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Abstract—Predicting the minimum operating voltage (V},,:) of
chips stands as a crucial technique in enhancing the speed and
reliability of manufacturing testing flow. However, existing Vi,
prediction methods often overlook various sources of variations
in both training and deployment phases. Notably, overlooking
wafer zone-to-zone (intra-wafer) variations and wafer-to-wafer
(inter-wafer) variations diminishes the accuracy, data efficiency,
and reliability of V,,;, predictors. To address this challenge,
we propose Restricted Bias Alignment (RBA), a novel data-
efficient V,,;, prediction framework that introduces a variation
alignment technique to simultaneously estimate inter- and intra-
wafer variations. Furthermore, we propose utilizing class probe
data to model inter-wafer variations for the first time.

Index Terms—chip performance prediction, machine learning,
process variation, data alignment

I. INTRODUCTION

The measurement of the minimum operating voltage (Vi,in)
represents a pivotal testing procedure crucial for assessing chip
performance. It enables the identification of substandard prod-
ucts, facilitates power consumption optimization, and serves
as an early indicator of potential failures during the device’s
lifespan. A case study involving 7nm industry chips illustrates
that subjecting all chips to uniform energy levels leads to a
minimum 16% increase in energy utilization [1].

Current industrial practices rely on die-level features to
construct V,,;, prediction models that account for die-to-die
variations. These features, gathered from parametric tests or
on-chip monitors such as IDDQ tests and ring oscillators [2],
[3], serve as inputs to machine learning-based V/,;,, predictors
[4]-[8]. However, existing methodologies fall short in capturing
wafer zone-to-zone (intra-wafer) and wafer-to-wafer (inter-
wafer) variations. Fig. la and Fig. 1b illustrate the impact
of inter- and intra-wafer variations to V,,;, and parametric
features in an industrial 16nm chip dataset, respectively. It is
evident that both types of process variation significantly alter
the distribution of V,,;, and parametric features, ultimately
impairing the accuracy of aforementioned V/,,;, predictors.

In this paper, we introduce a novel V,,;,, prediction frame-
work called restricted bias alignment (RBA), designed to sys-
tematically capture inter- and intra-wafer variations, along with
die-to-die variations. To address die-level variations, we adopt
parametric test features in line with prior research. However, for
inter- and intra-wafer variations, we treat them as independent
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and employ a voltage bias term to model their respective
impacts on individual dies. Additionally, we utilize class probe
data to model inter-wafer variations. By aligning and modeling
process variations, RBA is data-efficient and robust during the
training process, and is accurate in deployment for dies from
new wafers. Our main contributions are:

» We propose a novel data-efficient algorithm for estimating
and aligning V,,;, shifts resulting from inter- and intra-wafer
variations.

» We propose to utilize class probe data for inter-wafer V,,,;,,
shift modeling for the first time, and propose to reuse pre-
learned intra-wafer V,,;, shift for dies from new wafers in
addressing process variations.

e Through empirical analysis, we demonstrate the effec-
tiveness and data efficiency of the proposed V,,;, prediction
approach on an industrial dataset.

II. PRELIMINARIES
A. Testing Flow in Semiconductor Manufacturing

In semiconductor manufacturing, wafer-level testing employs
class probe test structures that are situated in the scribe lines
between product dies, outside the actual chips, as depicted
in Fig. 2. These test structures typically contain components
like transistors, via chains, resistors, and capacitors, mirroring
the fabrication process used for the product dies. The purpose
of these test structures is to provide feedback on the wafer’s
processing, enable statistical process control, and help reduce
variations from wafer to wafer.

At the die level, each part incorporates its own set of test
structures, known as Process Observation Structures (POSt),
typically located at the corners of each die. These structures
include components like ring oscillators, transistors, bipolar
junctions, resistors, and capacitors, which reflect the elements
used in the actual circuits on each die. POSt structures offer
visibility into the die-level processing, allowing engineers to
monitor and evaluate the performance of individual dies.

Together, these two sets of test structures—the class probe
at the wafer level and the POSt at the die level—create a hi-
erarchical system for tracking process variations across wafers
and individual dies. This setup allows for correlations between
class probe data and inter-wafer Vmin bias, as well as between
POSt data and the Vmin of individual dies. The presence of
these correlations indicates that the test structures can be used
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Figure 1: Wafer-to-wafer and wafer zone variations across 2 wafers, measured at 25°C. Red dashed lines represent mean values.
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Figure 2: (a) A balanced wafer region partition into 4 regions;
(b) Class probe test structures and process observation struc-
tures

to predict and control process variations, contributing to more
reliable and consistent chip production.

Table I: Inference Time Comparison of V,;, Regressors

Model Inference Time (ms)
Linear Regression (LR) 0.167
XGBoost [9] 1.706
CatBoost [10] 20.264

B. Selections of V,nin Predictor

We firstly discuss the selection of regression models for
predicting the V,;, point, leveraging insights from a recent
paper [11]. A variety of regressors were evaluated by the
authors, including Linear Regression (LR), ensemble tree-based
methods such as XGBoost [9] and CatBoost [10], as well as
Neural Networks.

The analysis of the authors of [11], conducted on 5nm
industrial chips, revealed no universally optimal model across
all scenarios. Importantly, LR’s simplicity and significantly
faster inference time make it particularly attractive for industrial
applications, where inference time directly impacts the overall
manufacturing test time, which is subject to stringent con-
straints. Table I summarizes the inference time for the evaluated
models on our 16nm automotive chips. LR achieves inference
times that are approximately 10x faster than XGBoost and
100x faster than CatBoost. This significant difference high-

lights LR as the most efficient option when balancing prediction
accuracy and V,,;, test time.

Given these considerations,we focus on improving LR for
Vinin prediction under process variations, even though the
concept is generalizable to other, more complex regressors.

C. Linear Regression for V,,;, Prediction

Linear regression is a simple yet effective method to predict
Vinin. It builds upon the following assumption

y=xw+b+e (1)

where y € (0, 400) is the positive value of Vj,;,, + € R1*4
is a d-dimensional row vector, which is a subset of features
measured by parametric tests, w € R%*! is a d-dimensional
column vector of unknown parameters, b € R is a bias term
of Vinin, and € € R accounts for the influence on V,,,;, other
than features x. R

Given a training dataset (X,y), one can estimate w and b
via minimizing the sum of square residuals

W,b = argmin ||y — Xw — b]|3 )
w,b

)

and the solution is

~ ST\ 13T~ =~ o~

w:(X X) Xy, b=y—Xw 3)
where the bar operator - computes the mean value (vector) of
a vector (matrix), and the tilde operator -~ centralizes the input.

D. Influence of Inter- and Intra-Wafer Variation on Vin
Prediction

Process variations are inherent in modern semiconductor
manufacturing, with their significance magnifying as technol-
ogy nodes and wafer sizes scale. Typically, there are two types
of process variations: inter-wafer (wafer-to-wafer) variations
and intra-wafer (zone-to-zone) variations.

We visually depict the contributions of both variations to
the distribution of V,;, and parametric features within our
industrial 16nm automotive dataset in Fig. 1. Specifically, we
present histogram plots and mean values of MBIST V,,,;,, in
Fig. 1a and IDDQ current in Fig. 1b, spanning the four regions
of two wafers from the same lot. Each row in either sub-figure
represents the intra-wafer variation of a given wafer, while each
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Figure 3: Variation of testing residuals of V,,;, prediction of
a linear regression trained on dies from the center zone from

wafer 1. Red dashed lines represent mean values.

column signifies the inter-wafer variations of a specific wafer
zone.

It is evident that both V,,;,, and parametric feature distribu-
tions exhibit considerable variance across wafers and regions.
However, if process variations merely introduce covariate shift,
wherein the relationship y|x between V,,;, and parametric
features remains constant, we could feasibly train a V,;,
predictor and deploy it on new testing dies. Unfortunately,
the assumption of covariate shift does not hold for the Vi,
prediction task. To illustrate, we train the aforementioned linear
model on dies from the center zone of wafer 1 and test it across
all four zones of wafers 1 and 2. The resulting residual of
MBIST V,,,;, on the testing data is depicted in Fig. 3, where
the residual r is computed as r =y — ¥.

The predictor performs relatively well on the center zone of
wafer 1; however, its accuracy notably declines on other testing
wafer zones of both wafer 1 and wafer 2. This outcome un-
derscores that process variations alter the statistical correlation
between V,,;, and parametric test features, rather than solely
inducing covariate shift. Consequently, there arises a necessity
to systematically address process variations, encompassing both
inter- and intra-wafer variations, to attain accurate and robust
Vimin prediction.

III. DATA EFFICIENT INTER- AND INTRA-WAFER
VARIATION ALIGNMENT

It is clear that both V,,;, and parametric features exhibit
significant variation from wafer to wafer and from region to
region. In this paper, we concentrate on a specific impact of
process variations on the dependency y|x between V,,;, and
parameter features: a consistent voltage shift of V,,;, relative
to the bias b.

We introduce Restricted Bias Alignment (RBA) to align the
Vinin shift resulting from process variations. RBA operates
under the assumption that intra-wafer and inter-wafer variations
are independent. This assumption is motivated by observations
from Fig. 1, where the intra-wafer variation appears consistent
across wafers, and the inter-wafer variation remains stable
across wafer regions.

Moreover, RBA introduces the use of class probe features
to model inter-wafer variations. By leveraging the pre-learned
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Table II: The number of dies in each wafer zone

intra-wafer variations and the predicted inter-wafer variations,
RBA demonstrates the capability to predict V,,;,, for a die from
a new wafer without necessitating further data collection.

A. Restricted Bias Alignment (RBA) for V., Prediction

1) Problem Formulation: Denote z; € R* as the vector of
k class probe features of the i-th wafer, RBA models V,,,;, as

yi,j = Xi,jW + bznter( ) bzntra +e (4)

where b;"tm accounts for the V,,,;, shift caused by intra-wafer
variations; b;"t”(zi) is a linear model of z;, representing the

voltage bias of wafer ¢:
binter (z;) := z;w, + b, + € 5)

We construct a loss function Lrpa as the sum of square
residuals of the V,,;, prediction across the whole training set:

Lrpa = Z lys; —X (6)

(%]

b;:nter o b;'_ntra| ‘%

W

where b is a set of V,,;, shift of inter- and intra-wafer

variations. We minimize the loss function it to estimate w,
inter intra,

b ,and b :

__ ~inter ~intra . . .
w,b ,b = argmin Lgpa (W,bmt”,bmtm)
w7binter7bintra
(7N

2) Solution: To directly solve Eq. (7) is complicated. We
adopt an alternative one-step gradient descent approach, in-
tegrating a novel initialization method to accelerate the con-
vergence. Denote wy), bé?’f”, and bé?’)tm as the estimated
parameters in the training step .

In step ¢, we first optimize w ;) to minimize L rBa, condition

inter intra

on b(;"7) and and b(;~}:

W) = arg min Lrpa (w b("ter) bE?”ﬁ) 8)
This is a linear regression problem and the solution is
—1
W) = (XTX) XTy(t) (9)
where (X, y(t)) is the concatenation of data of all wafer zones
()(,J7 yz j ?L(iez ﬂ bmtnL )
Then, we adopt the cham rule to update biases:
T
inter _ 1 inter OLrpa 0w
bz;Ltw — bz;zﬁelr o . — (10)
“ = Oww  Ob(rT)
o d !
. W (¢
bzntra bzntra RBA 11
(t) (t=1) — 8W(t) abzntra) ( )

where 7) is a hyper-parameter of learning rate.
Once the training process is done, we optimize the coeffi-

cients of class probe features:
W, b, = arg min Z Hbmt” — Z; Wy

W ,by

—b,ll3  (12)



Table III: The testing RMSE (mV) of DC Scan V,,;,, prediction with 75% data for training

Temperature -45°C 25°C
Wafer ID  Wafer Zone # Die  Linear Model BA (Reference) Restricted BA | # Die  Linear Model BA (Reference) Restricted BA

1 Center 166 3.54 2.69 2.88 165 3.28 2.72 2.68
1 Inner Donut 162 5.35 3.71 4.14 161 5.03 4.12 4.64
1 Outer Donut 158 7.69 3.24 3.28 173 4.79 3.92 391
1 Edge 91 5.21 3.34 3.05 128 5.17 4.82 4.78
2 Center 152 11.84 3.80 4.90 166 6.13 3.63 3.98
2 Inner Donut 153 8.23 3.57 3.85 172 5.16 3.62 3.79
2 Outer Donut 155 5.04 3.25 3.59 172 4.37 4.03 3.89
2 Edge 93 9.39 5.60 5.58 128 7.82 5.51 5.72
3 Center 54 8.03 4.46 4.37 152 5.49 4.36 4.38
3 Inner Donut 111 5.19 3.05 3.49 168 3.98 3.06 3.46
3 Outer Donut 126 5.74 4.52 4.69 173 4.50 443 4.72
3 Edge 89 4.03 4.07 4.27 130 4.66 4.68 4.71
4 Center 138 4.25 3.73 3.60 161 3.58 243 2.38
4 Inner Donut 157 3.98 2.72 2.72 174 3.63 332 3.46
4 Outer Donut 154 5.16 2.92 2.94 171 5.61 3.93 3.88
4 Edge 91 3.52 3.56 3.55 128 5.18 4.58 4.88
5 Center 153 5.98 3.12 3.49 171 3.80 2.70 3.02
5 Inner Donut 158 4.34 3.12 3.11 172 4.23 3.14 3.43
5 Outer Donut 160 6.11 3.40 3.44 178 6.15 5.36 5.28
5 Edge 104 4.40 4.27 4.32 141 4.23 4.25 4.25

Mean - 6.20 3.56 375 - 491 3.97 4.10

Table IV: The testing RMSE (mV) of AC Scan V,,;,, prediction with 75% data for training
Temperature -45°C 25°C
Wafer ID  Wafer Zone # Die  Linear Model = BA (Reference) Restricted BA | # Die  Linear Model = BA (Reference)  Restricted BA

1 Center 166 7.71 5.08 5.01 164 5.49 4.72 4.62
1 Inner Donut 162 6.70 6.33 6.49 159 6.54 6.12 6.20
1 Outer Donut 158 5.29 5.53 5.45 173 8.90 5.79 5.63
1 Edge 90 6.66 5.85 6.19 123 9.43 8.32 8.44
2 Center 152 12.06 5.57 6.00 165 13.69 5.17 6.10
2 Inner Donut 153 7.35 6.77 6.83 170 7.23 6.23 5.81
2 Outer Donut 155 6.10 6.34 6.58 170 6.16 6.29 6.41
2 Edge 93 5.27 4.61 4.48 121 7.66 6.19 5.88
3 Center 54 11.52 6.84 7.22 151 7.94 5.88 6.37
3 Inner Donut 110 8.72 5.82 6.23 165 7.77 6.03 6.25
3 Outer Donut 126 7.82 6.30 6.59 172 6.88 6.78 6.95
3 Edge 89 8.98 8.43 8.84 127 7.24 7.83 8.52
4 Center 138 6.438 4.67 5.10 160 5.78 5.64 5.96
4 Inner Donut 157 9.33 6.59 6.72 172 6.09 4.96 5.48
4 Outer Donut 154 12.21 7.18 7.30 168 11.23 7.29 7.38
4 Edge 91 10.59 6.52 6.65 123 9.07 8.15 8.34
5 Center 153 5.54 5.38 5.01 172 6.53 6.18 6.17
5 Inner Donut 158 6.09 6.31 6.24 170 5.86 5.66 5.78
5 Outer Donut 159 6.95 6.56 6.83 176 9.29 6.22 6.19
5 Edge 103 6.39 6.44 6.89 136 7.30 6.87 6.20

Mean - 8.05 6.17 6.33 - 8.04 6.31 6.43

3) Discussion: RBA effectively separates the influence of
inter- and intra-wafer variations on V,,;, shift. This decoupling
mechanism distinguishes RBA from BA, mitigating potential
overfitting concerns particularly when dealing with small train-
ing datasets, thereby bolstering overall data efficiency.

For a testing die (x{",2*",y{") form the j-th zone of
the ¢-th wafer, the V,,;,, prediction of RBA is

/};é)ejst — ngjst‘/)\v + binter (deSt) + b;ntru (13)

where
Binter test\ __ _test B 14
N (2) = 2" Wy + by (14)

By incorporating class probe features to capture inter-wafer
variations, RBA possesses the capability for deployment in
Vmin prediction without necessitating re-training or measuring
Vimin for any dies from a new wafer. This feature enhances the

practical applicability and efficiency of RBA in product testing
scenarios.

IV. EXPERIMENTAL RESULTS

We conduct experiments to demonstrate the efficacy of our
approach RBA for addressing inter- and intra-wafer variations
on thousands of 16nm automotive chips. We aim to illustrate: 1)
the effectiveness of V,,,;,, bias alignment, 2) the data efficiency
and robustness of RBA, 3) the capability of class probe features
to capture inter-wafer variation, and 4) the ability of RBA to
predict Vi,;, of dies from a new wafer.

a) Description of Data Collection: We get the class probe
data of each wafer from the foundry. During the testing flow
of product manufacturing, V,,;,, including DC Scan V,,,;,,, AC
Scan V,,;n, and MBIST V,,,;,, are measured at at three different
temperatures: -45°C (cold), 25°C (room), and 125°C (hot).



Table V: The testing RMSE (mV) of MBST V,,,;,, prediction with 75% data for training

Temperature -45°C 25°C
Wafer ID  Wafer Zone # Die  Linear Model BA (Reference) Restricted BA | # Die  Linear Model BA (Reference) Restricted BA

1 Center 166 8.73 2.58 2.64 165 4.54 2.85 3.40
1 Inner Donut 162 9.91 3.25 3.37 161 8.97 3.53 4.18
1 Outer Donut 158 9.34 4.76 4.72 173 10.10 4.49 4.45
1 Edge 90 13.10 9.76 11.94 120 15.98 9.77 11.17
2 Center 135 6.46 3.69 4.04 166 11.05 3.43 3.49
2 Inner Donut 136 5.19 3.70 3.69 172 8.07 2.68 2.71
2 Outer Donut 80 5.48 3.92 3.50 172 5.62 3.74 3.71
2 Edge 59 10.54 4.83 4.85 124 13.17 7.29 7.08
3 Center 54 8.99 3.35 3.52 152 8.24 4.20 4.10
3 Inner Donut 111 5.54 3.27 3.29 165 5.54 2.66 2.62
3 Outer Donut 125 5.67 3.04 3.05 174 6.70 2.56 2.56
3 Edge 88 9.05 6.69 6.69 123 11.83 7.32 7.34
4 Center 138 30.50 4.23 6.24 161 24.39 4.22 5.68
4 Inner Donut 157 24.24 3.20 3.13 174 14.82 3.08 3.21
4 Outer Donut 153 22.69 3.46 4.35 171 10.59 3.01 3.04
4 Edge 91 28.54 5.12 6.96 128 13.90 5.28 6.32
5 Center 153 19.38 4.62 4.65 172 18.45 4.64 4.89
5 Inner Donut 158 18.20 4.44 4.51 172 24.10 431 4.34
5 Outer Donut 159 19.46 4.30 4.42 178 25.02 4.24 442
5 Edge 104 13.10 5.80 5.78 138 19.39 6.69 6.77

Mean - 16.25 4.45 491 - 14.47 4.63 4.94

Similarly, parametric test and POSt test data were collected
under different temperatures from Automatic Test Equipment
(ATE) testers.

Our dataset has several wafers. Each wafer is partitioned
into 4 zones: center, inner donut, outer donut, and edge. The
visualization of this partition is shown in Fig. 2, and the number
of dies in each wafer zone is listed in Table II. Due to the
expensive cost of Vi,;, test, only a subset of dies is performed
the V,,;, test for a certain test pattern.

b) RBA Settings: RBA leverages 5 parametric test features
and 2 class probe features as input to predict V,,,;,,. All features
are selected by the Correlation Feature Selection algorithm
[12], and pass the causation check by our testing engineer.
The hyper-parameter learning rate 7 is set to 0.1. We terminate
the training process when the relative improvement of the loss
function Lrp4 is smaller than 0.001.

c¢) Baseline Settings: We compare RBA with 2 baselines:
linear regression, and Bias Alignment (BA). Linear regression
is trained over all of the label data without handling process
variations. We add BA for reference, whose performance is
treated as the upper bound of RBA, because it neglects the
dependency between inter- and -intra wafer variations. BA
optimizes an additional bias term for each wafer region:

Yij; = Xi’jW + b@j + € (15)

It should be noted that the learned bias term in BA is not
transferable to new wafers or new regions, since it requires

testing dies under the new process to estimate the new bias
term.

A. Effectiveness of V,in bias alignment

We aim to showcase the effectiveness of V;,,;,, bias alignment
in the Vi,,;, prediction task.
a) Experimental Settings: We consider all three types of
Vinin (DC Scan, AC Scan, and MBST), tested at cold and room
temperatures. Our dataset comprises 5 wafers tested under these

Table VI: Inter-wafer V,,,;, shift (mV) from wafer 1 estimated
by RBA

Wafer ID  Temp. | DC Scan Vpin  AC Scan Viin MBST Vi
2 -45°C -18.78 -6.93 -14.41
3 -45°C -4.32 -4.45 -6.87
4 -45°C -5.98 5.69 -28.93
5 -45°C -3.28 2.35 17.68
2 25°C -9.91 -10.03 -18.75
3 25°C 2.18 -4.10 -8.77
4 25°C 0.62 6.60 -27.99
5 25°C -0.37 7.48 -18.02

Table VII: Intra-wafer V,,;, shift (mV) from center zone

estimated by RBA

‘Wafer Zone Temp. | DC Scan Viin  AC Scan Vi,  MBST Viin
Inner Donut -45°C 2.48 4.16 7.35
Outer Donut  -45°C 2.87 6.81 -2.17
Edge -45°C 1.36 5.65 -1.18
Inner Donut 25°C 2.32 4.22 -1.03
Outer Donut 25°C 3.13 6.95 -2.24
Edge 25°C -0.35 347 -11.15

conditions. For each wafer zone, we allocate 75% of the dies
for training and the remaining 25% for testing. The methods
under consideration include linear regression, BA, and RBA.
b) Results: We report the testing RMSE of V,,;, pre-
diction in each wafer zone, and the average result across the
whole testing dataset in Table III for DC Scan V,,,;,, Table IV
for AC Scan V,,,;,, and Table V for MBST V,,,;,,. The bold
number represents the best method, and the underlined number
represents the second-best method. In each V,,;, prediction
task, both BA and RBA consistently outperform the base-
line linear regression. This suggests that the bias alignment
technique effectively captures process variations. Notably, the
performance gap between BA and RBA is minimal, indicating
a weak dependency between inter- and intra-wafer variations.
Additionally, we show the inter- and intra-wafer V,,,;,, shift
estimated by our approach RBA in Table VI and Table VII,



Table VIII: RBA with different fractions of data for training

Temperature -45°C 25°C

Training data frac. 75% 5% 75% 5%
DC Scan Vyin (mV) | 375 385 | 410 3.82
AC Scan Vi (mV) | 633 642 | 643 654
MBST Vi, (mV) 491 503 | 494 518

Table IX: Top 1 linear correlation between class probe features
and inter-wafer V,,,;,, shift estimated by RBA

Test Pattern
Top 1 Linear Corr.

DC Scan Vi, in
0.892

AC Scan Viin
0.948

MBST Vi
0.953

respectively. The variance of both types of Vi, shift is
substantial and cannot be disregarded. A significant V,,;,, shift
notably impacts the accuracy of linear regression. For instance,
linear regression performs badly for predicting DC Scan V,,,;r,
of wafer 2 at the cold temperature, where a -18.78mV V,,;,
shift is estimated by RBA.

B. Data Efficiency and Robustness of RBA

We present the performance of RBA on small training
datasets to demonstrate its data efficiency and robustness.

a) Experimental Settings: We use 5% dies in each wafer
zone for training, and the rest for testing. All other configura-
tions are the same as those in Section IV-A.

b) Results: The V,,,;, prediction accuracy of RBA is listed
in Table VIII. While the fraction of training data is reduced
from 75% to 5% (around 7 dies in each wafer zone), RBA’s
accuracy is stable, indicating its superior data efficiency and
robustness.

C. Class Probe Features Capturing Inter-Wafer Variation

We demonstrate that the dependency between class probe
features and inter-wafer variations estimated by RBA is really
high, indicating the motivation to leverage wafer-level class
probe features to model wafer-to-wafer variation is plausible.

a) Experimental Settings: Our dataset has 10 wafers
whose DC Scan, AC Scan, and MBST V,,,;,, are tested at the
hot temperature. In the first step, we employ RBA on these
wafers to collect 9 V,,,;,, shift terms relative to a base wafer.
Subsequently, we correlate these shifts with each class probe
feature, reporting the highest absolute value of the Pearson
correlation coefficient. A higher coefficient indicates a stronger
linear correlation. In the second step, we utilize the V;,,;,, shifts
of 6 wafers to fit a linear model for 2 class probe features and
evaluate its testing coefficient of determination (R?) on the
remaining 4 wafers.

b) Results: In Table IX, it is evident that for each V,,;,
test pattern, there exists a class probe feature with a correlation
coefficient of at least 0.89, indicating (1) the credibility of

Table X: Coefficient of determination (R2) of the linear model

using 2 class probe features to predict V,,,;,, shift estimated by
RBA

Test Pattern  DC Scan Vyip
R2 0.509

AC Scan Viin
0.631

MBST Vi
0.792

Table XI: The testing RMSE (mV) of V,,;, tested at 125°C

Method DC Scan V,,;n  AC Scan V,,;,,  MBST Vi
Linear Regression 7.33 9.40 14.24
RBA 8.07 8.98 9.18

the inter-wafer V,;, shift estimated by RBA, and (2) the
informativeness of class probe data in modeling V,,;, shift
across wafers.

Table X reports the test accuracy of using class probe features
to model V;,,;,, shift. The R? score of each Vj,;, test pattern is
proportion to the Pearson score in Table IX. While MBST V,,,;,,
shift predictors appear promising, we encounter difficulty in
obtaining a sufficiently accurate predictor for the DC/AC Scan
Vinin shift. This challenge may stem from the small size of the
training dataset, leading to an increased variance. We defer this
issue to future research endeavors where a larger pool of tested
wafers can be obtained.

D. RBA for V., Prediction of New Wafer

We assess the effectiveness of RBA in predicting Vi
of new wafers, focusing on addressing inter- and intra-wafer
variations.

a) Experimental Settings: We evaluate RBA on the V,,,;,,
prediction task, where V,,;, is tested at 125°C. Following
Section IV-C, we use 6 wafers for training and 4 wafers for
testing. The baseline model is linear regression.

b) Results: Table XI presents the RMSE of RBA and
linear regression. Owing to the limited number of wafers
available in our dataset for training the inter-wafer V,,;, shift
predictor, RBA and linear regression yield comparable results
for DC/AC Scan V,,;, prediction. However, RBA exhibits a
significant performance advantage over linear regression in
the MBST V,,,;,, prediction task, highlighting its efficacy in
addressing inter- and intra-wafer variations.

V. CONCLUSION

This paper introduces restricted bias alignment (RBA), a
Vinin prediction framework designed to systematically capture
process variations in semiconductor manufacturing. By lever-
aging class probe features to model inter-wafer variations and
utilizing parametric features to estimate intra-wafer variations,
RBA offers a comprehensive approach to address the challenges
posed by process variations.

Our experiments conducted on an industrial dataset demon-
strate the effectiveness of RBA in mitigating the impact of
process variations on V,,;, prediction. The results highlight
the practical utility and robustness of RBA in real-world semi-
conductor manufacturing scenarios, underscoring its potential
to enhance manufacturing efficiency and reliability.
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