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Abstract

In this work, we conduct a systematic study of stochastic saddle point problems
(SSP) and stochastic variational inequalities (SVI) under the constraint of (ω, ε)-
differential privacy (DP) in both Euclidean and non-Euclidean setups. We first
consider Lipschitz convex-concave SSPs in the ϑp/ϑq setup, p, q → [1, 2]. That is,
we consider the case where the primal problem has an ϑp-setup (i.e., the primal
parameter is constrained to an ϑp bounded domain and the loss is ϑp-Lipschitz with
respect to the primal parameter) and the dual problem has an ϑq setup. Here, we
obtain a bound of Õ

(
1↑
n
+

↑
d

nω

)
on the strong SP-gap, where n is the number of

samples and d is the dimension. This rate is nearly optimal for any p, q → [1, 2].
Without additional assumptions, such as smoothness or linearity requirements,
prior work under DP has only obtained this rate when p = q = 2 (i.e., only in the
Euclidean setup). Further, existing algorithms have each only been shown to work
for specific settings of p and q and under certain assumptions on the loss and the
feasible set, whereas we provide a general algorithm for DP SSPs whenever p, q →

[1, 2]. Our result is obtained via a novel analysis of the recursive regularization
algorithm. In particular, we develop new tools for analyzing generalization, which
may be of independent interest. Next, we turn our attention towards SVIs with
a monotone, bounded and Lipschitz operator and consider ϑp-setups, p → [1, 2].
Here, we provide the first analysis which obtains a bound on the strong VI-gap
of Õ

(
1↑
n
+

↑
d

nω

)
. For p ↑ 1 = !(1), this rate is near optimal due to existing

lower bounds. To obtain this result, we develop a modified version of recursive
regularization. Our analysis builds on the techniques we develop for SSPs as well
as employing additional novel components which handle difficulties arising from
adapting the recursive regularization framework to SVIs.

→This work was done while M. Menart was at The Ohio State University.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



1 Introduction

Stochastic saddle point problems (SSP), are an increasingly important part of the machine learning
toolkit. These problems model optimization settings with an inherent min-max structure, and for this
reason are also referred to as stochastic min-max optimization problems. Concretely, the goal is to
find an approximate solution of the following problem defined over a convex-concave loss,

min
w↓W

max
ε↓!

{
FD(w, ϖ) := Ex↔D[f(w, ϖ;x)]

}
, (1)

where D is an unknown distribution for which we have access to an i.i.d. sample S. Problems of this
kind have important applications in stochastic optimization [NJLS09, JNT11, ZL15], federated learn-
ing [MSS19], distributionally robust learning [YLMJ22, ZZZ+24a, ZB24], reinforcement learning
[DSL+18], and algorithmic fairness [ABD+18, WM19].

Closely related to saddle point problems are stochastic variational inequalities (SVIs). Given a
monotone operator, GD(z) := E

x↔D
[g(z;x)], the objective is to approximate the point z→ → Z , where

↓GD(z
→), z→ ↑ z↔ ↗ 0, ↘z → Z. (2)

Stochastic saddle point problems can be easily related to variational inequalities by observing that
the saddle operator (an operator closely related to the gradient) of a convex-concave function is
monotone. While SSPs and SVIs are closely related, it can be the case that a problem which can be
formulated as a monotone SVI is not easily cast as a convex-concave SSP [JN19].

Parallel to the above, the problem of privacy has become increasingly important in the big data
era. In this regard, the notion of differential privacy has arisen as the premier standard. Stochastic
optimization problems are a natural target for privacy concerns due to the fact that they are frequently
formulated using a dataset of (potentially sensitive) individual data records. For many such problems,
the constraint of differential privacy necessitates fundamentally new rates and techniques, and as
such the formal characterization of these problems is an important task.

Thus far, work on differentially private SSPs and SVIs has focused primarily on Euclidean settings.
However, a number of important, including many of those referenced at the start of this section, are
naturally formulated in other geometries. Prior to this work, the optimal utility rate for DP SSPs was
known only in Euclidean and polyhedral settings. For SVIs, the best achievable utility was unknown
in any geometry (including Euclidean), at least under canonical utility measures. In this work, we
provide the first systematic study of SSPs and SVIs in general geometries. The new analysis tools we
develop lead to optimal rates for a number of these important setups.

1.1 Contributions

In this work, we provide the first systematic study of stochastic saddle point problems and variational
inequalities in both Euclidean and non-Euclidean geometries. Our first results pertain to stochastic
saddle point problems where the primal problem has an ϑp-setup and the dual problem has an ϑq-setup,
where p, q → [1, 2]. Here we assume the convex-concave loss is Lipschitz. We generalize the recursive
regularization framework developed in previous works to more handle non-Euclidean geometries
[AZ18, BGM23]. At the heart of this extension is a fundamentally new analysis of the generalization
properties of this algorithm. The issue of generalization has in fact been a key issue at the heart of
many other works studying SSPs [LYYY21, OPZZ22, BGM23], as the presence of a supremum in
the strong SP-gap accuracy measure (see Eqn. (4)) breaks more traditional generalization techniques.
In contrast to prior work, our generalization technique works by avoiding entirely any generalization
bound for the strong gap itself. Rather, we introduce a new accuracy measure measure which, when
used in conjunction with the recursive regularization algorithm, eventually translates into a strong
gap guarantee. Our technique stands in particular contrast to [BGM23], which is thus far the only
work in the DP literature to obtain optimal strong SP-gap rates in the Euclidean setting and also
uses recursive regularization. However, their technique fundamentally relies on a McDiarmids style
concentration bound that is worse by a poly(d) factor in non-Euclidean setups such as the ϑ1 setting
[Pan08]. Using these new techniques, we provide the first analysis which obtains the near optimal
rate of Õ

(
1↑
n
+

↑
d

nω

)
on the strong SP-gap for any p, q → [1, 2]. Our algorithm achieves this rate in

Õ
(
min

{
n2ω1.5↑

d
, n3/2

})
number of gradient evaluations. We note that the near optimality of this rate
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is established by lower bounds for DP stochastic convex optimization, which is a special case of DP
SSPs [BGN21, AFKT21]. Previously, comparable rates on the strong gap had only been obtained in
the case where p = q = 2 or under strong additional assumptions [BGM23, ZB24, GGP24].

Next, we consider DP stochastic variational inequalities with a monotone, bounded, and Lipschitz
operator. We adapt the recursive regularization framework even further and again leverage a novel
generalization analysis. Here, we obtain the rate Õ

(
1↑
n
+

↑
d

nω

)
on the strong VI-gap (see Eqn. (5))

in the ϑp-setting, p → [1, 2]. Our algorithm again achieves this rate in Õ
(
min

{
n2ω1.5↑

d
, n3/2

})
number

of gradient evaluations. This is the first result to obtain the near optimal convergence rate on the
strong VI-gap for p↑1 = !(1), which notably includes the Euclidean case. The corresponding lower
bound for p = 2 was established in [BG23], and we provide a simple extension of their technique to
the case where p↑ 1 = !(1). See Appendix E. Finally, for the setting p = 2, we show that our rate
can be achieved in a near linear number of gradient evaluations by leveraging acceleration techniques
for Lipschitz and strongly monotone variational inequalities.

1.2 Related Work

Differentially private stochastic optimization now has a broad body of work spanning over a decade
[JKT12, BST14, JT14, TTZ15, BFTT19, FKT20, AFKT21]. Such work has rigorously characterized
the problem of stochastic convex optimization in a variety of geometries. In ϑp setups, for p → [1, 2], it
is now known that the optimal rate is Õ( 1↑

n
+

↑
d

nω ) for such problems [AFKT21, BGN21]. It has also
been shown that additional improvements are possible in the ϑ1 setting under smoothness assumptions.
The study of stochastic saddle point problems under differential privacy is much less developed, but
has nonetheless attracted a surge of recent interest [YHL+22, ZTOH22, BGM23, GGP24]. Without
privacy, optimal O(1/

≃
n) guarantees on the strong SP-gap have long been known [NY78]. With

privacy, the (near) optimal Õ
(

1↑
n
+

↑
d

nω

)
rate was obtained only recently, and then only in the

Euclidean setting [BGM23]. In fact, work on DP-SSPs has focused largely on the case where
p = q = 2, despite the fact that important problems are naturally formulated in other geometries. In
particular, the case where q = 1 has important applications in distributionally robust optimization,
federated learning, and algorithmic fairness. In this regard, the works [GGP24, ZB24] have recently
studied DP SSPs with q = 1. The work [GGP24] studies the ϑ1/ϑ1 setting when the loss is additionally
assumed to be smooth and the constraint set is polyhedral; they achieved the rate Õ

(
1↑
n
+ 1

(nω)1/2

)
.

We note that smoothness is fundamentally necessary in achieving this dimension independent rate,
as otherwise existing lower bounds of !̃

(
1↑
n
+

↑
d

nω

)
hold for such problems [AFKT21]. The work

[ZB24] studied the problem of differentially private worst-group risk minimization, which is closely
related to DP-SSPs in the ϑ1/ϑ2 setting, but requires the loss to have a specific linear structure with
respect to the dual parameter. For ϑ1/ϑ2 saddle point problems having this structure, their result
implies a rate of O

(
1↑
n
+

↑
d

nω

)
on the strong gap.

Work on SVIs is less developed. Non-privately, the optimal strong VI-gap rate of O( 1↑
n
) was

established in [JNT11] (although related techniques trace back to [NY78]). Work on differentially
private variational inequalities is limited to the work [BG23]. In the Euclidean setup, this work
achieved a rate of

(
1

n1/3 +
↑
d

n2/3ω

)
on the strong VI-gap under DP.

2 Preliminaries

In this section, we detail preliminaries for stochastic saddle point problems and differential privacy.
Both SSPs and SVIs share a similar structure, which we detail first. Throughout, we use [w, ϖ] to
denote the concatenation of the vectors w and ϖ. For a function f , we let ⇐f denote an arbitrary
subgradient selection of f . Finally, we let Unif(U) denote the uniform distribution over the set U .

Stochastic Monotone Operators. Let X be some abstract data domain and let S ⇒ D
n for n > 0

and D some unknown distribution over X . Let ⇑ · ⇑ be some norm and ⇑ · ⇑→ its dual. We consider
some compact convex parameter space Z ⇓ Rd of diameter B with respect to ⇑ · ⇑. Let Bd

↗·↗(r)

denote the d-dimensional ball of radius r > 0 w.r.t. ⇑ · ⇑ centered on zero. We assume there exists
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L > 0 such that g : Z ⇔ X ↖↙ B
d
↗·↗→

(L) is a bounded operator and that for any x → X , g(·;x)
is monotone. That is, ↘z1, z2 → Z it holds that ↓g(z1;x)↑ g(z2;x), z1 ↑ z2↔ ∝ 0. We define the
empirical and population operators as GS(z) =

1
n

∑n
i=1 g(z;xi) and GD(z) = E

x↔D
[g(z;x)].

Stochastic Saddle Point Problems. SSPs have the following structure in addition to the above.
Let dw, dε ∝ 0 such that dw + dε = d. We assume Z is the product of the convex compact sets
W ⇓ Rdw and ” ⇓ Rdω equipped with norms ⇑ · ⇑w and ⇑ · ⇑ε and having diameters Bw and Bε

respectively. Then Z = W ⇔ ”. We let ⇑[w, ϖ]⇑ =
√
⇑w⇑2w + ⇑ϖ⇑2ε, and thus the diameter of Z

satisfies B ↗
√
B2

w +B2
ε ; note the geometric mean of two norms is always a norm.

In SSPs, we consider the case where the monotone operator is the saddle operator of a convex-
concave loss function f : W ⇔ ” ⇔ X ↖↙ R. The saddle operator is defined as g(w, ϖ;x) =
[⇐wf(w, ϖ;x), ↑⇐εf(w, ϖ;x)] and is always monotone if f is convex-concave. We also define
the corresponding population loss and empirical loss functions as FD(w, ϖ) = E

x↔D
[f(w, ϖ;x)]

and FS(w, ϖ) = 1
n

∑
x↓S f(w, ϖ;x) respectively. The boundedness assumption on g means f is

L-Lipschitz. Concretely, ↘w1, w2 → W and ↘ϖ1, ϖ2 → ”:

Lipschitzness: |f(w1, ϖ1;x)↑ f(w2, ϖ2;x)| ↗ L ⇑[w1, ϖ1]↑ [w2, ϖ2]⇑ (3)

Under such assumptions, a solution for problem (1) always exists [Sio58], and is referred to as the
saddle point. Further, given an SSP (1), we will denote a saddle point as [w→, ϖ→].

The utility of an approximation to the saddle point is characterized by the strong SP-gap. Given a
(randomized) algorithm A with output [Aw(S),Aε(S)] → W ⇔”, this is defined as

GapSP(A) = E
A,S

[
max
ε↓!

{FD(Aw(S), ϖ)}↑ min
w↓W

{FD(w,Aε(S))}

]
. (4)

For notational convenience, we define the following function which is closely related to the SP-gap,
ĜapSP(w̄, ϖ̄) = maxε↓! {FD(w̄, ϖ)}↑minw↓W

{
FD(w, ϖ̄)

}
. Usefully, this function is known to

be Lipschitz whenever f is Lipschitz.

Fact 1. ([BGM23]) If f is L-Lipschitz then ĜapSP is
≃
2L-Lipschitz.

Finally, we define ϑp/ϑq saddle point problems as those which, in addition to the above, also have the
following structure. Assume ⇑ · ⇑w = ⇑ · ⇑p and ⇑ · ⇑ε = ⇑ · ⇑q and that W and ” have diameters
bounded by Bw and Bε with respect to ⇑ · ⇑p and ⇑ · ⇑q respectively. We assume that for any x → X

that f(·, ·;x) is Lw Lipschitz in its first parameter w.r.t. ⇑ ·⇑p and Lε Lipschitz in its second parameter
w.r.t. ⇑ · ⇑q . Note this implies an overall Lipschitz parameter, as per Eqn. (3), of L ↗

√
L2
w + L2

ε.

Stochastic Variational Inequalities. For SVIs, in addition to the assumption that the monotone
operator is L-bounded, we will also assume it is ϱ-Lipschitz. The objective for stochastic variational
inequalities is to find an approximation of the (population) equilibrium point z→, where z→ is charac-
terized by Eqn. (2). We refer to such a solution as an equilibrium point. For approximate solutions,
the quality of the approximation is characterized by the strong VI-gap:

GapVI(A) = E
A,S

[
max
z↓Z

{↓GD(z),A(S)↑ z↔}

]
. (5)

Note that it is not true in general that the VI-gap bounds the SP-gap even when the monotone
operator in question is the saddle operator of some convex-concave loss (see Fact 3 in Appendix A).
However, in such a case it is true that the equilibrium point of the of the SVI is the saddle point of the
corresponding SSP.

We say that an operator g is µ-strongly monotone if for any z1, z2 → Z that
↓g(z1;x)↑ g(z2;x), z1 ↑ z2↔ ∝

µ
2 ⇑z1 ↑ z2⇑.

Stability. Important to our analysis will be the notion of uniform stability [BE02].
Definition 1. A randomized algorithm A : Xn

↖↙ W ⇔ ” satisfies #-uniform argument stability

(UAS) if for any pair of adjacent datasets S, S↘
→ X

n
it holds that E

A
[⇑A(S)↑A(S↘)⇑] ↗ #.
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The notion of strong convexity is often important in analyzing stability. A function ς : Z ↖↙ R is µ-
strongly convex w.r.t. ⇑·⇑ if for any z, z↘ → Z one has ς(z)↑ς(z↘) ∝ ↓⇐ς(z↘), z ↑ z↘↔+ µ

2 ⇑z↑z↘⇑2.
We call a function F : W ⇔” ↖↙ R µ-strongly-convex/strongly-concave (SC/SC) if for any ϖ → ”
and w → ” the functions F (·, ϖ) and ↑F (w, ·) are µ-strongly-convex.

Notably, adding a SC/SC regularizer leads to stability properties. The following fact results from a
more general result for regularized SVIs; see Lemma 5 in Appendix A.
Lemma 1. Let ς : W ⇔” ↖↙ R be µ-strongly-convex/strongly-concave w.r.t. ⇑ · ⇑w and ⇑ · ⇑ε. Then

the algorithm which returns the saddle point of (w, ϖ) ↖↙ 1
n

∑
z↓S f(w, ϖ; z)+ς(w, ϖ) is ( 2Lµn )-UAS.

Differential Privacy (DP) [DMNS06]. An algorithm A is (ω, ε)-differentially private if for all
datasets S and S↘ differing in one data point and all events E in the range of the A, we have,
P (A(S) → E) ↗ eωP (A(S↘) → E) + ε.

2.1 Example of Non-Euclidean SSP

One important example of non-Euclidean SSPs arises from the problem of minimizing the worst case
risk over multiple populations. This problem has arisen in group distributionally robust optimization
to name just one of many applications [SGJ22, ZZZ+24b, NMG24]. Let f : W ⇔ X ↖↙ R and W

have a standard ϑp setup. Consider k distributions, D1, . . . ,Dk, and the goal of selecting a model
w → W which guarantees the lowest worst-case risk for the k distributions above:

min
w↓W

max
j↓[k]

Exj↔Dj [f(w;xj)] = min
w↓W

max
ε↓”

k∑

j=1

ϖ(j)Exj↔Dj [f(w;xj)],

where here # denotes the standard k-dimensional simplex, and the equality above holds by the
maximum principle for convex functions [Bau58]. Given that the feasible set for ϖ is a simplex, it is
natural to endow this space with the ϑ1-geometry. We thus end up with a SSP problem in ϑp/ϑ1 setup.

3 A New Analysis for Recursive Regularization

Algorithm 1 Recursive Regularization: RSSP

Require: Dataset S → X
n, loss function f , subroutine Aemp, regularization parameter φ ∝

Lϑ
B
↑
n

(where ⇑ · ⇑
2
w and ⇑ · ⇑

2
ε are 1

ϑ strongly convex), constraint set diameter B, Lipschitz constant L.
1: Let n↘ = n/ log2(n), and T = log2(

L
Bϖ ).

2: Let S1, ..., ST be a disjoint partition of S with each St of size n↘
(which is always possible due

to the condition on φ)

3: Let [w̄0, ϖ̄0] be any point in W ⇔”

4: Define function (w, ϖ, x) ↖↙ f (1)(w, ϖ;x) = f(w, ϖ;x) + 2φ ⇑w ↑ w̄0⇑
2
w ↑ 2φ

∥∥ϖ ↑ ϖ̄0
∥∥2
ε

5: for t = 1 to T do
6: [w̄t, ϖ̄t] = Aemp

(
St, f (t), [w̄t≃1, ϖ̄t≃1],

B
2t

)

7: Define (w, ϖ, x) ↖↙ f (t+1)(w, ϖ;x) = f (t)(w, ϖ;x) + 2t+1φ ⇑w ↑ w̄t⇑
2
w ↑ 2t+1φ

∥∥ϖ ↑ ϖ̄t
∥∥2
ε

8: end for
9: Output: [w̄T , ϖ̄T ]

In this section, we present our modified recursive regularization algorithm, first developed in [AZ18]
and extended to Euclidean SSPs in [BGM23]. We then discuss the key components of our analysis
needed to obtain our results for non-Euclidean geometries. We conclude the section by applying our
general result for recursive regularization to DP ϑp/ϑq-SSPs.

Algorithm Overview. As in [BGM23], our recursive regularization implementation, Algorithm
1, solves a series of regularized saddle point problems defined by f (1), ..., f (T ). The saddle point
problem defined in each round of Algorithm 1 is solved using some empirical subroutine, Aemp. This
subroutine takes as input a subset of the dataset, St, the regularized loss function for that round, f (t),
a starting point, [w̄t≃1, ϖ̄t≃1], and an upper bound on the expected distance to the empirical saddle
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point of the problem defined by St and f (t). The exact implementation of Aemp, Algorithm 3, will be
discussed in the next section. Here, we focus on the guarantees of Recursive Regularization given that
Aemp satisfies a certain accuracy condition. At each round, the empirical subroutine Aemp is required
to find a point, [w̄t, ϖ̄t], which is close (under ⇑ · ⇑) to the empirical saddle point. Because the scale
of regularization doubles each round, this task becomes easier each round. Specifically, [BGM23]
observed that implementations of Aemp which satisfy the notion of relative accuracy succeed at
finding such points.

Definition 2 (↼̂-relative accuracy). Given a dataset S↘
→ X

n↑
, loss function f ↘

, and an initial point

[w↘, ϖ↘], we say that Aemp satisfies ↼̂-relative accuracy w.r.t. the empirical saddle point [w→
S↑ , ϖ→S↑ ] of

F ↘
S↑(w, ϖ) = 1

n↑

∑
x↓S↑ f ↘(w, ϖ;x) if, ↘D̂ > 0, whenever E [⇑[w↘, ϖ↘]↑ [w→

S↑ , ϖ→S↑ ]⇑] ↗ D̂, the output

[w̄, ϖ̄] of Aemp satisfies E

F ↘
S↑(w̄, ϖ→S↑)↑ F ↘

S↑(w→
S↑ , ϖ̄)


↗ D̂↼̂.

In contrast to [BGM23], our algorithm uses more general regularization to ensure strong-
convexity/strong-concavity with respect to the appropriate norm.

Guarantees of Recursive Regularization. Our general result for recursive regularization is stated
as follows, and its full proof is given in Appendix B.2.
Theorem 1. Let Aemp satisfy ↼̂-relative accuracy for any (5L)-Lipschitz loss function and dataset of

size n↘ = n
log(n) and assume ⇑ ·⇑

2
w and ⇑ ·⇑

2
ε are

1
ϑ -strongly convex under ⇑ ·⇑w and ⇑ ·⇑ε respectively.

Then Algorithm 1, run with Aemp as a subroutine and φ = 48
B

(
↼̂↽2 + Lϑ3/2

↑
n↑

)
, satisfies

GapSP(RSSP) = O
(
B↼̂↽2 log(n) +

BL↽3/2 log3/2(n)
≃
n

)
.

The similarity of this result to [BGM23, Theorem 5] and our exposition thus far belies the difficulty
of adapting their result to non-Euclidean setups. The key challenge addressed by the analysis of
[BGM23] was that of generalization. In this regard, their key insight was to use McDiarmid style
concentration bounds to show that the empirical saddle point obtains non-trivial guarantees on the
strong gap. However, such concentration results critically rely on the fact that the underlying norm is
Euclidean. A generalization of this concentration to, for example, the ϑ1 setup, necessarily incurs an
additional

≃
d factor [Pan08]. Thus, a fundamentally new analysis is needed. One should also note

that the squared norms ⇑ ·⇑2w may not be strongly convex for certain norms, such as ⇑ ·⇑1. Regardless,
in some such cases, we can still leverage this result by modifying the underlying problem, as we will
show in Section 4.

Key Proof Ideas. We circumvent the above issues by providing a fundamentally new generalization
analysis for the intermediate iterates of recursive regularization. Specifically, our analysis avoids
entirely any analysis of the strong gap at intermediate stages of the algorithm. Instead, we introduce
two new functions, which are similar in nature to the quantity used in the definition of relative accuracy,
but are taken with respect to the population saddle point. For t → [T ], define F (t)

D (w, ϖ;x) :=

E
x↔D


f (t)(w, ϖ;x)


and let [w→

t , ϖ
→
t ] be its saddle point; define F (t)

S := 1
n↑

∑
x↓St

f (t)(w, ϖ;x). We
are interested in the functions,

H(t)
D ([w, ϖ]) := F (t)

D (w, ϖ→t )↑ F (t)
D (w→

t , ϖ) and H(t)
S (w, ϖ) := F (t)

S (w, ϖ→t )↑ F (t)
S (w→

t , ϖ). (6)

Notably, the strong-convexity/strong-concavity of F (t)
D means that a bound on H(t)

D ([w, ϖ]) yields a
bound on ⇑[w, ϖ]↑ [w→

t , ϖ
→
t ]⇑. Ultimately, finding a point sufficiently close to [w→

t , ϖ
→
t ] at each round

is all recursive regularization needs to succeed. The question then, is how to obtain guarantees on
H(t)

D . We accomplish this via a stability-implies-generalization argument.
Lemma 2. Let f : Z ⇔ X ↖↙ R be L-Lipschitz. Let [w→, ϖ→] → Z be the population sad-

dle point. For any x → X define h([w, ϖ];x) = f(w, ϖ→;x) ↑ f(w→, ϖ;x). For S ⇒ D
n

, let

HS(z) =
1
n

∑
x↓S h(z;x) and HD(z) = E

x↔D
[h(z;x)]. Then for any #-UAS algorithm, A, one has

E
S,A

[HD(A(S))↑HS(A(S))] ↗ 2#L.
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The proof relies on two main observations. First, it is easy to see that because f is Lipschitz, then
h is also Lipschitz. Then, because HD and HS can be written as the expectation of f w.r.t. z ⇒ D

and z ⇒ Unif(S) respectively, we can apply standard stability-implies-generalization results to h to
obtain the claimed result [BE02]. We provide a full proof in Appendix B.1. This analysis bypasses
difficulties of working directly with ĜapSP experienced by [OPZZ22, BGM23] and other works
since, in general, there is no function h such that ĜapSP(z) = E

x↔D
[h(z;x)]. Note also it is important

that we have defined h(z;x) w.r.t. to the data independent point [w→
t , ϖ

→
t ]. Were [w→

t , ϖ
→
t ] to depend on

S, this result would not hold.

Because H(t)
S uses the population saddle point in its definition, it may not be immediately clear

how one could first minimize H(t)
S . Direct access to H(t)

S is in fact not possible without knowledge
of [w→

t , ϖ
→
t ], which the algorithm does not have. In this regard, we observe that algorithms which

minimize the empirical gap are powerful enough to minimize H(t)
S , even without knowledge of

[w→
t , ϖ

→
t ], since

H(t)
S (w, ϖ) = F (t)

S (w, ϖ→t )↑ F (t)
S (w→

t , ϖ) ↗ max
w↑,ε↑

{
F (t)
S (w, ϖ↘)↑ F (t)

S (w↘, ϖ)
}
.

Particular to our analysis, we will leverage the fact that the exact empirical saddle point is ( L
ϖn )-stable

and has an empirical gap of 0.

4 Optimal Rates for Private ωp/ωq Saddle Point Problems

Setup. In this section, we apply Theorem 1 to obtain results for ϑp/ϑq saddle point problems.
In order to do this, we will apply recursive regularization using norms slightly different than the
ϑp and ϑq norms. Specifically, to solve an ϑp/ϑq SSP, we define p̄ = max

{
p, 1 + 1

log(d)

}
and

q̄ = max
{
q, 1 + 1

log(d)

}
and will apply recursive regularization with ⇑ · ⇑w = 1

Bw
⇑ · ⇑p̄ and

⇑ · ⇑ε = 1
Bw

⇑ · ⇑p̄. We also have ⇑ · ⇑p̄ ↗ ⇑ · ⇑1 ↗ d1≃1/p̄
⇑ · ⇑p̄ ↗ 2⇑ · ⇑p̄. Thus, under these norms

we have diameter bound B2 = 1 and Lipschitz constant L2
↗ 4B2

wL
2
w + 4B2

εL
2
ε [NJLS09]. Further

the strong convexity assumption needed by Theorem 1 is satisfied with ↽ = max
{

1
p̄≃1 ,

1
q̄≃1

}
. This

is because for any p > 1, 1
2⇑ · ⇑

2
p is (p↑ 1)-strongly convex w.r.t. ⇑ · ⇑p [Bec17].

Private Algorithm Satisfying Relative Accuracy. To apply Theorem 1, we must construct an
algorithm satisfying relative accuracy and (ω, ε)-DP. For this, we use the stochastic mirror prox
algorithm of [JNT11], Algorithm 2. This algorithm will also have application in our analysis of SVIs
later on.

Algorithm 2 Stochastic Mirror Prox
Require: Learning rate ⇀, Operator oracle O, Initial point z0 → Z , Regularization function ς

minimized at z0, Iterations T
1: for t = 1 . . . T do
2: z̃t = argminu↓Z {ς(u) + ↓⇀O(zt≃1)↑⇐ς(zt≃1), u↔}
3: zt = argminu↓Z {ς(u) + ↓⇀O(z̃t)↑⇐ς(zt≃1), u↔}
4: end for
5: SSP output: 1

T

∑T
t=1 zt

6: SVI output: zt→ for t→ ⇒ Unif([T ])

This algorithm takes as input a stochastic oracle for the saddle operator of f , O, and a strongly
convex regularizer, ς. We leverage this algorithm by constructing a differentially private version of
the operator oracle O, and taking as output the average iterate z̄ = 1

T

∑T
t=1 zt. We make the oracle

private by adding Gaussian noise to minibatch estimates of the saddle operator. It is then easy to
show the whole algorithm is private by composition results and the post processing properties of
differential privacy. We defer these details to Appendix C.2, and here state the final relative accuracy
bound.
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Algorithm 3 Recursive Regularization for SVIs: RSVI

Require: Dataset S, monotone operator g, Subroutine Aemp, regularity parameter ↽ > 0, regulariza-
tion parameter φ ∝

L
↑
ϑ

B
↑
n

, constraint set diameter B, Strongly monotone operator ⇁
1: Let n↘ = n/ log2(n), and T = log2(

L
ϑBϖ ).

2: Let S1, ..., ST be a disjoint partition of S with each St of size n↘
(always possible due to the

condition on φ)

3: z̄0 be any point in Z

4: Define function (z, x) ↖↙ g(1)(z;x) = g(z;x) + 2φ · ⇁(z ↑ z̄0)
5: for t = 1 to T do
6: z̄t = Aemp

(
St, g(t), z̄t≃1,

B
2t

)

7: Define function (z, x) ↖↙ g(t+1)(z;x) = g(t)(z;x) + 2t+1φ · ⇁(z ↑ z̄t)
8: end for
9: Output: z̄T

Lemma 3. Under the setup described above, there exists an (ω, ε)-DP algorithm which sat-

isfies ↼̂-relative accuracy with parameter ↼̂ = O
(√

↽(B2
wL

2
w +B2

εL
2
ε)
(≃d log(1/ϱ)ϑ̃

nω + 1↑
n

))

and runs in O
(
min

{ ↑
ϑn2ω1.5

log2(n)
≃

d log(1/ϱ)ϑ̃
,

↑
ϑn3/2

log3/2(n)

})
number of gradient evaluations, where ↽̃ =

1 + 1 {p < 2 ′ q < 2} · log(d).

Main Result for DP ϑp/ϑq SSPs. Applying now the result of recursive regularization, Theorem
1, we obtain the optimal rate for ϑp/ϑq SSPs (up to logarithmic factors). Recall under our chosen
norm that B ↗ 1 and L2

↗ 4B2
wL

2
w + 4B2

εL
2
ε. Further, the privacy of Algorithm 1 follows from the

privacy of Aemp and the parallel composition and post processing properties of differential privacy.
Corollary 1. There exists an Algorithm, R, which is (ω, ε)-DP, has number of gradient evaluations

bounded by O
(
min

{ ↑
ϑn2ω1.5

log(n)
≃

d log(1/ϱ)ϑ̃
,
↑
ϑn3/2

≃
log(n)

})
, and satisfies (up to log(n) factors),

GapSP(R) = Õ


↽2.5


B2

wL
2
w +B2

εL
2
ε

√
d log(1/ε)↽̃

nω
+

1
≃
n


.

(↽ is at most log(d).)

Note that in the ϑ2/ϑ2-setting ↽ = 1 and the above exactly recovers the result of [BGM23]. We further
recall that the near optimality of this result is established by existing lower bounds for stochastic
minimization, which is a special case of SSPs [BFTT19, BGN21].

5 Extension to Variational Inequalities

In this section, we start by discussing the modifications that must be made to the recursive regulariza-
tion algorithm to handle the more general structure of SVIs. We then discuss key ideas in the analysis
and how to apply the algorithm to SVIs in the ϑp setting. We recall that we here assume the operator
g is monotone, L-bounded and ϱ-Lipschitz.

5.1 Recursive Regularization Algorithm for SVIs

Algorithm 3 bears many similarities to Algorithm 1. Most notable among the differences is that we
here regularize with a strongly monotone operator ⇁ instead of a strongly-convex/strongly-concave
function. In our eventual application we will use ⇁ = ⇐( 12⇑ · ⇑

2), but strictly we only require that ⇁
satisfies the following.
Assumption 1. For ↽ > 0, ⇁ : Z ↖↙ Rd

is
1
ϑ -strongly monotone w.r.t. ⇑ ·⇑ and satisfy ⇑⇁(z)⇑→ ↗ ⇑z⇑

for all z → Z .

When ⇁ = ⇐( 12⇑ · ⇑
2), the second half of the condition is always guaranteed by the properties of the

dual norm (see Fact 2). When ⇁ satisfies Assumption 1, we obtain the following guarantee.
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Theorem 2. Let Aemp satisfy ↼̂-relative stationarity for any (5L)-bounded monotone operator and

dataset of size n↘ = n
log(n) . Let ⇁ satisfy Assumption 1. Then Algorithm 1, run with Aemp as a

subroutine and φ = 48
B

(
↼̂↽3 + (ςB+L)ϑ2

↑
n↑

)
, satisfies

GapVI(RSVI) = O
(
log(n)B↼̂↽3 +

log3/2(n)B(ϱB + L)↽2

≃
n

)
.

The full proof is in Appendix B.2. We discuss the key ideas in the following subsection.

5.2 Analysis Idea

Unfortunately, the analysis used for stochastic saddle point problems does not easily extend to
variational inequalities due to the fact that the VI-gap and SP-gap behave in fundamentally different
ways. Even though SSPs are a special case of SVIs (when the operator in question is the saddle
operator of the loss function), a bound on the VI-gap does not imply a bound on the SSP-gap. Further,
a natural attempt to extend the notion of relative accuracy (Definition 3) to SVIs by asking Aemp to
bound ↓GD(z→S),A(S)↑ z→S↔ does not work, because such a term does not yield an upper bound on
the distance ⇑A(S)↑ z→S⇑. A similar problem holds for generalization measures in Eqn. (6).

A New Empirical Accuracy Measure. Motivated by the above issues, we introduce a new relative
accuracy measure for our analysis of SVIs. Importantly, this notion will allow us to bound the
distance between the output of Aemp and the empirical equilibrium point of the strongly monotone
operator created at each round of the recursive regularzation algorithm.

Definition 3 (↼̂-relative stationarity). Given a dataset S↘
→ X

n↑
, operator g↘, and an initial point

z↘, we say that Aemp satisfies ↼̂-relative stationarity w.r.t. to the empirical equilibrium z→S↑ of

GS↑(z) = 1
n↑

∑
x↓S↑ g↘(z;x), if, ↘D̂ > 0, whenever E [⇑z↘ ↑ z→S↑⇑] ↗ D̂, the output z̄ of Aemp

satisfies E [↓G(z̄), z̄ ↑ z→S↑↔] ↗ D̂↼̂.

Modified Generalization Measure. The generalization measure we use can be modified in a
similar fashion.
Lemma 4. Let g(z;x) = g1(z;x) + g2(z) such that g1 : Z ⇔ X ↖↙ Rd

is L-bounded and ϱ-

Lipschitz with respect to z and g2 : Z ↖↙ Rd
is any (data indepedent) operator. Let z→ → Z be its

population equilibrium point. For any x → X , define h(z;x) = ↓g(z;x), z ↑ z→↔. For S ⇒ D
n

, let

HS(z) =
1
n

∑
x↓S h(z;x) and HD(z) = E

x↔D
[h(z;x)]. Then for any #-UAS algorithm, A, one has

E
S,A

[HD(A(S))↑HS(A(S))] ↗ #(ϱB + L).

The proof is similar to that of Lemma 2, but must account for additional complications. First,
the function h may not be Lipschitz if the regularizer, represented by g2 above, is not Lipschitz.
This happens, for example, in the ϑ1 setting. Thus, we must decompose h in the stability-implies-
generalization analysis and handle the non-Lipschitz, but data-independent, term g2 separately. Then,
the Lipschitzness of the remainder is established using that fact that g1 is both bounded and Lipschitz.
The full proof is in Appendix D.1.

5.3 Application to DP variational inequalities in the ϑp setting

In order to apply Theorem 2 to SVIs with an ϑp setup, we pick ⇑ · ⇑ = 1
B ⇑z⇑p̄ where p̄ = max{p, 1+

1
log(d)}

2. We will use the regularizer,

⇁(z) = ⇐(
1

2B
⇑z⇑2p̄). (7)

Note the above operator is uniquely defined since p̄ > 1, and thus ⇑ · ⇑2p̄ is differentiable [Gui09].
This choice of ⇁ satisfies Assumption 1 with parameter ↽ = 1

p̄≃1 . To see this, first observe that

2In contrast to our results on SSPs, rescaling by 1
B is not necessary in this case, but we do so to maintain

consistency.
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for any p̄ > 1, 1
2⇑ · ⇑

2
p̄ is (p̄ ↑ 1)-strongly convex w.r.t. ⇑ · ⇑p̄ and the gradient operator of a

differentiable µ-strongly convex function is µ-strongly monotone. Second, for any norm and it’s dual
⇑⇐( 12⇑z⇑

2)⇑→ ↗ ⇑z⇑ for all z (see Fact 2 in Appendix A).

To obtain relative stationarity guarantees, we again apply Algorithm 2 with a differentially private
oracle for the empirical operator GS . The proof falls out of our existing analysis for stochastic mirror
prox given in Appendix C.2. Specifically, Theorem 4 in the case where ” is the empty set implies
there exists an (ω, ε)-DP implementation of mirror prox which satisfies ↼̂-relative stationarity with

↼̂ = O
(≃↽BL

√
d log(1/ε)(1 + 1 {p < 2} · log(d))

nω
+

≃
↽BL
≃
n

)
.

We here highlight one notable difference that arises with the algorithm. Typically, after running
an algorithm like stochastic mirror prox for t iterations, one obtains a bound on the quantity
E

1
T

∑T
t=1 ↓GS(zt), zt ↑ z↔


. Analysis then proceeds to bound the (empirical) VI-gap of the

average iterate by leveraging monotonicity of the operator. However, this application of monotonicity
does not help for the purposes of relative stationarity. For this reason, we instead select an iterate
uniformly at random. We note this step is nonstandard as such a selection does not necessarily yield
any bound on the (empirical) VI-gap.

Main Result for ϑp DP SVIs. Using Algorithm 3 and the implementation of Aemp described above,
we ultimately obtain the following result as a corollary of Theorem 2 and Theorem 4. Recall under
our choice of norm we have diameter bound 1 and operator bound BL. Further, we can leverage
existing lower bounds to show that this rate is near optimal; more details are available in Appendix E.
Corollary 2. There exists an Algorithm, R, which is (ω, ε)-DP, has gradient evaluations bounded by

O
(
min

{ ↑
ϑn2ω1.5

log(n)
≃

d log(1/ϱ)ϑ̃
,
↑
ϑn3/2

≃
log(n)

})
, and satisfies (up to log(n) factors)

GapVI(R) = Õ
(
↽3.5BL

(
√
d log(1/ε)↽̃

nω
+

1
≃
n

))
. (8)

where ↽ = 1
max{p,1+ 1

log(d)}≃1
is at most log(d) and ↽̃ = 1 + 1 {p < 2} · log(d).

Near Linear Time Algorithm for the ϑ2 Setting. Because we assume the operator is Lipschitz, in
the ϑ2 setting, we can leverage existing accelerated optimization techniques to achieve a near linear
time version of Aemp, in a similar fashion to [ZTOH22, BGM23]. Specifically, using the accelerated
SVRG algorithm of [PB16] and Gaussian noise it is possible to obtain the rate in Eqn. (8) (with
↽ = ↽̃ = 1) in O(n+ ϱn log(n/ε)) gradient evaluations. We provide full details in Appendix D.3.
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A Supplementary Lemmas

Fact 2. For any z, it holds that ⇑⇐( 12⇑z⇑
2)⇑→ ↗ ⇑z⇑.

Proof. By the chain rule we have ⇐( 12⇑z⇑
2) = ⇑z⇑ · ⇐(⇑z⇑) and so ⇑⇐( 12⇑z⇑

2)⇑→ = ⇑z⇑ ·

⇑⇐(⇑z⇑)⇑→. Thus, it only remains to show that ⇑⇐(⇑z⇑)⇑→ ↗ 1. By the definition of the dual
norm we have ⇑⇐(⇑z⇑)⇑→ = max

v:↗v↗⇐1
{↓⇐(⇑z⇑), v↔}. Further, by the definition of the subgradient we

have for any z↘ that ⇑z↘⇑ ↑ ⇑z⇑ ∝ ↓⇐(⇑z⇑), z↘ ↑ z↔. Substituting v = z↘ ↑ z, we have

↓⇐(⇑z⇑), v↔ ↗ ⇑v + z⇑ ↑ ⇑z⇑ ↗ ⇑v⇑+ ⇑z⇑ ↑ ⇑z⇑ = ⇑v⇑ ↗ 1,

as desired.

Lemma 5. Let µ,φ > 0 and ⇁ be µ-strongly monotone w.r.t. ⇑ · ⇑. Then for any point z0 → Z ,

the algorithm which outputs the unique equilibrium of GS(z) +
ϖ
µ (⇁(z)↑ ⇁(z0)) is

(
2L
µϖn

)
-uniform

argument stable w.r.t. S.

Note without loss of generality we can always choose z0 to be the point such that ⇁(z0) = 0, which
is guaranteed to exist since ⇁ is strongly monotone. Thus this result also holds for regularization of
the form GS(z) + φ · ⇁(z). Further, since the saddle operator of a strongly-convex/strongly-concave
loss is strongly monotone, and the resulting SSP shares its equilibrium point with the corresponding
SVI, Lemma 1 given in the preliminaries is also established through this result.
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Proof. Let zϖ and z↘ϖ denote the equilibrium points of the regularized operators w.r.t. to adjacent
datasets S and S↘ respectively. By the equilibrium condition we have for any z → Z

↓GS(zϖ) + φ[⇁(zϖ)↑ ⇁(z0)], z ↑ zϖ↔ ∝ 0

↓GS↑(z↘ϖ) + φ[⇁(z↘ϖ)↑ ⇁(z0)], z ↑ z↘ϖ↔ ∝ 0

=∞ ↓GS(zϖ)↑GS↑(z↘ϖ) + φ[⇁(zϖ)↑ ⇁(z↘ϖ)], z
↘
ϖ ↑ zϖ↔ ∝ 0.

Since ⇁ is a 1-strongly monotone operator we have

↓GS(zϖ)↑GS↑(z↘ϖ), z
↘
ϖ ↑ zϖ↔ ∝ φ ↓⇁(zϖ)↑ ⇁(z↘ϖ), zϖ ↑ z↘ϖ↔ ∝ µφ⇑zϖ ↑ z↘ϖ⇑

2.

Now we can use the monotonicity of G to derive,

µφ⇑zϖ ↑ z↘ϖ⇑
2
↗ ↓GS(zϖ)↑GS↑(z↘ϖ), z

↘
ϖ ↑ zϖ↔

= ↓GS(zϖ)↑GS↑(zϖ), z
↘
ϖ ↑ zϖ↔+ ↓GS↑(zϖ)↑GS↑(z↘ϖ), z

↘
ϖ ↑ zϖ↔

(i)
↗ ↓GS(zϖ)↑GS↑(zϖ), z

↘
ϖ ↑ zϖ↔

(ii)
↗ ⇑GS(zϖ)↑GS↑(zϖ)⇑→ · ⇑z

↘
ϖ ↑ zϖ⇑

(iii)
↗

2L

n
⇑z↘ϖ ↑ zϖ⇑.

Above (i) comes from the monotonicity of G, step (ii) comes from Hölder’s inequality, and step
(iii) comes from the fact that S and S↘ differ in at most one point. Simple algebra now obtains
⇑zϖ ↑ z↘ϖ⇑ ↗

2L
µϖn .

Fact 3. There exists a differentiable convex-concave loss, distribution D, and point z↘ such that when

the operator is the saddle operator of the loss, GapVI(z) < GapSP(z).

Proof. We show that the VI-gap is upper bounded by the excess risk of some convex function with
operator g(z) = ⇐f(z). Since stochastic convex optimization is a special case of SSPs, this shows
there exist scenarios where GapSP ⊋ GapVI. Specifically, when the dual player space ” is singleton,
the SP-gap becomes the excess risk.

Let f(z;x) = z2 be defined over z → [0, 1], and so it does not matter what the distribution or data
domain is. Note that GapVI becomes

GapVI(z) = max
u↓[0,1]

{↓⇐f(u), z ↑ u↔} = max
u↓[0,1]

{
2uz ↑ 2u2

}
.

Note that in this case the SP-gap is just the excess risk, GapSP(z) = z2 ↑minz↓[0,1]

{
z2
}
= z2.

Consider the point z = 1. It is easy to show that GapVI(1) = 0.5 but GapSP(1) = 1, proving the
claim.

B Missing Results from Section 3

B.1 Proof of Lemma 2

Lemma 6. (Restatement of Lemma 2) Let f : Z ⇔ X ↖↙ R be L-Lipschitz. Let [w→, ϖ→] → Z be

the population saddle point. For any x → X define h([w, ϖ];x) = f(w, ϖ→;x) ↑ f(w→, ϖ;x). For

S ⇒ D
n

, let HS(z) =
1
n

∑
x↓S h(z;x) and HD(z) = E

x↔D
[h(z;x)]. Then for any #-UAS algorithm,

A, one has E
S,A

[HD(A(S))↑HS(A(S))] ↗ 2#L.

Proof. This result follows simply from two facts. First, because f is an L-Lipschitz function for any
x → X , we can show that h is L-Lipschitz. For any [w, ϖ], [w↘, ϖ↘] → Z observe,

h([w, ϖ])↑ h([w↘, ϖ↘]) = [f(w, ϖ→;x)↑ f(w→, ϖ;x)]↑ [f(w↘, ϖ→;x)↑ f(w→, ϖ↘;x)]

= f(w, ϖ→;x)↑ f(w↘, ϖ→;x) + f(w→, ϖ↘;x)↑ f(w→, ϖ;x)

↗ 2L⇑[w, ϖ]↑ [w↘, ϖ↘]⇑.
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The rest of the proof essentially follows from the stability implies generalization proof of [BE02]
since HD and HS have a statistical form w.r.t. h. In more detail, for any i → [n] denote S(i) as the
dataset which replaces the i’th datapoint of S, xi, with a fresh sample from D, x↘. We have the
following:

E
S,A

[HD(A(S))↑HS(A(S))] = E
S,A


E
x
[h(A(S);x)]↑

1

n

∑

x↓S

[h(A(S);x)]



= E
S,x↑↔Dn+1,i↔Unif([n])


h(A(S(i));xi)↑ h(A(S);xi)



= E

h(A(S(i);xi)↑ h(A(S);xi)



↗ E

L⇑A(S(i))↑A(S)⇑


↗ 2L#.

The last step follows from the previously established Lipschitzness property of h.

B.2 Convergence of Recursive Regularization for SSPs

We will first prove the following more general version statement of Theorem 1.

Theorem 3. Let φ ∝
48Lϑ3/2

B
↑
n↑ and Aemp be such that for all t → [T ] it holds that

E
∥∥z̄t ↑ z→S,t

∥∥2

↗

B2

12·22tϑ3/2 . Then Recursive Regularization satisfies

GapSP(RSSP) = O
(
log(n)B2φ

)
.

To prove this result, it will be helpful to first show several intermediate results. We start by defining
several useful quantities. Define {Ft}

T
t=0 as the filtration where Ft is the sigma algebra induced by

all randomness up to z̄t. For notational convenience we denote f (0)(w, ϖ;x) = f(w, ϖ;x). Then for
every t → {0, 1, ..., T} we define

• z→t = [w→
t , ϖ

→
t ] : saddle point of F (t)

D (w, ϖ) := E
x↔D


f (t)(w, ϖ;x)


;

• z→S,t = [w→
S,t, ϖ

→
S,t] : saddle point of F (t)

S (w, ϖ) := 1
n↑

∑
x↓St

f (t)(w, ϖ;x);

• H(t)
D ([w, ϖ]) := F (t)

D (w, ϖ→t )↑ F (t)
D (w→

t , ϖ) : the relative accuracy function w.r.t. the popula-
tion loss and population saddle point; and,

• H(t)
S ([w, ϖ]) := F (t)

S (w, ϖ→t )↑ F (t)
S (w→

t , ϖ) : the relative accuracy function w.r.t. the empiri-
cal loss and population saddle point

We recall the generalization properties of H(t)
S and H(t)

D shown in Lemma 6. Crucially, the power of
H(t)

D is that it bounds the distance of a point to z→t .

Fact 4 ([ZHWZ21], Theorem 1). Let F : Z ↖↙ Rd
be a γ-SC/SC function and let [w→, ϖ→] be the

saddle point. Then ⇑[w, ϖ]↑ [w→, ϖ→]⇑2 ↗
2(F (w,ε→)≃F (ε→,w))

ϖ .

We now establish two distance inequalities which will be used when analyzing the final gap bound
in Theorem 3. The first inequality below bounds the distance of the output of the t-th round to the
equilibrium of G(t)

D . The second inequality bounds how far the population equilibrium moves after
another regularization term is added.
Lemma 7. Assume the conditions of Theorem 3 hold. Then for every t → [T ], the following holds

P.1 E [⇑z̄t ↑ z→t ⇑]
2
↗ E


⇑z̄t ↑ z→t ⇑

2

↗

B2

22tϑ ; and,

P.2 B2
t := E

∥∥z→t ↑ z→t≃1

∥∥2 ↗ E
∥∥z→t ↑ z→t≃1]

∥∥2

↗

B2

22(t↓1) .
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We note that in contrast to [BGM23] and other analyses of recursive regularization, we define Property
P.2 to bound E

∥∥z→t ↑ z→t≃1

∥∥ instead of E [⇑z→t ↑ z̄t≃1⇑]. In [BGM23], the latter choice led to a

need to bound E

ĜapSP(z̄t≃1)


for all t → [T ], which our analysis avoids. In particular, one can

observe how the derivation of Eqn. (11) in the proof changes when z→t≃1 is replaced with z̄t≃1.

Proof of Lemma 7. We will prove both properties via induction on B1, ..., BT . Specifically, for each
t → [T ] we will introduce two terms Et and Ft,, and show that these terms are bounded if the bound
on Bt holds and that Bt holds if Et≃1 and Ft≃1 are bounded. Property P.1 is then established as a
result of the fact that E


⇑z̄t ↑ z→t ⇑

2

↗ 2(Et + Ft). Note that B1 holds as the base case because

E

⇑z→1 ↑ z→0⇑

2

↗ B2.

Property P.1: We here prove that if Bt is sufficiently bounded, then Et and Ft are bounded where
for t → [T ] we define

Et = E
∥∥z̄t ↑ z→S,t

∥∥2

, Ft =

↽

2tφ
E

H(t)

D
(
z→S,t

)
. (9)

Additionally, this will establish property P.1 because for any t → [T ] it holds that,

E

⇑z̄t ↑ z→t ⇑

2

↗ 2


E
∥∥z̄t ↑ z→S,t

∥∥2

+ E

∥∥z→S,t ↑ z→t
∥∥2



↗ 2


E
∥∥z̄t ↑ z→S,t

∥∥2


  
Et

+
↽

2tφ
E

H(t)

D
(
z→S,t

)

  
Ft


. (10)

The second inequality comes from the strong monotonicity of the operator (see Fact 4).

Note that Et is bounded by the assumption made in the statement of the theorem statement. We thus
turn our attention towards bounding Ft. We have

↽

2tφ
E

H(t)

D
(
z→S,t

)
=

↽

2tφ
E

E

H(t)

D
(
z→S,t

) Ft≃1



(i)
↗

↽

2tφ

(
E

E

H(t)

S

(
z→S,t

) Ft≃1


+

↽L2

2tφn↘

)

=
↽

2tφ

(
E

E

F (t)
S (w→

S,t, ϖ
→
t )↑ F (t)

S (w→
t , ϖ

→
S,t)

Ft≃1


+

2↽L2

2tφn↘

)

(ii)
=

2↽2L2

22tφ2n↘ ↗
B2

1152 · 22t↽
.

Inqeuality (i) comes from the fact that stability implies generalization for H(t), Lemma 2. Note the
algorithm which outputs this exact equilibrium point is L2

2tϖn↑ stable (see Lemma 5/Assumption 1).
Step (ii) uses the fact that z→S,t is the exact saddle point of the regularized objective, and so for any
[w, ϖ] → Z , F (t)

S (w→
S,t, ϖ)↑ F (t)

S (w, ϖ→S,t) ↗ 0. The final inequality uses the setting of φ.

We thus have a final bound 2(Et + Ft) ↗
B2

22t .

Property P.2: Now assume Bt≃1 holds. We have
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E
∥∥z→t ↑ z→t≃1

∥∥2

↗ E

 ↽

2tφ
H(t)

D (z→t≃1)


= E
 ↽

2tφ

(
F (t)
D (w→

t≃1, ϖ
→
t )↑ F (t≃1)

D (w→
t , ϖ

→
t≃1)

)

= E
 ↽

2tφ

(
F (t≃1)
D (w→

t≃1, ϖ
→
t )↑ F (t≃1)

D (w→
t , ϖ

→
t≃1)

)

+ ↽
(
⇑w→

t≃1 ↑ w̄t≃1⇑
2
w ↑ ⇑ϖ→t ↑ ϖ̄t≃1⇑

2
ε ↑ ⇑w→

t ↑ w̄t≃1⇑
2
w + ⇑ϖ→t ↑ ϖ̄t≃1⇑

2
ε

) 

(i)
↗ E


↽⇑z→t≃1 ↑ z̄t≃1⇑

2


(11)

Inequality (i) above comes from removing negative terms and the fact that z→t≃1 is the saddle point
w.r.t. F (t≃1)

D . Using the induction argument we then complete the bound with the following:

E
∥∥z→t ↑ z→t≃1

∥∥2

↗ E


↽⇑z→t≃1 ↑ z̄t≃1⇑

2

↗ ↽(Et≃1 + Ft≃1) ↗

B2

22t

We now turn to analyzing the utility of the algorithm to complete the proof.

proof of Theorem 3. Using the fact that ĜapSP is
≃
2L-Lipschitz and property P.1, we have

E

ĜapSP(z̄T )↑ ĜapSP(z

→
T )


↗

≃
2LE [⇑z̄T ↑ z→T ⇑]

↗

≃
2BL

2T
↗

≃
2B2φ. (12)

What remains is showing E

ĜapSP(w

→
T , ϖ

→
T )


is Õ(B↼̂+ BL↑

n↑ ). Let w↘ = argmin
ε↓!

FD(w, ϖ→T ) and

ϖ↘ = argmax
w↓W

FD(w→
T , ϖ). Using the fact that FD is convex-concave we have

ĜapSP(w
→
T , ϖ

→
T ) = FD(w

→
T , ϖ

↘)↑ FD(w
↘, ϖ→T ) ↗ ↓GD(w

→
T , ϖ

→
T ), [w

→
T , ϖ

→
T ]↑ [w↘, ϖ↘]↔ (13)

where GD is the population loss saddle operator. Further by the definition of F (T ) and denoting G(T )
D

as the saddle operator for F (T )
D we have

GD(w
→
T , ϖ

→
T ) = G(T )

D (w→
T , ϖ

→
T )↑ 2φ

T≃1∑

t=0

2t+1
⇐(⇑[w→

T , ϖ
→
T ]↑ [w̄t, ϖ̄t]⇑

2)

Thus plugging the above into Eqn. (13) we have

ĜapSP(w
→
T , ϖ

→
T ) ↗


G(T )

D (w→
T , ϖ

→
T ), [w

→
T , ϖ

→
T ]↑ [w↘, ϖ↘]



↑


2φ

T≃1∑
t=0

2t+1
⇐(⇑w→

T , ϖ
→
T ]↑ [w̄t, ϖ̄t]⇑2), [w→

T , ϖ
→
T ]↑ [w↘, ϖ↘]



↗ ↑


2φ

T≃1∑
t=0

2t+1
⇐(⇑w→

T , ϖ
→
T ]↑ [w̄t, ϖ̄t]⇑2), [w→

T , ϖ
→
T ]↑ [w↘, ϖ↘]



↗ 2Bφ
T≃1∑
t=0

2t+1
∥∥⇐(⇑w→

T , ϖ
→
T ]↑ [w̄t, ϖ̄t]⇑2)

∥∥
→

↗ 2Bφ
T≃1∑
t=0

2t+1
∥∥[w→

T , ϖ
→
T ]↑ [w̄t, ϖ̄t]

∥∥ .

Above, the second inequality comes from the first order optimally conditions for [w→
T , ϖ

→
T ], the third

from Cauchy Schwartz and a triangle inequality. The last inequality comes from the relationship
between a norm and its dual, see Fact 2.
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Taking the expectation on both sides of the above we have the following derivation,

E
[
ĜapSP(w

→
T , ω

→
T )

]
→ 2BE

[
ε

T↑1∑

t=0

2t+1
∥∥[w→

T , ω
→
T ]↑ [w̄t, ω̄t]

∥∥
]

(i)

→ 4BE
[
ε

T↑1∑

t=0

2t
(
∥∥[w→

t , ω
→
t ]↑ [w̄t, ω̄t]

∥∥+
T↑1∑

r=t

↓[w→
r+1, ω

→
r+1]↑ [w→

r , ω
→
r ]↓

)]

= 4BE
[
ε

T↑1∑

t=0

2t
∥∥[w→

t , ω
→
t ]↑ [w̄t, ω̄t]

∥∥+ ε

T↑1∑

t=0

2t
T↑1∑

r=t

↓[w→
r+1, ω

→
r+1]↑ [w→

r , ω
→
r ]↓

]

(ii)
= 4BE

[
ε

T↑1∑

t=0

2t
∥∥[w→

t , ω
→
t ]↑ [w̄t, ω̄t]

∥∥+ ε

T↑1∑

r=0

r↑1∑

t=0

2t ↓[w→
r+1, ω

→
r+1]↑ [w→

r , ω
→
r ]↓

]

= 4BE
[
ε

T↑1∑

t=0

2t
∥∥[w→

t , ω
→
t ]↑ [w̄t, ω̄t]

∥∥+ ε

T↑1∑

r=0

↓[w→
r+1, ω

→
r+1]↑ [w→

r , ω
→
r ]↓

r↑1∑

t=0

2t
]

(iii)

→ 4B

(
ε

T↑1∑

t=0

2t
(
B

2t

)
+ ε

T↑1∑

r=1

(
B

2r

) r↑1∑

t=0

2t
)

→ 4B

(
ε

T↑1∑

t=0

2t
(
B

2t

)
+ ε

T↑1∑

r=1

(
B

2r↑1

)
· (2r ↑ 1)

)

= 4ε
T↑1∑

t=0

B
2 + 8ε

T↑1∑

r=1

B
2

→ 12TεB2 (14)
Above, (i) and the following inequality both come from the triangle inequality. Equality (ii) is

obtained by rearranging the sums. Inequality (iii) comes from applying properties P.1 and P.2 proved
above. The last equality comes from the setting of φ and T .

Now using this result in conjunction with Eqn. (12) we have
GapSP(R) =

≃
2φB2 + 12TφB2 = O

(
log(n)B2φ

)
.

Above we use the fact that T = log( L
Bϖ ) and φ ∝

L
B
↑
n↑ , and thus T = O(log(n)).

Finally, we prove Theorem 1 leveraging the relative accuracy assumption.

Proof of Theorem 1. First, observe that under the setting of φ = 48
B

(
↼̂↽2 + Lϑ3/2

↑
n↑

)
used in the

theorem statement that log(n)B2φ = O
(
log(n)B↼̂↽2 + log3/2(n)BLϑ3/2

↑
n

)
. Thus what remains is to

show that the distance condition required by Theorem 3 holds. That is, we now show that if Aemp

satisfies ↼̂-relative accuracy, then for all t → [T ] it holds that E
∥∥z̄t ↑ z→S,t

∥∥2

↗

B2

12·22tϑ .

To prove this property, we must leverage the induction argument made by Lemma 7. Specifically,
to prove the condition holds for some t → [T ], assume B2

t = E
∥∥z→t ↑ z→t≃1]

∥∥2 ↗
B2

22(t↓1) (recall
the base case for t = 1 trivially holds). As shown in the proof of Lemma 7, this implies that the
quantities Et, Ft (as defined in 9) are bounded by B2

1152·22t . We thus have

E
∥∥z̄t ↑ z→S,t

∥∥2
 (i)
↗

↽E

F (t)
S (w̄t, ϖ→S,t)↑ F (t)

S (w→
S,t, ϖ̄t)



2tφ

(ii)
↗

2↽↼̂B

22tφ

(iii)
↗

B2

12 · 22t↽
, (15)

where Bt is as defined in property P.2. Inequality (i) comes from the strong monotonicity of G(t)
S ,

Fact 4. Inequality (iii) comes from the setting φ ∝ 48↼̂↽2/B. Inequality (ii) comes from the
↼̂-relative accuracy assumption on Aemp, which holds so long as the expected distance is sufficiently
bounded and each regularized loss is (5L)-Lipschitz. In this regard, note that

E

⇑z→S,t ↑ z̄t≃1⇑


↗ E


⇑z→S,t ↑ z→t ⇑+ ⇑z→t ↑ z→t≃1⇑+ ⇑z→t≃1 ↑ z̄t≃1⇑



↗ (
√
Ft +Bt +

√
Et≃1 +

√
Ft≃1) ↗

B

2t
.
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Further, each f (t) is 5L-Lipschitz. We can see that,

max
z↓Z

⇑⇐f (t)(z, x)⇑→ ↗ L+ ⇑

t≃1∑

k=0

2k+1φ⇐(⇑z ↑ z̄t⇑
2)⇑→ ↗ L+

t≃1∑

k=0

B2k+1φ ↗ L+ 4B2Tφ ↗ 5L.

C Missing Results from Section 4

C.1 General Guarantee for Stochastic Mirror Prox

We start with the follow general statement regarding the stochastic mirror prox algorithm applied
to monotone operators. Notable for our purpose of solving SSPs is that the saddle operator of a
convex-concave function is a monotone operator, but the following holds for any monotone operator.
Lemma 8 (Implicit in [JNT11], Theorem 1). Let ς : Z ↖↙ R be any non-negative function which is 1-

strongly convex w.r.t. ⇑·⇑. Assume ↘t → [T ] that E [O(zt)] = G(zt) and E

⇑O(zt)↑G(zt)⇑2→


↗ τ2.

Then for for any z → Z Algorithm 2 satisfies

E

1

T

T∑

t=1

↓G(zt), zt ↑ z↔


= O

E [ς(z)]

T⇀
+

7⇀

2
(L2 + 2τ2)


.

The above is slightly different than the statement in [JNT11], but can be easily extracted from
their proof. Let Vφ denote the Bregman divergence w.r.t. ς; i.e. Vφ(z, z↘) = ς(z) ↑ ς(z↘) ↑
↓⇐ς(z↘), z ↑ z↘↔. Under our assumptions [JNT11, Eqn. (80)] gives

E
[
1
T

T∑

t=1

↔G(zt), zt ↑ z↗
]
= O

(E [Vω(z, z0)]

Tϑ
+

7ϑ
2
(L2 + 2ϖ2)

)
.

Note that since z0 is the minimizer of ς, we have Vφ(z, z0) ↗ ς(z).

Before proving the relative accuracy guarantee of stochastic mirror prox, we also restate the following
composition result for Gaussian mechanism known as the moments accountant.
Lemma 9 ([ACG+16, KLL21]). Let ω, ε → (0, 1] and c be a universal constant. Let D → Y

n
be a

dataset over some domain Y , and let h1, ..., hT : Y ↖↙ Rd
be a series of (possibly adaptive) queries

such that for any y → Y , t → [T ], ⇑ht(y)⇑2 ↗ L. Let ▷ ∝
cL
≃

T log(1/ϱ)

nω and T ∝
n2ω
b2 . Then

the algorithm which samples batches of size B1, .., Bt of size b uniformly at random and outputs
1
b

∑
y↓Bt

ht(y) + gt for all t → [T ] where gt ⇒ N (0, Id▷2), is (ω, ε)-DP.

C.2 Proof of Lemma 3

Lemma 3 is easily established from the following theorem which holds more generally for any mono-
tone operator (rather than just the saddle operator of a convex-concave function). This generalization
will allow us to use this theorem again in our results on SVIs.

Recall we consider the norm ⇑[w, ϖ]⇑ = 1
B2

w
⇑w⇑2p̄+

1
B2

ω
⇑ϖ⇑2q̄ and have defined ↽ = max

{
1

p̄≃1 ,
1

q̄≃1

}

and ↽̃ = 1 + 1 {p < 2 ′ q < 2} · log(d). For any t → {0, ..., T} define [wt, ϖt] = zt, where zt is as
given in Algorithm 2. We have the following.

Theorem 4. Let [w0, ϖ0], [w, ϖ] satisfy E [⇑[w0, ϖ0]↑ [w, ϖ]⇑] ↗ D̂. Let g : W ⇔ ” ⇔ X ↖↙

B
dw

↗·↗p̄
(BwLw)⇔B

dω

↗·↗q̄
(BεLε) be a monotone operator and GS(w, ϖ) =

1
n

∑
x↓S g([w, ϖ];x). There

exists an implementation of O such that Algorithm 2 is (ω, ε)-DP and the following holds

E [↓GS([wt→ , ϖt→ ]), [wt→ , ϖt→ ]↑ [w, ϖ]↔] = E

1

T

T∑

t=1

↓GS([wt, ϖt]), [wt, ϖt]↑ [w, ϖ]↔



= O


D̂

B2

wL
2
w +B2

εL
2
ε

≃
↽
√

d log(1/ε)↽̃

nω
+

≃
↽

≃
n


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Further, the resulting algorithm makes O
(
min

{ ↑
ϑn2ω1.5

log2(n)
≃

d log(1/ϱ)ϑ̃
,

↑
ϑn3/2

log3/2(n)

})
gradient evalua-

tions.

Before proving this statement, we first quickly show how to obtain Lemma 3, the relative accuracy
guarantee for SSPs, using this result.

Proof of Lemma 3. To obtain Lemma 3 from this statement, observe that in the special case where g
is the saddle operator of the loss, f , convexity-concavity implies

E

F (

1

T

T∑

t=1

wt, w)↑ F (ϖ,
1

T

T∑

t=1

ϖt)


↗ E


1

T

T∑

t=1

↓GD(zt), zt ↑ z↔


,

and Lemma 3 is thus obtained from the bound in Theorem 4.

All that remains is to prove the above theorem. Note the following proof leverages the structure
Z = W ⇔”, but does not assume that g is the saddle operator of some convex-concave loss.

Proof of Theorem 4. Let L = B2
2L

2
w + B2

εL
2
ε and let p→ = p̄

p̄≃1 and q→ = q̄
q̄≃1 be the conjugate

exponents of p̄ and q̄, respectively. For t → [T ] denote the result of O(zt) as [⇐w,t,⇐ε,t] such that
⇐w,t → Rdw and ⇐ε,t → Rdω .

We consider the following construction of the private operator oracle, O, for GS . Our implementation
adds Gaussian noise to minibatch estimates of GS . That is, to evaluate O(zt), we uniformly
sample a minibatch of size m = max

{
n
√

ω
T , 1

}
, call it Mt, as well as Gaussian noise vectors

◁w,t ⇒ N (0, Idw▷
2
w) and ◁ε,t ⇒ N (0, Idω▷

2
ε), for some ▷w,▷ε > 0. We then have that

[⇐w,t,⇐ε,t] =
1

m

∑

x↓Mt

g(wt, ϖt;x) + [◁w,t, ◁ε,t].

Privacy Bound: We first bound the privacy of Algorithm 2. Since for any u, ⇑u⇑2 ↗

≃

d1≃2/p→
⇑u⇑p→,

we can bound the privacy loss using the guarantees of the moments accountant, Lemma 9. Specifically,
we set T = ↽min

{
n, n2ω2

d log(1/ϱ)ϑ̃

}
, ⇀ = D̂

L
↑
T

, use minibatches of size m = max
{
n
√

ω
T , 1

}
, and

set ▷w = cBwLw

≃
Td1↓2/p→

w log(1/ϱ)
nω and ▷ε =

cBωLω

√
Td1↓2/p→

ω log(1/ϱ)

nω for some universal constant
c. It can be verified this scale of noise satisfies the conditions of Lemma 9 and thus ensures (ω, ε)-DP.

Utility Bound: We now establish the convergence guarantee by applying the general convergence
guarantee of stochastic mirror prox (Lemma 8, Appendix C.1) with ς([w, ϖ]) = ϑ

2B2
w
⇑w⇑2p̄+

ϑ
2B2

ω
⇑ϖ⇑2q̄ ,

which is 1-strongly convex w.r.t. ⇑ · ⇑. Clearly our saddle operator oracle yields unbiased estimates
of GS(z) at each iteration. To bound the variance, τ , note when p ∈= 2 the private estimate of ⇐w,t

satisfies

E

⇑⇐w,t ↑⇐wFS(wt, ϖt)⇑

2
p→
 (i)
↗ d2/p

→

w E

⇑◁w,t⇑

2
⇒

↗ d2/p

→

w ▷2
w log(d) ↗

c2B2
wL

2
wTdw log(1/ε) log(d)

n2ω2
.

When p = 2, then p→ = 2, and one can replace bound (i) with E

⇑◁w,t⇑

2
2


. Combining these cases

yields a bound of
( c2B2

wL2
wTdw log(1/ϱ)ϑ̃

n2ω2

)
on the variance of ⇐w,t. A similar analysis holds for ⇐ε,t.

Ultimately, with respect to the norm chosen above, we get E

⇑O(zt)↑G(zt)⇑2→


↗ τ2 with

τ2 ↗ (B2
wL

2
w +B2

εL
2
ε)


1 +

c2Td log(1/ε)↽̃

n2ω2


= O(L2↽).

The last equality uses the fact that ↽ ∝ 1. Recall we choose ς([w, ϖ]) = ϑ
2B2

w
⇑w⇑2p̄ +

ϑ
2B2

ω
⇑ϖ⇑2q̄ , and

thus ς([w, ϖ]) = ↽⇑[w, ϖ]⇑2. Now the guarantees of Lemma 8 imply

E [↓GS(zt→), zt→ ↑ z↔] = E

1

T

T∑

t=1

↓GD(zt), zt ↑ z↔


= O


↽D̂2

T⇀
+

7⇀

2
(L2 + 2τ2)


.

The theorem statement now follows from plugging in the parameter settings of T and ⇀ and the bound
on τ established above.
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D Missing Results from Section 5

D.1 Proof of Lemma 4

Let h1(z;x) = ↓g1(z;x), z ↑ z→↔. First, we observe that h1 is (ϱB + L)-Lipschitz. To see this, we
have for any z, z↘ → Z and x → that

↓g1(z), z ↑ z→↔ ↑ ↓g1(z
↘), z↘ ↑ z→↔ = ↓g1(z)↑ g1(z

↘) + g1(z
↘), z ↑ z→↔ ↑ ↓g1(z

↘), z↘ ↑ z→↔

= ↓g1(z)↑ g1(z
↘), z ↑ z→↔+ ↓g1(z

↘), z ↑ z↘↔

↗ (ϱB + L)⇑z ↑ z↘⇑

The rest of the proof is similar to existing stability implies generalization proofs, but with the
additional accounting of the regularization term. In more detail, for any i → [n] denote S(i) as the
dataset which replaces the i’th datapoint of S, xi, with a fresh sample from D, x↘. We have the
following:
E
S,A

[HD(A(S))↑HS(A(S))]

= E
S,A


E
x
[g1(A(S);x)] + g2(z),A(S)↑ z→


↑

〈
1

n

∑

x↓S

[g1(A(S);x)] + g2(z),A(S)↑ z→
〉

= E
S,A


E
x
[g1(A(S);x)] ,A(S)↑ z→


↑

〈
1

n

∑

x↓S

[g1(A(S);x)],A(S)↑ z→
〉

= E
S,x↑↔Dn+1,i↔Unif([n])


g1(A(S(i));xi),A(S(i))↑ z→


↑ ↓g1(A(S);xi),A(S)↑ z→↔



= E

h1(A(S(i));xi)↑ h1(A(S);xi)



↗ E

(ϱB + L)⇑A(S(i))↑A(S)⇑


↗ (ϱB + L)#.

The last step follows from the previously established Lipschitzness property of h1.

D.2 Convergence of Recursive Regularization for SVIs

In this section, we define L̃ = ϱB + L. Define GapVI(z) = maxz↑ {↓z↘, z ↑ z↘↔}. We have the
following fact.

Fact 5. If g is L-bounded then ⫅̸GapVI is L-Lipschitz.

Proof of 5. For any z1, z2 → Z we have
⫅̸GapVI(z1)↑ ⫅̸GapVI(z2) = max

z
{↓GD(z), z1 ↑ z↔}↑max

z↑
{↓GD(z

↘), z2 ↑ z↘↔}

↗ max
z

{↓GD(z), z1 ↑ z↔ ↑ ↓GD(z), z1 ↑ z↔}

= max
z

{↓GD(z), z1 ↑ z2↔}

↗ ⇑GD(z)⇑→⇑z1 ↑ z2⇑ ↗ L⇑z1 ↑ z2⇑.

We recall the assumption made on ⇁.
Assumption 2. For some ↽ > 0 let ⇁ : Z ↖↙ Rd

be
1
ϑ -strongly monotone w.r.t. ⇑ · ⇑ and satisfy

⇑⇁(z)⇑→ ↗ ⇑z⇑ for all z → Z .

We will first prove the following more general version statement of Theorem 2, which will be useful
later.
Theorem 5. Let φ ∝

48L̃ϑ2

B
↑
n↑ and Aemp be such that for all t → [T ] it holds that

E
∥∥z̄t ↑ z→S,t

∥∥2

↗

B2

12·22tϑ2 . Then Recursive Regularization satisfies

GapVI(RVI) = O
(
log(n)B2φ

)
.
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To prove this result, it will be helpful to first show several intermediate results. We start by defining
several useful quantities. Define {Ft}

T
t=0 as the filtration where Ft is the sigma algebra induced by

all randomness up to z̄t. For notational convenience we define g(0)(z;x) = g(z;x). Then for every
t → {0, 1, ..., T} we define

• z→t : equilibrium of G(t)
D (z) := E

x↔D


g(t)(z;x)


;

• z→S,t : equilibrium of G(t)
S (z) := 1

n↑

∑
x↓St

g(t)(z;x);

• H(t)
D (z̄) :=


G(t)

D (z̄), z̄ ↑ z→t


: the relative stationarity function w.r.t. G(t)

D and z→t ; and,

• H(t)
S (z̄) :=


G(t)

S (z̄), z̄ ↑ z→t


: the relative stationarity function w.r.t. G(t)

S and z→t .

As discussed in Section 5.2, the power of H(t)
D is that it bounds the distance of a point to z→t .

Fact 6. Let G : Z ↖↙ Rd
be a µ-strongly monotone operator and let z→ be the equilibrium point.

Then ⇑z ↑ z→⇑2 ↗
2⇑G(z),z≃z→⇓

µ .

Proof. By strong monotonicity, for any z → Z ,
µ

2
⇑z ↑ z→⇑2 ↗ ↓G(z)↑G(z→), z ↑ z→↔ ↗ ↓G(z), z ↑ z→↔ .

The last step comes from the fact that ↓↑G(z→), z ↑ z→↔ = ↓G(z→), z→ ↑ z↔ ↗ 0 since z→ is the
equilibrium.

We now establish two distance inequalities which will be used when analyzing the final gap bound
in Theorem 5. The first inequality below bounds the distance of the output of the t-th round to the
equilibrium of G(t)

D . The second inequality bounds how far the population equilibria moves after
another regularization term is added.
Lemma 10. Assume the conditions of Theorem 5 hold. Then for every t → [T ], the following holds

P.1 E [⇑z̄t ↑ z→t ⇑]
2
↗ E


⇑z̄t ↑ z→t ⇑

2

↗

B2

22tϑ2 ; and,

P.2 B2
t := E

∥∥z→t ↑ z→t≃1

∥∥2 ↗ E
∥∥z→t ↑ z→t≃1]

∥∥2

↗

B2

22(t↓1) .

Proof. We will prove both properties via induction on B1, ..., BT . Specifically, for each t → [T ]
we will introduce two terms Et and Ft, and show that these terms are bounded if the bound on
Bt holds and that Bt holds if Et≃1 and Ft≃1 are bounded. Property P.1 is then established as a
result of the fact that E


⇑z̄t ↑ z→t ⇑

2

↗ 2(Et + Ft). Note that B1 holds as the base case because

E

⇑z→1 ↑ z→0⇑

2

↗ B2.

Property P.1: We here prove that if Bt is sufficiently bounded, then Et and Ft are bounded where
for t → [T ] we define

Et = E
∥∥z̄t ↑ z→S,t

∥∥2

, Ft =

↽

2tφ
E

H(t)

D
(
z→S,t

)
. (16)

Additionally, this will establish property P.1 because for any t → [T ] it holds that,

E

⇑z̄t ↑ z→t ⇑

2

↗ 2


E
∥∥z̄t ↑ z→S,t

∥∥2

+ E

∥∥z→S,t ↑ z→t
∥∥2



↗ 2


E
∥∥z̄t ↑ z→S,t

∥∥2


  
Et

+
↽

2tφ
E

H(t)

D
(
z→S,t

)

  
Ft


. (17)
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The second inequality comes from the strong monotonicity of the operator (see Fact 6).

Since Et is bounded by the assumption made in the statement of Theorem 5, we focus on bounding
Ft. We have

↽

2tφ
E

H(t)

D
(
z→S,t

)
=

↽

2tφ
E

E

H(t)

D
(
z→S,t

) Ft≃1



↗
↽

2tφ

(
E

E

H(t)

S

(
z→S,t

) Ft≃1


+

↽L̃2

2tφn↘

)

=
↽

2tφ

(
E

E


G(t)
S (z→S,t), z

→
S,t ↑ z→t

 Ft≃1


+

↽L̃2

2tφn↘

)

↗
↽2L̃2

22tφ2n↘ ↗
B2

2304 · 22t↽2
.

The first inequality comes from the fact that stability implies generalization for H(t), Lemma 4.
Note the algorithm which outputs this exact equilibrium point is L

2tϖn↑ uniform argument stable (see
Lemma 5/Assumption 1). The second inequality comes from the fact that z→S,t is the exact empirical

equilibrium point of the regularized objective, and so for any z → Z ,

G(t)

S (z→S,t), z
→
S,t ↑ z


↗ 0.

The final inequality uses the setting of φ.

We thus have a final bound 2(Et + Ft) ↗
B2

22t .

Property P.2: Now assume Bt≃1 holds. We have

E
∥∥z→t ↑ z→t≃1

∥∥2

↗ E

 ↽

2tφ


G(t)

D (z→t≃1), z
→
t≃1 ↑ z→t



= E
 ↽

2tφ


G(t≃1)

D (z→t≃1) + 2tφ⇁(z→t≃1 ↑ z̄t≃1), z
→
t≃1 ↑ z→t



= E
 ↽

2tφ


G(t≃1)

D (z→t≃1), z
→
t≃1 ↑ z→t


+ ↽

〈
⇁(z→t≃1 ↑ z̄t≃1), z

→
t≃1 ↑ z→t

〉

(i)
↗ E

[
↽2

2
⇑⇁(z→t≃1 ↑ z̄t≃1)⇑

2
→ +

1

2
⇑z→t≃1 ↑ z→t ⇑

2

]

(ii)
↗ E

[
↽2

2
⇑z→t≃1 ↑ z̄t≃1⇑

2 +
1

2
⇑z→t≃1 ↑ z→t ⇑

2

]
.

Inequality (i) above comes from Young’s inequality and the fact that z→t≃1 is the equilibrium point
w.r.t. G(t≃1)

D . Inequality (ii) comes from Fact 2/Assumption 1. After re-arranging we can continue
as follows:

E
∥∥z→t ↑ z→t≃1

∥∥2

↗ ↽2E


⇑z→t≃1 ↑ z̄t≃1⇑

2

↗ ↽2(Et≃1 + Ft≃1) ↗

B2

22t
.

We now turn to analyzing the utility of the algorithm to complete the proof.

Proof of Theorem 5. Using the fact that ⫅̸GapVI is L-Lipschitz and property P.1, we have

E

⫅̸GapVI(z̄T )↑ ⫅̸GapVI(z

→
T )


↗ LE [⇑z̄T ↑ z→T ⇑]

↗
BL

2T
↗ B2φ. (18)

Note that because the above is a statement with respect to the unregularized gap function, we do not
have to worry about whether or not the regularization term is smooth.

What remains is showing E

⫅̸GapVI(z→T )


= O(log(n)B2φ). By the definition of G(T )

D we have

GD(z) = G(T )
D (z)↑ 2φ

T≃1∑

t=0

2t+1⇁(z ↑ z̄t)

23



Let z↘ = argmaxz↑↓Z {↓GD(z↘), z→T ↑ z↘↔}. We obtain the following bound on the ⫅̸GapVI(w→
T , ϖ

→
T ).

⫅̸GapVI(z
→
T ) =


G(T )

D (z↘), z→T ↑ z↘

+

〈
2φ

T≃1∑

t=0

2t+1⇁(z↘ ↑ z̄t), z
↘
↑ z→T

〉

(i)
↗

〈
2φ

T≃1∑

t=0

2t+1⇁(z↘ ↑ z̄t), z
↘
↑ z→T

〉

(ii)
↗

〈
2φ

T≃1∑

t=0

2t+1⇁(z→T ↑ z̄t), z
→
T ↑ z↘

〉

(iii)
↗ 2Bφ

T≃1∑

t=0

2t+1
⇑⇁(z→T ↑ z̄t)⇑→

(iv)
↗ 2Bφ

T≃1∑

t=0

2t+1
⇑z→T ↑ z̄t⇑ .

Above, (i) comes from the fact that z→T is the equilibrium point of G(T )
D . Inequality (ii) uses

monotonicity of ⇁, i.e. 0 ↗ ↓⇁(z→T ↑ z̄T )↑ ⇁(z↘ ↑ z̄T ), z→T ↑ z↘↔. Inequality (iii) comes from
Holder’s inequality and a triangle inequality. Finally, (iv) comes from Assumption 1.

Taking the expectation on both sides of the above we have the following derivation,

E

⫅̸GapVI(z

→
T )


↗ 2BE


φ

T≃1∑

t=0

2t+1
⇑z→T ↑ z̄t⇑



(i)
↗ 4BE


φ

T≃1∑

t=0

2t

⇑z→t ↑ z̄t⇑+

T≃1∑

r=t

∥∥z→r+1 ↑ z→r
∥∥


= 4BE

φ

T≃1∑

t=0

2t ⇑z→t ↑ z̄t⇑+ φ
T≃1∑

t=0

2t
T≃1∑

r=t

∥∥z→r+1 ↑ z→r
∥∥


(ii)
= 4BE


φ

T≃1∑

t=0

2t ⇑z→t ↑ z̄t⇑+ φ
T≃1∑

r=0

r≃1∑

t=0

2t
∥∥z→r+1 ↑ z→r

∥∥


= 4BE

φ

T≃1∑

t=0

2t ⇑z→t ↑ z̄t⇑+ φ
T≃1∑

r=0

∥∥z→r+1 ↑ z→r
∥∥

r≃1∑

t=0

2t


(iii)
↗ 4B


φ

T≃1∑

t=0

2t

B

2t


+ φ

T≃1∑

r=1


B

2r

 r≃1∑

t=0

2t


↗ 4B


φ

T≃1∑

t=0

2t

B

2t


+ φ

T≃1∑

r=1


B

2r≃1


· (2r ↑ 1)



= 4φ
T≃1∑

t=0

B2 + 8φ
T≃1∑

r=1

B2

↗ 12TφB2 (19)

Above, (i) and the following inequality both come from the triangle inequality. Equality (ii) is
obtained by rearranging the sums. Inequality (iii) comes from applying properties P.1 and P.2 proved
above. The last equality comes from the setting of φ and T .

Now using this result in conjunction with Eqn. (18) we have

GapVI(RSVI) =
≃
2φB2 + 12TφB2 = O

(
log(n)B2φ

)
.

Above we use the fact that T = log( L
Bϖ ) and φ ∝

L
B
↑
n↑ , and thus T = O(log(n)).
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Finally, we prove Theorem 2 leveraging the relative stationarity assumption.

Proof of Theorem 2. First, observe that under the setting of φ = 48
B

(
↼̂↽3 + L̃ϑ2

↑
n↑

)
used in the

theorem statement that log(n)B2φ = O
(
log(n)B↼̂↽3 + log3/2(n)BL̃ϑ2

↑
n

)
. Thus what remains is to

show that the distance condition required by Theorem 5 holds. That is, we now show that if Aemp

satisfies ↼̂-relative stationarity, then for all t → [T ] it holds that E
∥∥z̄t ↑ z→S,t

∥∥2

↗

B2

12·22tϑ2 .

To prove this property, we must leverage the induction argument made by Lemma 10. Specifically,
to prove the condition holds for some t → [T ], assume B2

t = E
∥∥z→t ↑ z→t≃1]

∥∥2 ↗
B2

22(t↓1) (recall
the base case for t = 1 trivially holds). As shown in the proof of Lemma 10, this implies that the
quantities Et, Ft (as defined in 16) are bounded by B2

2304·22t . We thus have

E
∥∥z̄t ↑ z→S,t

∥∥2
 (i)
↗

↽E


G(t)
S (z̄t), z̄t ↑ z→S,t



2tφ

(ii)
↗

2↽↼̂B

22tφ

(iii)
↗

B2

12 · 22t↽2
, (20)

where Bt is as defined in property P.2. Inequality (i) comes from the strong monotonicity of G(t)
S ,

Fact 6. Inequality (iii) comes from the setting φ ∝ 48↼̂↽/B. Inequality (ii) comes from the ↼̂-
relative stationarity assumption on Aemp, which holds so long as the expected distance is sufficiently
bounded and the operator is bounded. In this regard, note that

E

⇑z→S,t ↑ z̄t≃1⇑


↗ E


⇑z→S,t ↑ z→t ⇑+ ⇑z→t ↑ z→t≃1⇑+ ⇑z→t≃1 ↑ z̄t≃1⇑



↗ (
√
Ft +Bt +

√
Et≃1 +

√
Ft≃1) ↗

2B

2t
.

Further, each g(t) is 5L-bounded. That is, observe

max
z↓Z

⇑g(t)(z, x)⇑→ ↗ ⇑z⇑→ +
t≃1∑

k=0

2k+1φ⇑⇁(z ↑ z̄t)⇑→ ↗ L+
t≃1∑

k=0

B2k+1φ ↗ L+ 4B2Tφ ↗ 5L.

D.3 Near Linear Time Algorithm for SVIs in the ϑ2 Setting

Because we assume the operator is Lipschitz, in the ϑ2 setting, we can leverage existing accelerated
optimization techniques to achieve a near linear time version of Aemp, in a similar fashion to
[ZTOH22, BGM23]. Specifically, the work [PB16] gives the following result for strongly monotone
variational inequalities when applying their accelerated SVRG algorithm 3.
Lemma 11. (Implicit in [PB16, Theorem 3]) Let ϱ, µ,K > 0 and c a universal constant. Let

g : Z ⇔ X ↖↙ R be monotone and ϱ-Lipschitz and ⇁ : Z ↖↙ R a µ-strongly monotone operator.

Let z→S be the equilibrium of GS(z) =
1
n

∑
x↓S g(z;x) + ⇁(z). There exists an algorithm, which in

O(n+
≃
nK ς

µ ) gradient evaluations find a point z̄ such that E [⇑z→ ↑ z̄⇑2] = cBe≃K
.

We now construct Aemp in the following way. At each round t → [T ], we use the accelerated algorithm
mentioned above to find a point ẑ such that E


⇑ẑ ↑ z→S,t⇑2


↗ ( ϱL

52tϖn↑ ), where z→S,t is the equilibrium

point of G(t)
S (z) = 1

n↑

∑
x↓S g(t)(z;x). We then have Aemp output the point z̄t = ẑt + ◁t, where

◁t ⇒ N (0, Id▷2
t ) and ▷t =

8L
≃

2/ϱ

2tϖn↑ω . Using this construction, we can obtain the following result.
Theorem 6. Let Aemp be as described above. Then Algorithm 1 is (ω, ε)-DP and when run with

φ = 48
B


L↑
n↑ +

L
≃

d log(2/ϱ)

n↑ω


satisfies

Gap(RSVI) = O


log3/2(n)BL

≃
n

+
log2(n)BL

√
d log(1/ε)

nω


,

and runs in at most O(n+ ϱn log(n/ε)) gradient evaluations.

3In the main body of [PB16], the authors discuss only saddle point problems. However, they prove their
result more generally for monotone operators. See their discussion in Section 6 and Appendix A of their paper.
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Proof. Privacy Guarantee We show that Aemp is (ω, ε) at any iteration t → [T ] using the stability
properties of the regularized operator. Specifically, the exact equilibrium to Gt

S . Now because Aemp

guarantees E

⇑ẑ ↑ z→S,t⇑2


↗ ( ϱL

52tϖn↑ ), an application of Markov’s inequality implies that with

probability at least 1↑ ε that ⇑ẑt ↑ z→S,t⇑2 =
(
1
ϱ

(
cBe≃K

))
↗

L
2Tϖn . Thus by a triangle inequality

ẑt is ( 2L
2tϖn↑ )-stable with probability at least 1↑ ε. The guarantees of the Gaussian mechanism thus

imply Aemp is (ω, ε)-DP.

Utility Guarantee: We prove the utility guarantee by leveraging Theorem 5, which guarantees

GapVI(R) = O(log(n)B2φ) = O


log3/2(n)BL↑

n
+

log2(n)BL
≃

d log(1/ϱ)

nω


, so long as for every

t → [T ] it holds that E

⇑z̄t ↑ z→S,t


⇑
2
2 ↗

B2

12·22t . Note here that under the choice of ⇁ in Eqn. (7), we
satisfy Assuption 1 with ↽ = 1. We thus finish the proof with the following analysis,

E
∥∥z̄t ↑ z→S,t

∥∥2
2


= E


⇑◁t⇑

2
2 + ⇑ẑt ↑ z→S,t⇑

2
2



↗ d▷2
t +


ε

5
·

L

2tφn↘

2

↗
64dL2 log(2/ε)

22tφ2(n↘)2ω2
+

B2

25 · 22t
↗

B2

12 · 22t
.

Running Time: By the guarantees of Lemma 11, we can achieve the condition E

⇑ẑ ↑ z→S,t⇑2


↗

( ϱL
52tϖn↑ ) made in the description of Aemp by setting K = log

(
cB
ϱ ·

2Tϖn
L

)
. Recall T = log2(

L
ϑBϖ ) ↗

n. Thus the overall running time is O(n+ ς
µK

≃
n) = O(n+ ϱn log(n/ε)).

E Lower Bound for SVIs

The lower bound for SVIs in the ϑ2 setting was established in [BG23]. Their technique can easily be
extended to other geometries. Specifically, the lower bound comes from two observations. First, for
linear losses, the strong VI-gap is equal to the excess population risk when the operator in question
is the gradient. Second, the nearly tight lower bound constructions for DP stochastic minimization
problems use linear losses.

We establish the first fact more formally here.
Lemma 12. Let f(z;x) = ↓z, x↔ and define the operator g(z;x) = ⇐f(z;x) = x. Then

GapVI(z) = FD(z) ↑ minu↓Z {FD(u)}. That is, the strong VI-gap w.r.t. g is equal to the ex-

cess population risk w.r.t. the f .

Proof. We have

GapVI(z) = max
u

{
E

x↔D
[x] , z ↑ u

}

=


E
x↔D

[x] , z

+max

u

{
E

x↔D
[x] ,↑u

}

= FD(z)↑min
u↓Z

{FD(u)} .

We now restate the lower bound result of [BGN21] for non-Euclidean setups.
Theorem 7. ([BGN21, Theorem 7.1]) Let p → (1, 2) and p→ = p

p≃1 and Z = B↗·↗p
(1). Let ω > 0

and 0 < ε < 1
n1+!(1) and let f(z;x) = ↓z, x↔. For any (ω, ε)-DP algorithm A, there exists a

distribution D over X = B↗·↗p→ (1) such that

E
S↔Dn,A

[
FD(A(S)↑min

z↓Z
{FD(z)}

]
= !̃


max

{
1
≃
n
,
(p↑ 1)

≃
d

nω

}
.
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Note that a linear dependence on BL can be obtained using classic rescaling arguments. The
two above results (and the result of [BG23]) then imply that the strong VI-gap rate we obtain,
Õ
(
BLmax

{
1↑
n
, (p≃1)

↑
d

nω

})
, is near optimal for p → (1, 2] when p↑ 1 = !(1).
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Guidelines:
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made in the paper.
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much the results can be expected to generalize to other settings.
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depend on implicit assumptions, which should be articulated.
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will be specifically instructed to not penalize honesty concerning limitations.
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Justification: Statements are proved or cite a relevant reference. Most of these proofs can be
found in the appendix.
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: There are no experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: There are no experiments.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: There are no experiments.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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Answer: [Yes]

Justification: The theoretical nature of the results means there are minimal ethical concerns.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The theoretical nature of the work means that any societal impact would be
very indirect.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
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from (intentional or unintentional) misuse of the technology.
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strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No such assets are used as a part of this research.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: No such assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No such assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human subjects were involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects were involved.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
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