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Abstract

We study private empirical risk minimization (ERM) problem for losses satisfying the (v, x)-
Kurdyka-t.ojasiewicz (KL) condition, that is, the empirical loss F’ satisfies F'(w) — min,, F(w) <
Y*|IVF(w)||". The Polyak-Lojasiewicz (PL) condition is a special case of this condition when
K = 2. Specifically, we study this problem under the constraint of p zero-concentrated differential
privacy (zCDP). When « € [1, 2] and the loss function is Lipschitz and smooth over a sufficiently
large region, we provide a new algorithm based on variance reduced gradient descent that achieves
the rate O((n—@)ﬁ) on the excess empirical risk, where n is the dataset size and d is the dimen-
sion. We further show that this rate is nearly optimal. When x > 2 and the loss is instead Lipschitz
Vd

and weakly convex, we show it is possible to achieve the rate O((n—\/ﬁ)n) with a private imple-

mentation of the proximal point method. When the KL parameters are unknown, we provide a
novel modification and analysis of the noisy gradient descent algorithm and show that this algo-

rithm achieves a rate of O (( n—*{/aﬁ

show that, without assuming the KL condition, the same gradient descent algorithm can achieve
fast convergence to a stationary point when the gradient stays sufficiently large during the run of

the algorithm. Specifically, we show that this algorithm can approximate stationary points of Lip-
Vd

ny/p

than O((n—@)l/ 2). The latter rate matches the best known rate for methods that do not rely on

variance reduction.

Pre
)*~*) adaptively, which is nearly optimal when x = 2. We further

schitz, smooth (and possibly nonconvex) objectives with rate as fast as O( ) and never worse
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1. Introduction

As modern machine learning techniques have increasingly relied on optimizing non-convex objec-
tives, characterizing our ability to solve such problems has become increasingly important. Due
to the inherent limitations of solving non-convex optimization problems, that is, the intractability
of approximating global minimizers, work in this area has largely focused on approximating sta-
tionary points (Fang et al., 2018; Carmon et al., 2017; Ghadimi and Lan, 2013; Arjevani et al.,
2022; Foster et al., 2019), or has imposed further restrictions on the loss function. In the latter
camp, numerous possible assumptions have been proposed, such as the restricted secant inequality
(Zhang and Yin, 2013) or star/quasar convexity (Hinder et al., 2020). Perhaps the most promis-
ing such condition is the Polyak-t.ojasiewicz (PL) condition (Polyak, 1963), and its generalization,
the Kurdyka-Eojasiewicz (KL) condition (Kurdyka, 1998)'. A function F' : R — R satisfies the
(7, £)-KL condition if for all w € RY it holds that,

F(w) ~ min{F(w)} <+ [VF(w; 9)|" ()

That is, the loss lower bounds the gradient norm. The PL condition is the special case where
k = 2. Both the KL and PL settings have been the subject of numerous works (Karimi et al.,
2016; Foster et al., 2018; Scaman et al., 2022). The KL condition, in addition to being weaker
than many of the previously mentioned conditions, has led to a number of strong convergence rate
results. Furthermore, an increasingly rich literature has shown that overparameterized models such
as neural networks satisfy the KL condition in a number of scenarios (Bassily et al., 2018; Charles
and Papailiopoulos, 2018; Liu et al., 2020; Scaman et al., 2022).

On the other hand, the reliance of modern machine learning techniques on large datasets has
caused growing concern over user privacy. Overparameterized models are of particular concern due
to their ability to memorize training data (Sweeney, 2021; Carlini et al., 2019; Feldman and Zhang,
2020; Brown et al., 2021). In response to this concern, differential privacy (DP) has arisen as the
most widely accepted method for ensuring the privacy of individuals present in a dataset. Unfortu-
nately, it has been shown in a variety of settings that differentially private learning has fundamental
limitations. As a result, characterizing these limitations has been the subject of numerous recent
works.

Non-convex optimization under differential privacy is still not well understood. For example, in
regards to the task of approximating stationary points in the DP setting, there are still gaps between
existing upper and lower bounds (Arora et al., 2023). Furthermore, for the problem of approximat-
ing global minimizers of non-convex loss functions under DP, it has been shown the best possible
rate is only O (%), even if the optimization algorithm is allowed exponential running time (Ganesh
et al., 2023c). In the PL setting however, it has been shown that rates of O(#) on the excess
empirical risk are achievable (Wang et al., 2017; Lowy et al., 2023). Interestingly, this matches the
optimal rate for DP optimization in the (much more restrictive) strongly convex setting, and sub-
sequently lower bounds for this setting show the rate is optimal (Bassily et al., 2014). Given this
promising result, the question arises whether such results can be obtained for the more general class
of objectives satisfying the KL condition, particularly since recent work has shown this general-
ization allows one to capture common models outside the reach of the PL condition Scaman et al.

1. These conditions are sometimes also referred to as the gradient domination condition. Further, the KL condition
is sometimes phrased in terms of h(F(w) — min,{F(w)}), for some nondecreasing function h, akin to its first
appearance (Lezanski, 1962). In our work we instead focus on the (commonly studied) case where h is a monomial.
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(2022). In this work, we answer this question in the affirmative, and show that the KL assumption
leads to fast rates under differential privacy, even in the absence of convexity. We further provide
algorithms which are adaptive in the KL parameters. These results widen the range of non-convex
models we can train effectively under DP.

1.1. Contributions

In this work, we develop the first algorithms for differentially private empirical risk minimization
(ERM) under the (7, x)-KL condition without any convexity assumption. We show that for suffi-

ciently smooth functions it is possible to achieve a rate of O((%)H) on the excess empirical risk
for any k € [1,2]. For k > 2, we give an algorithm which attains the same rate for the strictly
larger class of weakly convex functions. This rate is new for any x # 2. We further show this rate
is near optimal when 1 + Q(1) < k < 2 by leveraging existing lower bounds for convex functions
satisfying the growth condition. For 1 < k < 2, we obtain our upper bound via a novel variant of
the Spider algorithm, first proposed in Fang et al. (2018). This method allows us to leverage the
reduced sensitivity of privatizing gradient differences to add less noise, an observation that has been
leveraged in several other works studying the problem of finding stationary points under differential
privacy (Arora et al., 2023; Murata and Suzuki, 2023). We also leverage a novel round structure
(i.e. the number of steps before the gradient estimator is reset) for our private Spider algorithm.
Whereas previous works have largely used fixed round lengths, our analysis crucially relies on vari-
able round lengths with adaptive stopping. In the case where x > 2, we obtain our upper bound
using a differentially private implementation of the approximate proximal point method.

For both these algorithms, our analysis leverages the fact that the KL. condition forces large
gradients during the run of the algorithm. We further show that these larger gradient norms allow
us to add more noise “for free”, and thus better control the privacy budget. We use this observation
to run Spider with a higher noise level than, for example, one would see without the KL condition
(Arora et al., 2023).

Leveraging this intuition, we further develop a simple variant of noisy gradient descent that
automatically scales the noise proportional to the gradient norm. We provide a novel analysis to

~ 2K
show this algorithm achieves the rate O ( (ﬁ) s (2 )H/ 2) under the (v, x)-KL condition when

ne n
% € [1,2]. This rate is O(-f;) when x = 2 (i.e. nearly optimal) and is O((%)Z/g) in the slowest
regime (x = 1). This result is adaptive and requires no prior knowledge of the KL parameters. We
additionally prove that this same gradient descent algorithm can achieve fast convergence guaran-
tees even when the KL condition does not hold. In this case where no KL assumption is made,
we settle for convergence to a stationary point as approximating a global minimizer is intractable.
Specifically, we show that when the trajectory of noisy gradient descent encounters mostly points
with large gradient norm, the algorithm finds a point with gradient norm O(%) We further es-

tablish that in the worst case, the algorithm finds a point with gradient norm at most O((@) Y 2),

ne
recovering the best known rate for noisy gradient descent in this setting.

1.2. Related Work

Differentially private optimization by now has a rich literature spanning over a decade. Much of
this attention has been directed at the convex setting (Chaudhuri et al., 2011; Jain et al., 2012; Kifer
et al., 2012; Bassily et al., 2014; Talwar et al., 2014, 2015; Bassily et al., 2019; Feldman et al.,
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2020; Asi et al., 2021a; Bassily et al., 2021b). The study of differentially private optimization in the
non-convex setting is comparatively newer, but has nonetheless been growing rapidly (Wang et al.,
2017; Ganesh et al., 2023c; Arora et al., 2023; Ganesh et al., 2023b).

Currently, research into DP non-convex optimization under the KL condition specifically has
been restricted to the special case of the PL condition. Assuming that the loss is Lipschitz, smooth,
and satisfies the PL condition, the works Wang et al. (2017); Lowy et al. (2023) obtained the rate
of O (n%‘lg) on the excess empirical risk. This rate is optimal because of existing lower bounds
for the strongly convex setting Bassily et al. (2014). More recently, Yang et al. (2022) studied the
(more general) minmax optimization problems under differential privacy when the primal objective
is assumed to be PL, although the rates therein are slower. Alternatively, in the convex setting, Asi
et al. (2021b) characterized the optimal rates for DP optimization under an assumption known as
the growth condition. When convexity is assumed, the KL condition and the growth condition are
equivalent (Bolte et al., 2017, Theorem 5.2). Convex functions satisfying the growth condition are
a strict subset of (general) KL functions.

There are also a number of works which have studied optimization under the KL. condition
without privacy considerations. The early works Polyak (1963); Lezanski (1962) were the first to
show that for gradient descent, linear convergence rates are possible when the objective is smooth
and satisfies the PL condition. More recently, Bassily et al. (2018) showed that under an additional
assumption known as the interpolation condition, stochastic gradient descent also achieves linear
convergence. The works Liu et al. (2020); Scaman et al. (2022) studied more general variants of
the PL/KL conditions called the PL*/KL* conditions respectively. Specifically, these works study
convergence when the condition holds only over a subset of R,

2. Preliminaries

Empirical Risk Minimization: Let X be a data domain and let S = {z1,...,z,} € X" be a
dataset of n points. Let f : R? x X — R be a loss function and define the empirical risk/loss as
F(w;S) = 23" | f(w; ;). We denote the set of global minimizers as W* = arg min,, F'(w),
which we assume is nonempty. We assume we are given some starting point wy € R? and define
the closest global minimizer to wy as w*. That is w* = arg min, ¢y« {||lwo — w||}. As W* may be
non-convex, multiple such minimizers may exist, but it suffices to select one arbitrarily. We consider
the problem of minimizing the excess empirical risk, defined at a point w as F'(w; S) — F'(w*; S).
We assume throughout that f is Lg-Lipschitz continuous over some ball (to be defined later). We
will denote the d-dimensional ball centered at w of radius B as Bp(w).

KL* Condition: Since assuming the loss satisfies the KL condition over all of R is unrealistic
in practice (and indeed impossible if Lipschitzness is assumed), several works have proposed the
modified KL* condition (Scaman et al., 2022; Liu et al., 2020). The exact definition of this condition
varies. We use the following definition.

Definition 1 A function F : R? — R satisfies the (7, k)-KL* condition on S C R w.rt. w' € R?
ifYw € S it holds that v*||VF(w)||* > F(w) — F(w").

We will take w’ = w* (i.e. the closest global minimizer to wp) unless otherwise stated. In this
case, under the KL* condition, one equivalently has %(F(w) — F(w*))Y/* < ||VF(w)||. Prior
work studying the PL*/KL* condition has generally further assumed F'(w*) = 0, but we will avoid
this assumption for the sake of generality (Liu et al., 2020; Scaman et al., 2022). We note that
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the condition is often phrased so that the constant v has no exponent, however this definition will
ease notation in our analysis; a conversion to the standard definition is straightforward. For our
algorithms, we will show that it is sufficient for the KL* condition to hold in a ball around an
initial point wg. Our guarantees could alternatively be phrased under the condition that the KL*
assumptions holds in a ball around w*, (see Remark 18, Appendix A).

Relevant to our discussion will also be the notion of the (A, 7)-growth condition, which states
that for any w € R, it holds that F'(w) — F(w*) > \"|jw — w*||”. When the loss function is also
assumed to be convex, the KL and growth conditions are in fact equivalent up to parameterization.
See Appendix A for more details.

Loss bound: We assume throughout that one is given a bound Fy > 0 such that F'(wg;S) —
F(w*; S) < Fp for some wy € R, However, as our results will assume the KL condition holds at
wo, one always has the worst case bound £y < v*L§ by the fact that the loss is Ly-Lipschitz.

Differential Privacy (DP): We consider primarily the notion of zero concentrated differential
privacy (zCDP). For the purpose of referencing existing work, we also define approximate DP.

Definition 2 (p-zCDP (Bun and Steinke, 2016)) An algorithm A is p-zCDP if for all datasets S
and S’ differing in one data point and all o € (1, 00), it holds that D, (A(S)||A(S")) < pa, where
Dy, is the a-Rényi divergence.

Definition 3 ((¢, 0)-DP (Dwork et al., 2006)) An algorithm A is (e, §)-differentially private if for
all datasets S and S’ differing in one data point and all events £ in the range of the A, we have,
P(A(S)e &) <eP(A(S) e &) +0.

zCDP guarantees imply approximate DP guarantees. Specifically, we note that for any § > 0 and
e < /log(1/4), (e, §)-DP guarantees can be obtained from our results by setting p = O (¢?/log(1/9))
(Bun and Steinke, 2016, Proposition 1.3).

Weak Convexity: A function F' : RY — R is L;-weakly convex w.rt. || - || if forall 0 < X < 1
Lid(1-)
and w,v € R% one has f(A\w + (1 — A\)v) < Af(w) + (1 = A) f(v) + %Hw — 2.

3. Optimal Algorithm for 1 < x <2

Algorithm Overview Algorithm 1 is roughly an implementation of noisy Spider with some key
differences. Similar to Spider, the algorithm runs over K rounds. At the start of any round k, a
noisy minibatch gradient estimate V, o, is computed. Throughout the rest of the round, the gradient
is estimated using the change in the gradient between iterates. That is, for some ¢t > 0, V. ; =
Vio+ 22:1 Ay, j, where each Ay, ; corresponds to an estimate of a gradient difference. After each
gradient estimate is obtained, a standard (normalized) gradient descent update step is performed.
In contrast to traditional Spider, at the start of each round k& € [K], a target excess risk threshold,
dy, is set. The algorithm then uses this threshold to define an adaptive stopping mechanism for the
round. The stopping condition is needed for the event where the excess risk of the update iterate falls
below @}, before the end of the phase. If this happens, the loss lower bound (and hence the gradient
norm lower bound) will not be strong enough for the subsequent iterate. Consequently, the noise
added for privacy could be too large and cause the trajectory of the algorithm to diverge. As such,
we check to see if the loss has fallen below the target threshold before performing any update. We do
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Algorithm 1 KL Spider
Require: Dataset S = {z1,..., 2y}, Privacy parameter p > 0, Failure probability 5 > 0, Initial
point wy € RZ, Loss bound Fy < (Lgv)", KL* parameters (7, k), Lipschitz parameter Lo,
Smoothness parameter L
I: wg,0 = wo, (i)(] = Fy

2—k
2. ¢c= 1 + FO ~ M‘%Ll
2—kK

. — 2=r 9 ny/p 1 _ B [ 7LoVKd
3 K = (1+64(1/Fp) 592 Ly) | log(Fy) + klog (220 ) |, 8/ = £ (anW)

.~ _ LoWK
4: 0 = T(L)i\/ﬁ
s5:fork=1,...,Kdo
6: P = max {i(i)kh min { (32@0 fjﬁlog(l/ﬁ/)y, Fo}}

s 2ok /" T K
7. T = (Fo/®k) =, Uk:%
Vk,O = % Z?:l Vf(“’k,o; $1) + bk70 where bk70 ~ N(O, ]Idé‘z)

: t=0

10:  whilet < T and |V, > & <I>1/F” do
2 l/n

1 Mkt = 47L1HVI< ¢l
12: Wht41 = Wit — Uk,th,t
13: A1 = 230 [V f(Whpq1520) = V f (wets 27)] + b g1, where by g1 ~ N(0,1407)
14: Viir1 = Vi + ADpii
15: t=t+1

16:  end while

178 Wgy1,0 = Wgt—1
18: end for

19: Return w = wg 1,0

this indirectly by checking the gradient norm and using the KL condition, as bounding the sensitivity
of the loss itself (to ensure privacy) is more delicate. Our implementation also uses varying phase
lengths such that the length of the &’th phase is roughly (1/ @k)@_“)/ ¥ (note the exponent is non-
negative since x < 2). Specifically, the phases get longer as the algorithm progresses. This is due to
the fact that as the excess risk decreases, the lower bound on the gradient norm (induced by the KL
condition) becomes weaker, leading to progressively slower convergence. We have the following
guarantee on the Algorithm.

~ 1/k Kr=1
Theorem4 Lety > 0, k € [1,2]. There exists B = O(I:DL1 + Fy " ’y) such that if f is Lg-
Lipschitz and Li-smooth over Bp(wo), Algorithm 1 is p-zCDP. Further, if F(-;S) satisfies the
(v, k)-KL* condition over Bg(wy), with probability at least 1 — (3 the output of Algorithm 1 satisfies

Pl S) — Flu S):O<<7L0 dKlog<1/5f>>”> O<<7LM a1+ (1/Fy) fy?Ll))

n/p Nz
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where K, 3" are as defined in Algorithm 1, namely K = (1 + 64(1/F0)27TN72L1) log(Fp) +
nyp r_ YLovVKd )
klog < 7 f)} and 3’ = (anl/K
Note the result can be further 51mphﬁed by setting Fy = (Lo7y)" (which is always possible by the KL
condition) which makes (1/Fp) = 2L, = LQ 1
0

as it is a standard application of the privacy guarantees of the Gaussian mechanism and composition.
In the following, we focus on proving the convergence guarantee of the algorithm.

. We defer the proof of privacy to Appendix B.1,

Convergence Proof for Algorithm 1  Our ability to assume loss properties hold only over Bz (wq)
(rather than R?) hinges on bounding the trajectory of the algorithm. We assume for the following
lemmas that he conditions of Theorem 4 hold.

Lemma 5 Forany k € [K] and t € [T}] corresponding to iterates of Algorithm 1, it holds with

- 1/k K—1
probability 1 that wy, € Bg(wo) for some B = O(I:;OL1 + Fy " ).

The implication of this result is that the algorithm starts in, and never leaves the KL region around
wp. Thus the KL property holds at every iterate of the algorithm. We provide a proof in Ap-

1/k
pendix B.3. Note that any L;-smooth function is also L)-smooth for L’ > [1. Thus the 1: i
term in the distance bound can be made negligible by running the algorithm with L; > F(2 w)/2 /v

(although this may increase the rate depending on Fy and ).
Our utility proof for Algorithm 1, will crucially rely on the following lemma which bounds the
gradient error at any step in terms of the excess risk target, ®y.

Lemma 6 With probability at least 1 — f3, for every k € [K| and t € [T}] indexing the iterates of
the algorithm, one has that |V, — VF (w4 S)|| < %Ci)i/n.
Proof The gradient estimates are generated by using exact gradients plus Gaussian noise, thus

||Vk,t - VF(w;m; S)||2

t
= ’|VF(wk,O;S)+bk,O+Z [VF(’U}]CJ;S)—VF(wk’j,US)-i-ka] VF U}k t7 == HZbk]H .
j=1

We can use Gaussian concentration results, see (Jin et al., 2019, Lemma 2), to conclude that for

any 7 > 0, P[||Vis — VE(wgy; S)|| > 7] < 2exp <— . Thus, under the settings

7_2
(A2+2T’f ag)>

21/k T K
of 6 = % and o, = % and Ty, = (Fp/ <I>k) =, one has that with probability at least
1 — @ that:

Vit — VF(wge; S |<2 dlog(1/8")(6 + /Txor)
Kdlog(l/ﬁ’)+ Kdlog(l/ﬂ’)(i)%—l 2=k

— k FOK
ny/p Yna/p

() 2Lo\/Kdlog(1/8") = 2/Kdlog(1/B") 1/s

< + Fy
ny/p Y1/

(i) 4o/ Kdlog(1/p") ( m L 2q/s

< < —9/"
n./p 8y
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Above, (i) uses O;, < Fp. Step (ii) uses that Fy < (vLg)" by the KL condition and Lipschitzness.

K
. A 32yLo+/Kdlog(1/')
Step (i7i) uses the fact that ®j, > ( " > .

K
Finally, we observe that for all k € [K], ‘ka > <327L° v fj%og(l/ p )> and 2_7"“ > 0. Hence,

the total number of iterations of the algorithm is at most

al ny/p N\ n\fFl/N .
ZTk <K|F, P <K VP
et 32vLo+/Kdlog(1/8") ~vLoV Kd

Thus by the definition of 3, over the run of the algorithm, we have with probability at least 1 — /3
that every gradient estimate satisfies the desired error bound. |

We can now prove the main theorem.
Proof [Proof of Theorem 4] In the following, we condition on the high probability event that the
gradient errors are bounded, as shown in Lemma 6. Further, recall that by Lemma 5 the trajectory
{wk.t}ke[K),te(Ty) is contained in Bp(wp) with probability 1, and that the (v, x)-KL* conditions
holds over this set.

We will show that at the end of the the k’th phase (i.e. the k’th iteration of the outer loop), the
excess risk is at most @y, First, consider the case where at some point during the phase the gradient
norm stopping condition is reached. In this case, the condition in the while loop ensures ||V ;| <

%@i/ﬁ. Thus by Lemma 6 and a triangle inequality we have |V F (wy ¢; S)|| < %Ci),lc/ﬁ+%<i>}€/” =
%(ﬁi/”. Then by the KL assumption we have that F'(wy ¢;.S) — F(w*; S) < 4*||VF (w4 9)||" <
7“(%@,16/“)“ < ®y,, as desired.

We thus turn towards analyzing the alternative case, where the final iterate of the phase is
w1, » using an induction argument. Specifically, under the inductive assumption that F'(wy, o; S) —
F(w*; 8) < ®p_1, we will show that F(wy,1,.; S) — F(w*; S) < ®y. For the base case, we clearly
have F'(wq,0; S) — F(w*; S) < ) = Fy. Using smoothness and the setting of 7, ;, we can obtain
the following descent inequality,

1 s1/k L 2
F(wk,t; 5) - F(wkz,t+1§ 5) > m”vm”@k - E”Vk,t - VF(wk,t; S)H

We leave the derivation of the above inequality to Lemma 20 in Appendix B.2. We now can use the

fact that updates are only performed when ||V}, ;|| > %ti)llc/ "

error derived in Lemma 6 to obtain

and the bound on the gradient estimate

22/K 1 22/Kk 1 22/Kk
P - > P
32720, F 2567201 * T 6442L; *

F(wg; S) — F(wgi41;S) >

K

Summing over all T}, = (Fy/ (i)k) z iterations yields

22/kK =k o
T, %" = Fr &
6472L, FTk T G4qZL, 0 K

F(wgp,5) — F(wgz,;S) >
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We then have the following manipulation leveraging the inductive hypothesis,

* % ]_ 2;& N
Flwyo; §) = F(w"; 8) + P(ws §) = Flwen; §) 2 grapFo " @
: 1 2n
Cp1 + F(w S) — F 1S) > ————F " &
k-1 + F(w*;S) — Flwyp; S) > Ll e
2—kK 1 .
— LA > . o *,
(1= 6472L1c)(1)k_1 > Flwgz;8) = F(w?; 5)

(i)k > F(wk,Tk; S) — F(w*; S)

2-r A ~
The last step follows because (1 —Fy" m) = % and %@k < ®;._1. We have now shown that

final iterate of each phase has excess risk at most By,

Now, all that remains is to show that ) Kk <

32yLoy/Kdlog(1/8)\* . A
( /P ) . Noting that &5 <

max{(l)KFg, (32%0 Kdlog(l/ﬁ,)>n} it suffices to show that (%)KFO < (”’L‘)ﬂ)n. The in-
7

c n\/p ny/p

yLoVd L \/3) :
( T 0 < K. Using the fact that

k=2
log(1 +z) > 7 for > 0, we can obtain that log(c) = log(1 + 1/[64F ~ Y2L1]) > (1 +

k=2 —
64F, ~ ~?Ly)~!. It thus suffices to have K > (1+64(1/F0)QT 2Ly) [10g(F0)+/ilog (72\/\%)},
0
which is satisfied by the algorithm. |

n

log(Fo)++ log(
log(c)

K
equality (%)KFO < ) is equivalent to

3.1. Lower Bound

We now demonstrate a lower bound showing that our upper bound is nearly optimal. To do this,
we leverage an existing lower bound from Asi et al. (2021b) for functions exhibiting the growth
condition. In Theorem 21 in Appendix B.4, we extend their result to smooth functions and give a

lower bound of Q((7) = <L/\O—f) ! ) on excess empirical risk of (e, §)-DP procedures for convex
1 &k

functions satisfying (A, 7)-growth. Combining this result with the fact that the (;, 7 )-growth
condition and convexity implies the (v, k)-KL condition (Theorem 5.2 (ii) in Bolte et al. (2017),
restated as Lemma 16), yields the following lower bound.

Corollary 7 Let B, Ly, L1 > 0and 1 < k < 2 such that k = 14+Q(1). For any p-zCDP algorithm,
A, there exists a dataset, S, point wg € R% and loss function f such that f is Lo-Lipschitz and
Li-smooth over Bg(wy) and F(-;S) is (v, k)-KL, for which the output of A has expected excess

empirical risk Q ((%) N).

Note the bound is independent of B and L;. More details on how to obtain Corollary 7 from the
result of Asi et al. (2021b) can be found in Appendix B.5.
4. Algorithm for x > 2

In this section, we assume the loss F(+;.S) is L-weakly convex and that the empirical loss
satisfies the (v, x)-KL* condition for x > 2. We avoid making a smoothness assumption in this
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Algorithm 2 (KL) Proximal Point Method

Require: Dataset S, Privacy parameter p, zCDP Optimizer for SC loss 4, Initial point wgy € ]Rd,
Initial loss bound, Fjy > 0, Failure probability 3, Lipschitz parameter Lo, Weak convexity L

£=2 2 n
1T = (1+32F, " 2L0)|log(Fy) + rlog (/22 )
B =7

fort=1...T do .
Fy(w; S) := F(w; S) + Ly |w — w1 |)?
Wy = A(Ftawt—h %75/)

end for

Return wr

A A i

regime. When £ > 2 and the KL* condition holds in a region with small excess risk, the loss
functions cannot be smooth (unless it is the constant function). To elaborate, one can show that the
loss upper bound implied by smoothness and the loss lower bound implied by the KL* condition
lead to a contradiction. Instead of smoothness, we consider the (strictly weaker) assumption of weak
convexity. As convex functions are weakly convex with Ly = 0, this setting is a strict relaxation of
the loss assumptions considered by Asi et al. (2021b). Despite this, we achieve essentially the same
rate as theirs. Moreover, in Theorem 23 in Appendix C, we give a lower bound of (nie)"‘, which
establishes that our rate is tight (at least) for d = 1. Its proof adapts the construction in Asi et al.
(2021b, Theorem 5) from a lower bound on excess population risk under pure, (¢, 0)-DP to that on
excess empirical risk under approximate, (¢, d)-DP. The lower bound holds for convex functions
satisfying the growth condition and thus satisfying the KL. condition, via Lemma 16.

Our algorithm in this case is simply a differentially-private implementation of the approximate
proximal point method. This method has been used in prior work for non-KL functions to approx-
imate stationary points (Davis and Grimmer, 2019; Davis and Drusvyatskiy, 2019b; Bassily et al.,
2021a). We have the following guarantee for this method.

~ 2 ’ /
Theorem 8 Let v > 0, Kk > 2, There exists B = O(%(l + \/leog(nii?% (/5 )/dﬁ)) +
1

k=2

LoF, - 72) and a subroutine A such that if f is Lipschitz then Algorithm 2 is p-zCDP. If F(+; S)
also satisfies the (7, )-KL* condition and L,-weak convexity over Bg(wy), then with probability
at least 1 — 3 the output of Algorithm 2 has excess risk, F'(wr; S) — F(w*; S), at most

O<<7L0\/Td log(n?log” (1//3’)/dﬂ’)>ﬁ> _ O<<7Lg\/d(1 + F;;QVQL]))”)

where T = (1 + 32FONT_272L~1) [log(Fo) + klog (Wz(‘)/\%)} and ' = B/T, as defined in Algorithm 2.

2 ’ /
V/Tdlog (nii(:fp (1/B)/45") i, the radius bound will be o(1) in regime where the conver-

gence guarantees are nontrivial. The privacy of Algorithm 2 is straightforward since the subroutine
A is p-zCDP by the assumption. Algorithm 2 is then private by post processing and composition.
To prove the convergence result, we will use the following fact about the strength of differentially
private optimizers for strongly convex loss functions.

Note the term

10
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Lemma 9 There exists an implementation of A which is p-zCDP and with probability at least

2 2 2 ! /
1 — /3’ the output of the algorithm has excess risk O (Lodlog (n gz)i?,EU p)/db )>.

We provide the details for this result in Appendix E. Furthermore, as in Section 3, we only need the
KL condition to hold over the trajectory of the algorithm. The following lemma allows us to utilize
the KL property at every iterate generated by the algorithm.

Lemma 10 Assume A is as described by Lemma 9 above. With probability at least 1 — 3,

~ ’ ’ ﬁ
w1, ..., wp € Bp(wy) for some B = O(%}(l + \/leog(ngiff;(l/ﬁ /4B )) + LoFy * +?).

The proof is deferred to Appendix C.1. The proof of Theorem 8 now follows similar steps to those
used in Theorem 4, but is overall much simpler. One key difference is that, for each t € [T], we
need to use the KL condition to lower bound ||w; — w;_1||, rather than ||V F(w,; S)||. For this, note
that the optimality conditions of F imply 2L |lw} — wy—1| = [|[VF(w};S)|| > %(F(wj; S) —
F(w*;S8))"/#. The inequality comes from the KL condition. The full proof of Theorem 8 is in
Appendix C.2.

5. Adapting to KL condition

In this section, we present an alternative algorithm for ERM under the KL* condition. At the cost
of weaker rates when x < 2, our algorithm automatically adapts to x and ~. This is in contrast to
the Spider method presented previously which requires prior knowledge of x and . Furthermore,
we are able to obtain this result with a comparatively simple algorithm. That is, our algorithm is
a simple modification of the traditional noisy gradient descent algorithm seen frequently in the DP
literature (Bassily et al., 2014; Wang et al., 2017; Bassily et al., 2019). Throughout the following,

Algorithm 3 Adaptive Noisy Gradient Descent

Require: Dataset S, Privacy parameter p > 0, Probability 8 > 0, Initial point wg € R¢, Lipschitz

parameter Ly, Smoothness parameter L

1: n:i,tzo, po =0

2: while }-%_ p; < 5 do

33 Ny = H% Sy Vf(wt;xi)H + by where by ~ N(0,1462) and 6 = ﬁ

4 V=15 Vf(wy;x;)+b where by ~ N(0,1407) and 0 = max {m 33%}
5 Wiy = Wy —277Vt

6:  pr = min {7%6“?2(;\2/5/6) , %} + %

7. t=t+41 '

8: end while

we will use 7' 4 1 to denote the highest value of ¢ reached during the run of Algorithm 3.
Theorem 11 Assume f is Lipschitz. Then running Algorithm 3 and releasing wy, ..., wr is p-zCDP.

The proof is given in Appendix D.2, and relies on the fully adaptive composition theorem of
Whitehouse et al. (2022). Our aim is now to provide convergence guarantees when the loss sat-
isfies the KL* condition over some region S C R? We here demonstrate an alternative way of

11
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defining S which allows us to leverage the KL* condition (in contrast to assuming S is a ball).
2

Define the threshold v = max { F(wo; S), F(w*; S) + 2(v*/% + Ly) (%) }. Let
Z ={w: F(w;S) < a} denote a lower level set of F'(+; S). Note the second term in the max of «
only handles the trivial case where wy already has small excess risk. Observe that Z may not be a
path-connected set, thus we define S as the path-connected component of Z that contains wg. That
is, w’ € § if there exists a continuous function w : [0, 1] — Z, such that w(0) = wg, w(1) = w'.
Intuitively, S is the local “valley” of F'(-;.S) in which wy resides. Furthermore, we can guarantee
that the trajectory of Algorithm 3 stays in this valley for the duration of its run.

Lemma 12 Assume F(-;S) is Li-smooth and Ly-Lipschitz. If F(-;S) satisfies the (v, k)-KL*
condition over S w.r.t. w3 := arg min { F(w; S)}, then w.p. at least 1 — 203, forallt € [T|, w; € S.
weS

The proof is deferred to Appendix D.4. Note we are assuming the KL* condition w.r.t. the min-
imizer over S (as opposed to the global minimizer) here. We also remark that an existing work,
Ganesh et al. (2023a), argued the importance of public pretraining in the non-convex setting to find
some wy in a convex subregion before training on private data. Alternatively, our result suggests
meaningful convergence if the empirical loss over the localized region is instead KL. This may be
more realistic in the overparameterized regime as existing work has shown such models tend to be
non-convex (but KL) around the minimizer (Liu et al., 2020). Our convergence result for Algorithm
3 is as follows.

Theorem 13 Let 8,7 > 0, & € [1,2]. Let p > 0 be s.t. L3log(n\/p/B)/(Lin) < /p. Define
Pmax := (14 87?L1) [log(Fo) + 2 log(nﬁ/[yLO])] If F(-;S) is Li-smooth and Lg-Lipschitz

and satisfies the (v, k)-KL* condition over S (as described above) w.r.t. w§, then with probability
at least 1 — 23, Algorithm 3 finds wr such that F(wr; S) — F(wg; S) is at most

0( <7L°\/d10g(”\/ﬁ/5)pmax> - N (max (+21} I3 1og<m/ﬂ>>”” . (p) o )

ny/p min{ Ly, 1}n./p ny/p
Ignoring polylogarithmic terms and problem constants we can more simply write

F(wr: §) — F(wg: §) = (L) 7% + (1)),
The simplification in the theorem uses the fact that 5%~ > & for all k. We defer the proof of
Theorem 13 to Appendix D.3. The overarching ideas of the proof are similar to those of Theorem
4. However, the adaptive nature of the algorithm makes the analysis much more delicate

Observe that for k = 2 (i.e. the PL condition) this obtains the rate O( + W) which
essentially captures the optimal rate in this setting. The rate slows as x decreases, and for k =1 we

obtain a rate ofON((n—‘\//gﬁ)w3 + \/5;1/4)'

5.1. Convergence Guarantees without the KL. Condition

One of the key properties of Algorithm 3 is that it leverages large gradients to better control the
privacy budget. In fact, even in the absence of an explicit KL assumption, we can show that Algo-
rithm 3 obtains strong convergence guarantees when large gradient norms are observed. We provide
the following result on Adaptive Gradient Descent’s ability to approximate stationary points. Note
that we cannot give excess risk guarantees in this case due to the fact finding approximate global
minimizers of non-convex functions is intractable in this setting.

12
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Theorem 14 Assume f is L1-smooth and Lo-Lipschitz. Let T + 1 denote the largest value attained
byt during the run of Algorithm 3. Let t* be sampled from {0, ..., T'} with probability proportional

to exp < Ty ||VF(wt, )H) This algorithm is 2p-zCDP and with probability at least 1 — 33
. . FoLid)\ /2 Lo+/log(n\/p/B)
satisfes [V (w5 5)]| = O (min { /5, (Lodaa) )y £ BeC 0T

The proof is given in Appendix D.6. The best case scenario is when most gradients in the run of

the algorithm are Q(1). In this case, the algorithm attains T = O(min {n/p, %}) iterations

G
R

lower bound 2 ( f) for approximating stationary points, although this is not directly comparable
as the previously stated upper bound does not hold for all functions. In the worst case, the algorithm

and the convergence guarantee becomes O( ) We note an existing work showed a

will achieve convergence guarantee O( f n /4 + NI /4) By contrast, the best known rate for
approximating stationary points is O((n—\gﬁ)z/ 3) (Arora et al., 2023), and the best known rate for

methods which do not rely on variance reduced gradient estimates (as is more typical in practice) is

O((n—‘\//aﬁ) 1/2) (Wang et al., 2017). Our analysis recovers the O((n—‘{/aﬁ) 1/2) rate obtained by noisy
gradient descent as a worst case guarantee with minimal modification to the algorithm itself, while
also potentially achieving a much stronger rate.

The worst case guarantee comes from balancing the number of iterations that the algorithm
performs (which increases when the gradient norms are large) with the minimum gradient norm
over the trajectory. For simplicity, consider the scenario where every gradient in the trajectory

has the same norm N > (. Then clearly the minimum norm is also IV, but in this case T =

o(Xre pr ). Thus the convergence guarantee implies that N = O( N\nf\f) which at worst means

N=0 ( \/dj /1 7 4) More formal/general details are in the proof in Appendix D.6.
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Appendix A. Relationship between Growth Condition and KL Condition
Definition 15 ((\, 7)-growth) A function F : R — R satisfies (\, T)-growth if the set of minimiz-
ers W* := arg min,, F'(w) is non-empty, and

F(w) = Fwp) 2 A7 [[w — wp|”

where wy, be the projection of w onto VW*.

Lemma 16 (Theorem 5.2 (ii) in Bolte et al. (2017)) Letx > land v > 0. If F : R — R s

1 &k

convex and satisfies ('7* , n71> growth condition, then it satisfies (v, k)-KL condition.

It is proven in (Karimi et al., 2016, Appendix A) that the KL condition with x = 2 (i.e., the PL
condition) implies quadratic growth. We present the following generalized version of this argument.

Lemma 17 Assume F : R? — R satisfies the (v, k)-KL condition for & > 1 and v > 0. Let
w € R? and let wy, be the projection of w onto the set of optimal solutions, WW* := arg min,, F'(w).

Then it holds that F(w) — F(wp) > [% : “T_l} ~t |lw — prﬁ.

Proof Define F* = min {F(w)} and g(w) = ﬁ[F(w) — F*]k%. We have

weR
VE(w) 2
2
- 2
O e @
__IVFw)? 5
[F(w) — F*]2/%
IVF(w)]* )2/“ !
— (AT > 4
(i r) =53 @
Consider the gradient flow starting at a point wg given by
dw(t
o0 — —gui). ()l = wo

Note F'is invex (i.e. its stationary points are global minimizers) because it is KL. Thus g is an invex
function because it is the composition of monotonically increasing function and invex function.
Further, because g is bounded from below (by 0), the path described above eventually reaches the
minimum thus there exists 7' < 400 such that F((w(T)) = F(w*).

Note the length of the path is at least ||wg — wp||. We then have

dw(t)

T
otun) = glor) == [ (Vatw(®), 5

T
S R CONRE

@1 [T
zA|Wmmm|

(i) 1

> ;Hwo - wPH7
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where (7) uses Eqn. (2) and (%) uses the lower bound on the path length. Plugging in the definition
of g then gives

1-1/k i/

F(w) = F(wp) > [ = wp|

Note the bound is non-negative if x > 1. Finally, observing that
[ |

ﬁ = ﬁ establishes the claim.

Remark 18 Using the above result one can observe that if the KL condition holds over a ball of
k=1

radius B > ﬁ’yFOT, then w* € Bp(wy). Then for some w' € R?, a triangle inequality can
then be used to obtain ||w' — w*|| < ||wy — w'|| + ||wo — w*||. This would allow one to phrase our
results in terms of a ball centered at w*.

Appendix B. Missing Proofs from Section 3

B.1. Privacy of Algorithm 1

Lemma 19 Assume f is Lo-Lipschitz and Li-smooth over Bg(w*) (where B is as given in Theo-
rem 4). Then Algorithm I is 2p-zCDP.

Proof First, by Lemma 5, every wy, 4, k € [K],t € [T}],is in Bg(w*), and thus the loss is Lipschitz
and smooth at the iterates generated by the algorithm. The sensitivity of the minibatch gradient
estimates (made in the outer loop) is then £2, and at most K such estimates are made. Smoothness
guarantees the sensitivity of the gradient dlfference estimates (made in the inner loop) at some
ke [T, t € [Tyl is =5V, < 161/ since e, = o/"
estimates are made.

1
HLVe] . Note at most 1}, such

The zCDP guarantees of the Gaussian mechanism ensures that the process of generating each
V0 is p-CDP with [) = i Similarly, we have that the process of generating each Ay 4, t > 0, is
p-zCDP with p, = KT By the composition theorem for zZCDP we then have the overall privacy,

is at most 35, ( + 50k, = ) = 2p. |

B.2. Descent Equation for Algorithm 1

Lemma 20 With probability at least 1 — [3, for every k; € [K]andt € [Tk] indexing iterates of the
algorithm it holds that F(wy,; S)—F (wg ¢+1; ) > 16'yL1 |V, tH<I>1/N 4L1 |Vit—VF(wgs;S)|?
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Proof We start with a standard descent analysis. Since F'(+; S) is L1-smooth, we have

L
F(wpy; S) = F(wpis1;5) = (VE(wp s S), why — Wha1) — —1 [ —

L177kt

= 77k,t<VF(wk,t; S), Vk,t> - ||V ”

L
- (1 - ’7’““) IVedl2 + s (VE(wes S) — Vs, Vi)

2
(1) 1 L
> Nt <2 = 1) [ Vgell® — nkt VE (wy; S)|%
(#1)
> [kt 11, Ve = VE (e S)|P

(i) 1 1/;-; 1 9
= — _ F .
6Ly I Vi,ell @y, LIHVk,t VE(w,; 5)||

Step (i) uses Young’s inequality. Step (i¢) uses the fact that ng; < 5 L . This is because 7y ; =

m bL/% and updates are only performed when ||V, +|| > 7 <I>1/ ", Step (4ii) uses the setting

of Mt |

B.3. Proof of Lemma 5

Due to the step size and the phases lengths, with probability 1, we have that,

K K 1 w2 e e Ko\
1 A1)k A
||wk7t*w0||—z4 D0 T < e = ™ Z( m)
k=1 4Fy * vL4 L= Ner

Above, we use the fact that “_1 > 0 (since k > 1) to bound @k < Fjy. Since ¢ > 1 we have,

recalling K = (1+64F " 2L1)[1 (FO)_’{IOg<LOff>}

KFY* (" =) n/p
wi ¢ — Wyl < 0 — 0 +16F, ~ [lo Fy) + klo ( )]
H k,t 0|| 4/}/[/1 (4’7L1 0 v g( O) 2 Lo\/g

B.4. Lower Bound for Smooth Losses Satisfying Growth Condition

We provide the following extension of the lower bound on excess risk in Asi et al. (2021b). Our
extension yields a lower bound for losses which satisfy (\, 7)-growth and are L; > 0-smooth over
a ball Br(wy), for any smoothness parameter L; > 0 and radius R > 0. In contrast, the setting
of Asi et al. (2021b) did not have the above smoothness and existence of a (large) ball Br(wp)
assumption (over which smoothness and Lipschitzness holds). Further, Asi et al. (2021b) provide
a lower bound for constrained DP procedures, which is is based on a reduction from convex ERM
over a constrained set of any diameter D (Bassily et al., 2014). In contrast, we are interested in
lower bound for unconstrained procedures. Therefore, in Theorem 22, we extend the lower bound
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of Bassily et al. (2014) to the unconstrained setting. We then provide a reduction, closely following
Asi et al. (2021b), from unconstrained convex ERM to unconstrained optimization of functions
satisfying a growth condition. Finally, we note that our unconstrained lower bound in Theorem
22 holds pointwise for all values of the norm of optimal solution D, so it suffices to construct a
reduction for some choice of D. We show that for any given setting of problem parameters, there is
a choice of D, for which the reduced instance satisfies the requisite properties.

Theorem 21 Let Lo, L1, B,A > 0,7 > 2,7 = O(1),0 < € < 1,279 < § < % For any
(¢,6)-DP algorithm A, there exists a set VW C R containing a ball of radius B, a dataset S and
a convex loss function f such that for all x, the function w — f(w;x) is Lo-Lipschitz, Ly-smooth
over W, the empirical loss w — F(w; S) satisfies (A, T)-growth, and

EAF(A(S):S) — inf F(uw)] = [ — <L°”)”

weRd B Ane

Proof The key to the proof is the following reduction, based on Proposition 3 of Asi et al. (2021b).
Herein, the aim is to show that the existence of a DP optimizer for convex losses satisfying the
growth condition implies the existence of an optimizer for general convex losses. More formally,
consider a problem instance class where we are given a set ) C R? containing a ball of radius B,
a dataset S € X™ for some X, a function f(w;x) where w — f(w;x) is Lo-Lipschitz, Li-smooth
over W for all z € A" and the empirical loss w — F'(w; S) satisfies (), 7)-growth. Note since these
properties hold over W, they hold over the ball of radius B. If there exists an (e, )-DP algorithm
A, which for the above problem instance has expected excess empirical risk,

EA[F(A(S); §) — inf F(w)] = o ((Tx)—% A(n,d, Lo, L1, €, 5)) ,

c2(7) ’ L " Line
LéTﬁl) c3(T)

Q(1) and c3(7) = Q(1) are specified later, there exists an (e, §)-DP algorithm A, such that for
any Lo-Lipschitz, convex, L;-smooth loss function w +— f(w;x) for all x, with minimizer norm
|lw*|| = D, its excess risk is

T—2
A(n,d,Lo,L1,6,8))"/"LiLi ! Al
then fOI‘ D — max (( (nv ;40,41,€, )) 1490 (A(nzdzL()l:L17€7§)) B \/ELO s Where 02(7—> —

EAF(A(S):5) ~ inf Fw)] =0 (D (A(n,d,2Lg, 2Ly, ¢/k, 5/k))%’1>
TT%I LJ%I

227=3A(n,d,2Lo,2L1,e/k,0/k) | °

The main difference between above and the statement of Asi et al. (2021b) is that unlike Asi
et al. (2021b), our reduction is for unconstrained procedures and is tailored to the aforementioned
choice of diameter D.

The proof uses the construction of Asi et al. (2021b), verifying that for the provided parameter
settings, the assumptions hold. For simplicity of notation, let A = A(n, Lo, L1, €, 0).

Let wy be the origin. For a sequence of {);}, to be instantiated later, define

1
~ LO T—1
Wi = {wi Jw —wi—| < (27)\?27_2> }

Fy(w; ) = F(w; S) + A727 2 |lw — wi—1]|”

where k is the smallest integer larger that log (
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where w; = A(E, S). The function F, satisfies ()\2-2(7*2)/3 7)-growth (over all of R%). We now
inspect its Lipschitzness and smoothness parameters over WW;. By direct calculation, the Lipschitz
parameter is bounded by Ly + Lo = 2Ly The smoothness parameter is at most,

T—2

L T—1
— —2 — 0
L1 + )\Z—2T 27'(7' — 1) Hw — 'lUi_1HT = L1 + )\2—27— 27'(7' — 1) <27’)\727—_2>

= Ly + (\)7T (Lo) = e (7),

r—2
where ¢1 (1) = % 275(7’—1) In Asietal. (2021b), \; is setas \; = 2~ ()i for
T—1

T—

A to be specified later. The above smoothness bound is a decreasing function in %, so what suffices

is to show that the above bound is smaller than 2L; for the largest \;, which is A\; = 2_<TT_1)/\.
_ )2 (=1

2
(%) ", so we have,

From Asi et al. (2021a), A\ = 4

T T—2 T— I/T Al/T T—2 Al/T T—2
07 ) =47 (25) S 0 F an = a5 1),

r 1 _ VT (L) F=1
where cp(7) = 477 <f1) 77-1(7 — 1). The choice of D > %, ensures the above
is at most L1, thereby establishing that the smoothness parameter is at most 2L;. The final condition
we want to ensure is that all the sets WV; contain a ball of radius at least B. Since ); is decreasing in

1, it suffices to consider : = 1. We have,

_1_ 1
Lo 1 1 r—1\7 1 L D )
v — L-rfl — erl
(%m”) 2751( T ) PR N N

1 . 1/7 .
where c3(7) = —— (=)™ —L+. The choice of D > _BEAYT epgures the above is at least B.

2rT—1 47 LTTI cs3 (T)
The rest of the proof repeats the arguments in Asi et al. (2021b), to get,

E[F(A(S); 8)] = min F(w; §) = o (D (A(n,d,2Lo, 2Ly, /k, /k)) 7 )

We now instantiate A(n, d, Lo, L1, €,) = LO‘[ . This gives us that E[F'(A’(S); S)]—min,, F(w; S) =
(L"D f) However, this contradicts our lower bound in Theorem 22 for unconstrained DP pro-

cedures for convex, Lg-Lispchitz, \gnLGO < Lj-smooth (by our choice of D) losses. |

B.5. Additional Details for Corollary 7 (Lower Bound)

In Theorem 21 (in Appendix B.4), an extension of (Asi et al., 2021b, Theorem 6), we show that
for 7 > 2 and 7 = O(1), the lower bound on the minimax optimal expected excess empirical risk,
a, for (e,9)-DP ERM of functions which are smooth and Lipschitz over a ball of any finite radius
B > 0 and globally satisfy convexity and (A, 7)-growth, is

- 1 Lovd\ ™!
a = -
(T)ﬁ Ane
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Lemma 16 gives that (), 7)-growth and convexity implies (7, £)-KL with A = v~' and 7 = £,

Further, if & < 2, then 7 = %5 > 2 andif Kk = 1 + Q(1) then 7 = O(1). Thus we have the lower
bound,

(] (5)4((5)

The last step uses the fact that x = 1 + €2(1). Finally, the existence of a p-zCDP algorithm with

~ K
rate better than O ((%) ) would imply the existence of an (e, §)-DP algorithm (see (Bun and

~ K
Steinke, 2016, Proposition 1.3)) with rate better than O ((%ﬁ) ), a contradiction.

B.6. Unconstrained Lower Bound for General Loss Functions

In this section, we provide an extension of the lower bound on excess risk of DP procedures for
convex Lipschitz functions in the constrained setting (Bassily et al., 2014) to the unconstrained
setting. The key idea in the proof is to define a Lipschitz extension of the hard instance in Bassily
et al. (2014) using the Huber regularizer. The dataset for our construction, as in Bassily et al.
(2014), leverages fingerprinting codes. The exact details of fingerprinting codes are note needed
for our proof below, but we defer the interested reader to Bun et al. (2014) for more details. The
following result is used in the proof of the lower bound for functions satisfying (A, 7)-growth for
2 < 7=0(1) in Theorem 21.

Theorem 22 Letr0 < e <1,0< 4§ < % D, Ly > 0. For any (¢, )-DP algorithm, there exists a
VdLg

dataset S, and a Lo-Lipschitz, ¥ 23" -smooth convex loss function w — f(w;x) for all x, such that
its unconstrained minimizer, w* = arg min { F'(w; S)}, has norm at most D, and
w

EA[F(A(S);S) — F(w*; )] =Q <L0Dmin {ﬁ, 1}) .

Proof Consider the loss function

n

Flw; 8) = - w,a1) + AH (w), )

i=1

where H is the “Huber regularization” defined as

2 .
mgz{mw if [wl| < 4D ©

4D ||lw||  otherwise

d
Note that if NV of the x; vectors are vectors in {i%} and the rest are the zero vector, we
NLg

have ||>"7" | 2;|| < NLg. The empirical minimizer is w* = —% Thus we set A = 578 so
that ||w*|| < D. We also remark that under this setting of A that F' is Lipschitz with parameter

Ljy = Lo+ 4AD < 5L,
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Now we will show that any w which achieves small excess risk is close to w*. Then we will use
a lower bound on this distance to lower bound the error (as in Bassily et al. (2014)). For any w such
that ||w|| < 4D have

F(w;8) — Fw';8) = (w—w", - > i) + A ([l = )

=1
= 27w — w', —w*) + A (JJu]® = )

= 27(Jlw |2 = w,w*)) + A (ol = [l )

=2 (1P = 5 ol + 5 o = w1 + A (ol - °[P)
= X

NLy %2
:ﬁ\\w—w |

where the fourth equality comes from (a, b) = %(||aH2+||b||2—Ha — b||*). Now (Bassily et al., 2014,

Lemma 5.1) gives that for N = min {@, n} there exists a construction of the non-zero dataset
vectors such that the output of any (¢, d)-DP algorithm, A(S), must satisfy E[||A(S) — w*||] =

Q (%). Thus we have

E[F(A(S);S) — F(w";9)] = Q (LODmin {\/&7 1}) .

ne

This lower bounds the excess loss for any w such that |w|| < 4D. Finally, note that any w’ such
that ||w’|| > 4D (i.e. a point outside the quadratic region of H) would also have high empirical risk
because of the regularization term. Specifically, we have for any such w’ that

W'l ZoN
n

F(w';S) >

ADLoN
+ 4\D|jw'|| > 16AD? — =2
n

Further since ||w*|| < D, we have F(w*; S) < Lo 4 XD2. This gives

5LoDN _ ) <\/EDL0>

F(w';8) — F(w*;S) > 15AD? —

n ne

where the last step follows from the setting of A\. Combining the two cases finishes the proof. W

Appendix C. Missing Results from Section 4
C.1. Proof of Lemma 10

For any ¢ € [T, the stationarity conditions of F, imply ||V F (w;; S)|| = 2L1 |w} —w;_1 |, and so by
L

Lipschitzness ||w; —w;—1]| < 5~ Further, we have by strong convexity and the accuracy guarantee
1
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of A that with probability 1—/ forany ¢ € [T that ||w;—w;]|| = O <\%\/Ft(wt; S) — Fy(wy; S)) =
1

). Thus using the triangle inequality the overall magnitudes of the

O [ Lov/Tdlog (n?log® (1/5")/dB')
Llnv$

% Loy/Td1 2log? (1/8")/dp’
updates are bounded by ||w} — w;_1]| = O (Lll <L0 + 0/ Og("ﬂ\;’g (1/8)/ ))> . In the fol-

\/Tdlog (n?log? (1/6')/dB")

NG . Since at most 7" iterations occur, we have

lowing, let 7 =

v, o \/Tdlog (n2log? (1/8')/d")

Ll v
Y <TL0(L}1+ T)>

_0 (LO(ILH*T)Q + Fy 7 L) log(F) — s log (’YLO Zijg(l/ﬁl))})
() 1)t s (VT )

C.2. Proof of Theorem 8 (Convergence of PPM under the KL* Condition)

Proof [Proof of Theorem 8] In the following, we condition on the event that every run of A obtains
aLdlog (n*log? (1/5)/dB")
Lin2
happens w.p. at least 1 — 3 by Lemma 9. Further, under this same event, the KL condition holds at

every wy, t € [T], by Lemma 10.

2—K

Now define ¢ = 1 + F © 327#%, dg = Fy and

excess risk at most for some universal constant a. Since 3/ = % this event

: { 1 {(mLoﬁd log(n? log” (1/6’)/dﬁ’))fe’ FO}}_

®;, = max ¢ —P,_1,min
c ’ n+/p

We will first prove by induction that F'(w; S)—F(w*; S) < ®; under the assumption that F'(w;_1; S)—
F(w*; 9) < ®,_1. Clearly the base case is satisfied for o).

To prove the induction step, we will proceed by contradiction. That is, assume by contradiction
that F(wy; S) — F(w*; S) > ;.

Note F; is El—strongly convex since it is the sum of a I:l weakly convex function and a 2E1
strongly convex function (Davis and Drusvyatskiy, 2019a). Let 7 be an upper bound on the excess
risk achieved by .4 on the strongly convex objective F;. Then

(i) Ly
F(wy; S) = Fy(wy; S) < Fy(wi; S) + 7 < F(wi—1;5) — >

e

L
= F(wi-1;5) — F(w; S) > Zlet—l—ka\P—T (7
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Inequality (7) uses the fact that Fy(w;;S) = F(w;;S) + %Hw? —wi1]|? < Fy(wi_1;8) =
F(wi—1; S), which implies Fy(w;;S) < F(wi—1;S) — Zjwf — wy—1]|%. Recall we have 7 <
aLldlog (n?log® (1/8')/dB')T
Lin2p
objective we have

by Lemma 9. Further, note by stationarity conditions for the regularized

IVE(wis S)| = 2L1[lw; — we—1]. ®)

By the assumption that F'(w?; S) — F(w*; S) > ®; and the KL condition we have ||V F(w}; S)| >
%(f)%/”, and thus by Eqn. (8) we have ||w} — w;_1]| > 2’71[71 @J,}/“. Applying Eqn. (7) gives

1 . (@) 1 .
F(w_1;8) — F(wy; S) > _ oM s _¢r
16’72L1 32’)/2L1

i

A 2 / ’ r
where inequality (7) comes from the setting ®; > <a7LO\/Td log(;zf/lgg (1/5')/d5 )> . Adding and

subtracting F'(w*; S) on the left hand side and rearranging obtains

1 *2/K

Fwg; S) — F(w™; 5) SF(wt—l;S)—F(W*;S)—m s
@) . 1 29/
< @y ?il

' 39e2/ka2

2-K 1 ~
( =1 g9a2/kn2p, )Y
(i) 2-r ] . 1. .
<(1-FR7 )b = b < b
32cy2 L, c
Step (i) uses the inductive assumption that F'(w;_1) — F(w*; S) < ®;_;. Inequality (ii) uses the
fact that K > 2, ¢ > 1, and ®;_; < Fp. This establishes a contradiction and thus completes the
induction argument. We have now proven that F'(wy; S) — F(w*; S) < &, forall ¢ € {0,...,T}.

A 2 ! / r
All that remains to prove convergence is to show that &7 < 1Loy/Td log(:i}%g (1/5")/d8 )> .
A 2 ’ / K
We have & < max{(i)TFg, <7L0\/leog(7;2\}%g 1/8)/dp )> } and

K n\/p
(E)T < 7L0\/d10g(n2 10g2 (1/8")/dB") e [log(Fo) + klog ('yLO\/dlog(nz Tog2 (UB’)/M’))}
- ny/p - log(c)

2—r E=2 ~
Using the fact that log(c) = log (1 + Fy~ m) > (1 + 32F,* 4%Ly)"1, the setting of
=2
T = (1+32F,~ 7*Ly) [log(Fo) + klog (vz\o/\%ﬂ suffices to ensure convergence. [
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C.3. Lower bound for < > 2

We give a lower bound on excess empirical risk for settings where the empirical risk satisfies (1, x)-
KL for x > 2, under approximate differential privacy.

Theorem 23 Let vk > 2,0 < e < In2,0 < § < 1—16(1 —e“),d € Nand B > 0. For any
(¢,8)-DP procedure A, there exists a data space X, a set W C R? containing a ball of radius B, a
dataset S and a convex loss function w — f(wj;x) which is 1-Lipschitz over W, the empirical loss

w +— F(w; S) satisfies (1, k)-KL, and

Proof The proof adapts the construction of Asi et al. (2021b), Theorem 5 from a lower bound on
excess population risk under pure DP setting to that on excess empirical risk under approximate
DP. We first prove a lower bound for (1, 7)-growth functions, for 7 € (1,2]. We recall the one-
dimensional, unconstrained (so YW = R%) construction in Asi et al. (2021b), Theorem 5. The data
space X = {—1,1}, and for a € [0, 1] to be specified later, define functions

f(w;1)={|wa| WEE and f(w;—l):{hUMV ws

lw—a|l” w>a lw+al w>-a

The functions above are 1-Lipschitz. Consider two datasets S and S such that S contains (%)

fraction of 1’s and the rest —1’s. Similarly, S’ contains (1_Tp> fraction of 1’s and the rest —1’s. The

number of points differing between S and " is thus np. We set p = 1/ne to get ¢ L differing points.
The corresponding empirical risk functions are,

Flw:$) = (ﬁp) Fuws) + (?) Fw: 1)
Flu: ') = (1?) Fws) + (1?) Fw; 1)

In the construction of Asi et al. (2021b), Theorem 5, the above are their population risk functions

“fi(x)” and “f_i(x)”. Their minimizers are w§ = a and wg, = —a, with values (1 — p)a and
1

(1 + p)a respectively. Note that the above functions are convex. Further, with a = £ (72 Y

L, Asi et al. (2021b) showed that both functions w + F(w; S) and w F(w S’ exhlblt
2(ne) 71
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(1, 7)-growth over all of R. For any (e, 0)-DP algorithm A4, we have that,
sup E4[F(A(S);S) — inf F(w; S)]
w

Se{s,58'}

> (B4 [F(AS):8) - F(wz; S)+ F(A(S); §') - F(whs )|
2 B [lS) — i+ |AS) - 3]

> 2 (B [JA(S) — wgl + \A(S’) —wi )"

> 1<EA o — w )"

4

1(1)31
>
4 \ ne

where the second inequality uses the growth condition, the third uses that for 1 < 7 < 2, |u+v|” <
2(Ju|™ 4 |v|™) and Jensen’s inequality; the fourth uses Lemma 2 of Chaudhuri and Hsu (2012)
and the final inequality plugs in computed distance between minimizers. Finally, the fact (Lemma

16) that convexity and <1, )—growth implies (1, x)-KL establishes the 1 i ( ) lower bound for

(1, k)-KL functions. [ |

Appendix D. Missing Results from Section 5
D.1. Gradient Error of Algorithm 3
Lemma 24 Let T + 1 denote the final value of t reached during the run of Algorithm 3. With prob-

ability at least 1 — 23 under the randomness of Algorithm 3, for any t € [T s.t. o, = ﬁ,
og(n./p
it holds that
Lo/log(n./p/B
V2 = V(s $)]| < Ny < [V (s )] + 2 2EPI0)
Vnpl/t
Further, if for any t € [T), 0y = 259 then t = T and with probability at least 1 — 23 the above

ny/p
condition holds as well as |V — VF (wr; S)|| < ——F— lezf;(fn‘[/ﬁ)

Proof Condition on the high probability event that for all ¢ € [T,

b | < log(ny/p/B)ot =

W and ||bs|| < \/dlog(n,/p/B)os = Ny. This event happens with probability at least
1— 2 due to the concentration properties of Gaussian noise and the fact that at most n.,/p iterations
are performed. Under this event we then have the following bound on the gradient error,

log(n./p/B)
Vopt/t o

The second part of the lemma statement comes from the fact that when o, = %/%, pt > & and the

stopping condition is triggered. The second error bound result again comes from the concentration
of Gaussian noise. u

L
IV — VF(ws; S)|| < Ny < |[VF(wy; S)|| + —
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D.2. Proof of Theorem 11 (Privacy of Algorithm 3)

Proof Denote 7"+ 1 as the highest value attained by the variable ¢ during the run of the algorithm.
Consider any round ¢ € [T']. We consider the privacy of the round conditional on w;_;. Specifically,
for the process of generating the gradient and gradient norm estimates at the ¢’th step, the scale of
Gaussian noise ensures this process is p;-zCDP. Specifically,

oy — <L0)2+ <L0>2 B \/ﬁ+min{Lgdlog(n\/ﬁ/5) p}_

noy n n2N? 2

The £-zCDP guarantee of releasing the first 7' — 1 iterates is then certified by the stopping condition
(i.e. Zé’:o pt < §) and the fully adaptive composition properties of zCDP. That is, (Whitehouse
et al., 2022, Theorem 1) guarantees the privacy of the overall process even if the privacy bound
at each iteration is chosen adaptively (rather than fixed a-priori as with standard composition the-

orems). Releasing the T’th iterate is also g—zCDP because op > %\/% and the sensitivity of any
gradient estimate is at most Lo Thus the overall algorithm is p-zCDP by composition. |

n

D.3. Proof of Theorem 13 (Convergence of Adaptive GD under KL* Condition)

In the following we define 1" + 1 as the highest attained value of ¢ during the run of Algorithm 3
and define ¢ := 1 + WIL{
Before proceeding with the main proof, it will be useful to first show that in the event that for
some ¢t > (0 one has oy = nL—\%, the algorithm has reached its convergence criteria and stops.
2Lg

Lemma 25 Lett > 0 and assume oy = = NG Then Algorithm 3 stops at iteration t and with
probability at least 1 — 23 one has

VLoy/dlogn /58] \ " <’Y2L3 1og<n¢ﬁ/ﬁ>>“/2

Importantly, this rate is strictly faster than the convergence claimed by Theorem 8. The proof is
given in Appendix D.5 and follows straightforwardly from the concentration of Gaussian noise and
the KL condition.

Given this fact, we can proceed with the rest of the proof only considering the case where
op = m for all ¢t € {0,...T}. We will first prove (under the stated assumption) the

following useful lemma which roughly states that the excess risk is monotonically nonincreasing
up to a certain threshold. Note in the following, we use ®, to denote exact excess loss quantities.
This in contrast to the analysis of Section 3 where ® was used to indicate target excess risk loss

2
W < /p, as per the statement of

F(wg; §) — F(wg; S) = O ((

thresholds. For the rest of this section, we assume
Theorem 13.

Lemma 26 Define ®; = F(wy; S) — F(w%; S). Assume F(-;S) is Li-smooth. Assume o; =
mfor all t € [T). Then with probability at least 1 — 23 we have for all t € [T that

_ Lglog(ny/p/B)

9
Tonvp ©

1
F(wy; §) = Flwia; §) 2 g7 |IVF(we S)°
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and if F(+;S) is also (v, k)-KL then

max {72, 1} L2 log(n+/p/ ) ) /2

P < D, 2
t+1 > max ts ( Lln\/ﬁ

Proof Throughout the following we condition on the high probabity event that
Lo+/log(n+/p/ B
IV = VF(wg; S)|| < Ni < |[VF(wg; S)|| + (n/p/6).
Vnpt/4

which happens with probability at least 1 — 5 by Lemma 24 (given in Appendix D.1). Now, standard
descent lemma analysis yields

L
F(wi; 8) = F(wiss; 8) = (VF(wi; 8),we = wepn) = - fwes = w?
_ L 92— v, g2
= 1 IVFi $)I* = 5= IV = VE(wi; S)|
1 L2log(n I5;
> |VF(wg; S)|? - Lylog(ny/n/B)

= 8Ly 8Lin\/p

This establishes the first claim of the lemma.

max{72,1}Lg log(n+/p/B) w/2
Lin,/p ?

Continuing to the second claim, the above implies that if ®; > (
we have by the KL condition that

1 o/ _ Lilog(ny/p/B)
F(w;: S)|? > =@/ > 0 =V VI 1
IV S)° > et > HEE (10)
Thus we have
1 L§log(n\/p/B)
Oy — Py = F(wy; ) — Fwey1;S) > L, IV F(ws; S)|” — 08L1n\\/fﬁ >0 D

K/2
On the other hand, if ®; < (%W) then because using Eqn. (11) and the fact that
IV F(w; S)|| > 0 we obtain

2
Rlog(nyp/8) _ , (mux (27,1} Blognys/5))”
Q1 <O+ <2 _
Liny/p Liny/p
2
Above we use the assumption that %”\\g/ﬁ) < 1. Thus combining these two inequalities we
max{~2 2 r/2

have ®; 1 < max {@,2 ( ax{~y ,lL}ﬁ;)\l/c%g(n\/ﬁ/B)> } =

The next lemma establishes how quickly the loss decreases. Specifically, we show that the loss
decreases by a constant fraction after a certain number of steps. The smaller the excess risk is, the
more steps are required to achieve this decrease. Recall ¢ := 1 + WIL(
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Lemma 27 Let K > 0 andt € [T] and assume the high probability event of Lemma 26 holds.

Then for K > (18,)"%° — 1 it holds that

max {7?,1} L§log(n\/p/B) "
min{Ly,1}n./p

1
®i g <maxq —P, 2 (
c

Proof We here condition on the high probability event that Lemma 26 holds (i.e. that the gradient
error is bounded for the entire trajectory). We proceed with a proof by contradiction. Assume by
contradiction that

max {7%, 1} Llog(n,/p/B) e
min{Ly,1}n./p

1
q)t—i-K > max ¢ — Py, 2 (
C

By Lemma 26, this assumption implies the above inequality also holds for all @, ;,j € {0, ..., K},

max {i‘I’uQ <maX {W271}L8 log(n\/ﬁ/ﬁ)>n/2} o < {q)tﬂ’z (max {727 1} 12 log(n\/ﬁ/ﬁ)>ﬁ/2}

min{ Ly, 1}n./p Lin,/p

K/2
1 max {72,1} L3 log(n./p/B)
== max{cét,Q < min{ Ly, l}n\/ﬁ <Py (12)

max{'yz,l}Lg log(n+/p/B) K/2 9 max{yQ,l}Lg log(n./p/B) w/2
min{Ly,1}n,/p % Lin,/p )
We now sum over K steps and using the descent lemma (see Lemma 26, Eqn (9)). We have

The implication above uses the fact that 2 (

K 2
1 Ljlog(ny/p/B)
F(wg; S) — F(wey i3 S) > Z (E IVF (werj; S)|I° - W)

Q) i ( L o LG 10g(n\/ﬁ/ﬁ)>
- = 472141 t+i 4L17’Lﬁ
) e 1 o
= Z 2721y ek

7j=1
i) (L)% 1, 1
> c - /K —
- 272 (CCI)t 2c¢y2 L,y : (13)

Step (i) uses the KL condition. Step (iz) uses the fact that Eqn. (12) implies that for all j €

272 K/2
{0,..., K}, &4 > (Qan%A) . The second inequality uses the KL condition. Step (iii) uses

the fact that @, ; > %<I>t, by Eqn. (12), and the setting of K. Manipulating Inequality (13) above
we have

1
F(wg; S) — F :S) =0, — O > @
(wy; S) (werr; S) vy
1 1
rek S 2072[/1) Pt
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9 5 K/2
This establishes the contradiction and thus ®;, ;r < max {i@t, 2 (max{;if{}floll?i%\/ﬁ/ 5)) }

We can now prove Theorem 13 itself. With the above two lemmas established, our primary
concern is analyzing how the stopping conditions affect the convergence of the algorithm.
Proof [Proof of Theorem 13] Condition on the high probability event that Lemma 26 holds (i.e. that
the gradient error is bounded for the entire trajectory). We will assume for the rest of the proof we
assume that for all ¢ € [T'] that

K/2
max {72, 1} L3 log(ny/p/B)
b =2 ( min{Li,1}n,/p (14

Note that if for any ¢ € [T] the above inequality is not satisfied, by Lemma 26 the convergence
guarantee of Theorem 13 is satisfied.

We now argue that the algorithm does not stop before convergence is reached by analyzing the
stopping condition. It will be helpful to split the run of the algorithm into phases. We denote the
first phase as the set of iterates W; = wo, wy, ..., wg,, where K is the largest integer such that
F(wg,;S) — F(w%; S) > 1®. Similarly define Wo = wg,, wg, 41, ..., wk, where Kj is the
largest integer such that F(wg,; S) — F(wg; S) > %CI)Kl, and so on for W3, Wy, ..., W),. Our aim
is to show the algorithm does not stop before convergence.

First, we bound the largest value p can obtain without convergence. By Lemma 27 and Eqn. (14)
we have @, < L. Thus for p > pmax := (1 + 8y2Ly) [log(FO) + 25 log(ny/p/[vLo))

log(Fo)+ 2= log(n/p/[vLo))

Tog(0) we have

1 Pmax
By, < () Fy
C

Thus if the algorithm has not converged it must be the case that p < pmax. Let us thus assume
P < Pmax for the following analysis.

| A

()" ()™

The algorithm stops when ZtT:o pt > p. We observe (denoting Ky = 0 for convenience)

T T L3d1 Pk
fo-nie, ittpsing: ¢
t=0 j=1t=K;
T L2dlog(n /B) & 5 Lglog(ny/p/B) !
f VP > Z (HVF wt;S)HQ—Wp>
J=1t=K; 1
T\/p L%dlog(n\/ﬁ/ﬁ) ro X 2
-t 2 2 2 IVE wtﬁ)u?

j=1t=K,_
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The last step uses the fact that the KL condition and the loss lower bound assumed in Eqn. (14)
implies ||V F(wy; S)||* > > Lilos(n/p/B) Continuing, by the KL condition we have,

L1n\f

r Typ  Lidlog(nyp/B) <~ <& 242
D A DI Dl 7
=0 i=1t=k, 1 Pk,
T\f Lleog(n\f/ﬂ Ep: 272
n Kg 1 2//-’\2

Kj

T Lidlog(n\/p/B) =2 Ory?

\f g(ny/p Zq) g

n2 K @%“

J

T 2v2L3d]1 5t
cIve LG OgQ(n\/ﬁ/ﬁ)pmaxmaX{®K“i }
n n J€lp] ’

Thus, if T' < %n\f , the algorithm has not stopped unless for some ¢t € [T'] we have &, =

2k
0 <<’yL0 dlog(n\/ﬁ/ﬁ)pmax> 4H>

np

To finish the proof, we consider the convergence when the algorithm stops after 7' > %n\/ﬁ
Recall we are assuming the algorithm has run for at most p < pmax number of phases (as otherwise

the algorithm has converged). The number of iterations during each of each of these phases is at
k=2

most ® .~ . Thus the algorithm has not stopped unless
Kp

k=2

= 1 2Pmax pRT
b r > = O < .
a2 gnvp = o, < (22

To summarize, we now have three different bounds on the excess depending on three possible

max{’y2,1}L(2) log(n\/p/B)
min{Ly,1}n,/p

K/2
events. The first case is simply when &7 < 2 < > . The second case is

max{’y2,1}Lg log(n+/p/B
min{L1,1}n/p

25 2
0] <<CVL° dl‘)g(”\/ﬁ/ﬂ)pmax> 4“) . The final case is when ®7 > 2 (max{vz.’l}L(Q’ log(n/p/5) ) ¥

K/2
when &1 > 2 ( )> and T < %n\f , in which case we have shown &1 =

n./p min{Ly,1}n,/p

K

and T > %n\f , in which case we have shown &7 < (Zm—\/&%) 7 Combining these results yields

the theorem statement. [ |

D.4. Proof of Lemma 12

Proof We will prove the lemma result by induction. For any ¢t € 0,...,7 — 1, assuming w; € S,
we will show that w;,1 € S. The base case for wg holds because S is defined to contain wy.

Before proceeding, we condition on the event that for all ¢t € {0,...,7 — 1} we have that
Vi — VF(w; S)|| < |[VF(w;S)|| + W, which happens with probability at least
1 — 24 by Lemma 24 in Appendix D.1.
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To prove the induction step, let w; € S. We divide the proof into two cases, depending on

1/2
IV F(wyg; S)|. In the first case, assume |V E (w; 9)|| < (L‘Q)bi(ig\ﬁ/ﬁ/m) . In this case, we

will roughly prove that w;y; is in S because it has not moved too far from w;. Since w; €
S, the KL condition holds at wy. Thus the gradient norm bound and the KL condition imply

2 os(n H/2 2 og(n 1/2
F(wy; S) — F(wg; S) < (%\/ﬁ\/ﬁ/ﬁ)) .LetR =2 (W) and recall we define
the level set threshold as a = max { F (wo; S), F(w¥; S) + max { F(wo; S), F(w%; S) + 2(y"/2 +

1/2
Lo) (L?’I%W) }}. For any point w’ € B(wy; R), by Lipschitzness one has

F(w';S) < F(wy; S) — F(wgs s) + F(w; S) + Lo([[VF (we; S)|| + [IVe = VF(we; S)|I)

K/2 1/2
< F(ws: §) +2 (VL% 105%5/@) I ((W ) L Lo 1;%;?/{5//3>>
1/2
< F(wk; 8) + 2(v™% + L) (W) <a

Thus B(wy; R) C Z. Since B(wy; R) is path connected and w; € S, we have B(w¢; R) C S by the
definition of S. Further, with probability at least 1 — 3 we have

lwr = wia|] < (IVE(we; S|+ Ve = VF (w3 S)))

i) og(n (i) 5 log(n 12
< n(2IVF (i 9)| + = lﬁfplﬂﬁ)) <5h <W>

—~

<R

- 2L
= w1 € Br(wt)

Above, step (i) uses that the scale of noise in Algorithm 3 guarantees with high probability that

Vi — VF(wy; S)||. Step (i) uses the assumption that ||V F(wg; S)|| < (Lgloi(iz‘ﬁ/ﬁ/m) 1/2, the

setting of R (above) and n = 2%1 As we have previously show, Br(w;) C S, so we have shown

wi+1 € S.

2
We now consider the second case where ||V F(wy; S)|| > M

n
parameterized by [ € [0, 1] defined by w (/) = w; + l[(w¢41 — wy). By the update rule of Algorithm
3 and standard descent lemma analysis we have (using the smoothness of F'(-; S))

. Consider the path

L
F(w; S) — F(w(l); S) > (VF(w; S), we — w(l)) — 71 [we — w(l)]?
’Ly 9
2 UVE(wi; S), wp — win) — —5— [[we — wia |
= LIV F@e S — 19— P 8) P
= AL, Wt 8L, t Wt;
1L log(ny/p/B)
> — |VE(wy; 9)|)* — —2
Q 1 o L3log(n\/p/B)
> — . _ Z0VIVIEIET
) )
> . > 0.
210 |VF(wg; S)||” >0
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Step (i) uses the fact that | < 1. Step (i¢) uses the assumption that ||V F(wy; S)|| > Lgl%w.
We have shown F'(w; S) > F(w(l);.S) for every [ € [0,1]. Thus {w(l)},c[01; € Z, and because
{w(?)},¢(0,1) 1s path connected and contains wy € S, we have {w(l)},c[o,) € S and specifically

Wiyl € S. [ |

D.5. Proof of Lemma 25

Proof First note that when oy = L\—Of then p, > p and the algorithm stops. Furthermore, in this
Lo+/dl . . .
case we also have N; < M and thus by the concentration of the noise we have with

probability at least 1 — 3 that

IV F (w8 < Lo+/dlog(ny/p/B) Lo\/log (ny/p/B)
i n/p Vnp!/

The KL condition then implies that

e S)— Pty — o [ (Y T0RRA) " | (P13 los(ny/p/6)\
F(w; S) — F( 3,5)_o<< o~ > +< o )

D.6. Proof of Theorem 14 (Adaptive Gradient Descent without KL Condition)

In the following, we let '+ 1 denote the largest value attained by ¢ during the run of the algorithm.
Privacy Proof The prove privacy we will use the following lemma.

Lemma 28 (Bun and Steinke, 2016, Proposition 1.4) Any algorithm which is (e,0)-DP is also
(2€2)-zCDP.

The process of releasing wy, ..., wr is p-zCDP by Theorem 11. We thus only need to handel the
additional privacy loss incurred via the use of the exponential mechanism to select ¢*. Specifically,
the exponential mechanism guarantees (/p, 0)-DP and is thus % p-zCDP by Lemma 28. The overall
privacy is then 2p-zCDP.

Convergence Proof Recall t* € [T] is the index sampled by the exponential mechanism. Let
N* = rtm%l {II[VF(w¢; S)||}. Note that the guarantees of the exponential mechanism (used to sample
€
t*) and scale of noise added to the gradient norm estimates we have with probability at least 1 — 23
that,
IVF (we; S)|| = ||VF(we=; S)|| — Neg= + Ny» — N* + N*
LO log(n+/p/ ) N 4Lglog(n+/p/B)
T Vet ny/p

We will now proceed to bound N*. First, if for any ¢ one has o, = f’ then V; < %0\/‘/5‘7 and

+ N7, 15)

thus V* Lof The convergence guarantees are then satisfied by Eqn. (15).
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We now turn towards the more difficult case where oy = W\/ﬁ/ﬁ) forall t € [T]. We start

by analyzing the convergence of the algorithm in terms of the number of rounds 7". By Lemma 26,
Eqn. (9), we have with probability at least 1 — (5 that,

L3log(ny/p/B)

1 2
Lo oy s b ) _
F(wy; S) — F(we1; S) > 8L, IVE (wg; S)| 8Lin,/p

Summing over all iterates and rearranging gives,

S8FyL Lo+/1
*ZHVFwt, <y =+ = %ﬁ)ﬁﬁ/ﬁ). (16)

We now consider the worst case guarantee for Algorithm 3. Recall N* = rtm:lr} {{IVF (we; S)|| }.
€

We can use N* to lower bound the number of iterations made by the algorithm. We have,

T T L2dlog(n\/p/B
Zpt 2\T/l> géQf/ )ZN2
_Tvp N Tdelog(n\f//B)
- 2n n2(N*)2

Further by the stopping condition we have,

Lgdlog(ny/p/B) P\ _ p
(22

L n?(N*)*p
— hegmin { Lidlog(nyp/B) "’ } '

8FyL Lol
vam ) <250 4 EE D)

Applying the above lower bound on 7" to the upper bound on N* we obtain,

3Lo\/FoL:1d log(n\/ﬁ/ﬂ) Lo log(ny/p/B)

By Eqn. (16) we also have,

N* <
= nN*\/p oL
. (6Loy/FolrdTogln/plB)\ , 2Lolog(ny/p/8)
= N _< n\/ﬁ ) fp1/4 .

Combining this bound with Eqn. (15) we have with probability at least 1 — 3 that,

IVF(@; 5)]| < mm{ 8Ly | Loy/los(ny/p/b)

T Jnpld
. ((6Loy AL dlog(n /5/5) 2 , 3Lolog(ny/p/8) _ 4Lolog(ny/p/8)
ny/p Vnp!/t n\/p

FoLi (LovFoLid\"*\  Loy/log(ny/p/B)
_O<m1n{ﬁj< On\%l ) }+ Jnpl/t .
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Appendix E. Regularized Lipschitz Optimization

In this section, we consider a function f(w;z) = f(w;z) + L ||w — wo||?, where w — f(w; z) is
Lo-Lipschitz, L;- weakly convex for all z € X, and wy € R<. It is well known that in such case,
the function w — f (w; ) is L strongly convex (see, e.g. (Davis and Drusvyatskly, 2019b; Bassily
et al., 2021a)) We denote the corresponding empirical risk as F'(w;S) = 13" | f(wya;) +

El ||U) — on .

. . ~ ( L2d . L . .
The following result is a rate of O ( 7 22 ) on excess empirical risk via Noisy Gradient Descent,
1

Algorithm 4. Multiple works have investigated closely related settings (Feldman et al., 2020; Asi
et al., 2021a), but due to our specific requirements (i.e. unconstrained setting and only assuming
convexity of the regularized loss function) we provide a more tailored result here.

Algorithm 4 Noisy Gradient Descent

Require: Dataset S, zCDP paramter p, initial point wy € R?, probability 3, Lipschitz parame-
ter Lo, Weak convexity Ly, step size sequence {n:},, number of iterations 7', noise standard
deviation o.

I: fort=1...T—1do

2: &~ N(O, 0'2]1)

3: wep1 = g wo) | We — Mg VF(w, S) + &
(1= (7F51+6)

4: end for

- 2 T
5: Return w = m thl twt

Theorem 29 Let p > 0. Algorithm 4 with T = 2108 2/5) = 7 and o? = 4L§pT satisfies p-

zCDP. Further, with probability at least 1 — [3, the excess empirical risk of its output, w, is bounded
as,

Fw:S) - F(w':S) = 0 <L3dlog (n?log” (2/6)/dﬁ>> an

L1n2

Proof The privacy proof is based on the observation that, even though the function w +— f (w; )
may not be Lispchitz, the sensitivity of the gradient, in every iteration, is controlled, since it is a sum
of a Lipschitz and (data-independent) regularizer. In particular, the sensitivity of gradient at every
iteration is bounded by 2L° With the stated noise variance, applying the guarantee of Gaussian
mechanism for zCDP and composition (Bun and Steinke, 2016), completes the privacy analysis.
The utility proof is based on standard high-probability convergence analysis of (S)GD for
strongly convex optimization (Harvey et al., 2019). We first show that the unconstrained mini-
mizer, w*, lies in the constrained set Bz, (wp). From the optimality criterion for unconstrained

2Ly
convex optimization we have that 2L [[w* —wo| = [[VF(w*;S)|| < Lo. This implies that
||lw* —wp|| < =%-. This also gives us that the function w +— F(w;.S) is 2Lg-Lipschitz over the

constrained set
From Gaussian concentration (Jin et al., 2019), we have that, with probability, at least 1 — 3/2,
forall t € [T, ||&]] < \/dlog (2T/B)o. Further, conditioned on the above, we have from Lemma
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4 in Harvey et al. (2019), that with probability at least 1 — 3,
d L
> (& w —w) =0 (;\/dlog (2T/B)o log (2/ﬁ)T> .

t=1 1

The rest of the analysis is repeating the proof of Theorem 3.1 in Harvey et al. (2019). We get,

L2 o%dlog (2T/B) R
T ) 7

F(?I);S)—F(w*;S):O< T+1) Z<ft,wt—W*>

LT LT —
_0 L(Q) N 02dlog(2T/ﬂ) N Lg+/dlog (2T/B)o log (2/5)
-\ LT LT T
_0 <L3d10g (n® log? (2/5)/d5)>
Lin2p

where the last step follows by setting of o and T'.
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