements, we preprocessed the
data by calculating the mean resistance value for each channel,
averaged over one-minute intervals.

Subsequently, we split the time-series data into training and
validation datasets, with the first 80% of the data allocated for
training and the remaining 20% for testing. During the pre-
processing stage, domain experts meticulously examined each
time series and excluded those exhibiting irregular patterns in
the training phase. These anomalies were identified as resulting
from physical failures during degradation tests, which rendered
them unpredictable based on prior observations. Examples of
normal and failure channels are illustrated in Fig. 2.



Table I: MAPE Error for Board Resistance Degradation Prediction

Model Board 1 Board 2

Mean (↓) Median (↓) Std (↓) Mean (↓) Median (↓) Std (↓)

ARIMA 1.09% 0.94% 0.58% 0.92% 0.92% 0.25%
N-BEATS 0.85% 0.70% 0.32% 0.93% 0.80% 0.28%
SLR 14.43% 0.58% 40.34% 29.85% 0.54% 54.15%

MSLR 0.48% 0.43% 0.20% 0.48% 0.52% 0.24%
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Figure 2: Visualization of normal and failure examples in PCB
resistance measurements

c) Baselines: We compared our proposed approach,
MSLR, against three competitive baselines: ARIMA, Seg-
mented Linear Regression (SLR), and N-BEATS. ARIMA
(Auto-Regressive Integrated Moving Average) is a classical
statistical model commonly used for time series forecasting. In
our experiments, we configured ARIMA with parameters (12, 1,
0), representing the order of the autoregressive terms, the degree
of differencing, and the order of the moving average terms,
respectively. Segmented Linear Regression (SLR) models the
time series as a set of linear segments and does not require
specific hyperparameter tuning, as it directly applies piecewise
linear regression based on a predefined number of breakpoints.
Its maximum number of breakpoints is 6, and we report the
testing result of the model with the lowest BIC score. N-BEATS
(Neural Basis Expansion Analysis for Time Series) is a deep
learning-based model specifically designed for univariate time
series forecasting. For this baseline, we used the following
configuration: an input chunk length of 48, an output chunk
length of 10, 10 epochs, 3 stacks, 3 blocks per stack, 4 layers
per block, a layer width of 128, an expansion coefficient
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Figure 3: PCB resistance degradation forecasting results

dimension of 5, and the LeakyReLU activation function. Each
baseline was trained and evaluated on the same training and
testing datasets to ensure a fair and consistent comparison.

d) MSLR Configurations: The proposed model is config-
ured with hyperparameters optimized for accurate point predic-
tions of PCB resistance degradation. The key hyperparameters
for point prediction include a learning rate η = 0.05, a total
of 50,000 iterations, and the Adam optimizer for efficient
gradient-based optimization. The bias term α is initialized as
the mean of the first one hour (60 minutes) of resistance data,
ensuring the model effectively captures the initial stable phase
of degradation. For upper bound estimation with ACI, we use a



Table II: Results for Board Resistance Degradation Upperbound Estimation of MSLR with ACI

Design Board 1 Interval Coverage Board 1 Interval Length Board 2 Interval Coverage Board 2 Interval Length

Coverage Mean Median Std Mean Median Std Mean Median Std Mean Median Std

70% 69.90% 70.23% 1.78% 0.45% 0.42% 0.22% 68.07% 66.84% 2.43% 0.43% 0.40% 0.26%
80% 80.28% 80.23% 1.57% 0.47% 0.46% 0.24% 78.72% 77.72% 2.43% 0.46% 0.37% 0.28%
90% 89.90% 90.23% 1.84% 0.52% 0.55% 0.26% 87.84% 88.08% 3.61% 0.49% 0.40% 0.31%

window size L = 100 to compute conformal scores, balancing
adaptation to recent data with robustness against noise. The step
size ν = 0.05 is set as per the standard ACI implementation,
ensuring a controlled adjustment of the miscoverage rate.

B. Point Prediction of Board-Level Degradation

In this section, we evaluate the performance of our proposed
method, MSLR, for point prediction of board-level resistance
degradation. The evaluation metrics include the Mean Absolute
Percentage Error (MAPE) for mean, median, and standard
deviation (Std) of the resistance predictions. Table I summarizes
the results for both Board 1 and Board 2, and Fig. 3 illustrates
the results of each channel.

From the table, MSLR consistently outperforms all baselines
across all metrics. For Board 1, MSLR achieves a mean MAPE
of 0.48%, a median MAPE of 0.43%, and a standard deviation
MAPE of 0.20%. In comparison, NBEATS, the closest competi-
tor, achieves 0.85%, 0.70%, and 0.32%, respectively. Similarly,
for Board 2, MSLR achieves a mean MAPE of 0.48%, a
median MAPE of 0.52%, and a standard deviation MAPE
of 0.24%. N-BEATS follows with values of 0.93%, 0.80%,
and 0.28%, respectively. ARIMA demonstrates relatively high
errors and variations, while SLR exhibits significantly higher
errors in mean and standard deviation metrics, indicating its
unsuitability for modeling the monotonic degradation process
in PCB resistance.

The results highlight the robustness and accuracy of MSLR
in capturing the degradation dynamics at the board level. The
superior performance of MSLR can be attributed to its ability to
model monotonic degradation trends while remaining resistant
to noise and outliers, as evidenced by its consistently low
error metrics across both boards. This suggests that MSLR is a
reliable method for predictive maintenance applications in PCB
systems.

C. MSLR Upper Bound Estimation

This section evaluates the performance of MSLR with Adap-
tive Conformal Inference (ACI) in estimating upper bounds for
PCB resistance degradation. The results in Table II present the
interval coverage and interval length across different confidence
levels at 70%, 80%, and 90%. We quantify the interval length
by MAPE Lmape.

The interval coverage shows that MSLR with ACI consis-
tently achieves values close to the desired confidence levels for
both boards. At any confidence level, the designed coverage
rate falls into the 1 standard deviation interval around the mean
coverage, indicating the model’s effectiveness in maintaining
valid statistical coverage while adapting to the dynamic nature
of resistance degradation. The results confirm that the predicted

intervals reliably contain the true resistance values, even in
varying operational conditions.

In terms of interval length, MSLR with ACI produces
compact prediction intervals, around the same value of MAPE
(∼0.5%) in point prediction. It means that we are able to
achieve 90% coverage with only 1-σ interval started from the
mean prediction. The method avoids overly conservative predic-
tions while maintaining consistency across different confidence
levels. Low standard deviations in interval lengths further
underscore the stability of the model’s predictions, ensuring
consistent performance over time.

These results demonstrate that MSLR with ACI effectively
balances reliability and efficiency in upper bound estimation.
By producing accurate and statistically valid intervals without
being excessively wide, the method is well-suited for predictive
maintenance applications in PCB systems. Its ability to handle
dynamic conditions and provide reliable uncertainty quantifica-
tion makes it a robust tool for degradation modeling.

V. CONCLUSION

This paper introduces a Monotonic Segmented Linear Re-
gression (MSLR) method to address the challenges in pre-
dicting resistance degradation of electronic packages under
vibration loads. Our proposed approach successfully overcomes
the limitations of traditional time series forecasting methods
when dealing with strong measurement noise. By modeling the
degradation process as a series of monotonically increasing
segments, MSLR provides a more accurate and physically
meaningful representation of the degradation behavior. The
results demonstrate that MSLR improves prediction accuracy.
This is particularly crucial for automotive applications where
component reliability directly impacts safety.

Future work sheds the light on extending MSLR to handle
multiple degradation indicators simultaneously, and investigat-
ing the correlation between identified segments and specific
failure mechanisms. These developments will further enhance
our ability to ensure the reliability of electronic packages in
safety-critical automotive applications.
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