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Abstract

We propose a novel class-aware weight initial-

ization technique for early exit large language

models with the purpose of accelerating pre-

training. Our design utilizes the neural collapse

phenomenon combined with a Gaussian mixture

model for the distribution of feature vectors at a

given layer. Specifically, we calculate the average

of token representations at the early exit point and

use the resulting vectors together with class prob-

abilities for initializing the early exit vectors. The

next token prediction accuracy of our class-aware

initialization technique is up to five times higher

than other baselines at epoch zero and matches

or surpasses them in later epochs throughout the

pre-training process.

1. Introduction

State-of-the-art large language models (LLMs) have a large

number of parameters, and generally, the higher the number

of parameters, the better the performance (Sutton, 2019;

Brown et al., 2020; Zhang et al., 2022; Touvron et al., 2023;

Jiang et al., 2024; Gemini Team, 2024; OpenAI, 2024; Meta,

2024). However, their large size and autoregressive design

results in high inference latency, which is not desirable for

low resource environments and time sensitive settings.

The vast majority of LLMs have a “tunnel-like” architecture:

The input to the model is processed by all of the layers

in a sequential manner, regardless of the input’s inherent

difficulty (Kaya et al., 2019; Görmez et al., 2022). On the

other hand, not all inputs have the same level of difficulty.

Early exit networks exploit this heterogeneous difficulty of

inputs. One or more intermediate classifiers are attached

to the model, allowing token-level conditional computation

(Panda et al., 2016; Teerapittayanon et al., 2016; Kaya et al.,
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2019; Görmez et al., 2022; Schuster et al., 2022; Del Corro

et al., 2023; Bae et al., 2023; Zhu et al., 2024). Easy tokens

can exit early from the LLM in order to save computation.

While the addition of early exits can reduce the inference

latency, initially they do not possess the optimal weights.

The early exit layers have to be trained first, before being

effective at inference time. Early exit layers are typically

trained together with the backbone model, with two pri-

mary approaches: Training only the early exit and the final

exit layers while freezing the non-exit layers, or training

the backbone and the exits together (Teerapittayanon et al.,

2016; Kaya et al., 2019). Generally, the latter performs bet-

ter since everything is optimized jointly, but the cross-talk

between the exits of the network may lead to suboptimal

learning and long training times (Kaya et al., 2019). Ideally,

we would like to initialize the weights of the early exit lay-

ers in such a way that the cross-talk is minimized, the joint

training is facilitated and training time is reduced.

The sizes of both the state-of-the-art LLMs and their train-

ing data lead to long training time and high costs. This

makes training an early exit LLM even more difficult and

costly. In this work, we propose a novel class-aware early

exit initialization technique for early exit LLMs to reduce

the pre-training costs. We make connections to the opti-

mal detection for the vector additive white Gaussian noise

(AWGN) channel from the digital communications domain

and utilize the neural collapse phenomenon (Papyan et al.,

2020). Specifically, we calculate the average of token repre-

sentations at the early exit point and use the resulting vectors

for the initialization. While calculating the average of vector

representations has been shown to work well as a decision

mechanism for early exit networks (Görmez et al., 2022;

Görmez & Koyuncu, 2024), our work is the first to apply it

to the initialization of early exit LLMs with the purpose of

accelerating pre-training.

We demonstrate the effectiveness of our novel weight initial-

ization technique on WikiText-2 (Merity et al., 2016) and

BookCorpus (Zhu et al., 2015) datasets using OPT (Zhang

et al., 2022) and TinyLlama (Zhang et al., 2024) models.

Notably, our class-aware initialization technique achieves

5× the performance of other baselines at epoch zero. More-

over, it can match or surpass the other baselines at later

1



Class-aware Initialization of Early Exits for Pre-training Large Language Models

epochs throughout the pre-training.

The rest of the paper is organized as follows: In Section 2,

we provide a summary of the literature. Then, we establish

the notation used throughout the paper in Section 3 and

provide a background on the optimal detection problem

from the digital communications domain, which we will

make connections to later on. In Section 4, we describe our

class-aware early exit initialization technique. Finally, we

present the results of our experiments in Section 5.

2. Related Work

2.1. Early Exit LLMs

Numerous attempts have been made in the past to reduce

the inference latency of transformer (Vaswani et al., 2017)

based models in the past. Perhaps the most visited idea

has been adding early exits to BERT variants (Devlin et al.,

2018; Zhou et al., 2020; Xin et al., 2020; 2021; Zhu, 2021).

However, these models are primarily designed for classifi-

cation tasks such sentiment analysis, rather than language

modeling and text generation.

Developing early exit LLMs for text generation is more chal-

lenging, because token-level early exiting requires careful

consideration (Elbayad et al., 2019; Liu et al., 2021). Copy-

ing hidden states of tokens that exited early to the deeper

layers for KV-caching, which confidence measure to use and

batch inferencing have been tackled in the past (Schuster

et al., 2022; Bae et al., 2023; Del Corro et al., 2023).

2.2. Efficient LLM Training

As the number of parameters in an LLM grows, fine-tuning

it on datasets becomes more time-consuming and expen-

sive. To address this challenge, researchers have explored

parameter-efficient fine-tuning techniques such as adapter

approaches, often coupled with quantization (Hu et al., 2021;

Liu et al., 2022; Zhang et al., 2023; Dettmers et al., 2024).

These methods involve training only a subset of the model

parameters, effectively reducing the overall training cost.

Most recently, parameter-efficient fine-tuning of early exit

LLMs has been explored via data, tensor and pipeline paral-

lelism (Chen et al., 2023; Pan et al., 2024).

3. Preliminaries and Problem Formulation

In this section, we establish our notation and lay the founda-

tion for our method by describing the pre-training process

of a decoder-only LLM. We then provide background on the

problem of optimal detection for the vector AWGN channel

from the digital communications domain, which we will

make critical connections to later on.
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Figure 1. Feed-forward phase of pre-training a decoder-only lan-

guage model.

3.1. Pre-training

We focus on the pre-training phase of models belonging

to the family of decoder-only LLMs. The model consists

of an embedding layer, L decoder blocks and a language

modeling (LM) head. Let V , D, C denote the vocabulary

size, the embedding dimensionality, and the context length,

respectively.

During the pre-training process, the tokenizer breaks down

a text from the training set into C tokens, denoted as Ti ∈
{1, . . . , V }, where i ∈ {1, . . . , C}. Let Sv denote the set

of all training tokens Ti at any position i such that Ti = v.

The tokens are subsequently passed through the embedding

layer in parallel, resulting in corresponding vectors Ri,0 ∈
R

D. These vectors are then fed into the first decoder block,

generating output vectors Ri,1 ∈ R
D. This iterative process

continues sequentially, with the output Ri,l of decoder block

l being passed to decoder block l + 1 as the input, where l
ranges from 1 to L− 1.

In the final stage of the feed-forward process, the output

Ri,L of the last decoder block is fed to the LM head, which

is a linear layer with weight matrix W ∈ R
D×V . The

output of the LM head is converted to probability vectors

Pi ∈ R
V via the softmax operation. Suppose the index of

the maximum probability in Pi is T̂i. Since the primary

objective of the pre-training phase is next-token prediction,

the model is optimized with the cross-entropy loss to ensure

T̂i = Ti+1. This process is shown in Figure 1.

In order to accelerate inference, one or more early exit LM

heads can be integrated to the already pre-trained decoder-

only language model. However, the integration of the ad-

ditional layer(s) necessitates a separate pre-training, which

may incur substantial costs as discussed in Section 1. Here,

we assume that only one early exit LM head is added. Sup-

pose that this LM head appears after decoder block K where

K < L, and its weight matrix is W ∈ R
D×V , sharing the

same dimensions with the backbone LM head. Our main

goal is to find a smart way of initializing W such that the
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pre-training phase for the early exit LM head will be accel-

erated, and therefore training costs associated with it will be

decreased. Our proposed solution relies on the problem of

optimal detection for the vector AWGN channel.

3.2. Optimal Detection for the Vector AWGN Channel

The vector AWGN channel can be modeled as

r = sm + n, m ∈ {1, . . . ,M}, (1)

where r, sm and n are N -dimensional vectors. A message

sm is sent to the receiver through the AWGN channel, which

adds a noise n to the message. The components of the noise

vector are independent and identically distributed Gaussian

random variables with zero mean and N0

2
variance. The

receiver observes r, and decides which message was sent

among {s1, . . . , sM}. The goal is to minimize the probabil-

ity of error. Using the Bayes rule, the optimal detection rule

can be written as

m̂ = argmax
1≤m≤M

[P (sm | r)]

= argmax
1≤m≤M

[

P (sm)P (r | sm)

P (r)

]

= argmax
1≤m≤M

[P (sm)P (r | sm)] .

(2)

As in Equation 4.2-15 from (Proakis & Salehi, 2008), the

equation above can be simplified further as follows:

m̂ = argmax
1≤m≤M

[P (sm)P (r | sm)]

= argmax
1≤m≤M

[P (sm)Pn(r − sm)]

= argmax
1≤m≤M

[

P (sm)

(

1√
ÃN0

)N

e−
∥r−sm∥2

N0

]

= argmax
1≤m≤M

[

P (sm)e−
∥r−sm∥2

N0

]

= argmax
1≤m≤M

[

lnP (sm)− ∥r − sm∥2
N0

]

= argmax
1≤m≤M

[

N0

2
lnP (sm)− 1

2
∥r − sm∥2

]

= argmax
1≤m≤M

[

N0

2
lnP (sm)− 1

2
∥sm∥2 + r · sm

]

= argmax
1≤m≤M

[¸m + r · sm] ,

(3)

where ¸m = N0

2
lnP (sm) − 1

2
∥sm∥2. The careful reader

will notice the striking similarity between the last line of

Equation (3) and the operational logic of a linear layer serv-

ing as a classification head. Given an input x, the linear layer

with weights w and biases b classifies the input according

to the maximum element of b+ x · w.

4. Method

Our aim is to initialize the early exit LM head in such a

way that it starts from a reasonably good point and achieve

a certain level of next-token prediction accuracy before

any pre-training, rather than starting from a random point

achieving a low next-token prediction accuracy.

We calculate the average of all output vectors after decoder

K that correspond to the tokens in Sv:

Mv =
1

|Sv|
∑

Ti∈Sv

Ri,K . (4)

Note that the backbone model is already pre-trained at this

point, therefore the intermediate representations are not bad

representations. The underlying idea behind Equation (4)

is the neural collapse phenomenon (Papyan et al., 2020):

The intermediate representation of an input belonging to a

certain class converges to its corresponding class mean in

the final layer of the network. Here, we carry this idea one

step further and postulate that, if the input token Ti satisfies

Ti ∈ Sv for some class/word v, then the corresponding

feature Ri,K at layer K is a Gaussian random vector with

mean Mv (i.e. the class mean in (4)), and covariance N0

2
I,

where N0 is a hyperparameter to be tuned experimentally.

Now suppose that the early exit LM head is the receiver we

mentioned in Section 3.2. In this context, we can write

Ri,K = Mv + ϵ, v ∈ {1, . . . , V }, (5)

where Ri,K , Mv, and ϵ are all the D-dimensional vector.

Also, ϵ, is a zero-mean noise vector with covariance N0

2
I.

The mean vector Mv is sent to the early exit LM head as the

message, and noise ϵ has been added during transmission.

The early exit LM head observes Ri,K , and decides which

mean vector was sent among {M1, . . . ,MV }.

Similar to Equation (3), the optimal decision equation for

the early exit LM head can be written as

T i = argmax
1≤v≤V

[¸v +Ri,K ·Mv] , i = 1, . . . , C

¸v =
N0

2
lnP (Mv)−

1

2
∥Mv∥2 ,

(6)

where N0 is a hyper-parameter and P (Mv) is the prior

probability for each token in the training set, determined

using the empirical frequencies in the training set.

As a result, the early exit LM head is initialized as

W = [M1, . . . ,MV ] ∈ R
D×V , (7)

with a separate bias vector ¸ = [¸1, . . . , ¸V ]. Our initializa-

tion method is shown in Figure 2.
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Figure 2. Our proposed method for initializing the early exit LM head using the mean representation vectors for each token in the

vocabulary set.

Table 1. Summary of the models used in our experiments.

MODEL L D V

OPT-125M 12 768 50272

OPT-350M 24 1024 50272

OPT-1.3B 24 2048 50272

TINYLLAMA-1.1B 22 2048 32000

5. Experiments and Results

In this section we describe our experiments in detail and

present the numerical results.

5.1. Models

In our experiments, we used OPT-125M, OPT-350M, OPT-

1.3B models from the OPT model family (Zhang et al.,

2022); as well as TinyLlama-1.1B (Zhang et al., 2024).

The OPT model family is a series of open-sourced decoder-

only language models ranging from 125M to 175B parame-

ters. The largest OPT model performs similarly to GPT-3

(Brown et al., 2020) with approximately 1/7th of the train-

ing cost (Zhang et al., 2022).

The TinyLlama1.1B model is developed with the goal of pre-

training such a compact model on 3 trillion tokens (Zhang

et al., 2024). The model shares the same architecture with

Llama2 model family (Touvron et al., 2023).

The number of decoder layers (L), embedding dimensional-

ity (D) and vocabulary size (V ) of the models we used in

our experiments are shown in Table 1.

5.2. Datasets

In our experiments, we used the WikiText-2 (Merity et al.,

2016) and the BookCorpus (Zhu et al., 2015) datasets for

pre-training the models.

WikiText-2 is a collection of tokens extracted from the veri-

fied “Good” and “Featured” articles from Wikipedia (Merity

et al., 2016). For pre-training, we used the “wikitext-2-v1”

subset from HuggingFace, which contains 44.8K rows.

BookCorpus dataset is a large collection containing more

than 11K books and 74M rows (Zhu et al., 2015). Due to its

size, we used 1% of the dataset. We allocated 80% of the

1% for pre-training, and the remaining 20% for evaluation.

5.3. Experiment Settings

For a backbone model, we begin by downloading the most

recent checkpoint from HuggingFace. This checkpoint is the

result of training the model on a large and diverse collection

of datasets. However, since we are going to add an early
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exit layer and pre-train it on only one dataset, we fine-tune

the backbone model on our dataset for 3 epochs so the effect

of other datasets on the model is minimal. We found out

that fine-tuning for more than 3 epochs led to overfitting.

After the initial fine-tuning of the backbone model, we add

the early exit LM head after decoder K = L/2. Specifically,

K is 6, 12, 12 and 11 for OPT-125M, OPT-350M, OPT-

1.3B and TinyLlama-1.1B models respectively. The early

exit LM heads share the same architecture and number of

parameters with the backbone LM head, the only difference

is that we allow the early exit LM head to have a bias vector.

We train the resulting early exit LLM on two different set-

tings. In the first setting, called “no freezing,” all parameters

are trainable. In the second setting, called “freezing,” we

freeze the parameters of the model except the two LM heads.

These two settings are how early exit neural networks are

trained in the literature (Scardapane et al., 2020; Laskaridis

et al., 2021). The training is done on a single NVIDIA

A6000 with a batch size of 32. Due to limited hardware

memory, we used a context length of C = 128. We used

PyTorch (Paszke et al., 2019) in our experiments.

5.4. Results

We now present the results of our class-aware early exit

initialization method and compare it against two other ini-

tialization techniques:

1 Random initialization: This is the default weight

initialization technique for linear layers in PyTorch

(Paszke et al., 2019). The weights W ∈ R
D×V are

initialized as W ∼ U
[

− 1√
D
, 1√

D

]

, where U is the

random uniform distribution.

2 Copy-from-backbone: Since the weights W of the

backbone LM head is already pre-trained and have the

same dimensions as W , copying W into W can serve

as a good starting point (Pan et al., 2024).

For our class-aware initialization, we use N0 = 0.25 and

we use the empirical frequencies of tokens in the training

set for P (Mv), i.e., the number of occurrences of the token

divided by the total number of tokens in the training set.

We report the next-token prediction accuracy throughout

the pre-training epochs for all initialization techniques. We

pre-trained the models for 10 epochs as performance started

to drop due to overfitting. The results on the WikiText-2

datasets are shown in Figure 3.

The most important takeaway from Figure 3 is that, our

class aware initialization technique achieves 25% next-token

prediction accuracy at epoch zero, without any training.

On the other hand, random initialization and copying from

backbone can achieve at most 5%. This shows that class-

aware initialization of early exits is a promising technique

for resource constrained devices and settings.

For the “no freezing” setting, although class-aware initial-

ization starts pretty well, it is surpassed by the copy-from-

backbone method easily. There are also some scenarios

where random initialization surpasses the class-aware ini-

tialization as in Figure 3c and Figure 3e. Here, we can easily

match the baselines via a convex combination:

W = ³WCA + (1− ³)WB , (8)

where WCA is the weights initialized in a class-aware man-

ner, and WB is either random initialized weights or the

copied weights from the backbone LM head. This con-

vex combination gets the best of both worlds: It helps

preserve the performance of class-aware initialization at

epoch zero, and it matches the copy-from-backbone perfor-

mance at later epochs. In our experiments we evaluated

³ ∈ {0.2, 0.4, 0.6, 0.8}, and we show the best performing

³-curves in Figure 3.

In the “freezing” setting, only the LM heads are trainable,

therefore learning is more difficult. As it can be seen from

Figure 3b, Figure 3d, Figure 3f, Figure 3h; the random and

copy-from-backbone methods struggle heavily and cannot

achieve a good next-token prediction accuracy. On the other

hand, our class-aware initialization starts from a pretty good

point and keeps performing at the same level throughout

the pre-training. Only for the OPT-125M model, there is a

sharp drop at the first epoch of the pre-training as seen in

Figure 3b. This drop can be somewhat treated by the convex

combination equation given in Equation (8).

The same trends are observed for the BookCorpus dataset as

seen in Figure 4. Specifically, without any training, the class-

aware initialization starts from a high next-token prediction

accuracy and the convex combination allows preserving the

high performance throughout the pre-training. Notably, in

the “freezing” setting, class-aware initialization performs

the best

6. Conclusion

We developed a novel class-aware weight initialization tech-

nique for early exit LLMs based on mean representation

of tokens. We made connections to the optimal detection

problem for the vector AWGN channel from the digital

communications domain. Our method performs better than

baselines in both “no freezing” and “freezing” settings. We

showed the applicability of our method to various model

families and datasets, and its effectiveness on accelerating

the pre-training phase.
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(e) OPT-1.3B, No freezing
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(g) TinyLlama-1.1B, No freezing
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Figure 3. Next-token prediction accuracies on WikiText-2 for the early exit LM head initialization techniques.
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(c) TinyLlama-1.1B, No freezing
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Figure 4. Next-token prediction accuracies on BookCorpus for the early exit LM head initialization techniques.
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