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Abstract

We study the problem of approximating stationary
points of Lipschitz and smooth functions under
(", �)-differential privacy (DP) in both the finite-
sum and stochastic settings. A point bw is called
an ↵-stationary point of a function F : Rd

! R if
krF ( bw)k  ↵. We give a new construction that
improves over the existing rates in the stochas-
tic optimization setting, where the goal is to find
approximate stationary points of the population
risk given n samples. Our construction finds a
Õ
�

1
n1/3 +

⇥p
d

n"

⇤1/2�-stationary point of the pop-
ulation risk in time linear in n. We also provide
an efficient algorithm that finds an Õ

�⇥p
d

n"

⇤2/3�-
stationary point in the finite-sum setting. This im-
proves on the previous best rate of Õ

�⇥p
d

n"

⇤1/2�.
Furthermore, under the additional assumption of
convexity, we completely characterize the sam-
ple complexity of finding stationary points of the
population risk (up to polylog factors) and show
that the optimal rate on population stationarity is
⇥̃
�

1
p
n
+

p
d

n"

�
. Finally, we show that our methods

can be used to provide dimension-independent
rates of O

�
1

p
n
+min

�⇥p
rank
n"

⇤2/3
, 1
(n")2/5

��
on

population stationarity for Generalized Linear
Models (GLM), where rank is the rank of the
design matrix, which improves upon the previous
best known rate.
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1. Introduction

Protecting users’ data in machine learning models has be-
come a central concern in multiple contexts, e.g. those in-
volving financial or health data. In this respect, differential
privacy (DP) is the gold standard for rigorous privacy pro-
tection (Dwork & Roth, 2014). Therefore, recent research
has focused on the limits and possibilities of solving some
of the most well-established machine learning problems un-
der the constraint of DP. Despite intensive research, some
fundamental problems remain not completely understood.
One example is nonconvex optimization; namely, the task
of approximating stationary points, which has been heavily
studied in recent years in the non-private setting (Fang et al.,
2018; Ma et al., 2018; Carmon et al., 2017; Nesterov &
Polyak, 2006; Ghadimi & Lan, 2013; Arjevani et al., 2019;
Foster et al., 2019). This problem is motivated by the in-
tractability of nonconvex (global) optimization, as well as
by a number of settings where stationary points have been
shown to be global minima (Ge et al., 2016; Sun et al.,
2016).

1.1. Contributions

In this work, we make progress towards resolving the com-
plexity of approximating stationary points in optimization
under the constraint of differential privacy, for both empir-
ical and population risks. A summary of our new results
is available in Table 1. In what follows, d is the problem
dimension, n is the dataset size, and ", � are the approximate
DP parameters.

Our first set of results pertains to the task of approximating
stationary points of the population risk. Results for this
problem are scarce. We provide the fastest rate up to date
for this problem under DP, of Õ

�
1

n1/3 +
⇥p

d

n"

⇤1/2�, with
an algorithm that moreover has oracle complexity n (i.e.,
is single-pass). This algorithm is a noisy version of the
SPIDER algorithm (Fang et al., 2018), whose gradient esti-
mators are built using a tree-aggregation data structure for
prefix-sums (Asi et al., 2021).

Next, we focus on the task of approximating sta-
tionary points in empirical nonconvex optimization
(a.k.a. finite-sum case). In this context, we provide al-
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gorithms with rate O
�⇥p

d

n"

⇤2/3�, and oracle complexity1

Õ
�
max

��
n
5
"
2

d

�1/3
,
�
n"
p
d

�2 �. This rate is sharper than
the best known for this problem (Wang et al., 2017).

We continue by investigating stationary points for convex
losses and give an algorithm based on the recursive regular-
ization technique of (Allen-Zhu, 2018) which achieves the
optimal rate of ⇥̃

�
1

p
n
+

p
d

n"

�
on population stationarity. To

establish optimality, we give a lower bound of ⌦
�p

d

n"

�
on

empirical stationarity under DP (Theorem 4.3) and a non-
private lower bound of ⌦( 1

p
n
) on population stationarity

(Theorem A.2). We also give a linear-time method, which
achieves the optimal rate when the smoothness parameter is
not so large. We conclude the paper showing a black-box
reduction that converts any DP method for finding station-
ary points of smooth and Lipschitz losses into a DP method
with dimension-independent rates for the case of general-
ized linear models (GLM). Using our proposed method with
Private Spiderboost as the base algorithm yields a rate of
Õ
⇣

1
p
n
+min

⇣⇥p
rank
n"

⇤2/3
, 1
(n")2/5

⌘⌘
on population sta-

tionarity. This improves upon the result of (Song et al.,
2021) which proposed a method with Õ

�⇥p
rank
n"

⇤1/2� em-
pirical stationarity2.

1.2. Our Techniques

Our methods combine multiple techniques from optimiza-
tion and differential privacy in novel ways. The lower bound
for the empirical norm of the gradient uses fingerprinting
codes to a loss similar to that used for Differentially Private-
Empirical Risk Minimization (DP-ERM) (Bassily et al.,
2014), crafted to work in the unconstrained case. This lower
bound can be extended to the population gradient norm by a
known re-sampling argument (Bassily et al., 2019). We also
give a non-private lower bound of ⌦ (1/

p
n) on population

stationarity with n samples which holds even in dimension
1, as opposed to previous results (Foster et al., 2019).

Efficient algorithms for (both empirical and population)
norm of the gradient are derived using noisy versions of
variance-reduced stochastic first order methods, which have
proved remarkably useful in DP stochastic optimization (Asi
et al., 2021; Bassily et al., 2021b;a). In the case of the empir-
ical risk, we use a noisy version of SpiderBoost (Wang et al.,
2019c). We remark that our methods can achieve compara-
ble rates when applied to similar algorithms such as Spider
(Fang et al., 2018) and Storm (Cutkosky & Orabona, 2019),
but SpiderBoost allows for a larger learning rate which is

1We consider for complexity the first-order oracle model, stan-
dard for continuous optimization (Nemirovsky & Yudin, 1983).

2This is the rate obtained after fixing a mistake in the proof of
Theorem 4.1 in (Song et al., 2021). Specifically, in their proof, the
last term in Eq. (14) is missing a factor of T .

considered better in practice. For the population risk, it is
worth noting that the empirical norm of the gradient does
not translate directly into population gradient guarantees,
even if the algorithm in use is uniformly stable (Bousquet &
Elisseeff, 2002), since this type of guarantee does not enjoy
a stability-implies-generalization property. Therefore, we
opt for single pass methods that combine variance-reduction
with tree-aggregation; these techniques are particularly suit-
able for the classical Spider algorithm (Fang et al., 2018),
which is the one we base our method on. For the convex
setting, we use recursive regularization (Allen-Zhu, 2018)
which was used to achieve the optimal non-private rate by
(Foster et al., 2019).

Finally, our method for (non-convex) GLMs uses the
Johnson-Lindenstrauss based dimensionality reduction tech-
nique similar to (Arora et al., 2022), which focused on the
convex setting. Moreover, for population stationarity of
GLMs, we give a new uniform convergence result of gradi-
ents of Lipschitz functions. This guarantee, unlike the prior
work of (Foster et al., 2018), has only poly-logarithmic de-
pendence on the radius of the constraint set, which is crucial
for our analysis.

1.3. Related Work

The current work fits within the literature of differentially
private optimization, which has primarily focused on the
convex case (Chaudhuri et al., 2011; Jain et al., 2012; Kifer
et al., 2012; Bassily et al., 2014; Talwar et al., 2014; Jain
& Thakurta, 2014; Talwar et al., 2015; Bassily et al., 2019;
Feldman et al., 2020; Asi et al., 2021; Bassily et al., 2021b).
The culmination of this line of work for the convex smooth
case showed that optimal rates are achievable in linear time
(Feldman et al., 2020; Asi et al., 2021; Bassily et al., 2021b).
Our work shows that in the convex case similar rates are
achievable for the norm of the gradient: this result is useful,
e.g., for dual formulations of linearly constrained convex
programs (Nesterov, 2012), and moreover it has become a
problem of independent interest (Allen-Zhu, 2018; Foster
et al., 2019).3

Regarding stationary points for nonconvex losses, work
in DP is far more recent, and primarily focused on the
empirical stationarity (Wang et al., 2017; Zhang et al., 2017;

3To provide a specific example, consider the dual of the reg-
ularized discrete optimal transport problem, as discussed in (Di-
akonikolas & Guzmán, 2023), Section 5.6. If the marginals µ, ⌫ in
that model are accessed through i.i.d. samples, then this becomes
an SCO problem. Moreover, it is argued in that reference that
approximate stationary points provide approximately feasible and
optimal transports through duality arguments. Hence, the result is
an SCO problem where we require approximate stationary points.
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Setting Convergence Our Rate Previous best-known rate

Non-convex
Empirical

⇣p
d

n"

⌘2/3
(Thm. 4.2)

⇣p
d

n"

⌘1/2
(Wang et al., 2017)

Population 1
n1/3 +

⇣p
d

n"

⌘1/2
(Thm. 3.2)

p
d"+

�p
d

n"

�1/2
(Zhou et al., 2020)

Convex Population 1
p
n
+

p
d

n"
(Thm. 5.1) None

Non-convex
GLM

Empirical
⇥p

rank
n"

⇤2/3
^

1
(n✏)2/5

(Cor. 6.2)
⇣p

rank
n"

⌘1/2
(Song et al., 2021)

Population 1p
n
+

⇥p
rank
n"

⇤2/3^ 1
(n✏)2/5

(Cor. 6.2) None

Convex GLM Population 1p
n
+

p
rank
n" ^ 1p

n✏
(Cor. 6.2) None

Table 1. Results summary: We omit log factors and function-class parameters. The symbol ^ stands for minimum of the quantities.

Wang & Xu, 2019; Wang et al., 2019a)4. Under similar
assumptions to ours these works approximate stationary
points with rate Õ

�⇥p
d

n"

⇤1/2�, which is slower than ours.

Works addressing population guarantees for the norm of
the gradient under DP are scarce. (Zhou et al., 2020) pro-
posed a noisy gradient method, whose population guaran-
tee is obtained by generalization properties of DP. How-
ever, the best guarantee obtainable with their analysis is
O
�⇥p

d

n"

⇤1/2
+
p
d"
�

5. Note that for any " this rate is
⌦
�
[d/n]1/3

�
. Under additional assumptions (on the Hes-

sian), (Wang & Xu, 2019) obtains a rate of Õ(
p
d/(n")) by

uniform convergence of gradients, which is sharper when "
is constant. By contrast, our rate is much faster than both
for " = ⇥(1). In particular, in this range, our rates are faster
than those obtained by uniform convergence, O(

p
d/n)

(Foster et al., 2018). Moreover, our method runs in time
linear in n. On the other hand, in the much more restric-
tive setting where the loss satisfies the Polyak-Łojasiewicz
(PL) inequality, (Zhang et al., 2021) provide population risk

bounds of Õ(d/[n"]2) under DP.

The work of (Bassily et al., 2021a) studies population guar-
antees for stationarity in constrained settings, obtaining
rates O

�
1

n1/3 +
⇥p

d

n"

⇤2/5� in linear time. Notice first that
these guarantees are based on the Frank-Wolfe gap, mak-
ing those results incomparable to ours. Despite this fact,

4Another work, (Wang et al., 2019b), claims to achieve this
with improved oracle complexity. However, the analysis therein
contains an error which is not easily fixed. Specifically, (Wang
et al., 2019b, proof of Theorem 4.1) uses �2

0b
2
0 > 0.7 to employ

privacy amplification via subsampling. This is not true as they set
�0 = 1/[d1/4

p
n] and b0 =

p
n/d

1/4.
5(Zhou et al., 2020) omits the term

p
d", but this omission is

only valid when " < 1/[n
p
d]1/3.

their rates are slower than ours.6 On the other hand, they
provide results for (close to nearly) stationary points in
constrained/unconstrained settings, for a broader class of
weakly convex losses (possibly nonsmooth). This result
is then more general, but the rate of O

�
1

n1/4 +
⇥p

d

n"

⇤1/3�

is substantially slower than ours, and their algorithm has
oracle complexity which is superlinear in n.

The problem of stationary points in (nonprivate) stochastic
optimization has drawn major attention recently (Ghadimi &
Lan, 2013; 2016; Fang et al., 2018; Allen-Zhu, 2018; Foster
et al., 2018; 2019; Arjevani et al., 2019). To the best of our
knowledge, no lower bounds for the sample complexity7 of
this problem are known (beyond those known for the convex
case (Foster et al., 2019)). On the other hand, oracle com-
plexity is by now understood: in high dimensions, for (on
average) smooth losses the optimal stochastic oracle com-
plexity rate is O(1/n1/3) (Arjevani et al., 2019). Although
this provides some evidence of the sharpness of our results
(see Appendix B.2), note that these lower bounds require
very high dimensional constructions (namely, d = ⌦(1/↵4),
where ↵ is the rate), which limits their applicability in the
private setting.

In an independent and concurrent work, (Tran & Cutkosky,
2022) achieve a rate of O(

⇥p
d

n✏

⇤2/3
+ 1

p
n
) on the empir-

ical gradient with gradient complexity O(n7/3✏3/4/d2/3)
using a DP tree aggregation method. Note that our result
removes the 1/

p
n term and improves the oracle complexity

to Õ
�
max

��
n
5
"
2

d

�1/3
,
�
n"
p
d

�2 �, which is better whenever

6We believe our methods can be extended to constrained set-
tings using gradient mapping, a guarantee for which is stronger
than for Frank-Wolfe gap (Lan, 2020, Section 7.5.1). We defer this
extension to future work.

7Sample complexity is the fundamental limit on the sample
size needed, as a function of ↵, to achieve ↵ stationarity. This
is different from the oracle complexity as one is not limited to
first-order methods.
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d  n2✏1/4 (i.e. essentially whenever the error is nontrivial).
Further, we accomplish this with a much simpler analysis.

2. Preliminaries

Let f : Rd
⇥ X ! R denote a (loss) function tak-

ing as input, the model parameter w and data point x 2
X . We assume that the function w 7! f(w;x) is L0-
Lipschitz and L1-smooth. That is, for all x 2 X and
w1, w2 2 Rd, |f(w1;x)� f(w2;x)|  L0 kw1 � w2k

and krf(w1;x)�rf(w2;x)k  L1 kw1 � w2k. Given
a dataset S 2 X

n of n points, we define the empirical
risk as F (w;S) = 1

n

P
n

i=1 f(w;xi). Assuming that the
data points are sampled i.i.d. from an unknown distri-
bution D, the population risk, denoted as F (w;D) is de-
fined as F (w;D) = Ex⇠Df(w;x). Furthermore, we define
F0 = F (0;S)�minw2Rd {F (w;S)} when discussing the
empirical case and similarly for the population loss when
discussing stationary points of the population loss. We use
w⇤ to denote the population risk minimizer. Finally, we use
the notation Id to denote the d⇥ d identity matrix and use
[a] to denote the set {1, 2, ..., a} for a � 1.

Stationary points: Given a dataset S, our goal is to find
an ↵-stationary point w̄ of either empirical or population
risk; formally, krF (w̄;S)k  ↵ or krF (w̄;D)k  ↵,
respectively.

Differential Privacy (DP) (Dwork et al., 2006): An algo-
rithm A is (", �)-differentially private if for all datasets
S and S0 differing in one data point and all events
E in the range of the A, we have, P (A(S) 2 E) 
e"P (A(S0) 2 E) + �.

Generalized Linear Models (GLMs): For data domain
X ✓ Rd and Y ✓ R, a loss function f : Rd

⇥X⇥Y ! R is
a GLM if f(w; (x, y)) = �y (hw, xi) for some function �y .
Our result for GLMs uses random matrices which satisfy
the Johnson-Lindenstrauss (JL) property, defined as follows.
Definition 2.1 ((�,�)-JL property). A random matrix � 2
Rk⇥d satisfies (�,�)-JL property if for any u, v 2 Rd,
P [|h�u,�vi � hu, vi| > � kuk kvk]  �.

3. Stationary Points of Population Risk

For the population gradient, we provide a linear time al-
gorithm; see Algorithm 1 for pseudocode. It is a noisy
variant of SPIDER (Fang et al., 2018), and utilizes a vari-
ance reduction technique tailored to an underlying binary
tree structure. Namely, we run T rounds, where at the
beginning of round t we build a binary tree of depth D,
whose nodes are denoted by ut,s, where s 2 {0, 1}D. Every
node ut,s is associated with a parameter vector wt,s and
a gradient estimate rt,s. Next, we perform a Depth-First-

Search traversal of the tree. We denote by DFS[D] the set of
nodes in the visiting order excluding the root, for example:
DFS[2] = {u0, u00, u01, u1, u10, u11}. When a left child
node is visited, it receives the same parameter vector and
gradient estimator of the parent node.

Algorithm 1 Tree-based Private Spider
Input: S = (x1, . . . , xn) 2 X

n: private dataset, (", �):
privacy parameters, T : number of rounds, b: batch size
at beginning of each round, D: depth of trees at each
round, �: step-size parameter, ↵̃: accuracy parameter.

1: w0,`(2D�1) = 0
2: for t = 1 to T do

3: Set wt,? = wt�1,`(2D�1)

4: Draw a batch St,? of b data points, set S  S \St,?.

5: Set �2
t,? := 8L2

0 log(1.25/�)
b2"2

.
6: rt,? = 1

b

P
x2St,? rf (wt,?;x) + gt,?, where

gt,? ⇠ N
�
0, Id�2

t,?
�
.

7: for ut,s 2 DFS [D] do

8: Let s = bsc, where c 2 {0, 1}.
9: if c = 0 then

10: rt,s = rt,bs
11: wt,s = wt,bs
12: else

13: Draw a batch St,s of b

2|s|
data points, set S  

S \ St,s.
14: Set noise variance �2

t,s
:= 8·2D�

2 log(1.25/�)
b2"2

.
15: �t,s =

2|s|

b

P
x2St,s

(rf (wt,s;x)�rf (wt,bs;x))+

gt,s, where gt,s⇠N
�
0, Id�2

t,s

�
.

16: rt,s = rt,bs +�t,s.
17: end if

18: if |s| = D (i.e, ut,s is a leaf) then

19: if krt,sk  2↵̃ then

20: Return wt,s

21: end if

22: Let ut,s+ be the next vertex in DFS[D].
23: Set ⌘t,s := �

2D/2L1krt,sk

24: wt,s+ = wt,s � ⌘t,srt,s.
25: end if

26: end for

27: end for

28: Return w, chosen uniformly at random from {wt,s : t 2
[T ], ut,s is a leaf}.

On the other hand, when a right child node is visited, it
receives a fresh set of samples and uses it to update the
gradient estimator coming from the parent node. Every
time a leaf node is reached, a gradient step is performed
using the gradient estimator associated to the leaf. Finally,
the parameter vector of a right child node comes from the
gradient step performed at the right-most leaf in the left sub-
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tree of it. The use of the binary tree structure is benefitial
because every gradient estimator is updated at most D times
within a round of 2D optimization steps, as opposed to the
original SPIDER algorithm where the gradient estimators
are updated at every optimization step. This way, we are able
to perform the same number of optimization steps but adding
substantially smaller amounts of noise, leading to a faster
rate than the one we would get without using the tree. In the
following, we denote by `(k) the binary representation of
any number k 2 [0, 2D � 1] and by |s| the depth of ut,s for
any t 2 [T ].

The proposed algorithm is similar to the one in Section
5 of (Bassily et al., 2021b) for constrained Differentially
Private-Stochastic Convex Optimization (DP-SCO), with
the key difference that Algorithm 1 executes each round
with fixed depth trees, which is key for our convergence
analysis, whereas the prior work leverages convexity to con-
struct trees that increase depth by one at each round. In
addition, to choose the step-size in (Bassily et al., 2021b)
the authors leverage the bounded diameter of the domain,
while our step-size is chosen as that of (Fang et al., 2018),
i.e. normalized by the norm of the gradient estimator and
proportional to the target accuracy. This choice is crucial
for controlling the sensitivity of the gradient variation esti-
mator in the unconstrained setting, and consequently for the
privacy analysis as well. Our results are presented below
and the proofs are deferred to Appendix C.

Theorem 3.1 (Privacy guarantee). For any ", � 2 [0, 1],
Algorithm 1 is (", �)-DP.

Theorem 3.2 (Accuracy guarantee). Let p 2 (0, 1), ", � >

0, b = max
n
n2/3,

p
nd

1/4
p
"

o
, D be such that D2D+1 =

b, T = n

b(D/2+1) , ↵ =
p
2L0 max

�
1

n1/3 ,
�p

d

n"

�1/2 
,

� = ↵min{1,
p
b"

p
d
}, and ↵̃ = C̃↵, where C̃ =

256 log
�
1.25
�

�
log
⇣

2T2D+1

p

⌘
+ 8L1F0

p
2D(D/2+1)
2L2

0
. Then,

for any n � max{
p
d(D2 + 1)2/", (D2 + 1)3}, with proba-

bility 1�p, Algorithm 1 ends in line 20, returning an iterate

wt,s with

krF (wt,s;D)k  3
p
2L0C̃max

n 1

n1/3
,
⇣pd
n"

⌘1/2o
.

Furthermore, Algorithm 1 has oracle complexity of n.

4. Stationary Points of Empirical Risk

4.1. Efficient Algorithm with Faster Rate

The algorithm for our upper bound is a noisy version of the
SpiderBoost algorithm (Wang et al., 2019c)8. The algorithm

8SpiderBoost itself is essentially the Spider algorithm (Fang
et al., 2018) with a different learning rate and analysis.

works by running a series of phases of length q. Each phase
starts with a minibatch estimate of the gradient, and subse-
quent gradient estimates within the phase are then computed
by adding an estimate of the gradient variation. The key to
the analysis is to bound the error in the gradient estimate
at each iteration. Towards this end, we have the following
generalization of the (Wang et al., 2019c) Lemma 1, which
follows directly from (Fang et al., 2018) Proposition 1.
Lemma 4.1. Consider Algorithm 2, and for any t 2

{0, .., T} let st =
j
t

q

k
q. If each rt computed in

line 9 is an unbiased estimate of rF (wt;S) satisfying

E
h
krst �rF (wst ;S)k

2
i
 ⌧21 and each �t computed

in line 13 is an unbiased estimate of the gradient variation

satisfying E
h
k�t � [rF (wt;S)�rF (wt�1;S)]k

2
i


⌧22 kwt � wt�1k
2
. Then for any t � st + 1, the iterates

of Algorithm 2 satisfy

E
⇥
krt �rF (wt)k2

⇤
 ⌧

2
2

tX

k=st+1

E
⇥
kwk � wk�1k2

⇤
+ ⌧

2
1 .

For privacy, using smoothness we observe the sensitivity of
the gradient variation estimate at iteration t is proportional
to � kwt � wt�1k. Thus we can apply the above lemma
with ⌧21 = L

2
0

b1
+L2

0�
2
1 and ⌧22 = L

2
1

b2
+L2

1�
2
2 (note the Gaus-

sian noise in line 13 is drawn with variance scale at most
�2
2 kwt � wt�1k

2). By carefully balancing the algorithm
parameters, we are then able to obtain the following result.
The full proof is deferred to Appendix B.1.
Theorem 4.2 (Private Spiderboost ERM). Let ", � 2 [0, 1].

Let n � max

⇢
(L0")

2

F0L1d log(1/�) ,
p
dmax{1,

p
L1F0/L0}

"

�
. Al-

gorithm 2 is (", �)-DP. Further, there exist settings of

T, ⌘, q, b1, b2 such that Algorithm 2 has E [krF (w̄;S)k]

bounded as

O

0

@
 p

F0L1L0

p
d log (1/�)

n"

!2/3

+
L0

p
d log (1/�)

n"

1

A

and oracle complexity Õ

✓
max

⇢⇣
n5/3"2/3

d1/3

⌘
,

⇣
n"p
d

⌘2
�◆

.

Note that the restriction on n in the theorem statement
is essentially trivial when the upper bound is nontrivial.
We remark that the case where the dominant error term
is ↵ = Õ

⇣⇥p
d

n"

⇤2/3⌘, then we approximately have oracle

complexity Õ
�
max

�
1
↵3 ,

n

↵

 �
.

4.2. Lower Bound

We now show a lower bound for the sample complexity of
finding a stationary point under differential privacy in the un-

constrained setting, which shows that the O
�L0

p
d log(1/�)

n"

�

5
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Algorithm 2 Private SpiderBoost
Input: Dataset: S 2 X

n, Function: f : Rd
⇥ X 7! R,

Learning Rate: ⌘, Phase Size: q, Batch Sizes b1, b2,
Privacy Parameters: (", �), Iterations: T

1: w0 = 0

2: �1 =
cL0

p
log(1/�)

"
max

n
1
b1
,

p
T

p
qn

o
, where c is a uni-

versal constant.
3: �2 =

cL1

p
log(1/�)

"
max

n
1
b2
,
p
T

n

o

4: b�2 =
2cL0

p
log(1/�)

"
max

n
1
b2
,
p
T

n

o

5: for t = 0, . . . , T do

6: if mod (t, q) = 0 then

7: Sample batch St of size b1
8: Sample gt ⇠ N (0, Id�2

1)

9: rt =
1
b1

P
x2St

rf(wt;x) + gt
10: else

11: Sample batch St of size b2
12: gt ⇠ N

⇣
0, Id min

n
�2
2 kwt � wt�1k

2 , b�2
2

o⌘

13: �t =
1
b2

P
x2St

[rf(wt;x)�rf(wt�1;x)]+gt

14: rt = rt�1 +�t

15: end if

16: wt+1 = wt � ⌘rt

17: end for

18: return w̄ uniformly at random from {w1, . . . , wT }

term in the rate given in Theorem 4.2 is necessary. Further-
more, as our lower bound holds for all levels of smoothness,
it also shows that our rate in Theorem 4.2 is optimal in the
(admittedly uncommon) regime where L1 

p
dL

2
0

F0n"
. Our

lower bound in fact holds even for convex functions. Fur-
thermore, this result implies the same lower bound (up to
log factors) for the population gradient using the technique
in (Bassily et al., 2019), Appendix C.

Theorem 4.3. Given L0, L1, n, " = O(1), 2�⌦(n)
 � 

1/n1+⌦(1)
, there exists an L0-Lispchitz, L1-smooth (con-

vex) loss f : Rd
⇥ X ! R and a dataset S of n points

such that any (", �)-DP algorithm run on S with output w̄
satisfies,

krF (w̄;S)k = ⌦

 
L0 min

 
1,

p
d log (1/�)

n"

!!
.

The proof is based on a reduction to DP mean estimation.
Specifically, we consider a instance of the Huber loss func-
tion for which the minimizer is the empirical mean of the
dataset. We then argue that close to the minimizer, the
empirical stationarity is lower bounded by DP mean esti-
mation bound (Steinke & Ullman, 2015), and far away, by
construction, the empirical stationarity is L0.

Proof of Theorem 4.3. For any r > 0, let Wr denote the
ball of radius r centered at the origin. Let B = L0

L1
. Consider

the loss function:

f(w;x) =

(
L1
2 kw � xk2 if kw � xk  B

L0 kw � xk � L
2
0

2L1
otherwise

The function f(w;x) is convex, L1-smooth and L0-
Lispchitz in Rd. We restrict to datasets S = {xi}

n

i=1 where
xi 2 WB/4 for all i, and let F (w;S) = 1

n

P
n

i=1 f(w;xi)
be the empirical risk on S. The unconstrained minimizer of
F (w;S) is w⇤ = 1

n

P
n

i=1 xi which lies in WB/4.

For any w 2W3B/4, w lies in the quadratic region around
all data points. Hence, from L1-strong convexity of w 7!
F (w;S) on W3B/4, we have that whenever w̄ 2W3B/4,

krF (w̄;S)k kw̄ � w⇤
k � hrF (w̄;S), w⇤

� w̄i

� F (w̄;S)� F (w⇤;S)

�
L1

2
kw̄ � w⇤

k
2 .

Let E be the event that w̄ 2W3B/4 and let EE denote the
conditional expectation (conditioned on event E) operator.
Then,

EEkrF (w̄;S)k �
L1

2
E kw̄ � w⇤

k

�
L1

2
⌦

 ✓
L0

4L1

◆
min

 
1,

p
d log (1/�)

n"

!!
.

where the last inequality follows from known lower bounds
for DP mean estimation (Steinke & Ullman, 2015; Kamath
& Ullman, 2020). We remark that the lower bound in the
referenced work is for algorithms which produce outputs
in the ball of the same radius as the dataset, i.e. WB/4.
However, a simple post-processing argument shows that
the same lower bound applies to algorithms which produce
output in W3B/4. Specifically, assuming the contrary, we
simply project the output in W3B/4 to WB/4: privacy is
preserved by post-processing and the distance to the mean
cannot increase by the non-expansiveness property of pro-
jection to convex sets, hence a contradiction. This gives
us,

EE [krF (w̄;S)k] � ⌦

 
L0 min

 
1,

p
d log (1/�)

n"

!!

Let W̃ = {w : kw � w⇤
k  B/2}. Since W̃ ✓ W3B/4,

we have that the above conditional lower bound applies for
w̄ 2 W̃ as well. We now consider w̄ 62 W̃ . Let w0 be
any point on the boundary of W̃ , denoted as @W . Note
that w0 lies in the region where, for any data point, the

6
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corresponding loss is a quadratic function. Hence, by direct
computation, rF (w0;S) = L1 (w0

� w⇤). Therefore,

hrF (w0), w0
� w⇤

i = L1 kw
0
� w⇤

k
2
=

L1B2

4
.

We now apply gradient monotonicity to obtain the following
(see Lemma A.1, Appendix A),

EEc krF (w̄;S)k �
L1B2

4
·
2

B
=

L0

2
,

where Ec denotes the complement set of E. We combine the
above bounds using the law of total expectation as follows,

E[krF (w̄;S)k]
= EE [krF (w̄;S)k]P{w̄ 2 E}+ EEc [krF (w̄;S)k]P{w̄ 2 E

c}

= ⌦
⇣
L0 min

n
1,

p
d log (1/�)

n"

o⌘
P(w̄ 2 E) + ⌦(L0)P(w̄ 2 E

c)

= ⌦
⇣
L0 min

n
1,

p
d log (1/�)

n"

o⌘
.

This completes the proof.

Challenges for Further Rate Improvements: Given the
above lower bound, the question arises as to whether the
Õ
�⇥p

d

n"
]2/3
�

term can be improved. An informal argument
using the oracle complexity lower bound of (Arjevani et al.,
2019) suggests several major challenges in obtaining further
rate improvements. A more detailed version of the following
discussion can be found in Appendix B.2.

Consider methods which ensure privacy by directly priva-
tizing the gradient/gradient variation queries. The aim of
such methods is to design some private stochastic first or-
der oracle, O"0,�0 , such that a set of G queries to O"0,�0

satisfies (", �)-DP, and use this oracle in some optimiza-
tion algorithm A(O"0,�0). Such a setup encapsulates nu-
merous results in the convex setting (Bassily et al., 2019;
Kulkarni et al., 2021), and is even more dominant in non-
convex settings (Wang et al., 2017; Zhou et al., 2020; Abadi
et al., 2016). Under advanced composition based argu-
ments, to make G calls to such a private oracle one needs
"0  "/

p
G. Now, standard fingerprinting code arguments

suggest lower bounds on the level of accuracy of any such
private oracle (Steinke & Ullman, 2015). Specifically, with-
out leveraging further problem structure beyond Lipschitz-
ness, one needs the gradient estimation error to be at least

⌧1 = ⌦
⇣

L0

p
Gd log(1/�)

n"

⌘
. A similar argument suggests the

error in the gradient variation between iterates w,w0 must

at least ⌧2 kw � w0
k = ⌦

⇣
L1kw�w

0
k
p

Gd log(1/�)

n"

⌘
. Now

consider some optimization algorithm, A, which takes as
input a stochastic oracle O for some smooth function L.
The lower bound of (Arjevani et al., 2019) suggests that if A
makes at most G queries to O (as a black box) the algorithm

satisfies E [krL(A(O))k] = ⌦
⇣�

F0⌧2⌧1
G

�1/3
+ ⌧1p

G

⌘
. If

O is a private oracle satisfying the previously mentioned
conditions, we would then have under the setting of ⌧1 and
⌧2 suggested by privacy that the convergence guarantee for
E [krL(A(O))k] is lower bounded as

⌦

0

@
 p

F0L1L0

p
d log (1/�)

n"

!2/3

+
L0

p
d log (1/�)

n"

1

A .

This indicates a substantial challenge for future rate improve-
ments, as alternative methods which avoid private gradients
(see e.g. (Feldman et al., 2020)) rely crucially on stability
guarantees arising from convexity.

5. Stationary Points in the Convex Setting

Algorithm 3 Recursive Regularization
Input: Dataset S, loss function f , steps T , {�t}t, {Rt}t,

PrivateSubRoutine, number of steps of sub-routine
{Kt}, selector functions {St(·)}t, step size {⌘t}t, noise
variances {�t}t

1: w0 = 0, n0 = 1
2: Define function (w, x) 7! f (0)(w;x) = f(w;x) +

�0
2 kw � w0k

2

3: for t = 1 to T � 1 do

4: nt = nt�1 +
j
|S|

T

k

5: w̄t = PrivateSubRoutine(Snt�1:nt , f
(t�1), Rt,

Kt, ⌘t,St(·),�t)
6: Define function (w, x) 7! f (t)(w;x) =

f (t�1)(w;x) + �t
2 kw � w̄tk

2

7: end for

Output: w̄ = w̄T

In this section, we additionally assume that the loss function
is convex. The motivation for this is two-fold: firstly, this
setting has recently gained attention in a non-private set-
ting (Nesterov, 2012; Allen-Zhu, 2018; Foster et al., 2019).
Secondly, in this setting we are able to establish tightly the
sample complexity of approximate stationary points.

Our method is based on the recursive regularization tech-
nique proposed in (Allen-Zhu, 2018), and further improved
by (Foster et al., 2019). The main idea, as the name suggests,
is to recursively regularize the objective and optimize it via
some solver. For the DP setting, the key idea is to use a
private sub-routine as the inner solver. Furthermore, while a
solver for the unconstrained problem suffices non-privately,
we need to carefully increase the radius of the constrained
set over which the solver operates.

Theorem 5.1. Let L0, L1, ", � > 0, d, n 2 N. Let w 7!
f(w;x) be an L0-Lipschitz L1-smooth convex function for

7
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all x. Let Rt =
�p

2
�t
kw⇤
k ,�t = 2t�, ⌘t = log(Kt)

�tKt
,

T =
⌅
log2

�
L1
�

�⇧
, �2

t
= 64L2

0K
2
t log(1/�)
n2"2

, and St({wk}k) =
1PKt

k=1(1�⌘t�t)
�k

P
Kt

k=1 (1� ⌘t�t)
�k wk.

1. (Optimal rate) Algorithm 3 run with NoisyGD

(Algorithm 7 in Appendix D) as the Pri-

vateSubRoutine with above parameter set-

tings and � = L
2
0

L1kw
⇤k min

�
1
n
, d

n2"2

�
and

Kt = max

✓
L1+�t

�t
log
⇣

L1+�t
�t

⌘
,
n
2
"
2
⇣
L

2
0�+L

3/2
1

⌘

T 2�dL2
0 log(1/�)

◆

satisfies (", �)-DP, and given a dataset S of n i.i.d.

samples from D, outputs w̄ such that

E krF (w̄;D)k = Õ

 
L0
p
n
+

L0

p
d

n"

!
.

Furthermore, the above rate is tight up to poly-

logarithmic factors.

2. (Linear time rate) Algorithm 3 run with

PhasedSGD (Algorithm 5) as the PrivateSub-

Routine with with above parameter settings and

� = max
⇣

L
2
0

L1kw
⇤k2 min

�
1
n
, d

n2"2

�
, L1 log(n)

n

⌘
and

Kt = b
n

T
c satisfies (", �)-DP and given a dataset S of n

i.i.d. samples from D, in linear time, outputs w̄ with

E krF (w̄;D)k = Õ

 
L0
p
n
+

L0

p
d

n"
+

L1 kw⇤
k

p
n

!
.

The proof of the above result is deferred to Appendix D.
For the tightness of the rate, the necessity of the second
term L0

p
d

n"
is due to our DP empirical stationarity lower

bound, Theorem 4.3. For the first “non-private” term L0p
n

,
even though (Foster et al., 2019) proved a sample com-
plexity lower bound, their instance is not Lipschitz and has
d = ⌦ (n log (n)), hence not applicable. To remedy this, we
give a new lower bound construction with a Lispchitz func-
tion in d = 1, Theorem A.2 in Appendix A. The polylog
dependence on L1 and kw⇤

k in the upper bounds, is consis-
tent with the non-private sample complexity in (Foster et al.,
2019).

The second result is a linear time method which has an
additional L1 kw⇤

k /
p
n term. Firstly, if the smoothness

parameter is small enough, then there is no overhead; this
small-enough smoothness is precisely the regime in which
we have linear time methods with optimal rates for smooth
DP-SCO (Feldman et al., 2020). More importantly, (Fos-
ter et al., 2019) showed that even in the non-private set-
ting, a polynomial dependence on L1 kw⇤

k is necessary
in the stochastic oracle model. However, the optimal non-
private term, shown in (Foster et al., 2019), is L1 kw⇤

k /n2,
achieved by accelerated methods. Improving this depen-
dency, if possible, is an interesting direction for future work.

6. Generalized Linear Models

In this section, we assume that the loss function is a general-
ized linear model (GLM), f(w; (x, y)) = �y (hw, xi). Also,
assume the norm of data points x are bounded by kXk and
the function �y : R ! R is L0-Lipschitz and L1-smooth
for all y. Furthermore, let rank denote the rank of design
matrix X 2 Rn⇥d.

Algorithm 4 JL method
Input: Dataset S, function (z, y) 7! �y(z), Algorithm A,

JL matrix � 2 Rk⇥d, L0, L1, kXk
1: w̃ = A((z, y) 7! �y(z), {(�xi, yi)}

n

i=1 ,

2L0 kXk , 2L1 kXk
2 , ", �/2)

Output: w̄ = �>w̃

Algorithm 4 is a generic method which converts any for
smooth Lipschitz losses with an empirical stationarity guar-
antee to get dimension-independent rates on population sta-
tionarity for smooth Lipschitz GLMs. This algorithm is the
JL method from (Arora et al., 2022) used therein to give
excess risk bounds for convex GLM. We note that while
the JL method there is limited to the Noisy GD method,
ours is a black-box reduction. Furthermore, unlike (Arora
et al., 2022), we show that the JL method gives finer rank
based guarantees by leveraging the fact it acts as an oblivi-
ous approximate subspace embedding (see Definition E.1 in
Appendix E).

Theorem 6.1. Let A be an (", �)-DP algorithm which when

run on a L1-smooth L0-Lipschitz function on a dataset

S = {(xi, yi)}
n

i=1 where xi 2 X ✓ Rd
, guarantees

E [krF (A(S);S)k]  g(d, n, L1, L0, ", �) and kA(S)k 
poly(n, d, L0, L1) with probability at least 1 � 1

p
n

. Then,

Algorithm 4 run with

k =

⇠
min

✓
argmin

j2N

✓
g(j, n, 2L0 kXk , 2L1 kXk

2 , ", �/2)

+
L0 kXk log (n)

p
j

◆
, rank log

✓
2n

�

◆◆⇡

on a L0-Lipschitz, L1-smooth GLM loss, is (", �)-DP. Fur-

thermore, given a dataset of n i.i.d samples from D, its

output w̄ has E [krF (w̄;D)k] bounded as

Õ

✓
L0 kXk
p
n

+ g(k, n, 2L0 kXk , 2L1 kXk
2 , ", �/2)

◆

The expression for k above comes from the subspace em-
bedding property of JL, and from balancing the dimension
of the embedding with respect to the error of A and the
approximation error of the JL embedding. The proof is
based on the properties of JL matrices: oblivious subspace
embedding and preservation of norms, together with a new

8
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uniform convergence result for gradients of Lipschitz GLMs.
The full proof is deferred to Appendix E.

Below, we instantiate the above with our proposed algo-
rithms.

Corollary 6.2. Under the assumptions of Theorem 6.1, Al-

gorithm 4 run with A as

1. Private Spiderboost (Alg. 2) yields krF (w̄;D)k =

Õ

✓
1

p
n
+min

✓⇣p
rank
n"

⌘2/3
, 1
(n")2/5

◆◆
.

2. Algorithm 3 with NoisyGD as PrivateSubRoutine, un-

der the additional assumption that w 7! f(w; (x, y))
is convex for all x, y, yields krF (w̄;D)k =

Õ
⇣

1
p
n
+min

⇣p
rank
n"

, 1
p
n"

⌘⌘
.

We remark that the above technique also gives bounds on
empirical stationarity. In particular, the first term 1

p
n

, in the
above guarantees, is the uniform convergence bound and
the second term is the bound on empirical stationarity.
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A. Lower bounds

A.1. Missing details from DP Empirical Stationarity Lower Bound

Proof of Theorem 4.3. For any r > 0, let Wr denote the ball of radius r centered at the origin. Let B = L0
L1

. Consider the
loss function:

f(w;x) =

(
L1
2 kw � xk2 if kw � xk  B

L0 kw � xk � L
2
0

2L1
otherwise

The function f(w;x) is convex, L1-smooth and L0-Lispchitz in Rd. We restrict to datasets S = {xi}
n

i=1 where xi 2WB/4

for all i, and let F (w;S) = 1
n

P
n

i=1 f(w;xi) be the empirical risk on S. The unconstrained minimizer of F (w;S) is
w⇤ = 1

n

P
n

i=1 xi which lies in WB/4.

For any w 2W3B/4, w lies in the quadratic region around all data points. Hence, from L1-strong convexity of w 7! F (w;S)
on W3B/4, we have that whenever w̄ 2W3B/4,

krF (w̄;S)k kw̄ � w⇤
k � hrF (w̄;S), w⇤

� w̄i � F (w̄;S)� F (w⇤;S) �
L1

2
kw̄ � w⇤

k
2 .

Let E be the event that w̄ 2W3B/4 and let EE denote the conditional expectation (conditioned on event E) operator. Then,

EE krF (w̄;S)k �
L1

2
E kw̄ � w⇤

k �
L1

2
⌦

 ✓
L0

4L1

◆
min

 
1,

p
d log (1/�)

n"

!!
.

where the last inequality follows from known lower bounds for DP mean estimation (Steinke & Ullman, 2015; Kamath
& Ullman, 2020). We remark that the lower bound in the referenced work is for algorithms which produce outputs in the
ball of the same radius as the dataset, i.e. WB/4. However, a simple post-processing argument shows that the same lower
bound applies to algorithms which produce output in W3B/4. Specifically, assuming the contrary, we simply project the
output in W3B/4 to WB/4: privacy is preserved by post-processing and the distance to the mean cannot increase by the
non-expansiveness property of projection to convex sets, hence a contradiction. This gives us,

EE [krF (w̄;S)k] � ⌦

 
L0 min

 
1,

p
d log (1/�)

n"

!!

Let W̃ = {w : kw � w⇤
k  B/2}. Since W̃ ✓ W3B/4, we have that the above conditional lower bound applies for

w̄ 2 W̃ as well. We now consider w̄ 62 W̃ . Let w0 be any point on the boundary of W̃ , denoted as @W . Note that w0

lies in the region where, for any data point, the corresponding loss is a quadratic function. Hence, by direct computation,
rF (w0;S) = L1 (w0

� w⇤). Therefore,

hrF (w0), w0
� w⇤

i = L1 kw
0
� w⇤

k
2
=

L1B2

4
.

We now apply Lemma A.1 which gives us,

EEc krF (w̄;S)k �
L1B2

4
·
2

B
=

L0

2
,

where Ec denotes the complement set of E. We combine the above bounds using the law of total expectation as follows,

E[krF (w̄;S)k] = EE [krF (w̄;S)k]P{w̄ 2 E}+ EEc [krF (w̄;S)k]P{w̄ 2 Ec
}

= ⌦
⇣
L0 min

n
1,

p
d log (1/�)

n"

o⌘
P(w̄ 2 E) + ⌦(L0)P(w̄ 2 Ec)

= ⌦
⇣
L0 min

n
1,

p
d log (1/�)

n"

o⌘
.

This completes the proof.
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Lemma A.1. Let G,R � 0, d 2 N. Let WR(w0) denote the Euclidean ball around w0 of radius R and let @WR(w0) denote

its boundary. Let f : Rd
! R be a differentiable convex function. Suppose w0 2 Rd

is such that for every v 2 @WR(w0),
hrf(v), v � w0i � G, then for any w 62WR(w0), we have krf(w)k � G

R
.

Proof. For a unit vector u 2 Rd, define directional directive f 0
u
(w) = hrf(w), ui. We first show that for any u 2 Rd :

kuk = 1 and any w0
2 Rd, the function f 0

u
(w0 + ru) is non-decreasing in r 2 R+. This simply follows from monotonicity

of gradients since f is convex. In particular, for any r0 > r > 0, we have

f 0

u
(w0 + r0u)� f 0

u
(w0 + ru) = hrf(w0 + r0u)�rf(w0 + ru), ui

=
1

r0 � r
hrf(w0 + r0u)�rf(w0 + ru), w0 + ru� (w0 + ru)i

> 0

We now prove the claim in the lemma statement. Let w 62 @WR and define u = w�w0
kw�w0k

. Then from Cauchy-Schwarz
inequality and the above monotonicity property, we have,

krf(w)k � hrf(w), ui = f 0

u
(w) � f 0

u
(w0 +Ru) = hrf(w0 +Ru), ui

=
1

R
hrf(v), v � w0i �

G

R

which finishes the proof.

A.2. Non-private Sample Complexity Lower Bound

Theorem A.2. For any L0, L1, n, d 2 N, there exists a distribution D over some set X and a L0-Lipschitz, L1-smooth

(convex) loss function w 7! f(w;x) such that given n i.i.d samples from D, the output w̄ of any algorithm satisfies,

E krF (w̄;D)k = ⌦

✓
L0
p
n

◆

Proof. We construct a hard instance in d = 1 dimension. Let p 2 [0, 1] be a parameter to be set later and let v 2 {�1, 1} be
chosen by an adversary. Let the data domain X = {�1, 1} and consider the distribution D on X as follows:

x =

(
1 with probability 1+vp

2

�1 with probability 1�vp

2

Note that E[x] = vp. Consider the loss function f(w;x) as

f(w;x) =
L0

2
wx+

L1

2
�(w)

where � is the Huber regularization function, defined as,

�(w) =

(
|w|2 if |w|  L0

2L1
L0|w|

L1
�

L
2
0

4L2
1

otherwise

Note that the loss function w 7! f(w;x) is convex, L0-Lipschitz and L1-smooth in Rd, for all x. The population risk
function is,

F (w;D) =
L0

2
wpv +

L1

2
�(w)

Let w̄ be output some algorithm given n i.i.d. samples from D. Consider two cases:
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Case 1: |w̄| > L0
2L1

: The gradient norm in this case is

|rF (w̄;D)|2 =

����
L0

2
vp+

L0w̄

2 |w̄|

����
2

=
L2
0p

2

4
+

L2
0

4
+

L2
0

2 |w̄|
vpw̄

�
L2
0

4
�

L2
0

2
p

=
L2
0

4
�

L2
0

8
p
n

�
L2
0

8

where the first inequality follows since v w̄

|w̄|
� �1, the third equality follows by setting p = 1

p
16n

and the second inequality
follows since n � 1. We therefore have that E |rF (w̄;D)| � L0

2
p
2

.

Case 2: |w̄|  L0
2L1

: In this case, the gradient norm is,

|rF (w̄;D)|2 =

����
L0

2
vp+ L1w̄

����
2

Suppose there exists an algorithm with output w̄, which, with n samples guarantees that E |rF (w̄;D)| < o
⇣

L0p
n

⌘
. Then

from Markov’s inequality, with probability at least 0.9, we have that |rF (w̄;D)|2 < o
⇣

L
2
0
n

⌘
. Let w̃ = � 2L1w̄

L0
, then we

have that with probability at least 0.9,

|rF (w̄;D)|2  o

✓
L2
0

n

◆
() |vp� w̃|2 < o

✓
1

n

◆

This contradicts the well-known bias estimation lower bounds, with p = 1
p
16n

, using Le Cam’s method ((Duchi, 2016),

Example 7.7), hence E |rF (w̄;D)| � ⌦
⇣

L0p
n

⌘
. Combining the two cases finishes the proof.

B. Missing Results for Empirical Stationary Points

B.1. Private Spiderboost

The following lemma largely follows from the analysis in (Wang et al., 2019c). We present a full proof below for
completeness.

Lemma B.1. Let the conditions of Lemma 4.1 be satisfied. Let ⌘  1
2L1

and q  O
⇣

1
⌧
2
2 ⌘

2

⌘
. Then the output of Private

SpiderBoost, w̄ satisfies

E [krF (w̄;S)k] = O

 s
F0

⌘T
+ ⌧1

!
. (1)

Proof. In the following, for any t 2 [T ], let st =
j
t

q

k
q (i.e. the index corresponding to the start of the phase containing

iteration t).

By a standard analysis for smooth functions we have (recalling that rt is an unbiased estimate of rF (wt;S) for any
t 2 [T ])

F (wt+1;S)  F (wt;S) +
⌘

2
krF (wt;S)�rtk

2
�

✓
⌘

2
�

L1⌘2

2

◆
krtk

2 .
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Taking expectation we have the following manipulation using the update rule of Algorithm 2

E [F (wt+1;S)� F (wt;S)] 
⌘

2
E
h
krF (wt;S)�rtk

2
i
�

✓
⌘

2
�

L1⌘2

2

◆
E
h
krtk

2
i


⌘⌧22
2

tX

k=st+1

E
h
kwk+1 � wkk

2
i
+
⌘

2
E
h
krst � F (wst ;S)k

2
i

�

✓
⌘

2
�

L1⌘2

2

◆
E
h
krtk

2
i


⌘3⌧22
2

tX

k=st+1

E
h
krkk

2
i
+
⌘⌧21
2
�

✓
⌘

2
�

L1⌘2

2

◆
E
h
krtk

2
i
,

where the second inequality follows from Lemma 4.1 and the last inequality follows from the update rule. Note that if
t = st the sum is empty. Summing over a given phase we have

E [F (wt+1;S)� F (wst ;S)] 
⌘3⌧22
2

tX

k=st

kX

j=st+1

E
h
krjk

2
i
+

tX

k=st

h
⌘⌧

2
1

2 �

⇣
⌘

2 �
L1⌘

2

2

⌘
E
h
krkk

2
ii


⌘3⌧22 q

2

tX

k=st

E
h
krkk

2
i
+

tX

k=st

h
⌘⌧

2
1

2 �

⇣
⌘

2 �
L1⌘

2

2

⌘
E
h
krkk

2
ii

= �
tX

k=st

"✓
⌘

2
�

L1⌘2

2
�
⌘3⌧22 q

2

◆

| {z }
A

E
h
krkk

2
i
�
⌘⌧21
2

#
, (2)

where the second inequality comes from the fact that each gradient appears at most q times in the sum. We now sum over all
phases. Let P = {p0, p1, ...,} =

n
0, q, 2q, ...,

j
T�1
q

k
q, T

o
. We have

E [F (wT ;S)� F (w0;S)] 

|P |X

i=1

E
⇥
F (wpi ;S)� F (wpi�1 ;S)

⇤

 �

TX

t=0

AE
h
krkk

2
i
+

T⌘⌧21
2

.

Rearranging the above yields

1

T

TX

t=0

E
h
krkk

2
i


F0

TA
+
⌘⌧21
2A

. (3)

Now let i⇤ denote the index of w̄ selected by the algorithm. Note that

E
h
krF (wi⇤ ;S)k

2
i
 2E

h
krF (wi⇤ ;S)�ri⇤k

2
i
+ 2E

h
kri⇤k

2
i
. (4)
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The second term above can be bounded via inequality (3). To bound the first term we have by Lemma 4.1 that

E
h
kri⇤ �rF (wi⇤ ;S)k

2
i
 ⌧22

t
⇤X

k=st⇤+1

E
h
kwk � wk�1k

2
i
+ ⌧21

= ⌘2⌧22

t
⇤X

k=st⇤+1

E
h
krkk

2
i
+ ⌧21


q⌘2⌧22
T

TX

k=0

E
h
krkk

2
i
+ ⌧21


⌧22 ⌘

2qF0

TA
+
⌘3q⌧22
2A

⌧21 + ⌧21 ,

where the last inequality comes from inequality (3) and the expectation over i⇤. Plugging into inequality (4) one can obtain

E
h
krF (wi⇤ ;S)k

2
i


2F0

TA
(1 + ⌧22 ⌘

2q) +

✓
⌘

A
+ 2 +

⌧22 ⌘
3q

A

◆
⌧21 . (5)

Now recall A = ⌘

2 �
L1⌘

2

2 �
⌘
3
⌧
2
2 q

2 . Since q  O
⇣

1
⌧
2
2 ⌘

2

⌘
and ⌘  1

2L1
we have A = ⇥(⌘). Thus plugging into inequality

(5) and again using the fact that q  O
⇣

1
⌧
2
2 ⌘

2

⌘
we have

E
h
krF (wi⇤ ;S)k

2
i
= O

✓
F0

T⌘
(1 + ⌧22 ⌘

2q) +

✓
3 +

⌧22 ⌘
3q

A

◆
⌧21

◆
= O

✓
F0

T⌘
+ ⌧21

◆
.

The claim then follows from the Jensen inequality.

For privacy, we will rely on the moments accountant analysis of (Abadi et al., 2016). This roughly gives the same analysis
as using privacy amplification via subsampling and the advanced composition theorem, but allows for improvements in
log factors. We provide the following theorem implicit in (Abadi et al., 2016) Theorem 1 below. The same result can be
obtained using the analysis for (Kulkarni et al., 2021) Theorem 3.1 which uses the truncated central differential privacy
guarantees of the Gaussian mechanism (Bun et al., 2018).
Theorem B.2 ((Abadi et al., 2016; Kulkarni et al., 2021)). Let ", � 2 (0, 1] and c be a universal constant. Let D 2 Y

n
be a

dataset over some domain Y , and let h1, ..., hT : Y 7! Rd
be a series of (possibly adaptive) queries such that for any y 2 Y ,

t 2 [T ], kht(y)k2  �t. Let �t =
c�t

p
log(1/�)

"
max

n
1
b
,
p
T

n

o
. Then the algorithm which samples batches of size B1, .., Bt

of size b uniformly at random and outputs
1
n

P
y2Bt

ht(y) + gt for all t 2 [T ] where gt ⇠ N (0, I�2
t
), is (", �)-DP.

We note that the original statement of the Theorem in (Abadi et al., 2016) requires �t �
c�t

p
T log(1/�)

n"
and T � n

2
"

b2
(or

T � n
2

b2
so long as "  1). However, in the case where T  n

2

b2
, one can simply consider the meta algorithm that does run

T 0 = n
2

b2
steps and only outputs the first T results. This algorithm is at least as private as the algorithm which outputs every

result, and under the setting T 0 the scale of noise is 8�t

p
log(1/�)

b"
.

We can now prove the main result for Private Spiderboost, restated below. We note that the setting of b2 given below will
always be less than n under required conditions. More details are provided in the proof below.

Theorem B.3 (Private Spiderboost). Let n � max

⇢
(L0")

2

F0L1d log(1/�) ,
p
dmax{1,

p
L1F0/L0}

"

�
. Private Spiderboost

run with parameter settings ⌘ = 1
2L1

, b1 = n, b2 =

$
max

(✓
L0n"p

F0L1d log(1/�)

◆2/3

, (L0nd log(1/�))1/3

(L1F0)1/6"2/3

)%
, T =

$
max

(✓
(F0L1)

1/4
n"

p
L0d log(1/�)

◆4/3

, n"p
d log(1/�)

)%
, and q =

j
n
2
"
2

L
2
1Td log(1/�)

k
satisfies

E [krF (w̃)k] = O

0

@
 p

F0L1L0d log (1/�)

n"

!2/3

+

p
d log (1/�)L0

n"

1

A
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is (", �)-DP and has oracle complexity Õ

✓
max

⇢⇣
n
5/3

"
2/3

d1/3

⌘
,
⇣

n"
p
d

⌘2�◆
.

Proof. For privacy, we rely on the moment accountant analysis of the Gaussian mechanism as per Theorem B.2. Note that
each gradient estimate computed in line 9 has elements with `2-norm at most L0, and this estimate is computed at most T

q

times. Similarly, for a gradient variation at step t in line 13 we have norm bound L1 kwt � wt�1k, and have that at most T
such estimates are computed. As such, the scale of noise in both cases ensures the overall algorithm is (", �)-DP by Theorem
B.2.

We now prove the convergence result. To simplify notation in the following, we define ↵̄ =
p

d log(1/�)

n✏
. If b1 = n (full

batch gradient), the conditions of Lemma 4.1 are satisfied with ⌧21 = O
⇣

L
2
0T ↵̄

2

q

⌘
and ⌧22 = O

⇣
L

2
1

b2
+ L2

1T ↵̄
2
⌘

and some

setting of q so long as T � q n
2

b
2
1
= q and T � n

2

b
2
2

. Further, if b2 � 1
T ↵̄2 then ⌧22 = O

�
L2
1T ↵̄

2
�
. Thus the condition on q in

Lemma B.1 is satisfied with q = L
2
1

⌧
2
2
= 1

T ↵̄2 since ⌘ = 1
2L1

Plugging into Eqn. (1) we obtain

E [krF (w̃)k] = O

 r
F0L1

T
+

L0

p
T ↵̄
p
q

!

= O

 r
F0L1

T
+ L0T ↵̄

2

!
. (6)

We now consider the setting of T . Since q = 1
T ↵̄2 , it suffices to set T � 1

↵̄
to ensure T � q. We now set T =

max

⇢⇣
(L1F0)

1/4

p
L0↵̄

⌘4/3
, 1
↵̄

�
. Using Eqn. (6) above we have

E [krF (w̃)k] = O

✓⇣p
F0L1L0↵̄

⌘2/3
+ L0↵̄

◆
.

The claimed rate now follows if there exists a valid setting for b2 satisfying the previously stated conditions. The restrictions

on the batch size implied by T imply we need b2 �
n

p
T

and thus it suffices to have b2 �
L

1/3
0 n↵̄

2/3

(L1F0)1/6
to satisfy this

condition since T �
⇣

(L1F0)
1/4

p
L0↵̄

⌘4/3
. We recall that for the setting of q to be valid we also require b2 �

1
T ↵̄2 and

because T �
⇣

(L1F0)
1/4

p
L0↵̄

⌘4/3
it suffices that b2 �

⇣
L0p

F0L1↵̄

⌘2/3
. Thus we need b2 = max

⇢⇣
L0p

F0L1↵̄

⌘2/3
, L

1/3
0 n↵̄

2/3

(L1F0)1/6

�
.

Finally, we need b2  n whenever q � 1. Note that by the setting of q and T we have q 
⇣

L0p
F0L1↵̄

⌘2/3
and thus

q � 1 =)
⇣p

L1F0↵̄

L0

⌘
 1. Under this same condition we have L

1/3
0 n↵̄

2/3

(L1F0)1/6
 n. We further have

⇣
L0p

F0L1↵̄

⌘2/3
 n

under the assumption n � (L0")
2

F0L1d log(1/�) given in the theorem statement. It can also be verified that under the condition on
n given in the theorem statement that q � 1. Thus the parameter settings obtain the claimed rate.

Note the number of gradient computations is bounded by

O

✓
Tb2 +

Tb1
q

◆
= Õ

 ✓
n"
p
d

◆4/3

max

(✓
n"
p
d

◆2/3

,
(nd)1/3

"2/3

)
+ n

✓
n"
p
d

◆2/3
!

= Õ

 
max

(✓
n"
p
d

◆2

,
n5/3"2/3

d1/3

)!
.

B.2. Additional Discussion of Rate Improvement Challenges

We here give a more detailed version of the informal discussion in Section 4.2. We want to emphasize that the goal of the
following discussion is not to provide a universal lower bound, but rather to inform future research.
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Let L : Rd
7! R be a loss function. We say the randomized mapping O : Rd

⇥ (Rd
[ ?) 7! Rd, is a (⌧1, ⌧2)-accurate

oracle for L if 8w,w0
2 Rd

E
O

[O(w,?)] = rL(w), E
O

[O(w,w0)] = rL(w)�rL(w0)

E
O

h
kO(w,?)�rL(w)k2

i
 ⌧21 , E

O

h
kO(w,w0)k

2
i
 ⌧22 kw � w0

k
2
.

In short, O is an unbiased and accurate gradient/gradient variation oracle for L. Define

m(G,L1,L0, ⌧1, ⌧2) = inf
A

sup
O,L

inf
n
↵ : E [krL(A(O, L1,L0, ⌧1, ⌧2)k]  ↵

o
,

where the supremum is taken over L1-smooth functions L satisfying L(0)� argmin
w2Rd

{L(w)}  L0, and (⌧1, ⌧2)-accurate

oracles for L. The infimum is taken over algorithms which make at most G calls to O.

We have the following lower bound on m (i.e. a lower bound on the accuracy of optimization algorithms which make at
most G queries to the oracle) following from (Arjevani et al., 2019, Theorem 3) and the fact that the oracle model described
above is a special case of the multi-query oracles considered by (Arjevani et al., 2019).

Theorem B.4 ((Arjevani et al., 2019)). Let G,L0, L1, ⌧1, ⌧2 � 0 and define ↵ =
�
L0⌧2⌧1

G

�1/3
+ ⌧1p

G
. If d = ⌦̃

⇣⇥
L0L1
↵2

⇤2⌘
,

then m(G,L1,L0, ⌧1, ⌧2) = ⌦ (↵).

Now consider L such that L(w) = 1
n

P
x2S

`(w;x) for some L0-Lipschitz and L1-smooth loss ` : Rd
⇥ X 7! R and

S 2 X
n. We are interested in designing some (b⌧1, b⌧2)-accurate and differentially private oracle, bO, which can then be used

by an optimization algorithm, A, to obtain an approximate stationary point w̄ = A( bO, L1,L0, b⌧1, b⌧2). Specifically, we want
bO to be capable of answering G queries under (", �)-DP. A common method for achieving this is to ensure each query to
O is at least ( "

p
G
, �)-DP and use advanced composition (or the more refined moment accountant) analysis. Such a setup

encapsulates numerous results in the convex setting (Bassily et al., 2019; Kulkarni et al., 2021), and is even more dominant
in non-convex settings (Wang et al., 2017; Zhou et al., 2020; Abadi et al., 2016).

Our key observation is that under such a setup, any increase in the number of oracle calls to G must be met with a proportional
increase in the accuracy parameters (b⌧1, b⌧2). Thus, if such an oracle, bO is applied in a black box fashion to a stochastic
optimization algorithm A, one can obtain a lower bound on the accuracy of the overall algorithm independent of G.

Specifically, since estimating the gradient and gradient variation can be viewed as mean estimation problems on n vectors,
we can use fingerprinting code arguments to lower bound b⌧1 and b⌧2 (Steinke & Ullman, 2015). In Lemma B.5 below, we

prove that any (b⌧1, b⌧2)-accurate oracle which ensures that any query is ( "
p
G
, �)-DP must have b⌧1 = ⌦

⇣
L0

p
Gd log(1/�)

n"

⌘

and b⌧2 = ⌦
⇣

L1

p
Gd log(1/�)

n"

⌘
. Now, observe that by Theorem B.4, we have

m(G,L1,L0, b⌧1, b⌧2) = ⌦

0

@
 p

F0L1L0

p
d log (1/�)

n"

!2/3

+
L0

p
d log (1/�)

n"

1

A ,

which matches our upper bound.

We now remark on several ways the above barrier could be circumvented. The first and most obvious possibility is to
employ a different privatization method than private oracles. However, this is particularly difficult in the nonconvex setting
as existing methods which avoid private gradients (see e.g. (Feldman et al., 2020) for several such methods) rely crucially
on stability guarantees arising from convexity. Other possible ways to beat the above rate is by designing a stochastic
optimization algorithm which leverages the structure of the noise used in private implementations of the oracle or makes use
of additional assumptions to beat the ⌦

⇣�
L0⌧2⌧1

G

�1/3
+ ⌧1p

G

⌘
non-private lower bound.

Additional Details on Fingerprinting Bound We conclude by giving a concrete construction for the fingerprinting
argument mentioned above.
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Lemma B.5. Let L0, L1 � 0, " = O(1), 2�⌦(n)
 �  1

n1+⌦(1) and

p
d log (1/�)/(n") = O(1). Let `,L, S satisfy the

assumptions above. Then there exists `, S such that for any oracle, O, which is (⌧1, ⌧2)-accurate for L it holds that

⌧1 = ⌦

 
L0

p
d log (1/�)

n"

!
and ⌧2 = ⌦

 
L1

p
d log (1/�)

n"

!
.

Proof. In the following, we use uj to denote the j’th component of some vector u. Let B = L0

L1

p
d

and define h : R 7! R as

h(z) =

(
L1
2 w2 if|w|  B
L0p
d
|w|� L

2
0

2dL1
otherwise

Define d0 = d

2 (assume d is even for simplicity) and for any vector u 2 Rd let u(1) = [u1, ..., ud0 ]> and u(2) =
[ud0+1, ..., ud]>. Define `(w;x) = `1(w;x) + `2(w;x) where

`1(w;x) =
L0
p
d

D
w(1), x(1)

E
, `2(w;x) =

1

2

dX

j=d0+1

h(wj)xj .

Let W = {w : kwk
1
 B} and note for any w 2W we have

r`(w;x) = [
x1
p
d
, ...,

xd0
p
d
, wd0+1xd0+1, ..., wdxd]

>, r
2`2(w;x) = L1 · Diag(0, ..., 0, xd0+1, ..., xd)

That is, the Hessian of `2(w;x) is a diagonal matrix with entries from x. Thus one can observe that for any x 2 {±1}d we
have that `(·;x) is L0-Lipschitz and L1-smooth over Rd.

To prove a lower bound on ⌧1 and ⌧2, it suffices to show that for any (", �)-DP implementation of O there exists w 2 Rd

such that E
O

h
kO(w;?)�rL(w)k2

i
� ⌧21 and there exist w,w0

2 Rd such that E
O

h
kO(w,w0)k2

i
� ⌧22 kw � w0

k
2. For

sake of generality, we will show that these properties hold for a set of w,w0.

Note that to lower bound the gradient error, it suffices to lower bound the error with respect to the first d0 components. We
thus argue using `1, and will in fact show a lower bound for any w 2 Rd. Let w 2 Rd. We have for any (", �)-DP oracle O

there exists a dataset S ✓ {±1}d, where |S| = n, of fingerprinting codes such that

E
O

[kO(w;?)�rL(w)k] � E
O

"�����O(w;?)(1) �
1

n

X

x2S

x(1)

�����

#
= ⌦

 
L0

p
d log (1/�)

n"

!
.

The bound follows from standard fingerprinting code arguments. See (Bassily et al., 2014, Lemma 5.1) for a lower bound
and (Steinke & Ullman, 2015, Theorem 1.1) for a group privacy reduction that obtains the additional

p
log (1/�) factor. This

fingerprinting result also induces the parameter constraints in the theorem statement. We thus have ⌧1 = ⌦

✓
L0

p
d log(1/�)

n"

◆
.

Similarly, we will argue a bound on the gradient variation using `2. Let w,w0
2W and u = (w � w0)(2). In what follows,

we only use the second half of the components for each vector, and thus omit the superscript (2) from all vectors for
readability. We have r`2(w;x) � r`2(w0;x) = L1[u1x1, ..., ud0xd0 ]>. Then for any c 2 (0, 2L0

L1

p
d
] and u 2 {±c}2 we
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have

E
O

h
kO(w,w0)� (rL(w)�rL(w0))k

2
i
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1 · E
O
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0X
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⇣
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1 · E
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4c2
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x2S
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= ⌦

✓
L2
1c

2 d
2 log (1/�)

n2"2

◆
,

where the last step again comes from fingerprinting results. Note that the extra factor of d as compared to the previous
bound comes from the fact that we are considering fingerprinting codes with norm larger by a factor of

p
d. We also use the

fact that the vector O(w,w0) transformed using u is (", �)-DP by post processing. Now since c =
kw�w

0
k

p
d

we have

E
O

[kO(w,w0)� (rL(w)�rL(w0))k] =

 
L1 kw � w0

k

p
d log (1/�)

n"

!
.

Finally, noting that E
O

h
kO(w,w0)� (rL(w)�rL(w0))k2

i
 E

O

h
kO(w,w0)k2

i
we obtain ⌧2 = ⌦

⇣
L1

p
d log(1/�)

n"

⌘
. This

completes the proof.

We remark that the accuracy lower bound for the gradient variation can hold for a much more general set of vectors than that
given in the proof. Specifically, the same result can be obtained for any u = w�w0 such that u has ⇥(d) components which
are ⌦

�
kuk
p
d

�
(i.e. any sufficiently spread out vector). This uses the fact that it suffices to bound the number of components

which disagree in sign with the fingerprinting mean and that fingerprinting codes are sampled using a product distribution,
and thus the tracing attack used by fingerprinting constructions holds over any sufficiently large subset of dimensions.

C. Missing Results for Population Stationary Points

Here we present the proof of privacy and accuracy for Algorithm 1. We start by proving the privacy guarantee.

Proof of Theorem 3.1. By parallel composition of differential privacy, and since the used batches are disjoint, it suffices to
prove that each step in lines 6 and 15 of the algorithm is (", �)-DP. Note that the gradient estimator in step 6 has `2-sensitivity
2L0/b, so by the Gaussian mechanism this step is (", �)-DP.

For step 15, suppose St,s and S0
t,s

are neighboring datasets that differ in at most one element: xi⇤ 6= x0

i⇤ , and let ⌘t,si and
⌘0
t,si

the respective stepsizes used in step 23. Then

k�t,s ��0

t,s
k =

2|s|

b
krf (wt,s;xi⇤)�rf (wt,bs;xi⇤)� (rf (wt,s;x

0

i⇤
)�rf (wt,bs;x

0

i⇤)) k ,

and note between the parent node ut,bs and ut,s there are 2D�|s| iterates generated by the algorithm, which we denote as
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wt,bs = wt,s0 , wt,s1 , ..., wt,s
2|D|�s

= wt,s. Then, by smoothness of f and the triangle inequality

k�t,s ��0

t,s
k

=
2|s|

b
krf (wt,s; zi⇤)�rf (wt,bs; zi⇤)� (rf (wt,s; z
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i⇤
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i⇤)) k
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⇥
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�
k+ k

�
rf (wt,si ; z

0

i⇤
)�rf

�
wt,si�1 ; z

0

i⇤
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⇤



2D�|s|X
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b
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2D�|s|X
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L1⌘
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kr

0

t,si�1
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= 2
2D�|s|X

i=1

2|s|

b

�

2D/2
=

2�2D/2

b
.

The Gaussian mechanism combined with our choice of �t,s certifies privacy of this step.

To prove Theorem 3.2 we will need some technical lemmas. Define (T ,S) as a random stopping time that indicates when
Algorithm 1 ends. Also, we say (t1, s1) �2 (t2, s2) whenever wt1,s1 comes before wt2,s2 in the algorithm iterates.
Lemma C.1 (Gradient estimation error, extension of Lemma 6 in (Fang et al., 2018)). Let p 2 (0, 1). Then, with probability

1� p the event

E = {krt,s �rF (wt,s;D)k2  ↵ · ↵̃ 8(t, s) �2 (T ,S)}

holds, under the parameter setting of �t,?,�t,s and ⌘t,s in Algorithm 1, for

↵2
�

✓
L2
0

b
+
�2D2D

b

◆
max

⇢
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(d+ 1)

b"2

�
and ↵̃ � 256 log

✓
1.25

�

◆
log

✓
2T2D+1

p

◆
↵.

Proof. Recall the gradient estimate associated to a left child node is the same as that of the parent node. Hence, the gradient
estimate of a non-leaf node is the same as that of the left-most leaf of its left sub-tree. In addition, we only need to control
the gradient estimation error when we perform a gradient step, which occurs at the leaves. Then, to prove the claim,
it suffices to prove that we can control the gradient estimation error at the leaves. Since, the number of iterations (and
leaves) is at most T2D�1, to prove event E happens with probability 1 � p, by the union bound it suffices to prove that
P[krt,s �rF (wt,s;D)k2 > ↵ · ↵̃]  p

T2D�1 for every (t, s) �2 (T ,S) where ut,s is a leaf.

Denote by Ft the sigma algebra generated by randomness in the algorithm until the end of round t. Fix (t, s) �2 (T ,S)
such that ut,s is leaf, and let ut,s? = ut,s0 , ut,s1 , ..., ut,sk = ut,s be the path from the root to s. Next, extract a sub-sequence
of it including only the root and the nodes that are right children, obtaining ut,s? = ut,sa0

, ut,sa1
, ..., ut,sam

= ut,s. Now
we can write

rt,s �rF (wt,s;D) =
mX

i=0
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+
X

x2St,?
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b
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x2St,sai

2|sai |

b

h⇣
rf(wt,sai

;x)�rf(wt,sai�1
;x)
⌘
�

⇣
rF (wt,sai

;D)�rF (wt,sai�1
;D)

⌘i

| {z }
�2,x,i

.

To bound the estimation error, we note that

P[krt,s �rF (wt,s;D)k2 > ↵ · ↵̃|Ft�1]

 P
h���

mX

i=0

gt,sai

���
2
>
↵ · ↵̃

4

���Ft�1

i
+ P

h���
X

x2St,?

�1,x +
mX

i=1

X

x2St,sai

�2,x,i
���
2
>
↵ · ↵̃

4

���Ft�1

i
.
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and proceed to bound each term on the right hand side separately. By vector subgaussian concentration (see Lemma 1 in
(Jin et al., 2019)) and noting that the gaussians are independent of Ft�1, we know that

P

2

4
�����

mX

i=0

gt,sai

�����

2

>
↵ · ↵̃

4

3

5  4d exp

 
�

↵ · ↵̃

32(�2
t,? +

P
m

i=1 �
2
t,sai

)

!
,

and in order to bound this probability by p

2T2D�1 , since m  D, it suffices that

↵ · ↵̃ > 32 log

✓
4dT2D

p

◆
8L2

0 log (1.25/�)

b2"2
+

8D2D�2 log (1.25/�)

b2"2

�

= 256 log

✓
1.25

�

◆
d log (4) + log

✓
T2D

p

◆�
L2
0

b2"2
+

D2D�2

b2"2

�
.

Now, noting that surely

k�1,xk 
2L0

b
and k�2,x,ik 

2�2D/2

b
,

where the second bound comes from following similar steps as in the privacy analysis in Theorem 3.1, we have thatP
x2St,? �1,x +

P
m

i=1

P
x2St,sai

�2,x,i is a sum of bounded martingale differences when conditioned on Ft�1, thus by
concentration of martingale-difference sequences in `2 (see Proposition 2 in (Fang et al., 2018)), and using the fact that
|St,?| = b and |St,sai

| = b/2|sai | it follows that

P

2

64

������

X

x2St,?

�1,x +
mX

i=1

X

x2St,sai

�2,x,i

������

2

>
↵ · ↵̃

4
| Ft�1

3

75  4 exp

0

@� ↵ · ↵̃

16
h
4L2

0
b

+
P

m

i=1
4�22D

2|sai |b

i

1

A .

Repeating a similar argument as before, to bound this term by p

2T2D�1 , it suffices that

↵ · ↵̃ � 64 log

✓
2T2D+1

p

◆
L2
0

b
+
�2D2D

b

�
.

Finally, both conditions hold simultaneously for

↵2
�

✓
L2
0

b
+
�2D2D

b

◆
max

⇢
1,

(d+ 1)

b"2

�

and

↵̃ � 256 log

✓
1.25

�

◆
log

✓
2T2D+1

p

◆
↵.

Lemma C.2 (Descent lemma; Lemma 7 in (Fang et al., 2018)). Under the assumption that the event E from Lemma C.1

occurs and �  2D/2↵̃, we have that if Algorithm 1 reaches the last line, then

F (wT,`(2D);D)� F (0;D)  �(T2D�1)
� · ↵̃

4 · 2D/2L1
.

where wT,`(2D) is the last iterate in the T -th tree of Algorithm 1.

We provide the proof of Lemma C.2 adapted to our case for completeness.
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Proof. By standard analysis for smooth functions we have

F (wt,s+ ;D)  F (wt,s;D)�
⌘t,s
2

(1� ⌘t,sL1)krt,sk
2 +

⌘t,s
2
krt,s �rF (wt,s;D)k2,

where ⌘t,s = �

2D/2L1krt,sk
and ut,s+ is the node after ut,s in the tree. Since �  2D/2↵̃ and krt,sk > 2↵̃, we have that

(1� ⌘t,sL1) � 1/2. Using this inequality, the definition of ⌘t,s and the fact that we are assuming E occurs, we obtain

F (wt,s+ ;D)� F (wt,s;D)  �
�

4 · 2D/2L1krt,sk
krt,sk

2 +
�

2 · 2D/2L1krt,sk
↵ · ↵̃

 �
�

4 · 2D/2L1
· ↵̃,

where the second inequality comes from krt,sk > 2↵̃ and ↵  ↵̃. Then telescoping over all T2D�1 iterations provides the
claimed bound.

We are now ready to prove the convergence guarantee of Algorithm 1.

Proof of Theorem 3.2. From Lemma C.1, we know that krt,s �rF (wt,s;D)k2  ↵ · ↵̃ with probability 1� p when

↵ =
p
2L0 max

⇢
1

n1/3 ,
⇣p

d

n"

⌘1/2�
, ↵̃ =

⇣
256 log

�
1.25
�

�
log
⇣

2T2D+1

p

⌘
+ 8L1F0

p
2D(D/2+1)
2L2

0

⌘
↵.

Indeed, using our parameter setting, and noting that d > b"2 if and only if, d > n2/3"2, yields

↵2
�

L2
0

b
max

⇢
1,

(d+ 1)

b"2

�
+
�2

2
max

⇢
1,

(d+ 1)

b"2

�

= L2
0

 
1

n2/3 {d+1n2/3"2} +

p
d

n" {d+1>n2/3"2}

!
+
↵2

2
min

⇢
1,

b"2

d

�
max

⇢
1,

(d+ 1)

b"2

�

� L2
0 max

(
1

n2/3
,

p
d

n"

)
+
↵2

2
,

which shows our values of ↵ and ↵̃ are valid for controlling the gradient estimation error with high probability, as claimed in
Lemma C.1.

Now, suppose for the sake of contradiction that Algorithm 1 does not end in line 20 under E . This means it performs T2D�1

gradient updates. We’ll show this implies (T2D�1) �·↵̃

4·2D/2L1
> F0 and thus contradicts Lemma C.2, which claims that

F0 � �[F (wT,`(2D);D)� F (w0,`(2D);D)] � (T2D�1) �·↵̃

4·2D/2L1
. Indeed, note that by our parameter setting:

(T2D�1)
� · ↵̃

4 · 2D/2L1
> F0 () � · ↵̃ >

8L1F0

T2D/2

() ↵min

(
1,

p
b"
p
d

)
· ↵̃ >

8L1F0

p
2D

T
p
b

() ↵ · ↵̃ >
8L1F0

p
2D(D/2 + 1)

p
b

n
max

(
1,

p
d

p
b"

)

() ↵ · ↵̃ > 8L1F0

p

2D(D/2 + 1)max

(p
b

n
,

p
d

n"

)
,
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and noting that by the setting of b we have max
np

b

n
,
p
d

n"

o
= max

n
1

n2/3 ,
p
d

n"

o
, we conclude the following

(T2D�1)
� · ↵̃

4 · 2D/2L1
> F0 () ↵ · ↵̃ > 8L1F0

p

2D(D/2 + 1)max

(
1

n2/3
,

p
d

n"

)

() ↵ · ↵̃ >
8L1F0

p
2D(D/2 + 1)

2L2
0

↵2.

Finally, note ↵ · ↵̃ =
⇣
256 log (1.25/�) log

�
2T2D+1/p

�
+ 8L1F0

p
2D(D/2+1)
2L2

0

⌘
↵2 and thus the last inequality holds under

our parameter setting. Since this is equivalent to (T2D�1) �·↵̃

4·2D/2L1
> F0, we are done with the contradiction. It follows

that with high probability, Algorithm 1 ends in line 20 returning wt,s such that krt,sk  2↵̃. Also, by Lemma C.1 we have
krF (wt,s;D)�rt,sk < ↵̃, so the returned iterate satisfies by the triangle inequality

krF (wt,s;D)k < 3↵̃.

In addition, the linear time oracle complexity follows from the fact that at each binary tree we use b samples at the root, and
then b/2 in levels 1 to D. This gives a total of b(D/2+ 1) samples used at every round. Since we run the algorithm for T =

n

b(D/2+1) rounds, we compute exactly n gradients. To conclude, note the condition n � max{
p
d(D/2+1)2/", (D/2+1)3}

implies the number of rounds T is at least 1. Besides, since the definition of D implies 2D < b, the size of the mini-batches
are well-defined (meaning Algorithm 1 uses batches with at least 1 sample). This concludes the proof.

D. Missing Results for Stationary Points in the Convex Setting

We first give pseudo-codes of algorithms used in the section.

Algorithm 5 Phased SGD(S, (w, x) 7! f(w;x)), R, ⌘,S(·),�)

Input: Dataset S, loss function f(·;x)), radius R of the constraint set W , steps T , ⌘, Selection function S , Noise variance
�

1: w1 = 0
2: K = dlog (|S|)e and T0 = 1
3: for k = 1 to K � 1 do

4: Tk = 2�k
|S| , ⌘k = 4�k⌘,�k = ⌘k�

5: wk+1 = OutputPerturbedSGD(wk, STk�1+1:Tk , R, ⌘k,�k,S(·))
6: end for

Output: w̄ = wK

Algorithm 6 OutputPerturbedSGD(w1, S, (w, x) 7! f(w;x),�(·), R, ⌘,S(·)

Input: Dataset S, loss function f(·;x)), regularizer �(·), radius R of the constraint set W , steps T , ⌘, Selection function
S , Noise variance �

1: for t = 1 to |S|� 1 do

2: wt+1 = ⇧W (wt � ⌘ (rf(wt;xt)))
3: end for

4: ⇠ ⇠ N (0,�2I)
5: w̃ = S

⇣
{wt}

|S|

t=1

⌘

Output: w̄ = w̃ + ⇠

Proof of Theorem 5.1. The privacy guarantee, in both cases, follows from the privacy guarantees of Algorithm 7 and
Algorithm 5, in Lemmas D.3 and D.6 respectively, together with parallel composition.
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Algorithm 7 Noisy GD(S, (w, x) 7! f(w;x)), R, T, ⌘,S(·),�)

Input: Dataset S, loss function (w, x) 7! f(w;x), radius R of the constraint set W , steps T , ⌘, Selection function S , Noise
variance �

1: w1 = 0
2: for t = 1 to T � 1 do

3: ⇠t ⇠ N (0,�2I)
4: wt+1 = ⇧W (wt � ⌘ (rF (wt;S) + ⇠t))
5: end for

Output: w̄ = S

⇣
{wt}

T

t=1

⌘

We now proceed to the utility part. For simplicity of notation, let R = kw⇤
k. Recall the definition of the regularized losses

f (t)(w, x) in Algorithm 3. Let {↵t}t be such that E[F (t�1)(w̄t;D)] � F (t�1)(w⇤
t�1;D)  ↵t where w̄t are the iterates

produced in the algorithm and w⇤
t�1 = argmin

w2Rd F (t�1)(w;D). Following (Allen-Zhu, 2018; Foster et al., 2019), we
first establish a general result which will be useful for both parts of the result.

E krF (w̄T ;D)k = E
�����rF

(T�1)(w̄T ;D) + �
TX

t=0

2t (w̄t � w̄T )

�����

 E
���rF (T�1)(w̄T ;D)

���+ �
T�1X

t=0

2tE
���w̄t � w⇤

T�1

��+
��w̄T � w⇤

T�1

���

 2E
���rF (T�1)(w̄T ;D)

���+ �
T�1X

t=1

2tE
��w̄t � w⇤

T�1

��+ �E
��w0 � w⇤

T�1

��

 2E
���rF (T�1)(w̄T ;D)

���+ 4
T�1X

t=1

p
�2t↵t + �RT�1

 4
p

L1↵T + 4
T�1X

t=1

p
�2t+1↵t + �2T/2R

 4
TX

t=1

p
�2t+1↵t +

p
�L1R

where the third and fourth inequality follows from strong convexity of F (T�1)(·;D) and Lemma D.2 respectively. The
last inequality follows from the setting of T since we have that F (T�1) is L1 +

P
T�1
t=1 2t�  L1 + �2T  2L1 smooth.

Note that the definition of Rt and Lemma D.1,
��w⇤

T�1

��  RT�1, so the unconstrained minimizer lies in the constraint set.
Therefore E

��rF (T�1)(w̄T ;D)
�� = E

��rF (T�1)(w̄T ;D)�rF (T�1)(w⇤

T�1;D)
��  2

p
L1↵T .

Observe that from the setting of T , F (T ) is 4L1 smooth for all t. Furthermore, the radius of the constraint set in the t-th
round is Rt = 2T/2R. Hence, the Lipschitz constant Gt  L0 + 8L1Rt  O

�
L0 + L12T/2

�
. Now we instantiate ↵t,

which is the excess population risk bound of the DP-SCO sub-routine.

Optimal rate: The excess population risk guarantee of Algorithm 7 is in Lemma D.3, with (in context of the notation in
the Lemma) Lipschitz parameter L0 being the same and G� = O

�
L12T/2

�
. Therefore, we have ↵t = Õ

⇣
G

2

�tn
+ dG

2

�tn
2"2

⌘
.

Plugging in the above estimate, we get,

E krF (w̄;D)k = Õ

 
G
p
n
+

p
dG

n"
+

r
�

L1
R

!
= Õ

 
G
p
n
+

p
dG

n"

!

where the last step follows by setting of �.

The optimality claim follows by combining the non-private lower bound in Theorem 5.1, and the DP empirical stationarity
lower bound in Theorem 4.3 together with a reduction to population stationarity as in (Bassily et al., 2019, Appendix C).
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Linear time rate: The excess population risk guarantee of Algorithm 5 is in Lemma D.6, with Lipschitz parameter L0

being the same and G� = O
�
L12T/2

�
. This gives us ↵t = Õ

⇣
L

2
0

�tn
+ dL

2
0

�tn
2"2

⌘
, and thus

E krF (w̄;D)k = Õ

 
L0
p
n
+

p
dL0

n"
+
p
�L1R

!
= Õ

 
L0
p
n
+

p
dL0

n"
+

L1R
p
n

!

where the last step follows by setting of �. Finally, note that the Lemma D.6 requires that n = ⌦̃
⇣

L1+�t
�t

⌘
for all t. This

can be checked to be satisfied by substituting the value of �t.

D.1. Utility Lemmas

We first present some key results which will be useful in the proofs.
Lemma D.1. Let f : Rd

! R be an L1-smooth convex function and let w⇤ = argmin
w2Rd f(w). Let R = kw⇤

k and

w0 2 Rd
such that kw0k  R. Define f̃(w) = f(w) + �

2 kw � w0k
2

and let w̃ = argmin f̃(w). Then for any � � 0,

kw̃k 
p
2R.

Proof. From optimality criterion, 0 = rf̃(w̃) = rf(w̃) + � (w̃ � w0). Therefore, rf(w̃) = � (w0 � w̃) and thus
hrf(w̃), w0 � w̃i > 0. Furthermore, since f is convex, from monotonicity, hrf(w̃), w⇤

� w̃i  0. Since both w0 and w⇤

lie in the ball of radius R (say WR), the above two implies that the hyperplane H = {w : hrf(w̃), w � w̃i = 0} intersects
with WR. Furthermore, since rf(w̃) = � (w0 � w̃), we have that w̃ is the projection of w0 on H i.e. ⇧H(w0).

Let w0 = ⇧H(0). We have that w0
2WR; this is because the hyperplane cuts the hypersphere WR creating a spherical cap

and w0 is the center of the cap. From properties of convex projections k⇧H(w0)�⇧H(0)k  kw0 � 0k  R. Furthermore,
⇧H(0) and ⇧H(w0) � ⇧H(0) are orthogonal. Hence kw̃k2 = k⇧H(w0)k

2 = k⇧H(0)k2 + k⇧H(w0)�⇧H(0)k2 
2R2.

We state the following result from (Allen-Zhu, 2018; Foster et al., 2019).
Lemma D.2. Suppose for every t = 1, 2, . . . T , E[F (t�1)(w̄t;D)] � F (t�1)(w⇤

t�1;D)  ↵t where w̄t are the iterates

produced in the algorithm, w⇤
t�1 = argmin

w2Rd F (t�1)(w;D) and �t = 2t�, we have,

1. For every t � 1, E[
��w̄t � w⇤

t�1

��2]  2↵t
�t�1

2. For every t � 1, E[kw̄t � w⇤
t
k
2]  ↵t

�t

3. E[
P

T

t=1 �t kw̄t � w⇤

T
k]  4

P
T

t=1

p
↵t�t

D.2. Lemmas for NoisyGD (Algorithm 7)

Lemma D.3. Consider a function f(w;x) = `(w;x) + �(w), where w 7! `(w;x) is convex and L0 Lipschitz for

all x, and �(w) is � strongly convex, G� Lipschitz and H� smooth over a bounded convex set W . Algorithm 6 run

with parameters ⌘ = log(T )
�T

, �2 = 64L2
0T log(1/�)
n2"2

, T = max

✓
L1+H�

�
log
�
L1+H�

�

�
,
n
2
"
2(L2

0+G
2
�)

dL
2
0 log(1/�)

◆
and S({wt}t) =

1PT
t=1(1�⌘�)�t

P
T

t=1 (1� ⌘�)
�t wt satisfies (", �)-DP and given a dataset S of n i.i.d. points from D, the excess population

risk of its output w̄ is bounded by,

E

F (w̄;D)� min

w2WR

F (w;D)

�
= O

✓
L2
0

�n
+

dL2
0 log (1/�)

�n2"2

◆
.

Proof. For the privacy analysis, as in (Bassily et al., 2014), for fixed w, the sensitivity of the gradient update is bounded by
2L0
n

. Applying advanced composition, we have that �2 = 64L2
0T log(1/�)
n2"2

suffices for (", �)-DP.

For utility, we first compute a bound on uniform argument stability of the algorithm; let {wt} and {w0
t
} be sequence of

iterates on neighbouring datasets. Note that the function w 7! f(w;x) is L1 +H�-smooth and �-strongly convex for all x.
From the setting of T , we have that the step size ⌘  1

L1+H�
, hence from the standard stability analysis,
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wt+1 � w0

t+1 = wt � ⌘rL(wt;S)� ⌘r�(wt)� w0

t
+ ⌘rL(w0

t
;S0) + ⌘r�(w0

t
)

= wt � w0

t
� ⌘ (rL(wt;S) +r�(wt)�rL(w

0

t
;S)� ⌘r�(w0

t
))

+ ⌘ (rL(w0

t
;S0)�rL(w0

t
;S))

=
�
I� ⌘

�
r

2L(w̃t;S) +r
2�(w̃t)

��
(wt � w0

t
)

+ ⌘ (rL(w0

t
;S0)�rL(w0

t
;S))

where the last equality follows from Taylor remainder theorem where w̃t is some intermediate point on the line joining wt

and w0
t
. Using the fact that ⌘  1

L1+H�
, we have

��wt+1 � w0

t+1

��  (1� ⌘�) kwt � w0

t
k+

2⌘L0

n


2L0

�n

The above gives the same bound for the iterate using the selector S ,

kS({wt})� S({w0

t
})k 

2L0

�n

Note that the overall Lipschitz constant for the empirical loss is L̃0 = L0 +G�. For the excess empirical risk guarantee, we
use Lemma 5.2 in (Feldman et al., 2020) to get,

E [L (w̄;S) +�(w̄)� L(w⇤;S)��(w⇤)] = E [F (w̄;S)� F (w⇤;S)]

= Õ

 
L̃0

2

�T

!

= Õ

 
L̃0

2
+ �2d

�T

!

= Õ

 
L̃0

2

�T
+

dL2
0 log (1/�)

�n2"2

!

= O

✓
dL2

0 log (1/�)

�n2"2

◆

where the last step follows from the setting of T . For the population risk guarantee, we have,

E [F (w̄;D)� F (w⇤;D)] = E [F (w̄;D)� F (w̄;S)] + E [F (w̄;D)� F (w⇤)]

= E[L(w̄;D)� L(w̄;S)] +O

✓
dL2

0 log (1/�)

�n2"2

◆

 L0E kw̄ � w̄0
k+O

✓
dL2

0 log (1/�)

�n2"2

◆

= Õ

✓
L2
0

�n
+

dL2
0 log (1/�)

�n2"2

◆

where the inequality follows from Lipschitzness and standard generalization gap to stability argument.

D.3. Lemmas for PhasedSGD (Algorithm 5)

The following lemma gives population risk guarantees for strongly convex functions under privacy, in terms of variance of
stochastic gradients, as opposed to standard Lipschitzness bounds.

Lemma D.4 (Variance based bound for constant step-size SGD for strongly-convex functions). Consider a func-

tion f(w;x) such that w 7! f(w;x) is � strongly convex, L1 smooth over a convex set W for all x and let
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Ex krf(w;x)� Exrf(w;x)k
2
 V

2
for all w 2 W . Let �t = (1� ⌘�)�t

. Given a dataset S = {x1, x2, . . . , xn}

sampled i.i.d from D and ⌘  1
2� as input, for any w 2W , the iterates of Algorithm 6 satisfy

E
"

1P
n

t=1 �t

nX

t=1

�tF (wt;D)

#
� F (w) 

�

e⌘�n � 1
kw0 � wk2 + ⌘V2

Furthermore, for n = ⌦
�
L1
�
log
�
L1
�

��
, with ⌘ = log(n)

�n
and S({wt}t) =

1Pn
t=1 �t

P
n

t=1 �twt, the excess population risk of

w̃ = S({wt}t) satisfies

E

F (w̃;D)� min

w2W

F (w;D)

�
= O

✓
V
2 log (n)

�n

◆

Proof. An equivalent way to write the update in Algorithm 6 is

wt+1 = argmin
w2W

✓
hrf(wt, xt), wi+

1

⌘
kwt � wk2 +  (w)

◆

where  (w) = 0 if w 2W , otherwise1.

Following standard arguments in convex optimization, for any w 2W , we have

F (wt+1;D)� F (w)

= F (wt+1;D) +  (wt+1)� F (w;D)�  (w)

 F (wt) + hrF (wt), wt+1 � wti+
L1

2
kwt+1 � wtk

2 +  (wt+1)

+ F (w;D)�  (w)

 hrF (wt), wt+1 � wti+ hrF (wt), wt � wi �
�

2
kwt � wk2 +

L1

2
kwt+1 � wtk

2

+  (wt+1) + F (w;D)�  (w)

= Ezt


hrp(wt; zt)�rF (w;D), wt � wt+1i+

L1

2
kwt+1 � wtk

2 + hrp(wt; zt), wt � wi

�

�
�

2
kwt � wk2 +  (wt+1) + F (w;D)�  (w)

 Ezt

h
hrp(wt; zt)�rF (w;D), wt � wt+1i �

✓
1

2⌘
�

L1

2

◆
kwt+1 � wtk

2

+

✓
1

2⌘
�
�

2

◆
kwt � wk2 �

1

2⌘
kwt+1 � wk2

i

 Ezt

h ⌘

2 (1� ⌘L1)
krp(wt; zt)�rF (w;D)k2 +

✓
1

2⌘
�
�

2

◆
kwt � wk2 �

1

2⌘
kwt+1 � wk2

i

 ⌘V2 + Ezt

✓
1

2⌘
�
�

2

◆
kwt � wk2 �

1

2⌘
kwt+1 � wk2

�

where the first inequality follows from smoothness, the second from strong convexity, the third from Fact D.1 in (Allen-Zhu,
2018), fourth from AM-GM inequality and the last from the assumption about variance bound on the oracle.

Now, the above is exactly the bound obtained in the proof of Lemma 5.2 in (Feldman et al., 2020) with the second moment
on gradient norm replaced by variance. Repeating the rest of the arguments in that Lemma gives us the claimed result.

Lemma D.5 (Privacy of Algorithm 6). Consider a function f(w;x) = `(w;x) +�(w) such that w 7! `(w;x) is convex,

L0 Lipschitz, L1-smooth for all z, and �(·) is � strongly convex, G� Lipschitz and H� smooth over a bounded set W .

For n = ⌦
�
L1+H�

�
log
�
L1+H�

�

��
, Algorithm 6 with input as function (w, x) 7! f(w;x), �2 = 64G2(log(n))2 log(1/�)

�2n2"2
,

⌘ = log(n)
�n

and S ({wt}
n

t=1) =
1Pn

t=1 �t

P
n

t=1 �twt for any weights �t satisfies (", �)-DP.

28



Faster Rates of Convergence to Stationary Points in Differentially Private Optimization

Proof. We start with computing the sensitivity of the algorithm’s output: let {wt} and {w0
t
} be sequence of iterates produced

by Algorithm 6 on neighbouring datasets. Note that the function w 7! f(w;x) is L0
1 = L1 +H�-smooth and �-strongly

convex for all x. From the assumption on n, we have that the step size ⌘  1
H+H�

. Suppose the differing sample between
neighbouring datasets is xj , then wt = w0

t
for all t  j. Also,

��wj+1 � w0

j+1

�� = ⌘
��r`(wj ;xj)�r`(wj ;x

0

j
)
��  2⌘L0 =

2L0 log (n)

�n

Now, for any t > j, as in the standard stability analysis we have,

wt+1 � w0

t+1 = wt � ⌘r`(wt;xt)� ⌘r�(wt)� wt + ⌘r`(w0

t
;xt) + ⌘r�(w0

t
)

=
�
I� ⌘

�
r

2`(w̃t;xt) +r
2�(w̃t)

��
(wt � w0

t
)

where the last equality follows from Taylor remainder theorem where w̃t is some intermediate point in the line joining wt

and w0
t
. Using the fact that ⌘  1

L1+H�
and � strong convexity, we have

��wt+1 � w0

t+1

��  (1� ⌘�) kwt � w0

t
k 

��wj+1 � w0

j+1

��  2L0 log (n)

�n

Applying convexity to the weights in the definition of the selector function S , we get,

kS({wt})� S({w0

t
})k 

2L0 log (n)

�n

The privacy proof now follows from the Gaussian mechanism guarantee.

Lemma D.6 (Phased SGD composite guarantee). Consider a function f(w;x) = `(w;x) + �(w) where w 7! `(w;x)
is convex, L0 Lipschitz, L1 smooth for all x, and �(w) is � strongly convex, G� Lipschitz and H� smooth over a

bounded set W . For n = ⌦
⇣

K(L1+H�)
�

log
�
L1+H�

�

�⌘
, Algorithm 6 with �2 = 64L2

0K
2(log(n))2 log(1/�)

�2n2"2
, satisfies (", �)-

DP. Furthermore, with input as function (w, x) 7! f(w;x), a dataset S of n samples drawn i.i.d. from D, ⌘ = log(n)
�n

,

K = ln lnn, �t = (1� ⌘�)�t
and S ({wt}

n

t=1) =
1Pn

t=1 �t

P
n

t=1 �twt, the excess population risk of output wK is bounded

as

E [F (wK ;D)]� min
w2W

F (w;D) = Õ

✓
L2
0

�n
+

dL2
0

�n2"2

◆

Proof. The privacy proof simply follows from parallel composition. For the utility proof, we repeat the arguments in
Theorem 5.3 in (Feldman et al., 2020) substituting the variance-based bound from Lemma D.4. Note that the variance of the
stochastic gradients used, V2

 L2
0, this gives us,

E [F (wK ;D)]� min
w2W

F (w;D) = Õ

✓
L2
0

�n
+

dL2
0

�n2"2

◆

E. Missing Results for Generalized Linear Models

We first give the definition of oblivious subspace embedding.

Definition E.1 ((r, ⌧,�)-oblivious subspace embedding). A random matrix � 2 Rk⇥d is an (r, ⌧,�)-oblivious subspace
embedding if for any r dimensional linear subspace in Rd, say V , we have that with probability at least 1� �, for all x 2 V ,

(1� ⌧) kxk2  k�xk2  (1 + ⌧) kxk2
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It is well-known that JL matrices with embedding dimension k = O
⇣

r log(2/�)
⌧2

⌘
are (r, ⌧,�)-oblivious subspace embeddings

and can be constructed efficiently (Cohen, 2016). A simple example is a scaled Gaussian random matrix, � = 1
p
k
G where

entries of G are independent and distributed as N (0, 1).

Proof of Theorem 6.1. We first prove privacy. Let G(S) and H(S) be the bounds on the Lipschitz and smoothness constants
of the family of loss functions {w 7! f(w;�x)}

x2S
. With k = ⌦(log (2n/�)), from the JL-property, it follows that with

probability at least 1 � �/2, G(S)  2L0 kXk and H(S)  2L1 kXk
2. Hence, using the fact that A is (", �/2)-DP, we

have that Algorithm 4 is (", �)-DP.

We now proceed to the utility part. Let w̃ 2 Rk be the output of the base algorithm in low dimensions. Note that the
final output is w̄ = �>w̃. The transpose of the JL matrix can only increase the norm by the polynomial factor of d
and n, hence kw̄k  poly(n, d) kw̃k. By assumption, P (kw̃k > poly(n, d, L0, L1)) 

1
p
n

. Hence we also have that
P (kw̄k > poly(n, d, L0, L1)) 

1
p
n

. Let W ✓ Rd denote the above set with radius poly(n, d, L0, L1).

We now decompose the population stationarity as,

E krF (w̄;D)k  E krF (w̄;D)�rF (w̄;S)k+ krF (w̄;S)k

 E sup
w2W

krF (w;D)�rF (w;S)k+
L0 kXk
p
n

+ E krF (w̄;S)k , (7)

where the last inequality follows from the above reasoning that that P (w̄ 2W) � 1� 1
p
n

. The first term is bounded from
uniform convergence guarantee in Lemma E.2 noting that the dependence on kWk in the Lemma is only poly-logarithmic.

E sup
w2W

krF (w;D)�rF (w;S)k = Õ

✓
L0 kXk
p
n

◆
(8)

We now prove a bound on the empirical stationarity. Note that it suffices to prove a high-probability (over the random JL
matrix) bound because the norm of gradient is bounded in worst case by L0 kXk. Thus the expected norm of gradient of the
output is bounded by the high probability bound by considering a small enough failure probability.

From the assumption on A, with probability at least 1� �/2,

krF (w̃;�S)k = E
�����
1

n

nX

i=1

�0
yi
(hw̃,�xii)�xi

�����  g(k, n, 2L0 kXk , 2L0 kXk , ", �/2)

We now use the fact that if k = O (rank log (2n/�)), then the JL transform is an (rank, 1/2, �/2) oblivious subspace
embedding (see Definition E.1). Thus, it approximates the norm of any vector in span({xi}

n

i=1), and hence any gradient.
Therefore,

E krF (w̃;�S)k = E
������
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nX
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�0
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!����� �
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2
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1

n

nX

i=1

�0
yi
(
⌦
�>w̃, xi

↵
)xi

����� =
1

2
E krF (w̄;S)k

Thus with k = O (rank log (2n/�)), we get

E krF (w̄;S)k  g(k, n, 2L0 kXk , 2L1 kXk
2 , ", �) = g(rank, n, 2L0 kXk , 2L1 kXk

2 , ", �)

For the other bound, let Id�k 2 Rd⇥k denote the matrix with first k diagonal entries, (Id�k)j,j with j 2 [k], are 1 and the
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rest of the matrix is zero. We have,

E krF (w̄;S)k
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n

nX
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1

n
E

nX
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L0 kI � Id�k�k kxik

 g(k, n, 2L0 kXk , 2L1 kXk
2 , ", �/2) + L0 kXkE kI �Hk

where the second inequality follows from triangle inequality, the third inequality follows from L0-Lipschitzness of the GLM,
the third inequality follows from the accuracy guarantee of the base algorithm and substituting H = Id�k�. To bound
E kI �Hk, we use concentration properties of distribution used in the construction of JL matrices. Specifically, using the
scaled Gaussian matrix construction, from concentration of extreme eignevalues of square Gaussian matrices, we have that
E kI �Hk = Õ

⇣
1

p
k

⌘
(Rudelson & Vershynin, 2010). This gives us,

E krF (w̄;S)k  g(k, n, 2L0 kXk , 2L1 kXk
2 , ", �/2) + Õ

✓
L0 kXk
p
k

◆

Choosing k to minimize the above yields the bound of Õ
⇣

L0kXk
p
k

⌘
. Combining the two cases, yields the bound of

g(k, n, 2L0 kXk , 2L1 kXk
2 , ", �/2) on gradient norm. Plugging this and the bound in Eqn. (8) in Inequality (7) gives the

claimed bound.

Lemma E.2. Let D be a probability distribution over X such that kxk  kXk for all x 2 supp(D). Let f(w; (x, y)) =
�y (hw, xi) be an L1-smooth L0-Lipschitz GLM. Then, with probability at least 1� �, over a draw of n i.i.d. samples S
from D, we have
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Proof. We first give a bound on the expected uniform deviation, ES⇠Dn sup
w2W krF (w;D)�rF (w;S)k. The gradient

of the loss function is rf(w;x) = �0
x
(hw, xi)x. We start with the standard symmetrization trick,

ES⇠Dn sup
w2W

krF (w;D)�rF (w;S)k

= ES⇠Dn sup
w2W

�����E�
0

y
(hw, xi)x�

1

n

nX

i=1

�0
xi
(hw, xii)xi

�����

= ES⇠Dn sup
w2W

�����E{x0
i}⇠Dn

1

n

nX

i=1

�0
y
0
i
(hw, x0

i
i)x0

i
�

1

n

nX

i=1

�0
xi
(hw, xii)xi

�����

 ES,S0⇠Dn sup
w2W

�����
1

n

nX

i=1

�0
y
0
i
(hw, x0

i
i)x0

i
�

1

n

nX

i=1

�0
xi
(hw, xii)xi

�����

= ES,S0⇠DnE{�i}
sup
w2W

�����
1

n

nX

i=1

�i
⇣
�0
y
0
i
(hw, x0

i
i)x0

i
� �0

xi
(hw, xii)xi

⌘�����

 2ES⇠DnE{�i}
sup
w2W

�����
1

n

nX

i=1

�i�
0

yi
(hw, xii)xi

����� (9)
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where �i are i.i.d. Rademacher random variables. For fixed {xi}
n

i=1, consider a set W0 s.t. for all w 2 W and i 2 [n],
there exists w0 2W0 such that |hw, xii � hw0, xii|  ⌧ . Since kwk  kWk and kxik  kXk, we require only 2nkWkkXk

⌧

points in W0 to satisfy the above covering condition. Therefore,
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where the second last inequality follows from smoothness and the last from the definition of cover W0. For fixed w0, from
standard manipulations, we have,
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Using Massart’s finite class lemma to handle all w0 2W0, and substituting the above in Eqn. (10), we get,
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, we get,
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Finally, substituting the above in Eqn. (9) gives us the following in-expectation bound.
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4L0 kXk log
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For the high-probability bound, let  (S) = sup
w2W krF (w;D)�rF (w;S)k and let w⇤

2W achieves the supremum.
We can bound the increment between neighbouring datasets S and S0 as,

| (S)�  (S0)|  |krF (w⇤;D)�rF (w⇤;S)k � krF (w⇤;D)�rF (w⇤;S0)k|
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
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Finally, applying McDiarmid’s inequality gives the claimed bound.
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Proof of Corollary 6.2. The results follow from Theorem 6.1 provided we show that the conditions on the base algorithm in
the Theorem statement are satisfied. The privacy and accuracy claims follow from Theorem 3.2 and 5.1 respectively. We
note that even though we are given population stationarity guarantee for the convex case, the same bound for empirical
stationarity guarantee simply follows from the re-sampling argument in (Bassily et al., 2019). The only thing left to show is
the high-probability bound on the trajectory of the algorithm.

Non-convex setting with Private Spiderboost: From the update in Algorithm 2, we have that for any t

krtk 

tX

i=1

k�ik+

�����

tX

i=1

gt

�����  2tL0 +

�����

tX

i=1
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�����

where the last inequality follows from the Lipschitzness assumption. Note that gt ⇠ N (0,�2
t
I) where �t 

O (max (�1, b�2)) = O (poly(n, d, L0, L1)). Hence
���
P

t

i=1 gt
��� 

p
d log (1/�0)O (poly(n, d, L0, L1)) with probabil-

ity at least 1 � �0. Taking a union bound over all t 2 T gives us kwtk  poly(n, d, L0, L1, log (poly(n, d)/�)) with
probability at least 1� �. Substituting � = 1

p
n

yields the guarantee of Theorem 6.1.

Convex setting with Recursive Regularization: Since the iterates are restricted to the constraint set, the final output,
with probability one, lies in the set of radius

RT = 2T/2
kw⇤
k = O

 r
L1

�
kw⇤
k

!
= O

 
L1 kw⇤

k
3/2 n

L0

!

which completes the proof.
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