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Abstract

We study the problem of approximating stationary
points of Lipschitz and smooth functions under
(e, 6)-differential privacy (DP) in both the finite-
sum and stochastic settings. A point w is called
an a-stationary point of a function F : R? — R if
I[VF(w)] < . We give a new construction that
improves over the existing rates in the stochas-
tic optimization setting, where the goal is to find
approximate stationary points of the population
risk given n samples. Our construction finds a
O(nll/S + D{fg] 1/2)—5tati0na1'y point of the pop-
ulation risk in time linear in n. We also provide
([42]°7%)-
ne

an efficient algorithm that finds an O
stationary point in the finite-sum setting. This im-
proves on the previous best rate of O ( [n—‘/g] 1 2).
Furthermore, under the additional assumption of
convexity, we completely characterize the sam-
ple complexity of finding stationary points of the
population risk (up to polylog factors) and show

that the optimal rate on population stationarity is

e (ﬁ + *T{—g) Finally, we show that our methods

can be used to provide dimension-independent

rates of O(ﬁ + min ([ Y22k ] 2/3, (nsm )) on

population stationarity for Generalized Linear
Models (GLM), where rank is the rank of the
design matrix, which improves upon the previous
best known rate.
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1. Introduction

Protecting users’ data in machine learning models has be-
come a central concern in multiple contexts, e.g. those in-
volving financial or health data. In this respect, differential
privacy (DP) is the gold standard for rigorous privacy pro-
tection (Dwork & Roth, 2014). Therefore, recent research
has focused on the limits and possibilities of solving some
of the most well-established machine learning problems un-
der the constraint of DP. Despite intensive research, some
fundamental problems remain not completely understood.
One example is nonconvex optimization; namely, the task
of approximating stationary points, which has been heavily
studied in recent years in the non-private setting (Fang et al.,
2018; Ma et al., 2018; Carmon et al., 2017; Nesterov &
Polyak, 2006; Ghadimi & Lan, 2013; Arjevani et al., 2019;
Foster et al., 2019). This problem is motivated by the in-
tractability of nonconvex (global) optimization, as well as
by a number of settings where stationary points have been
shown to be global minima (Ge et al., 2016; Sun et al.,
2016).

1.1. Contributions

In this work, we make progress towards resolving the com-
plexity of approximating stationary points in optimization
under the constraint of differential privacy, for both empir-
ical and population risks. A summary of our new results
is available in Table 1. In what follows, d is the problem
dimension, n is the dataset size, and €, J are the approximate
DP parameters.

Our first set of results pertains to the task of approximating
stationary points of the population risk. Results for this
problem are scarce. We provide the fastest rate up to date

for this problem under DP, of O(nll/3 + [g} 1/2), with
an algorithm that moreover has oracle complexity n (i.e.,
is single-pass). This algorithm is a noisy version of the
SPIDER algorithm (Fang et al., 2018), whose gradient esti-
mators are built using a tree-aggregation data structure for

prefix-sums (Asi et al., 2021).

Next, we focus on the task of approximating sta-
tionary points in empirical nonconvex optimization
(a.k.a. finite-sum case). In this context, we provide al-
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gorithms with rate O( [%}2/ 3), and oracle complexity'

O( max { ("5;2 ) 1/3, (3—%)2}) This rate is sharper than

the best known for this problem (Wang et al., 2017).

We continue by investigating stationary points for convex
losses and give an algorithm based on the recursive regular-

ization technique of (Allen-Zhu, 2018) which achieves the

optimal rate of © (ﬁ + L) on population stationarity. To

d
ne
establish optimality, we give a lower bound of Q(%) on
empirical stationarity under DP (Theorem 4.3) and a non-
private lower bound of Q(ﬁ) on population stationarity
(Theorem A.2). We also give a linear-time method, which
achieves the optimal rate when the smoothness parameter is
not so large. We conclude the paper showing a black-box
reduction that converts any DP method for finding station-
ary points of smooth and Lipschitz losses into a DP method
with dimension-independent rates for the case of general-
ized linear models (GLM). Using our proposed method with
Private Spiderboost as the base algorithm yields a rate of

~ . frank12/3
0] (ﬁ + min ([ poye k] / 5 (nsz/s
tionarity. This improves upon the result of (Song et al.,
2021) which proposed a method with O ([ ¥£22%] Y 2) em-

.. . ) ne
pirical stationarity~.

)) on population sta-

1.2. Our Techniques

Our methods combine multiple techniques from optimiza-
tion and differential privacy in novel ways. The lower bound
for the empirical norm of the gradient uses fingerprinting
codes to a loss similar to that used for Differentially Private-
Empirical Risk Minimization (DP-ERM) (Bassily et al.,
2014), crafted to work in the unconstrained case. This lower
bound can be extended to the population gradient norm by a
known re-sampling argument (Bassily et al., 2019). We also
give a non-private lower bound of €2 (1/+/n) on population
stationarity with n samples which holds even in dimension
1, as opposed to previous results (Foster et al., 2019).

Efficient algorithms for (both empirical and population)
norm of the gradient are derived using noisy versions of
variance-reduced stochastic first order methods, which have
proved remarkably useful in DP stochastic optimization (Asi
etal., 2021; Bassily et al., 2021b;a). In the case of the empir-
ical risk, we use a noisy version of SpiderBoost (Wang et al.,
2019c). We remark that our methods can achieve compara-
ble rates when applied to similar algorithms such as Spider
(Fang et al., 2018) and Storm (Cutkosky & Orabona, 2019),
but SpiderBoost allows for a larger learning rate which is

"We consider for complexity the first-order oracle model, stan-
dard for continuous optimization (Nemirovsky & Yudin, 1983).

2This is the rate obtained after fixing a mistake in the proof of
Theorem 4.1 in (Song et al., 2021). Specifically, in their proof, the
last term in Eq. (14) is missing a factor of 7T'.

considered better in practice. For the population risk, it is
worth noting that the empirical norm of the gradient does
not translate directly into population gradient guarantees,
even if the algorithm in use is uniformly stable (Bousquet &
Elisseeff, 2002), since this type of guarantee does not enjoy
a stability-implies-generalization property. Therefore, we
opt for single pass methods that combine variance-reduction
with tree-aggregation; these techniques are particularly suit-
able for the classical Spider algorithm (Fang et al., 2018),
which is the one we base our method on. For the convex
setting, we use recursive regularization (Allen-Zhu, 2018)
which was used to achieve the optimal non-private rate by
(Foster et al., 2019).

Finally, our method for (non-convex) GLMs uses the
Johnson-Lindenstrauss based dimensionality reduction tech-
nique similar to (Arora et al., 2022), which focused on the
convex setting. Moreover, for population stationarity of
GLMs, we give a new uniform convergence result of gradi-
ents of Lipschitz functions. This guarantee, unlike the prior
work of (Foster et al., 2018), has only poly-logarithmic de-
pendence on the radius of the constraint set, which is crucial
for our analysis.

1.3. Related Work

The current work fits within the literature of differentially
private optimization, which has primarily focused on the
convex case (Chaudhuri et al., 2011; Jain et al., 2012; Kifer
et al., 2012; Bassily et al., 2014; Talwar et al., 2014; Jain
& Thakurta, 2014; Talwar et al., 2015; Bassily et al., 2019;
Feldman et al., 2020; Asi et al., 2021; Bassily et al., 2021b).
The culmination of this line of work for the convex smooth
case showed that optimal rates are achievable in linear time
(Feldman et al., 2020; Asi et al., 2021; Bassily et al., 2021b).
Our work shows that in the convex case similar rates are
achievable for the norm of the gradient: this result is useful,
e.g., for dual formulations of linearly constrained convex
programs (Nesterov, 2012), and moreover it has become a
problem of independent interest (Allen-Zhu, 2018; Foster
etal., 2019).3

Regarding stationary points for nonconvex losses, work
in DP is far more recent, and primarily focused on the
empirical stationarity (Wang et al., 2017; Zhang et al., 2017;

3To provide a specific example, consider the dual of the reg-
ularized discrete optimal transport problem, as discussed in (Di-
akonikolas & Guzman, 2023), Section 5.6. If the marginals u, v in
that model are accessed through i.i.d. samples, then this becomes
an SCO problem. Moreover, it is argued in that reference that
approximate stationary points provide approximately feasible and
optimal transports through duality arguments. Hence, the result is
an SCO problem where we require approximate stationary points.
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Setting Convergence Our Rate Previous best-known rate
2/3 1/2
Empirical (%) (Thm. 4.2) (%) (Wang et al., 2017)
Non-convex 72 ;
. 1/2
Population L+ (‘n/—f) (Thm. 32) | Vde + (¥2) (Zhou et al., 2020)
Convex Population ﬁ + % (Thm. 5.1) None
.. Vrank12/3 1/2
Non-convex Empirical [ ff:k] / A W (Cor. 6.2) (7“51‘1”‘) (Song et al., 2021)
GLM
Population % + [Eank] 23\ ﬁ (Cor. 6.2) None
Convex GLM | Population % Vrank A \/1?( (Cor. 6.2) None

Table 1. Results summary: We omit log factors and function-class parameters. The symbol A stands for minimum of the quantities.

Wang & Xu, 2019; Wang et al., 2019a)*. Under similar
assumptions to ours these works approximate stationary

points with rate O ( [%] 1 2), which is slower than ours.

Works addressing population guarantees for the norm of
the gradient under DP are scarce. (Zhou et al., 2020) pro-
posed a noisy gradient method, whose population guaran-
tee is obtained by generalization properties of DP. How-
ever, the best guarantee obtainable with their analysis is

O([ﬁ]l/2 + Vde)®. Note that for any ¢ this rate is

ne

Q([d/n]*/?). Under additional assumptions (on the Hes-
sian), (Wang & Xu, 2019) obtains a rate of O(1/d/(ne)) by
uniform convergence of gradients, which is sharper when ¢
is constant. By contrast, our rate is much faster than both
for ¢ = ©(1). In particular, in this range, our rates are faster
than those obtained by uniform convergence, O(y/d/n)
(Foster et al., 2018). Moreover, our method runs in time
linear in n. On the other hand, in the much more restric-
tive setting where the loss satisfies the Polyak-Lojasiewicz
(PL) inequality, (Zhang et al., 2021) provide population risk
bounds of O(d/[ne]?) under DP.

The work of (Bassily et al., 2021a) studies population guar-
antees for stationarity in constrained settings, obtaining

rates O( L+ [%} 2/ 5) in linear time. Notice first that

ni/3
these guarantees are based on the Frank-Wolfe gap, mak-

ing those results incomparable to ours. Despite this fact,

4 Another work, (Wang et al., 2019b), claims to achieve this
with improved oracle complexity. However, the analysis therein
contains an error which is not easily fixed. Specifically, (Wang
et al., 2019b, proof of Theorem 4.1) uses oabg > 0.7 to employ
privacy amplification via subsampling. This is not true as they set
o0 = 1/[d**\/n] and by = \/n/d*/*.

3(Zhou et al., 2020) omits the term v/de, but this omission is
only valid when & < 1/[nV/d]'/?.

their rates are slower than ours.® On the other hand, they
provide results for (close to nearly) stationary points in
constrained/unconstrained settings, for a broader class of
weakly convex losses (possibly nonsmooth). This result
is then more general, but the rate of O(nll/4 + [%ﬂ 1/3)
is substantially slower than ours, and their algorithm has

oracle complexity which is superlinear in n.

The problem of stationary points in (nonprivate) stochastic
optimization has drawn major attention recently (Ghadimi &
Lan, 2013; 2016; Fang et al., 2018; Allen-Zhu, 2018; Foster
et al., 2018; 2019; Arjevani et al., 2019). To the best of our
knowledge, no lower bounds for the sample complexity’ of
this problem are known (beyond those known for the convex
case (Foster et al., 2019)). On the other hand, oracle com-
plexity is by now understood: in high dimensions, for (on
average) smooth losses the optimal stochastic oracle com-
plexity rate is O(1/n'/3) (Arjevani et al., 2019). Although
this provides some evidence of the sharpness of our results
(see Appendix B.2), note that these lower bounds require
very high dimensional constructions (namely, d = Q(1/a%),
where « is the rate), which limits their applicability in the
private setting.

In an independent and concurrent work, (Tran & Cutkosky,
2022) achieve a rate of O( [ﬁ} 2/8

v + ﬁ) on the empir-
ical gradient with gradient complexity O(n"/3€3/*/d?/3)
using a DP tree aggregation method. Note that our result

removes the 1/y/n term and improves the oracle complexity

to O( max { (sz)l/g, (\7}—%)2}) which is better whenever

®We believe our methods can be extended to constrained set-
tings using gradient mapping, a guarantee for which is stronger
than for Frank-Wolfe gap (Lan, 2020, Section 7.5.1). We defer this
extension to future work.

"Sample complexity is the fundamental limit on the sample
size needed, as a function of «, to achieve « stationarity. This
is different from the oracle complexity as one is not limited to
first-order methods.
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d < n2el/4 (i.e. essentially whenever the error is nontrivial).
Further, we accomplish this with a much simpler analysis.

2. Preliminaries

Let f : RY x X — R denote a (loss) function tak-
ing as input, the model parameter w and data point z €
X. We assume that the function w — f(w;x) is Lo-
Lipschitz and Li-smooth. That is, for all z € X and
wi,wy € RY [ flwi;x) = flwg;2)] < Lo lwi — ws|
and |V f(wy;x) — V(we;z)|| < Ly [Jwy —ws|. Given
a dataset S € X" of n points, we define the empirical
risk as F(w;S) = 3" | f(w;x;). Assuming that the
data points are sampled i.i.d. from an unknown distri-
bution D, the population risk, denoted as F'(w; D) is de-
fined as F(w; D) = E,p f (w; x). Furthermore, we define
Fy = F(0; S) — min,cpa {F(w; S)} when discussing the
empirical case and similarly for the population loss when
discussing stationary points of the population loss. We use
w* to denote the population risk minimizer. Finally, we use
the notation I; to denote the d x d identity matrix and use
[a] to denote the set {1,2,...,a} fora > 1.

Stationary points: Given a dataset S, our goal is to find
an a-stationary point w of either empirical or population
risk; formally, |VF(w;S)|| < aor [|[VF(w; D)|| < a,
respectively.

Differential Privacy (DP) (Dwork et al., 2006): An algo-
rithm A is (e, §)-differentially private if for all datasets
S and S’ differing in one data point and all events
£ in the range of the A, we have, P(A(S) € ¢&) <
efP(A(S") € &) +.

Generalized Linear Models (GLMs): For data domain
X CR%andy C R, aloss function f : RixXx)Y — Ris
a GLM if f(w; (z,y)) = ¢, ({w, z)) for some function ¢,,.
Our result for GLMs uses random matrices which satisty
the Johnson-Lindenstrauss (JL) property, defined as follows.

Definition 2.1 ((y, 8)-JL property). A random matrix ¢ €
R¥*d satisfies (v, 3)-JL property if for any u,v € R4,
P[(®u, Pv) = (u,v)| > 7 [[ull 0]} < 5.

3. Stationary Points of Population Risk

For the population gradient, we provide a linear time al-
gorithm; see Algorithm 1 for pseudocode. It is a noisy
variant of SPIDER (Fang et al., 2018), and utilizes a vari-
ance reduction technique tailored to an underlying binary
tree structure. Namely, we run 7' rounds, where at the
beginning of round ¢ we build a binary tree of depth D,
whose nodes are denoted by u; s, where s € {0,1}. Every
node u; s is associated with a parameter vector w; s and
a gradient estimate V, ;. Next, we perform a Depth-First-

Search traversal of the tree. We denote by DFS[D)] the set of
nodes in the visiting order excluding the root, for example:
DFS[2] = {UO, Uoo, U1, UT, U0, uu}. When a left child
node is visited, it receives the same parameter vector and
gradient estimator of the parent node.

Algorithm 1 Tree-based Private Spider

Imput: S = (x1,...,2,) € X™: private dataset, (¢,9):
privacy parameters, 7": number of rounds, b: batch size
at beginning of each round, D: depth of trees at each
round, 3: step-size parameter, &: accuracy parameter.

wo pap—1) =0

1:
2: fort =1to T do
3: Set wy g = Wi_1 p(2D 1)
4:  Draw abatch Sy & of b data points, set S <— S\ St
5. Setol, = 8L log(1.25/0) lObg2(612.25/6)'
6: Vt,g %Zl’est,z Vf (wt’g;x) + gt,@, where
gt ~ N (07Hd0t27g).
7. for u; s € DFS[D] do
8: Let s = Sc, where ¢ € {0, 1}.
9: if c = 0 then
10: vt,s = vt,§
11: Wt,s = Wt 5
12: else
13: Draw a batch S; , of % data points, set S «
S\ Sis.
14: Set noise variance o7, 1= %.
15: Ay = 2‘;' S (Vf(wps;2)=V [ (w52))+
:EESt,s
gt,s, Where gt,sNN (0, ]Idof,s) .
16: Vt,s - Vt,§+At7s-
17: end if
18: if |s| = D (i.e, u s is a leaf) then
19: if | V¢ 5] < 26 then
20: Return wy ¢
21: end if
22: Let u; o+ be the next vertex in DFS[D].
23: Set s 1= #”vt”
24: Wt s+ = Wt,s — nt,svt,s~
25: end if
26:  end for
27: end for

28: Return w, chosen uniformly at random from {wt,s 1t e
[T], w5 is a leaf}.

On the other hand, when a right child node is visited, it
receives a fresh set of samples and uses it to update the
gradient estimator coming from the parent node. Every
time a leaf node is reached, a gradient step is performed
using the gradient estimator associated to the leaf. Finally,
the parameter vector of a right child node comes from the
gradient step performed at the right-most leaf in the left sub-
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tree of it. The use of the binary tree structure is benefitial
because every gradient estimator is updated at most D times
within a round of 2” optimization steps, as opposed to the
original SPIDER algorithm where the gradient estimators
are updated at every optimization step. This way, we are able
to perform the same number of optimization steps but adding
substantially smaller amounts of noise, leading to a faster
rate than the one we would get without using the tree. In the
following, we denote by ¢(k) the binary representation of
any number k € [0,2° — 1] and by |s| the depth of u, 4 for
any t € [T].

The proposed algorithm is similar to the one in Section
5 of (Bassily et al., 2021b) for constrained Differentially
Private-Stochastic Convex Optimization (DP-SCO), with
the key difference that Algorithm 1 executes each round
with fixed depth trees, which is key for our convergence
analysis, whereas the prior work leverages convexity to con-
struct trees that increase depth by one at each round. In
addition, to choose the step-size in (Bassily et al., 2021b)
the authors leverage the bounded diameter of the domain,
while our step-size is chosen as that of (Fang et al., 2018),
i.e. normalized by the norm of the gradient estimator and
proportional to the target accuracy. This choice is crucial
for controlling the sensitivity of the gradient variation esti-
mator in the unconstrained setting, and consequently for the
privacy analysis as well. Our results are presented below
and the proofs are deferred to Appendix C.

Theorem 3.1 (Privacy guarantee). For any €,§ € [0,1],

Algorithm 1 is (¢,0)-DP,

Theorem 3.2 (Accuracy guarantee). Let p € (0,1), €,6 >
1/4

0, b = max {n2/3, M} D be such that D2P+1 =

NG

. vay1/2
b, T = o/ @ fLomaX{ 1/37(n6) }
ﬂ =

%}, and & = Co, where C =

256 log (L2 log (2272 ) 4 SLIWIDIDRED - ey,
0

for any n > max{vVd(Z +1)?/e, (£ + 1)3}, with proba-
bility 1 — p, Algorithm 1 ends in line 20 returning an iterate
Wy, with

amin{l,

()"}

1/3° \ ne

|V F(wy s; D)|| < 3V2LoC max{
Furthermore, Algorithm 1 has oracle complexity of n.

4. Stationary Points of Empirical Risk
4.1. Efficient Algorithm with Faster Rate

The algorithm for our upper bound is a noisy version of the
SpiderBoost algorithm (Wang et al., 2019¢)®. The algorithm

8SpiderBoost itself is essentially the Spider algorithm (Fang
et al., 2018) with a different learning rate and analysis.

works by running a series of phases of length ¢q. Each phase
starts with a minibatch estimate of the gradient, and subse-
quent gradient estimates within the phase are then computed
by adding an estimate of the gradient variation. The key to
the analysis is to bound the error in the gradient estimate
at each iteration. Towards this end, we have the following
generalization of the (Wang et al., 2019¢c) Lemma 1, which
follows directly from (Fang et al., 2018) Proposition 1.

Lemma 4.1. Consider Algorithm 2, and for any t €

{0,.,T} let s = EJ q.
line 9 is an unbiased estimate of VF(wy;S) satisfying
E {Hvst — VF(ws,; S)||2} < 7 and each A; computed
in line 13 is an unbiased estimate of the gradient variation
satisfying B [[| A — [VF(wy; S) = VF(w ;)] <

If each V; computed in

72 ||we — wy_1||>. Then for any t > s; + 1, the iterates
of Algorithm 2 satisfy

t
E[|Ve= VE)|?] <75 > E[Jwk —wea|?] + 77

k=st+1

For privacy, using smoothness we observe the sensitivity of
the gradient variation estimate at iteration ¢ is proportional
to 3 ||wy — we—1||. Thus we can apply the above lemma
with 72 = LO +Lic?and 75 = Ll + L3052 (note the Gaus-
sian noise i 1n line 13 is drawn w1th variance scale at most
02 |lw; — wy—1|?). By carefully balancing the algorithm
parameters, we are then able to obtain the following result.
The full proof is deferred to Appendix B.1.

Theorem 4.2 (Private Spiderboost ERM). Let ¢, d € [0, 1].

(Loe)? Vdmax{1,vI1Fo/Lo} Al
FoLqidlog(1/6)° € .

Let n > max

gorithm 2 is (¢,0)-DP. Further, there exist settings of
T,n,q,b1,bs such that Algorithm 2 has E[||VF (w;9)|]

bounded as

0 <\/F0L1L0\/d10g (1/5)>2/

3
N Lo+/dlog (1/6)
ne

ne

and oracle complexity O (max { ("sgffj/s) , (\%)2 })

Note that the restriction on 7 in the theorem statement
is essentially trivial when the upper bound is nontrivial.
We remark that the case where the dominant error term

isa = é([%g] 23 , then we approximately have oracle

complexity O( max { a )

4.2. Lower Bound

We now show a lower bound for the sample complexity of
finding a stationary point under differential privacy in the un-
Loy/dlog(1/6) )

constrained setting, which shows that the O( —
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Algorithm 2 Private SpiderBoost

Input: Dataset: S € X", Function: f : R x X — R,
Learning Rate: 7, Phase Size: ¢, Batch Sizes by, bo,
Privacy Parameters: (e, ¢), Iterations: T’

1: wo = 0

cLoy/log(1/9)

2: 01 = fmax{é,

5

- } where ¢ 1s a uni-

S

versal constant.

3: 09 = claylog(1/0) 1§g(1/6) max {i, g}
;09 = 2cLoy/l0g(1/9) 1€og(1/6) max {é7 ?}

4
5: fort=0,...,T do

6: if mod (t,¢q) = 0 then
7 Sample batch S; of size by

8 Sample g; ~ N(0,140%)

9 Vi= i > ves, VI (wi;z) + g

10:  else

11: Sample batch S; of size b

12: gt ~N(O,]Idmin{0§ [lwe fwt_lﬂz,c’\r%})

13: A, = éz$63t [V f(we;x) — V f(we—1; 2)]+9:
14: Vi=Vi1+ A

15:  endif

16: Wiy1 = Wt — T]Vt

17: end for

18: return @ uniformly at random from {wy, ..., wr}

term in the rate given in Theorem 4.2 is necessary. Further-
more, as our lower bound holds for all levels of smoothness,
it also shows that our rate in Theorem 4.2 is optimal in the

(admittedly uncommon) regime where L; < \gﬁ Our
lower bound in fact holds even for convex functions. Fur-
thermore, this result implies the same lower bound (up to
log factors) for the population gradient using the technique

in (Bassily et al., 2019), Appendix C.

Theorem 4.3. Given Ly, Li,n,e = O(1),27%(" < § <
l/n””(l), there exists an Lo-Lispchitz, L1-smooth (con-
vex) loss f : R x X — R and a dataset S of n points
such that any (g, )-DP algorithm run on S with output w

satisfies,
dlog (1/0)
ne ’

The proof is based on a reduction to DP mean estimation.
Specifically, we consider a instance of the Huber loss func-
tion for which the minimizer is the empirical mean of the
dataset. We then argue that close to the minimizer, the
empirical stationarity is lower bounded by DP mean esti-
mation bound (Steinke & Ullman, 2015), and far away, by
construction, the empirical stationarity is L.

IVF(w; S)] = (Lo min (1,

Proof of Theorem 4.3. For any r > 0, let W, denote the
ball of radius r centered at the origin. Let B = %’ Consider
the loss function:

B -l

Lo ||lw—z| — T

ifflw—af| < B

otherwise

The function f(w;z) is convex, Lji-smooth and Lg-
Lispchitz in R%. We restrict to datasets S = {z;};_, where
x; € Wpyy for all i, and let F(w; S) = L 3% | f(w; ;)
be the empirical risk on S. The unconstrained minimizer of
F(w;S)isw* = L 3" | x; which lies in Wp /4.

For any w € Wsp/4, w lies in the quadratic region around
all data points. Hence, from L;-strong convexity of w >
F(w; S) on Wsp 4, we have that whenever w € Wsp 4,

IVE(@; )| 1@ — w| > (VE(w: 5), w — @)
> F(w;S) — F(w'; S)
Ll ||2

> o - w'
2

Let E be the event that w € Wsp/4 and let Eg denote the
conditional expectation (conditioned on event E) operator.
Then,

L
Epl|VF(@; 5)] = 2E o — v’

where the last inequality follows from known lower bounds
for DP mean estimation (Steinke & Ullman, 2015; Kamath
& Ullman, 2020). We remark that the lower bound in the
referenced work is for algorithms which produce outputs
in the ball of the same radius as the dataset, i.e. Wg/4.
However, a simple post-processing argument shows that
the same lower bound applies to algorithms which produce
output in Wsp /4. Specifically, assuming the contrary, we
simply project the output in Wap,4 to Wp/4: privacy is
preserved by post-processing and the distance to the mean
cannot increase by the non-expansiveness property of pro-
jection to convex sets, hence a contradiction. This gives

dlog(1/5)>>

Let W = {w: |w — w*|| < B/2}. Since W C WsB/4,
we have that the above conditional lower bound applies for
@ € W as well. We now consider @ ¢ W. Let w' be
any point on the boundary of W, denoted as . Note
that w’ lies in the region where, for any data point, the

Ep [|VE(w;S)[] > © <Lo min (17
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corresponding loss is a quadratic function. Hence, by direct
computation, VF(w’; S) = L1 (w" — w*). Therefore,
L,B?

(VE@), 0 = w") = L o’ —w"* = ==

We now apply gradient monotonicity to obtain the following
(see Lemma A.1, Appendix A),

LiB? 2
> .

= 4 B

Lo
2 )

Ege [[VF(w; S|

where E° denotes the complement set of £. We combine the
above bounds using the law of total expectation as follows,

E[IVF (w; )]

= Ep[|VE(@; S)|IP{w € E} + Ege[|VF(w; 8)||P{w € E°)

- Q(Lo min {1, ”“%(1/6)})1?(@ € E) + Q(Lo)P(w € E°)
. dlog (1/5)

= Q(Lomln{l, T})

This completes the proof. O

Challenges for Further Rate Improvements: Given the
above lower bound, the question arises as to whether the

O( [%]2/ 3) term can be improved. An informal argument
using the oracle complexity lower bound of (Arjevani et al.,
2019) suggests several major challenges in obtaining further
rate improvements. A more detailed version of the following

discussion can be found in Appendix B.2.

Consider methods which ensure privacy by directly priva-
tizing the gradient/gradient variation queries. The aim of
such methods is to design some private stochastic first or-
der oracle, O, s, such that a set of G queries to O, 5
satisfies (e,d)-DP, and use this oracle in some optimiza-
tion algorithm A(O, s/). Such a setup encapsulates nu-
merous results in the convex setting (Bassily et al., 2019;
Kulkarni et al., 2021), and is even more dominant in non-
convex settings (Wang et al., 2017; Zhou et al., 2020; Abadi
et al., 2016). Under advanced composition based argu-
ments, to make G calls to such a private oracle one needs
e <eg/ V/G. Now, standard fingerprinting code arguments
suggest lower bounds on the level of accuracy of any such
private oracle (Steinke & Ullman, 2015). Specifically, with-
out leveraging further problem structure beyond Lipschitz-
ness, one needs the gradient estimation error to be at least

= (Loi vC’ydlog'.(l/é)). A similar argument suggests the

ne

error in the gradient variation between iterates w, w’ must

| = Q(LlHw—w'||nv€Gd1°g(1/5)). Now

consider some optimization algorithm, .4, which takes as
input a stochastic oracle O for some smooth function L.
The lower bound of (Arjevani et al., 2019) suggests that if .4
makes at most G queries to O (as a black box) the algorithm

at least 75 [|jw — w

: o\ /3 T
satisfies E [|[VL(AO))]]] = Q ((%) + ﬁ) If
O is a private oracle satisfying the previously mentioned
conditions, we would then have under the setting of 7; and

To suggested by privacy that the convergence guarantee for
E[|VL(A(O))]|] is lower bounded as

0 <¢FOL1L0\/dlog<1/6>>”3+Lo dlog (1/9)

ne ne

This indicates a substantial challenge for future rate improve-
ments, as alternative methods which avoid private gradients
(see e.g. (Feldman et al., 2020)) rely crucially on stability
guarantees arising from convexity.

S. Stationary Points in the Convex Setting

Algorithm 3 Recursive Regularization
Input: Dataset S, loss function f, steps T, {\:},, {R:},.
PrivateSubRoutine, number of steps of sub-routine
{K.}, selector functions {S;(-)},, step size {7 },, noise
variances {o},
1: wg = 0, ng = 1
2: Define function (w,z) — fO(w;z) = f(w;z) +
A [|w = wol”
3:fort=1toT —1do
e 3]
t t—1 T
5. w; = PrivateSubRoutine(S,, ., f¢ Y, Ry,
K, ne, Si(), 0t)
6: Define function (w,x)
_ . _ 2
FED (wi ) + % Jw — @)
7: end for
Output: w = wr

o fOwia) =

In this section, we additionally assume that the loss function
is convex. The motivation for this is two-fold: firstly, this
setting has recently gained attention in a non-private set-
ting (Nesterov, 2012; Allen-Zhu, 2018; Foster et al., 2019).
Secondly, in this setting we are able to establish tightly the
sample complexity of approximate stationary points.

Our method is based on the recursive regularization tech-
nique proposed in (Allen-Zhu, 2018), and further improved
by (Foster et al., 2019). The main idea, as the name suggests,
is to recursively regularize the objective and optimize it via
some solver. For the DP setting, the key idea is to use a
private sub-routine as the inner solver. Furthermore, while a
solver for the unconstrained problem suffices non-privately,
we need to carefully increase the radius of the constrained
set over which the solver operates.

Theorem 5.1. Let Lo, L1,e,6 > 0, d,n € N. Let w —
f(w; x) be an Lo-Lipschitz Ly-smooth convex function for
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all x. Let R, = (ﬂ)tHw*H,)\t = 20\ p = Lol

A Ky
T = |log, (&1)], 07 = %, and Sy({wk};,) =
K —k
S G ket (1)

1. (Optimal rate) Algorithm 3 run with NoisyGD

(Algorithm 7 in Appendix D) as the Pri-

vateSubRoutine  with  above  parameter  set-
2

tings and A = ﬁmin (%,#) and

Kt ==

2_2 2 3/2
max [ Lit2e |oo [ Lot ne (LO)\JrLl )
e S\ TAr ) TPxdLZTog(1/0)
satisfies (¢,0)-DP, and given a dataset S of n ii.d.
samples from D, outputs W such that

- o Ly | LoVd
IE||VF(w,D)—O<\/ﬁ+ - >

Furthermore, the above rate is tight up to poly-
logarithmic factors.

2. (Linear time rate) Algorithm 3 run with
PhasedSGD  (Algorithm 5) as the PrivateSub-

Routine with with above parameter settings and
2

L . /1 d Lyl
A = max (m min (Ev n252) , %5(710 and
K; = | %] satisfies (¢,6)-DP and given a dataset S of n
i.i.d. samples from D, in linear time, outputs 1 with

Ly LoVd L fw|
IE||VF(w,D)|O<\/ﬁ+ ik

The proof of the above result is deferred to Appendix D.

For the tightness of the rate, the necessity of the second
LoVd

ne
bound, Theorem 4.3. For the first “non-private” term \Lf’

term is due to our DP empirical stationarity lower

(0]
even though (Foster et al., 2019) proved a sample com-
plexity lower bound, their instance is not Lipschitz and has
d = Q (nlog (n)), hence not applicable. To remedy this, we
give a new lower bound construction with a Lispchitz func-
tion in d = 1, Theorem A.2 in Appendix A. The polylog
dependence on L; and |w*|| in the upper bounds, is consis-
tent with the non-private sample complexity in (Foster et al.,
2019).

The second result is a linear time method which has an
additional Ly ||w*|| //n term. Firstly, if the smoothness
parameter is small enough, then there is no overhead; this
small-enough smoothness is precisely the regime in which
we have linear time methods with optimal rates for smooth
DP-SCO (Feldman et al., 2020). More importantly, (Fos-
ter et al., 2019) showed that even in the non-private set-
ting, a polynomial dependence on L ||w*|| is necessary
in the stochastic oracle model. However, the optimal non-
private term, shown in (Foster et al., 2019), is Ly ||w*|| /n?,
achieved by accelerated methods. Improving this depen-
dency, if possible, is an interesting direction for future work.

6. Generalized Linear Models

In this section, we assume that the loss function is a general-
ized linear model (GLM), f(w; (z,v)) = ¢, ((w, x)). Also,
assume the norm of data points x are bounded by || X|| and
the function ¢, : R — R is Lg-Lipschitz and L;-smooth
for all y. Furthermore, let rank denote the rank of design
matrix X € R"*¢

Algorithm 4 JL. method
Input: Dataset S, function (z,y) — ¢, (z), Algorithm A,
JL matrix ® € R**9, Ly, Ly, ||X||
Lo = Allzy) o dy(2), {(@miy)Hy
2L | X, 2Ly [|X]|* €, 6/2)
Output: w =o'

Algorithm 4 is a generic method which converts any for
smooth Lipschitz losses with an empirical stationarity guar-
antee to get dimension-independent rates on population sta-
tionarity for smooth Lipschitz GLMs. This algorithm is the
JL method from (Arora et al., 2022) used therein to give
excess risk bounds for convex GLM. We note that while
the JL method there is limited to the Noisy GD method,
ours is a black-box reduction. Furthermore, unlike (Arora
et al., 2022), we show that the JL. method gives finer rank
based guarantees by leveraging the fact it acts as an oblivi-
ous approximate subspace embedding (see Definition E.1 in
Appendix E).

Theorem 6.1. Let A be an (e, 6)-DP algorithm which when
run on a Ly-smooth Lg-Lipschitz function on a dataset
S = {(zi,y:)}_, where z; € X C R guarantees
E[[VF(AS): )] < g(d,n, Ly, Lo, ) and ||A(S) | <
poly(n,d, Lo, L1) with probability at least 1 — ﬁ Then,
Algorithm 4 run with

- {mm (argmin (gu, n.2Ly | %] 2L, | X[ 2,5/2)
jeN

+L(>I?f\||;g(m),ranklog (2;)”

on a Lo-Lipschitz, L1-smooth GLM loss, is (¢,6)-DP. Fur-
thermore, given a dataset of n i.i.d samples from D, its
output W has E [||VF(w; D)||] bounded as

~( Lo || X
O(#ZL gtk 280 121 224 121 2.6/2))

The expression for k£ above comes from the subspace em-
bedding property of JL, and from balancing the dimension
of the embedding with respect to the error of A and the
approximation error of the JL embedding. The proof is
based on the properties of JL. matrices: oblivious subspace
embedding and preservation of norms, together with a new
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uniform convergence result for gradients of Lipschitz GLMs.
The full proof is deferred to Appendix E.

Below, we instantiate the above with our proposed algo-
rithms.

Corollary 6.2. Under the assumptions of Theorem 6.1, Al-
gorithm 4 run with A as

1. Private Spiderboost (Alg. 2) yields |VF(w;D)| =
A : vran 2/3
(@) <\/15 + min (( ne k) ) (nsz/s))

2. Algorithm 3 with NoisyGD as PrivateSubRoutine, un-
der the additional assumption that w — f(w;(z,y))
is convex for all w,y, yields ||VF(w;D)| =
O (ﬁ + min ( vrank #))

ne ' \/ne

We remark that the above technique also gives bounds on
empirical stationarity. In particular, the first term ﬁ, in the
above guarantees, is the uniform convergence bound and

the second term is the bound on empirical stationarity.
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Faster Rates of Convergence to Stationary Points in Differentially Private Optimization

A. Lower bounds
A.1. Missing details from DP Empirical Stationarity Lower Bound

Proof of Theorem 4.3. For any r > 0, let WW,. denote the ball of radius r centered at the origin. Let B = f—‘f Consider the
loss function:

Blw—al® e -2 <B
. — 2 B
fw;z) = {L |w— || — L8 otherwise
0 2Ly

The function f(w;x) is convex, Li-smooth and Ly-Lispchitz in R<. We restrict to datasets S = {xz}zlzl where z; € Wp /4
for all 4, and let F(w;S) = 13" | f(w;x;) be the empirical risk on S. The unconstrained minimizer of F'(w; S) is

v 1n o
W= ) T which lies 1nWB/4.

For any w € Wsp/4, w lies in the quadratic region around all data points. Hence, from L;-strong convexity of w + F'(w; S)
on Wsp /4, we have that whenever w € Wap/ 4,

IVE(@: S| [0~ ]| > (VF(@: 8),w — ) > F(@:5) ~ Flw';) > 2 o~ w'|*

Let E be the event that w € Wsp /4 and let Eg denote the conditional expectation (conditioned on event E) operator. Then,

B [VF(@: )| > 2 o - w) > 2o ((L) i <1, m)) |

4L1 ne

where the last inequality follows from known lower bounds for DP mean estimation (Steinke & Ullman, 2015; Kamath
& Ullman, 2020). We remark that the lower bound in the referenced work is for algorithms which produce outputs in the
ball of the same radius as the dataset, i.e. WWg /4. However, a simple post-processing argument shows that the same lower
bound applies to algorithms which produce output in Wi 4. Specifically, assuming the contrary, we simply project the
output in Wsp /4 to Wp4: privacy is preserved by post-processing and the distance to the mean cannot increase by the
non-expansiveness property of projection to convex sets, hence a contradiction. This gives us,

Eg [[VE(@: 9)]] > <L0 min (L dlg(l/é)))

ne

Let W = {w: |w —w*|| < B/2}. Since W C Wsp /4> We have that the above conditional lower bound applies for

w € W as well. We now consider @ =4 W. Let w' be any point on the boundary of W, denoted as OW. Note that w’
lies in the region where, for any data point, the corresponding loss is a quadratic function. Hence, by direct computation,
VF(w';S) = Ly (w — w*). Therefore,

L,B?
(VF@!),0f ') = Ly Juf — P = 222
We now apply Lemma A.1 which gives us,
LiB?> 2 Lg
Ege |V F(w; > .- -
b IVF(@;5)| > =5 = = 22,

where E° denotes the complement set of . We combine the above bounds using the law of total expectation as follows,

B[V E(w; S)[]

Ep([|[VF(w; S)[|P{w € B} + Ege[|VF(w; 9)|||P{w € E}
- Q(LO min{l, 7de’g<l/5)})m>(m € E) + Q(Lo)P(w € E°)

ne

= Q(Lomin{l, 7"6“%;(1/5)})

ne

This completes the proof. O
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Lemma A.1. Ler G, R > 0,d € N. Let Wr(wq) denote the Euclidean ball around wq of radius R and let OWg(wo) denote
its boundary. Let f : R? — R be a differentiable convex function. Suppose wy € R® is such that for every v € OWg(wy),
(Vf(v),v —wo) > G, then for any w & Wg(wy), we have ||V f(w)|| > .

Proof. For a unit vector u € RY, define directional directive f!(w) = (V f(w), u). We first show that for any u € R? :
lu|| = 1 and any w’ € R?, the function f! (w’ + ru) is non-decreasing in € R. This simply follows from monotonicity
of gradients since f is convex. In particular, for any ' > r > 0, we have

fu(w' +r'u) = fi(w' +ru) = (VF(w' +r'u) = V(' + ru),u)

1
=— (V' +7r'u) = V' +ru),w +ru— (w' + ru))
ri—r
>0
We now prove the claim in the lemma statement. Let w ¢ OWpg and define v = |\w:$2|\ . Then from Cauchy-Schwarz

inequality and the above monotonicity property, we have,
IV ()l = (Vf(w),u) = fi(w) = fi(wo + Ru) = (Vf(wo + Ru), u)

1 G
% (Vf(v),v —wo) > 7
which finishes the proof. O

A.2. Non-private Sample Complexity Lower Bound

Theorem A.2. For any Lo, L1, n,d € N, there exists a distribution D over some set X and a Ly-Lipschitz, L,-smooth
(convex) loss function w — f(w; ) such that given n i.i.d samples from D, the output  of any algorithm satisfies,

E|VF(@;D)| =9 (jﬁ)

Proof. We construct a hard instance in d = 1 dimension. Let p € [0, 1] be a parameter to be set later and let v € {—1,1} be
chosen by an adversary. Let the data domain X = {—1, 1} and consider the distribution D on X as follows:

2
1—vp
2

1 with probability £v2
xTr =
—1 with probability

Note that E[z] = vp. Consider the loss function f(wj;x) as

flw;z) = %wz + %A(fw)

where A is the Huber regularization function, defined as,
2 . L
|w] if [w] < 57~
Aw) = Lolw| L2

—9  otherwise
L, 4L%

Note that the loss function w + f(w;x) is convex, Lo-Lipschitz and L;-smooth in R¢, for all z. The population risk
function is,

L L
F(w;D) = ?prv + ?IA(w)

Let w be output some algorithm given n i.i.d. samples from D. Consider two cases:

13



Faster Rates of Convergence to Stationary Points in Differentially Private Optimization

Case 1: 0| > QLTOl: The gradient norm in this case is

_ Ly Low 2
VF(w; D)) = | op + ——
VE@DF = | S+ 57
Lgp*  L§  L§
A + 1 + 2] ,‘Upw
L L
— 4 2
_ g I§
4 8yn
> L
- 8
where the first inequality follows since v ‘ | —1, the third equality follows by setting p = \/T and the second inequality
follows since n > 1. We therefore have that E |V F(w; D)| > 22/05.

Case 2: 0| < 2LT01: In this case, the gradient norm is,

L 2
VE(@: D) = \;vpmw

Suppose there exists an algorithm with output @, which, with n samples guarantees that E |V F (w; D)| < o ( f) Then

from Markov’s inequality, with probability at least 0.9, we have that |V F'(w; D)? <o (ﬁ) Letw = QLL”“ then we
have that with probability at least 0.9,

2
|VF(w;D))* <o <I;°> — |lwpp—a*<o (;)

This contradicts the well-known bias estimation lower bounds, with p = T’ using Le Cam’s method ((Duchi, 2016),

Example 7.7), hence E |V F(w; D)| > Q ( ) Combining the two cases finishes the proof. O

B. Missing Results for Empirical Stationary Points
B.1. Private Spiderboost

The following lemma largely follows from the analysis in (Wang et al., 2019¢). We present a full proof below for
completeness.

Lemma B.1. Let the conditions of Lemma 4.1 be satisfied. Let ) < 57— and q<O0 ( ) Then the output of Private
SpiderBoost, W satisfies

E[|VF(w; S)|]] = (fT+> 1)

Proof. In the following, for any ¢t € [T], let s; = EJ q (i.e. the index corresponding to the start of the phase containing
iteration t).

By a standard analysis for smooth functions we have (recalling that V; is an unbiased estimate of VF'(w;; S) for any
t e [T])

L
Pluns; $) < Pl ) + LIVPwiS) - 9 - (3 - 222 o
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Taking expectation we have the following manipulation using the update rule of Algorithm 2

n_ L1772) E {HV:&HQ}

E[F(wi41;S) — F(w; S)] < g[[g [HVF(wt;S) _ Vt||2] _ (2 2
E {Hwk-&-l - wk”ﬂ 4 gE [”VSt — F(w,,; S)Hz}

k=s¢+1
2
-(3-55) 2w
Ui nmi (0 _ L’
< 22k§+lE[||vk|2}+;(2 ) [ivele].

where the second inequality follows from Lemma 4.1 and the last inequality follows from the update rule. Note that if

t = s; the sum is empty. Summing over a given phase we have

4 [ - (s )i

IA
3
)

(]

(]
=
J
o

o

CI’\)

E[F(wiy1;S) = F(ws,; S)] 5
k=s¢ j=st+1
P12 « 2 a2 (g L 2
< S E[IVP] + X0 5 - (3 - 25 E[Ival?]]
k=st k=s;
t
n  Lin*  niriq 2] N7
—gtl(2—2— 22 )]E[|Vk|}—217 2

where the second inequality comes from the fact that each gradient appears at most ¢ times in the sum. We now sum over all

phases. Let P = {po, p1,...,} = {O,q,2q7 . L%J q,T}. We have

|P|
E[F(wr; 8) = F(wo; §)] < Y E[F(wy,;S) = F(wp, ;)]
i=1
T
o] | Trf
< —
< -3 AE[|Vil?] + =5
t=0
Rearranging the above yields
T
1 2 Fo | 07t
=S E[IVil?] < 7%+ 18 3
T; IVl 7TA+2A 3
Now let ¢* denote the index of w selected by the algorithm. Note that
2} + 2K {HW 2} . )

EIVF(wi-; S| < 2B [V F(wies 8) - Vie

15



Faster Rates of Convergence to Stationary Points in Differentially Private Optimization

The second term above can be bounded via inequality (3). To bound the first term we have by Lemma 4.1 that
o

E||Vie = VF(wii S)IP] <72 Y B [flug —wya ] + 7

k=six+1
-
2
—ntrd > E[IVl] + 7
k=sx+1
qn’7s a 2 2
< T2 SB[Vl + 7
k=0
2,2
UK -2
<
SSTa taa it
where the last inequality comes from inequality (3) and the expectation over 7*. Plugging into inequality (4) one can obtain
203
E [IVF(wie; $)7] < 201+ mne) + (Z +2+ 27 q) . 5)
Now recall A = I — LIT” _ T2q . Since ¢ < O ( ) and n < L we have A = O(n). Thus plugging into inequality
(5) and again using the fact that ¢ < O ( e ) we have
T3
2 Fy T310°q Fo
E |||VE(w;; S| } =0 <T77(1 +7in%q) + (3 + QT ) =0 T +7
The claim then follows from the Jensen inequality. O

For privacy, we will rely on the moments accountant analysis of (Abadi et al., 2016). This roughly gives the same analysis
as using privacy amplification via subsampling and the advanced composition theorem, but allows for improvements in
log factors. We provide the following theorem implicit in (Abadi et al., 2016) Theorem 1 below. The same result can be
obtained using the analysis for (Kulkarni et al., 2021) Theorem 3.1 which uses the truncated central differential privacy
guarantees of the Gaussian mechanism (Bun et al., 2018).

Theorem B.2 ((Abadi et al., 2016; Kulkarni et al., 2021)). Lete,d € (0, 1] and ¢ be a universal constant. Let D € Y" be a
dataset over some domain'y, and let hy, ..., hy : Y — R? be a series of (possibly adaptive) queries such that for any y € Y,

te [T, |he(y)lly < M. Let oy = V108118 o { 3 @ } Then the algorithm which samples batches of size B, .., By

€

of size b uniformly at random and outputs * > ye, i(y) + gi for all t € [T] where g, ~ N (0, Io?), is (¢,6)-DP.

We note that the original statement of the Theorem in (Abadi et al., 2016) requires o; > Sy Tlog(1/3) and T > ” = (or

ne
T> ”2 so long as ¢ < 1). However, in the case where 1" < 2 b2 , one can simply consider the meta algorithm that does run
T = b2 steps and only outputs the first 7" results. This algorithm is at least as private as the algorithm which outputs every

8A¢4/log(1/6)

result, and under the setting 7" the scale of noise is e

We can now prove the main result for Private Spiderboost, restated below. We note that the setting of by given below will
always be less than n under required conditions. More details are provided in the proof below.

Theorem B.3 (Private Spiderboost). Let n > max FOLfs‘fjéil/é), \/gmax{l’eLlFo/Lo} . Private Spiderboost

\/FolelOg

4/3
(FoL)!Vine e et | sa
{max { <\/Lodlog(1/5)) ’ \/dlog(l/é) }J , and q= L2Tdlog(1/9) Sallsﬁes

E(|VE(@)]] =0 (VFOLlLOdlog 1/9) ) YA ULy

2/3
/
run with parameter settings n = i by = n, by = {max{( Lone (1/6)> ,(L((Jgf;Zfl(/la/jQ)/); ’ }J T =

ne
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. 2
is (¢,0)-DP and has oracle complexity O (max { (%) , (%) })

Proof. For privacy, we rely on the moment accountant analysis of the Gaussian mechanism as per Theorem B.2. Note that
each gradient estimate computed in line 9 has elements with ¢5-norm at most Ly, and this estimate is computed at most %
times. Similarly, for a gradient variation at step ¢ in line 13 we have norm bound L; ||w; — w;_1]|, and have that at most T’
such estimates are computed. As such, the scale of noise in both cases ensures the overall algorithm is (&, §)-DP by Theorem
B.2.

We now prove the convergence result. To simplify notation in the following, we define & = 7be€(1/5). If by = n (full
2 =2 2
batch gradient), the conditions of Lemma 4.1 are satisfied with 7% = O (%) and 3 = O (% + L%To?Q) and some
setting of ¢ so long as T" > q%j =qgand T > 2—22 Further, if by > ﬁ then 722 =0 (L%TC_EQ). Thus the condition on ¢ in
1 2
1

. . . L2 1 .
Lemma B.1 is satisfied with ¢ = 73 = 757 since ) = 57—

3
T2

Plugging into Eqn. (1) we obtain

I FoLy  LoVTa
E[IVF(w)]—O< T +7\/a )

L
:0( OTl +L0Ta2>. (6)

We now consider the setting of 7. Since ¢ = ﬁ, it suffices to set T' > é to ensure 7' > gq. We now set T' =

4/3
max { (M) , (11} Using Eqn. (6) above we have

Loa

E[|VF(@)]] = 0 ((ma)“’ N Loa) |

The claimed rate now follows if there exists a valid setting for bs satisfying the previously stated conditions. The restrictions

1/3,_2/3 . .
Ly n?ﬂ & to satisfy this

on the batch size implied by 7" imply we need by > % and thus it suffices to have by > TErFo) /e

174\ 4/3
condition since 1" > % . We recall that for the setting of ¢ to be valid we also require by, > L and
Loa Ta
174\ 4/3 . 2/3 2/3 1/3,_2/3
because T > (%) it suffices that by > (\/%a) . Thus we need by = max { ( Fﬁ%la) , ](LEI}:SUG }

2/3
Finally, we need b, < n whenever ¢ > 1. Note that by the setting of ¢ and 7" we have ¢ < ( \/Liol,) and thus

_ 5 _ 2/3
VIiFa i it Ly/*na®/? W Lo
q>1 = ( To ) < 1. Under this same condition we have (L) 170 < n. We further have e <n

2
under the assumption n > (Loe) ) given in the theorem statement. It can also be verified that under the condition on

FolelOg(1/§
n given in the theorem statement that ¢ > 1. Thus the parameter settings obtain the claimed rate.

Note the number of gradient computations is bounded by
Tb1> - (n5>4/3 (n5>2/3 (nd)/3 <n6>2/3
O|Thy+— ] =0 — max { | — s ¢ | —=
( 2 q < \/a \/a £2/3 \/E
5 ne \ 2 nd/352/3
= max ﬁ 5 7d1/3 .

B.2. Additional Discussion of Rate Improvement Challenges

We here give a more detailed version of the informal discussion in Section 4.2. We want to emphasize that the goal of the
following discussion is not to provide a universal lower bound, but rather to inform future research.
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Let £ : R? — R be a loss function. We say the randomized mapping O : R? x (R? U L) + R, is a (71, 72 )-accurate
oracle for £ if Yw, w’ € R?

E[O(w, 1)] = VL(w), E (0w, )] = VL(w) ~ VL(w)
E[l0@w, 1) - VL@)|*| <72, E [Il0@w,w)] <73 Jw = w'|*.

In short, O is an unbiased and accurate gradient/gradient variation oracle for £. Define

m(G, Ly, Lo, 71, 72) = infsupinf {a : E[|VL(AO, Ly, Lo, 71, 72)|] < a
Aoc

where the supremum is taken over L;-smooth functions £ satisfying £(0) — arg min {£(w)} < Ly, and (71, 72)-accurate
weRd
oracles for £. The infimum is taken over algorithms which make at most G calls to O.

We have the following lower bound on m (i.e. a lower bound on the accuracy of optimization algorithms which make at
most GG queries to the oracle) following from (Arjevani et al., 2019, Theorem 3) and the fact that the oracle model described
above is a special case of the multi-query oracles considered by (Arjevani et al., 2019).

Theorem B.4 ((Arjevani et al., 2019)). Let G, Lo, L1, 71,72 > 0 and define o = (£oz2m)"/?

then m(G, L1, Lo, T1,72) = Q ().

+ 25 rd =0 ([&k)?),

Now consider £ such that £L(w) = 1 3 _<¢(w;z) for some Lo-Lipschitz and L;-smooth loss £ : R? x X +— R and
S € X™. We are interested in designing some (77, 72 )-accurate and differentially private oracle, O, which can then be used
by an optimization algorithm, .4, to obtain an approximate stationary point w = A(@ , L1, Lo, 71, T2). Specifically, we want
O to be capable of answering G queries under (g, 0)-DP. A common method for achieving this is to ensure each query to
O is at least (%, 0)-DP and use advanced composition (or the more refined moment accountant) analysis. Such a setup
encapsulates numerous results in the convex setting (Bassily et al., 2019; Kulkarni et al., 2021), and is even more dominant
in non-convex settings (Wang et al., 2017; Zhou et al., 2020; Abadi et al., 2016).

Our key observation is that under such a setup, any increase in the number of oracle calls to G must be met with a proportional
increase in the accuracy parameters (77, 72). Thus, if such an oracle, O is applied in a black box fashion to a stochastic
optimization algorithm .4, one can obtain a lower bound on the accuracy of the overall algorithm independent of G.

Specifically, since estimating the gradient and gradient variation can be viewed as mean estimation problems on n vectors,
we can use fingerprinting code arguments to lower bound 7; and 75 (Steinke & Ullman, 2015). In Lemma B.5 below, we

§)-DP must have 7; = Q(@)

prove that any (7, 73 )-accurate oracle which ensures that any query is ( —

[
/G7
and /\12 — £2< ! ! (17/ )> NOW, Obser\/e that by Iheorem B4, we ha\/e

ne

)

ne ne

2/3
FoLiLoy/dlog (1 Lov/dloa (i
m(G, L, Lo, 71,7) = € (m dog(/‘”) + Lov/dlog (1/9)

which matches our upper bound.

We now remark on several ways the above barrier could be circumvented. The first and most obvious possibility is to
employ a different privatization method than private oracles. However, this is particularly difficult in the nonconvex setting
as existing methods which avoid private gradients (see e.g. (Feldman et al., 2020) for several such methods) rely crucially
on stability guarantees arising from convexity. Other possible ways to beat the above rate is by designing a stochastic
optimization algorithm which leverages the structure of the noise used in private implementations of the oracle or makes use

of additional assumptions to beat the €2 ((%) 13 + %) non-private lower bound.

Additional Details on Fingerprinting Bound We conclude by giving a concrete construction for the fingerprinting
argument mentioned above.
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Lemma B.5. Let Lo, Ly > 0, e = O(1), 279" < § < o5 and +/dlog (1/6)/(ne) . Let ¢, L, S satisfy the
assumptions above. Then there exists £, S such that for any oracle, O, which is (11, T2)-accurate for L it holds that

Loy/dlog (1/4 Ly+/dlog (1/d
71:Q<0 0g(/)) and ngQ(l Og(/)>.
ne ne
Proof. In the following, we use u; to denote the j’th component of some vector u. Let B = f and define h : R — R as
1

M) Liy? ifflw| < B
2) = 2
%|w| - 25—21 otherwise

Define d = ¢ (assume d is even for simplicity) and for any vector u € R? let V) = [uy,...,ug]" and u® =
[wgr41, ..., ug] ' . Define £(w; x) = €1 (w; x) + £o(w; x) where

d

= Lo Lo L R A
£y (w;x) = 7 <w T >, lo(w;x) = 5 _; h(w;)x;.
Jj=d'+1
Let W = {w : ||w||, < B} and note for any w € WV we have
. o T Zq T 2 . o .
Vﬁ(w,ﬁc) - [ U)d.’L'd] ) \% 62(w7x) =1L Dlag(07 "'70a$d'+17 "'7xd)

ﬁa ) ﬁ7wd’+1xd’+l7 )

That is, the Hessian of /5 (w; x) is a diagonal matrix with entries from 2. Thus one can observe that for any x € {:tl}d we
have that £(-; ) is Lo-Lipschitz and L;-smooth over R?.

To prove a lower bound on 71 and 7, it suffices to show that for any (e, §)-DP implementation of O there exists w € R?
such thatI(Eol [||O(w; 1)— Vﬁ(w)”z} > 72 and there exist w,w’ € R? such thatl(% [||O(w,w')||2] > 72 ||lw —w'||. For
sake of generality, we will show that these properties hold for a set of w, w'.

Note that to lower bound the gradient error, it suffices to lower bound the error with respect to the first d’ components. We

thus argue using ¢;, and will in fact show a lower bound for any w € R%. Let w € R%. We have for any (e, §)-DP oracle O
there exists a dataset § C {+1}%, where || = n, of fingerprinting codes such that

OwJ_(l Z(l

a:eS

E[|O(w; 1) - VE@w)] > E [

Lg+/dlog (1/6)
ne '

The bound follows from standard fingerprinting code arguments. See (Bassily et al., 2014, Lemma 5.1) for a lower bound
and (Steinke & Ullman, 2015, Theorem 1.1) for a group privacy reduction that obtains the additional \/log (1/6) factor. This

ne

i . o Lo+/dlog(1/5
fingerprinting result also induces the parameter constraints in the theorem statement. We thus have 7 = 2 (Oog(/)) .

Similarly, we will argue a bound on the gradient variation using /5. Let w,w’ € W and u = (w — w’)(?). In what follows,
we only use the second half of the components for each vector, and thus omit the superscript (2 from all Vectors for

readability. We have V{3 (w;x) — Viy(w';x) = Li[uizy, ..., ugrxq] . Then for any ¢ € (0, LQL\}] and u € {£c}” we
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have

d' 2
E (0@, w) = (VEL(@w) - VL()|*] = 13- ( — xj)

GH

Il

~
=N
ocH
51
/N

ﬁ
/\
:/

\
S|
8

<
—
~_—
I

2
Ow,w"); 1
_ 2 2 W) L ,
= L7 ]g c jg_1< " - oy

2
o (e tlosn),

n2e?

where the last step again comes from fingerprinting results. Note that the extra factor of d as compared to the previous
bound comes from the fact that we are considering fingerprinting codes with norm larger by a factor of v/d. We also use the

’
=]

fact that the vector O(w, w’) transformed using u is (¢, §)-DP by post processing. Now since ¢ = we have

E[|O(w,w') - (VL(w) = VL) = (Ll w — || C“Og(1/5)>

Finally, noting that E |[|O(w, w’) — (VL(w) - vg(w'))uﬂ <E [||O(w,u/)||2} we obtain 75 = Q(M) This

completes the proof. O

ne

We remark that the accuracy lower bound for the gradient variation can hold for a much more general set of vectors than that
given in the proof. Specifically, the same result can be obtained for any u = w — w’ such that u has ©(d) components which

are Q( Il"fu ) (i.e. any sufficiently spread out vector). This uses the fact that it suffices to bound the number of components

which disagree in sign with the fingerprinting mean and that fingerprinting codes are sampled using a product distribution,
and thus the tracing attack used by fingerprinting constructions holds over any sufficiently large subset of dimensions.

C. Missing Results for Population Stationary Points

Here we present the proof of privacy and accuracy for Algorithm 1. We start by proving the privacy guarantee.

Proof of Theorem 3.1. By parallel composition of differential privacy, and since the used batches are disjoint, it suffices to
prove that each step in lines 6 and 15 of the algorithm is (£, §)-DP. Note that the gradient estimator in step 6 has ¢5-sensitivity
2Lg/b, so by the Gaussian mechanism this step is (¢, §)-DP.

For step 15, suppose S¢  and Sfas are neighboring datasets that differ in at most one element: x;+ # ., and let 7, 5, and
N5, the respective stepsizes used in step 23. Then

9lsl
||At,s - A27g|| == Tva (wt,s;zi*) - Vf (wt{s\; xi*) (Vf (wt s+ L; ) vf (wt 55 L= )) Ha

and note between the parent node u; 3 and u; , there are 2D=lsl jterates generated by the algorithm, which we denote as
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Wi 5 = We,sq, Weysyy ooy Weys) oy, = Wis- Then, by smoothness of f and the triangle inequality
[Ass — AL
2\ s|
3 Zi* ) - vf (wt,g; Zl*) (Vf (wt 5% z*) vf (wt 5% )) H
2D ' gls]
< Z [HVf(th”ZZ ) Vf (wt& 157 )” + H (vf(wtsl’ z*) Vf (wtsl 13 Z4* )) |H
i=1
oD —lsl 2|S\ oD —lsl 2|S
< Z b Llnt,Si—lnvt’Sifl H + Z b Llnt S 1Hvt Si—1 H
i=1 i=1
B oD —lsl ols| 3 B 262D/2
B b 2p/2  p
i=1
The Gaussian mechanism combined with our choice of o, , certifies privacy of this step. O

To prove Theorem 3.2 we will need some technical lemmas. Define (7, S) as a random stopping time that indicates when
Algorithm 1 ends. Also, we say (t1,s1) <2 (t2, s2) whenever wy, 5, comes before wy, s, in the algorithm iterates.

Lemma C.1 (Gradient estimation error, extension of Lemma 6 in (Fang et al., 2018)). Let p € (0, 1). Then, with probability
1 — p the event
E={lIVes = VE(wrssD)* <a-a VYt s) =2 (T,8)}

holds, under the parameter setting of 0y &, 0y s and 1 s in Algorithm 1, for

27199D D+1
o > + p D2 max 3 1, (d+1) and & > 2561og 1.25 log 21127 «
b b be? KD D

Proof. Recall the gradient estimate associated to a left child node is the same as that of the parent node. Hence, the gradient
estimate of a non-leaf node is the same as that of the left-most leaf of its left sub-tree. In addition, we only need to control
the gradient estimation error when we perform a gradient step, which occurs at the leaves. Then, to prove the claim,
it suffices to prove that we can control the gradient estimation error at the leaves. Since, the number of iterations (and
leaves) is at most 727 ~1, to prove event £ happens with probability 1 — p, by the union bound it suffices to prove that
P[|Vi,s — VF(wy,s; D)||? > o+ &) < 7h—r forevery (t,s) <2 (T, S) where uy  is a leaf.

Denote by F; the sigma algebra generated by randomness in the algorithm until the end of round ¢. Fix (¢, ) =2 (7,S)
such that u; 4 is leaf, and let u; s, = w50, Ut,s, 5 ---, Ut,s, = Ut,s bE the path from the root to s. Next, extract a sub-sequence
of it including only the root and the nodes that are right children, obtaining u; s, = Uts00 > Ut,say 1 oo Utys,, = Ut,s- Now
we can write

Vis— VF(w ;D thsa + Z (Vf(ws,gsx) — VF(wi g3 D))
e Y1,z
m 54,
£33 E (VWi 0) =V, ,0)) ~ (VE (s, D)~ VF (i, D))
i=1 x€S;, s5a)
VQ,I,i

To bound the estimation error, we note that

P[||Vts — VF(ws ;D) ||> > o+ @|Fi_1]

<Pl | > F] R[] et 3 ]
i=0

€St o i=1 xest,sai
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and proceed to bound each term on the right hand side separately. By vector subgaussian concentration (see Lemma 1 in
(Jin et al., 2019)) and noting that the gaussians are independent of F;_,, we know that

m

th Sa;

> —d <dexp | — a-a
= 2007, + 502 )

and in order to bound this probability by m%’ since m < D, it suffices that

b2e? b2e2

1.25 T2PN\1 [ L3 | D2Pp?
= 256 log (5) {dlog(4)+10g( » ﬂ |:b2£2 + b2€25 ]

2Ly 2320/2

b b
where the second bound comes from following similar steps as in the privacy analysis in Theorem 3.1, we have that
Y e Si o Ma T PO €Sh,, V2. is a sum of bounded martingale differences when conditioned on F;_1, thus by

d D 2 D 2
o &> 32log (4 T2 ) [8L0 log (1.25/0) | 8D2"5 1og(1.25/5)]

Now, noting that surely

Mol < == and 2zl <

concentration of martingale- dlfference sequences in ¢, (see Proposition 2 in (Fang et al., 2018)), and using the fact that
|St,z| = band Sy s, | = b/2!%a:1 it follows that

2

m B ~
o [e'NeY

P E Mz + E E V2|l > Ty | Feo1| Sdexp | - 4L2 m 48220

z€St, 5 i=1 T€S8; 54, 16 | == + Zi:l olsa; Ty

Repeating a similar argument as before, to bound this term by 57—, it suffices that

2T2D+1 L2 2D2D
A > 64log [ ———r ) |22 + b .
P b b

Finally, both conditions hold simultaneously for
L3  p*D2P (d+1)
2 0
= <b+ b >max{1’ be? }

2 272P+1
a > 256log < 55) log () «
p

and

O

Lemma C.2 (Descent lemma; Lemma 7 in (Fang et al., 2018)). Under the assumption that the event £ from Lemma C.1
occurs and § < 2P /2&, we have that if Algorithm I reaches the last line, then

D) — F(0:D) < —(ToP-1y_ P &
F(wT,E(2D)7 D) F<07 D) = (T2 )4 ) 2D/2L1
where wr yap) is the last iterate in the T'-th tree of Algorithm 1.

We provide the proof of Lemma C.2 adapted to our case for completeness.
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Proof. By standard analysis for smooth functions we have

T2 (1= o L) [V + 2 Vs = VE (w1, D) 2,

F(wt7s+;D) S F(wt,S;D) — B

where 1, ¢ = 0 and u, 4+ is the node after v, s in the tree. Since 8 < 2D/25 and [IV¢s]| > 2&, we have that

B
2D/2L4||Vy,
(1 —msL1) > 1/2. Using this inequality, the definition of 77, ; and the fact that we are assuming & occurs, we obtain

s 2 B -
F(w, s+ D) — Flwy ;D) < — \VZ70% R —,
(wt,é+ ) (wt, ) 4.2D/2L1”vt75”H t, ” + 2~2D/2L1||vt,5”a @
B -
§_4.2D/2L1 @,

where the second inequality comes from ||V, s|| > 2& and a < &. Then telescoping over all 72!

claimed bound.

iterations provides the

O
We are now ready to prove the convergence guarantee of Algorithm 1.

Proof of Theorem 3.2. From Lemma C.1, we know that ||V s — VF (w; s; D)||> < « - & with probability 1 — p when

1/2
o = V2Lo max {n}/g () } @ = (25610g (L22) log (212710 ) 4 SLTbVADD2E )

p

Indeed, using our parameter setting, and noting that d > be? if and only if, d > n?/3¢2, yields

L2 d+1)] B (d+1)
25 0 i
o > b max{L he2 }—i— 5 max{L he2

1 Vd a? be? (d+1)
_ 72 .
= LO <n2/3]1{d+1<n2/352} + mﬂ{d+1>n2/362}> + 7 min {1, d} max {1, bEQ}
\/&} o?

n2/3’ ne 2’

> Lg max {

which shows our values of o and & are valid for controlling the gradient estimation error with high probability, as claimed in
Lemma C.1.

Now, suppose for the sake of contradiction that Algorithm 1 does not end in line 20 under £. This means it performs 7271

gradient updates. We’ll show this implies (72 _1)4.2]@%/&%1 > Fy and thus contradicts Lemma C.2, which claims that

Fo > —[F(wyp2py; D) — F(wgg20); D)] > (T2D—1)4,2€,%/5;L1. Indeed, note that by our parameter setting:
e 8L F
(T2P1) B-a >Fy <= f-a@>

T2D/2
< amin<1 @ o> 78L1F0 2D
" Vd Vb
_ 8L1FyW2D(D/2+ 1)Vb Vd
= a-a> max{ 1, —
n Ve
Vb Vd
n ) )

ne

4.2P/21,

— a-a>8L1FyV2D(D/2 + l)max{

23



Faster Rates of Convergence to Stationary Points in Differentially Private Optimization

1 d

n2/37 ne

and noting that by the setting of b we have max {@ ﬂ} = max {

n > ne }, we conclude the following

p-1, B-a
(T2 ) oprr,

d
> Fy <= oz-d>8L1Fov2D(D/2+1)maX{ 2/37\[}
n2/3’ ne

8L1Fyv/2D(D/2+1)

= a-a> a“.
202

Finally, note o - & = (256 log (1.25/6) log (272P+1 /p) + %W) o? and thus the last inequality holds under
0

our parameter setting. Since this is equivalent to (72P~1) 4,2‘;'7;;& > Fy, we are done with the contradiction. It follows

that with high probability, Algorithm 1 ends in line 20 returning w; s such that ||V, s|| < 2&. Also, by Lemma C.1 we have

IV F(w,s; D) — Vi s|| < &, so the returned iterate satisfies by the triangle inequality

|VE(w; s;D)| < 3a.

In addition, the linear time oracle complexity follows from the fact that at each binary tree we use b samples at the root, and
then b/2 in levels 1 to D. This gives a total of b(D/2 + 1) samples used at every round. Since we run the algorithm for 7" =
(D 551y founds, we compute exactly n gradients. To conclude, note the condition n > max{vd(D/2+1)?/e,(D/2+1)%}

implies the number of rounds 7" is at least 1. Besides, since the definition of D implies 2D < b, the size of the mini-batches
are well-defined (meaning Algorithm 1 uses batches with at least 1 sample). This concludes the proof. O

D. Missing Results for Stationary Points in the Convex Setting

We first give pseudo-codes of algorithms used in the section.

Algorithm 5 Phased SGD(S, (w, x) — f(w;z)), R,n,S(:),0)
Input: Dataset S, loss function f(+; x)), radius R of the constraint set W, steps T, 7, Selection function S, Noise variance
o
w1 = 0
: K =[log(]S])] and Tp =1
:fork=1to K —1do
T, = 2k |S| N 47167],0'1C = N0
w41 = OutputPerturbedSGD(wg, ST, _, +1:7%» By Moy 01, S(+))
end for
Output: ©w = wg

SANNANE S e

Algorithm 6 OutputPerturbedSGD (w1, S, (w, ) — f(w;z), A(+), R,n,S(*)
Input: Dataset S, loss function f(+; x)), regularizer A(-), radius R of the constraint set W, steps T', n, Selection function
S, Noise variance o

1: fort =1to|S| —1do

20 wiyr = My (wy = (Vf(we; 24)))
3: end for

4: &~ N(0,0%0)

5

=38 ({wh))
Output: w =10+ &

Proof of Theorem 5.1. The privacy guarantee, in both cases, follows from the privacy guarantees of Algorithm 7 and
Algorithm 5, in Lemmas D.3 and D.6 respectively, together with parallel composition.
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Algorithm 7 Noisy GD(S, (w, z) — f(w;x)), R, T,n,5(-),0)
Input: Dataset S, loss function (w, ) — f(w;x), radius R of the constraint set W, steps T, 7, Selection function S, Noise
variance o
w1 = 0
fort =1t0o7T —1do
§t ~ N(O, 0'2]1)
wep1 = Iy (we = (VF(wi; S) + &)
end for
Output: w=3S ({wt}tT:l)

A T

We now proceed to the utility part. For simplicity of notation, let R = ||w*||. Recall the definition of the regularized losses
f®(w,z) in Algorithm 3. Let {a}, be such that E[F(*~Y (w,; D)] — F=V (w;_;; D) < oy where 1w, are the iterates
produced in the algorithm and wy_; = argmin,,cga F=1 (w; D). Following (Allen-Zhu, 2018; Foster et al., 2019), we
first establish a general result which will be useful for both parts of the result.

T
VFTD (w73 D) + A 2" (wy — wr)
t=0

E||VF(wr; D)| =E

T—1
<E|[VFT-(ar;D)| +)\Z 2'E (||ws — wh_y|| + ||or — wh_4]])
< 2E |VFT-D(@r; D H—kAZﬂEHwt Wiy ||+ AR [|wo — wi_, |
<2EHVF(T 1) wT H—‘y—ﬁlz:\/)\QtOét"f—)\RT 1
< 4y/Liar +4 Z VA2t ay + A2T2R
t=1
T
< 42 VA2 oy 4+ /AL R

where the third and fourth inequality follows from strong convexity of F(T=1)(.; D) and Lemma D.2 respectively. The
last inequality follows from the setting of 7" since we have that F(T—1 is L + Z 2t)\ < Ly + 22T < 2L, smooth.
Note that the definition of R; and Lemma D.1, HwT_l || < Rp_q, sothe unconstralned minimizer lies in the constraint set.

Therefore E | VFT =Y (wp; D)|| = E || VFT =Y (wp; D) = VFT =D (w_;D)|| < 2v/Liar.

Observe that from the setting of 7', F® is 4, smooth for all ¢. Furthermore, the radius of the constraint set in the ¢-th
round is R, = 27/2R. Hence, the Lipschitz constant G, < Lo + 8L Ry < O (Lo + L127/2). Now we instantiate c,
which is the excess population risk bound of the DP-SCO sub-routine.

Optimal rate: The excess population risk guarantee of Algorithm 7 is in Lemma D.3, with (in context of the notation in
the Lemma) Lipschitz parameter Ly being the same and Ga = O (L1 27/ 2). Therefore, we have oy = O ( N T )\:ﬁ; )
Plugging in the above estimate, we get,

- ( G | VdG ) - (G VG
E|VF(w;D)|| =0 —=+ — —R|=0|—
e ol=0 (G 5 ffin) =0 (G )
where the last step follows by setting of \.
The optimality claim follows by combining the non-private lower bound in Theorem 5.1, and the DP empirical stationarity

lower bound in Theorem 4.3 together with a reduction to population stationarity as in (Bassily et al., 2019, Appendix C).

25



Faster Rates of Convergence to Stationary Points in Differentially Private Optimization

Linear time rate: The excess population risk guarantee of Algorithm 5 is in Lemma D.6, with Lipschitz parameter L
being the same and GA = O (L12T/2). This gives us a; = 0 (Am +x n2 2> and thus

, < VdL Ly VdLo LR
IEIIVF(UJ;D)IIO(\/ﬁJr °+\/ER> <\/%+ n€°+\/ﬁ>

where the last step follows by setting of A. Finally, note that the Lemma D.6 requires that n = ) (L 132 ) for all £. This
can be checked to be satisfied by substituting the value of \;. O

D.1. Utility Lemmas

We first present some key results which will be useful in the proofs.
Lemma D.1. Let f : R? — R be an Ly-smooth convex function and let w* = argmin,,cga f(w). Let R = ||[w*|| and
wo € RY such that |wo|| < R. Define f(w) = f(w) + 2 5 lw — wol|® and let & = argmin f(w). Then for any A > 0,

@]l < V2R

Proof. From optimality criterion, 0 = Vf(w) = Vf(@) + A (% — wp). Therefore, Vf(i) = A (wy — ) and thus
(Vf(w),wy — w) > 0. Furthermore, since f is convex, from monotonicity, (V f (@), w* — w) < 0. Since both wg and w*
lie in the ball of radius R (say Wg), the above two implies that the hyperplane H = {w : (V f (@), w — @) = 0} intersects
with Wg. Furthermore, since V f (@) = A (wg — @), we have that w0 is the projection of wq on H i.e. Iz (wp).

Let w’ =TI (0). We have that w’ € Wh; this is because the hyperplane cuts the hypersphere Wg, creating a spherical cap
and w' is the center of the cap. From properties of convex projections |11z (wg) — I (0)]| < ||wo — 0| < R. Furthermore,

1'[H2(0) and Iy (wo) — I (0) are orthogonal. Hence ||@|* = ||[Tg (wo)||> = [T (0)]|* + ||TLg (wo) — g (0)]12
2R2.

We state the following result from (Allen-Zhu, 2018; Foster et al., 2019).

Lemma D.2. Suppose for every t = 1,2,...T, E[F*~V (w;; D)] — F¢ D (w} ;D) < oy where w; are the iterates
produced in the algorithm, w;_; = arg min,,cga F¢~1 (w; D) and A\, = 2!\, we have,

20

1. Foreveryt>1, ]E[Hwt wi_ 1|| = Xo1

2. Foreveryt > 1, E[||w; — w;‘||2] < %

B[Sy Mellr — will] < 4370, vk
D.2. Lemmas for NoisyGD (Algorithm 7)

Lemma D.3. Consider a function f(w;z) = L(w;x) + A(w), where w — £(w;x) is convex and Lo Lipschitz for
all x, and A(w) is A strongly convex, Ga Lipschitz and Ha smooth over a bounded convex set W. Algorithm 6 run

2_2 2 G2
with parameters 1 = lof(TT), o? = %ﬁg(l/é) T = max <LH:\HA log (Ltfla) ndi?ﬁi&(ﬁ/ﬁ}) and S({w},) =

W E;F:l (1 — n\) " wy satisfies (¢, 8)-DP and given a dataset S of . i.i.d. points from D, the excess population
risk of its output w is bounded by,

] 13 dr3log(1/6)
E F(w;D)fwrg%lRF(w D)} O<)\n+)\n%2)'

Proof. For the privacy analysis, as in (Bassily et al., 2014) for fixed w, the sensitivity of the gradient update is bounded by

— ALAT18(1/9) (fices for (,6)-DP.

2L . .
=20 Applying advanced composition, we have that o? i

For utility, we first compute a bound on uniform argument stability of the algorithm; let {w;} and {w;} be sequence of
iterates on neighbouring datasets. Note that the function w — f(w; ) is L1 + Ha-smooth and A-strongly convex for all .
From the setting of 7', we have that the step size n < ﬁ, hence from the standard stability analysis,
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Wi1 — wyy = wy — NV L(we; S) — NV A(wy) — wy +nVL(wy; S") +nVA(wy)
= w; —wy — 1 (VL(wg; S) + VA(wy) — VL(w); S) — nVA(w)))

+n (VL(wn ") = VL(wy; 9))
= (I—n(V>L(w; S) + VA(dy))) (wy — wy)
+ 1 (VL(wy; S) — VL(wy; 5))

where the last equality follows from Taylor remainder theorem where w; is some intermediate point on the line joining wy

and w;. Using the fact that 77 < 7—15—, we have

ZT]LO < 2L0

— An

Jwerr = wigs || < (1= nA) [lwe —wil +

The above gives the same bound for the iterate using the selector S,

I8 (fw)) — S({wih)] < 20

Note that the overall Lipschitz constant for the empirical loss is Lo = Lo + Ga. For the excess empirical risk guarantee, we
use Lemma 5.2 in (Feldman et al., 2020) to get,

E[L (@;9) + A(@) — L(w*; ) — Aw*)] = E[F (@; §) — F(w*; S)]

A Lo dL3log (1/6)
=0 A + An2e?
_0 dL3log (1/9)

An2e2

where the last step follows from the setting of 7. For the population risk guarantee, we have,

E[F(w;D) — F(w*;D)] = E[F(w; D) — F(w;S)] + E[F(w; D) — F(w*
dL2 log (1/6)
An2g? )
< Lo & — @] + O (dL?J;Z%S/‘S))

:O(L%er)

= E[L(w; D) — L(w; S)] + O (

An An2e?

where the inequality follows from Lipschitzness and standard generalization gap to stability argument. O

D.3. Lemmas for PhasedSGD (Algorithm 5)

The following lemma gives population risk guarantees for strongly convex functions under privacy, in terms of variance of
stochastic gradients, as opposed to standard Lipschitzness bounds.

Lemma D.4 (Variance based bound for constant step-size SGD for strongly-convex functions). Consider a func-
tion f(w;x) such that w — f(w;x) is A strongly convex, Ly smooth over a convex set W for all x and let
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E. |Vf(w;z) — E,Vf(w; :c)|| <V2forallw € W. Letv; = (1—n\)"". Given a dataset S = {x1,x3,..., 2}
sampled i.i.d from D and n < 55 5 as input, for any w € W, the iterates of Algorithm 6 satisfy

A
Z % Z%F (w; D) | — F(w) < Er T [wo — w|* + 7V
t=1

Furthermore, for n = Q (L1 log (71)) withn = % and S({w:},) =
= S({wy},) satisfies

s > i, Yewy, the excess population risk of
f 1

E [F( D) — min F(w; D)] 0 (Wlii(”))

Proof. An equivalent way to write the update in Algorithm 6 is

Wep1 = arg min ((Vf(wt,xt),w + % l|we — w|* + w(w)>

wew
where ¢)(w) = 0 if w € W, otherwise co.

Following standard arguments in convex optimization, for any w € WV, we have
F(wi41;D) — F(w)
= F(wi41; D) + ¢ (wiy1) — F(w; D) — p(w)
L
< F(we) + (VF(we), w1 — we) + 71 [wrs1 = we|® + (we 1)
+ F(w; D) — ¢(w)
A 2 In 2
< (VEF(we), w1 — we) + (VF(we), we — w) — 5 |we — wl|” + 5 [wetr — we
+ (wetr) + F(w; D) — ()

L
=E., [(Vp(wt; zt) = VF(w; D), we — wiy1) + 71 [wigr = wel|* + (Vp(wy; z0), wy — w)
A
= 5 lwe = wll + o (we) + F(w; D) = ¢ (w)
1 Iy 2
< E., [(Vp(wes 2) = VF(ws D), we = wisn) = (50 = 5 ) lwesa = wi]

2n 2
1 A 2 1 2
+ (277 - 2) [[we —w]” = o [wer — wl] ]

n 2 I A 2 1 2
< . . _ . - _ = _ _ _
< B[ 9wz = VP DI + (5 = 5 ) on = wil = 5 i =
1 A 1
<+ B (5= 5 ) o= wl = o e - w?

where the first inequality follows from smoothness, the second from strong convexity, the third from Fact D.1 in (Allen-Zhu,
2018), fourth from AM-GM inequality and the last from the assumption about variance bound on the oracle.

Now, the above is exactly the bound obtained in the proof of Lemma 5.2 in (Feldman et al., 2020) with the second moment
on gradient norm replaced by variance. Repeating the rest of the arguments in that Lemma gives us the claimed result. [

Lemma D.5 (Privacy of Algorithm 6). Consider a function f(w;z) = £(w;x) + A(w) such that w — £(w; ) is convex,
Lo Lipschitz, Li-smooth for all z, and A(+) is A strongly convex, G a Lipschitz and Ha smooth over a bounded set V.

FO}"TIL =Q (L1+HA log (LlJrHA)) Algorithm 6 with input as function (w,z) — f(w;z), 02 = 64G2(1O§(2:LL)2)2210g(1/5)
og

n= ) and S {wi}y_ ) = s Zt 1 Yewy for any weights ~; satisfies (e, 8)-DP.
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Proof. We start with computing the sensitivity of the algorithm’s output: let {w; } and {w}} be sequence of iterates produced
by Algorithm 6 on neighbouring datasets. Note that the function w — f(w;x) is L} = L; + Ha-smooth and A-strongly
convex for all z. From the assumption on n, we have that the step size n < . Suppose the differing sample between

1
. . . . H+HA
neighbouring datasets is x;, then w;, = wy for all t < j. Also,

2L log (n)

[wjs1 = Wi || =0 ||Vl ws; x5) = Ve wy; x5)|| < 2nLo = v

Now, for any ¢ > j, as in the standard stability analysis we have,
w1 — wy oy = wy — NV (we; z¢) — NV A(wy) — we + NV wy; 2¢) + nVA(w))

where the last equality follows from Taylor remainder theorem where w; is some intermediate point in the line joining wy
and wj. Using the fact that n < ﬁ and ) strong convexity, we have

2Lglog (n)
|wesr — wi || < @ = nA) lwe — w|| < [Jwj1 — w}+1H < —m
Applying convexity to the weights in the definition of the selector function S, we get,
2L log (n)
IS({we}) - S({wih)] < =225
n
The privacy proof now follows from the Gaussian mechanism guarantee. O

Lemma D.6 (Phased SGD composite guarantee). Consider a function f(w;z) = {(w;z) + A(w) where w — £(w;x)
is convex, Lo Lipschitz, Ly smooth for all x, and A(w) is X strongly convex, G Lipschitz and Ha smooth over a

bounded set W. Forn = ) (K(LleA) log (Ll—;HA )) Algorithm 6 with 0% = GALGKC (log(n))” log(1/9) satisfies (e,0)-

A2n2g?
DP. Furthermore, with input as function (w,x) — f(w;x), a dataset S of n samples drawn i.i.d. from D, n = %,
K=Inlnn, v = (1-9\)""and S {w:}]_,) = ﬁ S i, Yewy, the excess population risk of output wic is bounded
t 1:1 t

as

E [F(wg; D)) — min F(w; D) = O Lo, dly
Wi wew ' V)T An - An2e?

Proof. The privacy proof simply follows from parallel composition. For the utility proof, we repeat the arguments in
Theorem 5.3 in (Feldman et al., 2020) substituting the variance-based bound from Lemma D.4. Note that the variance of the
stochastic gradients used, V2 < L%, this gives us,

E [F(wg;D)] — min F(w; D) = O L3 +LL8
K weW T A\ An2e2

E. Missing Results for Generalized Linear Models

We first give the definition of oblivious subspace embedding.

Definition E.1 ((r, 7, 3)-oblivious subspace embedding). A random matrix ® € R¥*? is an (r, 7, 3)-oblivious subspace
embedding if for any r dimensional linear subspace in R?, say V, we have that with probability at least 1 — 3, forall z € V/,

2 2 2
(1 =7) )" < [[@z]” < (1 +7) [l]
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It is well-known that JL. matrices with embedding dimension k = O (%) are (r, T, 3)-oblivious subspace embeddings

and can be constructed efficiently (Cohen, 2016). A simple example is a scaled Gaussian random matrix, & = ﬁ(} where
entries of G are independent and distributed as N (0, 1).

Proof of Theorem 6.1. We first prove privacy. Let G(S) and H(.S) be the bounds on the Lipschitz and smoothness constants
of the family of loss functions {w > f(w; ®x)}, . q. With k = Q(log (2n/6)), from the JL-property, it follows that with
probability at least 1 — §/2, G(S) < 2Lo ||X| and H(S) < 2L, ||X||*. Hence, using the fact that A is (¢, 5/2)-DP, we
have that Algorithm 4 is (&, 6)-DP.

We now proceed to the utility part. Let 0 € R” be the output of the base algorithm in low dimensions. Note that the
final output is w = ® "1i. The transpose of the JL matrix can only increase the norm by the polynomial factor of d
and n, hence ||w| < poly(n,d) ||@||. By assumption, P (||@w| > poly(n,d, Lo, L1)) < % Hence we also have that
P (||@|| > poly(n,d, Lo, L1)) < ﬁ Let W C R? denote the above set with radius poly(n, d, Lo, L1 ).
We now decompose the population stationarity as,

E|VF(w;D)|| < E|[VF(w; D) = VF(w; S)|| + [[VF(w; )

<E sup [VF(w; D) - VF(w; 8] + LX) | g v pa; 9, @
weW \F

where the last inequality follows from the above reasoning that that P (w € W) > 1 — ﬁ The first term is bounded from
uniform convergence guarantee in Lemma E.2 noting that the dependence on ||)V|| in the Lemma is only poly-logarithmic.

) _ Lo || X
B sup [VF(wiD) — VF(wsS)| = ( ﬁ) ®)

We now prove a bound on the empirical stationarity. Note that it suffices to prove a high-probability (over the random JL
matrix) bound because the norm of gradient is bounded in worst case by Ly ||X'||. Thus the expected norm of gradient of the
output is bounded by the high probability bound by considering a small enough failure probability.

From the assumption on .4, with probability at least 1 — §/2,

IVF(w; ® Zgb (0, Px;)) P || < g(k,n,2Lo ||X],2Lo || X]|,€,0/2)

We now use the fact that if & = O (ranklog (2n/6)), then the JL transform is an (rank, 1/2,J/2) oblivious subspace
embedding (see Definition E.1). Thus, it approximates the norm of any vector in span({x;}_, ), and hence any gradient.

Therefore,
1 & - rank
i) (n Zqﬁlyi((w,@xi))mi) > (1 - k) E

Z Z¢y1 <<I>Tw xl>

n

U3 6, B
=1

E|VF(w;®S)||=E

= *EIIVF( S

l\J\H

2

Thus with k£ = O (ranklog (2n/6)), we get

E|VE(@; S)| < g(k,n,2Lo [|X, 2Ly | X]|* &, 8) = g(rank,n,2Lo | X|| , 2Ly | X]* €. 6)

For the other bound, let I;_;, € R?** denote the matrix with first k diagonal entries, (I k);; with j € [k], are 1 and the
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rest of the matrix is zero. We have,

E[VE(w; S)|

%Zqﬁéi«qﬁw,m»)m

qu 0, D)) 4P

%iqslyl w (sz T, — *Z¢ ’lU (bl'l Id,kq)xi

|

< E Ll + ]EZW (@, Dx3))| [|2: — Ta—rDai]]]

| ZQS ((w, ®x;))Dx;

1
<E|VF@;88)| + ~ES Lo |1 — I_x®|| |
<E[VF(w; @5) + ~ ; o[l1 = Ta—r®] [l

< g(k,n,2Lo |X |, 2Ly [|X]* 2, 8/2) + Lo | X|| E | T — H]|

where the second inequality follows from triangle inequality, the third inequality follows from Lg-Lipschitzness of the GLM,
the third inequality follows from the accuracy guarantee of the base algorithm and substituting H = I;_;®. To bound
E ||I — H]J|, we use concentration properties of distribution used in the construction of JL matrices. Specifically, using the
scaled Gaussian matrix construction, from concentration of extreme eignevalues of square Gaussian matrices, we have that

E|l-H|=0 (ﬁ) (Rudelson & Vershynin, 2010). This gives us,

Lo || X
E|[VF(@;S)| < g(k,n,2Lo | X, 2Ly | X 5/2)+o( 0\/|E “)

Choosing k to minimize the above yields the bound of o} (%) Combining the two cases, yields the bound of

g(k,n,2Lo || X||,2L1 || X||* ,&,8/2) on gradient norm. Plugging this and the bound in Eqn. (8) in Inequality (7) gives the
claimed bound. O

Lemma E.2. Letr D be a probability distribution over X such that ||z| < ||X|| for all x € supp(D). Let f(w;(z,y)) =
¢y ((w, x)) be an Li-smooth Ly-Lipschitz GLM. Then, with probability at least 1 — 3, over a draw of n i.i.d. samples S
from D, we have

ALg ||1X] log (2n3/2 |\W|| Ly | X]| /L 4L ||X]] v/log (1
sup [V7w: D) ~ V(s ) < 108 G IV X1 720) Ao 28] s 01/
weW

Proof. We first give a bound on the expected uniform deviation, Egpn sup,,eyy | VF (w; D) — VF(w; S)||. The gradient
of the loss function is V f(w; x) = ¢/, ((w, x)) x. We start with the standard symmetrization trick,

Eg~pn sup [[VF(w; D) = VF(w; S

weWw
1 n
= Eg~pn sup IE(;S ((w 72 (w, z;))
wew n i=1
g sup |[Egyyopn s 300 (w0 m<>>x<—12¢' (w,2:)) 2
T wew {IQ}ND"nizl Y MRS ne= " T

< Eg,s'~pn SUp

weW || T2y i=1
1 n
= g5 B,y sup =Y o (gbyg((w,x;)):z:, é. ((w,xl>)xz>|
€ =1

< 2EspnE(s,y sup
weWw

(©))

31



Faster Rates of Convergence to Stationary Points in Differentially Private Optimization

where o; are i.i.d. Rademacher random variables. For fixed {z;}]_,, consider a set W} s.t. forall w € W and i € [n],
there exists wg € Wy such that |(w, z;) — (wo, z;)| < 7. Since ||w|| < ||W|| and ||z;|| < ||X||, we require only w
points in W to satisfy the above covering condition. Therefore,

Zm ((w, ;) x;

EsvpnE(s,} sup
wew

Zaz ((w, 23)) = 1, ((wo, 3)) + ¢, ((wo, 1)) 2

=EswprE{s,;  sup

weW, woEWo i—1
< ESND“E{U sup Z Ul vi U/, xz)) - ¢;l (<U)0, Z U’L U/(), :L'z>) Z;
weW,woE€Wop

ZUZ ((wo, i) x;

=1

<EgupnBE(py  sup Ly [{w,2) — (wo, 23)| | X]| + EswpnEyy,y sup
weW,woEWo woE€Wo

ZUZ ’LU07.T1>)CEZ

i=1

< Ly7 || X 4+ EsoprEgs,y sup (10)

wo €EWo

where the second last inequality follows from smoothness and the last from the definition of cover W. For fixed wy, from
standard manipulations, we have,

IN

E{Uz‘} E{Ul Zgz¢/ w0,$1>)

% 722; O-i(é;/i (<w07 $Z>) x;

= E(o,} Z s, ((wo, i) ]|

Lo ||X]]
G

IN

Using Massart’s finite class lemma to handle all wy € W, and substituting the above in Eqn. (10), we get,

Zol ((w,x))

G |[X][[log (2n [V || X][ /7)
NG

< LiT || X +

Es~prE{s;) sup
wew

. _ L
Choosing 7 = Ll\o/ﬁ’ we get,

n

% Z UZ¢;Jz ((w, ) @

i=1

_ 2Lo || X[ Tog (2n°/2 W] Ly || X]| /Lo)
< Tn

Finally, substituting the above in Eqn. (9) gives us the following in-expectation bound.

4L ||X || log (2n3/2 |W|| Ly || X|| /L
Es~pn sup ||[VF(w;D) — VF(w;S)| < 0|Vl log (20 [WI| L | X1 /Lo)
wew \/ﬁ

Es~pnE{s,} sup
wew

For the high-probability bound, let /(.S) = sup,,cw [|VF (w; D) — VF(w; S)| and let w* € W achieves the supremum.
We can bound the increment between neighbouring datasets S and S’ as,

() = ¢(S)| < [IIVF(w*; D) = VF(w*; S)|| = [VF(w"; D) — VF(w; ")l

< |[VF(w*; S) = VF(w; 5]
< 2Lo | X||
n
Finally, applying McDiarmid’s inequality gives the claimed bound. O
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Proof of Corollary 6.2. The results follow from Theorem 6.1 provided we show that the conditions on the base algorithm in
the Theorem statement are satisfied. The privacy and accuracy claims follow from Theorem 3.2 and 5.1 respectively. We
note that even though we are given population stationarity guarantee for the convex case, the same bound for empirical
stationarity guarantee simply follows from the re-sampling argument in (Bassily et al., 2019). The only thing left to show is
the high-probability bound on the trajectory of the algorithm.

Non-convex setting with Private Spiderboost: From the update in Algorithm 2, we have that for any ¢

t t
D9 D9
=1 i=1

where the last inequality follows from the Lipschitzness assumption. Note that g; ~ N(0,02l) where o <

O (max (01,52)) = O (poly(n,d, Lo, L,)). Hence Hz;l gtH < \/dlog (1/B70 (poly(n,d, Lo, L1)) with probabil-
ity at least 1 — 8. Taking a union bound over all ¢ € T gives us ||w|| < poly(n,d, Lo, L1, log (poly(n, d)/3)) with
probability at least 1 — 3. Substituting 5 = ﬁ yields the guarantee of Theorem 6.1.

t
IVl <D lA + < 2tLo+
=1

Convex setting with Recursive Regularization: Since the iterates are restricted to the constraint set, the final output,
with probability one, lies in the set of radius

L Ly [Jw*|*"?
R =272 = 0 (/5 ) = o (P I
A Ly

which completes the proof. O

33



